X86ISelLowering.cpp revision 1242d2809311db22712e2dededb4d6904948f45f
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86TargetMachine.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Function.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/ADT/VectorExtras.h"
27#include "llvm/Analysis/ScalarEvolutionExpressions.h"
28#include "llvm/CodeGen/CallingConvLower.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/SelectionDAG.h"
33#include "llvm/CodeGen/SSARegMap.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Target/TargetOptions.h"
36#include "llvm/ADT/StringExtras.h"
37#include "llvm/ParameterAttributes.h"
38using namespace llvm;
39
40X86TargetLowering::X86TargetLowering(TargetMachine &TM)
41  : TargetLowering(TM) {
42  Subtarget = &TM.getSubtarget<X86Subtarget>();
43  X86ScalarSSE = Subtarget->hasSSE2();
44  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
45
46  RegInfo = TM.getRegisterInfo();
47
48  // Set up the TargetLowering object.
49
50  // X86 is weird, it always uses i8 for shift amounts and setcc results.
51  setShiftAmountType(MVT::i8);
52  setSetCCResultType(MVT::i8);
53  setSetCCResultContents(ZeroOrOneSetCCResult);
54  setSchedulingPreference(SchedulingForRegPressure);
55  setShiftAmountFlavor(Mask);   // shl X, 32 == shl X, 0
56  setStackPointerRegisterToSaveRestore(X86StackPtr);
57
58  if (Subtarget->isTargetDarwin()) {
59    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
60    setUseUnderscoreSetJmp(false);
61    setUseUnderscoreLongJmp(false);
62  } else if (Subtarget->isTargetMingw()) {
63    // MS runtime is weird: it exports _setjmp, but longjmp!
64    setUseUnderscoreSetJmp(true);
65    setUseUnderscoreLongJmp(false);
66  } else {
67    setUseUnderscoreSetJmp(true);
68    setUseUnderscoreLongJmp(true);
69  }
70
71  // Set up the register classes.
72  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
73  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
74  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
75  if (Subtarget->is64Bit())
76    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
77
78  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
79
80  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
81  // operation.
82  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
83  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
84  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
85
86  if (Subtarget->is64Bit()) {
87    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
88    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
89  } else {
90    if (X86ScalarSSE)
91      // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
92      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Expand);
93    else
94      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Promote);
95  }
96
97  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
98  // this operation.
99  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
100  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
101  // SSE has no i16 to fp conversion, only i32
102  if (X86ScalarSSE) {
103    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
104    // f32 and f64 cases are Legal, f80 case is not
105    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
106  } else {
107    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
108    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
109  }
110
111  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
112  // are Legal, f80 is custom lowered.
113  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
114  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
115
116  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
117  // this operation.
118  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
119  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
120
121  if (X86ScalarSSE) {
122    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
123    // f32 and f64 cases are Legal, f80 case is not
124    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
125  } else {
126    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
127    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
128  }
129
130  // Handle FP_TO_UINT by promoting the destination to a larger signed
131  // conversion.
132  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
133  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
134  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
135
136  if (Subtarget->is64Bit()) {
137    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
138    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
139  } else {
140    if (X86ScalarSSE && !Subtarget->hasSSE3())
141      // Expand FP_TO_UINT into a select.
142      // FIXME: We would like to use a Custom expander here eventually to do
143      // the optimal thing for SSE vs. the default expansion in the legalizer.
144      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
145    else
146      // With SSE3 we can use fisttpll to convert to a signed i64.
147      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Promote);
148  }
149
150  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
151  if (!X86ScalarSSE) {
152    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
153    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
154  }
155
156  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
157  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
158  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
159  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
160  setOperationAction(ISD::MEMMOVE          , MVT::Other, Expand);
161  if (Subtarget->is64Bit())
162    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
163  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
164  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
165  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
166  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
167  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
168
169  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
170  setOperationAction(ISD::CTTZ             , MVT::i8   , Expand);
171  setOperationAction(ISD::CTLZ             , MVT::i8   , Expand);
172  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
173  setOperationAction(ISD::CTTZ             , MVT::i16  , Expand);
174  setOperationAction(ISD::CTLZ             , MVT::i16  , Expand);
175  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
176  setOperationAction(ISD::CTTZ             , MVT::i32  , Expand);
177  setOperationAction(ISD::CTLZ             , MVT::i32  , Expand);
178  if (Subtarget->is64Bit()) {
179    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
180    setOperationAction(ISD::CTTZ           , MVT::i64  , Expand);
181    setOperationAction(ISD::CTLZ           , MVT::i64  , Expand);
182  }
183
184  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
185  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
186
187  // These should be promoted to a larger select which is supported.
188  setOperationAction(ISD::SELECT           , MVT::i1   , Promote);
189  setOperationAction(ISD::SELECT           , MVT::i8   , Promote);
190  // X86 wants to expand cmov itself.
191  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
192  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
193  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
194  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
195  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
196  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
197  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
198  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
199  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
200  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
201  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
202  if (Subtarget->is64Bit()) {
203    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
204    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
205  }
206  // X86 ret instruction may pop stack.
207  setOperationAction(ISD::RET             , MVT::Other, Custom);
208  if (!Subtarget->is64Bit())
209    setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
210
211  // Darwin ABI issue.
212  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
213  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
214  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
215  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
216  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
217  if (Subtarget->is64Bit()) {
218    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
219    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
220    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
221    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
222  }
223  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
224  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
225  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
226  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
227  // X86 wants to expand memset / memcpy itself.
228  setOperationAction(ISD::MEMSET          , MVT::Other, Custom);
229  setOperationAction(ISD::MEMCPY          , MVT::Other, Custom);
230
231  // We don't have line number support yet.
232  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
233  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
234  // FIXME - use subtarget debug flags
235  if (!Subtarget->isTargetDarwin() &&
236      !Subtarget->isTargetELF() &&
237      !Subtarget->isTargetCygMing())
238    setOperationAction(ISD::LABEL, MVT::Other, Expand);
239
240  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
241  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
242  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
243  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
244  if (Subtarget->is64Bit()) {
245    // FIXME: Verify
246    setExceptionPointerRegister(X86::RAX);
247    setExceptionSelectorRegister(X86::RDX);
248  } else {
249    setExceptionPointerRegister(X86::EAX);
250    setExceptionSelectorRegister(X86::EDX);
251  }
252  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
253
254  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
255
256  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
257  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
258  setOperationAction(ISD::VAARG             , MVT::Other, Expand);
259  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
260  if (Subtarget->is64Bit())
261    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
262  else
263    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
264
265  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
266  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
267  if (Subtarget->is64Bit())
268    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
269  if (Subtarget->isTargetCygMing())
270    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
271  else
272    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
273
274  if (X86ScalarSSE) {
275    // Set up the FP register classes.
276    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
277    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
278
279    // Use ANDPD to simulate FABS.
280    setOperationAction(ISD::FABS , MVT::f64, Custom);
281    setOperationAction(ISD::FABS , MVT::f32, Custom);
282
283    // Use XORP to simulate FNEG.
284    setOperationAction(ISD::FNEG , MVT::f64, Custom);
285    setOperationAction(ISD::FNEG , MVT::f32, Custom);
286
287    // Use ANDPD and ORPD to simulate FCOPYSIGN.
288    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
289    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
290
291    // We don't support sin/cos/fmod
292    setOperationAction(ISD::FSIN , MVT::f64, Expand);
293    setOperationAction(ISD::FCOS , MVT::f64, Expand);
294    setOperationAction(ISD::FREM , MVT::f64, Expand);
295    setOperationAction(ISD::FSIN , MVT::f32, Expand);
296    setOperationAction(ISD::FCOS , MVT::f32, Expand);
297    setOperationAction(ISD::FREM , MVT::f32, Expand);
298
299    // Expand FP immediates into loads from the stack, except for the special
300    // cases we handle.
301    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
302    setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
303    addLegalFPImmediate(APFloat(+0.0)); // xorps / xorpd
304
305    // Conversions to long double (in X87) go through memory.
306    setConvertAction(MVT::f32, MVT::f80, Expand);
307    setConvertAction(MVT::f64, MVT::f80, Expand);
308
309    // Conversions from long double (in X87) go through memory.
310    setConvertAction(MVT::f80, MVT::f32, Expand);
311    setConvertAction(MVT::f80, MVT::f64, Expand);
312  } else {
313    // Set up the FP register classes.
314    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
315    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
316
317    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
318    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
319    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
320    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
321
322    // Floating truncations need to go through memory.
323    setConvertAction(MVT::f80, MVT::f32, Expand);
324    setConvertAction(MVT::f64, MVT::f32, Expand);
325    setConvertAction(MVT::f80, MVT::f64, Expand);
326
327    if (!UnsafeFPMath) {
328      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
329      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
330    }
331
332    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
333    setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
334    addLegalFPImmediate(APFloat(+0.0)); // FLD0
335    addLegalFPImmediate(APFloat(+1.0)); // FLD1
336    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
337    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
338  }
339
340  // Long double always uses X87.
341  addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
342  setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
343  setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
344  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
345
346  // First set operation action for all vector types to expand. Then we
347  // will selectively turn on ones that can be effectively codegen'd.
348  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
349       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
350    setOperationAction(ISD::ADD , (MVT::ValueType)VT, Expand);
351    setOperationAction(ISD::SUB , (MVT::ValueType)VT, Expand);
352    setOperationAction(ISD::FADD, (MVT::ValueType)VT, Expand);
353    setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand);
354    setOperationAction(ISD::FSUB, (MVT::ValueType)VT, Expand);
355    setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
356    setOperationAction(ISD::FMUL, (MVT::ValueType)VT, Expand);
357    setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
358    setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
359    setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
360    setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
361    setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
362    setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Expand);
363    setOperationAction(ISD::VECTOR_SHUFFLE,     (MVT::ValueType)VT, Expand);
364    setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
365    setOperationAction(ISD::INSERT_VECTOR_ELT,  (MVT::ValueType)VT, Expand);
366    setOperationAction(ISD::FABS, (MVT::ValueType)VT, Expand);
367    setOperationAction(ISD::FSIN, (MVT::ValueType)VT, Expand);
368    setOperationAction(ISD::FCOS, (MVT::ValueType)VT, Expand);
369    setOperationAction(ISD::FREM, (MVT::ValueType)VT, Expand);
370    setOperationAction(ISD::FPOWI, (MVT::ValueType)VT, Expand);
371    setOperationAction(ISD::FSQRT, (MVT::ValueType)VT, Expand);
372    setOperationAction(ISD::FCOPYSIGN, (MVT::ValueType)VT, Expand);
373  }
374
375  if (Subtarget->hasMMX()) {
376    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
377    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
378    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
379    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
380
381    // FIXME: add MMX packed arithmetics
382
383    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
384    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
385    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
386    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
387
388    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
389    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
390    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
391
392    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
393    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
394
395    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
396    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
397    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
398    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
399    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
400    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
401    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
402
403    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
404    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
405    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
406    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
407    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
408    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
409    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
410
411    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
412    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
413    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
414    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
415    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
416    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
417    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
418
419    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
420    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
421    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
422    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
423    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
424    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
425    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
426
427    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
428    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
429    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
430    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
431
432    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
433    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
434    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
435    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
436
437    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
438    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
439    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Custom);
440    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
441  }
442
443  if (Subtarget->hasSSE1()) {
444    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
445
446    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
447    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
448    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
449    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
450    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
451    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
452    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
453    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
454    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
455    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
456    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
457  }
458
459  if (Subtarget->hasSSE2()) {
460    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
461    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
462    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
463    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
464    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
465
466    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
467    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
468    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
469    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
470    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
471    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
472    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
473    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
474    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
475    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
476    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
477    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
478    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
479    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
480    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
481
482    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
483    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
484    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
485    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
486    // Implement v4f32 insert_vector_elt in terms of SSE2 v8i16 ones.
487    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
488
489    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
490    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
491      setOperationAction(ISD::BUILD_VECTOR,        (MVT::ValueType)VT, Custom);
492      setOperationAction(ISD::VECTOR_SHUFFLE,      (MVT::ValueType)VT, Custom);
493      setOperationAction(ISD::EXTRACT_VECTOR_ELT,  (MVT::ValueType)VT, Custom);
494    }
495    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
496    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
497    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
498    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
499    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
500    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
501
502    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
503    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
504      setOperationAction(ISD::AND,    (MVT::ValueType)VT, Promote);
505      AddPromotedToType (ISD::AND,    (MVT::ValueType)VT, MVT::v2i64);
506      setOperationAction(ISD::OR,     (MVT::ValueType)VT, Promote);
507      AddPromotedToType (ISD::OR,     (MVT::ValueType)VT, MVT::v2i64);
508      setOperationAction(ISD::XOR,    (MVT::ValueType)VT, Promote);
509      AddPromotedToType (ISD::XOR,    (MVT::ValueType)VT, MVT::v2i64);
510      setOperationAction(ISD::LOAD,   (MVT::ValueType)VT, Promote);
511      AddPromotedToType (ISD::LOAD,   (MVT::ValueType)VT, MVT::v2i64);
512      setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
513      AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v2i64);
514    }
515
516    // Custom lower v2i64 and v2f64 selects.
517    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
518    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
519    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
520    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
521  }
522
523  // We want to custom lower some of our intrinsics.
524  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
525
526  // We have target-specific dag combine patterns for the following nodes:
527  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
528  setTargetDAGCombine(ISD::SELECT);
529
530  computeRegisterProperties();
531
532  // FIXME: These should be based on subtarget info. Plus, the values should
533  // be smaller when we are in optimizing for size mode.
534  maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores
535  maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores
536  maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores
537  allowUnalignedMemoryAccesses = true; // x86 supports it!
538}
539
540
541//===----------------------------------------------------------------------===//
542//               Return Value Calling Convention Implementation
543//===----------------------------------------------------------------------===//
544
545#include "X86GenCallingConv.inc"
546
547/// LowerRET - Lower an ISD::RET node.
548SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) {
549  assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
550
551  SmallVector<CCValAssign, 16> RVLocs;
552  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
553  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
554  CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
555  CCInfo.AnalyzeReturn(Op.Val, RetCC_X86);
556
557
558  // If this is the first return lowered for this function, add the regs to the
559  // liveout set for the function.
560  if (DAG.getMachineFunction().liveout_empty()) {
561    for (unsigned i = 0; i != RVLocs.size(); ++i)
562      if (RVLocs[i].isRegLoc())
563        DAG.getMachineFunction().addLiveOut(RVLocs[i].getLocReg());
564  }
565
566  SDOperand Chain = Op.getOperand(0);
567  SDOperand Flag;
568
569  // Copy the result values into the output registers.
570  if (RVLocs.size() != 1 || !RVLocs[0].isRegLoc() ||
571      RVLocs[0].getLocReg() != X86::ST0) {
572    for (unsigned i = 0; i != RVLocs.size(); ++i) {
573      CCValAssign &VA = RVLocs[i];
574      assert(VA.isRegLoc() && "Can only return in registers!");
575      Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1),
576                               Flag);
577      Flag = Chain.getValue(1);
578    }
579  } else {
580    // We need to handle a destination of ST0 specially, because it isn't really
581    // a register.
582    SDOperand Value = Op.getOperand(1);
583
584    // If this is an FP return with ScalarSSE, we need to move the value from
585    // an XMM register onto the fp-stack.
586    if (X86ScalarSSE) {
587      SDOperand MemLoc;
588
589      // If this is a load into a scalarsse value, don't store the loaded value
590      // back to the stack, only to reload it: just replace the scalar-sse load.
591      if (ISD::isNON_EXTLoad(Value.Val) &&
592          (Chain == Value.getValue(1) || Chain == Value.getOperand(0))) {
593        Chain  = Value.getOperand(0);
594        MemLoc = Value.getOperand(1);
595      } else {
596        // Spill the value to memory and reload it into top of stack.
597        unsigned Size = MVT::getSizeInBits(RVLocs[0].getValVT())/8;
598        MachineFunction &MF = DAG.getMachineFunction();
599        int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
600        MemLoc = DAG.getFrameIndex(SSFI, getPointerTy());
601        Chain = DAG.getStore(Op.getOperand(0), Value, MemLoc, NULL, 0);
602      }
603      SDVTList Tys = DAG.getVTList(RVLocs[0].getValVT(), MVT::Other);
604      SDOperand Ops[] = {Chain, MemLoc, DAG.getValueType(RVLocs[0].getValVT())};
605      Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
606      Chain = Value.getValue(1);
607    }
608
609    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
610    SDOperand Ops[] = { Chain, Value };
611    Chain = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops, 2);
612    Flag = Chain.getValue(1);
613  }
614
615  SDOperand BytesToPop = DAG.getConstant(getBytesToPopOnReturn(), MVT::i16);
616  if (Flag.Val)
617    return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop, Flag);
618  else
619    return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop);
620}
621
622
623/// LowerCallResult - Lower the result values of an ISD::CALL into the
624/// appropriate copies out of appropriate physical registers.  This assumes that
625/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
626/// being lowered.  The returns a SDNode with the same number of values as the
627/// ISD::CALL.
628SDNode *X86TargetLowering::
629LowerCallResult(SDOperand Chain, SDOperand InFlag, SDNode *TheCall,
630                unsigned CallingConv, SelectionDAG &DAG) {
631
632  // Assign locations to each value returned by this call.
633  SmallVector<CCValAssign, 16> RVLocs;
634  bool isVarArg = cast<ConstantSDNode>(TheCall->getOperand(2))->getValue() != 0;
635  CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
636  CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
637
638
639  SmallVector<SDOperand, 8> ResultVals;
640
641  // Copy all of the result registers out of their specified physreg.
642  if (RVLocs.size() != 1 || RVLocs[0].getLocReg() != X86::ST0) {
643    for (unsigned i = 0; i != RVLocs.size(); ++i) {
644      Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(),
645                                 RVLocs[i].getValVT(), InFlag).getValue(1);
646      InFlag = Chain.getValue(2);
647      ResultVals.push_back(Chain.getValue(0));
648    }
649  } else {
650    // Copies from the FP stack are special, as ST0 isn't a valid register
651    // before the fp stackifier runs.
652
653    // Copy ST0 into an RFP register with FP_GET_RESULT.
654    SDVTList Tys = DAG.getVTList(RVLocs[0].getValVT(), MVT::Other, MVT::Flag);
655    SDOperand GROps[] = { Chain, InFlag };
656    SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, GROps, 2);
657    Chain  = RetVal.getValue(1);
658    InFlag = RetVal.getValue(2);
659
660    // If we are using ScalarSSE, store ST(0) to the stack and reload it into
661    // an XMM register.
662    if (X86ScalarSSE) {
663      // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
664      // shouldn't be necessary except that RFP cannot be live across
665      // multiple blocks. When stackifier is fixed, they can be uncoupled.
666      MachineFunction &MF = DAG.getMachineFunction();
667      int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
668      SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
669      SDOperand Ops[] = {
670        Chain, RetVal, StackSlot, DAG.getValueType(RVLocs[0].getValVT()), InFlag
671      };
672      Chain = DAG.getNode(X86ISD::FST, MVT::Other, Ops, 5);
673      RetVal = DAG.getLoad(RVLocs[0].getValVT(), Chain, StackSlot, NULL, 0);
674      Chain = RetVal.getValue(1);
675    }
676    ResultVals.push_back(RetVal);
677  }
678
679  // Merge everything together with a MERGE_VALUES node.
680  ResultVals.push_back(Chain);
681  return DAG.getNode(ISD::MERGE_VALUES, TheCall->getVTList(),
682                     &ResultVals[0], ResultVals.size()).Val;
683}
684
685
686//===----------------------------------------------------------------------===//
687//                C & StdCall Calling Convention implementation
688//===----------------------------------------------------------------------===//
689//  StdCall calling convention seems to be standard for many Windows' API
690//  routines and around. It differs from C calling convention just a little:
691//  callee should clean up the stack, not caller. Symbols should be also
692//  decorated in some fancy way :) It doesn't support any vector arguments.
693
694/// AddLiveIn - This helper function adds the specified physical register to the
695/// MachineFunction as a live in value.  It also creates a corresponding virtual
696/// register for it.
697static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
698                          const TargetRegisterClass *RC) {
699  assert(RC->contains(PReg) && "Not the correct regclass!");
700  unsigned VReg = MF.getSSARegMap()->createVirtualRegister(RC);
701  MF.addLiveIn(PReg, VReg);
702  return VReg;
703}
704
705SDOperand X86TargetLowering::LowerMemArgument(SDOperand Op, SelectionDAG &DAG,
706                                              const CCValAssign &VA,
707                                              MachineFrameInfo *MFI,
708                                              SDOperand Root, unsigned i) {
709  // Create the nodes corresponding to a load from this parameter slot.
710  int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
711                                  VA.getLocMemOffset());
712  SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
713
714  unsigned Flags =  cast<ConstantSDNode>(Op.getOperand(3 + i))->getValue();
715
716  if (Flags & ISD::ParamFlags::ByVal)
717    return FIN;
718  else
719    return DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0);
720}
721
722SDOperand X86TargetLowering::LowerCCCArguments(SDOperand Op, SelectionDAG &DAG,
723                                               bool isStdCall) {
724  unsigned NumArgs = Op.Val->getNumValues() - 1;
725  MachineFunction &MF = DAG.getMachineFunction();
726  MachineFrameInfo *MFI = MF.getFrameInfo();
727  SDOperand Root = Op.getOperand(0);
728  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
729
730  // Assign locations to all of the incoming arguments.
731  SmallVector<CCValAssign, 16> ArgLocs;
732  CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
733                 getTargetMachine(), ArgLocs);
734  CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_C);
735
736  SmallVector<SDOperand, 8> ArgValues;
737  unsigned LastVal = ~0U;
738  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
739    CCValAssign &VA = ArgLocs[i];
740    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
741    // places.
742    assert(VA.getValNo() != LastVal &&
743           "Don't support value assigned to multiple locs yet");
744    LastVal = VA.getValNo();
745
746    if (VA.isRegLoc()) {
747      MVT::ValueType RegVT = VA.getLocVT();
748      TargetRegisterClass *RC;
749      if (RegVT == MVT::i32)
750        RC = X86::GR32RegisterClass;
751      else {
752        assert(MVT::isVector(RegVT));
753        RC = X86::VR128RegisterClass;
754      }
755
756      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
757      SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
758
759      // If this is an 8 or 16-bit value, it is really passed promoted to 32
760      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
761      // right size.
762      if (VA.getLocInfo() == CCValAssign::SExt)
763        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
764                               DAG.getValueType(VA.getValVT()));
765      else if (VA.getLocInfo() == CCValAssign::ZExt)
766        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
767                               DAG.getValueType(VA.getValVT()));
768
769      if (VA.getLocInfo() != CCValAssign::Full)
770        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
771
772      ArgValues.push_back(ArgValue);
773    } else {
774      assert(VA.isMemLoc());
775      ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
776    }
777  }
778
779  unsigned StackSize = CCInfo.getNextStackOffset();
780
781  ArgValues.push_back(Root);
782
783  // If the function takes variable number of arguments, make a frame index for
784  // the start of the first vararg value... for expansion of llvm.va_start.
785  if (isVarArg)
786    VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
787
788  if (isStdCall && !isVarArg) {
789    BytesToPopOnReturn  = StackSize;    // Callee pops everything..
790    BytesCallerReserves = 0;
791  } else {
792    BytesToPopOnReturn  = 0; // Callee pops nothing.
793
794    // If this is an sret function, the return should pop the hidden pointer.
795    if (NumArgs &&
796        (cast<ConstantSDNode>(Op.getOperand(3))->getValue() &
797         ISD::ParamFlags::StructReturn))
798      BytesToPopOnReturn = 4;
799
800    BytesCallerReserves = StackSize;
801  }
802
803  RegSaveFrameIndex = 0xAAAAAAA;  // X86-64 only.
804
805  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
806  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
807
808  // Return the new list of results.
809  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
810                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
811}
812
813SDOperand X86TargetLowering::LowerCCCCallTo(SDOperand Op, SelectionDAG &DAG,
814                                            unsigned CC) {
815  SDOperand Chain     = Op.getOperand(0);
816  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
817  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
818  SDOperand Callee    = Op.getOperand(4);
819  unsigned NumOps     = (Op.getNumOperands() - 5) / 2;
820
821  // Analyze operands of the call, assigning locations to each operand.
822  SmallVector<CCValAssign, 16> ArgLocs;
823  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
824  CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_C);
825
826  // Get a count of how many bytes are to be pushed on the stack.
827  unsigned NumBytes = CCInfo.getNextStackOffset();
828
829  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
830
831  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
832  SmallVector<SDOperand, 8> MemOpChains;
833
834  SDOperand StackPtr;
835
836  // Walk the register/memloc assignments, inserting copies/loads.
837  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
838    CCValAssign &VA = ArgLocs[i];
839    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
840
841    // Promote the value if needed.
842    switch (VA.getLocInfo()) {
843    default: assert(0 && "Unknown loc info!");
844    case CCValAssign::Full: break;
845    case CCValAssign::SExt:
846      Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
847      break;
848    case CCValAssign::ZExt:
849      Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
850      break;
851    case CCValAssign::AExt:
852      Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
853      break;
854    }
855
856    if (VA.isRegLoc()) {
857      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
858    } else {
859      assert(VA.isMemLoc());
860      if (StackPtr.Val == 0)
861        StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
862      SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
863      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
864      MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
865    }
866  }
867
868  // If the first argument is an sret pointer, remember it.
869  bool isSRet = NumOps &&
870    (cast<ConstantSDNode>(Op.getOperand(6))->getValue() &
871     ISD::ParamFlags::StructReturn);
872
873  if (!MemOpChains.empty())
874    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
875                        &MemOpChains[0], MemOpChains.size());
876
877  // Build a sequence of copy-to-reg nodes chained together with token chain
878  // and flag operands which copy the outgoing args into registers.
879  SDOperand InFlag;
880  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
881    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
882                             InFlag);
883    InFlag = Chain.getValue(1);
884  }
885
886  // ELF / PIC requires GOT in the EBX register before function calls via PLT
887  // GOT pointer.
888  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
889      Subtarget->isPICStyleGOT()) {
890    Chain = DAG.getCopyToReg(Chain, X86::EBX,
891                             DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
892                             InFlag);
893    InFlag = Chain.getValue(1);
894  }
895
896  // If the callee is a GlobalAddress node (quite common, every direct call is)
897  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
898  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
899    // We should use extra load for direct calls to dllimported functions in
900    // non-JIT mode.
901    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
902                                        getTargetMachine(), true))
903      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
904  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
905    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
906
907  // Returns a chain & a flag for retval copy to use.
908  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
909  SmallVector<SDOperand, 8> Ops;
910  Ops.push_back(Chain);
911  Ops.push_back(Callee);
912
913  // Add argument registers to the end of the list so that they are known live
914  // into the call.
915  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
916    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
917                                  RegsToPass[i].second.getValueType()));
918
919  // Add an implicit use GOT pointer in EBX.
920  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
921      Subtarget->isPICStyleGOT())
922    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
923
924  if (InFlag.Val)
925    Ops.push_back(InFlag);
926
927  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
928                      NodeTys, &Ops[0], Ops.size());
929  InFlag = Chain.getValue(1);
930
931  // Create the CALLSEQ_END node.
932  unsigned NumBytesForCalleeToPush = 0;
933
934  if (CC == CallingConv::X86_StdCall) {
935    if (isVarArg)
936      NumBytesForCalleeToPush = isSRet ? 4 : 0;
937    else
938      NumBytesForCalleeToPush = NumBytes;
939  } else {
940    // If this is is a call to a struct-return function, the callee
941    // pops the hidden struct pointer, so we have to push it back.
942    // This is common for Darwin/X86, Linux & Mingw32 targets.
943    NumBytesForCalleeToPush = isSRet ? 4 : 0;
944  }
945
946  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
947  Ops.clear();
948  Ops.push_back(Chain);
949  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
950  Ops.push_back(DAG.getConstant(NumBytesForCalleeToPush, getPointerTy()));
951  Ops.push_back(InFlag);
952  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
953  InFlag = Chain.getValue(1);
954
955  // Handle result values, copying them out of physregs into vregs that we
956  // return.
957  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
958}
959
960
961//===----------------------------------------------------------------------===//
962//                   FastCall Calling Convention implementation
963//===----------------------------------------------------------------------===//
964//
965// The X86 'fastcall' calling convention passes up to two integer arguments in
966// registers (an appropriate portion of ECX/EDX), passes arguments in C order,
967// and requires that the callee pop its arguments off the stack (allowing proper
968// tail calls), and has the same return value conventions as C calling convs.
969//
970// This calling convention always arranges for the callee pop value to be 8n+4
971// bytes, which is needed for tail recursion elimination and stack alignment
972// reasons.
973SDOperand
974X86TargetLowering::LowerFastCCArguments(SDOperand Op, SelectionDAG &DAG) {
975  MachineFunction &MF = DAG.getMachineFunction();
976  MachineFrameInfo *MFI = MF.getFrameInfo();
977  SDOperand Root = Op.getOperand(0);
978  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
979
980  // Assign locations to all of the incoming arguments.
981  SmallVector<CCValAssign, 16> ArgLocs;
982  CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
983                 getTargetMachine(), ArgLocs);
984  CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_FastCall);
985
986  SmallVector<SDOperand, 8> ArgValues;
987  unsigned LastVal = ~0U;
988  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
989    CCValAssign &VA = ArgLocs[i];
990    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
991    // places.
992    assert(VA.getValNo() != LastVal &&
993           "Don't support value assigned to multiple locs yet");
994    LastVal = VA.getValNo();
995
996    if (VA.isRegLoc()) {
997      MVT::ValueType RegVT = VA.getLocVT();
998      TargetRegisterClass *RC;
999      if (RegVT == MVT::i32)
1000        RC = X86::GR32RegisterClass;
1001      else {
1002        assert(MVT::isVector(RegVT));
1003        RC = X86::VR128RegisterClass;
1004      }
1005
1006      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1007      SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1008
1009      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1010      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1011      // right size.
1012      if (VA.getLocInfo() == CCValAssign::SExt)
1013        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1014                               DAG.getValueType(VA.getValVT()));
1015      else if (VA.getLocInfo() == CCValAssign::ZExt)
1016        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1017                               DAG.getValueType(VA.getValVT()));
1018
1019      if (VA.getLocInfo() != CCValAssign::Full)
1020        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1021
1022      ArgValues.push_back(ArgValue);
1023    } else {
1024      assert(VA.isMemLoc());
1025      ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
1026    }
1027  }
1028
1029  ArgValues.push_back(Root);
1030
1031  unsigned StackSize = CCInfo.getNextStackOffset();
1032
1033  if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
1034    // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1035    // arguments and the arguments after the retaddr has been pushed are aligned.
1036    if ((StackSize & 7) == 0)
1037      StackSize += 4;
1038  }
1039
1040  VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1041  RegSaveFrameIndex = 0xAAAAAAA;   // X86-64 only.
1042  BytesToPopOnReturn = StackSize;  // Callee pops all stack arguments.
1043  BytesCallerReserves = 0;
1044
1045  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1046  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1047
1048  // Return the new list of results.
1049  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1050                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1051}
1052
1053SDOperand
1054X86TargetLowering::LowerMemOpCallTo(SDOperand Op, SelectionDAG &DAG,
1055                                    const SDOperand &StackPtr,
1056                                    const CCValAssign &VA,
1057                                    SDOperand Chain,
1058                                    SDOperand Arg) {
1059  SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
1060  PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1061  SDOperand FlagsOp = Op.getOperand(6+2*VA.getValNo());
1062  unsigned Flags    = cast<ConstantSDNode>(FlagsOp)->getValue();
1063  if (Flags & ISD::ParamFlags::ByVal) {
1064    unsigned Align = 1 << ((Flags & ISD::ParamFlags::ByValAlign) >>
1065                           ISD::ParamFlags::ByValAlignOffs);
1066
1067    assert (Align >= 8);
1068    unsigned  Size = (Flags & ISD::ParamFlags::ByValSize) >>
1069        ISD::ParamFlags::ByValSizeOffs;
1070
1071    SDOperand AlignNode = DAG.getConstant(Align, MVT::i32);
1072    SDOperand  SizeNode = DAG.getConstant(Size, MVT::i32);
1073
1074    return DAG.getNode(ISD::MEMCPY, MVT::Other, Chain, PtrOff, Arg, SizeNode,
1075                       AlignNode);
1076  } else {
1077    return DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
1078  }
1079}
1080
1081SDOperand X86TargetLowering::LowerFastCCCallTo(SDOperand Op, SelectionDAG &DAG,
1082                                               unsigned CC) {
1083  SDOperand Chain     = Op.getOperand(0);
1084  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1085  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1086  SDOperand Callee    = Op.getOperand(4);
1087
1088  // Analyze operands of the call, assigning locations to each operand.
1089  SmallVector<CCValAssign, 16> ArgLocs;
1090  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1091  CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_FastCall);
1092
1093  // Get a count of how many bytes are to be pushed on the stack.
1094  unsigned NumBytes = CCInfo.getNextStackOffset();
1095
1096  if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
1097    // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1098    // arguments and the arguments after the retaddr has been pushed are aligned.
1099    if ((NumBytes & 7) == 0)
1100      NumBytes += 4;
1101  }
1102
1103  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1104
1105  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1106  SmallVector<SDOperand, 8> MemOpChains;
1107
1108  SDOperand StackPtr;
1109
1110  // Walk the register/memloc assignments, inserting copies/loads.
1111  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1112    CCValAssign &VA = ArgLocs[i];
1113    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1114
1115    // Promote the value if needed.
1116    switch (VA.getLocInfo()) {
1117      default: assert(0 && "Unknown loc info!");
1118      case CCValAssign::Full: break;
1119      case CCValAssign::SExt:
1120        Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1121        break;
1122      case CCValAssign::ZExt:
1123        Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1124        break;
1125      case CCValAssign::AExt:
1126        Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1127        break;
1128    }
1129
1130    if (VA.isRegLoc()) {
1131      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1132    } else {
1133      assert(VA.isMemLoc());
1134      if (StackPtr.Val == 0)
1135        StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
1136      SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
1137      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1138      MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1139    }
1140  }
1141
1142  if (!MemOpChains.empty())
1143    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1144                        &MemOpChains[0], MemOpChains.size());
1145
1146  // Build a sequence of copy-to-reg nodes chained together with token chain
1147  // and flag operands which copy the outgoing args into registers.
1148  SDOperand InFlag;
1149  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1150    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1151                             InFlag);
1152    InFlag = Chain.getValue(1);
1153  }
1154
1155  // If the callee is a GlobalAddress node (quite common, every direct call is)
1156  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1157  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1158    // We should use extra load for direct calls to dllimported functions in
1159    // non-JIT mode.
1160    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1161                                        getTargetMachine(), true))
1162      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1163  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1164    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1165
1166  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1167  // GOT pointer.
1168  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1169      Subtarget->isPICStyleGOT()) {
1170    Chain = DAG.getCopyToReg(Chain, X86::EBX,
1171                             DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1172                             InFlag);
1173    InFlag = Chain.getValue(1);
1174  }
1175
1176  // Returns a chain & a flag for retval copy to use.
1177  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1178  SmallVector<SDOperand, 8> Ops;
1179  Ops.push_back(Chain);
1180  Ops.push_back(Callee);
1181
1182  // Add argument registers to the end of the list so that they are known live
1183  // into the call.
1184  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1185    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1186                                  RegsToPass[i].second.getValueType()));
1187
1188  // Add an implicit use GOT pointer in EBX.
1189  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1190      Subtarget->isPICStyleGOT())
1191    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1192
1193  if (InFlag.Val)
1194    Ops.push_back(InFlag);
1195
1196  // FIXME: Do not generate X86ISD::TAILCALL for now.
1197  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1198                      NodeTys, &Ops[0], Ops.size());
1199  InFlag = Chain.getValue(1);
1200
1201  // Returns a flag for retval copy to use.
1202  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1203  Ops.clear();
1204  Ops.push_back(Chain);
1205  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1206  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1207  Ops.push_back(InFlag);
1208  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1209  InFlag = Chain.getValue(1);
1210
1211  // Handle result values, copying them out of physregs into vregs that we
1212  // return.
1213  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1214}
1215
1216
1217//===----------------------------------------------------------------------===//
1218//                 X86-64 C Calling Convention implementation
1219//===----------------------------------------------------------------------===//
1220
1221SDOperand
1222X86TargetLowering::LowerX86_64CCCArguments(SDOperand Op, SelectionDAG &DAG) {
1223  MachineFunction &MF = DAG.getMachineFunction();
1224  MachineFrameInfo *MFI = MF.getFrameInfo();
1225  SDOperand Root = Op.getOperand(0);
1226  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1227
1228  static const unsigned GPR64ArgRegs[] = {
1229    X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8,  X86::R9
1230  };
1231  static const unsigned XMMArgRegs[] = {
1232    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1233    X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1234  };
1235
1236
1237  // Assign locations to all of the incoming arguments.
1238  SmallVector<CCValAssign, 16> ArgLocs;
1239  CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
1240                 getTargetMachine(), ArgLocs);
1241  CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_64_C);
1242
1243  SmallVector<SDOperand, 8> ArgValues;
1244  unsigned LastVal = ~0U;
1245  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1246    CCValAssign &VA = ArgLocs[i];
1247    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1248    // places.
1249    assert(VA.getValNo() != LastVal &&
1250           "Don't support value assigned to multiple locs yet");
1251    LastVal = VA.getValNo();
1252
1253    if (VA.isRegLoc()) {
1254      MVT::ValueType RegVT = VA.getLocVT();
1255      TargetRegisterClass *RC;
1256      if (RegVT == MVT::i32)
1257        RC = X86::GR32RegisterClass;
1258      else if (RegVT == MVT::i64)
1259        RC = X86::GR64RegisterClass;
1260      else if (RegVT == MVT::f32)
1261        RC = X86::FR32RegisterClass;
1262      else if (RegVT == MVT::f64)
1263        RC = X86::FR64RegisterClass;
1264      else {
1265        assert(MVT::isVector(RegVT));
1266        if (MVT::getSizeInBits(RegVT) == 64) {
1267          RC = X86::GR64RegisterClass;       // MMX values are passed in GPRs.
1268          RegVT = MVT::i64;
1269        } else
1270          RC = X86::VR128RegisterClass;
1271      }
1272
1273      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1274      SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1275
1276      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1277      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1278      // right size.
1279      if (VA.getLocInfo() == CCValAssign::SExt)
1280        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1281                               DAG.getValueType(VA.getValVT()));
1282      else if (VA.getLocInfo() == CCValAssign::ZExt)
1283        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1284                               DAG.getValueType(VA.getValVT()));
1285
1286      if (VA.getLocInfo() != CCValAssign::Full)
1287        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1288
1289      // Handle MMX values passed in GPRs.
1290      if (RegVT != VA.getLocVT() && RC == X86::GR64RegisterClass &&
1291          MVT::getSizeInBits(RegVT) == 64)
1292        ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
1293
1294      ArgValues.push_back(ArgValue);
1295    } else {
1296      assert(VA.isMemLoc());
1297      ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
1298    }
1299  }
1300
1301  unsigned StackSize = CCInfo.getNextStackOffset();
1302
1303  // If the function takes variable number of arguments, make a frame index for
1304  // the start of the first vararg value... for expansion of llvm.va_start.
1305  if (isVarArg) {
1306    unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs, 6);
1307    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1308
1309    // For X86-64, if there are vararg parameters that are passed via
1310    // registers, then we must store them to their spots on the stack so they
1311    // may be loaded by deferencing the result of va_next.
1312    VarArgsGPOffset = NumIntRegs * 8;
1313    VarArgsFPOffset = 6 * 8 + NumXMMRegs * 16;
1314    VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1315    RegSaveFrameIndex = MFI->CreateStackObject(6 * 8 + 8 * 16, 16);
1316
1317    // Store the integer parameter registers.
1318    SmallVector<SDOperand, 8> MemOps;
1319    SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1320    SDOperand FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1321                              DAG.getConstant(VarArgsGPOffset, getPointerTy()));
1322    for (; NumIntRegs != 6; ++NumIntRegs) {
1323      unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
1324                                X86::GR64RegisterClass);
1325      SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1326      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1327      MemOps.push_back(Store);
1328      FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1329                        DAG.getConstant(8, getPointerTy()));
1330    }
1331
1332    // Now store the XMM (fp + vector) parameter registers.
1333    FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1334                      DAG.getConstant(VarArgsFPOffset, getPointerTy()));
1335    for (; NumXMMRegs != 8; ++NumXMMRegs) {
1336      unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
1337                                X86::VR128RegisterClass);
1338      SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
1339      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1340      MemOps.push_back(Store);
1341      FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1342                        DAG.getConstant(16, getPointerTy()));
1343    }
1344    if (!MemOps.empty())
1345        Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
1346                           &MemOps[0], MemOps.size());
1347  }
1348
1349  ArgValues.push_back(Root);
1350
1351  BytesToPopOnReturn = 0;  // Callee pops nothing.
1352  BytesCallerReserves = StackSize;
1353
1354  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1355  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1356
1357  // Return the new list of results.
1358  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1359                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1360}
1361
1362SDOperand
1363X86TargetLowering::LowerX86_64CCCCallTo(SDOperand Op, SelectionDAG &DAG,
1364                                        unsigned CC) {
1365  SDOperand Chain     = Op.getOperand(0);
1366  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1367  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1368  SDOperand Callee    = Op.getOperand(4);
1369
1370  // Analyze operands of the call, assigning locations to each operand.
1371  SmallVector<CCValAssign, 16> ArgLocs;
1372  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1373  CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_64_C);
1374
1375  // Get a count of how many bytes are to be pushed on the stack.
1376  unsigned NumBytes = CCInfo.getNextStackOffset();
1377  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1378
1379  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1380  SmallVector<SDOperand, 8> MemOpChains;
1381
1382  SDOperand StackPtr;
1383
1384  // Walk the register/memloc assignments, inserting copies/loads.
1385  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1386    CCValAssign &VA = ArgLocs[i];
1387    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1388
1389    // Promote the value if needed.
1390    switch (VA.getLocInfo()) {
1391    default: assert(0 && "Unknown loc info!");
1392    case CCValAssign::Full: break;
1393    case CCValAssign::SExt:
1394      Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1395      break;
1396    case CCValAssign::ZExt:
1397      Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1398      break;
1399    case CCValAssign::AExt:
1400      Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1401      break;
1402    }
1403
1404    if (VA.isRegLoc()) {
1405      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1406    } else {
1407      assert(VA.isMemLoc());
1408      if (StackPtr.Val == 0)
1409        StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
1410
1411      MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1412                                             Arg));
1413    }
1414  }
1415
1416  if (!MemOpChains.empty())
1417    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1418                        &MemOpChains[0], MemOpChains.size());
1419
1420  // Build a sequence of copy-to-reg nodes chained together with token chain
1421  // and flag operands which copy the outgoing args into registers.
1422  SDOperand InFlag;
1423  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1424    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1425                             InFlag);
1426    InFlag = Chain.getValue(1);
1427  }
1428
1429  if (isVarArg) {
1430    // From AMD64 ABI document:
1431    // For calls that may call functions that use varargs or stdargs
1432    // (prototype-less calls or calls to functions containing ellipsis (...) in
1433    // the declaration) %al is used as hidden argument to specify the number
1434    // of SSE registers used. The contents of %al do not need to match exactly
1435    // the number of registers, but must be an ubound on the number of SSE
1436    // registers used and is in the range 0 - 8 inclusive.
1437
1438    // Count the number of XMM registers allocated.
1439    static const unsigned XMMArgRegs[] = {
1440      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1441      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1442    };
1443    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1444
1445    Chain = DAG.getCopyToReg(Chain, X86::AL,
1446                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1447    InFlag = Chain.getValue(1);
1448  }
1449
1450  // If the callee is a GlobalAddress node (quite common, every direct call is)
1451  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1452  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1453    // We should use extra load for direct calls to dllimported functions in
1454    // non-JIT mode.
1455    if (getTargetMachine().getCodeModel() != CodeModel::Large
1456        && !Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1457                                           getTargetMachine(), true))
1458      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1459  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1460    if (getTargetMachine().getCodeModel() != CodeModel::Large)
1461      Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1462
1463  // Returns a chain & a flag for retval copy to use.
1464  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1465  SmallVector<SDOperand, 8> Ops;
1466  Ops.push_back(Chain);
1467  Ops.push_back(Callee);
1468
1469  // Add argument registers to the end of the list so that they are known live
1470  // into the call.
1471  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1472    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1473                                  RegsToPass[i].second.getValueType()));
1474
1475  if (InFlag.Val)
1476    Ops.push_back(InFlag);
1477
1478  // FIXME: Do not generate X86ISD::TAILCALL for now.
1479  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1480                      NodeTys, &Ops[0], Ops.size());
1481  InFlag = Chain.getValue(1);
1482
1483  // Returns a flag for retval copy to use.
1484  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1485  Ops.clear();
1486  Ops.push_back(Chain);
1487  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1488  Ops.push_back(DAG.getConstant(0, getPointerTy()));
1489  Ops.push_back(InFlag);
1490  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1491  InFlag = Chain.getValue(1);
1492
1493  // Handle result values, copying them out of physregs into vregs that we
1494  // return.
1495  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1496}
1497
1498
1499//===----------------------------------------------------------------------===//
1500//                           Other Lowering Hooks
1501//===----------------------------------------------------------------------===//
1502
1503
1504SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
1505  MachineFunction &MF = DAG.getMachineFunction();
1506  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1507  int ReturnAddrIndex = FuncInfo->getRAIndex();
1508
1509  if (ReturnAddrIndex == 0) {
1510    // Set up a frame object for the return address.
1511    if (Subtarget->is64Bit())
1512      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(8, -8);
1513    else
1514      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4);
1515
1516    FuncInfo->setRAIndex(ReturnAddrIndex);
1517  }
1518
1519  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
1520}
1521
1522
1523
1524/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
1525/// specific condition code. It returns a false if it cannot do a direct
1526/// translation. X86CC is the translated CondCode.  LHS/RHS are modified as
1527/// needed.
1528static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
1529                           unsigned &X86CC, SDOperand &LHS, SDOperand &RHS,
1530                           SelectionDAG &DAG) {
1531  X86CC = X86::COND_INVALID;
1532  if (!isFP) {
1533    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
1534      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
1535        // X > -1   -> X == 0, jump !sign.
1536        RHS = DAG.getConstant(0, RHS.getValueType());
1537        X86CC = X86::COND_NS;
1538        return true;
1539      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
1540        // X < 0   -> X == 0, jump on sign.
1541        X86CC = X86::COND_S;
1542        return true;
1543      } else if (SetCCOpcode == ISD::SETLT && RHSC->getValue() == 1) {
1544        // X < 1   -> X <= 0
1545        RHS = DAG.getConstant(0, RHS.getValueType());
1546        X86CC = X86::COND_LE;
1547        return true;
1548      }
1549    }
1550
1551    switch (SetCCOpcode) {
1552    default: break;
1553    case ISD::SETEQ:  X86CC = X86::COND_E;  break;
1554    case ISD::SETGT:  X86CC = X86::COND_G;  break;
1555    case ISD::SETGE:  X86CC = X86::COND_GE; break;
1556    case ISD::SETLT:  X86CC = X86::COND_L;  break;
1557    case ISD::SETLE:  X86CC = X86::COND_LE; break;
1558    case ISD::SETNE:  X86CC = X86::COND_NE; break;
1559    case ISD::SETULT: X86CC = X86::COND_B;  break;
1560    case ISD::SETUGT: X86CC = X86::COND_A;  break;
1561    case ISD::SETULE: X86CC = X86::COND_BE; break;
1562    case ISD::SETUGE: X86CC = X86::COND_AE; break;
1563    }
1564  } else {
1565    // On a floating point condition, the flags are set as follows:
1566    // ZF  PF  CF   op
1567    //  0 | 0 | 0 | X > Y
1568    //  0 | 0 | 1 | X < Y
1569    //  1 | 0 | 0 | X == Y
1570    //  1 | 1 | 1 | unordered
1571    bool Flip = false;
1572    switch (SetCCOpcode) {
1573    default: break;
1574    case ISD::SETUEQ:
1575    case ISD::SETEQ: X86CC = X86::COND_E;  break;
1576    case ISD::SETOLT: Flip = true; // Fallthrough
1577    case ISD::SETOGT:
1578    case ISD::SETGT: X86CC = X86::COND_A;  break;
1579    case ISD::SETOLE: Flip = true; // Fallthrough
1580    case ISD::SETOGE:
1581    case ISD::SETGE: X86CC = X86::COND_AE; break;
1582    case ISD::SETUGT: Flip = true; // Fallthrough
1583    case ISD::SETULT:
1584    case ISD::SETLT: X86CC = X86::COND_B;  break;
1585    case ISD::SETUGE: Flip = true; // Fallthrough
1586    case ISD::SETULE:
1587    case ISD::SETLE: X86CC = X86::COND_BE; break;
1588    case ISD::SETONE:
1589    case ISD::SETNE: X86CC = X86::COND_NE; break;
1590    case ISD::SETUO: X86CC = X86::COND_P;  break;
1591    case ISD::SETO:  X86CC = X86::COND_NP; break;
1592    }
1593    if (Flip)
1594      std::swap(LHS, RHS);
1595  }
1596
1597  return X86CC != X86::COND_INVALID;
1598}
1599
1600/// hasFPCMov - is there a floating point cmov for the specific X86 condition
1601/// code. Current x86 isa includes the following FP cmov instructions:
1602/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
1603static bool hasFPCMov(unsigned X86CC) {
1604  switch (X86CC) {
1605  default:
1606    return false;
1607  case X86::COND_B:
1608  case X86::COND_BE:
1609  case X86::COND_E:
1610  case X86::COND_P:
1611  case X86::COND_A:
1612  case X86::COND_AE:
1613  case X86::COND_NE:
1614  case X86::COND_NP:
1615    return true;
1616  }
1617}
1618
1619/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode.  Return
1620/// true if Op is undef or if its value falls within the specified range (L, H].
1621static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) {
1622  if (Op.getOpcode() == ISD::UNDEF)
1623    return true;
1624
1625  unsigned Val = cast<ConstantSDNode>(Op)->getValue();
1626  return (Val >= Low && Val < Hi);
1627}
1628
1629/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode.  Return
1630/// true if Op is undef or if its value equal to the specified value.
1631static bool isUndefOrEqual(SDOperand Op, unsigned Val) {
1632  if (Op.getOpcode() == ISD::UNDEF)
1633    return true;
1634  return cast<ConstantSDNode>(Op)->getValue() == Val;
1635}
1636
1637/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
1638/// specifies a shuffle of elements that is suitable for input to PSHUFD.
1639bool X86::isPSHUFDMask(SDNode *N) {
1640  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1641
1642  if (N->getNumOperands() != 2 && N->getNumOperands() != 4)
1643    return false;
1644
1645  // Check if the value doesn't reference the second vector.
1646  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1647    SDOperand Arg = N->getOperand(i);
1648    if (Arg.getOpcode() == ISD::UNDEF) continue;
1649    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1650    if (cast<ConstantSDNode>(Arg)->getValue() >= e)
1651      return false;
1652  }
1653
1654  return true;
1655}
1656
1657/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
1658/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
1659bool X86::isPSHUFHWMask(SDNode *N) {
1660  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1661
1662  if (N->getNumOperands() != 8)
1663    return false;
1664
1665  // Lower quadword copied in order.
1666  for (unsigned i = 0; i != 4; ++i) {
1667    SDOperand Arg = N->getOperand(i);
1668    if (Arg.getOpcode() == ISD::UNDEF) continue;
1669    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1670    if (cast<ConstantSDNode>(Arg)->getValue() != i)
1671      return false;
1672  }
1673
1674  // Upper quadword shuffled.
1675  for (unsigned i = 4; i != 8; ++i) {
1676    SDOperand Arg = N->getOperand(i);
1677    if (Arg.getOpcode() == ISD::UNDEF) continue;
1678    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1679    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
1680    if (Val < 4 || Val > 7)
1681      return false;
1682  }
1683
1684  return true;
1685}
1686
1687/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
1688/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
1689bool X86::isPSHUFLWMask(SDNode *N) {
1690  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1691
1692  if (N->getNumOperands() != 8)
1693    return false;
1694
1695  // Upper quadword copied in order.
1696  for (unsigned i = 4; i != 8; ++i)
1697    if (!isUndefOrEqual(N->getOperand(i), i))
1698      return false;
1699
1700  // Lower quadword shuffled.
1701  for (unsigned i = 0; i != 4; ++i)
1702    if (!isUndefOrInRange(N->getOperand(i), 0, 4))
1703      return false;
1704
1705  return true;
1706}
1707
1708/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
1709/// specifies a shuffle of elements that is suitable for input to SHUFP*.
1710static bool isSHUFPMask(const SDOperand *Elems, unsigned NumElems) {
1711  if (NumElems != 2 && NumElems != 4) return false;
1712
1713  unsigned Half = NumElems / 2;
1714  for (unsigned i = 0; i < Half; ++i)
1715    if (!isUndefOrInRange(Elems[i], 0, NumElems))
1716      return false;
1717  for (unsigned i = Half; i < NumElems; ++i)
1718    if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2))
1719      return false;
1720
1721  return true;
1722}
1723
1724bool X86::isSHUFPMask(SDNode *N) {
1725  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1726  return ::isSHUFPMask(N->op_begin(), N->getNumOperands());
1727}
1728
1729/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
1730/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
1731/// half elements to come from vector 1 (which would equal the dest.) and
1732/// the upper half to come from vector 2.
1733static bool isCommutedSHUFP(const SDOperand *Ops, unsigned NumOps) {
1734  if (NumOps != 2 && NumOps != 4) return false;
1735
1736  unsigned Half = NumOps / 2;
1737  for (unsigned i = 0; i < Half; ++i)
1738    if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2))
1739      return false;
1740  for (unsigned i = Half; i < NumOps; ++i)
1741    if (!isUndefOrInRange(Ops[i], 0, NumOps))
1742      return false;
1743  return true;
1744}
1745
1746static bool isCommutedSHUFP(SDNode *N) {
1747  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1748  return isCommutedSHUFP(N->op_begin(), N->getNumOperands());
1749}
1750
1751/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
1752/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
1753bool X86::isMOVHLPSMask(SDNode *N) {
1754  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1755
1756  if (N->getNumOperands() != 4)
1757    return false;
1758
1759  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
1760  return isUndefOrEqual(N->getOperand(0), 6) &&
1761         isUndefOrEqual(N->getOperand(1), 7) &&
1762         isUndefOrEqual(N->getOperand(2), 2) &&
1763         isUndefOrEqual(N->getOperand(3), 3);
1764}
1765
1766/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
1767/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
1768/// <2, 3, 2, 3>
1769bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
1770  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1771
1772  if (N->getNumOperands() != 4)
1773    return false;
1774
1775  // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
1776  return isUndefOrEqual(N->getOperand(0), 2) &&
1777         isUndefOrEqual(N->getOperand(1), 3) &&
1778         isUndefOrEqual(N->getOperand(2), 2) &&
1779         isUndefOrEqual(N->getOperand(3), 3);
1780}
1781
1782/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
1783/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
1784bool X86::isMOVLPMask(SDNode *N) {
1785  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1786
1787  unsigned NumElems = N->getNumOperands();
1788  if (NumElems != 2 && NumElems != 4)
1789    return false;
1790
1791  for (unsigned i = 0; i < NumElems/2; ++i)
1792    if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
1793      return false;
1794
1795  for (unsigned i = NumElems/2; i < NumElems; ++i)
1796    if (!isUndefOrEqual(N->getOperand(i), i))
1797      return false;
1798
1799  return true;
1800}
1801
1802/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
1803/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
1804/// and MOVLHPS.
1805bool X86::isMOVHPMask(SDNode *N) {
1806  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1807
1808  unsigned NumElems = N->getNumOperands();
1809  if (NumElems != 2 && NumElems != 4)
1810    return false;
1811
1812  for (unsigned i = 0; i < NumElems/2; ++i)
1813    if (!isUndefOrEqual(N->getOperand(i), i))
1814      return false;
1815
1816  for (unsigned i = 0; i < NumElems/2; ++i) {
1817    SDOperand Arg = N->getOperand(i + NumElems/2);
1818    if (!isUndefOrEqual(Arg, i + NumElems))
1819      return false;
1820  }
1821
1822  return true;
1823}
1824
1825/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
1826/// specifies a shuffle of elements that is suitable for input to UNPCKL.
1827bool static isUNPCKLMask(const SDOperand *Elts, unsigned NumElts,
1828                         bool V2IsSplat = false) {
1829  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
1830    return false;
1831
1832  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
1833    SDOperand BitI  = Elts[i];
1834    SDOperand BitI1 = Elts[i+1];
1835    if (!isUndefOrEqual(BitI, j))
1836      return false;
1837    if (V2IsSplat) {
1838      if (isUndefOrEqual(BitI1, NumElts))
1839        return false;
1840    } else {
1841      if (!isUndefOrEqual(BitI1, j + NumElts))
1842        return false;
1843    }
1844  }
1845
1846  return true;
1847}
1848
1849bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
1850  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1851  return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
1852}
1853
1854/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
1855/// specifies a shuffle of elements that is suitable for input to UNPCKH.
1856bool static isUNPCKHMask(const SDOperand *Elts, unsigned NumElts,
1857                         bool V2IsSplat = false) {
1858  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
1859    return false;
1860
1861  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
1862    SDOperand BitI  = Elts[i];
1863    SDOperand BitI1 = Elts[i+1];
1864    if (!isUndefOrEqual(BitI, j + NumElts/2))
1865      return false;
1866    if (V2IsSplat) {
1867      if (isUndefOrEqual(BitI1, NumElts))
1868        return false;
1869    } else {
1870      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
1871        return false;
1872    }
1873  }
1874
1875  return true;
1876}
1877
1878bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
1879  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1880  return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
1881}
1882
1883/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
1884/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
1885/// <0, 0, 1, 1>
1886bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
1887  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1888
1889  unsigned NumElems = N->getNumOperands();
1890  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
1891    return false;
1892
1893  for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
1894    SDOperand BitI  = N->getOperand(i);
1895    SDOperand BitI1 = N->getOperand(i+1);
1896
1897    if (!isUndefOrEqual(BitI, j))
1898      return false;
1899    if (!isUndefOrEqual(BitI1, j))
1900      return false;
1901  }
1902
1903  return true;
1904}
1905
1906/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
1907/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
1908/// <2, 2, 3, 3>
1909bool X86::isUNPCKH_v_undef_Mask(SDNode *N) {
1910  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1911
1912  unsigned NumElems = N->getNumOperands();
1913  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
1914    return false;
1915
1916  for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
1917    SDOperand BitI  = N->getOperand(i);
1918    SDOperand BitI1 = N->getOperand(i + 1);
1919
1920    if (!isUndefOrEqual(BitI, j))
1921      return false;
1922    if (!isUndefOrEqual(BitI1, j))
1923      return false;
1924  }
1925
1926  return true;
1927}
1928
1929/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
1930/// specifies a shuffle of elements that is suitable for input to MOVSS,
1931/// MOVSD, and MOVD, i.e. setting the lowest element.
1932static bool isMOVLMask(const SDOperand *Elts, unsigned NumElts) {
1933  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
1934    return false;
1935
1936  if (!isUndefOrEqual(Elts[0], NumElts))
1937    return false;
1938
1939  for (unsigned i = 1; i < NumElts; ++i) {
1940    if (!isUndefOrEqual(Elts[i], i))
1941      return false;
1942  }
1943
1944  return true;
1945}
1946
1947bool X86::isMOVLMask(SDNode *N) {
1948  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1949  return ::isMOVLMask(N->op_begin(), N->getNumOperands());
1950}
1951
1952/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
1953/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
1954/// element of vector 2 and the other elements to come from vector 1 in order.
1955static bool isCommutedMOVL(const SDOperand *Ops, unsigned NumOps,
1956                           bool V2IsSplat = false,
1957                           bool V2IsUndef = false) {
1958  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
1959    return false;
1960
1961  if (!isUndefOrEqual(Ops[0], 0))
1962    return false;
1963
1964  for (unsigned i = 1; i < NumOps; ++i) {
1965    SDOperand Arg = Ops[i];
1966    if (!(isUndefOrEqual(Arg, i+NumOps) ||
1967          (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) ||
1968          (V2IsSplat && isUndefOrEqual(Arg, NumOps))))
1969      return false;
1970  }
1971
1972  return true;
1973}
1974
1975static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
1976                           bool V2IsUndef = false) {
1977  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1978  return isCommutedMOVL(N->op_begin(), N->getNumOperands(),
1979                        V2IsSplat, V2IsUndef);
1980}
1981
1982/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
1983/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
1984bool X86::isMOVSHDUPMask(SDNode *N) {
1985  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1986
1987  if (N->getNumOperands() != 4)
1988    return false;
1989
1990  // Expect 1, 1, 3, 3
1991  for (unsigned i = 0; i < 2; ++i) {
1992    SDOperand Arg = N->getOperand(i);
1993    if (Arg.getOpcode() == ISD::UNDEF) continue;
1994    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1995    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
1996    if (Val != 1) return false;
1997  }
1998
1999  bool HasHi = false;
2000  for (unsigned i = 2; i < 4; ++i) {
2001    SDOperand Arg = N->getOperand(i);
2002    if (Arg.getOpcode() == ISD::UNDEF) continue;
2003    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2004    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2005    if (Val != 3) return false;
2006    HasHi = true;
2007  }
2008
2009  // Don't use movshdup if it can be done with a shufps.
2010  return HasHi;
2011}
2012
2013/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2014/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2015bool X86::isMOVSLDUPMask(SDNode *N) {
2016  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2017
2018  if (N->getNumOperands() != 4)
2019    return false;
2020
2021  // Expect 0, 0, 2, 2
2022  for (unsigned i = 0; i < 2; ++i) {
2023    SDOperand Arg = N->getOperand(i);
2024    if (Arg.getOpcode() == ISD::UNDEF) continue;
2025    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2026    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2027    if (Val != 0) return false;
2028  }
2029
2030  bool HasHi = false;
2031  for (unsigned i = 2; i < 4; ++i) {
2032    SDOperand Arg = N->getOperand(i);
2033    if (Arg.getOpcode() == ISD::UNDEF) continue;
2034    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2035    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2036    if (Val != 2) return false;
2037    HasHi = true;
2038  }
2039
2040  // Don't use movshdup if it can be done with a shufps.
2041  return HasHi;
2042}
2043
2044/// isIdentityMask - Return true if the specified VECTOR_SHUFFLE operand
2045/// specifies a identity operation on the LHS or RHS.
2046static bool isIdentityMask(SDNode *N, bool RHS = false) {
2047  unsigned NumElems = N->getNumOperands();
2048  for (unsigned i = 0; i < NumElems; ++i)
2049    if (!isUndefOrEqual(N->getOperand(i), i + (RHS ? NumElems : 0)))
2050      return false;
2051  return true;
2052}
2053
2054/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2055/// a splat of a single element.
2056static bool isSplatMask(SDNode *N) {
2057  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2058
2059  // This is a splat operation if each element of the permute is the same, and
2060  // if the value doesn't reference the second vector.
2061  unsigned NumElems = N->getNumOperands();
2062  SDOperand ElementBase;
2063  unsigned i = 0;
2064  for (; i != NumElems; ++i) {
2065    SDOperand Elt = N->getOperand(i);
2066    if (isa<ConstantSDNode>(Elt)) {
2067      ElementBase = Elt;
2068      break;
2069    }
2070  }
2071
2072  if (!ElementBase.Val)
2073    return false;
2074
2075  for (; i != NumElems; ++i) {
2076    SDOperand Arg = N->getOperand(i);
2077    if (Arg.getOpcode() == ISD::UNDEF) continue;
2078    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2079    if (Arg != ElementBase) return false;
2080  }
2081
2082  // Make sure it is a splat of the first vector operand.
2083  return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems;
2084}
2085
2086/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2087/// a splat of a single element and it's a 2 or 4 element mask.
2088bool X86::isSplatMask(SDNode *N) {
2089  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2090
2091  // We can only splat 64-bit, and 32-bit quantities with a single instruction.
2092  if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
2093    return false;
2094  return ::isSplatMask(N);
2095}
2096
2097/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
2098/// specifies a splat of zero element.
2099bool X86::isSplatLoMask(SDNode *N) {
2100  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2101
2102  for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
2103    if (!isUndefOrEqual(N->getOperand(i), 0))
2104      return false;
2105  return true;
2106}
2107
2108/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2109/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2110/// instructions.
2111unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2112  unsigned NumOperands = N->getNumOperands();
2113  unsigned Shift = (NumOperands == 4) ? 2 : 1;
2114  unsigned Mask = 0;
2115  for (unsigned i = 0; i < NumOperands; ++i) {
2116    unsigned Val = 0;
2117    SDOperand Arg = N->getOperand(NumOperands-i-1);
2118    if (Arg.getOpcode() != ISD::UNDEF)
2119      Val = cast<ConstantSDNode>(Arg)->getValue();
2120    if (Val >= NumOperands) Val -= NumOperands;
2121    Mask |= Val;
2122    if (i != NumOperands - 1)
2123      Mask <<= Shift;
2124  }
2125
2126  return Mask;
2127}
2128
2129/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2130/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2131/// instructions.
2132unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2133  unsigned Mask = 0;
2134  // 8 nodes, but we only care about the last 4.
2135  for (unsigned i = 7; i >= 4; --i) {
2136    unsigned Val = 0;
2137    SDOperand Arg = N->getOperand(i);
2138    if (Arg.getOpcode() != ISD::UNDEF)
2139      Val = cast<ConstantSDNode>(Arg)->getValue();
2140    Mask |= (Val - 4);
2141    if (i != 4)
2142      Mask <<= 2;
2143  }
2144
2145  return Mask;
2146}
2147
2148/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2149/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2150/// instructions.
2151unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2152  unsigned Mask = 0;
2153  // 8 nodes, but we only care about the first 4.
2154  for (int i = 3; i >= 0; --i) {
2155    unsigned Val = 0;
2156    SDOperand Arg = N->getOperand(i);
2157    if (Arg.getOpcode() != ISD::UNDEF)
2158      Val = cast<ConstantSDNode>(Arg)->getValue();
2159    Mask |= Val;
2160    if (i != 0)
2161      Mask <<= 2;
2162  }
2163
2164  return Mask;
2165}
2166
2167/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
2168/// specifies a 8 element shuffle that can be broken into a pair of
2169/// PSHUFHW and PSHUFLW.
2170static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
2171  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2172
2173  if (N->getNumOperands() != 8)
2174    return false;
2175
2176  // Lower quadword shuffled.
2177  for (unsigned i = 0; i != 4; ++i) {
2178    SDOperand Arg = N->getOperand(i);
2179    if (Arg.getOpcode() == ISD::UNDEF) continue;
2180    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2181    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2182    if (Val > 4)
2183      return false;
2184  }
2185
2186  // Upper quadword shuffled.
2187  for (unsigned i = 4; i != 8; ++i) {
2188    SDOperand Arg = N->getOperand(i);
2189    if (Arg.getOpcode() == ISD::UNDEF) continue;
2190    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2191    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2192    if (Val < 4 || Val > 7)
2193      return false;
2194  }
2195
2196  return true;
2197}
2198
2199/// CommuteVectorShuffle - Swap vector_shuffle operandsas well as
2200/// values in ther permute mask.
2201static SDOperand CommuteVectorShuffle(SDOperand Op, SDOperand &V1,
2202                                      SDOperand &V2, SDOperand &Mask,
2203                                      SelectionDAG &DAG) {
2204  MVT::ValueType VT = Op.getValueType();
2205  MVT::ValueType MaskVT = Mask.getValueType();
2206  MVT::ValueType EltVT = MVT::getVectorElementType(MaskVT);
2207  unsigned NumElems = Mask.getNumOperands();
2208  SmallVector<SDOperand, 8> MaskVec;
2209
2210  for (unsigned i = 0; i != NumElems; ++i) {
2211    SDOperand Arg = Mask.getOperand(i);
2212    if (Arg.getOpcode() == ISD::UNDEF) {
2213      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2214      continue;
2215    }
2216    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2217    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2218    if (Val < NumElems)
2219      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2220    else
2221      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2222  }
2223
2224  std::swap(V1, V2);
2225  Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2226  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2227}
2228
2229/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2230/// match movhlps. The lower half elements should come from upper half of
2231/// V1 (and in order), and the upper half elements should come from the upper
2232/// half of V2 (and in order).
2233static bool ShouldXformToMOVHLPS(SDNode *Mask) {
2234  unsigned NumElems = Mask->getNumOperands();
2235  if (NumElems != 4)
2236    return false;
2237  for (unsigned i = 0, e = 2; i != e; ++i)
2238    if (!isUndefOrEqual(Mask->getOperand(i), i+2))
2239      return false;
2240  for (unsigned i = 2; i != 4; ++i)
2241    if (!isUndefOrEqual(Mask->getOperand(i), i+4))
2242      return false;
2243  return true;
2244}
2245
2246/// isScalarLoadToVector - Returns true if the node is a scalar load that
2247/// is promoted to a vector.
2248static inline bool isScalarLoadToVector(SDNode *N) {
2249  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) {
2250    N = N->getOperand(0).Val;
2251    return ISD::isNON_EXTLoad(N);
2252  }
2253  return false;
2254}
2255
2256/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2257/// match movlp{s|d}. The lower half elements should come from lower half of
2258/// V1 (and in order), and the upper half elements should come from the upper
2259/// half of V2 (and in order). And since V1 will become the source of the
2260/// MOVLP, it must be either a vector load or a scalar load to vector.
2261static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
2262  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2263    return false;
2264  // Is V2 is a vector load, don't do this transformation. We will try to use
2265  // load folding shufps op.
2266  if (ISD::isNON_EXTLoad(V2))
2267    return false;
2268
2269  unsigned NumElems = Mask->getNumOperands();
2270  if (NumElems != 2 && NumElems != 4)
2271    return false;
2272  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2273    if (!isUndefOrEqual(Mask->getOperand(i), i))
2274      return false;
2275  for (unsigned i = NumElems/2; i != NumElems; ++i)
2276    if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
2277      return false;
2278  return true;
2279}
2280
2281/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2282/// all the same.
2283static bool isSplatVector(SDNode *N) {
2284  if (N->getOpcode() != ISD::BUILD_VECTOR)
2285    return false;
2286
2287  SDOperand SplatValue = N->getOperand(0);
2288  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2289    if (N->getOperand(i) != SplatValue)
2290      return false;
2291  return true;
2292}
2293
2294/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2295/// to an undef.
2296static bool isUndefShuffle(SDNode *N) {
2297  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2298    return false;
2299
2300  SDOperand V1 = N->getOperand(0);
2301  SDOperand V2 = N->getOperand(1);
2302  SDOperand Mask = N->getOperand(2);
2303  unsigned NumElems = Mask.getNumOperands();
2304  for (unsigned i = 0; i != NumElems; ++i) {
2305    SDOperand Arg = Mask.getOperand(i);
2306    if (Arg.getOpcode() != ISD::UNDEF) {
2307      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2308      if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
2309        return false;
2310      else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
2311        return false;
2312    }
2313  }
2314  return true;
2315}
2316
2317/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2318/// constant +0.0.
2319static inline bool isZeroNode(SDOperand Elt) {
2320  return ((isa<ConstantSDNode>(Elt) &&
2321           cast<ConstantSDNode>(Elt)->getValue() == 0) ||
2322          (isa<ConstantFPSDNode>(Elt) &&
2323           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
2324}
2325
2326/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2327/// to an zero vector.
2328static bool isZeroShuffle(SDNode *N) {
2329  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2330    return false;
2331
2332  SDOperand V1 = N->getOperand(0);
2333  SDOperand V2 = N->getOperand(1);
2334  SDOperand Mask = N->getOperand(2);
2335  unsigned NumElems = Mask.getNumOperands();
2336  for (unsigned i = 0; i != NumElems; ++i) {
2337    SDOperand Arg = Mask.getOperand(i);
2338    if (Arg.getOpcode() != ISD::UNDEF) {
2339      unsigned Idx = cast<ConstantSDNode>(Arg)->getValue();
2340      if (Idx < NumElems) {
2341        unsigned Opc = V1.Val->getOpcode();
2342        if (Opc == ISD::UNDEF)
2343          continue;
2344        if (Opc != ISD::BUILD_VECTOR ||
2345            !isZeroNode(V1.Val->getOperand(Idx)))
2346          return false;
2347      } else if (Idx >= NumElems) {
2348        unsigned Opc = V2.Val->getOpcode();
2349        if (Opc == ISD::UNDEF)
2350          continue;
2351        if (Opc != ISD::BUILD_VECTOR ||
2352            !isZeroNode(V2.Val->getOperand(Idx - NumElems)))
2353          return false;
2354      }
2355    }
2356  }
2357  return true;
2358}
2359
2360/// getZeroVector - Returns a vector of specified type with all zero elements.
2361///
2362static SDOperand getZeroVector(MVT::ValueType VT, SelectionDAG &DAG) {
2363  assert(MVT::isVector(VT) && "Expected a vector type");
2364  unsigned NumElems = MVT::getVectorNumElements(VT);
2365  MVT::ValueType EVT = MVT::getVectorElementType(VT);
2366  bool isFP = MVT::isFloatingPoint(EVT);
2367  SDOperand Zero = isFP ? DAG.getConstantFP(0.0, EVT) : DAG.getConstant(0, EVT);
2368  SmallVector<SDOperand, 8> ZeroVec(NumElems, Zero);
2369  return DAG.getNode(ISD::BUILD_VECTOR, VT, &ZeroVec[0], ZeroVec.size());
2370}
2371
2372/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2373/// that point to V2 points to its first element.
2374static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) {
2375  assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
2376
2377  bool Changed = false;
2378  SmallVector<SDOperand, 8> MaskVec;
2379  unsigned NumElems = Mask.getNumOperands();
2380  for (unsigned i = 0; i != NumElems; ++i) {
2381    SDOperand Arg = Mask.getOperand(i);
2382    if (Arg.getOpcode() != ISD::UNDEF) {
2383      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2384      if (Val > NumElems) {
2385        Arg = DAG.getConstant(NumElems, Arg.getValueType());
2386        Changed = true;
2387      }
2388    }
2389    MaskVec.push_back(Arg);
2390  }
2391
2392  if (Changed)
2393    Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
2394                       &MaskVec[0], MaskVec.size());
2395  return Mask;
2396}
2397
2398/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2399/// operation of specified width.
2400static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
2401  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2402  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2403
2404  SmallVector<SDOperand, 8> MaskVec;
2405  MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
2406  for (unsigned i = 1; i != NumElems; ++i)
2407    MaskVec.push_back(DAG.getConstant(i, BaseVT));
2408  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2409}
2410
2411/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
2412/// of specified width.
2413static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
2414  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2415  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2416  SmallVector<SDOperand, 8> MaskVec;
2417  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
2418    MaskVec.push_back(DAG.getConstant(i,            BaseVT));
2419    MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
2420  }
2421  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2422}
2423
2424/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
2425/// of specified width.
2426static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
2427  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2428  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2429  unsigned Half = NumElems/2;
2430  SmallVector<SDOperand, 8> MaskVec;
2431  for (unsigned i = 0; i != Half; ++i) {
2432    MaskVec.push_back(DAG.getConstant(i + Half,            BaseVT));
2433    MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
2434  }
2435  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2436}
2437
2438/// PromoteSplat - Promote a splat of v8i16 or v16i8 to v4i32.
2439///
2440static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG) {
2441  SDOperand V1 = Op.getOperand(0);
2442  SDOperand Mask = Op.getOperand(2);
2443  MVT::ValueType VT = Op.getValueType();
2444  unsigned NumElems = Mask.getNumOperands();
2445  Mask = getUnpacklMask(NumElems, DAG);
2446  while (NumElems != 4) {
2447    V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
2448    NumElems >>= 1;
2449  }
2450  V1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, V1);
2451
2452  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
2453  Mask = getZeroVector(MaskVT, DAG);
2454  SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32, V1,
2455                                  DAG.getNode(ISD::UNDEF, MVT::v4i32), Mask);
2456  return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
2457}
2458
2459/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
2460/// vector of zero or undef vector.
2461static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, MVT::ValueType VT,
2462                                             unsigned NumElems, unsigned Idx,
2463                                             bool isZero, SelectionDAG &DAG) {
2464  SDOperand V1 = isZero ? getZeroVector(VT, DAG) : DAG.getNode(ISD::UNDEF, VT);
2465  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2466  MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
2467  SDOperand Zero = DAG.getConstant(0, EVT);
2468  SmallVector<SDOperand, 8> MaskVec(NumElems, Zero);
2469  MaskVec[Idx] = DAG.getConstant(NumElems, EVT);
2470  SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2471                               &MaskVec[0], MaskVec.size());
2472  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2473}
2474
2475/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
2476///
2477static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros,
2478                                       unsigned NumNonZero, unsigned NumZero,
2479                                       SelectionDAG &DAG, TargetLowering &TLI) {
2480  if (NumNonZero > 8)
2481    return SDOperand();
2482
2483  SDOperand V(0, 0);
2484  bool First = true;
2485  for (unsigned i = 0; i < 16; ++i) {
2486    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
2487    if (ThisIsNonZero && First) {
2488      if (NumZero)
2489        V = getZeroVector(MVT::v8i16, DAG);
2490      else
2491        V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2492      First = false;
2493    }
2494
2495    if ((i & 1) != 0) {
2496      SDOperand ThisElt(0, 0), LastElt(0, 0);
2497      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
2498      if (LastIsNonZero) {
2499        LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
2500      }
2501      if (ThisIsNonZero) {
2502        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
2503        ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
2504                              ThisElt, DAG.getConstant(8, MVT::i8));
2505        if (LastIsNonZero)
2506          ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
2507      } else
2508        ThisElt = LastElt;
2509
2510      if (ThisElt.Val)
2511        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
2512                        DAG.getConstant(i/2, TLI.getPointerTy()));
2513    }
2514  }
2515
2516  return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
2517}
2518
2519/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
2520///
2521static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros,
2522                                       unsigned NumNonZero, unsigned NumZero,
2523                                       SelectionDAG &DAG, TargetLowering &TLI) {
2524  if (NumNonZero > 4)
2525    return SDOperand();
2526
2527  SDOperand V(0, 0);
2528  bool First = true;
2529  for (unsigned i = 0; i < 8; ++i) {
2530    bool isNonZero = (NonZeros & (1 << i)) != 0;
2531    if (isNonZero) {
2532      if (First) {
2533        if (NumZero)
2534          V = getZeroVector(MVT::v8i16, DAG);
2535        else
2536          V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2537        First = false;
2538      }
2539      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
2540                      DAG.getConstant(i, TLI.getPointerTy()));
2541    }
2542  }
2543
2544  return V;
2545}
2546
2547SDOperand
2548X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2549  // All zero's are handled with pxor.
2550  if (ISD::isBuildVectorAllZeros(Op.Val))
2551    return Op;
2552
2553  // All one's are handled with pcmpeqd.
2554  if (ISD::isBuildVectorAllOnes(Op.Val))
2555    return Op;
2556
2557  MVT::ValueType VT = Op.getValueType();
2558  MVT::ValueType EVT = MVT::getVectorElementType(VT);
2559  unsigned EVTBits = MVT::getSizeInBits(EVT);
2560
2561  unsigned NumElems = Op.getNumOperands();
2562  unsigned NumZero  = 0;
2563  unsigned NumNonZero = 0;
2564  unsigned NonZeros = 0;
2565  unsigned NumNonZeroImms = 0;
2566  std::set<SDOperand> Values;
2567  for (unsigned i = 0; i < NumElems; ++i) {
2568    SDOperand Elt = Op.getOperand(i);
2569    if (Elt.getOpcode() != ISD::UNDEF) {
2570      Values.insert(Elt);
2571      if (isZeroNode(Elt))
2572        NumZero++;
2573      else {
2574        NonZeros |= (1 << i);
2575        NumNonZero++;
2576        if (Elt.getOpcode() == ISD::Constant ||
2577            Elt.getOpcode() == ISD::ConstantFP)
2578          NumNonZeroImms++;
2579      }
2580    }
2581  }
2582
2583  if (NumNonZero == 0) {
2584    if (NumZero == 0)
2585      // All undef vector. Return an UNDEF.
2586      return DAG.getNode(ISD::UNDEF, VT);
2587    else
2588      // A mix of zero and undef. Return a zero vector.
2589      return getZeroVector(VT, DAG);
2590  }
2591
2592  // Splat is obviously ok. Let legalizer expand it to a shuffle.
2593  if (Values.size() == 1)
2594    return SDOperand();
2595
2596  // Special case for single non-zero element.
2597  if (NumNonZero == 1) {
2598    unsigned Idx = CountTrailingZeros_32(NonZeros);
2599    SDOperand Item = Op.getOperand(Idx);
2600    Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
2601    if (Idx == 0)
2602      // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
2603      return getShuffleVectorZeroOrUndef(Item, VT, NumElems, Idx,
2604                                         NumZero > 0, DAG);
2605
2606    if (EVTBits == 32) {
2607      // Turn it into a shuffle of zero and zero-extended scalar to vector.
2608      Item = getShuffleVectorZeroOrUndef(Item, VT, NumElems, 0, NumZero > 0,
2609                                         DAG);
2610      MVT::ValueType MaskVT  = MVT::getIntVectorWithNumElements(NumElems);
2611      MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
2612      SmallVector<SDOperand, 8> MaskVec;
2613      for (unsigned i = 0; i < NumElems; i++)
2614        MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
2615      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2616                                   &MaskVec[0], MaskVec.size());
2617      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
2618                         DAG.getNode(ISD::UNDEF, VT), Mask);
2619    }
2620  }
2621
2622  // A vector full of immediates; various special cases are already
2623  // handled, so this is best done with a single constant-pool load.
2624  if (NumNonZero == NumNonZeroImms)
2625    return SDOperand();
2626
2627  // Let legalizer expand 2-wide build_vectors.
2628  if (EVTBits == 64)
2629    return SDOperand();
2630
2631  // If element VT is < 32 bits, convert it to inserts into a zero vector.
2632  if (EVTBits == 8 && NumElems == 16) {
2633    SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
2634                                        *this);
2635    if (V.Val) return V;
2636  }
2637
2638  if (EVTBits == 16 && NumElems == 8) {
2639    SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
2640                                        *this);
2641    if (V.Val) return V;
2642  }
2643
2644  // If element VT is == 32 bits, turn it into a number of shuffles.
2645  SmallVector<SDOperand, 8> V;
2646  V.resize(NumElems);
2647  if (NumElems == 4 && NumZero > 0) {
2648    for (unsigned i = 0; i < 4; ++i) {
2649      bool isZero = !(NonZeros & (1 << i));
2650      if (isZero)
2651        V[i] = getZeroVector(VT, DAG);
2652      else
2653        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
2654    }
2655
2656    for (unsigned i = 0; i < 2; ++i) {
2657      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
2658        default: break;
2659        case 0:
2660          V[i] = V[i*2];  // Must be a zero vector.
2661          break;
2662        case 1:
2663          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
2664                             getMOVLMask(NumElems, DAG));
2665          break;
2666        case 2:
2667          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
2668                             getMOVLMask(NumElems, DAG));
2669          break;
2670        case 3:
2671          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
2672                             getUnpacklMask(NumElems, DAG));
2673          break;
2674      }
2675    }
2676
2677    // Take advantage of the fact GR32 to VR128 scalar_to_vector (i.e. movd)
2678    // clears the upper bits.
2679    // FIXME: we can do the same for v4f32 case when we know both parts of
2680    // the lower half come from scalar_to_vector (loadf32). We should do
2681    // that in post legalizer dag combiner with target specific hooks.
2682    if (MVT::isInteger(EVT) && (NonZeros & (0x3 << 2)) == 0)
2683      return V[0];
2684    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2685    MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
2686    SmallVector<SDOperand, 8> MaskVec;
2687    bool Reverse = (NonZeros & 0x3) == 2;
2688    for (unsigned i = 0; i < 2; ++i)
2689      if (Reverse)
2690        MaskVec.push_back(DAG.getConstant(1-i, EVT));
2691      else
2692        MaskVec.push_back(DAG.getConstant(i, EVT));
2693    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
2694    for (unsigned i = 0; i < 2; ++i)
2695      if (Reverse)
2696        MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
2697      else
2698        MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
2699    SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2700                                     &MaskVec[0], MaskVec.size());
2701    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
2702  }
2703
2704  if (Values.size() > 2) {
2705    // Expand into a number of unpckl*.
2706    // e.g. for v4f32
2707    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
2708    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
2709    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
2710    SDOperand UnpckMask = getUnpacklMask(NumElems, DAG);
2711    for (unsigned i = 0; i < NumElems; ++i)
2712      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
2713    NumElems >>= 1;
2714    while (NumElems != 0) {
2715      for (unsigned i = 0; i < NumElems; ++i)
2716        V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
2717                           UnpckMask);
2718      NumElems >>= 1;
2719    }
2720    return V[0];
2721  }
2722
2723  return SDOperand();
2724}
2725
2726SDOperand
2727X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
2728  SDOperand V1 = Op.getOperand(0);
2729  SDOperand V2 = Op.getOperand(1);
2730  SDOperand PermMask = Op.getOperand(2);
2731  MVT::ValueType VT = Op.getValueType();
2732  unsigned NumElems = PermMask.getNumOperands();
2733  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
2734  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
2735  bool V1IsSplat = false;
2736  bool V2IsSplat = false;
2737
2738  if (isUndefShuffle(Op.Val))
2739    return DAG.getNode(ISD::UNDEF, VT);
2740
2741  if (isZeroShuffle(Op.Val))
2742    return getZeroVector(VT, DAG);
2743
2744  if (isIdentityMask(PermMask.Val))
2745    return V1;
2746  else if (isIdentityMask(PermMask.Val, true))
2747    return V2;
2748
2749  if (isSplatMask(PermMask.Val)) {
2750    if (NumElems <= 4) return Op;
2751    // Promote it to a v4i32 splat.
2752    return PromoteSplat(Op, DAG);
2753  }
2754
2755  if (X86::isMOVLMask(PermMask.Val))
2756    return (V1IsUndef) ? V2 : Op;
2757
2758  if (X86::isMOVSHDUPMask(PermMask.Val) ||
2759      X86::isMOVSLDUPMask(PermMask.Val) ||
2760      X86::isMOVHLPSMask(PermMask.Val) ||
2761      X86::isMOVHPMask(PermMask.Val) ||
2762      X86::isMOVLPMask(PermMask.Val))
2763    return Op;
2764
2765  if (ShouldXformToMOVHLPS(PermMask.Val) ||
2766      ShouldXformToMOVLP(V1.Val, V2.Val, PermMask.Val))
2767    return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2768
2769  bool Commuted = false;
2770  V1IsSplat = isSplatVector(V1.Val);
2771  V2IsSplat = isSplatVector(V2.Val);
2772  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
2773    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2774    std::swap(V1IsSplat, V2IsSplat);
2775    std::swap(V1IsUndef, V2IsUndef);
2776    Commuted = true;
2777  }
2778
2779  if (isCommutedMOVL(PermMask.Val, V2IsSplat, V2IsUndef)) {
2780    if (V2IsUndef) return V1;
2781    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2782    if (V2IsSplat) {
2783      // V2 is a splat, so the mask may be malformed. That is, it may point
2784      // to any V2 element. The instruction selectior won't like this. Get
2785      // a corrected mask and commute to form a proper MOVS{S|D}.
2786      SDOperand NewMask = getMOVLMask(NumElems, DAG);
2787      if (NewMask.Val != PermMask.Val)
2788        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2789    }
2790    return Op;
2791  }
2792
2793  if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
2794      X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
2795      X86::isUNPCKLMask(PermMask.Val) ||
2796      X86::isUNPCKHMask(PermMask.Val))
2797    return Op;
2798
2799  if (V2IsSplat) {
2800    // Normalize mask so all entries that point to V2 points to its first
2801    // element then try to match unpck{h|l} again. If match, return a
2802    // new vector_shuffle with the corrected mask.
2803    SDOperand NewMask = NormalizeMask(PermMask, DAG);
2804    if (NewMask.Val != PermMask.Val) {
2805      if (X86::isUNPCKLMask(PermMask.Val, true)) {
2806        SDOperand NewMask = getUnpacklMask(NumElems, DAG);
2807        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2808      } else if (X86::isUNPCKHMask(PermMask.Val, true)) {
2809        SDOperand NewMask = getUnpackhMask(NumElems, DAG);
2810        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2811      }
2812    }
2813  }
2814
2815  // Normalize the node to match x86 shuffle ops if needed
2816  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.Val))
2817      Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2818
2819  if (Commuted) {
2820    // Commute is back and try unpck* again.
2821    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2822    if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
2823        X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
2824        X86::isUNPCKLMask(PermMask.Val) ||
2825        X86::isUNPCKHMask(PermMask.Val))
2826      return Op;
2827  }
2828
2829  // If VT is integer, try PSHUF* first, then SHUFP*.
2830  if (MVT::isInteger(VT)) {
2831    // MMX doesn't have PSHUFD; it does have PSHUFW. While it's theoretically
2832    // possible to shuffle a v2i32 using PSHUFW, that's not yet implemented.
2833    if (((MVT::getSizeInBits(VT) != 64 || NumElems == 4) &&
2834         X86::isPSHUFDMask(PermMask.Val)) ||
2835        X86::isPSHUFHWMask(PermMask.Val) ||
2836        X86::isPSHUFLWMask(PermMask.Val)) {
2837      if (V2.getOpcode() != ISD::UNDEF)
2838        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
2839                           DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
2840      return Op;
2841    }
2842
2843    if (X86::isSHUFPMask(PermMask.Val) &&
2844        MVT::getSizeInBits(VT) != 64)    // Don't do this for MMX.
2845      return Op;
2846
2847    // Handle v8i16 shuffle high / low shuffle node pair.
2848    if (VT == MVT::v8i16 && isPSHUFHW_PSHUFLWMask(PermMask.Val)) {
2849      MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2850      MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2851      SmallVector<SDOperand, 8> MaskVec;
2852      for (unsigned i = 0; i != 4; ++i)
2853        MaskVec.push_back(PermMask.getOperand(i));
2854      for (unsigned i = 4; i != 8; ++i)
2855        MaskVec.push_back(DAG.getConstant(i, BaseVT));
2856      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2857                                   &MaskVec[0], MaskVec.size());
2858      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2859      MaskVec.clear();
2860      for (unsigned i = 0; i != 4; ++i)
2861        MaskVec.push_back(DAG.getConstant(i, BaseVT));
2862      for (unsigned i = 4; i != 8; ++i)
2863        MaskVec.push_back(PermMask.getOperand(i));
2864      Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0],MaskVec.size());
2865      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2866    }
2867  } else {
2868    // Floating point cases in the other order.
2869    if (X86::isSHUFPMask(PermMask.Val))
2870      return Op;
2871    if (X86::isPSHUFDMask(PermMask.Val) ||
2872        X86::isPSHUFHWMask(PermMask.Val) ||
2873        X86::isPSHUFLWMask(PermMask.Val)) {
2874      if (V2.getOpcode() != ISD::UNDEF)
2875        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
2876                           DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
2877      return Op;
2878    }
2879  }
2880
2881  if (NumElems == 4 &&
2882      // Don't do this for MMX.
2883      MVT::getSizeInBits(VT) != 64) {
2884    MVT::ValueType MaskVT = PermMask.getValueType();
2885    MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
2886    SmallVector<std::pair<int, int>, 8> Locs;
2887    Locs.reserve(NumElems);
2888    SmallVector<SDOperand, 8> Mask1(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2889    SmallVector<SDOperand, 8> Mask2(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2890    unsigned NumHi = 0;
2891    unsigned NumLo = 0;
2892    // If no more than two elements come from either vector. This can be
2893    // implemented with two shuffles. First shuffle gather the elements.
2894    // The second shuffle, which takes the first shuffle as both of its
2895    // vector operands, put the elements into the right order.
2896    for (unsigned i = 0; i != NumElems; ++i) {
2897      SDOperand Elt = PermMask.getOperand(i);
2898      if (Elt.getOpcode() == ISD::UNDEF) {
2899        Locs[i] = std::make_pair(-1, -1);
2900      } else {
2901        unsigned Val = cast<ConstantSDNode>(Elt)->getValue();
2902        if (Val < NumElems) {
2903          Locs[i] = std::make_pair(0, NumLo);
2904          Mask1[NumLo] = Elt;
2905          NumLo++;
2906        } else {
2907          Locs[i] = std::make_pair(1, NumHi);
2908          if (2+NumHi < NumElems)
2909            Mask1[2+NumHi] = Elt;
2910          NumHi++;
2911        }
2912      }
2913    }
2914    if (NumLo <= 2 && NumHi <= 2) {
2915      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
2916                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2917                                   &Mask1[0], Mask1.size()));
2918      for (unsigned i = 0; i != NumElems; ++i) {
2919        if (Locs[i].first == -1)
2920          continue;
2921        else {
2922          unsigned Idx = (i < NumElems/2) ? 0 : NumElems;
2923          Idx += Locs[i].first * (NumElems/2) + Locs[i].second;
2924          Mask2[i] = DAG.getConstant(Idx, MaskEVT);
2925        }
2926      }
2927
2928      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
2929                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2930                                     &Mask2[0], Mask2.size()));
2931    }
2932
2933    // Break it into (shuffle shuffle_hi, shuffle_lo).
2934    Locs.clear();
2935    SmallVector<SDOperand,8> LoMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2936    SmallVector<SDOperand,8> HiMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2937    SmallVector<SDOperand,8> *MaskPtr = &LoMask;
2938    unsigned MaskIdx = 0;
2939    unsigned LoIdx = 0;
2940    unsigned HiIdx = NumElems/2;
2941    for (unsigned i = 0; i != NumElems; ++i) {
2942      if (i == NumElems/2) {
2943        MaskPtr = &HiMask;
2944        MaskIdx = 1;
2945        LoIdx = 0;
2946        HiIdx = NumElems/2;
2947      }
2948      SDOperand Elt = PermMask.getOperand(i);
2949      if (Elt.getOpcode() == ISD::UNDEF) {
2950        Locs[i] = std::make_pair(-1, -1);
2951      } else if (cast<ConstantSDNode>(Elt)->getValue() < NumElems) {
2952        Locs[i] = std::make_pair(MaskIdx, LoIdx);
2953        (*MaskPtr)[LoIdx] = Elt;
2954        LoIdx++;
2955      } else {
2956        Locs[i] = std::make_pair(MaskIdx, HiIdx);
2957        (*MaskPtr)[HiIdx] = Elt;
2958        HiIdx++;
2959      }
2960    }
2961
2962    SDOperand LoShuffle =
2963      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
2964                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2965                              &LoMask[0], LoMask.size()));
2966    SDOperand HiShuffle =
2967      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
2968                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2969                              &HiMask[0], HiMask.size()));
2970    SmallVector<SDOperand, 8> MaskOps;
2971    for (unsigned i = 0; i != NumElems; ++i) {
2972      if (Locs[i].first == -1) {
2973        MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
2974      } else {
2975        unsigned Idx = Locs[i].first * NumElems + Locs[i].second;
2976        MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
2977      }
2978    }
2979    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
2980                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2981                                   &MaskOps[0], MaskOps.size()));
2982  }
2983
2984  return SDOperand();
2985}
2986
2987SDOperand
2988X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
2989  if (!isa<ConstantSDNode>(Op.getOperand(1)))
2990    return SDOperand();
2991
2992  MVT::ValueType VT = Op.getValueType();
2993  // TODO: handle v16i8.
2994  if (MVT::getSizeInBits(VT) == 16) {
2995    // Transform it so it match pextrw which produces a 32-bit result.
2996    MVT::ValueType EVT = (MVT::ValueType)(VT+1);
2997    SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
2998                                    Op.getOperand(0), Op.getOperand(1));
2999    SDOperand Assert  = DAG.getNode(ISD::AssertZext, EVT, Extract,
3000                                    DAG.getValueType(VT));
3001    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
3002  } else if (MVT::getSizeInBits(VT) == 32) {
3003    SDOperand Vec = Op.getOperand(0);
3004    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3005    if (Idx == 0)
3006      return Op;
3007    // SHUFPS the element to the lowest double word, then movss.
3008    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3009    SmallVector<SDOperand, 8> IdxVec;
3010    IdxVec.push_back(DAG.getConstant(Idx, MVT::getVectorElementType(MaskVT)));
3011    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3012    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3013    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3014    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3015                                 &IdxVec[0], IdxVec.size());
3016    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3017                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3018    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3019                       DAG.getConstant(0, getPointerTy()));
3020  } else if (MVT::getSizeInBits(VT) == 64) {
3021    SDOperand Vec = Op.getOperand(0);
3022    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3023    if (Idx == 0)
3024      return Op;
3025
3026    // UNPCKHPD the element to the lowest double word, then movsd.
3027    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
3028    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
3029    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3030    SmallVector<SDOperand, 8> IdxVec;
3031    IdxVec.push_back(DAG.getConstant(1, MVT::getVectorElementType(MaskVT)));
3032    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3033    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3034                                 &IdxVec[0], IdxVec.size());
3035    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3036                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3037    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3038                       DAG.getConstant(0, getPointerTy()));
3039  }
3040
3041  return SDOperand();
3042}
3043
3044SDOperand
3045X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3046  // Transform it so it match pinsrw which expects a 16-bit value in a GR32
3047  // as its second argument.
3048  MVT::ValueType VT = Op.getValueType();
3049  MVT::ValueType BaseVT = MVT::getVectorElementType(VT);
3050  SDOperand N0 = Op.getOperand(0);
3051  SDOperand N1 = Op.getOperand(1);
3052  SDOperand N2 = Op.getOperand(2);
3053  if (MVT::getSizeInBits(BaseVT) == 16) {
3054    if (N1.getValueType() != MVT::i32)
3055      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
3056    if (N2.getValueType() != MVT::i32)
3057      N2 = DAG.getConstant(cast<ConstantSDNode>(N2)->getValue(),getPointerTy());
3058    return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
3059  } else if (MVT::getSizeInBits(BaseVT) == 32) {
3060    unsigned Idx = cast<ConstantSDNode>(N2)->getValue();
3061    if (Idx == 0) {
3062      // Use a movss.
3063      N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, N1);
3064      MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3065      MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
3066      SmallVector<SDOperand, 8> MaskVec;
3067      MaskVec.push_back(DAG.getConstant(4, BaseVT));
3068      for (unsigned i = 1; i <= 3; ++i)
3069        MaskVec.push_back(DAG.getConstant(i, BaseVT));
3070      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, N0, N1,
3071                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3072                                     &MaskVec[0], MaskVec.size()));
3073    } else {
3074      // Use two pinsrw instructions to insert a 32 bit value.
3075      Idx <<= 1;
3076      if (MVT::isFloatingPoint(N1.getValueType())) {
3077        N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4f32, N1);
3078        N1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, N1);
3079        N1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32, N1,
3080                         DAG.getConstant(0, getPointerTy()));
3081      }
3082      N0 = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, N0);
3083      N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3084                       DAG.getConstant(Idx, getPointerTy()));
3085      N1 = DAG.getNode(ISD::SRL, MVT::i32, N1, DAG.getConstant(16, MVT::i8));
3086      N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3087                       DAG.getConstant(Idx+1, getPointerTy()));
3088      return DAG.getNode(ISD::BIT_CONVERT, VT, N0);
3089    }
3090  }
3091
3092  return SDOperand();
3093}
3094
3095SDOperand
3096X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
3097  SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
3098  return DAG.getNode(X86ISD::S2VEC, Op.getValueType(), AnyExt);
3099}
3100
3101// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
3102// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
3103// one of the above mentioned nodes. It has to be wrapped because otherwise
3104// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
3105// be used to form addressing mode. These wrapped nodes will be selected
3106// into MOV32ri.
3107SDOperand
3108X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
3109  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3110  SDOperand Result = DAG.getTargetConstantPool(CP->getConstVal(),
3111                                               getPointerTy(),
3112                                               CP->getAlignment());
3113  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3114  // With PIC, the address is actually $g + Offset.
3115  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3116      !Subtarget->isPICStyleRIPRel()) {
3117    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3118                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3119                         Result);
3120  }
3121
3122  return Result;
3123}
3124
3125SDOperand
3126X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
3127  GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3128  SDOperand Result = DAG.getTargetGlobalAddress(GV, getPointerTy());
3129  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3130  // With PIC, the address is actually $g + Offset.
3131  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3132      !Subtarget->isPICStyleRIPRel()) {
3133    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3134                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3135                         Result);
3136  }
3137
3138  // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
3139  // load the value at address GV, not the value of GV itself. This means that
3140  // the GlobalAddress must be in the base or index register of the address, not
3141  // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
3142  // The same applies for external symbols during PIC codegen
3143  if (Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false))
3144    Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result, NULL, 0);
3145
3146  return Result;
3147}
3148
3149// Lower ISD::GlobalTLSAddress using the "general dynamic" model
3150static SDOperand
3151LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
3152                              const MVT::ValueType PtrVT) {
3153  SDOperand InFlag;
3154  SDOperand Chain = DAG.getCopyToReg(DAG.getEntryNode(), X86::EBX,
3155                                     DAG.getNode(X86ISD::GlobalBaseReg,
3156                                                 PtrVT), InFlag);
3157  InFlag = Chain.getValue(1);
3158
3159  // emit leal symbol@TLSGD(,%ebx,1), %eax
3160  SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
3161  SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
3162                                             GA->getValueType(0),
3163                                             GA->getOffset());
3164  SDOperand Ops[] = { Chain,  TGA, InFlag };
3165  SDOperand Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 3);
3166  InFlag = Result.getValue(2);
3167  Chain = Result.getValue(1);
3168
3169  // call ___tls_get_addr. This function receives its argument in
3170  // the register EAX.
3171  Chain = DAG.getCopyToReg(Chain, X86::EAX, Result, InFlag);
3172  InFlag = Chain.getValue(1);
3173
3174  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
3175  SDOperand Ops1[] = { Chain,
3176                      DAG.getTargetExternalSymbol("___tls_get_addr",
3177                                                  PtrVT),
3178                      DAG.getRegister(X86::EAX, PtrVT),
3179                      DAG.getRegister(X86::EBX, PtrVT),
3180                      InFlag };
3181  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 5);
3182  InFlag = Chain.getValue(1);
3183
3184  return DAG.getCopyFromReg(Chain, X86::EAX, PtrVT, InFlag);
3185}
3186
3187// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
3188// "local exec" model.
3189static SDOperand
3190LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
3191                         const MVT::ValueType PtrVT) {
3192  // Get the Thread Pointer
3193  SDOperand ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER, PtrVT);
3194  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
3195  // exec)
3196  SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
3197                                             GA->getValueType(0),
3198                                             GA->getOffset());
3199  SDOperand Offset = DAG.getNode(X86ISD::Wrapper, PtrVT, TGA);
3200
3201  if (GA->getGlobal()->isDeclaration()) // initial exec TLS model
3202    Offset = DAG.getLoad(PtrVT, DAG.getEntryNode(), Offset, NULL, 0);
3203
3204  // The address of the thread local variable is the add of the thread
3205  // pointer with the offset of the variable.
3206  return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset);
3207}
3208
3209SDOperand
3210X86TargetLowering::LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) {
3211  // TODO: implement the "local dynamic" model
3212  // TODO: implement the "initial exec"model for pic executables
3213  assert(!Subtarget->is64Bit() && Subtarget->isTargetELF() &&
3214         "TLS not implemented for non-ELF and 64-bit targets");
3215  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3216  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
3217  // otherwise use the "Local Exec"TLS Model
3218  if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
3219    return LowerToTLSGeneralDynamicModel(GA, DAG, getPointerTy());
3220  else
3221    return LowerToTLSExecModel(GA, DAG, getPointerTy());
3222}
3223
3224SDOperand
3225X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) {
3226  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
3227  SDOperand Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
3228  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3229  // With PIC, the address is actually $g + Offset.
3230  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3231      !Subtarget->isPICStyleRIPRel()) {
3232    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3233                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3234                         Result);
3235  }
3236
3237  return Result;
3238}
3239
3240SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
3241  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3242  SDOperand Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
3243  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3244  // With PIC, the address is actually $g + Offset.
3245  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3246      !Subtarget->isPICStyleRIPRel()) {
3247    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3248                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3249                         Result);
3250  }
3251
3252  return Result;
3253}
3254
3255SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) {
3256    assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
3257           "Not an i64 shift!");
3258    bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
3259    SDOperand ShOpLo = Op.getOperand(0);
3260    SDOperand ShOpHi = Op.getOperand(1);
3261    SDOperand ShAmt  = Op.getOperand(2);
3262    SDOperand Tmp1 = isSRA ?
3263      DAG.getNode(ISD::SRA, MVT::i32, ShOpHi, DAG.getConstant(31, MVT::i8)) :
3264      DAG.getConstant(0, MVT::i32);
3265
3266    SDOperand Tmp2, Tmp3;
3267    if (Op.getOpcode() == ISD::SHL_PARTS) {
3268      Tmp2 = DAG.getNode(X86ISD::SHLD, MVT::i32, ShOpHi, ShOpLo, ShAmt);
3269      Tmp3 = DAG.getNode(ISD::SHL, MVT::i32, ShOpLo, ShAmt);
3270    } else {
3271      Tmp2 = DAG.getNode(X86ISD::SHRD, MVT::i32, ShOpLo, ShOpHi, ShAmt);
3272      Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, MVT::i32, ShOpHi, ShAmt);
3273    }
3274
3275    const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3276    SDOperand AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
3277                                    DAG.getConstant(32, MVT::i8));
3278    SDOperand COps[]={DAG.getEntryNode(), AndNode, DAG.getConstant(0, MVT::i8)};
3279    SDOperand InFlag = DAG.getNode(X86ISD::CMP, VTs, 2, COps, 3).getValue(1);
3280
3281    SDOperand Hi, Lo;
3282    SDOperand CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3283
3284    VTs = DAG.getNodeValueTypes(MVT::i32, MVT::Flag);
3285    SmallVector<SDOperand, 4> Ops;
3286    if (Op.getOpcode() == ISD::SHL_PARTS) {
3287      Ops.push_back(Tmp2);
3288      Ops.push_back(Tmp3);
3289      Ops.push_back(CC);
3290      Ops.push_back(InFlag);
3291      Hi = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3292      InFlag = Hi.getValue(1);
3293
3294      Ops.clear();
3295      Ops.push_back(Tmp3);
3296      Ops.push_back(Tmp1);
3297      Ops.push_back(CC);
3298      Ops.push_back(InFlag);
3299      Lo = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3300    } else {
3301      Ops.push_back(Tmp2);
3302      Ops.push_back(Tmp3);
3303      Ops.push_back(CC);
3304      Ops.push_back(InFlag);
3305      Lo = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3306      InFlag = Lo.getValue(1);
3307
3308      Ops.clear();
3309      Ops.push_back(Tmp3);
3310      Ops.push_back(Tmp1);
3311      Ops.push_back(CC);
3312      Ops.push_back(InFlag);
3313      Hi = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3314    }
3315
3316    VTs = DAG.getNodeValueTypes(MVT::i32, MVT::i32);
3317    Ops.clear();
3318    Ops.push_back(Lo);
3319    Ops.push_back(Hi);
3320    return DAG.getNode(ISD::MERGE_VALUES, VTs, 2, &Ops[0], Ops.size());
3321}
3322
3323SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
3324  assert(Op.getOperand(0).getValueType() <= MVT::i64 &&
3325         Op.getOperand(0).getValueType() >= MVT::i16 &&
3326         "Unknown SINT_TO_FP to lower!");
3327
3328  SDOperand Result;
3329  MVT::ValueType SrcVT = Op.getOperand(0).getValueType();
3330  unsigned Size = MVT::getSizeInBits(SrcVT)/8;
3331  MachineFunction &MF = DAG.getMachineFunction();
3332  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
3333  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3334  SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
3335                                 StackSlot, NULL, 0);
3336
3337  // These are really Legal; caller falls through into that case.
3338  if (SrcVT==MVT::i32 && Op.getValueType() != MVT::f80 && X86ScalarSSE)
3339    return Result;
3340  if (SrcVT==MVT::i64 && Op.getValueType() != MVT::f80 &&
3341      Subtarget->is64Bit())
3342    return Result;
3343
3344  // Build the FILD
3345  SDVTList Tys;
3346  bool useSSE = X86ScalarSSE && Op.getValueType() != MVT::f80;
3347  if (useSSE)
3348    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
3349  else
3350    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
3351  SmallVector<SDOperand, 8> Ops;
3352  Ops.push_back(Chain);
3353  Ops.push_back(StackSlot);
3354  Ops.push_back(DAG.getValueType(SrcVT));
3355  Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG :X86ISD::FILD,
3356                       Tys, &Ops[0], Ops.size());
3357
3358  if (useSSE) {
3359    Chain = Result.getValue(1);
3360    SDOperand InFlag = Result.getValue(2);
3361
3362    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
3363    // shouldn't be necessary except that RFP cannot be live across
3364    // multiple blocks. When stackifier is fixed, they can be uncoupled.
3365    MachineFunction &MF = DAG.getMachineFunction();
3366    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
3367    SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3368    Tys = DAG.getVTList(MVT::Other);
3369    SmallVector<SDOperand, 8> Ops;
3370    Ops.push_back(Chain);
3371    Ops.push_back(Result);
3372    Ops.push_back(StackSlot);
3373    Ops.push_back(DAG.getValueType(Op.getValueType()));
3374    Ops.push_back(InFlag);
3375    Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
3376    Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot, NULL, 0);
3377  }
3378
3379  return Result;
3380}
3381
3382SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
3383  assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 &&
3384         "Unknown FP_TO_SINT to lower!");
3385  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
3386  // stack slot.
3387  SDOperand Result;
3388  MachineFunction &MF = DAG.getMachineFunction();
3389  unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8;
3390  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3391  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3392
3393  // These are really Legal.
3394  if (Op.getValueType() == MVT::i32 && X86ScalarSSE &&
3395      Op.getOperand(0).getValueType() != MVT::f80)
3396    return Result;
3397  if (Subtarget->is64Bit() &&
3398      Op.getValueType() == MVT::i64 &&
3399      Op.getOperand(0).getValueType() != MVT::f80)
3400    return Result;
3401
3402  unsigned Opc;
3403  switch (Op.getValueType()) {
3404    default: assert(0 && "Invalid FP_TO_SINT to lower!");
3405    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
3406    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
3407    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
3408  }
3409
3410  SDOperand Chain = DAG.getEntryNode();
3411  SDOperand Value = Op.getOperand(0);
3412  if (X86ScalarSSE && Op.getOperand(0).getValueType() != MVT::f80) {
3413    assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
3414    Chain = DAG.getStore(Chain, Value, StackSlot, NULL, 0);
3415    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
3416    SDOperand Ops[] = {
3417      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
3418    };
3419    Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
3420    Chain = Value.getValue(1);
3421    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3422    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3423  }
3424
3425  // Build the FP_TO_INT*_IN_MEM
3426  SDOperand Ops[] = { Chain, Value, StackSlot };
3427  SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops, 3);
3428
3429  // Load the result.
3430  return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
3431}
3432
3433SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) {
3434  MVT::ValueType VT = Op.getValueType();
3435  MVT::ValueType EltVT = VT;
3436  if (MVT::isVector(VT))
3437    EltVT = MVT::getVectorElementType(VT);
3438  const Type *OpNTy =  MVT::getTypeForValueType(EltVT);
3439  std::vector<Constant*> CV;
3440  if (EltVT == MVT::f64) {
3441    Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(64, ~(1ULL << 63))));
3442    CV.push_back(C);
3443    CV.push_back(C);
3444  } else {
3445    Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(32, ~(1U << 31))));
3446    CV.push_back(C);
3447    CV.push_back(C);
3448    CV.push_back(C);
3449    CV.push_back(C);
3450  }
3451  Constant *C = ConstantVector::get(CV);
3452  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3453  SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
3454                               false, 16);
3455  return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
3456}
3457
3458SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) {
3459  MVT::ValueType VT = Op.getValueType();
3460  MVT::ValueType EltVT = VT;
3461  unsigned EltNum = 1;
3462  if (MVT::isVector(VT)) {
3463    EltVT = MVT::getVectorElementType(VT);
3464    EltNum = MVT::getVectorNumElements(VT);
3465  }
3466  const Type *OpNTy =  MVT::getTypeForValueType(EltVT);
3467  std::vector<Constant*> CV;
3468  if (EltVT == MVT::f64) {
3469    Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(64, 1ULL << 63)));
3470    CV.push_back(C);
3471    CV.push_back(C);
3472  } else {
3473    Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(32, 1U << 31)));
3474    CV.push_back(C);
3475    CV.push_back(C);
3476    CV.push_back(C);
3477    CV.push_back(C);
3478  }
3479  Constant *C = ConstantVector::get(CV);
3480  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3481  SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
3482                               false, 16);
3483  if (MVT::isVector(VT)) {
3484    return DAG.getNode(ISD::BIT_CONVERT, VT,
3485                       DAG.getNode(ISD::XOR, MVT::v2i64,
3486                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Op.getOperand(0)),
3487                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Mask)));
3488  } else {
3489    return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
3490  }
3491}
3492
3493SDOperand X86TargetLowering::LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) {
3494  SDOperand Op0 = Op.getOperand(0);
3495  SDOperand Op1 = Op.getOperand(1);
3496  MVT::ValueType VT = Op.getValueType();
3497  MVT::ValueType SrcVT = Op1.getValueType();
3498  const Type *SrcTy =  MVT::getTypeForValueType(SrcVT);
3499
3500  // If second operand is smaller, extend it first.
3501  if (MVT::getSizeInBits(SrcVT) < MVT::getSizeInBits(VT)) {
3502    Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1);
3503    SrcVT = VT;
3504    SrcTy = MVT::getTypeForValueType(SrcVT);
3505  }
3506
3507  // First get the sign bit of second operand.
3508  std::vector<Constant*> CV;
3509  if (SrcVT == MVT::f64) {
3510    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 1ULL << 63))));
3511    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 0))));
3512  } else {
3513    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 1U << 31))));
3514    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
3515    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
3516    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
3517  }
3518  Constant *C = ConstantVector::get(CV);
3519  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3520  SDOperand Mask1 = DAG.getLoad(SrcVT, DAG.getEntryNode(), CPIdx, NULL, 0,
3521                                false, 16);
3522  SDOperand SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1);
3523
3524  // Shift sign bit right or left if the two operands have different types.
3525  if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) {
3526    // Op0 is MVT::f32, Op1 is MVT::f64.
3527    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit);
3528    SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit,
3529                          DAG.getConstant(32, MVT::i32));
3530    SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit);
3531    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit,
3532                          DAG.getConstant(0, getPointerTy()));
3533  }
3534
3535  // Clear first operand sign bit.
3536  CV.clear();
3537  if (VT == MVT::f64) {
3538    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, ~(1ULL << 63)))));
3539    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 0))));
3540  } else {
3541    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, ~(1U << 31)))));
3542    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
3543    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
3544    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
3545  }
3546  C = ConstantVector::get(CV);
3547  CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3548  SDOperand Mask2 = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
3549                                false, 16);
3550  SDOperand Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2);
3551
3552  // Or the value with the sign bit.
3553  return DAG.getNode(X86ISD::FOR, VT, Val, SignBit);
3554}
3555
3556SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG,
3557                                        SDOperand Chain) {
3558  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
3559  SDOperand Cond;
3560  SDOperand Op0 = Op.getOperand(0);
3561  SDOperand Op1 = Op.getOperand(1);
3562  SDOperand CC = Op.getOperand(2);
3563  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
3564  const MVT::ValueType *VTs1 = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3565  const MVT::ValueType *VTs2 = DAG.getNodeValueTypes(MVT::i8, MVT::Flag);
3566  bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType());
3567  unsigned X86CC;
3568
3569  if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
3570                     Op0, Op1, DAG)) {
3571    SDOperand Ops1[] = { Chain, Op0, Op1 };
3572    Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, Ops1, 3).getValue(1);
3573    SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond };
3574    return DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3575  }
3576
3577  assert(isFP && "Illegal integer SetCC!");
3578
3579  SDOperand COps[] = { Chain, Op0, Op1 };
3580  Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, COps, 3).getValue(1);
3581
3582  switch (SetCCOpcode) {
3583  default: assert(false && "Illegal floating point SetCC!");
3584  case ISD::SETOEQ: {  // !PF & ZF
3585    SDOperand Ops1[] = { DAG.getConstant(X86::COND_NP, MVT::i8), Cond };
3586    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2);
3587    SDOperand Ops2[] = { DAG.getConstant(X86::COND_E, MVT::i8),
3588                         Tmp1.getValue(1) };
3589    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3590    return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
3591  }
3592  case ISD::SETUNE: {  // PF | !ZF
3593    SDOperand Ops1[] = { DAG.getConstant(X86::COND_P, MVT::i8), Cond };
3594    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2);
3595    SDOperand Ops2[] = { DAG.getConstant(X86::COND_NE, MVT::i8),
3596                         Tmp1.getValue(1) };
3597    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3598    return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
3599  }
3600  }
3601}
3602
3603SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) {
3604  bool addTest = true;
3605  SDOperand Chain = DAG.getEntryNode();
3606  SDOperand Cond  = Op.getOperand(0);
3607  SDOperand CC;
3608  const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3609
3610  if (Cond.getOpcode() == ISD::SETCC)
3611    Cond = LowerSETCC(Cond, DAG, Chain);
3612
3613  if (Cond.getOpcode() == X86ISD::SETCC) {
3614    CC = Cond.getOperand(0);
3615
3616    // If condition flag is set by a X86ISD::CMP, then make a copy of it
3617    // (since flag operand cannot be shared). Use it as the condition setting
3618    // operand in place of the X86ISD::SETCC.
3619    // If the X86ISD::SETCC has more than one use, then perhaps it's better
3620    // to use a test instead of duplicating the X86ISD::CMP (for register
3621    // pressure reason)?
3622    SDOperand Cmp = Cond.getOperand(1);
3623    unsigned Opc = Cmp.getOpcode();
3624    bool IllegalFPCMov = !X86ScalarSSE &&
3625      MVT::isFloatingPoint(Op.getValueType()) &&
3626      !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
3627    if ((Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) &&
3628        !IllegalFPCMov) {
3629      SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) };
3630      Cond = DAG.getNode(Opc, VTs, 2, Ops, 3);
3631      addTest = false;
3632    }
3633  }
3634
3635  if (addTest) {
3636    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3637    SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) };
3638    Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3);
3639  }
3640
3641  VTs = DAG.getNodeValueTypes(Op.getValueType(), MVT::Flag);
3642  SmallVector<SDOperand, 4> Ops;
3643  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
3644  // condition is true.
3645  Ops.push_back(Op.getOperand(2));
3646  Ops.push_back(Op.getOperand(1));
3647  Ops.push_back(CC);
3648  Ops.push_back(Cond.getValue(1));
3649  return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3650}
3651
3652SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) {
3653  bool addTest = true;
3654  SDOperand Chain = Op.getOperand(0);
3655  SDOperand Cond  = Op.getOperand(1);
3656  SDOperand Dest  = Op.getOperand(2);
3657  SDOperand CC;
3658  const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3659
3660  if (Cond.getOpcode() == ISD::SETCC)
3661    Cond = LowerSETCC(Cond, DAG, Chain);
3662
3663  if (Cond.getOpcode() == X86ISD::SETCC) {
3664    CC = Cond.getOperand(0);
3665
3666    // If condition flag is set by a X86ISD::CMP, then make a copy of it
3667    // (since flag operand cannot be shared). Use it as the condition setting
3668    // operand in place of the X86ISD::SETCC.
3669    // If the X86ISD::SETCC has more than one use, then perhaps it's better
3670    // to use a test instead of duplicating the X86ISD::CMP (for register
3671    // pressure reason)?
3672    SDOperand Cmp = Cond.getOperand(1);
3673    unsigned Opc = Cmp.getOpcode();
3674    if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) {
3675      SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) };
3676      Cond = DAG.getNode(Opc, VTs, 2, Ops, 3);
3677      addTest = false;
3678    }
3679  }
3680
3681  if (addTest) {
3682    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3683    SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) };
3684    Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3);
3685  }
3686  return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
3687                     Cond, Op.getOperand(2), CC, Cond.getValue(1));
3688}
3689
3690SDOperand X86TargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) {
3691  unsigned CallingConv= cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3692
3693  if (Subtarget->is64Bit())
3694    return LowerX86_64CCCCallTo(Op, DAG, CallingConv);
3695  else
3696    switch (CallingConv) {
3697    default:
3698      assert(0 && "Unsupported calling convention");
3699    case CallingConv::Fast:
3700      // TODO: Implement fastcc
3701      // Falls through
3702    case CallingConv::C:
3703    case CallingConv::X86_StdCall:
3704      return LowerCCCCallTo(Op, DAG, CallingConv);
3705    case CallingConv::X86_FastCall:
3706      return LowerFastCCCallTo(Op, DAG, CallingConv);
3707    }
3708}
3709
3710
3711// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
3712// Calls to _alloca is needed to probe the stack when allocating more than 4k
3713// bytes in one go. Touching the stack at 4K increments is necessary to ensure
3714// that the guard pages used by the OS virtual memory manager are allocated in
3715// correct sequence.
3716SDOperand
3717X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDOperand Op,
3718                                           SelectionDAG &DAG) {
3719  assert(Subtarget->isTargetCygMing() &&
3720         "This should be used only on Cygwin/Mingw targets");
3721
3722  // Get the inputs.
3723  SDOperand Chain = Op.getOperand(0);
3724  SDOperand Size  = Op.getOperand(1);
3725  // FIXME: Ensure alignment here
3726
3727  SDOperand Flag;
3728
3729  MVT::ValueType IntPtr = getPointerTy();
3730  MVT::ValueType SPTy = (Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
3731
3732  Chain = DAG.getCopyToReg(Chain, X86::EAX, Size, Flag);
3733  Flag = Chain.getValue(1);
3734
3735  SDVTList  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
3736  SDOperand Ops[] = { Chain,
3737                      DAG.getTargetExternalSymbol("_alloca", IntPtr),
3738                      DAG.getRegister(X86::EAX, IntPtr),
3739                      Flag };
3740  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops, 4);
3741  Flag = Chain.getValue(1);
3742
3743  Chain = DAG.getCopyFromReg(Chain, X86StackPtr, SPTy).getValue(1);
3744
3745  std::vector<MVT::ValueType> Tys;
3746  Tys.push_back(SPTy);
3747  Tys.push_back(MVT::Other);
3748  SDOperand Ops1[2] = { Chain.getValue(0), Chain };
3749  return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops1, 2);
3750}
3751
3752SDOperand
3753X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) {
3754  MachineFunction &MF = DAG.getMachineFunction();
3755  const Function* Fn = MF.getFunction();
3756  if (Fn->hasExternalLinkage() &&
3757      Subtarget->isTargetCygMing() &&
3758      Fn->getName() == "main")
3759    MF.getInfo<X86MachineFunctionInfo>()->setForceFramePointer(true);
3760
3761  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3762  if (Subtarget->is64Bit())
3763    return LowerX86_64CCCArguments(Op, DAG);
3764  else
3765    switch(CC) {
3766    default:
3767      assert(0 && "Unsupported calling convention");
3768    case CallingConv::Fast:
3769      // TODO: implement fastcc.
3770
3771      // Falls through
3772    case CallingConv::C:
3773      return LowerCCCArguments(Op, DAG);
3774    case CallingConv::X86_StdCall:
3775      MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(StdCall);
3776      return LowerCCCArguments(Op, DAG, true);
3777    case CallingConv::X86_FastCall:
3778      MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(FastCall);
3779      return LowerFastCCArguments(Op, DAG);
3780    }
3781}
3782
3783SDOperand X86TargetLowering::LowerMEMSET(SDOperand Op, SelectionDAG &DAG) {
3784  SDOperand InFlag(0, 0);
3785  SDOperand Chain = Op.getOperand(0);
3786  unsigned Align =
3787    (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
3788  if (Align == 0) Align = 1;
3789
3790  ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
3791  // If not DWORD aligned or size is more than the threshold, call memset.
3792  // The libc version is likely to be faster for these cases. It can use the
3793  // address value and run time information about the CPU.
3794  if ((Align & 3) != 0 ||
3795      (I && I->getValue() > Subtarget->getMinRepStrSizeThreshold())) {
3796    MVT::ValueType IntPtr = getPointerTy();
3797    const Type *IntPtrTy = getTargetData()->getIntPtrType();
3798    TargetLowering::ArgListTy Args;
3799    TargetLowering::ArgListEntry Entry;
3800    Entry.Node = Op.getOperand(1);
3801    Entry.Ty = IntPtrTy;
3802    Args.push_back(Entry);
3803    // Extend the unsigned i8 argument to be an int value for the call.
3804    Entry.Node = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2));
3805    Entry.Ty = IntPtrTy;
3806    Args.push_back(Entry);
3807    Entry.Node = Op.getOperand(3);
3808    Args.push_back(Entry);
3809    std::pair<SDOperand,SDOperand> CallResult =
3810      LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
3811                  DAG.getExternalSymbol("memset", IntPtr), Args, DAG);
3812    return CallResult.second;
3813  }
3814
3815  MVT::ValueType AVT;
3816  SDOperand Count;
3817  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3818  unsigned BytesLeft = 0;
3819  bool TwoRepStos = false;
3820  if (ValC) {
3821    unsigned ValReg;
3822    uint64_t Val = ValC->getValue() & 255;
3823
3824    // If the value is a constant, then we can potentially use larger sets.
3825    switch (Align & 3) {
3826      case 2:   // WORD aligned
3827        AVT = MVT::i16;
3828        ValReg = X86::AX;
3829        Val = (Val << 8) | Val;
3830        break;
3831      case 0:  // DWORD aligned
3832        AVT = MVT::i32;
3833        ValReg = X86::EAX;
3834        Val = (Val << 8)  | Val;
3835        Val = (Val << 16) | Val;
3836        if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) {  // QWORD aligned
3837          AVT = MVT::i64;
3838          ValReg = X86::RAX;
3839          Val = (Val << 32) | Val;
3840        }
3841        break;
3842      default:  // Byte aligned
3843        AVT = MVT::i8;
3844        ValReg = X86::AL;
3845        Count = Op.getOperand(3);
3846        break;
3847    }
3848
3849    if (AVT > MVT::i8) {
3850      if (I) {
3851        unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
3852        Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
3853        BytesLeft = I->getValue() % UBytes;
3854      } else {
3855        assert(AVT >= MVT::i32 &&
3856               "Do not use rep;stos if not at least DWORD aligned");
3857        Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
3858                            Op.getOperand(3), DAG.getConstant(2, MVT::i8));
3859        TwoRepStos = true;
3860      }
3861    }
3862
3863    Chain  = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
3864                              InFlag);
3865    InFlag = Chain.getValue(1);
3866  } else {
3867    AVT = MVT::i8;
3868    Count  = Op.getOperand(3);
3869    Chain  = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag);
3870    InFlag = Chain.getValue(1);
3871  }
3872
3873  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
3874                            Count, InFlag);
3875  InFlag = Chain.getValue(1);
3876  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
3877                            Op.getOperand(1), InFlag);
3878  InFlag = Chain.getValue(1);
3879
3880  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3881  SmallVector<SDOperand, 8> Ops;
3882  Ops.push_back(Chain);
3883  Ops.push_back(DAG.getValueType(AVT));
3884  Ops.push_back(InFlag);
3885  Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
3886
3887  if (TwoRepStos) {
3888    InFlag = Chain.getValue(1);
3889    Count = Op.getOperand(3);
3890    MVT::ValueType CVT = Count.getValueType();
3891    SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
3892                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
3893    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
3894                              Left, InFlag);
3895    InFlag = Chain.getValue(1);
3896    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3897    Ops.clear();
3898    Ops.push_back(Chain);
3899    Ops.push_back(DAG.getValueType(MVT::i8));
3900    Ops.push_back(InFlag);
3901    Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
3902  } else if (BytesLeft) {
3903    // Issue stores for the last 1 - 7 bytes.
3904    SDOperand Value;
3905    unsigned Val = ValC->getValue() & 255;
3906    unsigned Offset = I->getValue() - BytesLeft;
3907    SDOperand DstAddr = Op.getOperand(1);
3908    MVT::ValueType AddrVT = DstAddr.getValueType();
3909    if (BytesLeft >= 4) {
3910      Val = (Val << 8)  | Val;
3911      Val = (Val << 16) | Val;
3912      Value = DAG.getConstant(Val, MVT::i32);
3913      Chain = DAG.getStore(Chain, Value,
3914                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
3915                                       DAG.getConstant(Offset, AddrVT)),
3916                           NULL, 0);
3917      BytesLeft -= 4;
3918      Offset += 4;
3919    }
3920    if (BytesLeft >= 2) {
3921      Value = DAG.getConstant((Val << 8) | Val, MVT::i16);
3922      Chain = DAG.getStore(Chain, Value,
3923                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
3924                                       DAG.getConstant(Offset, AddrVT)),
3925                           NULL, 0);
3926      BytesLeft -= 2;
3927      Offset += 2;
3928    }
3929    if (BytesLeft == 1) {
3930      Value = DAG.getConstant(Val, MVT::i8);
3931      Chain = DAG.getStore(Chain, Value,
3932                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
3933                                       DAG.getConstant(Offset, AddrVT)),
3934                           NULL, 0);
3935    }
3936  }
3937
3938  return Chain;
3939}
3940
3941SDOperand X86TargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) {
3942  SDOperand Chain = Op.getOperand(0);
3943  unsigned Align =
3944    (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
3945  if (Align == 0) Align = 1;
3946
3947  ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
3948  // If not DWORD aligned or size is more than the threshold, call memcpy.
3949  // The libc version is likely to be faster for these cases. It can use the
3950  // address value and run time information about the CPU.
3951  // With glibc 2.6.1 on a core 2, coping an array of 100M longs was 30% faster
3952  if ((Align & 3) != 0 ||
3953      (I && I->getValue() > Subtarget->getMinRepStrSizeThreshold())) {
3954    MVT::ValueType IntPtr = getPointerTy();
3955    TargetLowering::ArgListTy Args;
3956    TargetLowering::ArgListEntry Entry;
3957    Entry.Ty = getTargetData()->getIntPtrType();
3958    Entry.Node = Op.getOperand(1); Args.push_back(Entry);
3959    Entry.Node = Op.getOperand(2); Args.push_back(Entry);
3960    Entry.Node = Op.getOperand(3); Args.push_back(Entry);
3961    std::pair<SDOperand,SDOperand> CallResult =
3962      LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
3963                  DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG);
3964    return CallResult.second;
3965  }
3966
3967  MVT::ValueType AVT;
3968  SDOperand Count;
3969  unsigned BytesLeft = 0;
3970  bool TwoRepMovs = false;
3971  switch (Align & 3) {
3972    case 2:   // WORD aligned
3973      AVT = MVT::i16;
3974      break;
3975    case 0:  // DWORD aligned
3976      AVT = MVT::i32;
3977      if (Subtarget->is64Bit() && ((Align & 0xF) == 0))  // QWORD aligned
3978        AVT = MVT::i64;
3979      break;
3980    default:  // Byte aligned
3981      AVT = MVT::i8;
3982      Count = Op.getOperand(3);
3983      break;
3984  }
3985
3986  if (AVT > MVT::i8) {
3987    if (I) {
3988      unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
3989      Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
3990      BytesLeft = I->getValue() % UBytes;
3991    } else {
3992      assert(AVT >= MVT::i32 &&
3993             "Do not use rep;movs if not at least DWORD aligned");
3994      Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
3995                          Op.getOperand(3), DAG.getConstant(2, MVT::i8));
3996      TwoRepMovs = true;
3997    }
3998  }
3999
4000  SDOperand InFlag(0, 0);
4001  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4002                            Count, InFlag);
4003  InFlag = Chain.getValue(1);
4004  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
4005                            Op.getOperand(1), InFlag);
4006  InFlag = Chain.getValue(1);
4007  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
4008                            Op.getOperand(2), InFlag);
4009  InFlag = Chain.getValue(1);
4010
4011  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4012  SmallVector<SDOperand, 8> Ops;
4013  Ops.push_back(Chain);
4014  Ops.push_back(DAG.getValueType(AVT));
4015  Ops.push_back(InFlag);
4016  Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
4017
4018  if (TwoRepMovs) {
4019    InFlag = Chain.getValue(1);
4020    Count = Op.getOperand(3);
4021    MVT::ValueType CVT = Count.getValueType();
4022    SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
4023                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
4024    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
4025                              Left, InFlag);
4026    InFlag = Chain.getValue(1);
4027    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4028    Ops.clear();
4029    Ops.push_back(Chain);
4030    Ops.push_back(DAG.getValueType(MVT::i8));
4031    Ops.push_back(InFlag);
4032    Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
4033  } else if (BytesLeft) {
4034    // Issue loads and stores for the last 1 - 7 bytes.
4035    unsigned Offset = I->getValue() - BytesLeft;
4036    SDOperand DstAddr = Op.getOperand(1);
4037    MVT::ValueType DstVT = DstAddr.getValueType();
4038    SDOperand SrcAddr = Op.getOperand(2);
4039    MVT::ValueType SrcVT = SrcAddr.getValueType();
4040    SDOperand Value;
4041    if (BytesLeft >= 4) {
4042      Value = DAG.getLoad(MVT::i32, Chain,
4043                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4044                                      DAG.getConstant(Offset, SrcVT)),
4045                          NULL, 0);
4046      Chain = Value.getValue(1);
4047      Chain = DAG.getStore(Chain, Value,
4048                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4049                                       DAG.getConstant(Offset, DstVT)),
4050                           NULL, 0);
4051      BytesLeft -= 4;
4052      Offset += 4;
4053    }
4054    if (BytesLeft >= 2) {
4055      Value = DAG.getLoad(MVT::i16, Chain,
4056                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4057                                      DAG.getConstant(Offset, SrcVT)),
4058                          NULL, 0);
4059      Chain = Value.getValue(1);
4060      Chain = DAG.getStore(Chain, Value,
4061                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4062                                       DAG.getConstant(Offset, DstVT)),
4063                           NULL, 0);
4064      BytesLeft -= 2;
4065      Offset += 2;
4066    }
4067
4068    if (BytesLeft == 1) {
4069      Value = DAG.getLoad(MVT::i8, Chain,
4070                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4071                                      DAG.getConstant(Offset, SrcVT)),
4072                          NULL, 0);
4073      Chain = Value.getValue(1);
4074      Chain = DAG.getStore(Chain, Value,
4075                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4076                                       DAG.getConstant(Offset, DstVT)),
4077                           NULL, 0);
4078    }
4079  }
4080
4081  return Chain;
4082}
4083
4084SDOperand
4085X86TargetLowering::LowerREADCYCLCECOUNTER(SDOperand Op, SelectionDAG &DAG) {
4086  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4087  SDOperand TheOp = Op.getOperand(0);
4088  SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheOp, 1);
4089  if (Subtarget->is64Bit()) {
4090    SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
4091    SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::RDX,
4092                                         MVT::i64, Copy1.getValue(2));
4093    SDOperand Tmp = DAG.getNode(ISD::SHL, MVT::i64, Copy2,
4094                                DAG.getConstant(32, MVT::i8));
4095    SDOperand Ops[] = {
4096      DAG.getNode(ISD::OR, MVT::i64, Copy1, Tmp), Copy2.getValue(1)
4097    };
4098
4099    Tys = DAG.getVTList(MVT::i64, MVT::Other);
4100    return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2);
4101  }
4102
4103  SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
4104  SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::EDX,
4105                                       MVT::i32, Copy1.getValue(2));
4106  SDOperand Ops[] = { Copy1, Copy2, Copy2.getValue(1) };
4107  Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
4108  return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 3);
4109}
4110
4111SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) {
4112  SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
4113
4114  if (!Subtarget->is64Bit()) {
4115    // vastart just stores the address of the VarArgsFrameIndex slot into the
4116    // memory location argument.
4117    SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4118    return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV->getValue(),
4119                        SV->getOffset());
4120  }
4121
4122  // __va_list_tag:
4123  //   gp_offset         (0 - 6 * 8)
4124  //   fp_offset         (48 - 48 + 8 * 16)
4125  //   overflow_arg_area (point to parameters coming in memory).
4126  //   reg_save_area
4127  SmallVector<SDOperand, 8> MemOps;
4128  SDOperand FIN = Op.getOperand(1);
4129  // Store gp_offset
4130  SDOperand Store = DAG.getStore(Op.getOperand(0),
4131                                 DAG.getConstant(VarArgsGPOffset, MVT::i32),
4132                                 FIN, SV->getValue(), SV->getOffset());
4133  MemOps.push_back(Store);
4134
4135  // Store fp_offset
4136  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4137                    DAG.getConstant(4, getPointerTy()));
4138  Store = DAG.getStore(Op.getOperand(0),
4139                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
4140                       FIN, SV->getValue(), SV->getOffset());
4141  MemOps.push_back(Store);
4142
4143  // Store ptr to overflow_arg_area
4144  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4145                    DAG.getConstant(4, getPointerTy()));
4146  SDOperand OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4147  Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV->getValue(),
4148                       SV->getOffset());
4149  MemOps.push_back(Store);
4150
4151  // Store ptr to reg_save_area.
4152  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4153                    DAG.getConstant(8, getPointerTy()));
4154  SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
4155  Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV->getValue(),
4156                       SV->getOffset());
4157  MemOps.push_back(Store);
4158  return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
4159}
4160
4161SDOperand X86TargetLowering::LowerVACOPY(SDOperand Op, SelectionDAG &DAG) {
4162  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
4163  SDOperand Chain = Op.getOperand(0);
4164  SDOperand DstPtr = Op.getOperand(1);
4165  SDOperand SrcPtr = Op.getOperand(2);
4166  SrcValueSDNode *DstSV = cast<SrcValueSDNode>(Op.getOperand(3));
4167  SrcValueSDNode *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4));
4168
4169  SrcPtr = DAG.getLoad(getPointerTy(), Chain, SrcPtr,
4170                       SrcSV->getValue(), SrcSV->getOffset());
4171  Chain = SrcPtr.getValue(1);
4172  for (unsigned i = 0; i < 3; ++i) {
4173    SDOperand Val = DAG.getLoad(MVT::i64, Chain, SrcPtr,
4174                                SrcSV->getValue(), SrcSV->getOffset());
4175    Chain = Val.getValue(1);
4176    Chain = DAG.getStore(Chain, Val, DstPtr,
4177                         DstSV->getValue(), DstSV->getOffset());
4178    if (i == 2)
4179      break;
4180    SrcPtr = DAG.getNode(ISD::ADD, getPointerTy(), SrcPtr,
4181                         DAG.getConstant(8, getPointerTy()));
4182    DstPtr = DAG.getNode(ISD::ADD, getPointerTy(), DstPtr,
4183                         DAG.getConstant(8, getPointerTy()));
4184  }
4185  return Chain;
4186}
4187
4188SDOperand
4189X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
4190  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
4191  switch (IntNo) {
4192  default: return SDOperand();    // Don't custom lower most intrinsics.
4193    // Comparison intrinsics.
4194  case Intrinsic::x86_sse_comieq_ss:
4195  case Intrinsic::x86_sse_comilt_ss:
4196  case Intrinsic::x86_sse_comile_ss:
4197  case Intrinsic::x86_sse_comigt_ss:
4198  case Intrinsic::x86_sse_comige_ss:
4199  case Intrinsic::x86_sse_comineq_ss:
4200  case Intrinsic::x86_sse_ucomieq_ss:
4201  case Intrinsic::x86_sse_ucomilt_ss:
4202  case Intrinsic::x86_sse_ucomile_ss:
4203  case Intrinsic::x86_sse_ucomigt_ss:
4204  case Intrinsic::x86_sse_ucomige_ss:
4205  case Intrinsic::x86_sse_ucomineq_ss:
4206  case Intrinsic::x86_sse2_comieq_sd:
4207  case Intrinsic::x86_sse2_comilt_sd:
4208  case Intrinsic::x86_sse2_comile_sd:
4209  case Intrinsic::x86_sse2_comigt_sd:
4210  case Intrinsic::x86_sse2_comige_sd:
4211  case Intrinsic::x86_sse2_comineq_sd:
4212  case Intrinsic::x86_sse2_ucomieq_sd:
4213  case Intrinsic::x86_sse2_ucomilt_sd:
4214  case Intrinsic::x86_sse2_ucomile_sd:
4215  case Intrinsic::x86_sse2_ucomigt_sd:
4216  case Intrinsic::x86_sse2_ucomige_sd:
4217  case Intrinsic::x86_sse2_ucomineq_sd: {
4218    unsigned Opc = 0;
4219    ISD::CondCode CC = ISD::SETCC_INVALID;
4220    switch (IntNo) {
4221    default: break;
4222    case Intrinsic::x86_sse_comieq_ss:
4223    case Intrinsic::x86_sse2_comieq_sd:
4224      Opc = X86ISD::COMI;
4225      CC = ISD::SETEQ;
4226      break;
4227    case Intrinsic::x86_sse_comilt_ss:
4228    case Intrinsic::x86_sse2_comilt_sd:
4229      Opc = X86ISD::COMI;
4230      CC = ISD::SETLT;
4231      break;
4232    case Intrinsic::x86_sse_comile_ss:
4233    case Intrinsic::x86_sse2_comile_sd:
4234      Opc = X86ISD::COMI;
4235      CC = ISD::SETLE;
4236      break;
4237    case Intrinsic::x86_sse_comigt_ss:
4238    case Intrinsic::x86_sse2_comigt_sd:
4239      Opc = X86ISD::COMI;
4240      CC = ISD::SETGT;
4241      break;
4242    case Intrinsic::x86_sse_comige_ss:
4243    case Intrinsic::x86_sse2_comige_sd:
4244      Opc = X86ISD::COMI;
4245      CC = ISD::SETGE;
4246      break;
4247    case Intrinsic::x86_sse_comineq_ss:
4248    case Intrinsic::x86_sse2_comineq_sd:
4249      Opc = X86ISD::COMI;
4250      CC = ISD::SETNE;
4251      break;
4252    case Intrinsic::x86_sse_ucomieq_ss:
4253    case Intrinsic::x86_sse2_ucomieq_sd:
4254      Opc = X86ISD::UCOMI;
4255      CC = ISD::SETEQ;
4256      break;
4257    case Intrinsic::x86_sse_ucomilt_ss:
4258    case Intrinsic::x86_sse2_ucomilt_sd:
4259      Opc = X86ISD::UCOMI;
4260      CC = ISD::SETLT;
4261      break;
4262    case Intrinsic::x86_sse_ucomile_ss:
4263    case Intrinsic::x86_sse2_ucomile_sd:
4264      Opc = X86ISD::UCOMI;
4265      CC = ISD::SETLE;
4266      break;
4267    case Intrinsic::x86_sse_ucomigt_ss:
4268    case Intrinsic::x86_sse2_ucomigt_sd:
4269      Opc = X86ISD::UCOMI;
4270      CC = ISD::SETGT;
4271      break;
4272    case Intrinsic::x86_sse_ucomige_ss:
4273    case Intrinsic::x86_sse2_ucomige_sd:
4274      Opc = X86ISD::UCOMI;
4275      CC = ISD::SETGE;
4276      break;
4277    case Intrinsic::x86_sse_ucomineq_ss:
4278    case Intrinsic::x86_sse2_ucomineq_sd:
4279      Opc = X86ISD::UCOMI;
4280      CC = ISD::SETNE;
4281      break;
4282    }
4283
4284    unsigned X86CC;
4285    SDOperand LHS = Op.getOperand(1);
4286    SDOperand RHS = Op.getOperand(2);
4287    translateX86CC(CC, true, X86CC, LHS, RHS, DAG);
4288
4289    const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
4290    SDOperand Ops1[] = { DAG.getEntryNode(), LHS, RHS };
4291    SDOperand Cond = DAG.getNode(Opc, VTs, 2, Ops1, 3);
4292    VTs = DAG.getNodeValueTypes(MVT::i8, MVT::Flag);
4293    SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond };
4294    SDOperand SetCC = DAG.getNode(X86ISD::SETCC, VTs, 2, Ops2, 2);
4295    return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC);
4296  }
4297  }
4298}
4299
4300SDOperand X86TargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
4301  // Depths > 0 not supported yet!
4302  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4303    return SDOperand();
4304
4305  // Just load the return address
4306  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4307  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
4308}
4309
4310SDOperand X86TargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
4311  // Depths > 0 not supported yet!
4312  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4313    return SDOperand();
4314
4315  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4316  return DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI,
4317                     DAG.getConstant(4, getPointerTy()));
4318}
4319
4320SDOperand X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDOperand Op,
4321                                                       SelectionDAG &DAG) {
4322  // Is not yet supported on x86-64
4323  if (Subtarget->is64Bit())
4324    return SDOperand();
4325
4326  return DAG.getConstant(8, getPointerTy());
4327}
4328
4329SDOperand X86TargetLowering::LowerEH_RETURN(SDOperand Op, SelectionDAG &DAG)
4330{
4331  assert(!Subtarget->is64Bit() &&
4332         "Lowering of eh_return builtin is not supported yet on x86-64");
4333
4334  MachineFunction &MF = DAG.getMachineFunction();
4335  SDOperand Chain     = Op.getOperand(0);
4336  SDOperand Offset    = Op.getOperand(1);
4337  SDOperand Handler   = Op.getOperand(2);
4338
4339  SDOperand Frame = DAG.getRegister(RegInfo->getFrameRegister(MF),
4340                                    getPointerTy());
4341
4342  SDOperand StoreAddr = DAG.getNode(ISD::SUB, getPointerTy(), Frame,
4343                                    DAG.getConstant(-4UL, getPointerTy()));
4344  StoreAddr = DAG.getNode(ISD::ADD, getPointerTy(), StoreAddr, Offset);
4345  Chain = DAG.getStore(Chain, Handler, StoreAddr, NULL, 0);
4346  Chain = DAG.getCopyToReg(Chain, X86::ECX, StoreAddr);
4347  MF.addLiveOut(X86::ECX);
4348
4349  return DAG.getNode(X86ISD::EH_RETURN, MVT::Other,
4350                     Chain, DAG.getRegister(X86::ECX, getPointerTy()));
4351}
4352
4353SDOperand X86TargetLowering::LowerTRAMPOLINE(SDOperand Op,
4354                                             SelectionDAG &DAG) {
4355  SDOperand Root = Op.getOperand(0);
4356  SDOperand Trmp = Op.getOperand(1); // trampoline
4357  SDOperand FPtr = Op.getOperand(2); // nested function
4358  SDOperand Nest = Op.getOperand(3); // 'nest' parameter value
4359
4360  SrcValueSDNode *TrmpSV = cast<SrcValueSDNode>(Op.getOperand(4));
4361
4362  if (Subtarget->is64Bit()) {
4363    return SDOperand(); // not yet supported
4364  } else {
4365    Function *Func = (Function *)
4366      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
4367    unsigned CC = Func->getCallingConv();
4368    unsigned NestReg;
4369
4370    switch (CC) {
4371    default:
4372      assert(0 && "Unsupported calling convention");
4373    case CallingConv::C:
4374    case CallingConv::Fast:
4375    case CallingConv::X86_StdCall: {
4376      // Pass 'nest' parameter in ECX.
4377      // Must be kept in sync with X86CallingConv.td
4378      NestReg = X86::ECX;
4379
4380      // Check that ECX wasn't needed by an 'inreg' parameter.
4381      const FunctionType *FTy = Func->getFunctionType();
4382      const ParamAttrsList *Attrs = FTy->getParamAttrs();
4383
4384      if (Attrs && !Func->isVarArg()) {
4385        unsigned InRegCount = 0;
4386        unsigned Idx = 1;
4387
4388        for (FunctionType::param_iterator I = FTy->param_begin(),
4389             E = FTy->param_end(); I != E; ++I, ++Idx)
4390          if (Attrs->paramHasAttr(Idx, ParamAttr::InReg))
4391            // FIXME: should only count parameters that are lowered to integers.
4392            InRegCount += (getTargetData()->getTypeSizeInBits(*I) + 31) / 32;
4393
4394        if (InRegCount > 2) {
4395          cerr << "Nest register in use - reduce number of inreg parameters!\n";
4396          abort();
4397        }
4398      }
4399      break;
4400    }
4401    case CallingConv::X86_FastCall:
4402      // Pass 'nest' parameter in EAX.
4403      // Must be kept in sync with X86CallingConv.td
4404      NestReg = X86::EAX;
4405      break;
4406    }
4407
4408    const X86InstrInfo *TII =
4409      ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
4410
4411    SDOperand OutChains[4];
4412    SDOperand Addr, Disp;
4413
4414    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(10, MVT::i32));
4415    Disp = DAG.getNode(ISD::SUB, MVT::i32, FPtr, Addr);
4416
4417    unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
4418    unsigned char N86Reg  = ((X86RegisterInfo&)RegInfo).getX86RegNum(NestReg);
4419    OutChains[0] = DAG.getStore(Root, DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
4420                                Trmp, TrmpSV->getValue(), TrmpSV->getOffset());
4421
4422    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(1, MVT::i32));
4423    OutChains[1] = DAG.getStore(Root, Nest, Addr, TrmpSV->getValue(),
4424                                TrmpSV->getOffset() + 1, false, 1);
4425
4426    unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
4427    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(5, MVT::i32));
4428    OutChains[2] = DAG.getStore(Root, DAG.getConstant(JMP, MVT::i8), Addr,
4429                                TrmpSV->getValue() + 5, TrmpSV->getOffset());
4430
4431    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(6, MVT::i32));
4432    OutChains[3] = DAG.getStore(Root, Disp, Addr, TrmpSV->getValue(),
4433                                TrmpSV->getOffset() + 6, false, 1);
4434
4435    SDOperand Ops[] =
4436      { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 4) };
4437    return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(), Ops, 2);
4438  }
4439}
4440
4441/// LowerOperation - Provide custom lowering hooks for some operations.
4442///
4443SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4444  switch (Op.getOpcode()) {
4445  default: assert(0 && "Should not custom lower this!");
4446  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
4447  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
4448  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
4449  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
4450  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
4451  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
4452  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
4453  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
4454  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
4455  case ISD::SHL_PARTS:
4456  case ISD::SRA_PARTS:
4457  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
4458  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
4459  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
4460  case ISD::FABS:               return LowerFABS(Op, DAG);
4461  case ISD::FNEG:               return LowerFNEG(Op, DAG);
4462  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
4463  case ISD::SETCC:              return LowerSETCC(Op, DAG, DAG.getEntryNode());
4464  case ISD::SELECT:             return LowerSELECT(Op, DAG);
4465  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
4466  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
4467  case ISD::CALL:               return LowerCALL(Op, DAG);
4468  case ISD::RET:                return LowerRET(Op, DAG);
4469  case ISD::FORMAL_ARGUMENTS:   return LowerFORMAL_ARGUMENTS(Op, DAG);
4470  case ISD::MEMSET:             return LowerMEMSET(Op, DAG);
4471  case ISD::MEMCPY:             return LowerMEMCPY(Op, DAG);
4472  case ISD::READCYCLECOUNTER:   return LowerREADCYCLCECOUNTER(Op, DAG);
4473  case ISD::VASTART:            return LowerVASTART(Op, DAG);
4474  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
4475  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4476  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
4477  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
4478  case ISD::FRAME_TO_ARGS_OFFSET:
4479                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
4480  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
4481  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
4482  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
4483  }
4484  return SDOperand();
4485}
4486
4487const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
4488  switch (Opcode) {
4489  default: return NULL;
4490  case X86ISD::SHLD:               return "X86ISD::SHLD";
4491  case X86ISD::SHRD:               return "X86ISD::SHRD";
4492  case X86ISD::FAND:               return "X86ISD::FAND";
4493  case X86ISD::FOR:                return "X86ISD::FOR";
4494  case X86ISD::FXOR:               return "X86ISD::FXOR";
4495  case X86ISD::FSRL:               return "X86ISD::FSRL";
4496  case X86ISD::FILD:               return "X86ISD::FILD";
4497  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
4498  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
4499  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
4500  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
4501  case X86ISD::FLD:                return "X86ISD::FLD";
4502  case X86ISD::FST:                return "X86ISD::FST";
4503  case X86ISD::FP_GET_RESULT:      return "X86ISD::FP_GET_RESULT";
4504  case X86ISD::FP_SET_RESULT:      return "X86ISD::FP_SET_RESULT";
4505  case X86ISD::CALL:               return "X86ISD::CALL";
4506  case X86ISD::TAILCALL:           return "X86ISD::TAILCALL";
4507  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
4508  case X86ISD::CMP:                return "X86ISD::CMP";
4509  case X86ISD::COMI:               return "X86ISD::COMI";
4510  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
4511  case X86ISD::SETCC:              return "X86ISD::SETCC";
4512  case X86ISD::CMOV:               return "X86ISD::CMOV";
4513  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
4514  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
4515  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
4516  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
4517  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
4518  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
4519  case X86ISD::S2VEC:              return "X86ISD::S2VEC";
4520  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
4521  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
4522  case X86ISD::FMAX:               return "X86ISD::FMAX";
4523  case X86ISD::FMIN:               return "X86ISD::FMIN";
4524  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
4525  case X86ISD::FRCP:               return "X86ISD::FRCP";
4526  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
4527  case X86ISD::THREAD_POINTER:     return "X86ISD::THREAD_POINTER";
4528  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
4529  }
4530}
4531
4532// isLegalAddressingMode - Return true if the addressing mode represented
4533// by AM is legal for this target, for a load/store of the specified type.
4534bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
4535                                              const Type *Ty) const {
4536  // X86 supports extremely general addressing modes.
4537
4538  // X86 allows a sign-extended 32-bit immediate field as a displacement.
4539  if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
4540    return false;
4541
4542  if (AM.BaseGV) {
4543    // We can only fold this if we don't need an extra load.
4544    if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
4545      return false;
4546
4547    // X86-64 only supports addr of globals in small code model.
4548    if (Subtarget->is64Bit()) {
4549      if (getTargetMachine().getCodeModel() != CodeModel::Small)
4550        return false;
4551      // If lower 4G is not available, then we must use rip-relative addressing.
4552      if (AM.BaseOffs || AM.Scale > 1)
4553        return false;
4554    }
4555  }
4556
4557  switch (AM.Scale) {
4558  case 0:
4559  case 1:
4560  case 2:
4561  case 4:
4562  case 8:
4563    // These scales always work.
4564    break;
4565  case 3:
4566  case 5:
4567  case 9:
4568    // These scales are formed with basereg+scalereg.  Only accept if there is
4569    // no basereg yet.
4570    if (AM.HasBaseReg)
4571      return false;
4572    break;
4573  default:  // Other stuff never works.
4574    return false;
4575  }
4576
4577  return true;
4578}
4579
4580
4581/// isShuffleMaskLegal - Targets can use this to indicate that they only
4582/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
4583/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
4584/// are assumed to be legal.
4585bool
4586X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
4587  // Only do shuffles on 128-bit vector types for now.
4588  if (MVT::getSizeInBits(VT) == 64) return false;
4589  return (Mask.Val->getNumOperands() <= 4 ||
4590          isIdentityMask(Mask.Val) ||
4591          isIdentityMask(Mask.Val, true) ||
4592          isSplatMask(Mask.Val)  ||
4593          isPSHUFHW_PSHUFLWMask(Mask.Val) ||
4594          X86::isUNPCKLMask(Mask.Val) ||
4595          X86::isUNPCKHMask(Mask.Val) ||
4596          X86::isUNPCKL_v_undef_Mask(Mask.Val) ||
4597          X86::isUNPCKH_v_undef_Mask(Mask.Val));
4598}
4599
4600bool X86TargetLowering::isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
4601                                               MVT::ValueType EVT,
4602                                               SelectionDAG &DAG) const {
4603  unsigned NumElts = BVOps.size();
4604  // Only do shuffles on 128-bit vector types for now.
4605  if (MVT::getSizeInBits(EVT) * NumElts == 64) return false;
4606  if (NumElts == 2) return true;
4607  if (NumElts == 4) {
4608    return (isMOVLMask(&BVOps[0], 4)  ||
4609            isCommutedMOVL(&BVOps[0], 4, true) ||
4610            isSHUFPMask(&BVOps[0], 4) ||
4611            isCommutedSHUFP(&BVOps[0], 4));
4612  }
4613  return false;
4614}
4615
4616//===----------------------------------------------------------------------===//
4617//                           X86 Scheduler Hooks
4618//===----------------------------------------------------------------------===//
4619
4620MachineBasicBlock *
4621X86TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
4622                                           MachineBasicBlock *BB) {
4623  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4624  switch (MI->getOpcode()) {
4625  default: assert(false && "Unexpected instr type to insert");
4626  case X86::CMOV_FR32:
4627  case X86::CMOV_FR64:
4628  case X86::CMOV_V4F32:
4629  case X86::CMOV_V2F64:
4630  case X86::CMOV_V2I64: {
4631    // To "insert" a SELECT_CC instruction, we actually have to insert the
4632    // diamond control-flow pattern.  The incoming instruction knows the
4633    // destination vreg to set, the condition code register to branch on, the
4634    // true/false values to select between, and a branch opcode to use.
4635    const BasicBlock *LLVM_BB = BB->getBasicBlock();
4636    ilist<MachineBasicBlock>::iterator It = BB;
4637    ++It;
4638
4639    //  thisMBB:
4640    //  ...
4641    //   TrueVal = ...
4642    //   cmpTY ccX, r1, r2
4643    //   bCC copy1MBB
4644    //   fallthrough --> copy0MBB
4645    MachineBasicBlock *thisMBB = BB;
4646    MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
4647    MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
4648    unsigned Opc =
4649      X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
4650    BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
4651    MachineFunction *F = BB->getParent();
4652    F->getBasicBlockList().insert(It, copy0MBB);
4653    F->getBasicBlockList().insert(It, sinkMBB);
4654    // Update machine-CFG edges by first adding all successors of the current
4655    // block to the new block which will contain the Phi node for the select.
4656    for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
4657        e = BB->succ_end(); i != e; ++i)
4658      sinkMBB->addSuccessor(*i);
4659    // Next, remove all successors of the current block, and add the true
4660    // and fallthrough blocks as its successors.
4661    while(!BB->succ_empty())
4662      BB->removeSuccessor(BB->succ_begin());
4663    BB->addSuccessor(copy0MBB);
4664    BB->addSuccessor(sinkMBB);
4665
4666    //  copy0MBB:
4667    //   %FalseValue = ...
4668    //   # fallthrough to sinkMBB
4669    BB = copy0MBB;
4670
4671    // Update machine-CFG edges
4672    BB->addSuccessor(sinkMBB);
4673
4674    //  sinkMBB:
4675    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4676    //  ...
4677    BB = sinkMBB;
4678    BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
4679      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
4680      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4681
4682    delete MI;   // The pseudo instruction is gone now.
4683    return BB;
4684  }
4685
4686  case X86::FP32_TO_INT16_IN_MEM:
4687  case X86::FP32_TO_INT32_IN_MEM:
4688  case X86::FP32_TO_INT64_IN_MEM:
4689  case X86::FP64_TO_INT16_IN_MEM:
4690  case X86::FP64_TO_INT32_IN_MEM:
4691  case X86::FP64_TO_INT64_IN_MEM:
4692  case X86::FP80_TO_INT16_IN_MEM:
4693  case X86::FP80_TO_INT32_IN_MEM:
4694  case X86::FP80_TO_INT64_IN_MEM: {
4695    // Change the floating point control register to use "round towards zero"
4696    // mode when truncating to an integer value.
4697    MachineFunction *F = BB->getParent();
4698    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
4699    addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
4700
4701    // Load the old value of the high byte of the control word...
4702    unsigned OldCW =
4703      F->getSSARegMap()->createVirtualRegister(X86::GR16RegisterClass);
4704    addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);
4705
4706    // Set the high part to be round to zero...
4707    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
4708      .addImm(0xC7F);
4709
4710    // Reload the modified control word now...
4711    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
4712
4713    // Restore the memory image of control word to original value
4714    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
4715      .addReg(OldCW);
4716
4717    // Get the X86 opcode to use.
4718    unsigned Opc;
4719    switch (MI->getOpcode()) {
4720    default: assert(0 && "illegal opcode!");
4721    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
4722    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
4723    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
4724    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
4725    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
4726    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
4727    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
4728    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
4729    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
4730    }
4731
4732    X86AddressMode AM;
4733    MachineOperand &Op = MI->getOperand(0);
4734    if (Op.isRegister()) {
4735      AM.BaseType = X86AddressMode::RegBase;
4736      AM.Base.Reg = Op.getReg();
4737    } else {
4738      AM.BaseType = X86AddressMode::FrameIndexBase;
4739      AM.Base.FrameIndex = Op.getFrameIndex();
4740    }
4741    Op = MI->getOperand(1);
4742    if (Op.isImmediate())
4743      AM.Scale = Op.getImm();
4744    Op = MI->getOperand(2);
4745    if (Op.isImmediate())
4746      AM.IndexReg = Op.getImm();
4747    Op = MI->getOperand(3);
4748    if (Op.isGlobalAddress()) {
4749      AM.GV = Op.getGlobal();
4750    } else {
4751      AM.Disp = Op.getImm();
4752    }
4753    addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
4754                      .addReg(MI->getOperand(4).getReg());
4755
4756    // Reload the original control word now.
4757    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
4758
4759    delete MI;   // The pseudo instruction is gone now.
4760    return BB;
4761  }
4762  }
4763}
4764
4765//===----------------------------------------------------------------------===//
4766//                           X86 Optimization Hooks
4767//===----------------------------------------------------------------------===//
4768
4769void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
4770                                                       uint64_t Mask,
4771                                                       uint64_t &KnownZero,
4772                                                       uint64_t &KnownOne,
4773                                                       const SelectionDAG &DAG,
4774                                                       unsigned Depth) const {
4775  unsigned Opc = Op.getOpcode();
4776  assert((Opc >= ISD::BUILTIN_OP_END ||
4777          Opc == ISD::INTRINSIC_WO_CHAIN ||
4778          Opc == ISD::INTRINSIC_W_CHAIN ||
4779          Opc == ISD::INTRINSIC_VOID) &&
4780         "Should use MaskedValueIsZero if you don't know whether Op"
4781         " is a target node!");
4782
4783  KnownZero = KnownOne = 0;   // Don't know anything.
4784  switch (Opc) {
4785  default: break;
4786  case X86ISD::SETCC:
4787    KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
4788    break;
4789  }
4790}
4791
4792/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4793/// element of the result of the vector shuffle.
4794static SDOperand getShuffleScalarElt(SDNode *N, unsigned i, SelectionDAG &DAG) {
4795  MVT::ValueType VT = N->getValueType(0);
4796  SDOperand PermMask = N->getOperand(2);
4797  unsigned NumElems = PermMask.getNumOperands();
4798  SDOperand V = (i < NumElems) ? N->getOperand(0) : N->getOperand(1);
4799  i %= NumElems;
4800  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4801    return (i == 0)
4802      ? V.getOperand(0) : DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
4803  } else if (V.getOpcode() == ISD::VECTOR_SHUFFLE) {
4804    SDOperand Idx = PermMask.getOperand(i);
4805    if (Idx.getOpcode() == ISD::UNDEF)
4806      return DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
4807    return getShuffleScalarElt(V.Val,cast<ConstantSDNode>(Idx)->getValue(),DAG);
4808  }
4809  return SDOperand();
4810}
4811
4812/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
4813/// node is a GlobalAddress + an offset.
4814static bool isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) {
4815  unsigned Opc = N->getOpcode();
4816  if (Opc == X86ISD::Wrapper) {
4817    if (dyn_cast<GlobalAddressSDNode>(N->getOperand(0))) {
4818      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
4819      return true;
4820    }
4821  } else if (Opc == ISD::ADD) {
4822    SDOperand N1 = N->getOperand(0);
4823    SDOperand N2 = N->getOperand(1);
4824    if (isGAPlusOffset(N1.Val, GA, Offset)) {
4825      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
4826      if (V) {
4827        Offset += V->getSignExtended();
4828        return true;
4829      }
4830    } else if (isGAPlusOffset(N2.Val, GA, Offset)) {
4831      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
4832      if (V) {
4833        Offset += V->getSignExtended();
4834        return true;
4835      }
4836    }
4837  }
4838  return false;
4839}
4840
4841/// isConsecutiveLoad - Returns true if N is loading from an address of Base
4842/// + Dist * Size.
4843static bool isConsecutiveLoad(SDNode *N, SDNode *Base, int Dist, int Size,
4844                              MachineFrameInfo *MFI) {
4845  if (N->getOperand(0).Val != Base->getOperand(0).Val)
4846    return false;
4847
4848  SDOperand Loc = N->getOperand(1);
4849  SDOperand BaseLoc = Base->getOperand(1);
4850  if (Loc.getOpcode() == ISD::FrameIndex) {
4851    if (BaseLoc.getOpcode() != ISD::FrameIndex)
4852      return false;
4853    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
4854    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
4855    int FS  = MFI->getObjectSize(FI);
4856    int BFS = MFI->getObjectSize(BFI);
4857    if (FS != BFS || FS != Size) return false;
4858    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Size);
4859  } else {
4860    GlobalValue *GV1 = NULL;
4861    GlobalValue *GV2 = NULL;
4862    int64_t Offset1 = 0;
4863    int64_t Offset2 = 0;
4864    bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1);
4865    bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2);
4866    if (isGA1 && isGA2 && GV1 == GV2)
4867      return Offset1 == (Offset2 + Dist*Size);
4868  }
4869
4870  return false;
4871}
4872
4873static bool isBaseAlignment16(SDNode *Base, MachineFrameInfo *MFI,
4874                              const X86Subtarget *Subtarget) {
4875  GlobalValue *GV;
4876  int64_t Offset;
4877  if (isGAPlusOffset(Base, GV, Offset))
4878    return (GV->getAlignment() >= 16 && (Offset % 16) == 0);
4879  else {
4880    assert(Base->getOpcode() == ISD::FrameIndex && "Unexpected base node!");
4881    int BFI = cast<FrameIndexSDNode>(Base)->getIndex();
4882    if (BFI < 0)
4883      // Fixed objects do not specify alignment, however the offsets are known.
4884      return ((Subtarget->getStackAlignment() % 16) == 0 &&
4885              (MFI->getObjectOffset(BFI) % 16) == 0);
4886    else
4887      return MFI->getObjectAlignment(BFI) >= 16;
4888  }
4889  return false;
4890}
4891
4892
4893/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
4894/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
4895/// if the load addresses are consecutive, non-overlapping, and in the right
4896/// order.
4897static SDOperand PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
4898                                       const X86Subtarget *Subtarget) {
4899  MachineFunction &MF = DAG.getMachineFunction();
4900  MachineFrameInfo *MFI = MF.getFrameInfo();
4901  MVT::ValueType VT = N->getValueType(0);
4902  MVT::ValueType EVT = MVT::getVectorElementType(VT);
4903  SDOperand PermMask = N->getOperand(2);
4904  int NumElems = (int)PermMask.getNumOperands();
4905  SDNode *Base = NULL;
4906  for (int i = 0; i < NumElems; ++i) {
4907    SDOperand Idx = PermMask.getOperand(i);
4908    if (Idx.getOpcode() == ISD::UNDEF) {
4909      if (!Base) return SDOperand();
4910    } else {
4911      SDOperand Arg =
4912        getShuffleScalarElt(N, cast<ConstantSDNode>(Idx)->getValue(), DAG);
4913      if (!Arg.Val || !ISD::isNON_EXTLoad(Arg.Val))
4914        return SDOperand();
4915      if (!Base)
4916        Base = Arg.Val;
4917      else if (!isConsecutiveLoad(Arg.Val, Base,
4918                                  i, MVT::getSizeInBits(EVT)/8,MFI))
4919        return SDOperand();
4920    }
4921  }
4922
4923  bool isAlign16 = isBaseAlignment16(Base->getOperand(1).Val, MFI, Subtarget);
4924  LoadSDNode *LD = cast<LoadSDNode>(Base);
4925  if (isAlign16) {
4926    return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
4927                       LD->getSrcValueOffset(), LD->isVolatile());
4928  } else {
4929    return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
4930                       LD->getSrcValueOffset(), LD->isVolatile(),
4931                       LD->getAlignment());
4932  }
4933}
4934
4935/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
4936static SDOperand PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
4937                                      const X86Subtarget *Subtarget) {
4938  SDOperand Cond = N->getOperand(0);
4939
4940  // If we have SSE[12] support, try to form min/max nodes.
4941  if (Subtarget->hasSSE2() &&
4942      (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
4943    if (Cond.getOpcode() == ISD::SETCC) {
4944      // Get the LHS/RHS of the select.
4945      SDOperand LHS = N->getOperand(1);
4946      SDOperand RHS = N->getOperand(2);
4947      ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
4948
4949      unsigned Opcode = 0;
4950      if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
4951        switch (CC) {
4952        default: break;
4953        case ISD::SETOLE: // (X <= Y) ? X : Y -> min
4954        case ISD::SETULE:
4955        case ISD::SETLE:
4956          if (!UnsafeFPMath) break;
4957          // FALL THROUGH.
4958        case ISD::SETOLT:  // (X olt/lt Y) ? X : Y -> min
4959        case ISD::SETLT:
4960          Opcode = X86ISD::FMIN;
4961          break;
4962
4963        case ISD::SETOGT: // (X > Y) ? X : Y -> max
4964        case ISD::SETUGT:
4965        case ISD::SETGT:
4966          if (!UnsafeFPMath) break;
4967          // FALL THROUGH.
4968        case ISD::SETUGE:  // (X uge/ge Y) ? X : Y -> max
4969        case ISD::SETGE:
4970          Opcode = X86ISD::FMAX;
4971          break;
4972        }
4973      } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
4974        switch (CC) {
4975        default: break;
4976        case ISD::SETOGT: // (X > Y) ? Y : X -> min
4977        case ISD::SETUGT:
4978        case ISD::SETGT:
4979          if (!UnsafeFPMath) break;
4980          // FALL THROUGH.
4981        case ISD::SETUGE:  // (X uge/ge Y) ? Y : X -> min
4982        case ISD::SETGE:
4983          Opcode = X86ISD::FMIN;
4984          break;
4985
4986        case ISD::SETOLE:   // (X <= Y) ? Y : X -> max
4987        case ISD::SETULE:
4988        case ISD::SETLE:
4989          if (!UnsafeFPMath) break;
4990          // FALL THROUGH.
4991        case ISD::SETOLT:   // (X olt/lt Y) ? Y : X -> max
4992        case ISD::SETLT:
4993          Opcode = X86ISD::FMAX;
4994          break;
4995        }
4996      }
4997
4998      if (Opcode)
4999        return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS);
5000    }
5001
5002  }
5003
5004  return SDOperand();
5005}
5006
5007
5008SDOperand X86TargetLowering::PerformDAGCombine(SDNode *N,
5009                                               DAGCombinerInfo &DCI) const {
5010  SelectionDAG &DAG = DCI.DAG;
5011  switch (N->getOpcode()) {
5012  default: break;
5013  case ISD::VECTOR_SHUFFLE:
5014    return PerformShuffleCombine(N, DAG, Subtarget);
5015  case ISD::SELECT:
5016    return PerformSELECTCombine(N, DAG, Subtarget);
5017  }
5018
5019  return SDOperand();
5020}
5021
5022//===----------------------------------------------------------------------===//
5023//                           X86 Inline Assembly Support
5024//===----------------------------------------------------------------------===//
5025
5026/// getConstraintType - Given a constraint letter, return the type of
5027/// constraint it is for this target.
5028X86TargetLowering::ConstraintType
5029X86TargetLowering::getConstraintType(const std::string &Constraint) const {
5030  if (Constraint.size() == 1) {
5031    switch (Constraint[0]) {
5032    case 'A':
5033    case 'r':
5034    case 'R':
5035    case 'l':
5036    case 'q':
5037    case 'Q':
5038    case 'x':
5039    case 'Y':
5040      return C_RegisterClass;
5041    default:
5042      break;
5043    }
5044  }
5045  return TargetLowering::getConstraintType(Constraint);
5046}
5047
5048/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5049/// vector.  If it is invalid, don't add anything to Ops.
5050void X86TargetLowering::LowerAsmOperandForConstraint(SDOperand Op,
5051                                                     char Constraint,
5052                                                     std::vector<SDOperand>&Ops,
5053                                                     SelectionDAG &DAG) {
5054  SDOperand Result(0, 0);
5055
5056  switch (Constraint) {
5057  default: break;
5058  case 'I':
5059    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
5060      if (C->getValue() <= 31) {
5061        Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
5062        break;
5063      }
5064    }
5065    return;
5066  case 'N':
5067    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
5068      if (C->getValue() <= 255) {
5069        Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
5070        break;
5071      }
5072    }
5073    return;
5074  case 'i': {
5075    // Literal immediates are always ok.
5076    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
5077      Result = DAG.getTargetConstant(CST->getValue(), Op.getValueType());
5078      break;
5079    }
5080
5081    // If we are in non-pic codegen mode, we allow the address of a global (with
5082    // an optional displacement) to be used with 'i'.
5083    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
5084    int64_t Offset = 0;
5085
5086    // Match either (GA) or (GA+C)
5087    if (GA) {
5088      Offset = GA->getOffset();
5089    } else if (Op.getOpcode() == ISD::ADD) {
5090      ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5091      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
5092      if (C && GA) {
5093        Offset = GA->getOffset()+C->getValue();
5094      } else {
5095        C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5096        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
5097        if (C && GA)
5098          Offset = GA->getOffset()+C->getValue();
5099        else
5100          C = 0, GA = 0;
5101      }
5102    }
5103
5104    if (GA) {
5105      // If addressing this global requires a load (e.g. in PIC mode), we can't
5106      // match.
5107      if (Subtarget->GVRequiresExtraLoad(GA->getGlobal(), getTargetMachine(),
5108                                         false))
5109        return;
5110
5111      Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
5112                                      Offset);
5113      Result = Op;
5114      break;
5115    }
5116
5117    // Otherwise, not valid for this mode.
5118    return;
5119  }
5120  }
5121
5122  if (Result.Val) {
5123    Ops.push_back(Result);
5124    return;
5125  }
5126  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
5127}
5128
5129std::vector<unsigned> X86TargetLowering::
5130getRegClassForInlineAsmConstraint(const std::string &Constraint,
5131                                  MVT::ValueType VT) const {
5132  if (Constraint.size() == 1) {
5133    // FIXME: not handling fp-stack yet!
5134    switch (Constraint[0]) {      // GCC X86 Constraint Letters
5135    default: break;  // Unknown constraint letter
5136    case 'A':   // EAX/EDX
5137      if (VT == MVT::i32 || VT == MVT::i64)
5138        return make_vector<unsigned>(X86::EAX, X86::EDX, 0);
5139      break;
5140    case 'q':   // Q_REGS (GENERAL_REGS in 64-bit mode)
5141    case 'Q':   // Q_REGS
5142      if (VT == MVT::i32)
5143        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
5144      else if (VT == MVT::i16)
5145        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
5146      else if (VT == MVT::i8)
5147        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
5148        break;
5149    }
5150  }
5151
5152  return std::vector<unsigned>();
5153}
5154
5155std::pair<unsigned, const TargetRegisterClass*>
5156X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5157                                                MVT::ValueType VT) const {
5158  // First, see if this is a constraint that directly corresponds to an LLVM
5159  // register class.
5160  if (Constraint.size() == 1) {
5161    // GCC Constraint Letters
5162    switch (Constraint[0]) {
5163    default: break;
5164    case 'r':   // GENERAL_REGS
5165    case 'R':   // LEGACY_REGS
5166    case 'l':   // INDEX_REGS
5167      if (VT == MVT::i64 && Subtarget->is64Bit())
5168        return std::make_pair(0U, X86::GR64RegisterClass);
5169      if (VT == MVT::i32)
5170        return std::make_pair(0U, X86::GR32RegisterClass);
5171      else if (VT == MVT::i16)
5172        return std::make_pair(0U, X86::GR16RegisterClass);
5173      else if (VT == MVT::i8)
5174        return std::make_pair(0U, X86::GR8RegisterClass);
5175      break;
5176    case 'y':   // MMX_REGS if MMX allowed.
5177      if (!Subtarget->hasMMX()) break;
5178      return std::make_pair(0U, X86::VR64RegisterClass);
5179      break;
5180    case 'Y':   // SSE_REGS if SSE2 allowed
5181      if (!Subtarget->hasSSE2()) break;
5182      // FALL THROUGH.
5183    case 'x':   // SSE_REGS if SSE1 allowed
5184      if (!Subtarget->hasSSE1()) break;
5185
5186      switch (VT) {
5187      default: break;
5188      // Scalar SSE types.
5189      case MVT::f32:
5190      case MVT::i32:
5191        return std::make_pair(0U, X86::FR32RegisterClass);
5192      case MVT::f64:
5193      case MVT::i64:
5194        return std::make_pair(0U, X86::FR64RegisterClass);
5195      // Vector types.
5196      case MVT::v16i8:
5197      case MVT::v8i16:
5198      case MVT::v4i32:
5199      case MVT::v2i64:
5200      case MVT::v4f32:
5201      case MVT::v2f64:
5202        return std::make_pair(0U, X86::VR128RegisterClass);
5203      }
5204      break;
5205    }
5206  }
5207
5208  // Use the default implementation in TargetLowering to convert the register
5209  // constraint into a member of a register class.
5210  std::pair<unsigned, const TargetRegisterClass*> Res;
5211  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5212
5213  // Not found as a standard register?
5214  if (Res.second == 0) {
5215    // GCC calls "st(0)" just plain "st".
5216    if (StringsEqualNoCase("{st}", Constraint)) {
5217      Res.first = X86::ST0;
5218      Res.second = X86::RSTRegisterClass;
5219    }
5220
5221    return Res;
5222  }
5223
5224  // Otherwise, check to see if this is a register class of the wrong value
5225  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
5226  // turn into {ax},{dx}.
5227  if (Res.second->hasType(VT))
5228    return Res;   // Correct type already, nothing to do.
5229
5230  // All of the single-register GCC register classes map their values onto
5231  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
5232  // really want an 8-bit or 32-bit register, map to the appropriate register
5233  // class and return the appropriate register.
5234  if (Res.second != X86::GR16RegisterClass)
5235    return Res;
5236
5237  if (VT == MVT::i8) {
5238    unsigned DestReg = 0;
5239    switch (Res.first) {
5240    default: break;
5241    case X86::AX: DestReg = X86::AL; break;
5242    case X86::DX: DestReg = X86::DL; break;
5243    case X86::CX: DestReg = X86::CL; break;
5244    case X86::BX: DestReg = X86::BL; break;
5245    }
5246    if (DestReg) {
5247      Res.first = DestReg;
5248      Res.second = Res.second = X86::GR8RegisterClass;
5249    }
5250  } else if (VT == MVT::i32) {
5251    unsigned DestReg = 0;
5252    switch (Res.first) {
5253    default: break;
5254    case X86::AX: DestReg = X86::EAX; break;
5255    case X86::DX: DestReg = X86::EDX; break;
5256    case X86::CX: DestReg = X86::ECX; break;
5257    case X86::BX: DestReg = X86::EBX; break;
5258    case X86::SI: DestReg = X86::ESI; break;
5259    case X86::DI: DestReg = X86::EDI; break;
5260    case X86::BP: DestReg = X86::EBP; break;
5261    case X86::SP: DestReg = X86::ESP; break;
5262    }
5263    if (DestReg) {
5264      Res.first = DestReg;
5265      Res.second = Res.second = X86::GR32RegisterClass;
5266    }
5267  } else if (VT == MVT::i64) {
5268    unsigned DestReg = 0;
5269    switch (Res.first) {
5270    default: break;
5271    case X86::AX: DestReg = X86::RAX; break;
5272    case X86::DX: DestReg = X86::RDX; break;
5273    case X86::CX: DestReg = X86::RCX; break;
5274    case X86::BX: DestReg = X86::RBX; break;
5275    case X86::SI: DestReg = X86::RSI; break;
5276    case X86::DI: DestReg = X86::RDI; break;
5277    case X86::BP: DestReg = X86::RBP; break;
5278    case X86::SP: DestReg = X86::RSP; break;
5279    }
5280    if (DestReg) {
5281      Res.first = DestReg;
5282      Res.second = Res.second = X86::GR64RegisterClass;
5283    }
5284  }
5285
5286  return Res;
5287}
5288