X86ISelLowering.cpp revision 138a5c66b9ccaded2ee5d63b96f69349c098e49a
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/MC/MCAsmInfo.h"
39#include "llvm/MC/MCContext.h"
40#include "llvm/MC/MCExpr.h"
41#include "llvm/MC/MCSymbol.h"
42#include "llvm/ADT/BitVector.h"
43#include "llvm/ADT/SmallSet.h"
44#include "llvm/ADT/Statistic.h"
45#include "llvm/ADT/StringExtras.h"
46#include "llvm/ADT/VectorExtras.h"
47#include "llvm/Support/CallSite.h"
48#include "llvm/Support/Debug.h"
49#include "llvm/Support/Dwarf.h"
50#include "llvm/Support/ErrorHandling.h"
51#include "llvm/Support/MathExtras.h"
52#include "llvm/Support/raw_ostream.h"
53#include "llvm/Target/TargetOptions.h"
54using namespace llvm;
55using namespace dwarf;
56
57STATISTIC(NumTailCalls, "Number of tail calls");
58
59// Forward declarations.
60static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
61                       SDValue V2);
62
63static SDValue Insert128BitVector(SDValue Result,
64                                  SDValue Vec,
65                                  SDValue Idx,
66                                  SelectionDAG &DAG,
67                                  DebugLoc dl);
68
69static SDValue Extract128BitVector(SDValue Vec,
70                                   SDValue Idx,
71                                   SelectionDAG &DAG,
72                                   DebugLoc dl);
73
74/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
75/// sets things up to match to an AVX VEXTRACTF128 instruction or a
76/// simple subregister reference.  Idx is an index in the 128 bits we
77/// want.  It need not be aligned to a 128-bit bounday.  That makes
78/// lowering EXTRACT_VECTOR_ELT operations easier.
79static SDValue Extract128BitVector(SDValue Vec,
80                                   SDValue Idx,
81                                   SelectionDAG &DAG,
82                                   DebugLoc dl) {
83  EVT VT = Vec.getValueType();
84  assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
85  EVT ElVT = VT.getVectorElementType();
86  int Factor = VT.getSizeInBits()/128;
87  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
88                                  VT.getVectorNumElements()/Factor);
89
90  // Extract from UNDEF is UNDEF.
91  if (Vec.getOpcode() == ISD::UNDEF)
92    return DAG.getNode(ISD::UNDEF, dl, ResultVT);
93
94  if (isa<ConstantSDNode>(Idx)) {
95    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
96
97    // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
98    // we can match to VEXTRACTF128.
99    unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
100
101    // This is the index of the first element of the 128-bit chunk
102    // we want.
103    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
104                                 * ElemsPerChunk);
105
106    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
107    SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
108                                 VecIdx);
109
110    return Result;
111  }
112
113  return SDValue();
114}
115
116/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
117/// sets things up to match to an AVX VINSERTF128 instruction or a
118/// simple superregister reference.  Idx is an index in the 128 bits
119/// we want.  It need not be aligned to a 128-bit bounday.  That makes
120/// lowering INSERT_VECTOR_ELT operations easier.
121static SDValue Insert128BitVector(SDValue Result,
122                                  SDValue Vec,
123                                  SDValue Idx,
124                                  SelectionDAG &DAG,
125                                  DebugLoc dl) {
126  if (isa<ConstantSDNode>(Idx)) {
127    EVT VT = Vec.getValueType();
128    assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
129
130    EVT ElVT = VT.getVectorElementType();
131    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
132    EVT ResultVT = Result.getValueType();
133
134    // Insert the relevant 128 bits.
135    unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
136
137    // This is the index of the first element of the 128-bit chunk
138    // we want.
139    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
140                                 * ElemsPerChunk);
141
142    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
143    Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
144                         VecIdx);
145    return Result;
146  }
147
148  return SDValue();
149}
150
151static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
152  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
153  bool is64Bit = Subtarget->is64Bit();
154
155  if (Subtarget->isTargetEnvMacho()) {
156    if (is64Bit)
157      return new X8664_MachoTargetObjectFile();
158    return new TargetLoweringObjectFileMachO();
159  }
160
161  if (Subtarget->isTargetELF())
162    return new TargetLoweringObjectFileELF();
163  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
164    return new TargetLoweringObjectFileCOFF();
165  llvm_unreachable("unknown subtarget type");
166}
167
168X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
169  : TargetLowering(TM, createTLOF(TM)) {
170  Subtarget = &TM.getSubtarget<X86Subtarget>();
171  X86ScalarSSEf64 = Subtarget->hasXMMInt();
172  X86ScalarSSEf32 = Subtarget->hasXMM();
173  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
174
175  RegInfo = TM.getRegisterInfo();
176  TD = getTargetData();
177
178  // Set up the TargetLowering object.
179  static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
180
181  // X86 is weird, it always uses i8 for shift amounts and setcc results.
182  setBooleanContents(ZeroOrOneBooleanContent);
183  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
184  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
185
186  // For 64-bit since we have so many registers use the ILP scheduler, for
187  // 32-bit code use the register pressure specific scheduling.
188  if (Subtarget->is64Bit())
189    setSchedulingPreference(Sched::ILP);
190  else
191    setSchedulingPreference(Sched::RegPressure);
192  setStackPointerRegisterToSaveRestore(X86StackPtr);
193
194  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
195    // Setup Windows compiler runtime calls.
196    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
197    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
198    setLibcallName(RTLIB::SREM_I64, "_allrem");
199    setLibcallName(RTLIB::UREM_I64, "_aullrem");
200    setLibcallName(RTLIB::MUL_I64, "_allmul");
201    setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2");
202    setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2");
203    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
204    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
205    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
206    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
207    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
208    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C);
209    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C);
210  }
211
212  if (Subtarget->isTargetDarwin()) {
213    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
214    setUseUnderscoreSetJmp(false);
215    setUseUnderscoreLongJmp(false);
216  } else if (Subtarget->isTargetMingw()) {
217    // MS runtime is weird: it exports _setjmp, but longjmp!
218    setUseUnderscoreSetJmp(true);
219    setUseUnderscoreLongJmp(false);
220  } else {
221    setUseUnderscoreSetJmp(true);
222    setUseUnderscoreLongJmp(true);
223  }
224
225  // Set up the register classes.
226  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
227  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
228  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
229  if (Subtarget->is64Bit())
230    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
231
232  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
233
234  // We don't accept any truncstore of integer registers.
235  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
236  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
237  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
238  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
239  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
240  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
241
242  // SETOEQ and SETUNE require checking two conditions.
243  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
244  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
245  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
246  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
247  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
248  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
249
250  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
251  // operation.
252  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
253  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
254  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
255
256  if (Subtarget->is64Bit()) {
257    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
258    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
259  } else if (!UseSoftFloat) {
260    // We have an algorithm for SSE2->double, and we turn this into a
261    // 64-bit FILD followed by conditional FADD for other targets.
262    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
263    // We have an algorithm for SSE2, and we turn this into a 64-bit
264    // FILD for other targets.
265    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
266  }
267
268  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
269  // this operation.
270  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
271  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
272
273  if (!UseSoftFloat) {
274    // SSE has no i16 to fp conversion, only i32
275    if (X86ScalarSSEf32) {
276      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
277      // f32 and f64 cases are Legal, f80 case is not
278      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
279    } else {
280      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
281      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
282    }
283  } else {
284    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
285    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
286  }
287
288  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
289  // are Legal, f80 is custom lowered.
290  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
291  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
292
293  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
294  // this operation.
295  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
296  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
297
298  if (X86ScalarSSEf32) {
299    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
300    // f32 and f64 cases are Legal, f80 case is not
301    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
302  } else {
303    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
304    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
305  }
306
307  // Handle FP_TO_UINT by promoting the destination to a larger signed
308  // conversion.
309  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
310  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
311  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
312
313  if (Subtarget->is64Bit()) {
314    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
315    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
316  } else if (!UseSoftFloat) {
317    // Since AVX is a superset of SSE3, only check for SSE here.
318    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
319      // Expand FP_TO_UINT into a select.
320      // FIXME: We would like to use a Custom expander here eventually to do
321      // the optimal thing for SSE vs. the default expansion in the legalizer.
322      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
323    else
324      // With SSE3 we can use fisttpll to convert to a signed i64; without
325      // SSE, we're stuck with a fistpll.
326      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
327  }
328
329  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
330  if (!X86ScalarSSEf64) {
331    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
332    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
333    if (Subtarget->is64Bit()) {
334      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
335      // Without SSE, i64->f64 goes through memory.
336      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
337    }
338  }
339
340  // Scalar integer divide and remainder are lowered to use operations that
341  // produce two results, to match the available instructions. This exposes
342  // the two-result form to trivial CSE, which is able to combine x/y and x%y
343  // into a single instruction.
344  //
345  // Scalar integer multiply-high is also lowered to use two-result
346  // operations, to match the available instructions. However, plain multiply
347  // (low) operations are left as Legal, as there are single-result
348  // instructions for this in x86. Using the two-result multiply instructions
349  // when both high and low results are needed must be arranged by dagcombine.
350  for (unsigned i = 0, e = 4; i != e; ++i) {
351    MVT VT = IntVTs[i];
352    setOperationAction(ISD::MULHS, VT, Expand);
353    setOperationAction(ISD::MULHU, VT, Expand);
354    setOperationAction(ISD::SDIV, VT, Expand);
355    setOperationAction(ISD::UDIV, VT, Expand);
356    setOperationAction(ISD::SREM, VT, Expand);
357    setOperationAction(ISD::UREM, VT, Expand);
358
359    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
360    setOperationAction(ISD::ADDC, VT, Custom);
361    setOperationAction(ISD::ADDE, VT, Custom);
362    setOperationAction(ISD::SUBC, VT, Custom);
363    setOperationAction(ISD::SUBE, VT, Custom);
364  }
365
366  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
367  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
368  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
369  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
370  if (Subtarget->is64Bit())
371    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
372  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
373  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
374  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
375  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
376  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
377  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
378  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
379  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
380
381  if (Subtarget->hasBMI()) {
382    setOperationAction(ISD::CTTZ           , MVT::i8   , Promote);
383  } else {
384    setOperationAction(ISD::CTTZ           , MVT::i8   , Custom);
385    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
386    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
387    if (Subtarget->is64Bit())
388      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
389  }
390
391  if (Subtarget->hasLZCNT()) {
392    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
393  } else {
394    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
395    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
396    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
397    if (Subtarget->is64Bit())
398      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
399  }
400
401  if (Subtarget->hasPOPCNT()) {
402    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
403  } else {
404    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
405    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
406    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
407    if (Subtarget->is64Bit())
408      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
409  }
410
411  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
412  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
413
414  // These should be promoted to a larger select which is supported.
415  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
416  // X86 wants to expand cmov itself.
417  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
418  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
419  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
420  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
421  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
422  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
423  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
424  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
425  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
426  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
427  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
428  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
429  if (Subtarget->is64Bit()) {
430    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
431    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
432  }
433  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
434
435  // Darwin ABI issue.
436  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
437  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
438  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
439  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
440  if (Subtarget->is64Bit())
441    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
442  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
443  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
444  if (Subtarget->is64Bit()) {
445    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
446    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
447    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
448    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
449    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
450  }
451  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
452  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
453  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
454  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
455  if (Subtarget->is64Bit()) {
456    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
457    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
458    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
459  }
460
461  if (Subtarget->hasXMM())
462    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
463
464  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
465  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
466
467  // On X86 and X86-64, atomic operations are lowered to locked instructions.
468  // Locked instructions, in turn, have implicit fence semantics (all memory
469  // operations are flushed before issuing the locked instruction, and they
470  // are not buffered), so we can fold away the common pattern of
471  // fence-atomic-fence.
472  setShouldFoldAtomicFences(true);
473
474  // Expand certain atomics
475  for (unsigned i = 0, e = 4; i != e; ++i) {
476    MVT VT = IntVTs[i];
477    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
478    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
479    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
480  }
481
482  if (!Subtarget->is64Bit()) {
483    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
484    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
485    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
486    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
487    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
488    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
489    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
490    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
491  }
492
493  if (Subtarget->hasCmpxchg16b()) {
494    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
495  }
496
497  // FIXME - use subtarget debug flags
498  if (!Subtarget->isTargetDarwin() &&
499      !Subtarget->isTargetELF() &&
500      !Subtarget->isTargetCygMing()) {
501    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
502  }
503
504  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
505  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
506  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
507  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
508  if (Subtarget->is64Bit()) {
509    setExceptionPointerRegister(X86::RAX);
510    setExceptionSelectorRegister(X86::RDX);
511  } else {
512    setExceptionPointerRegister(X86::EAX);
513    setExceptionSelectorRegister(X86::EDX);
514  }
515  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
516  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
517
518  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
519  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
520
521  setOperationAction(ISD::TRAP, MVT::Other, Legal);
522
523  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
524  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
525  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
526  if (Subtarget->is64Bit()) {
527    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
528    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
529  } else {
530    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
531    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
532  }
533
534  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
535  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
536
537  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
538    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
539                       MVT::i64 : MVT::i32, Custom);
540  else if (EnableSegmentedStacks)
541    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
542                       MVT::i64 : MVT::i32, Custom);
543  else
544    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
545                       MVT::i64 : MVT::i32, Expand);
546
547  if (!UseSoftFloat && X86ScalarSSEf64) {
548    // f32 and f64 use SSE.
549    // Set up the FP register classes.
550    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
551    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
552
553    // Use ANDPD to simulate FABS.
554    setOperationAction(ISD::FABS , MVT::f64, Custom);
555    setOperationAction(ISD::FABS , MVT::f32, Custom);
556
557    // Use XORP to simulate FNEG.
558    setOperationAction(ISD::FNEG , MVT::f64, Custom);
559    setOperationAction(ISD::FNEG , MVT::f32, Custom);
560
561    // Use ANDPD and ORPD to simulate FCOPYSIGN.
562    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
563    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
564
565    // Lower this to FGETSIGNx86 plus an AND.
566    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
567    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
568
569    // We don't support sin/cos/fmod
570    setOperationAction(ISD::FSIN , MVT::f64, Expand);
571    setOperationAction(ISD::FCOS , MVT::f64, Expand);
572    setOperationAction(ISD::FSIN , MVT::f32, Expand);
573    setOperationAction(ISD::FCOS , MVT::f32, Expand);
574
575    // Expand FP immediates into loads from the stack, except for the special
576    // cases we handle.
577    addLegalFPImmediate(APFloat(+0.0)); // xorpd
578    addLegalFPImmediate(APFloat(+0.0f)); // xorps
579  } else if (!UseSoftFloat && X86ScalarSSEf32) {
580    // Use SSE for f32, x87 for f64.
581    // Set up the FP register classes.
582    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
583    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
584
585    // Use ANDPS to simulate FABS.
586    setOperationAction(ISD::FABS , MVT::f32, Custom);
587
588    // Use XORP to simulate FNEG.
589    setOperationAction(ISD::FNEG , MVT::f32, Custom);
590
591    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
592
593    // Use ANDPS and ORPS to simulate FCOPYSIGN.
594    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
595    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
596
597    // We don't support sin/cos/fmod
598    setOperationAction(ISD::FSIN , MVT::f32, Expand);
599    setOperationAction(ISD::FCOS , MVT::f32, Expand);
600
601    // Special cases we handle for FP constants.
602    addLegalFPImmediate(APFloat(+0.0f)); // xorps
603    addLegalFPImmediate(APFloat(+0.0)); // FLD0
604    addLegalFPImmediate(APFloat(+1.0)); // FLD1
605    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
606    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
607
608    if (!UnsafeFPMath) {
609      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
610      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
611    }
612  } else if (!UseSoftFloat) {
613    // f32 and f64 in x87.
614    // Set up the FP register classes.
615    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
616    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
617
618    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
619    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
620    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
621    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
622
623    if (!UnsafeFPMath) {
624      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
625      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
626    }
627    addLegalFPImmediate(APFloat(+0.0)); // FLD0
628    addLegalFPImmediate(APFloat(+1.0)); // FLD1
629    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
630    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
631    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
632    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
633    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
634    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
635  }
636
637  // We don't support FMA.
638  setOperationAction(ISD::FMA, MVT::f64, Expand);
639  setOperationAction(ISD::FMA, MVT::f32, Expand);
640
641  // Long double always uses X87.
642  if (!UseSoftFloat) {
643    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
644    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
645    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
646    {
647      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
648      addLegalFPImmediate(TmpFlt);  // FLD0
649      TmpFlt.changeSign();
650      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
651
652      bool ignored;
653      APFloat TmpFlt2(+1.0);
654      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
655                      &ignored);
656      addLegalFPImmediate(TmpFlt2);  // FLD1
657      TmpFlt2.changeSign();
658      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
659    }
660
661    if (!UnsafeFPMath) {
662      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
663      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
664    }
665
666    setOperationAction(ISD::FMA, MVT::f80, Expand);
667  }
668
669  // Always use a library call for pow.
670  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
671  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
672  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
673
674  setOperationAction(ISD::FLOG, MVT::f80, Expand);
675  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
676  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
677  setOperationAction(ISD::FEXP, MVT::f80, Expand);
678  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
679
680  // First set operation action for all vector types to either promote
681  // (for widening) or expand (for scalarization). Then we will selectively
682  // turn on ones that can be effectively codegen'd.
683  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
684       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
685    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
686    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
687    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
688    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
689    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
690    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
691    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
692    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
693    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
694    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
695    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
696    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
697    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
698    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
699    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
700    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
701    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
702    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
703    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
704    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
705    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
706    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
707    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
708    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
709    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
710    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
711    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
712    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
713    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
714    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
715    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
716    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
717    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
718    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
719    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
720    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
721    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
722    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
723    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
724    setOperationAction(ISD::SETCC, (MVT::SimpleValueType)VT, Expand);
725    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
726    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
727    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
728    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
729    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
730    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
731    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
732    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
733    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
734    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
735    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
736    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
737    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
738    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
739    setOperationAction(ISD::VSELECT,  (MVT::SimpleValueType)VT, Expand);
740    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
741         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
742      setTruncStoreAction((MVT::SimpleValueType)VT,
743                          (MVT::SimpleValueType)InnerVT, Expand);
744    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
745    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
746    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
747  }
748
749  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
750  // with -msoft-float, disable use of MMX as well.
751  if (!UseSoftFloat && Subtarget->hasMMX()) {
752    addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
753    // No operations on x86mmx supported, everything uses intrinsics.
754  }
755
756  // MMX-sized vectors (other than x86mmx) are expected to be expanded
757  // into smaller operations.
758  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
759  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
760  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
761  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
762  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
763  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
764  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
765  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
766  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
767  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
768  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
769  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
770  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
771  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
772  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
773  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
774  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
775  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
776  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
777  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
778  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
779  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
780  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
781  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
782  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
783  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
784  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
785  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
786  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
787
788  if (!UseSoftFloat && Subtarget->hasXMM()) {
789    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
790
791    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
792    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
793    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
794    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
795    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
796    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
797    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
798    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
799    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
800    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
801    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
802    setOperationAction(ISD::SETCC,              MVT::v4f32, Custom);
803  }
804
805  if (!UseSoftFloat && Subtarget->hasXMMInt()) {
806    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
807
808    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
809    // registers cannot be used even for integer operations.
810    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
811    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
812    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
813    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
814
815    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
816    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
817    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
818    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
819    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
820    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
821    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
822    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
823    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
824    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
825    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
826    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
827    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
828    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
829    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
830    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
831
832    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
833    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
834    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
835    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
836
837    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
838    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
839    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
840    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
841    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
842
843    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
844    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
845    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
846    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
847    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
848
849    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
850    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
851      EVT VT = (MVT::SimpleValueType)i;
852      // Do not attempt to custom lower non-power-of-2 vectors
853      if (!isPowerOf2_32(VT.getVectorNumElements()))
854        continue;
855      // Do not attempt to custom lower non-128-bit vectors
856      if (!VT.is128BitVector())
857        continue;
858      setOperationAction(ISD::BUILD_VECTOR,
859                         VT.getSimpleVT().SimpleTy, Custom);
860      setOperationAction(ISD::VECTOR_SHUFFLE,
861                         VT.getSimpleVT().SimpleTy, Custom);
862      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
863                         VT.getSimpleVT().SimpleTy, Custom);
864    }
865
866    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
867    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
868    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
869    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
870    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
871    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
872
873    if (Subtarget->is64Bit()) {
874      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
875      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
876    }
877
878    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
879    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
880      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
881      EVT VT = SVT;
882
883      // Do not attempt to promote non-128-bit vectors
884      if (!VT.is128BitVector())
885        continue;
886
887      setOperationAction(ISD::AND,    SVT, Promote);
888      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
889      setOperationAction(ISD::OR,     SVT, Promote);
890      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
891      setOperationAction(ISD::XOR,    SVT, Promote);
892      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
893      setOperationAction(ISD::LOAD,   SVT, Promote);
894      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
895      setOperationAction(ISD::SELECT, SVT, Promote);
896      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
897    }
898
899    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
900
901    // Custom lower v2i64 and v2f64 selects.
902    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
903    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
904    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
905    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
906
907    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
908    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
909  }
910
911  if (Subtarget->hasSSE41orAVX()) {
912    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
913    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
914    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
915    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
916    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
917    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
918    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
919    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
920    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
921    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
922
923    // FIXME: Do we need to handle scalar-to-vector here?
924    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
925
926    setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
927    setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
928    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
929    setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
930    setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
931
932    // i8 and i16 vectors are custom , because the source register and source
933    // source memory operand types are not the same width.  f32 vectors are
934    // custom since the immediate controlling the insert encodes additional
935    // information.
936    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
937    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
938    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
939    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
940
941    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
942    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
943    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
944    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
945
946    // FIXME: these should be Legal but thats only for the case where
947    // the index is constant.  For now custom expand to deal with that
948    if (Subtarget->is64Bit()) {
949      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
950      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
951    }
952  }
953
954  if (Subtarget->hasXMMInt()) {
955    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
956    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
957
958    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
959    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
960
961    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
962    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
963
964    if (Subtarget->hasAVX2()) {
965      setOperationAction(ISD::SRL,             MVT::v2i64, Legal);
966      setOperationAction(ISD::SRL,             MVT::v4i32, Legal);
967
968      setOperationAction(ISD::SHL,             MVT::v2i64, Legal);
969      setOperationAction(ISD::SHL,             MVT::v4i32, Legal);
970
971      setOperationAction(ISD::SRA,             MVT::v4i32, Legal);
972    } else {
973      setOperationAction(ISD::SRL,             MVT::v2i64, Custom);
974      setOperationAction(ISD::SRL,             MVT::v4i32, Custom);
975
976      setOperationAction(ISD::SHL,             MVT::v2i64, Custom);
977      setOperationAction(ISD::SHL,             MVT::v4i32, Custom);
978
979      setOperationAction(ISD::SRA,             MVT::v4i32, Custom);
980    }
981  }
982
983  if (Subtarget->hasSSE42orAVX())
984    setOperationAction(ISD::SETCC,             MVT::v2i64, Custom);
985
986  if (!UseSoftFloat && Subtarget->hasAVX()) {
987    addRegisterClass(MVT::v32i8,  X86::VR256RegisterClass);
988    addRegisterClass(MVT::v16i16, X86::VR256RegisterClass);
989    addRegisterClass(MVT::v8i32,  X86::VR256RegisterClass);
990    addRegisterClass(MVT::v8f32,  X86::VR256RegisterClass);
991    addRegisterClass(MVT::v4i64,  X86::VR256RegisterClass);
992    addRegisterClass(MVT::v4f64,  X86::VR256RegisterClass);
993
994    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
995    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
996    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
997
998    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
999    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1000    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1001    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1002    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1003    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1004
1005    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1006    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1007    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1008    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1009    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1010    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1011
1012    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1013    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1014    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1015
1016    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4f64,  Custom);
1017    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i64,  Custom);
1018    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f32,  Custom);
1019    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i32,  Custom);
1020    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v32i8,  Custom);
1021    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i16, Custom);
1022
1023    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1024    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1025
1026    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1027    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1028
1029    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1030    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1031
1032    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1033    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1034    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1035    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1036
1037    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1038    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1039    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1040
1041    setOperationAction(ISD::VSELECT,           MVT::v4f64, Legal);
1042    setOperationAction(ISD::VSELECT,           MVT::v4i64, Legal);
1043    setOperationAction(ISD::VSELECT,           MVT::v8i32, Legal);
1044    setOperationAction(ISD::VSELECT,           MVT::v8f32, Legal);
1045
1046    if (Subtarget->hasAVX2()) {
1047      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1048      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1049      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1050      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1051
1052      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1053      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1054      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1055      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1056
1057      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1058      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1059      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1060      // Don't lower v32i8 because there is no 128-bit byte mul
1061
1062      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1063
1064      setOperationAction(ISD::SRL,             MVT::v4i64, Legal);
1065      setOperationAction(ISD::SRL,             MVT::v8i32, Legal);
1066
1067      setOperationAction(ISD::SHL,             MVT::v4i64, Legal);
1068      setOperationAction(ISD::SHL,             MVT::v8i32, Legal);
1069
1070      setOperationAction(ISD::SRA,             MVT::v8i32, Legal);
1071    } else {
1072      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1073      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1074      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1075      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1076
1077      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1078      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1079      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1080      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1081
1082      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1083      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1084      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1085      // Don't lower v32i8 because there is no 128-bit byte mul
1086
1087      setOperationAction(ISD::SRL,             MVT::v4i64, Custom);
1088      setOperationAction(ISD::SRL,             MVT::v8i32, Custom);
1089
1090      setOperationAction(ISD::SHL,             MVT::v4i64, Custom);
1091      setOperationAction(ISD::SHL,             MVT::v8i32, Custom);
1092
1093      setOperationAction(ISD::SRA,             MVT::v8i32, Custom);
1094    }
1095
1096    // Custom lower several nodes for 256-bit types.
1097    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1098                  i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1099      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1100      EVT VT = SVT;
1101
1102      // Extract subvector is special because the value type
1103      // (result) is 128-bit but the source is 256-bit wide.
1104      if (VT.is128BitVector())
1105        setOperationAction(ISD::EXTRACT_SUBVECTOR, SVT, Custom);
1106
1107      // Do not attempt to custom lower other non-256-bit vectors
1108      if (!VT.is256BitVector())
1109        continue;
1110
1111      setOperationAction(ISD::BUILD_VECTOR,       SVT, Custom);
1112      setOperationAction(ISD::VECTOR_SHUFFLE,     SVT, Custom);
1113      setOperationAction(ISD::INSERT_VECTOR_ELT,  SVT, Custom);
1114      setOperationAction(ISD::EXTRACT_VECTOR_ELT, SVT, Custom);
1115      setOperationAction(ISD::SCALAR_TO_VECTOR,   SVT, Custom);
1116      setOperationAction(ISD::INSERT_SUBVECTOR,   SVT, Custom);
1117    }
1118
1119    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1120    for (unsigned i = (unsigned)MVT::v32i8; i != (unsigned)MVT::v4i64; ++i) {
1121      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1122      EVT VT = SVT;
1123
1124      // Do not attempt to promote non-256-bit vectors
1125      if (!VT.is256BitVector())
1126        continue;
1127
1128      setOperationAction(ISD::AND,    SVT, Promote);
1129      AddPromotedToType (ISD::AND,    SVT, MVT::v4i64);
1130      setOperationAction(ISD::OR,     SVT, Promote);
1131      AddPromotedToType (ISD::OR,     SVT, MVT::v4i64);
1132      setOperationAction(ISD::XOR,    SVT, Promote);
1133      AddPromotedToType (ISD::XOR,    SVT, MVT::v4i64);
1134      setOperationAction(ISD::LOAD,   SVT, Promote);
1135      AddPromotedToType (ISD::LOAD,   SVT, MVT::v4i64);
1136      setOperationAction(ISD::SELECT, SVT, Promote);
1137      AddPromotedToType (ISD::SELECT, SVT, MVT::v4i64);
1138    }
1139  }
1140
1141  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1142  // of this type with custom code.
1143  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1144         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; VT++) {
1145    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT, Custom);
1146  }
1147
1148  // We want to custom lower some of our intrinsics.
1149  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1150
1151
1152  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1153  // handle type legalization for these operations here.
1154  //
1155  // FIXME: We really should do custom legalization for addition and
1156  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1157  // than generic legalization for 64-bit multiplication-with-overflow, though.
1158  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1159    // Add/Sub/Mul with overflow operations are custom lowered.
1160    MVT VT = IntVTs[i];
1161    setOperationAction(ISD::SADDO, VT, Custom);
1162    setOperationAction(ISD::UADDO, VT, Custom);
1163    setOperationAction(ISD::SSUBO, VT, Custom);
1164    setOperationAction(ISD::USUBO, VT, Custom);
1165    setOperationAction(ISD::SMULO, VT, Custom);
1166    setOperationAction(ISD::UMULO, VT, Custom);
1167  }
1168
1169  // There are no 8-bit 3-address imul/mul instructions
1170  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1171  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1172
1173  if (!Subtarget->is64Bit()) {
1174    // These libcalls are not available in 32-bit.
1175    setLibcallName(RTLIB::SHL_I128, 0);
1176    setLibcallName(RTLIB::SRL_I128, 0);
1177    setLibcallName(RTLIB::SRA_I128, 0);
1178  }
1179
1180  // We have target-specific dag combine patterns for the following nodes:
1181  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1182  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1183  setTargetDAGCombine(ISD::BUILD_VECTOR);
1184  setTargetDAGCombine(ISD::VSELECT);
1185  setTargetDAGCombine(ISD::SELECT);
1186  setTargetDAGCombine(ISD::SHL);
1187  setTargetDAGCombine(ISD::SRA);
1188  setTargetDAGCombine(ISD::SRL);
1189  setTargetDAGCombine(ISD::OR);
1190  setTargetDAGCombine(ISD::AND);
1191  setTargetDAGCombine(ISD::ADD);
1192  setTargetDAGCombine(ISD::FADD);
1193  setTargetDAGCombine(ISD::FSUB);
1194  setTargetDAGCombine(ISD::SUB);
1195  setTargetDAGCombine(ISD::LOAD);
1196  setTargetDAGCombine(ISD::STORE);
1197  setTargetDAGCombine(ISD::ZERO_EXTEND);
1198  setTargetDAGCombine(ISD::SINT_TO_FP);
1199  if (Subtarget->is64Bit())
1200    setTargetDAGCombine(ISD::MUL);
1201  if (Subtarget->hasBMI())
1202    setTargetDAGCombine(ISD::XOR);
1203
1204  computeRegisterProperties();
1205
1206  // On Darwin, -Os means optimize for size without hurting performance,
1207  // do not reduce the limit.
1208  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1209  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1210  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1211  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1212  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1213  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1214  setPrefLoopAlignment(16);
1215  benefitFromCodePlacementOpt = true;
1216
1217  setPrefFunctionAlignment(4);
1218}
1219
1220
1221EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1222  if (!VT.isVector()) return MVT::i8;
1223  return VT.changeVectorElementTypeToInteger();
1224}
1225
1226
1227/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1228/// the desired ByVal argument alignment.
1229static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1230  if (MaxAlign == 16)
1231    return;
1232  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1233    if (VTy->getBitWidth() == 128)
1234      MaxAlign = 16;
1235  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1236    unsigned EltAlign = 0;
1237    getMaxByValAlign(ATy->getElementType(), EltAlign);
1238    if (EltAlign > MaxAlign)
1239      MaxAlign = EltAlign;
1240  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1241    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1242      unsigned EltAlign = 0;
1243      getMaxByValAlign(STy->getElementType(i), EltAlign);
1244      if (EltAlign > MaxAlign)
1245        MaxAlign = EltAlign;
1246      if (MaxAlign == 16)
1247        break;
1248    }
1249  }
1250  return;
1251}
1252
1253/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1254/// function arguments in the caller parameter area. For X86, aggregates
1255/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1256/// are at 4-byte boundaries.
1257unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1258  if (Subtarget->is64Bit()) {
1259    // Max of 8 and alignment of type.
1260    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1261    if (TyAlign > 8)
1262      return TyAlign;
1263    return 8;
1264  }
1265
1266  unsigned Align = 4;
1267  if (Subtarget->hasXMM())
1268    getMaxByValAlign(Ty, Align);
1269  return Align;
1270}
1271
1272/// getOptimalMemOpType - Returns the target specific optimal type for load
1273/// and store operations as a result of memset, memcpy, and memmove
1274/// lowering. If DstAlign is zero that means it's safe to destination
1275/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1276/// means there isn't a need to check it against alignment requirement,
1277/// probably because the source does not need to be loaded. If
1278/// 'IsZeroVal' is true, that means it's safe to return a
1279/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1280/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1281/// constant so it does not need to be loaded.
1282/// It returns EVT::Other if the type should be determined using generic
1283/// target-independent logic.
1284EVT
1285X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1286                                       unsigned DstAlign, unsigned SrcAlign,
1287                                       bool IsZeroVal,
1288                                       bool MemcpyStrSrc,
1289                                       MachineFunction &MF) const {
1290  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1291  // linux.  This is because the stack realignment code can't handle certain
1292  // cases like PR2962.  This should be removed when PR2962 is fixed.
1293  const Function *F = MF.getFunction();
1294  if (IsZeroVal &&
1295      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1296    if (Size >= 16 &&
1297        (Subtarget->isUnalignedMemAccessFast() ||
1298         ((DstAlign == 0 || DstAlign >= 16) &&
1299          (SrcAlign == 0 || SrcAlign >= 16))) &&
1300        Subtarget->getStackAlignment() >= 16) {
1301      if (Subtarget->hasAVX() &&
1302          Subtarget->getStackAlignment() >= 32)
1303        return MVT::v8f32;
1304      if (Subtarget->hasXMMInt())
1305        return MVT::v4i32;
1306      if (Subtarget->hasXMM())
1307        return MVT::v4f32;
1308    } else if (!MemcpyStrSrc && Size >= 8 &&
1309               !Subtarget->is64Bit() &&
1310               Subtarget->getStackAlignment() >= 8 &&
1311               Subtarget->hasXMMInt()) {
1312      // Do not use f64 to lower memcpy if source is string constant. It's
1313      // better to use i32 to avoid the loads.
1314      return MVT::f64;
1315    }
1316  }
1317  if (Subtarget->is64Bit() && Size >= 8)
1318    return MVT::i64;
1319  return MVT::i32;
1320}
1321
1322/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1323/// current function.  The returned value is a member of the
1324/// MachineJumpTableInfo::JTEntryKind enum.
1325unsigned X86TargetLowering::getJumpTableEncoding() const {
1326  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1327  // symbol.
1328  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1329      Subtarget->isPICStyleGOT())
1330    return MachineJumpTableInfo::EK_Custom32;
1331
1332  // Otherwise, use the normal jump table encoding heuristics.
1333  return TargetLowering::getJumpTableEncoding();
1334}
1335
1336const MCExpr *
1337X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1338                                             const MachineBasicBlock *MBB,
1339                                             unsigned uid,MCContext &Ctx) const{
1340  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1341         Subtarget->isPICStyleGOT());
1342  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1343  // entries.
1344  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1345                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1346}
1347
1348/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1349/// jumptable.
1350SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1351                                                    SelectionDAG &DAG) const {
1352  if (!Subtarget->is64Bit())
1353    // This doesn't have DebugLoc associated with it, but is not really the
1354    // same as a Register.
1355    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1356  return Table;
1357}
1358
1359/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1360/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1361/// MCExpr.
1362const MCExpr *X86TargetLowering::
1363getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1364                             MCContext &Ctx) const {
1365  // X86-64 uses RIP relative addressing based on the jump table label.
1366  if (Subtarget->isPICStyleRIPRel())
1367    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1368
1369  // Otherwise, the reference is relative to the PIC base.
1370  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1371}
1372
1373// FIXME: Why this routine is here? Move to RegInfo!
1374std::pair<const TargetRegisterClass*, uint8_t>
1375X86TargetLowering::findRepresentativeClass(EVT VT) const{
1376  const TargetRegisterClass *RRC = 0;
1377  uint8_t Cost = 1;
1378  switch (VT.getSimpleVT().SimpleTy) {
1379  default:
1380    return TargetLowering::findRepresentativeClass(VT);
1381  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1382    RRC = (Subtarget->is64Bit()
1383           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1384    break;
1385  case MVT::x86mmx:
1386    RRC = X86::VR64RegisterClass;
1387    break;
1388  case MVT::f32: case MVT::f64:
1389  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1390  case MVT::v4f32: case MVT::v2f64:
1391  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1392  case MVT::v4f64:
1393    RRC = X86::VR128RegisterClass;
1394    break;
1395  }
1396  return std::make_pair(RRC, Cost);
1397}
1398
1399bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1400                                               unsigned &Offset) const {
1401  if (!Subtarget->isTargetLinux())
1402    return false;
1403
1404  if (Subtarget->is64Bit()) {
1405    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1406    Offset = 0x28;
1407    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1408      AddressSpace = 256;
1409    else
1410      AddressSpace = 257;
1411  } else {
1412    // %gs:0x14 on i386
1413    Offset = 0x14;
1414    AddressSpace = 256;
1415  }
1416  return true;
1417}
1418
1419
1420//===----------------------------------------------------------------------===//
1421//               Return Value Calling Convention Implementation
1422//===----------------------------------------------------------------------===//
1423
1424#include "X86GenCallingConv.inc"
1425
1426bool
1427X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1428				  MachineFunction &MF, bool isVarArg,
1429                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1430                        LLVMContext &Context) const {
1431  SmallVector<CCValAssign, 16> RVLocs;
1432  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1433                 RVLocs, Context);
1434  return CCInfo.CheckReturn(Outs, RetCC_X86);
1435}
1436
1437SDValue
1438X86TargetLowering::LowerReturn(SDValue Chain,
1439                               CallingConv::ID CallConv, bool isVarArg,
1440                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1441                               const SmallVectorImpl<SDValue> &OutVals,
1442                               DebugLoc dl, SelectionDAG &DAG) const {
1443  MachineFunction &MF = DAG.getMachineFunction();
1444  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1445
1446  SmallVector<CCValAssign, 16> RVLocs;
1447  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1448                 RVLocs, *DAG.getContext());
1449  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1450
1451  // Add the regs to the liveout set for the function.
1452  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1453  for (unsigned i = 0; i != RVLocs.size(); ++i)
1454    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1455      MRI.addLiveOut(RVLocs[i].getLocReg());
1456
1457  SDValue Flag;
1458
1459  SmallVector<SDValue, 6> RetOps;
1460  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1461  // Operand #1 = Bytes To Pop
1462  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1463                   MVT::i16));
1464
1465  // Copy the result values into the output registers.
1466  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1467    CCValAssign &VA = RVLocs[i];
1468    assert(VA.isRegLoc() && "Can only return in registers!");
1469    SDValue ValToCopy = OutVals[i];
1470    EVT ValVT = ValToCopy.getValueType();
1471
1472    // If this is x86-64, and we disabled SSE, we can't return FP values,
1473    // or SSE or MMX vectors.
1474    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1475         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1476          (Subtarget->is64Bit() && !Subtarget->hasXMM())) {
1477      report_fatal_error("SSE register return with SSE disabled");
1478    }
1479    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1480    // llvm-gcc has never done it right and no one has noticed, so this
1481    // should be OK for now.
1482    if (ValVT == MVT::f64 &&
1483        (Subtarget->is64Bit() && !Subtarget->hasXMMInt()))
1484      report_fatal_error("SSE2 register return with SSE2 disabled");
1485
1486    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1487    // the RET instruction and handled by the FP Stackifier.
1488    if (VA.getLocReg() == X86::ST0 ||
1489        VA.getLocReg() == X86::ST1) {
1490      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1491      // change the value to the FP stack register class.
1492      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1493        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1494      RetOps.push_back(ValToCopy);
1495      // Don't emit a copytoreg.
1496      continue;
1497    }
1498
1499    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1500    // which is returned in RAX / RDX.
1501    if (Subtarget->is64Bit()) {
1502      if (ValVT == MVT::x86mmx) {
1503        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1504          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1505          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1506                                  ValToCopy);
1507          // If we don't have SSE2 available, convert to v4f32 so the generated
1508          // register is legal.
1509          if (!Subtarget->hasXMMInt())
1510            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1511        }
1512      }
1513    }
1514
1515    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1516    Flag = Chain.getValue(1);
1517  }
1518
1519  // The x86-64 ABI for returning structs by value requires that we copy
1520  // the sret argument into %rax for the return. We saved the argument into
1521  // a virtual register in the entry block, so now we copy the value out
1522  // and into %rax.
1523  if (Subtarget->is64Bit() &&
1524      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1525    MachineFunction &MF = DAG.getMachineFunction();
1526    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1527    unsigned Reg = FuncInfo->getSRetReturnReg();
1528    assert(Reg &&
1529           "SRetReturnReg should have been set in LowerFormalArguments().");
1530    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1531
1532    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1533    Flag = Chain.getValue(1);
1534
1535    // RAX now acts like a return value.
1536    MRI.addLiveOut(X86::RAX);
1537  }
1538
1539  RetOps[0] = Chain;  // Update chain.
1540
1541  // Add the flag if we have it.
1542  if (Flag.getNode())
1543    RetOps.push_back(Flag);
1544
1545  return DAG.getNode(X86ISD::RET_FLAG, dl,
1546                     MVT::Other, &RetOps[0], RetOps.size());
1547}
1548
1549bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const {
1550  if (N->getNumValues() != 1)
1551    return false;
1552  if (!N->hasNUsesOfValue(1, 0))
1553    return false;
1554
1555  SDNode *Copy = *N->use_begin();
1556  if (Copy->getOpcode() != ISD::CopyToReg &&
1557      Copy->getOpcode() != ISD::FP_EXTEND)
1558    return false;
1559
1560  bool HasRet = false;
1561  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1562       UI != UE; ++UI) {
1563    if (UI->getOpcode() != X86ISD::RET_FLAG)
1564      return false;
1565    HasRet = true;
1566  }
1567
1568  return HasRet;
1569}
1570
1571EVT
1572X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1573                                            ISD::NodeType ExtendKind) const {
1574  MVT ReturnMVT;
1575  // TODO: Is this also valid on 32-bit?
1576  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1577    ReturnMVT = MVT::i8;
1578  else
1579    ReturnMVT = MVT::i32;
1580
1581  EVT MinVT = getRegisterType(Context, ReturnMVT);
1582  return VT.bitsLT(MinVT) ? MinVT : VT;
1583}
1584
1585/// LowerCallResult - Lower the result values of a call into the
1586/// appropriate copies out of appropriate physical registers.
1587///
1588SDValue
1589X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1590                                   CallingConv::ID CallConv, bool isVarArg,
1591                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1592                                   DebugLoc dl, SelectionDAG &DAG,
1593                                   SmallVectorImpl<SDValue> &InVals) const {
1594
1595  // Assign locations to each value returned by this call.
1596  SmallVector<CCValAssign, 16> RVLocs;
1597  bool Is64Bit = Subtarget->is64Bit();
1598  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1599		 getTargetMachine(), RVLocs, *DAG.getContext());
1600  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1601
1602  // Copy all of the result registers out of their specified physreg.
1603  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1604    CCValAssign &VA = RVLocs[i];
1605    EVT CopyVT = VA.getValVT();
1606
1607    // If this is x86-64, and we disabled SSE, we can't return FP values
1608    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1609        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasXMM())) {
1610      report_fatal_error("SSE register return with SSE disabled");
1611    }
1612
1613    SDValue Val;
1614
1615    // If this is a call to a function that returns an fp value on the floating
1616    // point stack, we must guarantee the the value is popped from the stack, so
1617    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1618    // if the return value is not used. We use the FpPOP_RETVAL instruction
1619    // instead.
1620    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1621      // If we prefer to use the value in xmm registers, copy it out as f80 and
1622      // use a truncate to move it from fp stack reg to xmm reg.
1623      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1624      SDValue Ops[] = { Chain, InFlag };
1625      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1626                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1627      Val = Chain.getValue(0);
1628
1629      // Round the f80 to the right size, which also moves it to the appropriate
1630      // xmm register.
1631      if (CopyVT != VA.getValVT())
1632        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1633                          // This truncation won't change the value.
1634                          DAG.getIntPtrConstant(1));
1635    } else {
1636      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1637                                 CopyVT, InFlag).getValue(1);
1638      Val = Chain.getValue(0);
1639    }
1640    InFlag = Chain.getValue(2);
1641    InVals.push_back(Val);
1642  }
1643
1644  return Chain;
1645}
1646
1647
1648//===----------------------------------------------------------------------===//
1649//                C & StdCall & Fast Calling Convention implementation
1650//===----------------------------------------------------------------------===//
1651//  StdCall calling convention seems to be standard for many Windows' API
1652//  routines and around. It differs from C calling convention just a little:
1653//  callee should clean up the stack, not caller. Symbols should be also
1654//  decorated in some fancy way :) It doesn't support any vector arguments.
1655//  For info on fast calling convention see Fast Calling Convention (tail call)
1656//  implementation LowerX86_32FastCCCallTo.
1657
1658/// CallIsStructReturn - Determines whether a call uses struct return
1659/// semantics.
1660static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1661  if (Outs.empty())
1662    return false;
1663
1664  return Outs[0].Flags.isSRet();
1665}
1666
1667/// ArgsAreStructReturn - Determines whether a function uses struct
1668/// return semantics.
1669static bool
1670ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1671  if (Ins.empty())
1672    return false;
1673
1674  return Ins[0].Flags.isSRet();
1675}
1676
1677/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1678/// by "Src" to address "Dst" with size and alignment information specified by
1679/// the specific parameter attribute. The copy will be passed as a byval
1680/// function parameter.
1681static SDValue
1682CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1683                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1684                          DebugLoc dl) {
1685  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1686
1687  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1688                       /*isVolatile*/false, /*AlwaysInline=*/true,
1689                       MachinePointerInfo(), MachinePointerInfo());
1690}
1691
1692/// IsTailCallConvention - Return true if the calling convention is one that
1693/// supports tail call optimization.
1694static bool IsTailCallConvention(CallingConv::ID CC) {
1695  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1696}
1697
1698bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1699  if (!CI->isTailCall())
1700    return false;
1701
1702  CallSite CS(CI);
1703  CallingConv::ID CalleeCC = CS.getCallingConv();
1704  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1705    return false;
1706
1707  return true;
1708}
1709
1710/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1711/// a tailcall target by changing its ABI.
1712static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1713  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1714}
1715
1716SDValue
1717X86TargetLowering::LowerMemArgument(SDValue Chain,
1718                                    CallingConv::ID CallConv,
1719                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1720                                    DebugLoc dl, SelectionDAG &DAG,
1721                                    const CCValAssign &VA,
1722                                    MachineFrameInfo *MFI,
1723                                    unsigned i) const {
1724  // Create the nodes corresponding to a load from this parameter slot.
1725  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1726  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1727  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1728  EVT ValVT;
1729
1730  // If value is passed by pointer we have address passed instead of the value
1731  // itself.
1732  if (VA.getLocInfo() == CCValAssign::Indirect)
1733    ValVT = VA.getLocVT();
1734  else
1735    ValVT = VA.getValVT();
1736
1737  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1738  // changed with more analysis.
1739  // In case of tail call optimization mark all arguments mutable. Since they
1740  // could be overwritten by lowering of arguments in case of a tail call.
1741  if (Flags.isByVal()) {
1742    unsigned Bytes = Flags.getByValSize();
1743    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1744    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1745    return DAG.getFrameIndex(FI, getPointerTy());
1746  } else {
1747    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1748                                    VA.getLocMemOffset(), isImmutable);
1749    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1750    return DAG.getLoad(ValVT, dl, Chain, FIN,
1751                       MachinePointerInfo::getFixedStack(FI),
1752                       false, false, false, 0);
1753  }
1754}
1755
1756SDValue
1757X86TargetLowering::LowerFormalArguments(SDValue Chain,
1758                                        CallingConv::ID CallConv,
1759                                        bool isVarArg,
1760                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1761                                        DebugLoc dl,
1762                                        SelectionDAG &DAG,
1763                                        SmallVectorImpl<SDValue> &InVals)
1764                                          const {
1765  MachineFunction &MF = DAG.getMachineFunction();
1766  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1767
1768  const Function* Fn = MF.getFunction();
1769  if (Fn->hasExternalLinkage() &&
1770      Subtarget->isTargetCygMing() &&
1771      Fn->getName() == "main")
1772    FuncInfo->setForceFramePointer(true);
1773
1774  MachineFrameInfo *MFI = MF.getFrameInfo();
1775  bool Is64Bit = Subtarget->is64Bit();
1776  bool IsWin64 = Subtarget->isTargetWin64();
1777
1778  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1779         "Var args not supported with calling convention fastcc or ghc");
1780
1781  // Assign locations to all of the incoming arguments.
1782  SmallVector<CCValAssign, 16> ArgLocs;
1783  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1784                 ArgLocs, *DAG.getContext());
1785
1786  // Allocate shadow area for Win64
1787  if (IsWin64) {
1788    CCInfo.AllocateStack(32, 8);
1789  }
1790
1791  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1792
1793  unsigned LastVal = ~0U;
1794  SDValue ArgValue;
1795  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1796    CCValAssign &VA = ArgLocs[i];
1797    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1798    // places.
1799    assert(VA.getValNo() != LastVal &&
1800           "Don't support value assigned to multiple locs yet");
1801    (void)LastVal;
1802    LastVal = VA.getValNo();
1803
1804    if (VA.isRegLoc()) {
1805      EVT RegVT = VA.getLocVT();
1806      TargetRegisterClass *RC = NULL;
1807      if (RegVT == MVT::i32)
1808        RC = X86::GR32RegisterClass;
1809      else if (Is64Bit && RegVT == MVT::i64)
1810        RC = X86::GR64RegisterClass;
1811      else if (RegVT == MVT::f32)
1812        RC = X86::FR32RegisterClass;
1813      else if (RegVT == MVT::f64)
1814        RC = X86::FR64RegisterClass;
1815      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1816        RC = X86::VR256RegisterClass;
1817      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1818        RC = X86::VR128RegisterClass;
1819      else if (RegVT == MVT::x86mmx)
1820        RC = X86::VR64RegisterClass;
1821      else
1822        llvm_unreachable("Unknown argument type!");
1823
1824      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1825      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1826
1827      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1828      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1829      // right size.
1830      if (VA.getLocInfo() == CCValAssign::SExt)
1831        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1832                               DAG.getValueType(VA.getValVT()));
1833      else if (VA.getLocInfo() == CCValAssign::ZExt)
1834        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1835                               DAG.getValueType(VA.getValVT()));
1836      else if (VA.getLocInfo() == CCValAssign::BCvt)
1837        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1838
1839      if (VA.isExtInLoc()) {
1840        // Handle MMX values passed in XMM regs.
1841        if (RegVT.isVector()) {
1842          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1843                                 ArgValue);
1844        } else
1845          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1846      }
1847    } else {
1848      assert(VA.isMemLoc());
1849      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1850    }
1851
1852    // If value is passed via pointer - do a load.
1853    if (VA.getLocInfo() == CCValAssign::Indirect)
1854      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1855                             MachinePointerInfo(), false, false, false, 0);
1856
1857    InVals.push_back(ArgValue);
1858  }
1859
1860  // The x86-64 ABI for returning structs by value requires that we copy
1861  // the sret argument into %rax for the return. Save the argument into
1862  // a virtual register so that we can access it from the return points.
1863  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1864    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1865    unsigned Reg = FuncInfo->getSRetReturnReg();
1866    if (!Reg) {
1867      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1868      FuncInfo->setSRetReturnReg(Reg);
1869    }
1870    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1871    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1872  }
1873
1874  unsigned StackSize = CCInfo.getNextStackOffset();
1875  // Align stack specially for tail calls.
1876  if (FuncIsMadeTailCallSafe(CallConv))
1877    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1878
1879  // If the function takes variable number of arguments, make a frame index for
1880  // the start of the first vararg value... for expansion of llvm.va_start.
1881  if (isVarArg) {
1882    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1883                    CallConv != CallingConv::X86_ThisCall)) {
1884      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1885    }
1886    if (Is64Bit) {
1887      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1888
1889      // FIXME: We should really autogenerate these arrays
1890      static const unsigned GPR64ArgRegsWin64[] = {
1891        X86::RCX, X86::RDX, X86::R8,  X86::R9
1892      };
1893      static const unsigned GPR64ArgRegs64Bit[] = {
1894        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1895      };
1896      static const unsigned XMMArgRegs64Bit[] = {
1897        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1898        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1899      };
1900      const unsigned *GPR64ArgRegs;
1901      unsigned NumXMMRegs = 0;
1902
1903      if (IsWin64) {
1904        // The XMM registers which might contain var arg parameters are shadowed
1905        // in their paired GPR.  So we only need to save the GPR to their home
1906        // slots.
1907        TotalNumIntRegs = 4;
1908        GPR64ArgRegs = GPR64ArgRegsWin64;
1909      } else {
1910        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1911        GPR64ArgRegs = GPR64ArgRegs64Bit;
1912
1913        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit, TotalNumXMMRegs);
1914      }
1915      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1916                                                       TotalNumIntRegs);
1917
1918      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1919      assert(!(NumXMMRegs && !Subtarget->hasXMM()) &&
1920             "SSE register cannot be used when SSE is disabled!");
1921      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1922             "SSE register cannot be used when SSE is disabled!");
1923      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasXMM())
1924        // Kernel mode asks for SSE to be disabled, so don't push them
1925        // on the stack.
1926        TotalNumXMMRegs = 0;
1927
1928      if (IsWin64) {
1929        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1930        // Get to the caller-allocated home save location.  Add 8 to account
1931        // for the return address.
1932        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1933        FuncInfo->setRegSaveFrameIndex(
1934          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1935        // Fixup to set vararg frame on shadow area (4 x i64).
1936        if (NumIntRegs < 4)
1937          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1938      } else {
1939        // For X86-64, if there are vararg parameters that are passed via
1940        // registers, then we must store them to their spots on the stack so they
1941        // may be loaded by deferencing the result of va_next.
1942        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1943        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1944        FuncInfo->setRegSaveFrameIndex(
1945          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1946                               false));
1947      }
1948
1949      // Store the integer parameter registers.
1950      SmallVector<SDValue, 8> MemOps;
1951      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1952                                        getPointerTy());
1953      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1954      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1955        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1956                                  DAG.getIntPtrConstant(Offset));
1957        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1958                                     X86::GR64RegisterClass);
1959        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1960        SDValue Store =
1961          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1962                       MachinePointerInfo::getFixedStack(
1963                         FuncInfo->getRegSaveFrameIndex(), Offset),
1964                       false, false, 0);
1965        MemOps.push_back(Store);
1966        Offset += 8;
1967      }
1968
1969      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1970        // Now store the XMM (fp + vector) parameter registers.
1971        SmallVector<SDValue, 11> SaveXMMOps;
1972        SaveXMMOps.push_back(Chain);
1973
1974        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1975        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1976        SaveXMMOps.push_back(ALVal);
1977
1978        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1979                               FuncInfo->getRegSaveFrameIndex()));
1980        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1981                               FuncInfo->getVarArgsFPOffset()));
1982
1983        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1984          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
1985                                       X86::VR128RegisterClass);
1986          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1987          SaveXMMOps.push_back(Val);
1988        }
1989        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1990                                     MVT::Other,
1991                                     &SaveXMMOps[0], SaveXMMOps.size()));
1992      }
1993
1994      if (!MemOps.empty())
1995        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1996                            &MemOps[0], MemOps.size());
1997    }
1998  }
1999
2000  // Some CCs need callee pop.
2001  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, GuaranteedTailCallOpt)) {
2002    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2003  } else {
2004    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2005    // If this is an sret function, the return should pop the hidden pointer.
2006    if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
2007      FuncInfo->setBytesToPopOnReturn(4);
2008  }
2009
2010  if (!Is64Bit) {
2011    // RegSaveFrameIndex is X86-64 only.
2012    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2013    if (CallConv == CallingConv::X86_FastCall ||
2014        CallConv == CallingConv::X86_ThisCall)
2015      // fastcc functions can't have varargs.
2016      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2017  }
2018
2019  FuncInfo->setArgumentStackSize(StackSize);
2020
2021  return Chain;
2022}
2023
2024SDValue
2025X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2026                                    SDValue StackPtr, SDValue Arg,
2027                                    DebugLoc dl, SelectionDAG &DAG,
2028                                    const CCValAssign &VA,
2029                                    ISD::ArgFlagsTy Flags) const {
2030  unsigned LocMemOffset = VA.getLocMemOffset();
2031  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2032  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2033  if (Flags.isByVal())
2034    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2035
2036  return DAG.getStore(Chain, dl, Arg, PtrOff,
2037                      MachinePointerInfo::getStack(LocMemOffset),
2038                      false, false, 0);
2039}
2040
2041/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2042/// optimization is performed and it is required.
2043SDValue
2044X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2045                                           SDValue &OutRetAddr, SDValue Chain,
2046                                           bool IsTailCall, bool Is64Bit,
2047                                           int FPDiff, DebugLoc dl) const {
2048  // Adjust the Return address stack slot.
2049  EVT VT = getPointerTy();
2050  OutRetAddr = getReturnAddressFrameIndex(DAG);
2051
2052  // Load the "old" Return address.
2053  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2054                           false, false, false, 0);
2055  return SDValue(OutRetAddr.getNode(), 1);
2056}
2057
2058/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2059/// optimization is performed and it is required (FPDiff!=0).
2060static SDValue
2061EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2062                         SDValue Chain, SDValue RetAddrFrIdx,
2063                         bool Is64Bit, int FPDiff, DebugLoc dl) {
2064  // Store the return address to the appropriate stack slot.
2065  if (!FPDiff) return Chain;
2066  // Calculate the new stack slot for the return address.
2067  int SlotSize = Is64Bit ? 8 : 4;
2068  int NewReturnAddrFI =
2069    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2070  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2071  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
2072  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2073                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2074                       false, false, 0);
2075  return Chain;
2076}
2077
2078SDValue
2079X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2080                             CallingConv::ID CallConv, bool isVarArg,
2081                             bool &isTailCall,
2082                             const SmallVectorImpl<ISD::OutputArg> &Outs,
2083                             const SmallVectorImpl<SDValue> &OutVals,
2084                             const SmallVectorImpl<ISD::InputArg> &Ins,
2085                             DebugLoc dl, SelectionDAG &DAG,
2086                             SmallVectorImpl<SDValue> &InVals) const {
2087  MachineFunction &MF = DAG.getMachineFunction();
2088  bool Is64Bit        = Subtarget->is64Bit();
2089  bool IsWin64        = Subtarget->isTargetWin64();
2090  bool IsStructRet    = CallIsStructReturn(Outs);
2091  bool IsSibcall      = false;
2092
2093  if (isTailCall) {
2094    // Check if it's really possible to do a tail call.
2095    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2096                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
2097                                                   Outs, OutVals, Ins, DAG);
2098
2099    // Sibcalls are automatically detected tailcalls which do not require
2100    // ABI changes.
2101    if (!GuaranteedTailCallOpt && isTailCall)
2102      IsSibcall = true;
2103
2104    if (isTailCall)
2105      ++NumTailCalls;
2106  }
2107
2108  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2109         "Var args not supported with calling convention fastcc or ghc");
2110
2111  // Analyze operands of the call, assigning locations to each operand.
2112  SmallVector<CCValAssign, 16> ArgLocs;
2113  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2114                 ArgLocs, *DAG.getContext());
2115
2116  // Allocate shadow area for Win64
2117  if (IsWin64) {
2118    CCInfo.AllocateStack(32, 8);
2119  }
2120
2121  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2122
2123  // Get a count of how many bytes are to be pushed on the stack.
2124  unsigned NumBytes = CCInfo.getNextStackOffset();
2125  if (IsSibcall)
2126    // This is a sibcall. The memory operands are available in caller's
2127    // own caller's stack.
2128    NumBytes = 0;
2129  else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
2130    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2131
2132  int FPDiff = 0;
2133  if (isTailCall && !IsSibcall) {
2134    // Lower arguments at fp - stackoffset + fpdiff.
2135    unsigned NumBytesCallerPushed =
2136      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2137    FPDiff = NumBytesCallerPushed - NumBytes;
2138
2139    // Set the delta of movement of the returnaddr stackslot.
2140    // But only set if delta is greater than previous delta.
2141    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2142      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2143  }
2144
2145  if (!IsSibcall)
2146    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2147
2148  SDValue RetAddrFrIdx;
2149  // Load return address for tail calls.
2150  if (isTailCall && FPDiff)
2151    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2152                                    Is64Bit, FPDiff, dl);
2153
2154  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2155  SmallVector<SDValue, 8> MemOpChains;
2156  SDValue StackPtr;
2157
2158  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2159  // of tail call optimization arguments are handle later.
2160  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2161    CCValAssign &VA = ArgLocs[i];
2162    EVT RegVT = VA.getLocVT();
2163    SDValue Arg = OutVals[i];
2164    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2165    bool isByVal = Flags.isByVal();
2166
2167    // Promote the value if needed.
2168    switch (VA.getLocInfo()) {
2169    default: llvm_unreachable("Unknown loc info!");
2170    case CCValAssign::Full: break;
2171    case CCValAssign::SExt:
2172      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2173      break;
2174    case CCValAssign::ZExt:
2175      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2176      break;
2177    case CCValAssign::AExt:
2178      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2179        // Special case: passing MMX values in XMM registers.
2180        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2181        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2182        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2183      } else
2184        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2185      break;
2186    case CCValAssign::BCvt:
2187      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2188      break;
2189    case CCValAssign::Indirect: {
2190      // Store the argument.
2191      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2192      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2193      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2194                           MachinePointerInfo::getFixedStack(FI),
2195                           false, false, 0);
2196      Arg = SpillSlot;
2197      break;
2198    }
2199    }
2200
2201    if (VA.isRegLoc()) {
2202      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2203      if (isVarArg && IsWin64) {
2204        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2205        // shadow reg if callee is a varargs function.
2206        unsigned ShadowReg = 0;
2207        switch (VA.getLocReg()) {
2208        case X86::XMM0: ShadowReg = X86::RCX; break;
2209        case X86::XMM1: ShadowReg = X86::RDX; break;
2210        case X86::XMM2: ShadowReg = X86::R8; break;
2211        case X86::XMM3: ShadowReg = X86::R9; break;
2212        }
2213        if (ShadowReg)
2214          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2215      }
2216    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2217      assert(VA.isMemLoc());
2218      if (StackPtr.getNode() == 0)
2219        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2220      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2221                                             dl, DAG, VA, Flags));
2222    }
2223  }
2224
2225  if (!MemOpChains.empty())
2226    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2227                        &MemOpChains[0], MemOpChains.size());
2228
2229  // Build a sequence of copy-to-reg nodes chained together with token chain
2230  // and flag operands which copy the outgoing args into registers.
2231  SDValue InFlag;
2232  // Tail call byval lowering might overwrite argument registers so in case of
2233  // tail call optimization the copies to registers are lowered later.
2234  if (!isTailCall)
2235    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2236      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2237                               RegsToPass[i].second, InFlag);
2238      InFlag = Chain.getValue(1);
2239    }
2240
2241  if (Subtarget->isPICStyleGOT()) {
2242    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2243    // GOT pointer.
2244    if (!isTailCall) {
2245      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2246                               DAG.getNode(X86ISD::GlobalBaseReg,
2247                                           DebugLoc(), getPointerTy()),
2248                               InFlag);
2249      InFlag = Chain.getValue(1);
2250    } else {
2251      // If we are tail calling and generating PIC/GOT style code load the
2252      // address of the callee into ECX. The value in ecx is used as target of
2253      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2254      // for tail calls on PIC/GOT architectures. Normally we would just put the
2255      // address of GOT into ebx and then call target@PLT. But for tail calls
2256      // ebx would be restored (since ebx is callee saved) before jumping to the
2257      // target@PLT.
2258
2259      // Note: The actual moving to ECX is done further down.
2260      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2261      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2262          !G->getGlobal()->hasProtectedVisibility())
2263        Callee = LowerGlobalAddress(Callee, DAG);
2264      else if (isa<ExternalSymbolSDNode>(Callee))
2265        Callee = LowerExternalSymbol(Callee, DAG);
2266    }
2267  }
2268
2269  if (Is64Bit && isVarArg && !IsWin64) {
2270    // From AMD64 ABI document:
2271    // For calls that may call functions that use varargs or stdargs
2272    // (prototype-less calls or calls to functions containing ellipsis (...) in
2273    // the declaration) %al is used as hidden argument to specify the number
2274    // of SSE registers used. The contents of %al do not need to match exactly
2275    // the number of registers, but must be an ubound on the number of SSE
2276    // registers used and is in the range 0 - 8 inclusive.
2277
2278    // Count the number of XMM registers allocated.
2279    static const unsigned XMMArgRegs[] = {
2280      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2281      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2282    };
2283    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2284    assert((Subtarget->hasXMM() || !NumXMMRegs)
2285           && "SSE registers cannot be used when SSE is disabled");
2286
2287    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2288                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2289    InFlag = Chain.getValue(1);
2290  }
2291
2292
2293  // For tail calls lower the arguments to the 'real' stack slot.
2294  if (isTailCall) {
2295    // Force all the incoming stack arguments to be loaded from the stack
2296    // before any new outgoing arguments are stored to the stack, because the
2297    // outgoing stack slots may alias the incoming argument stack slots, and
2298    // the alias isn't otherwise explicit. This is slightly more conservative
2299    // than necessary, because it means that each store effectively depends
2300    // on every argument instead of just those arguments it would clobber.
2301    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2302
2303    SmallVector<SDValue, 8> MemOpChains2;
2304    SDValue FIN;
2305    int FI = 0;
2306    // Do not flag preceding copytoreg stuff together with the following stuff.
2307    InFlag = SDValue();
2308    if (GuaranteedTailCallOpt) {
2309      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2310        CCValAssign &VA = ArgLocs[i];
2311        if (VA.isRegLoc())
2312          continue;
2313        assert(VA.isMemLoc());
2314        SDValue Arg = OutVals[i];
2315        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2316        // Create frame index.
2317        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2318        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2319        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2320        FIN = DAG.getFrameIndex(FI, getPointerTy());
2321
2322        if (Flags.isByVal()) {
2323          // Copy relative to framepointer.
2324          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2325          if (StackPtr.getNode() == 0)
2326            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2327                                          getPointerTy());
2328          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2329
2330          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2331                                                           ArgChain,
2332                                                           Flags, DAG, dl));
2333        } else {
2334          // Store relative to framepointer.
2335          MemOpChains2.push_back(
2336            DAG.getStore(ArgChain, dl, Arg, FIN,
2337                         MachinePointerInfo::getFixedStack(FI),
2338                         false, false, 0));
2339        }
2340      }
2341    }
2342
2343    if (!MemOpChains2.empty())
2344      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2345                          &MemOpChains2[0], MemOpChains2.size());
2346
2347    // Copy arguments to their registers.
2348    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2349      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2350                               RegsToPass[i].second, InFlag);
2351      InFlag = Chain.getValue(1);
2352    }
2353    InFlag =SDValue();
2354
2355    // Store the return address to the appropriate stack slot.
2356    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2357                                     FPDiff, dl);
2358  }
2359
2360  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2361    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2362    // In the 64-bit large code model, we have to make all calls
2363    // through a register, since the call instruction's 32-bit
2364    // pc-relative offset may not be large enough to hold the whole
2365    // address.
2366  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2367    // If the callee is a GlobalAddress node (quite common, every direct call
2368    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2369    // it.
2370
2371    // We should use extra load for direct calls to dllimported functions in
2372    // non-JIT mode.
2373    const GlobalValue *GV = G->getGlobal();
2374    if (!GV->hasDLLImportLinkage()) {
2375      unsigned char OpFlags = 0;
2376      bool ExtraLoad = false;
2377      unsigned WrapperKind = ISD::DELETED_NODE;
2378
2379      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2380      // external symbols most go through the PLT in PIC mode.  If the symbol
2381      // has hidden or protected visibility, or if it is static or local, then
2382      // we don't need to use the PLT - we can directly call it.
2383      if (Subtarget->isTargetELF() &&
2384          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2385          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2386        OpFlags = X86II::MO_PLT;
2387      } else if (Subtarget->isPICStyleStubAny() &&
2388                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2389                 (!Subtarget->getTargetTriple().isMacOSX() ||
2390                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2391        // PC-relative references to external symbols should go through $stub,
2392        // unless we're building with the leopard linker or later, which
2393        // automatically synthesizes these stubs.
2394        OpFlags = X86II::MO_DARWIN_STUB;
2395      } else if (Subtarget->isPICStyleRIPRel() &&
2396                 isa<Function>(GV) &&
2397                 cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
2398        // If the function is marked as non-lazy, generate an indirect call
2399        // which loads from the GOT directly. This avoids runtime overhead
2400        // at the cost of eager binding (and one extra byte of encoding).
2401        OpFlags = X86II::MO_GOTPCREL;
2402        WrapperKind = X86ISD::WrapperRIP;
2403        ExtraLoad = true;
2404      }
2405
2406      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2407                                          G->getOffset(), OpFlags);
2408
2409      // Add a wrapper if needed.
2410      if (WrapperKind != ISD::DELETED_NODE)
2411        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2412      // Add extra indirection if needed.
2413      if (ExtraLoad)
2414        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2415                             MachinePointerInfo::getGOT(),
2416                             false, false, false, 0);
2417    }
2418  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2419    unsigned char OpFlags = 0;
2420
2421    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2422    // external symbols should go through the PLT.
2423    if (Subtarget->isTargetELF() &&
2424        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2425      OpFlags = X86II::MO_PLT;
2426    } else if (Subtarget->isPICStyleStubAny() &&
2427               (!Subtarget->getTargetTriple().isMacOSX() ||
2428                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2429      // PC-relative references to external symbols should go through $stub,
2430      // unless we're building with the leopard linker or later, which
2431      // automatically synthesizes these stubs.
2432      OpFlags = X86II::MO_DARWIN_STUB;
2433    }
2434
2435    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2436                                         OpFlags);
2437  }
2438
2439  // Returns a chain & a flag for retval copy to use.
2440  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2441  SmallVector<SDValue, 8> Ops;
2442
2443  if (!IsSibcall && isTailCall) {
2444    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2445                           DAG.getIntPtrConstant(0, true), InFlag);
2446    InFlag = Chain.getValue(1);
2447  }
2448
2449  Ops.push_back(Chain);
2450  Ops.push_back(Callee);
2451
2452  if (isTailCall)
2453    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2454
2455  // Add argument registers to the end of the list so that they are known live
2456  // into the call.
2457  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2458    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2459                                  RegsToPass[i].second.getValueType()));
2460
2461  // Add an implicit use GOT pointer in EBX.
2462  if (!isTailCall && Subtarget->isPICStyleGOT())
2463    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2464
2465  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2466  if (Is64Bit && isVarArg && !IsWin64)
2467    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2468
2469  if (InFlag.getNode())
2470    Ops.push_back(InFlag);
2471
2472  if (isTailCall) {
2473    // We used to do:
2474    //// If this is the first return lowered for this function, add the regs
2475    //// to the liveout set for the function.
2476    // This isn't right, although it's probably harmless on x86; liveouts
2477    // should be computed from returns not tail calls.  Consider a void
2478    // function making a tail call to a function returning int.
2479    return DAG.getNode(X86ISD::TC_RETURN, dl,
2480                       NodeTys, &Ops[0], Ops.size());
2481  }
2482
2483  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2484  InFlag = Chain.getValue(1);
2485
2486  // Create the CALLSEQ_END node.
2487  unsigned NumBytesForCalleeToPush;
2488  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, GuaranteedTailCallOpt))
2489    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2490  else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2491    // If this is a call to a struct-return function, the callee
2492    // pops the hidden struct pointer, so we have to push it back.
2493    // This is common for Darwin/X86, Linux & Mingw32 targets.
2494    NumBytesForCalleeToPush = 4;
2495  else
2496    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2497
2498  // Returns a flag for retval copy to use.
2499  if (!IsSibcall) {
2500    Chain = DAG.getCALLSEQ_END(Chain,
2501                               DAG.getIntPtrConstant(NumBytes, true),
2502                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2503                                                     true),
2504                               InFlag);
2505    InFlag = Chain.getValue(1);
2506  }
2507
2508  // Handle result values, copying them out of physregs into vregs that we
2509  // return.
2510  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2511                         Ins, dl, DAG, InVals);
2512}
2513
2514
2515//===----------------------------------------------------------------------===//
2516//                Fast Calling Convention (tail call) implementation
2517//===----------------------------------------------------------------------===//
2518
2519//  Like std call, callee cleans arguments, convention except that ECX is
2520//  reserved for storing the tail called function address. Only 2 registers are
2521//  free for argument passing (inreg). Tail call optimization is performed
2522//  provided:
2523//                * tailcallopt is enabled
2524//                * caller/callee are fastcc
2525//  On X86_64 architecture with GOT-style position independent code only local
2526//  (within module) calls are supported at the moment.
2527//  To keep the stack aligned according to platform abi the function
2528//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2529//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2530//  If a tail called function callee has more arguments than the caller the
2531//  caller needs to make sure that there is room to move the RETADDR to. This is
2532//  achieved by reserving an area the size of the argument delta right after the
2533//  original REtADDR, but before the saved framepointer or the spilled registers
2534//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2535//  stack layout:
2536//    arg1
2537//    arg2
2538//    RETADDR
2539//    [ new RETADDR
2540//      move area ]
2541//    (possible EBP)
2542//    ESI
2543//    EDI
2544//    local1 ..
2545
2546/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2547/// for a 16 byte align requirement.
2548unsigned
2549X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2550                                               SelectionDAG& DAG) const {
2551  MachineFunction &MF = DAG.getMachineFunction();
2552  const TargetMachine &TM = MF.getTarget();
2553  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2554  unsigned StackAlignment = TFI.getStackAlignment();
2555  uint64_t AlignMask = StackAlignment - 1;
2556  int64_t Offset = StackSize;
2557  uint64_t SlotSize = TD->getPointerSize();
2558  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2559    // Number smaller than 12 so just add the difference.
2560    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2561  } else {
2562    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2563    Offset = ((~AlignMask) & Offset) + StackAlignment +
2564      (StackAlignment-SlotSize);
2565  }
2566  return Offset;
2567}
2568
2569/// MatchingStackOffset - Return true if the given stack call argument is
2570/// already available in the same position (relatively) of the caller's
2571/// incoming argument stack.
2572static
2573bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2574                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2575                         const X86InstrInfo *TII) {
2576  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2577  int FI = INT_MAX;
2578  if (Arg.getOpcode() == ISD::CopyFromReg) {
2579    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2580    if (!TargetRegisterInfo::isVirtualRegister(VR))
2581      return false;
2582    MachineInstr *Def = MRI->getVRegDef(VR);
2583    if (!Def)
2584      return false;
2585    if (!Flags.isByVal()) {
2586      if (!TII->isLoadFromStackSlot(Def, FI))
2587        return false;
2588    } else {
2589      unsigned Opcode = Def->getOpcode();
2590      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2591          Def->getOperand(1).isFI()) {
2592        FI = Def->getOperand(1).getIndex();
2593        Bytes = Flags.getByValSize();
2594      } else
2595        return false;
2596    }
2597  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2598    if (Flags.isByVal())
2599      // ByVal argument is passed in as a pointer but it's now being
2600      // dereferenced. e.g.
2601      // define @foo(%struct.X* %A) {
2602      //   tail call @bar(%struct.X* byval %A)
2603      // }
2604      return false;
2605    SDValue Ptr = Ld->getBasePtr();
2606    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2607    if (!FINode)
2608      return false;
2609    FI = FINode->getIndex();
2610  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2611    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2612    FI = FINode->getIndex();
2613    Bytes = Flags.getByValSize();
2614  } else
2615    return false;
2616
2617  assert(FI != INT_MAX);
2618  if (!MFI->isFixedObjectIndex(FI))
2619    return false;
2620  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2621}
2622
2623/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2624/// for tail call optimization. Targets which want to do tail call
2625/// optimization should implement this function.
2626bool
2627X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2628                                                     CallingConv::ID CalleeCC,
2629                                                     bool isVarArg,
2630                                                     bool isCalleeStructRet,
2631                                                     bool isCallerStructRet,
2632                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2633                                    const SmallVectorImpl<SDValue> &OutVals,
2634                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2635                                                     SelectionDAG& DAG) const {
2636  if (!IsTailCallConvention(CalleeCC) &&
2637      CalleeCC != CallingConv::C)
2638    return false;
2639
2640  // If -tailcallopt is specified, make fastcc functions tail-callable.
2641  const MachineFunction &MF = DAG.getMachineFunction();
2642  const Function *CallerF = DAG.getMachineFunction().getFunction();
2643  CallingConv::ID CallerCC = CallerF->getCallingConv();
2644  bool CCMatch = CallerCC == CalleeCC;
2645
2646  if (GuaranteedTailCallOpt) {
2647    if (IsTailCallConvention(CalleeCC) && CCMatch)
2648      return true;
2649    return false;
2650  }
2651
2652  // Look for obvious safe cases to perform tail call optimization that do not
2653  // require ABI changes. This is what gcc calls sibcall.
2654
2655  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2656  // emit a special epilogue.
2657  if (RegInfo->needsStackRealignment(MF))
2658    return false;
2659
2660  // Also avoid sibcall optimization if either caller or callee uses struct
2661  // return semantics.
2662  if (isCalleeStructRet || isCallerStructRet)
2663    return false;
2664
2665  // An stdcall caller is expected to clean up its arguments; the callee
2666  // isn't going to do that.
2667  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2668    return false;
2669
2670  // Do not sibcall optimize vararg calls unless all arguments are passed via
2671  // registers.
2672  if (isVarArg && !Outs.empty()) {
2673
2674    // Optimizing for varargs on Win64 is unlikely to be safe without
2675    // additional testing.
2676    if (Subtarget->isTargetWin64())
2677      return false;
2678
2679    SmallVector<CCValAssign, 16> ArgLocs;
2680    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2681		   getTargetMachine(), ArgLocs, *DAG.getContext());
2682
2683    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2684    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2685      if (!ArgLocs[i].isRegLoc())
2686        return false;
2687  }
2688
2689  // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2690  // Therefore if it's not used by the call it is not safe to optimize this into
2691  // a sibcall.
2692  bool Unused = false;
2693  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2694    if (!Ins[i].Used) {
2695      Unused = true;
2696      break;
2697    }
2698  }
2699  if (Unused) {
2700    SmallVector<CCValAssign, 16> RVLocs;
2701    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2702		   getTargetMachine(), RVLocs, *DAG.getContext());
2703    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2704    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2705      CCValAssign &VA = RVLocs[i];
2706      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2707        return false;
2708    }
2709  }
2710
2711  // If the calling conventions do not match, then we'd better make sure the
2712  // results are returned in the same way as what the caller expects.
2713  if (!CCMatch) {
2714    SmallVector<CCValAssign, 16> RVLocs1;
2715    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2716		    getTargetMachine(), RVLocs1, *DAG.getContext());
2717    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2718
2719    SmallVector<CCValAssign, 16> RVLocs2;
2720    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2721		    getTargetMachine(), RVLocs2, *DAG.getContext());
2722    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2723
2724    if (RVLocs1.size() != RVLocs2.size())
2725      return false;
2726    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2727      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2728        return false;
2729      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2730        return false;
2731      if (RVLocs1[i].isRegLoc()) {
2732        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2733          return false;
2734      } else {
2735        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2736          return false;
2737      }
2738    }
2739  }
2740
2741  // If the callee takes no arguments then go on to check the results of the
2742  // call.
2743  if (!Outs.empty()) {
2744    // Check if stack adjustment is needed. For now, do not do this if any
2745    // argument is passed on the stack.
2746    SmallVector<CCValAssign, 16> ArgLocs;
2747    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2748		   getTargetMachine(), ArgLocs, *DAG.getContext());
2749
2750    // Allocate shadow area for Win64
2751    if (Subtarget->isTargetWin64()) {
2752      CCInfo.AllocateStack(32, 8);
2753    }
2754
2755    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2756    if (CCInfo.getNextStackOffset()) {
2757      MachineFunction &MF = DAG.getMachineFunction();
2758      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2759        return false;
2760
2761      // Check if the arguments are already laid out in the right way as
2762      // the caller's fixed stack objects.
2763      MachineFrameInfo *MFI = MF.getFrameInfo();
2764      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2765      const X86InstrInfo *TII =
2766        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2767      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2768        CCValAssign &VA = ArgLocs[i];
2769        SDValue Arg = OutVals[i];
2770        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2771        if (VA.getLocInfo() == CCValAssign::Indirect)
2772          return false;
2773        if (!VA.isRegLoc()) {
2774          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2775                                   MFI, MRI, TII))
2776            return false;
2777        }
2778      }
2779    }
2780
2781    // If the tailcall address may be in a register, then make sure it's
2782    // possible to register allocate for it. In 32-bit, the call address can
2783    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2784    // callee-saved registers are restored. These happen to be the same
2785    // registers used to pass 'inreg' arguments so watch out for those.
2786    if (!Subtarget->is64Bit() &&
2787        !isa<GlobalAddressSDNode>(Callee) &&
2788        !isa<ExternalSymbolSDNode>(Callee)) {
2789      unsigned NumInRegs = 0;
2790      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2791        CCValAssign &VA = ArgLocs[i];
2792        if (!VA.isRegLoc())
2793          continue;
2794        unsigned Reg = VA.getLocReg();
2795        switch (Reg) {
2796        default: break;
2797        case X86::EAX: case X86::EDX: case X86::ECX:
2798          if (++NumInRegs == 3)
2799            return false;
2800          break;
2801        }
2802      }
2803    }
2804  }
2805
2806  return true;
2807}
2808
2809FastISel *
2810X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2811  return X86::createFastISel(funcInfo);
2812}
2813
2814
2815//===----------------------------------------------------------------------===//
2816//                           Other Lowering Hooks
2817//===----------------------------------------------------------------------===//
2818
2819static bool MayFoldLoad(SDValue Op) {
2820  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2821}
2822
2823static bool MayFoldIntoStore(SDValue Op) {
2824  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2825}
2826
2827static bool isTargetShuffle(unsigned Opcode) {
2828  switch(Opcode) {
2829  default: return false;
2830  case X86ISD::PSHUFD:
2831  case X86ISD::PSHUFHW:
2832  case X86ISD::PSHUFLW:
2833  case X86ISD::SHUFPD:
2834  case X86ISD::PALIGN:
2835  case X86ISD::SHUFPS:
2836  case X86ISD::MOVLHPS:
2837  case X86ISD::MOVLHPD:
2838  case X86ISD::MOVHLPS:
2839  case X86ISD::MOVLPS:
2840  case X86ISD::MOVLPD:
2841  case X86ISD::MOVSHDUP:
2842  case X86ISD::MOVSLDUP:
2843  case X86ISD::MOVDDUP:
2844  case X86ISD::MOVSS:
2845  case X86ISD::MOVSD:
2846  case X86ISD::UNPCKLP:
2847  case X86ISD::PUNPCKL:
2848  case X86ISD::UNPCKHP:
2849  case X86ISD::PUNPCKH:
2850  case X86ISD::VPERMILP:
2851  case X86ISD::VPERM2X128:
2852    return true;
2853  }
2854  return false;
2855}
2856
2857static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2858                                               SDValue V1, SelectionDAG &DAG) {
2859  switch(Opc) {
2860  default: llvm_unreachable("Unknown x86 shuffle node");
2861  case X86ISD::MOVSHDUP:
2862  case X86ISD::MOVSLDUP:
2863  case X86ISD::MOVDDUP:
2864    return DAG.getNode(Opc, dl, VT, V1);
2865  }
2866
2867  return SDValue();
2868}
2869
2870static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2871                          SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2872  switch(Opc) {
2873  default: llvm_unreachable("Unknown x86 shuffle node");
2874  case X86ISD::PSHUFD:
2875  case X86ISD::PSHUFHW:
2876  case X86ISD::PSHUFLW:
2877  case X86ISD::VPERMILP:
2878    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2879  }
2880
2881  return SDValue();
2882}
2883
2884static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2885               SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2886  switch(Opc) {
2887  default: llvm_unreachable("Unknown x86 shuffle node");
2888  case X86ISD::PALIGN:
2889  case X86ISD::SHUFPD:
2890  case X86ISD::SHUFPS:
2891  case X86ISD::VPERM2X128:
2892    return DAG.getNode(Opc, dl, VT, V1, V2,
2893                       DAG.getConstant(TargetMask, MVT::i8));
2894  }
2895  return SDValue();
2896}
2897
2898static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2899                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2900  switch(Opc) {
2901  default: llvm_unreachable("Unknown x86 shuffle node");
2902  case X86ISD::MOVLHPS:
2903  case X86ISD::MOVLHPD:
2904  case X86ISD::MOVHLPS:
2905  case X86ISD::MOVLPS:
2906  case X86ISD::MOVLPD:
2907  case X86ISD::MOVSS:
2908  case X86ISD::MOVSD:
2909  case X86ISD::UNPCKLP:
2910  case X86ISD::PUNPCKL:
2911  case X86ISD::UNPCKHP:
2912  case X86ISD::PUNPCKH:
2913    return DAG.getNode(Opc, dl, VT, V1, V2);
2914  }
2915  return SDValue();
2916}
2917
2918SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2919  MachineFunction &MF = DAG.getMachineFunction();
2920  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2921  int ReturnAddrIndex = FuncInfo->getRAIndex();
2922
2923  if (ReturnAddrIndex == 0) {
2924    // Set up a frame object for the return address.
2925    uint64_t SlotSize = TD->getPointerSize();
2926    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2927                                                           false);
2928    FuncInfo->setRAIndex(ReturnAddrIndex);
2929  }
2930
2931  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2932}
2933
2934
2935bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2936                                       bool hasSymbolicDisplacement) {
2937  // Offset should fit into 32 bit immediate field.
2938  if (!isInt<32>(Offset))
2939    return false;
2940
2941  // If we don't have a symbolic displacement - we don't have any extra
2942  // restrictions.
2943  if (!hasSymbolicDisplacement)
2944    return true;
2945
2946  // FIXME: Some tweaks might be needed for medium code model.
2947  if (M != CodeModel::Small && M != CodeModel::Kernel)
2948    return false;
2949
2950  // For small code model we assume that latest object is 16MB before end of 31
2951  // bits boundary. We may also accept pretty large negative constants knowing
2952  // that all objects are in the positive half of address space.
2953  if (M == CodeModel::Small && Offset < 16*1024*1024)
2954    return true;
2955
2956  // For kernel code model we know that all object resist in the negative half
2957  // of 32bits address space. We may not accept negative offsets, since they may
2958  // be just off and we may accept pretty large positive ones.
2959  if (M == CodeModel::Kernel && Offset > 0)
2960    return true;
2961
2962  return false;
2963}
2964
2965/// isCalleePop - Determines whether the callee is required to pop its
2966/// own arguments. Callee pop is necessary to support tail calls.
2967bool X86::isCalleePop(CallingConv::ID CallingConv,
2968                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
2969  if (IsVarArg)
2970    return false;
2971
2972  switch (CallingConv) {
2973  default:
2974    return false;
2975  case CallingConv::X86_StdCall:
2976    return !is64Bit;
2977  case CallingConv::X86_FastCall:
2978    return !is64Bit;
2979  case CallingConv::X86_ThisCall:
2980    return !is64Bit;
2981  case CallingConv::Fast:
2982    return TailCallOpt;
2983  case CallingConv::GHC:
2984    return TailCallOpt;
2985  }
2986}
2987
2988/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2989/// specific condition code, returning the condition code and the LHS/RHS of the
2990/// comparison to make.
2991static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2992                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2993  if (!isFP) {
2994    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2995      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2996        // X > -1   -> X == 0, jump !sign.
2997        RHS = DAG.getConstant(0, RHS.getValueType());
2998        return X86::COND_NS;
2999      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3000        // X < 0   -> X == 0, jump on sign.
3001        return X86::COND_S;
3002      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3003        // X < 1   -> X <= 0
3004        RHS = DAG.getConstant(0, RHS.getValueType());
3005        return X86::COND_LE;
3006      }
3007    }
3008
3009    switch (SetCCOpcode) {
3010    default: llvm_unreachable("Invalid integer condition!");
3011    case ISD::SETEQ:  return X86::COND_E;
3012    case ISD::SETGT:  return X86::COND_G;
3013    case ISD::SETGE:  return X86::COND_GE;
3014    case ISD::SETLT:  return X86::COND_L;
3015    case ISD::SETLE:  return X86::COND_LE;
3016    case ISD::SETNE:  return X86::COND_NE;
3017    case ISD::SETULT: return X86::COND_B;
3018    case ISD::SETUGT: return X86::COND_A;
3019    case ISD::SETULE: return X86::COND_BE;
3020    case ISD::SETUGE: return X86::COND_AE;
3021    }
3022  }
3023
3024  // First determine if it is required or is profitable to flip the operands.
3025
3026  // If LHS is a foldable load, but RHS is not, flip the condition.
3027  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3028      !ISD::isNON_EXTLoad(RHS.getNode())) {
3029    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3030    std::swap(LHS, RHS);
3031  }
3032
3033  switch (SetCCOpcode) {
3034  default: break;
3035  case ISD::SETOLT:
3036  case ISD::SETOLE:
3037  case ISD::SETUGT:
3038  case ISD::SETUGE:
3039    std::swap(LHS, RHS);
3040    break;
3041  }
3042
3043  // On a floating point condition, the flags are set as follows:
3044  // ZF  PF  CF   op
3045  //  0 | 0 | 0 | X > Y
3046  //  0 | 0 | 1 | X < Y
3047  //  1 | 0 | 0 | X == Y
3048  //  1 | 1 | 1 | unordered
3049  switch (SetCCOpcode) {
3050  default: llvm_unreachable("Condcode should be pre-legalized away");
3051  case ISD::SETUEQ:
3052  case ISD::SETEQ:   return X86::COND_E;
3053  case ISD::SETOLT:              // flipped
3054  case ISD::SETOGT:
3055  case ISD::SETGT:   return X86::COND_A;
3056  case ISD::SETOLE:              // flipped
3057  case ISD::SETOGE:
3058  case ISD::SETGE:   return X86::COND_AE;
3059  case ISD::SETUGT:              // flipped
3060  case ISD::SETULT:
3061  case ISD::SETLT:   return X86::COND_B;
3062  case ISD::SETUGE:              // flipped
3063  case ISD::SETULE:
3064  case ISD::SETLE:   return X86::COND_BE;
3065  case ISD::SETONE:
3066  case ISD::SETNE:   return X86::COND_NE;
3067  case ISD::SETUO:   return X86::COND_P;
3068  case ISD::SETO:    return X86::COND_NP;
3069  case ISD::SETOEQ:
3070  case ISD::SETUNE:  return X86::COND_INVALID;
3071  }
3072}
3073
3074/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3075/// code. Current x86 isa includes the following FP cmov instructions:
3076/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3077static bool hasFPCMov(unsigned X86CC) {
3078  switch (X86CC) {
3079  default:
3080    return false;
3081  case X86::COND_B:
3082  case X86::COND_BE:
3083  case X86::COND_E:
3084  case X86::COND_P:
3085  case X86::COND_A:
3086  case X86::COND_AE:
3087  case X86::COND_NE:
3088  case X86::COND_NP:
3089    return true;
3090  }
3091}
3092
3093/// isFPImmLegal - Returns true if the target can instruction select the
3094/// specified FP immediate natively. If false, the legalizer will
3095/// materialize the FP immediate as a load from a constant pool.
3096bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3097  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3098    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3099      return true;
3100  }
3101  return false;
3102}
3103
3104/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3105/// the specified range (L, H].
3106static bool isUndefOrInRange(int Val, int Low, int Hi) {
3107  return (Val < 0) || (Val >= Low && Val < Hi);
3108}
3109
3110/// isUndefOrInRange - Return true if every element in Mask, begining
3111/// from position Pos and ending in Pos+Size, falls within the specified
3112/// range (L, L+Pos]. or is undef.
3113static bool isUndefOrInRange(const SmallVectorImpl<int> &Mask,
3114                             int Pos, int Size, int Low, int Hi) {
3115  for (int i = Pos, e = Pos+Size; i != e; ++i)
3116    if (!isUndefOrInRange(Mask[i], Low, Hi))
3117      return false;
3118  return true;
3119}
3120
3121/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3122/// specified value.
3123static bool isUndefOrEqual(int Val, int CmpVal) {
3124  if (Val < 0 || Val == CmpVal)
3125    return true;
3126  return false;
3127}
3128
3129/// isSequentialOrUndefInRange - Return true if every element in Mask, begining
3130/// from position Pos and ending in Pos+Size, falls within the specified
3131/// sequential range (L, L+Pos]. or is undef.
3132static bool isSequentialOrUndefInRange(const SmallVectorImpl<int> &Mask,
3133                                       int Pos, int Size, int Low) {
3134  for (int i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3135    if (!isUndefOrEqual(Mask[i], Low))
3136      return false;
3137  return true;
3138}
3139
3140/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3141/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3142/// the second operand.
3143static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3144  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3145    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3146  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3147    return (Mask[0] < 2 && Mask[1] < 2);
3148  return false;
3149}
3150
3151bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
3152  SmallVector<int, 8> M;
3153  N->getMask(M);
3154  return ::isPSHUFDMask(M, N->getValueType(0));
3155}
3156
3157/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3158/// is suitable for input to PSHUFHW.
3159static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3160  if (VT != MVT::v8i16)
3161    return false;
3162
3163  // Lower quadword copied in order or undef.
3164  for (int i = 0; i != 4; ++i)
3165    if (Mask[i] >= 0 && Mask[i] != i)
3166      return false;
3167
3168  // Upper quadword shuffled.
3169  for (int i = 4; i != 8; ++i)
3170    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
3171      return false;
3172
3173  return true;
3174}
3175
3176bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
3177  SmallVector<int, 8> M;
3178  N->getMask(M);
3179  return ::isPSHUFHWMask(M, N->getValueType(0));
3180}
3181
3182/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3183/// is suitable for input to PSHUFLW.
3184static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3185  if (VT != MVT::v8i16)
3186    return false;
3187
3188  // Upper quadword copied in order.
3189  for (int i = 4; i != 8; ++i)
3190    if (Mask[i] >= 0 && Mask[i] != i)
3191      return false;
3192
3193  // Lower quadword shuffled.
3194  for (int i = 0; i != 4; ++i)
3195    if (Mask[i] >= 4)
3196      return false;
3197
3198  return true;
3199}
3200
3201bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
3202  SmallVector<int, 8> M;
3203  N->getMask(M);
3204  return ::isPSHUFLWMask(M, N->getValueType(0));
3205}
3206
3207/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3208/// is suitable for input to PALIGNR.
3209static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
3210                          bool hasSSSE3OrAVX) {
3211  int i, e = VT.getVectorNumElements();
3212  if (VT.getSizeInBits() != 128 && VT.getSizeInBits() != 64)
3213    return false;
3214
3215  // Do not handle v2i64 / v2f64 shuffles with palignr.
3216  if (e < 4 || !hasSSSE3OrAVX)
3217    return false;
3218
3219  for (i = 0; i != e; ++i)
3220    if (Mask[i] >= 0)
3221      break;
3222
3223  // All undef, not a palignr.
3224  if (i == e)
3225    return false;
3226
3227  // Make sure we're shifting in the right direction.
3228  if (Mask[i] <= i)
3229    return false;
3230
3231  int s = Mask[i] - i;
3232
3233  // Check the rest of the elements to see if they are consecutive.
3234  for (++i; i != e; ++i) {
3235    int m = Mask[i];
3236    if (m >= 0 && m != s+i)
3237      return false;
3238  }
3239  return true;
3240}
3241
3242/// isVSHUFPYMask - Return true if the specified VECTOR_SHUFFLE operand
3243/// specifies a shuffle of elements that is suitable for input to 256-bit
3244/// VSHUFPSY.
3245static bool isVSHUFPYMask(const SmallVectorImpl<int> &Mask, EVT VT,
3246                          bool HasAVX) {
3247  int NumElems = VT.getVectorNumElements();
3248
3249  if (!HasAVX || VT.getSizeInBits() != 256)
3250    return false;
3251
3252  if (NumElems != 4 && NumElems != 8)
3253    return false;
3254
3255  // VSHUFPSY divides the resulting vector into 4 chunks.
3256  // The sources are also splitted into 4 chunks, and each destination
3257  // chunk must come from a different source chunk.
3258  //
3259  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3260  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3261  //
3262  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3263  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3264  //
3265  // VSHUFPDY divides the resulting vector into 4 chunks.
3266  // The sources are also splitted into 4 chunks, and each destination
3267  // chunk must come from a different source chunk.
3268  //
3269  //  SRC1 =>      X3       X2       X1       X0
3270  //  SRC2 =>      Y3       Y2       Y1       Y0
3271  //
3272  //  DST  =>  Y3..Y2,  X3..X2,  Y1..Y0,  X1..X0
3273  //
3274  int QuarterSize = NumElems/4;
3275  int HalfSize = QuarterSize*2;
3276  for (int i = 0; i < QuarterSize; ++i)
3277    if (!isUndefOrInRange(Mask[i], 0, HalfSize))
3278      return false;
3279  for (int i = QuarterSize; i < QuarterSize*2; ++i)
3280    if (!isUndefOrInRange(Mask[i], NumElems, NumElems+HalfSize))
3281      return false;
3282
3283  // For VSHUFPSY, the mask of the second half must be the same as the first
3284  // but with the appropriate offsets. This works in the same way as
3285  // VPERMILPS works with masks.
3286  for (int i = QuarterSize*2; i < QuarterSize*3; ++i) {
3287    if (!isUndefOrInRange(Mask[i], HalfSize, NumElems))
3288      return false;
3289    if (NumElems == 4)
3290      continue;
3291    // VSHUFPSY handling
3292    int FstHalfIdx = i-HalfSize;
3293    if (Mask[FstHalfIdx] < 0)
3294      continue;
3295    if (!isUndefOrEqual(Mask[i], Mask[FstHalfIdx]+HalfSize))
3296      return false;
3297  }
3298  for (int i = QuarterSize*3; i < NumElems; ++i) {
3299    if (!isUndefOrInRange(Mask[i], NumElems+HalfSize, NumElems*2))
3300      return false;
3301    int FstHalfIdx = i-HalfSize;
3302    if (NumElems == 4)
3303      continue;
3304    // VSHUFPSY handling
3305    if (Mask[FstHalfIdx] < 0)
3306      continue;
3307    if (!isUndefOrEqual(Mask[i], Mask[FstHalfIdx]+HalfSize))
3308      return false;
3309  }
3310
3311  return true;
3312}
3313
3314/// isCommutedVSHUFP() - Returns true if the shuffle mask is exactly
3315/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
3316/// half elements to come from vector 1 (which would equal the dest.) and
3317/// the upper half to come from vector 2.
3318static bool isCommutedVSHUFPY(ShuffleVectorSDNode *N, bool HasAVX) {
3319  EVT VT = N->getValueType(0);
3320  int NumElems = VT.getVectorNumElements();
3321  SmallVector<int, 8> Mask;
3322  N->getMask(Mask);
3323
3324  if (!HasAVX || VT.getSizeInBits() != 256)
3325    return false;
3326
3327  if (NumElems != 4 && NumElems != 8)
3328    return false;
3329
3330  // VSHUFPSY divides the resulting vector into 4 chunks.
3331  // The sources are also splitted into 4 chunks, and each destination
3332  // chunk must come from a different source chunk.
3333  //
3334  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3335  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3336  //
3337  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3338  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3339  //
3340  // VSHUFPDY divides the resulting vector into 4 chunks.
3341  // The sources are also splitted into 4 chunks, and each destination
3342  // chunk must come from a different source chunk.
3343  //
3344  //  SRC1 =>      X3       X2       X1       X0
3345  //  SRC2 =>      Y3       Y2       Y1       Y0
3346  //
3347  //  DST  =>  Y3..Y2,  X3..X2,  Y1..Y0,  X1..X0
3348  //
3349  int QuarterSize = NumElems/4;
3350  int HalfSize = QuarterSize*2;
3351  for (int i = 0; i < QuarterSize; ++i)
3352    if (!isUndefOrInRange(Mask[i], NumElems, NumElems+HalfSize))
3353      return false;
3354  for (int i = QuarterSize; i < QuarterSize*2; ++i)
3355    if (!isUndefOrInRange(Mask[i], 0, HalfSize))
3356      return false;
3357
3358  // For VSHUFPSY, the mask of the second half must be the same as the first
3359  // but with the appropriate offsets. This works in the same way as
3360  // VPERMILPS works with masks.
3361  for (int i = QuarterSize*2; i < QuarterSize*3; ++i) {
3362    if (!isUndefOrInRange(Mask[i], NumElems+HalfSize, NumElems*2))
3363      return false;
3364    if (NumElems == 4)
3365      continue;
3366    // VSHUFPSY handling
3367    int FstHalfIdx = i-HalfSize;
3368    if (Mask[FstHalfIdx] < 0)
3369      continue;
3370    if (!isUndefOrEqual(Mask[i], Mask[FstHalfIdx]+HalfSize))
3371      return false;
3372  }
3373  for (int i = QuarterSize*3; i < NumElems; ++i) {
3374    if (!isUndefOrInRange(Mask[i], HalfSize, NumElems))
3375      return false;
3376    if (NumElems == 4)
3377      continue;
3378    // VSHUFPSY handling
3379    int FstHalfIdx = i-HalfSize;
3380    if (Mask[FstHalfIdx] < 0)
3381      continue;
3382    if (!isUndefOrEqual(Mask[i], Mask[FstHalfIdx]+HalfSize))
3383      return false;
3384  }
3385
3386  return true;
3387}
3388
3389/// getShuffleVSHUFPYImmediate - Return the appropriate immediate to shuffle
3390/// the specified VECTOR_MASK mask with VSHUFPSY/VSHUFPDY instructions.
3391static unsigned getShuffleVSHUFPYImmediate(SDNode *N) {
3392  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3393  EVT VT = SVOp->getValueType(0);
3394  int NumElems = VT.getVectorNumElements();
3395
3396  assert(VT.getSizeInBits() == 256 && "Only supports 256-bit types");
3397  assert((NumElems == 4 || NumElems == 8) && "Only supports v4 and v8 types");
3398
3399  int HalfSize = NumElems/2;
3400  unsigned Mul = (NumElems == 8) ? 2 : 1;
3401  unsigned Mask = 0;
3402  for (int i = 0; i != NumElems; ++i) {
3403    int Elt = SVOp->getMaskElt(i);
3404    if (Elt < 0)
3405      continue;
3406    Elt %= HalfSize;
3407    unsigned Shamt = i;
3408    // For VSHUFPSY, the mask of the first half must be equal to the second one.
3409    if (NumElems == 8) Shamt %= HalfSize;
3410    Mask |= Elt << (Shamt*Mul);
3411  }
3412
3413  return Mask;
3414}
3415
3416/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3417/// the two vector operands have swapped position.
3418static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
3419  unsigned NumElems = VT.getVectorNumElements();
3420  for (unsigned i = 0; i != NumElems; ++i) {
3421    int idx = Mask[i];
3422    if (idx < 0)
3423      continue;
3424    else if (idx < (int)NumElems)
3425      Mask[i] = idx + NumElems;
3426    else
3427      Mask[i] = idx - NumElems;
3428  }
3429}
3430
3431/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3432/// specifies a shuffle of elements that is suitable for input to 128-bit
3433/// SHUFPS and SHUFPD.
3434static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3435  int NumElems = VT.getVectorNumElements();
3436
3437  if (VT.getSizeInBits() != 128)
3438    return false;
3439
3440  if (NumElems != 2 && NumElems != 4)
3441    return false;
3442
3443  int Half = NumElems / 2;
3444  for (int i = 0; i < Half; ++i)
3445    if (!isUndefOrInRange(Mask[i], 0, NumElems))
3446      return false;
3447  for (int i = Half; i < NumElems; ++i)
3448    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3449      return false;
3450
3451  return true;
3452}
3453
3454bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
3455  SmallVector<int, 8> M;
3456  N->getMask(M);
3457  return ::isSHUFPMask(M, N->getValueType(0));
3458}
3459
3460/// isCommutedSHUFPMask - Returns true if the shuffle mask is exactly
3461/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
3462/// half elements to come from vector 1 (which would equal the dest.) and
3463/// the upper half to come from vector 2.
3464static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3465  int NumElems = VT.getVectorNumElements();
3466
3467  if (NumElems != 2 && NumElems != 4)
3468    return false;
3469
3470  int Half = NumElems / 2;
3471  for (int i = 0; i < Half; ++i)
3472    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3473      return false;
3474  for (int i = Half; i < NumElems; ++i)
3475    if (!isUndefOrInRange(Mask[i], 0, NumElems))
3476      return false;
3477  return true;
3478}
3479
3480static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
3481  SmallVector<int, 8> M;
3482  N->getMask(M);
3483  return isCommutedSHUFPMask(M, N->getValueType(0));
3484}
3485
3486/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3487/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3488bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
3489  EVT VT = N->getValueType(0);
3490  unsigned NumElems = VT.getVectorNumElements();
3491
3492  if (VT.getSizeInBits() != 128)
3493    return false;
3494
3495  if (NumElems != 4)
3496    return false;
3497
3498  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3499  return isUndefOrEqual(N->getMaskElt(0), 6) &&
3500         isUndefOrEqual(N->getMaskElt(1), 7) &&
3501         isUndefOrEqual(N->getMaskElt(2), 2) &&
3502         isUndefOrEqual(N->getMaskElt(3), 3);
3503}
3504
3505/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3506/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3507/// <2, 3, 2, 3>
3508bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
3509  EVT VT = N->getValueType(0);
3510  unsigned NumElems = VT.getVectorNumElements();
3511
3512  if (VT.getSizeInBits() != 128)
3513    return false;
3514
3515  if (NumElems != 4)
3516    return false;
3517
3518  return isUndefOrEqual(N->getMaskElt(0), 2) &&
3519         isUndefOrEqual(N->getMaskElt(1), 3) &&
3520         isUndefOrEqual(N->getMaskElt(2), 2) &&
3521         isUndefOrEqual(N->getMaskElt(3), 3);
3522}
3523
3524/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3525/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3526bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
3527  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3528
3529  if (NumElems != 2 && NumElems != 4)
3530    return false;
3531
3532  for (unsigned i = 0; i < NumElems/2; ++i)
3533    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
3534      return false;
3535
3536  for (unsigned i = NumElems/2; i < NumElems; ++i)
3537    if (!isUndefOrEqual(N->getMaskElt(i), i))
3538      return false;
3539
3540  return true;
3541}
3542
3543/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3544/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3545bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
3546  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3547
3548  if ((NumElems != 2 && NumElems != 4)
3549      || N->getValueType(0).getSizeInBits() > 128)
3550    return false;
3551
3552  for (unsigned i = 0; i < NumElems/2; ++i)
3553    if (!isUndefOrEqual(N->getMaskElt(i), i))
3554      return false;
3555
3556  for (unsigned i = 0; i < NumElems/2; ++i)
3557    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3558      return false;
3559
3560  return true;
3561}
3562
3563/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3564/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3565static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3566                         bool HasAVX2, bool V2IsSplat = false) {
3567  int NumElts = VT.getVectorNumElements();
3568
3569  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3570         "Unsupported vector type for unpckh");
3571
3572  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3573      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3574    return false;
3575
3576  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3577  // independently on 128-bit lanes.
3578  unsigned NumLanes = VT.getSizeInBits()/128;
3579  unsigned NumLaneElts = NumElts/NumLanes;
3580
3581  unsigned Start = 0;
3582  unsigned End = NumLaneElts;
3583  for (unsigned s = 0; s < NumLanes; ++s) {
3584    for (unsigned i = Start, j = s * NumLaneElts;
3585         i != End;
3586         i += 2, ++j) {
3587      int BitI  = Mask[i];
3588      int BitI1 = Mask[i+1];
3589      if (!isUndefOrEqual(BitI, j))
3590        return false;
3591      if (V2IsSplat) {
3592        if (!isUndefOrEqual(BitI1, NumElts))
3593          return false;
3594      } else {
3595        if (!isUndefOrEqual(BitI1, j + NumElts))
3596          return false;
3597      }
3598    }
3599    // Process the next 128 bits.
3600    Start += NumLaneElts;
3601    End += NumLaneElts;
3602  }
3603
3604  return true;
3605}
3606
3607bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool HasAVX2, bool V2IsSplat) {
3608  SmallVector<int, 8> M;
3609  N->getMask(M);
3610  return ::isUNPCKLMask(M, N->getValueType(0), HasAVX2, V2IsSplat);
3611}
3612
3613/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3614/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3615static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
3616                         bool HasAVX2, bool V2IsSplat = false) {
3617  int NumElts = VT.getVectorNumElements();
3618
3619  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3620         "Unsupported vector type for unpckh");
3621
3622  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3623      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3624    return false;
3625
3626  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3627  // independently on 128-bit lanes.
3628  unsigned NumLanes = VT.getSizeInBits()/128;
3629  unsigned NumLaneElts = NumElts/NumLanes;
3630
3631  unsigned Start = 0;
3632  unsigned End = NumLaneElts;
3633  for (unsigned l = 0; l != NumLanes; ++l) {
3634    for (unsigned i = Start, j = (l*NumLaneElts)+NumLaneElts/2;
3635                             i != End; i += 2, ++j) {
3636      int BitI  = Mask[i];
3637      int BitI1 = Mask[i+1];
3638      if (!isUndefOrEqual(BitI, j))
3639        return false;
3640      if (V2IsSplat) {
3641        if (isUndefOrEqual(BitI1, NumElts))
3642          return false;
3643      } else {
3644        if (!isUndefOrEqual(BitI1, j+NumElts))
3645          return false;
3646      }
3647    }
3648    // Process the next 128 bits.
3649    Start += NumLaneElts;
3650    End += NumLaneElts;
3651  }
3652  return true;
3653}
3654
3655bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool HasAVX2, bool V2IsSplat) {
3656  SmallVector<int, 8> M;
3657  N->getMask(M);
3658  return ::isUNPCKHMask(M, N->getValueType(0), HasAVX2, V2IsSplat);
3659}
3660
3661/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3662/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3663/// <0, 0, 1, 1>
3664static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3665  int NumElems = VT.getVectorNumElements();
3666  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3667    return false;
3668
3669  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3670  // FIXME: Need a better way to get rid of this, there's no latency difference
3671  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3672  // the former later. We should also remove the "_undef" special mask.
3673  if (NumElems == 4 && VT.getSizeInBits() == 256)
3674    return false;
3675
3676  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3677  // independently on 128-bit lanes.
3678  unsigned NumLanes = VT.getSizeInBits() / 128;
3679  unsigned NumLaneElts = NumElems / NumLanes;
3680
3681  for (unsigned s = 0; s < NumLanes; ++s) {
3682    for (unsigned i = s * NumLaneElts, j = s * NumLaneElts;
3683         i != NumLaneElts * (s + 1);
3684         i += 2, ++j) {
3685      int BitI  = Mask[i];
3686      int BitI1 = Mask[i+1];
3687
3688      if (!isUndefOrEqual(BitI, j))
3689        return false;
3690      if (!isUndefOrEqual(BitI1, j))
3691        return false;
3692    }
3693  }
3694
3695  return true;
3696}
3697
3698bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
3699  SmallVector<int, 8> M;
3700  N->getMask(M);
3701  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
3702}
3703
3704/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3705/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3706/// <2, 2, 3, 3>
3707static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3708  int NumElems = VT.getVectorNumElements();
3709  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3710    return false;
3711
3712  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
3713    int BitI  = Mask[i];
3714    int BitI1 = Mask[i+1];
3715    if (!isUndefOrEqual(BitI, j))
3716      return false;
3717    if (!isUndefOrEqual(BitI1, j))
3718      return false;
3719  }
3720  return true;
3721}
3722
3723bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
3724  SmallVector<int, 8> M;
3725  N->getMask(M);
3726  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
3727}
3728
3729/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3730/// specifies a shuffle of elements that is suitable for input to MOVSS,
3731/// MOVSD, and MOVD, i.e. setting the lowest element.
3732static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3733  if (VT.getVectorElementType().getSizeInBits() < 32)
3734    return false;
3735
3736  int NumElts = VT.getVectorNumElements();
3737
3738  if (!isUndefOrEqual(Mask[0], NumElts))
3739    return false;
3740
3741  for (int i = 1; i < NumElts; ++i)
3742    if (!isUndefOrEqual(Mask[i], i))
3743      return false;
3744
3745  return true;
3746}
3747
3748bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3749  SmallVector<int, 8> M;
3750  N->getMask(M);
3751  return ::isMOVLMask(M, N->getValueType(0));
3752}
3753
3754/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
3755/// as permutations between 128-bit chunks or halves. As an example: this
3756/// shuffle bellow:
3757///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3758/// The first half comes from the second half of V1 and the second half from the
3759/// the second half of V2.
3760static bool isVPERM2X128Mask(const SmallVectorImpl<int> &Mask, EVT VT,
3761                             bool HasAVX) {
3762  if (!HasAVX || VT.getSizeInBits() != 256)
3763    return false;
3764
3765  // The shuffle result is divided into half A and half B. In total the two
3766  // sources have 4 halves, namely: C, D, E, F. The final values of A and
3767  // B must come from C, D, E or F.
3768  int HalfSize = VT.getVectorNumElements()/2;
3769  bool MatchA = false, MatchB = false;
3770
3771  // Check if A comes from one of C, D, E, F.
3772  for (int Half = 0; Half < 4; ++Half) {
3773    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3774      MatchA = true;
3775      break;
3776    }
3777  }
3778
3779  // Check if B comes from one of C, D, E, F.
3780  for (int Half = 0; Half < 4; ++Half) {
3781    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3782      MatchB = true;
3783      break;
3784    }
3785  }
3786
3787  return MatchA && MatchB;
3788}
3789
3790/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
3791/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
3792static unsigned getShuffleVPERM2X128Immediate(SDNode *N) {
3793  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3794  EVT VT = SVOp->getValueType(0);
3795
3796  int HalfSize = VT.getVectorNumElements()/2;
3797
3798  int FstHalf = 0, SndHalf = 0;
3799  for (int i = 0; i < HalfSize; ++i) {
3800    if (SVOp->getMaskElt(i) > 0) {
3801      FstHalf = SVOp->getMaskElt(i)/HalfSize;
3802      break;
3803    }
3804  }
3805  for (int i = HalfSize; i < HalfSize*2; ++i) {
3806    if (SVOp->getMaskElt(i) > 0) {
3807      SndHalf = SVOp->getMaskElt(i)/HalfSize;
3808      break;
3809    }
3810  }
3811
3812  return (FstHalf | (SndHalf << 4));
3813}
3814
3815/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
3816/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3817/// Note that VPERMIL mask matching is different depending whether theunderlying
3818/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3819/// to the same elements of the low, but to the higher half of the source.
3820/// In VPERMILPD the two lanes could be shuffled independently of each other
3821/// with the same restriction that lanes can't be crossed.
3822static bool isVPERMILPMask(const SmallVectorImpl<int> &Mask, EVT VT,
3823                           bool HasAVX) {
3824  int NumElts = VT.getVectorNumElements();
3825  int NumLanes = VT.getSizeInBits()/128;
3826
3827  if (!HasAVX)
3828    return false;
3829
3830  // Only match 256-bit with 32/64-bit types
3831  if (VT.getSizeInBits() != 256 || (NumElts != 4 && NumElts != 8))
3832    return false;
3833
3834  int LaneSize = NumElts/NumLanes;
3835  for (int l = 0; l != NumLanes; ++l) {
3836    int LaneStart = l*LaneSize;
3837    for (int i = 0; i != LaneSize; ++i) {
3838      if (!isUndefOrInRange(Mask[i+LaneStart], LaneStart, LaneStart+LaneSize))
3839        return false;
3840      if (NumElts == 4 || l == 0)
3841        continue;
3842      // VPERMILPS handling
3843      if (Mask[i] < 0)
3844        continue;
3845      if (!isUndefOrEqual(Mask[i+LaneStart], Mask[i]+LaneSize))
3846        return false;
3847    }
3848  }
3849
3850  return true;
3851}
3852
3853/// getShuffleVPERMILPImmediate - Return the appropriate immediate to shuffle
3854/// the specified VECTOR_MASK mask with VPERMILPS/D* instructions.
3855static unsigned getShuffleVPERMILPImmediate(SDNode *N) {
3856  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3857  EVT VT = SVOp->getValueType(0);
3858
3859  int NumElts = VT.getVectorNumElements();
3860  int NumLanes = VT.getSizeInBits()/128;
3861  int LaneSize = NumElts/NumLanes;
3862
3863  // Although the mask is equal for both lanes do it twice to get the cases
3864  // where a mask will match because the same mask element is undef on the
3865  // first half but valid on the second. This would get pathological cases
3866  // such as: shuffle <u, 0, 1, 2, 4, 4, 5, 6>, which is completely valid.
3867  unsigned Shift = (LaneSize == 4) ? 2 : 1;
3868  unsigned Mask = 0;
3869  for (int i = 0; i != NumElts; ++i) {
3870    int MaskElt = SVOp->getMaskElt(i);
3871    if (MaskElt < 0)
3872      continue;
3873    MaskElt %= LaneSize;
3874    unsigned Shamt = i;
3875    // VPERMILPSY, the mask of the first half must be equal to the second one
3876    if (NumElts == 8) Shamt %= LaneSize;
3877    Mask |= MaskElt << (Shamt*Shift);
3878  }
3879
3880  return Mask;
3881}
3882
3883/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3884/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3885/// element of vector 2 and the other elements to come from vector 1 in order.
3886static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3887                               bool V2IsSplat = false, bool V2IsUndef = false) {
3888  int NumOps = VT.getVectorNumElements();
3889  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3890    return false;
3891
3892  if (!isUndefOrEqual(Mask[0], 0))
3893    return false;
3894
3895  for (int i = 1; i < NumOps; ++i)
3896    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3897          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3898          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3899      return false;
3900
3901  return true;
3902}
3903
3904static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3905                           bool V2IsUndef = false) {
3906  SmallVector<int, 8> M;
3907  N->getMask(M);
3908  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
3909}
3910
3911/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3912/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3913/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3914bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N,
3915                         const X86Subtarget *Subtarget) {
3916  if (!Subtarget->hasSSE3orAVX())
3917    return false;
3918
3919  // The second vector must be undef
3920  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3921    return false;
3922
3923  EVT VT = N->getValueType(0);
3924  unsigned NumElems = VT.getVectorNumElements();
3925
3926  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3927      (VT.getSizeInBits() == 256 && NumElems != 8))
3928    return false;
3929
3930  // "i+1" is the value the indexed mask element must have
3931  for (unsigned i = 0; i < NumElems; i += 2)
3932    if (!isUndefOrEqual(N->getMaskElt(i), i+1) ||
3933        !isUndefOrEqual(N->getMaskElt(i+1), i+1))
3934      return false;
3935
3936  return true;
3937}
3938
3939/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3940/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3941/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3942bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N,
3943                         const X86Subtarget *Subtarget) {
3944  if (!Subtarget->hasSSE3orAVX())
3945    return false;
3946
3947  // The second vector must be undef
3948  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3949    return false;
3950
3951  EVT VT = N->getValueType(0);
3952  unsigned NumElems = VT.getVectorNumElements();
3953
3954  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3955      (VT.getSizeInBits() == 256 && NumElems != 8))
3956    return false;
3957
3958  // "i" is the value the indexed mask element must have
3959  for (unsigned i = 0; i < NumElems; i += 2)
3960    if (!isUndefOrEqual(N->getMaskElt(i), i) ||
3961        !isUndefOrEqual(N->getMaskElt(i+1), i))
3962      return false;
3963
3964  return true;
3965}
3966
3967/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
3968/// specifies a shuffle of elements that is suitable for input to 256-bit
3969/// version of MOVDDUP.
3970static bool isMOVDDUPYMask(ShuffleVectorSDNode *N,
3971                           const X86Subtarget *Subtarget) {
3972  EVT VT = N->getValueType(0);
3973  int NumElts = VT.getVectorNumElements();
3974  bool V2IsUndef = N->getOperand(1).getOpcode() == ISD::UNDEF;
3975
3976  if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256 ||
3977      !V2IsUndef || NumElts != 4)
3978    return false;
3979
3980  for (int i = 0; i != NumElts/2; ++i)
3981    if (!isUndefOrEqual(N->getMaskElt(i), 0))
3982      return false;
3983  for (int i = NumElts/2; i != NumElts; ++i)
3984    if (!isUndefOrEqual(N->getMaskElt(i), NumElts/2))
3985      return false;
3986  return true;
3987}
3988
3989/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3990/// specifies a shuffle of elements that is suitable for input to 128-bit
3991/// version of MOVDDUP.
3992bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3993  EVT VT = N->getValueType(0);
3994
3995  if (VT.getSizeInBits() != 128)
3996    return false;
3997
3998  int e = VT.getVectorNumElements() / 2;
3999  for (int i = 0; i < e; ++i)
4000    if (!isUndefOrEqual(N->getMaskElt(i), i))
4001      return false;
4002  for (int i = 0; i < e; ++i)
4003    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
4004      return false;
4005  return true;
4006}
4007
4008/// isVEXTRACTF128Index - Return true if the specified
4009/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
4010/// suitable for input to VEXTRACTF128.
4011bool X86::isVEXTRACTF128Index(SDNode *N) {
4012  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4013    return false;
4014
4015  // The index should be aligned on a 128-bit boundary.
4016  uint64_t Index =
4017    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4018
4019  unsigned VL = N->getValueType(0).getVectorNumElements();
4020  unsigned VBits = N->getValueType(0).getSizeInBits();
4021  unsigned ElSize = VBits / VL;
4022  bool Result = (Index * ElSize) % 128 == 0;
4023
4024  return Result;
4025}
4026
4027/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
4028/// operand specifies a subvector insert that is suitable for input to
4029/// VINSERTF128.
4030bool X86::isVINSERTF128Index(SDNode *N) {
4031  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4032    return false;
4033
4034  // The index should be aligned on a 128-bit boundary.
4035  uint64_t Index =
4036    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4037
4038  unsigned VL = N->getValueType(0).getVectorNumElements();
4039  unsigned VBits = N->getValueType(0).getSizeInBits();
4040  unsigned ElSize = VBits / VL;
4041  bool Result = (Index * ElSize) % 128 == 0;
4042
4043  return Result;
4044}
4045
4046/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
4047/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
4048unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
4049  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4050  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
4051
4052  unsigned Shift = (NumOperands == 4) ? 2 : 1;
4053  unsigned Mask = 0;
4054  for (int i = 0; i < NumOperands; ++i) {
4055    int Val = SVOp->getMaskElt(NumOperands-i-1);
4056    if (Val < 0) Val = 0;
4057    if (Val >= NumOperands) Val -= NumOperands;
4058    Mask |= Val;
4059    if (i != NumOperands - 1)
4060      Mask <<= Shift;
4061  }
4062  return Mask;
4063}
4064
4065/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
4066/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
4067unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
4068  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4069  unsigned Mask = 0;
4070  // 8 nodes, but we only care about the last 4.
4071  for (unsigned i = 7; i >= 4; --i) {
4072    int Val = SVOp->getMaskElt(i);
4073    if (Val >= 0)
4074      Mask |= (Val - 4);
4075    if (i != 4)
4076      Mask <<= 2;
4077  }
4078  return Mask;
4079}
4080
4081/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
4082/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
4083unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
4084  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4085  unsigned Mask = 0;
4086  // 8 nodes, but we only care about the first 4.
4087  for (int i = 3; i >= 0; --i) {
4088    int Val = SVOp->getMaskElt(i);
4089    if (Val >= 0)
4090      Mask |= Val;
4091    if (i != 0)
4092      Mask <<= 2;
4093  }
4094  return Mask;
4095}
4096
4097/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
4098/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
4099unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
4100  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4101  EVT VVT = N->getValueType(0);
4102  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
4103  int Val = 0;
4104
4105  unsigned i, e;
4106  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
4107    Val = SVOp->getMaskElt(i);
4108    if (Val >= 0)
4109      break;
4110  }
4111  assert(Val - i > 0 && "PALIGNR imm should be positive");
4112  return (Val - i) * EltSize;
4113}
4114
4115/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
4116/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
4117/// instructions.
4118unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
4119  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4120    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
4121
4122  uint64_t Index =
4123    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4124
4125  EVT VecVT = N->getOperand(0).getValueType();
4126  EVT ElVT = VecVT.getVectorElementType();
4127
4128  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4129  return Index / NumElemsPerChunk;
4130}
4131
4132/// getInsertVINSERTF128Immediate - Return the appropriate immediate
4133/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4134/// instructions.
4135unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
4136  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4137    llvm_unreachable("Illegal insert subvector for VINSERTF128");
4138
4139  uint64_t Index =
4140    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4141
4142  EVT VecVT = N->getValueType(0);
4143  EVT ElVT = VecVT.getVectorElementType();
4144
4145  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4146  return Index / NumElemsPerChunk;
4147}
4148
4149/// isZeroNode - Returns true if Elt is a constant zero or a floating point
4150/// constant +0.0.
4151bool X86::isZeroNode(SDValue Elt) {
4152  return ((isa<ConstantSDNode>(Elt) &&
4153           cast<ConstantSDNode>(Elt)->isNullValue()) ||
4154          (isa<ConstantFPSDNode>(Elt) &&
4155           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
4156}
4157
4158/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4159/// their permute mask.
4160static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4161                                    SelectionDAG &DAG) {
4162  EVT VT = SVOp->getValueType(0);
4163  unsigned NumElems = VT.getVectorNumElements();
4164  SmallVector<int, 8> MaskVec;
4165
4166  for (unsigned i = 0; i != NumElems; ++i) {
4167    int idx = SVOp->getMaskElt(i);
4168    if (idx < 0)
4169      MaskVec.push_back(idx);
4170    else if (idx < (int)NumElems)
4171      MaskVec.push_back(idx + NumElems);
4172    else
4173      MaskVec.push_back(idx - NumElems);
4174  }
4175  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4176                              SVOp->getOperand(0), &MaskVec[0]);
4177}
4178
4179/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4180/// match movhlps. The lower half elements should come from upper half of
4181/// V1 (and in order), and the upper half elements should come from the upper
4182/// half of V2 (and in order).
4183static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
4184  EVT VT = Op->getValueType(0);
4185  if (VT.getSizeInBits() != 128)
4186    return false;
4187  if (VT.getVectorNumElements() != 4)
4188    return false;
4189  for (unsigned i = 0, e = 2; i != e; ++i)
4190    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
4191      return false;
4192  for (unsigned i = 2; i != 4; ++i)
4193    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
4194      return false;
4195  return true;
4196}
4197
4198/// isScalarLoadToVector - Returns true if the node is a scalar load that
4199/// is promoted to a vector. It also returns the LoadSDNode by reference if
4200/// required.
4201static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4202  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4203    return false;
4204  N = N->getOperand(0).getNode();
4205  if (!ISD::isNON_EXTLoad(N))
4206    return false;
4207  if (LD)
4208    *LD = cast<LoadSDNode>(N);
4209  return true;
4210}
4211
4212// Test whether the given value is a vector value which will be legalized
4213// into a load.
4214static bool WillBeConstantPoolLoad(SDNode *N) {
4215  if (N->getOpcode() != ISD::BUILD_VECTOR)
4216    return false;
4217
4218  // Check for any non-constant elements.
4219  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4220    switch (N->getOperand(i).getNode()->getOpcode()) {
4221    case ISD::UNDEF:
4222    case ISD::ConstantFP:
4223    case ISD::Constant:
4224      break;
4225    default:
4226      return false;
4227    }
4228
4229  // Vectors of all-zeros and all-ones are materialized with special
4230  // instructions rather than being loaded.
4231  return !ISD::isBuildVectorAllZeros(N) &&
4232         !ISD::isBuildVectorAllOnes(N);
4233}
4234
4235/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4236/// match movlp{s|d}. The lower half elements should come from lower half of
4237/// V1 (and in order), and the upper half elements should come from the upper
4238/// half of V2 (and in order). And since V1 will become the source of the
4239/// MOVLP, it must be either a vector load or a scalar load to vector.
4240static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4241                               ShuffleVectorSDNode *Op) {
4242  EVT VT = Op->getValueType(0);
4243  if (VT.getSizeInBits() != 128)
4244    return false;
4245
4246  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4247    return false;
4248  // Is V2 is a vector load, don't do this transformation. We will try to use
4249  // load folding shufps op.
4250  if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4251    return false;
4252
4253  unsigned NumElems = VT.getVectorNumElements();
4254
4255  if (NumElems != 2 && NumElems != 4)
4256    return false;
4257  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4258    if (!isUndefOrEqual(Op->getMaskElt(i), i))
4259      return false;
4260  for (unsigned i = NumElems/2; i != NumElems; ++i)
4261    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
4262      return false;
4263  return true;
4264}
4265
4266/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4267/// all the same.
4268static bool isSplatVector(SDNode *N) {
4269  if (N->getOpcode() != ISD::BUILD_VECTOR)
4270    return false;
4271
4272  SDValue SplatValue = N->getOperand(0);
4273  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4274    if (N->getOperand(i) != SplatValue)
4275      return false;
4276  return true;
4277}
4278
4279/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4280/// to an zero vector.
4281/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4282static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4283  SDValue V1 = N->getOperand(0);
4284  SDValue V2 = N->getOperand(1);
4285  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4286  for (unsigned i = 0; i != NumElems; ++i) {
4287    int Idx = N->getMaskElt(i);
4288    if (Idx >= (int)NumElems) {
4289      unsigned Opc = V2.getOpcode();
4290      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4291        continue;
4292      if (Opc != ISD::BUILD_VECTOR ||
4293          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4294        return false;
4295    } else if (Idx >= 0) {
4296      unsigned Opc = V1.getOpcode();
4297      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4298        continue;
4299      if (Opc != ISD::BUILD_VECTOR ||
4300          !X86::isZeroNode(V1.getOperand(Idx)))
4301        return false;
4302    }
4303  }
4304  return true;
4305}
4306
4307/// getZeroVector - Returns a vector of specified type with all zero elements.
4308///
4309static SDValue getZeroVector(EVT VT, bool HasXMMInt, SelectionDAG &DAG,
4310                             DebugLoc dl) {
4311  assert(VT.isVector() && "Expected a vector type");
4312
4313  // Always build SSE zero vectors as <4 x i32> bitcasted
4314  // to their dest type. This ensures they get CSE'd.
4315  SDValue Vec;
4316  if (VT.getSizeInBits() == 128) {  // SSE
4317    if (HasXMMInt) {  // SSE2
4318      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4319      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4320    } else { // SSE1
4321      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4322      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4323    }
4324  } else if (VT.getSizeInBits() == 256) { // AVX
4325    // 256-bit logic and arithmetic instructions in AVX are
4326    // all floating-point, no support for integer ops. Default
4327    // to emitting fp zeroed vectors then.
4328    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4329    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4330    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4331  }
4332  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4333}
4334
4335/// getOnesVector - Returns a vector of specified type with all bits set.
4336/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4337/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4338/// Then bitcast to their original type, ensuring they get CSE'd.
4339static SDValue getOnesVector(EVT VT, bool HasAVX2, SelectionDAG &DAG,
4340                             DebugLoc dl) {
4341  assert(VT.isVector() && "Expected a vector type");
4342  assert((VT.is128BitVector() || VT.is256BitVector())
4343         && "Expected a 128-bit or 256-bit vector type");
4344
4345  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4346  SDValue Vec;
4347  if (VT.getSizeInBits() == 256) {
4348    if (HasAVX2) { // AVX2
4349      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4350      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4351    } else { // AVX
4352      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4353      SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, MVT::v8i32),
4354                                Vec, DAG.getConstant(0, MVT::i32), DAG, dl);
4355      Vec = Insert128BitVector(InsV, Vec,
4356                    DAG.getConstant(4 /* NumElems/2 */, MVT::i32), DAG, dl);
4357    }
4358  } else {
4359    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4360  }
4361
4362  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4363}
4364
4365/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4366/// that point to V2 points to its first element.
4367static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4368  EVT VT = SVOp->getValueType(0);
4369  unsigned NumElems = VT.getVectorNumElements();
4370
4371  bool Changed = false;
4372  SmallVector<int, 8> MaskVec;
4373  SVOp->getMask(MaskVec);
4374
4375  for (unsigned i = 0; i != NumElems; ++i) {
4376    if (MaskVec[i] > (int)NumElems) {
4377      MaskVec[i] = NumElems;
4378      Changed = true;
4379    }
4380  }
4381  if (Changed)
4382    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
4383                                SVOp->getOperand(1), &MaskVec[0]);
4384  return SDValue(SVOp, 0);
4385}
4386
4387/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4388/// operation of specified width.
4389static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4390                       SDValue V2) {
4391  unsigned NumElems = VT.getVectorNumElements();
4392  SmallVector<int, 8> Mask;
4393  Mask.push_back(NumElems);
4394  for (unsigned i = 1; i != NumElems; ++i)
4395    Mask.push_back(i);
4396  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4397}
4398
4399/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4400static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4401                          SDValue V2) {
4402  unsigned NumElems = VT.getVectorNumElements();
4403  SmallVector<int, 8> Mask;
4404  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4405    Mask.push_back(i);
4406    Mask.push_back(i + NumElems);
4407  }
4408  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4409}
4410
4411/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4412static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4413                          SDValue V2) {
4414  unsigned NumElems = VT.getVectorNumElements();
4415  unsigned Half = NumElems/2;
4416  SmallVector<int, 8> Mask;
4417  for (unsigned i = 0; i != Half; ++i) {
4418    Mask.push_back(i + Half);
4419    Mask.push_back(i + NumElems + Half);
4420  }
4421  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4422}
4423
4424// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4425// a generic shuffle instruction because the target has no such instructions.
4426// Generate shuffles which repeat i16 and i8 several times until they can be
4427// represented by v4f32 and then be manipulated by target suported shuffles.
4428static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4429  EVT VT = V.getValueType();
4430  int NumElems = VT.getVectorNumElements();
4431  DebugLoc dl = V.getDebugLoc();
4432
4433  while (NumElems > 4) {
4434    if (EltNo < NumElems/2) {
4435      V = getUnpackl(DAG, dl, VT, V, V);
4436    } else {
4437      V = getUnpackh(DAG, dl, VT, V, V);
4438      EltNo -= NumElems/2;
4439    }
4440    NumElems >>= 1;
4441  }
4442  return V;
4443}
4444
4445/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4446static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4447  EVT VT = V.getValueType();
4448  DebugLoc dl = V.getDebugLoc();
4449  assert((VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256)
4450         && "Vector size not supported");
4451
4452  if (VT.getSizeInBits() == 128) {
4453    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4454    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4455    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4456                             &SplatMask[0]);
4457  } else {
4458    // To use VPERMILPS to splat scalars, the second half of indicies must
4459    // refer to the higher part, which is a duplication of the lower one,
4460    // because VPERMILPS can only handle in-lane permutations.
4461    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4462                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4463
4464    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4465    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4466                             &SplatMask[0]);
4467  }
4468
4469  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4470}
4471
4472/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4473static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4474  EVT SrcVT = SV->getValueType(0);
4475  SDValue V1 = SV->getOperand(0);
4476  DebugLoc dl = SV->getDebugLoc();
4477
4478  int EltNo = SV->getSplatIndex();
4479  int NumElems = SrcVT.getVectorNumElements();
4480  unsigned Size = SrcVT.getSizeInBits();
4481
4482  assert(((Size == 128 && NumElems > 4) || Size == 256) &&
4483          "Unknown how to promote splat for type");
4484
4485  // Extract the 128-bit part containing the splat element and update
4486  // the splat element index when it refers to the higher register.
4487  if (Size == 256) {
4488    unsigned Idx = (EltNo > NumElems/2) ? NumElems/2 : 0;
4489    V1 = Extract128BitVector(V1, DAG.getConstant(Idx, MVT::i32), DAG, dl);
4490    if (Idx > 0)
4491      EltNo -= NumElems/2;
4492  }
4493
4494  // All i16 and i8 vector types can't be used directly by a generic shuffle
4495  // instruction because the target has no such instruction. Generate shuffles
4496  // which repeat i16 and i8 several times until they fit in i32, and then can
4497  // be manipulated by target suported shuffles.
4498  EVT EltVT = SrcVT.getVectorElementType();
4499  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4500    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4501
4502  // Recreate the 256-bit vector and place the same 128-bit vector
4503  // into the low and high part. This is necessary because we want
4504  // to use VPERM* to shuffle the vectors
4505  if (Size == 256) {
4506    SDValue InsV = Insert128BitVector(DAG.getUNDEF(SrcVT), V1,
4507                         DAG.getConstant(0, MVT::i32), DAG, dl);
4508    V1 = Insert128BitVector(InsV, V1,
4509               DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
4510  }
4511
4512  return getLegalSplat(DAG, V1, EltNo);
4513}
4514
4515/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4516/// vector of zero or undef vector.  This produces a shuffle where the low
4517/// element of V2 is swizzled into the zero/undef vector, landing at element
4518/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4519static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4520                                           bool isZero, bool HasXMMInt,
4521                                           SelectionDAG &DAG) {
4522  EVT VT = V2.getValueType();
4523  SDValue V1 = isZero
4524    ? getZeroVector(VT, HasXMMInt, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4525  unsigned NumElems = VT.getVectorNumElements();
4526  SmallVector<int, 16> MaskVec;
4527  for (unsigned i = 0; i != NumElems; ++i)
4528    // If this is the insertion idx, put the low elt of V2 here.
4529    MaskVec.push_back(i == Idx ? NumElems : i);
4530  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4531}
4532
4533/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4534/// element of the result of the vector shuffle.
4535static SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
4536                                   unsigned Depth) {
4537  if (Depth == 6)
4538    return SDValue();  // Limit search depth.
4539
4540  SDValue V = SDValue(N, 0);
4541  EVT VT = V.getValueType();
4542  unsigned Opcode = V.getOpcode();
4543
4544  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4545  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4546    Index = SV->getMaskElt(Index);
4547
4548    if (Index < 0)
4549      return DAG.getUNDEF(VT.getVectorElementType());
4550
4551    int NumElems = VT.getVectorNumElements();
4552    SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
4553    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
4554  }
4555
4556  // Recurse into target specific vector shuffles to find scalars.
4557  if (isTargetShuffle(Opcode)) {
4558    int NumElems = VT.getVectorNumElements();
4559    SmallVector<unsigned, 16> ShuffleMask;
4560    SDValue ImmN;
4561
4562    switch(Opcode) {
4563    case X86ISD::SHUFPS:
4564    case X86ISD::SHUFPD:
4565      ImmN = N->getOperand(N->getNumOperands()-1);
4566      DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4567                      ShuffleMask);
4568      break;
4569    case X86ISD::PUNPCKH:
4570      DecodePUNPCKHMask(NumElems, ShuffleMask);
4571      break;
4572    case X86ISD::UNPCKHP:
4573      DecodeUNPCKHPMask(VT, ShuffleMask);
4574      break;
4575    case X86ISD::PUNPCKL:
4576      DecodePUNPCKLMask(VT, ShuffleMask);
4577      break;
4578    case X86ISD::UNPCKLP:
4579      DecodeUNPCKLPMask(VT, ShuffleMask);
4580      break;
4581    case X86ISD::MOVHLPS:
4582      DecodeMOVHLPSMask(NumElems, ShuffleMask);
4583      break;
4584    case X86ISD::MOVLHPS:
4585      DecodeMOVLHPSMask(NumElems, ShuffleMask);
4586      break;
4587    case X86ISD::PSHUFD:
4588      ImmN = N->getOperand(N->getNumOperands()-1);
4589      DecodePSHUFMask(NumElems,
4590                      cast<ConstantSDNode>(ImmN)->getZExtValue(),
4591                      ShuffleMask);
4592      break;
4593    case X86ISD::PSHUFHW:
4594      ImmN = N->getOperand(N->getNumOperands()-1);
4595      DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4596                        ShuffleMask);
4597      break;
4598    case X86ISD::PSHUFLW:
4599      ImmN = N->getOperand(N->getNumOperands()-1);
4600      DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4601                        ShuffleMask);
4602      break;
4603    case X86ISD::MOVSS:
4604    case X86ISD::MOVSD: {
4605      // The index 0 always comes from the first element of the second source,
4606      // this is why MOVSS and MOVSD are used in the first place. The other
4607      // elements come from the other positions of the first source vector.
4608      unsigned OpNum = (Index == 0) ? 1 : 0;
4609      return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
4610                                 Depth+1);
4611    }
4612    case X86ISD::VPERMILP:
4613      ImmN = N->getOperand(N->getNumOperands()-1);
4614      DecodeVPERMILPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4615                        ShuffleMask);
4616      break;
4617    case X86ISD::VPERM2X128:
4618      ImmN = N->getOperand(N->getNumOperands()-1);
4619      DecodeVPERM2F128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4620                           ShuffleMask);
4621      break;
4622    case X86ISD::MOVDDUP:
4623    case X86ISD::MOVLHPD:
4624    case X86ISD::MOVLPD:
4625    case X86ISD::MOVLPS:
4626    case X86ISD::MOVSHDUP:
4627    case X86ISD::MOVSLDUP:
4628    case X86ISD::PALIGN:
4629      return SDValue(); // Not yet implemented.
4630    default:
4631      assert(0 && "unknown target shuffle node");
4632      return SDValue();
4633    }
4634
4635    Index = ShuffleMask[Index];
4636    if (Index < 0)
4637      return DAG.getUNDEF(VT.getVectorElementType());
4638
4639    SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
4640    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
4641                               Depth+1);
4642  }
4643
4644  // Actual nodes that may contain scalar elements
4645  if (Opcode == ISD::BITCAST) {
4646    V = V.getOperand(0);
4647    EVT SrcVT = V.getValueType();
4648    unsigned NumElems = VT.getVectorNumElements();
4649
4650    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4651      return SDValue();
4652  }
4653
4654  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4655    return (Index == 0) ? V.getOperand(0)
4656                          : DAG.getUNDEF(VT.getVectorElementType());
4657
4658  if (V.getOpcode() == ISD::BUILD_VECTOR)
4659    return V.getOperand(Index);
4660
4661  return SDValue();
4662}
4663
4664/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4665/// shuffle operation which come from a consecutively from a zero. The
4666/// search can start in two different directions, from left or right.
4667static
4668unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
4669                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4670  int i = 0;
4671
4672  while (i < NumElems) {
4673    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4674    SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
4675    if (!(Elt.getNode() &&
4676         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4677      break;
4678    ++i;
4679  }
4680
4681  return i;
4682}
4683
4684/// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
4685/// MaskE correspond consecutively to elements from one of the vector operands,
4686/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4687static
4688bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
4689                              int OpIdx, int NumElems, unsigned &OpNum) {
4690  bool SeenV1 = false;
4691  bool SeenV2 = false;
4692
4693  for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
4694    int Idx = SVOp->getMaskElt(i);
4695    // Ignore undef indicies
4696    if (Idx < 0)
4697      continue;
4698
4699    if (Idx < NumElems)
4700      SeenV1 = true;
4701    else
4702      SeenV2 = true;
4703
4704    // Only accept consecutive elements from the same vector
4705    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4706      return false;
4707  }
4708
4709  OpNum = SeenV1 ? 0 : 1;
4710  return true;
4711}
4712
4713/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4714/// logical left shift of a vector.
4715static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4716                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4717  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4718  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4719              false /* check zeros from right */, DAG);
4720  unsigned OpSrc;
4721
4722  if (!NumZeros)
4723    return false;
4724
4725  // Considering the elements in the mask that are not consecutive zeros,
4726  // check if they consecutively come from only one of the source vectors.
4727  //
4728  //               V1 = {X, A, B, C}     0
4729  //                         \  \  \    /
4730  //   vector_shuffle V1, V2 <1, 2, 3, X>
4731  //
4732  if (!isShuffleMaskConsecutive(SVOp,
4733            0,                   // Mask Start Index
4734            NumElems-NumZeros-1, // Mask End Index
4735            NumZeros,            // Where to start looking in the src vector
4736            NumElems,            // Number of elements in vector
4737            OpSrc))              // Which source operand ?
4738    return false;
4739
4740  isLeft = false;
4741  ShAmt = NumZeros;
4742  ShVal = SVOp->getOperand(OpSrc);
4743  return true;
4744}
4745
4746/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4747/// logical left shift of a vector.
4748static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4749                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4750  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4751  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4752              true /* check zeros from left */, DAG);
4753  unsigned OpSrc;
4754
4755  if (!NumZeros)
4756    return false;
4757
4758  // Considering the elements in the mask that are not consecutive zeros,
4759  // check if they consecutively come from only one of the source vectors.
4760  //
4761  //                           0    { A, B, X, X } = V2
4762  //                          / \    /  /
4763  //   vector_shuffle V1, V2 <X, X, 4, 5>
4764  //
4765  if (!isShuffleMaskConsecutive(SVOp,
4766            NumZeros,     // Mask Start Index
4767            NumElems-1,   // Mask End Index
4768            0,            // Where to start looking in the src vector
4769            NumElems,     // Number of elements in vector
4770            OpSrc))       // Which source operand ?
4771    return false;
4772
4773  isLeft = true;
4774  ShAmt = NumZeros;
4775  ShVal = SVOp->getOperand(OpSrc);
4776  return true;
4777}
4778
4779/// isVectorShift - Returns true if the shuffle can be implemented as a
4780/// logical left or right shift of a vector.
4781static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4782                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4783  // Although the logic below support any bitwidth size, there are no
4784  // shift instructions which handle more than 128-bit vectors.
4785  if (SVOp->getValueType(0).getSizeInBits() > 128)
4786    return false;
4787
4788  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4789      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4790    return true;
4791
4792  return false;
4793}
4794
4795/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4796///
4797static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4798                                       unsigned NumNonZero, unsigned NumZero,
4799                                       SelectionDAG &DAG,
4800                                       const TargetLowering &TLI) {
4801  if (NumNonZero > 8)
4802    return SDValue();
4803
4804  DebugLoc dl = Op.getDebugLoc();
4805  SDValue V(0, 0);
4806  bool First = true;
4807  for (unsigned i = 0; i < 16; ++i) {
4808    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4809    if (ThisIsNonZero && First) {
4810      if (NumZero)
4811        V = getZeroVector(MVT::v8i16, true, DAG, dl);
4812      else
4813        V = DAG.getUNDEF(MVT::v8i16);
4814      First = false;
4815    }
4816
4817    if ((i & 1) != 0) {
4818      SDValue ThisElt(0, 0), LastElt(0, 0);
4819      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4820      if (LastIsNonZero) {
4821        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4822                              MVT::i16, Op.getOperand(i-1));
4823      }
4824      if (ThisIsNonZero) {
4825        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4826        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4827                              ThisElt, DAG.getConstant(8, MVT::i8));
4828        if (LastIsNonZero)
4829          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4830      } else
4831        ThisElt = LastElt;
4832
4833      if (ThisElt.getNode())
4834        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4835                        DAG.getIntPtrConstant(i/2));
4836    }
4837  }
4838
4839  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4840}
4841
4842/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4843///
4844static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4845                                     unsigned NumNonZero, unsigned NumZero,
4846                                     SelectionDAG &DAG,
4847                                     const TargetLowering &TLI) {
4848  if (NumNonZero > 4)
4849    return SDValue();
4850
4851  DebugLoc dl = Op.getDebugLoc();
4852  SDValue V(0, 0);
4853  bool First = true;
4854  for (unsigned i = 0; i < 8; ++i) {
4855    bool isNonZero = (NonZeros & (1 << i)) != 0;
4856    if (isNonZero) {
4857      if (First) {
4858        if (NumZero)
4859          V = getZeroVector(MVT::v8i16, true, DAG, dl);
4860        else
4861          V = DAG.getUNDEF(MVT::v8i16);
4862        First = false;
4863      }
4864      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4865                      MVT::v8i16, V, Op.getOperand(i),
4866                      DAG.getIntPtrConstant(i));
4867    }
4868  }
4869
4870  return V;
4871}
4872
4873/// getVShift - Return a vector logical shift node.
4874///
4875static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4876                         unsigned NumBits, SelectionDAG &DAG,
4877                         const TargetLowering &TLI, DebugLoc dl) {
4878  assert(VT.getSizeInBits() == 128 && "Unknown type for VShift");
4879  EVT ShVT = MVT::v2i64;
4880  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
4881  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4882  return DAG.getNode(ISD::BITCAST, dl, VT,
4883                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4884                             DAG.getConstant(NumBits,
4885                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4886}
4887
4888SDValue
4889X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4890                                          SelectionDAG &DAG) const {
4891
4892  // Check if the scalar load can be widened into a vector load. And if
4893  // the address is "base + cst" see if the cst can be "absorbed" into
4894  // the shuffle mask.
4895  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4896    SDValue Ptr = LD->getBasePtr();
4897    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4898      return SDValue();
4899    EVT PVT = LD->getValueType(0);
4900    if (PVT != MVT::i32 && PVT != MVT::f32)
4901      return SDValue();
4902
4903    int FI = -1;
4904    int64_t Offset = 0;
4905    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4906      FI = FINode->getIndex();
4907      Offset = 0;
4908    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4909               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4910      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4911      Offset = Ptr.getConstantOperandVal(1);
4912      Ptr = Ptr.getOperand(0);
4913    } else {
4914      return SDValue();
4915    }
4916
4917    // FIXME: 256-bit vector instructions don't require a strict alignment,
4918    // improve this code to support it better.
4919    unsigned RequiredAlign = VT.getSizeInBits()/8;
4920    SDValue Chain = LD->getChain();
4921    // Make sure the stack object alignment is at least 16 or 32.
4922    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4923    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4924      if (MFI->isFixedObjectIndex(FI)) {
4925        // Can't change the alignment. FIXME: It's possible to compute
4926        // the exact stack offset and reference FI + adjust offset instead.
4927        // If someone *really* cares about this. That's the way to implement it.
4928        return SDValue();
4929      } else {
4930        MFI->setObjectAlignment(FI, RequiredAlign);
4931      }
4932    }
4933
4934    // (Offset % 16 or 32) must be multiple of 4. Then address is then
4935    // Ptr + (Offset & ~15).
4936    if (Offset < 0)
4937      return SDValue();
4938    if ((Offset % RequiredAlign) & 3)
4939      return SDValue();
4940    int64_t StartOffset = Offset & ~(RequiredAlign-1);
4941    if (StartOffset)
4942      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4943                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4944
4945    int EltNo = (Offset - StartOffset) >> 2;
4946    int NumElems = VT.getVectorNumElements();
4947
4948    EVT CanonVT = VT.getSizeInBits() == 128 ? MVT::v4i32 : MVT::v8i32;
4949    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4950    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4951                             LD->getPointerInfo().getWithOffset(StartOffset),
4952                             false, false, false, 0);
4953
4954    // Canonicalize it to a v4i32 or v8i32 shuffle.
4955    SmallVector<int, 8> Mask;
4956    for (int i = 0; i < NumElems; ++i)
4957      Mask.push_back(EltNo);
4958
4959    V1 = DAG.getNode(ISD::BITCAST, dl, CanonVT, V1);
4960    return DAG.getNode(ISD::BITCAST, dl, NVT,
4961                       DAG.getVectorShuffle(CanonVT, dl, V1,
4962                                            DAG.getUNDEF(CanonVT),&Mask[0]));
4963  }
4964
4965  return SDValue();
4966}
4967
4968/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4969/// vector of type 'VT', see if the elements can be replaced by a single large
4970/// load which has the same value as a build_vector whose operands are 'elts'.
4971///
4972/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4973///
4974/// FIXME: we'd also like to handle the case where the last elements are zero
4975/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4976/// There's even a handy isZeroNode for that purpose.
4977static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4978                                        DebugLoc &DL, SelectionDAG &DAG) {
4979  EVT EltVT = VT.getVectorElementType();
4980  unsigned NumElems = Elts.size();
4981
4982  LoadSDNode *LDBase = NULL;
4983  unsigned LastLoadedElt = -1U;
4984
4985  // For each element in the initializer, see if we've found a load or an undef.
4986  // If we don't find an initial load element, or later load elements are
4987  // non-consecutive, bail out.
4988  for (unsigned i = 0; i < NumElems; ++i) {
4989    SDValue Elt = Elts[i];
4990
4991    if (!Elt.getNode() ||
4992        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4993      return SDValue();
4994    if (!LDBase) {
4995      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4996        return SDValue();
4997      LDBase = cast<LoadSDNode>(Elt.getNode());
4998      LastLoadedElt = i;
4999      continue;
5000    }
5001    if (Elt.getOpcode() == ISD::UNDEF)
5002      continue;
5003
5004    LoadSDNode *LD = cast<LoadSDNode>(Elt);
5005    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
5006      return SDValue();
5007    LastLoadedElt = i;
5008  }
5009
5010  // If we have found an entire vector of loads and undefs, then return a large
5011  // load of the entire vector width starting at the base pointer.  If we found
5012  // consecutive loads for the low half, generate a vzext_load node.
5013  if (LastLoadedElt == NumElems - 1) {
5014    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
5015      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5016                         LDBase->getPointerInfo(),
5017                         LDBase->isVolatile(), LDBase->isNonTemporal(),
5018                         LDBase->isInvariant(), 0);
5019    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5020                       LDBase->getPointerInfo(),
5021                       LDBase->isVolatile(), LDBase->isNonTemporal(),
5022                       LDBase->isInvariant(), LDBase->getAlignment());
5023  } else if (NumElems == 4 && LastLoadedElt == 1 &&
5024             DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
5025    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
5026    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
5027    SDValue ResNode =
5028        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
5029                                LDBase->getPointerInfo(),
5030                                LDBase->getAlignment(),
5031                                false/*isVolatile*/, true/*ReadMem*/,
5032                                false/*WriteMem*/);
5033    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
5034  }
5035  return SDValue();
5036}
5037
5038/// isVectorBroadcast - Check if the node chain is suitable to be xformed to
5039/// a vbroadcast node. We support two patterns:
5040/// 1. A splat BUILD_VECTOR which uses a single scalar load.
5041/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
5042/// a scalar load.
5043/// The scalar load node is returned when a pattern is found,
5044/// or SDValue() otherwise.
5045static SDValue isVectorBroadcast(SDValue &Op, bool hasAVX2) {
5046  EVT VT = Op.getValueType();
5047  SDValue V = Op;
5048
5049  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
5050    V = V.getOperand(0);
5051
5052  //A suspected load to be broadcasted.
5053  SDValue Ld;
5054
5055  switch (V.getOpcode()) {
5056    default:
5057      // Unknown pattern found.
5058      return SDValue();
5059
5060    case ISD::BUILD_VECTOR: {
5061      // The BUILD_VECTOR node must be a splat.
5062      if (!isSplatVector(V.getNode()))
5063        return SDValue();
5064
5065      Ld = V.getOperand(0);
5066
5067      // The suspected load node has several users. Make sure that all
5068      // of its users are from the BUILD_VECTOR node.
5069      if (!Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
5070        return SDValue();
5071      break;
5072    }
5073
5074    case ISD::VECTOR_SHUFFLE: {
5075      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5076
5077      // Shuffles must have a splat mask where the first element is
5078      // broadcasted.
5079      if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
5080        return SDValue();
5081
5082      SDValue Sc = Op.getOperand(0);
5083      if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR)
5084        return SDValue();
5085
5086      Ld = Sc.getOperand(0);
5087
5088      // The scalar_to_vector node and the suspected
5089      // load node must have exactly one user.
5090      if (!Sc.hasOneUse() || !Ld.hasOneUse())
5091        return SDValue();
5092      break;
5093    }
5094  }
5095
5096  // The scalar source must be a normal load.
5097  if (!ISD::isNormalLoad(Ld.getNode()))
5098    return SDValue();
5099
5100  bool Is256 = VT.getSizeInBits() == 256;
5101  bool Is128 = VT.getSizeInBits() == 128;
5102  unsigned ScalarSize = Ld.getValueType().getSizeInBits();
5103
5104  if (hasAVX2) {
5105    // VBroadcast to YMM
5106    if (Is256 && (ScalarSize == 8  || ScalarSize == 16 ||
5107                  ScalarSize == 32 || ScalarSize == 64 ))
5108      return Ld;
5109
5110    // VBroadcast to XMM
5111    if (Is128 && (ScalarSize ==  8 || ScalarSize == 32 ||
5112                  ScalarSize == 16 || ScalarSize == 64 ))
5113      return Ld;
5114  }
5115
5116  // VBroadcast to YMM
5117  if (Is256 && (ScalarSize == 32 || ScalarSize == 64))
5118    return Ld;
5119
5120  // VBroadcast to XMM
5121  if (Is128 && (ScalarSize == 32))
5122    return Ld;
5123
5124
5125  // Unsupported broadcast.
5126  return SDValue();
5127}
5128
5129SDValue
5130X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5131  DebugLoc dl = Op.getDebugLoc();
5132
5133  EVT VT = Op.getValueType();
5134  EVT ExtVT = VT.getVectorElementType();
5135  unsigned NumElems = Op.getNumOperands();
5136
5137  // Vectors containing all zeros can be matched by pxor and xorps later
5138  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5139    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5140    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5141    if (Op.getValueType() == MVT::v4i32 ||
5142        Op.getValueType() == MVT::v8i32)
5143      return Op;
5144
5145    return getZeroVector(Op.getValueType(), Subtarget->hasXMMInt(), DAG, dl);
5146  }
5147
5148  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5149  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
5150  // vpcmpeqd on 256-bit vectors.
5151  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5152    if (Op.getValueType() == MVT::v4i32 ||
5153        (Op.getValueType() == MVT::v8i32 && Subtarget->hasAVX2()))
5154      return Op;
5155
5156    return getOnesVector(Op.getValueType(), Subtarget->hasAVX2(), DAG, dl);
5157  }
5158
5159  SDValue LD = isVectorBroadcast(Op, Subtarget->hasAVX2());
5160  if (Subtarget->hasAVX() && LD.getNode())
5161      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, LD);
5162
5163  unsigned EVTBits = ExtVT.getSizeInBits();
5164
5165  unsigned NumZero  = 0;
5166  unsigned NumNonZero = 0;
5167  unsigned NonZeros = 0;
5168  bool IsAllConstants = true;
5169  SmallSet<SDValue, 8> Values;
5170  for (unsigned i = 0; i < NumElems; ++i) {
5171    SDValue Elt = Op.getOperand(i);
5172    if (Elt.getOpcode() == ISD::UNDEF)
5173      continue;
5174    Values.insert(Elt);
5175    if (Elt.getOpcode() != ISD::Constant &&
5176        Elt.getOpcode() != ISD::ConstantFP)
5177      IsAllConstants = false;
5178    if (X86::isZeroNode(Elt))
5179      NumZero++;
5180    else {
5181      NonZeros |= (1 << i);
5182      NumNonZero++;
5183    }
5184  }
5185
5186  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5187  if (NumNonZero == 0)
5188    return DAG.getUNDEF(VT);
5189
5190  // Special case for single non-zero, non-undef, element.
5191  if (NumNonZero == 1) {
5192    unsigned Idx = CountTrailingZeros_32(NonZeros);
5193    SDValue Item = Op.getOperand(Idx);
5194
5195    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5196    // the value are obviously zero, truncate the value to i32 and do the
5197    // insertion that way.  Only do this if the value is non-constant or if the
5198    // value is a constant being inserted into element 0.  It is cheaper to do
5199    // a constant pool load than it is to do a movd + shuffle.
5200    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5201        (!IsAllConstants || Idx == 0)) {
5202      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5203        // Handle SSE only.
5204        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5205        EVT VecVT = MVT::v4i32;
5206        unsigned VecElts = 4;
5207
5208        // Truncate the value (which may itself be a constant) to i32, and
5209        // convert it to a vector with movd (S2V+shuffle to zero extend).
5210        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5211        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5212        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
5213                                           Subtarget->hasXMMInt(), DAG);
5214
5215        // Now we have our 32-bit value zero extended in the low element of
5216        // a vector.  If Idx != 0, swizzle it into place.
5217        if (Idx != 0) {
5218          SmallVector<int, 4> Mask;
5219          Mask.push_back(Idx);
5220          for (unsigned i = 1; i != VecElts; ++i)
5221            Mask.push_back(i);
5222          Item = DAG.getVectorShuffle(VecVT, dl, Item,
5223                                      DAG.getUNDEF(Item.getValueType()),
5224                                      &Mask[0]);
5225        }
5226        return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Item);
5227      }
5228    }
5229
5230    // If we have a constant or non-constant insertion into the low element of
5231    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5232    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5233    // depending on what the source datatype is.
5234    if (Idx == 0) {
5235      if (NumZero == 0) {
5236        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5237      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5238          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5239        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5240        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5241        return getShuffleVectorZeroOrUndef(Item, 0, true,Subtarget->hasXMMInt(),
5242                                           DAG);
5243      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5244        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5245        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5246        EVT MiddleVT = MVT::v4i32;
5247        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
5248        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
5249                                           Subtarget->hasXMMInt(), DAG);
5250        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5251      }
5252    }
5253
5254    // Is it a vector logical left shift?
5255    if (NumElems == 2 && Idx == 1 &&
5256        X86::isZeroNode(Op.getOperand(0)) &&
5257        !X86::isZeroNode(Op.getOperand(1))) {
5258      unsigned NumBits = VT.getSizeInBits();
5259      return getVShift(true, VT,
5260                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5261                                   VT, Op.getOperand(1)),
5262                       NumBits/2, DAG, *this, dl);
5263    }
5264
5265    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5266      return SDValue();
5267
5268    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5269    // is a non-constant being inserted into an element other than the low one,
5270    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5271    // movd/movss) to move this into the low element, then shuffle it into
5272    // place.
5273    if (EVTBits == 32) {
5274      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5275
5276      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5277      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
5278                                         Subtarget->hasXMMInt(), DAG);
5279      SmallVector<int, 8> MaskVec;
5280      for (unsigned i = 0; i < NumElems; i++)
5281        MaskVec.push_back(i == Idx ? 0 : 1);
5282      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5283    }
5284  }
5285
5286  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5287  if (Values.size() == 1) {
5288    if (EVTBits == 32) {
5289      // Instead of a shuffle like this:
5290      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5291      // Check if it's possible to issue this instead.
5292      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5293      unsigned Idx = CountTrailingZeros_32(NonZeros);
5294      SDValue Item = Op.getOperand(Idx);
5295      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5296        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5297    }
5298    return SDValue();
5299  }
5300
5301  // A vector full of immediates; various special cases are already
5302  // handled, so this is best done with a single constant-pool load.
5303  if (IsAllConstants)
5304    return SDValue();
5305
5306  // For AVX-length vectors, build the individual 128-bit pieces and use
5307  // shuffles to put them in place.
5308  if (VT.getSizeInBits() == 256 && !ISD::isBuildVectorAllZeros(Op.getNode())) {
5309    SmallVector<SDValue, 32> V;
5310    for (unsigned i = 0; i < NumElems; ++i)
5311      V.push_back(Op.getOperand(i));
5312
5313    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5314
5315    // Build both the lower and upper subvector.
5316    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5317    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5318                                NumElems/2);
5319
5320    // Recreate the wider vector with the lower and upper part.
5321    SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Lower,
5322                                DAG.getConstant(0, MVT::i32), DAG, dl);
5323    return Insert128BitVector(Vec, Upper, DAG.getConstant(NumElems/2, MVT::i32),
5324                              DAG, dl);
5325  }
5326
5327  // Let legalizer expand 2-wide build_vectors.
5328  if (EVTBits == 64) {
5329    if (NumNonZero == 1) {
5330      // One half is zero or undef.
5331      unsigned Idx = CountTrailingZeros_32(NonZeros);
5332      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5333                                 Op.getOperand(Idx));
5334      return getShuffleVectorZeroOrUndef(V2, Idx, true,
5335                                         Subtarget->hasXMMInt(), DAG);
5336    }
5337    return SDValue();
5338  }
5339
5340  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5341  if (EVTBits == 8 && NumElems == 16) {
5342    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5343                                        *this);
5344    if (V.getNode()) return V;
5345  }
5346
5347  if (EVTBits == 16 && NumElems == 8) {
5348    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5349                                      *this);
5350    if (V.getNode()) return V;
5351  }
5352
5353  // If element VT is == 32 bits, turn it into a number of shuffles.
5354  SmallVector<SDValue, 8> V;
5355  V.resize(NumElems);
5356  if (NumElems == 4 && NumZero > 0) {
5357    for (unsigned i = 0; i < 4; ++i) {
5358      bool isZero = !(NonZeros & (1 << i));
5359      if (isZero)
5360        V[i] = getZeroVector(VT, Subtarget->hasXMMInt(), DAG, dl);
5361      else
5362        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5363    }
5364
5365    for (unsigned i = 0; i < 2; ++i) {
5366      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5367        default: break;
5368        case 0:
5369          V[i] = V[i*2];  // Must be a zero vector.
5370          break;
5371        case 1:
5372          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5373          break;
5374        case 2:
5375          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5376          break;
5377        case 3:
5378          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5379          break;
5380      }
5381    }
5382
5383    SmallVector<int, 8> MaskVec;
5384    bool Reverse = (NonZeros & 0x3) == 2;
5385    for (unsigned i = 0; i < 2; ++i)
5386      MaskVec.push_back(Reverse ? 1-i : i);
5387    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5388    for (unsigned i = 0; i < 2; ++i)
5389      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
5390    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5391  }
5392
5393  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
5394    // Check for a build vector of consecutive loads.
5395    for (unsigned i = 0; i < NumElems; ++i)
5396      V[i] = Op.getOperand(i);
5397
5398    // Check for elements which are consecutive loads.
5399    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5400    if (LD.getNode())
5401      return LD;
5402
5403    // For SSE 4.1, use insertps to put the high elements into the low element.
5404    if (getSubtarget()->hasSSE41orAVX()) {
5405      SDValue Result;
5406      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5407        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5408      else
5409        Result = DAG.getUNDEF(VT);
5410
5411      for (unsigned i = 1; i < NumElems; ++i) {
5412        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5413        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5414                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5415      }
5416      return Result;
5417    }
5418
5419    // Otherwise, expand into a number of unpckl*, start by extending each of
5420    // our (non-undef) elements to the full vector width with the element in the
5421    // bottom slot of the vector (which generates no code for SSE).
5422    for (unsigned i = 0; i < NumElems; ++i) {
5423      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5424        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5425      else
5426        V[i] = DAG.getUNDEF(VT);
5427    }
5428
5429    // Next, we iteratively mix elements, e.g. for v4f32:
5430    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5431    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5432    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5433    unsigned EltStride = NumElems >> 1;
5434    while (EltStride != 0) {
5435      for (unsigned i = 0; i < EltStride; ++i) {
5436        // If V[i+EltStride] is undef and this is the first round of mixing,
5437        // then it is safe to just drop this shuffle: V[i] is already in the
5438        // right place, the one element (since it's the first round) being
5439        // inserted as undef can be dropped.  This isn't safe for successive
5440        // rounds because they will permute elements within both vectors.
5441        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5442            EltStride == NumElems/2)
5443          continue;
5444
5445        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5446      }
5447      EltStride >>= 1;
5448    }
5449    return V[0];
5450  }
5451  return SDValue();
5452}
5453
5454// LowerMMXCONCAT_VECTORS - We support concatenate two MMX registers and place
5455// them in a MMX register.  This is better than doing a stack convert.
5456static SDValue LowerMMXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5457  DebugLoc dl = Op.getDebugLoc();
5458  EVT ResVT = Op.getValueType();
5459
5460  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
5461         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
5462  int Mask[2];
5463  SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
5464  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5465  InVec = Op.getOperand(1);
5466  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5467    unsigned NumElts = ResVT.getVectorNumElements();
5468    VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5469    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
5470                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
5471  } else {
5472    InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
5473    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5474    Mask[0] = 0; Mask[1] = 2;
5475    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
5476  }
5477  return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5478}
5479
5480// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5481// to create 256-bit vectors from two other 128-bit ones.
5482static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5483  DebugLoc dl = Op.getDebugLoc();
5484  EVT ResVT = Op.getValueType();
5485
5486  assert(ResVT.getSizeInBits() == 256 && "Value type must be 256-bit wide");
5487
5488  SDValue V1 = Op.getOperand(0);
5489  SDValue V2 = Op.getOperand(1);
5490  unsigned NumElems = ResVT.getVectorNumElements();
5491
5492  SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, ResVT), V1,
5493                                 DAG.getConstant(0, MVT::i32), DAG, dl);
5494  return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
5495                            DAG, dl);
5496}
5497
5498SDValue
5499X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
5500  EVT ResVT = Op.getValueType();
5501
5502  assert(Op.getNumOperands() == 2);
5503  assert((ResVT.getSizeInBits() == 128 || ResVT.getSizeInBits() == 256) &&
5504         "Unsupported CONCAT_VECTORS for value type");
5505
5506  // We support concatenate two MMX registers and place them in a MMX register.
5507  // This is better than doing a stack convert.
5508  if (ResVT.is128BitVector())
5509    return LowerMMXCONCAT_VECTORS(Op, DAG);
5510
5511  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5512  // from two other 128-bit ones.
5513  return LowerAVXCONCAT_VECTORS(Op, DAG);
5514}
5515
5516// v8i16 shuffles - Prefer shuffles in the following order:
5517// 1. [all]   pshuflw, pshufhw, optional move
5518// 2. [ssse3] 1 x pshufb
5519// 3. [ssse3] 2 x pshufb + 1 x por
5520// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5521SDValue
5522X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
5523                                            SelectionDAG &DAG) const {
5524  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5525  SDValue V1 = SVOp->getOperand(0);
5526  SDValue V2 = SVOp->getOperand(1);
5527  DebugLoc dl = SVOp->getDebugLoc();
5528  SmallVector<int, 8> MaskVals;
5529
5530  // Determine if more than 1 of the words in each of the low and high quadwords
5531  // of the result come from the same quadword of one of the two inputs.  Undef
5532  // mask values count as coming from any quadword, for better codegen.
5533  unsigned LoQuad[] = { 0, 0, 0, 0 };
5534  unsigned HiQuad[] = { 0, 0, 0, 0 };
5535  BitVector InputQuads(4);
5536  for (unsigned i = 0; i < 8; ++i) {
5537    unsigned *Quad = i < 4 ? LoQuad : HiQuad;
5538    int EltIdx = SVOp->getMaskElt(i);
5539    MaskVals.push_back(EltIdx);
5540    if (EltIdx < 0) {
5541      ++Quad[0];
5542      ++Quad[1];
5543      ++Quad[2];
5544      ++Quad[3];
5545      continue;
5546    }
5547    ++Quad[EltIdx / 4];
5548    InputQuads.set(EltIdx / 4);
5549  }
5550
5551  int BestLoQuad = -1;
5552  unsigned MaxQuad = 1;
5553  for (unsigned i = 0; i < 4; ++i) {
5554    if (LoQuad[i] > MaxQuad) {
5555      BestLoQuad = i;
5556      MaxQuad = LoQuad[i];
5557    }
5558  }
5559
5560  int BestHiQuad = -1;
5561  MaxQuad = 1;
5562  for (unsigned i = 0; i < 4; ++i) {
5563    if (HiQuad[i] > MaxQuad) {
5564      BestHiQuad = i;
5565      MaxQuad = HiQuad[i];
5566    }
5567  }
5568
5569  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5570  // of the two input vectors, shuffle them into one input vector so only a
5571  // single pshufb instruction is necessary. If There are more than 2 input
5572  // quads, disable the next transformation since it does not help SSSE3.
5573  bool V1Used = InputQuads[0] || InputQuads[1];
5574  bool V2Used = InputQuads[2] || InputQuads[3];
5575  if (Subtarget->hasSSSE3orAVX()) {
5576    if (InputQuads.count() == 2 && V1Used && V2Used) {
5577      BestLoQuad = InputQuads.find_first();
5578      BestHiQuad = InputQuads.find_next(BestLoQuad);
5579    }
5580    if (InputQuads.count() > 2) {
5581      BestLoQuad = -1;
5582      BestHiQuad = -1;
5583    }
5584  }
5585
5586  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5587  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5588  // words from all 4 input quadwords.
5589  SDValue NewV;
5590  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5591    SmallVector<int, 8> MaskV;
5592    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
5593    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
5594    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5595                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5596                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5597    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5598
5599    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5600    // source words for the shuffle, to aid later transformations.
5601    bool AllWordsInNewV = true;
5602    bool InOrder[2] = { true, true };
5603    for (unsigned i = 0; i != 8; ++i) {
5604      int idx = MaskVals[i];
5605      if (idx != (int)i)
5606        InOrder[i/4] = false;
5607      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5608        continue;
5609      AllWordsInNewV = false;
5610      break;
5611    }
5612
5613    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5614    if (AllWordsInNewV) {
5615      for (int i = 0; i != 8; ++i) {
5616        int idx = MaskVals[i];
5617        if (idx < 0)
5618          continue;
5619        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5620        if ((idx != i) && idx < 4)
5621          pshufhw = false;
5622        if ((idx != i) && idx > 3)
5623          pshuflw = false;
5624      }
5625      V1 = NewV;
5626      V2Used = false;
5627      BestLoQuad = 0;
5628      BestHiQuad = 1;
5629    }
5630
5631    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5632    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5633    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5634      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5635      unsigned TargetMask = 0;
5636      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5637                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5638      TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
5639                             X86::getShufflePSHUFLWImmediate(NewV.getNode());
5640      V1 = NewV.getOperand(0);
5641      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5642    }
5643  }
5644
5645  // If we have SSSE3, and all words of the result are from 1 input vector,
5646  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5647  // is present, fall back to case 4.
5648  if (Subtarget->hasSSSE3orAVX()) {
5649    SmallVector<SDValue,16> pshufbMask;
5650
5651    // If we have elements from both input vectors, set the high bit of the
5652    // shuffle mask element to zero out elements that come from V2 in the V1
5653    // mask, and elements that come from V1 in the V2 mask, so that the two
5654    // results can be OR'd together.
5655    bool TwoInputs = V1Used && V2Used;
5656    for (unsigned i = 0; i != 8; ++i) {
5657      int EltIdx = MaskVals[i] * 2;
5658      if (TwoInputs && (EltIdx >= 16)) {
5659        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5660        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5661        continue;
5662      }
5663      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
5664      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
5665    }
5666    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5667    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5668                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5669                                 MVT::v16i8, &pshufbMask[0], 16));
5670    if (!TwoInputs)
5671      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5672
5673    // Calculate the shuffle mask for the second input, shuffle it, and
5674    // OR it with the first shuffled input.
5675    pshufbMask.clear();
5676    for (unsigned i = 0; i != 8; ++i) {
5677      int EltIdx = MaskVals[i] * 2;
5678      if (EltIdx < 16) {
5679        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5680        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5681        continue;
5682      }
5683      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5684      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
5685    }
5686    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5687    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5688                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5689                                 MVT::v16i8, &pshufbMask[0], 16));
5690    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5691    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5692  }
5693
5694  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5695  // and update MaskVals with new element order.
5696  BitVector InOrder(8);
5697  if (BestLoQuad >= 0) {
5698    SmallVector<int, 8> MaskV;
5699    for (int i = 0; i != 4; ++i) {
5700      int idx = MaskVals[i];
5701      if (idx < 0) {
5702        MaskV.push_back(-1);
5703        InOrder.set(i);
5704      } else if ((idx / 4) == BestLoQuad) {
5705        MaskV.push_back(idx & 3);
5706        InOrder.set(i);
5707      } else {
5708        MaskV.push_back(-1);
5709      }
5710    }
5711    for (unsigned i = 4; i != 8; ++i)
5712      MaskV.push_back(i);
5713    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5714                                &MaskV[0]);
5715
5716    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3orAVX())
5717      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5718                               NewV.getOperand(0),
5719                               X86::getShufflePSHUFLWImmediate(NewV.getNode()),
5720                               DAG);
5721  }
5722
5723  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5724  // and update MaskVals with the new element order.
5725  if (BestHiQuad >= 0) {
5726    SmallVector<int, 8> MaskV;
5727    for (unsigned i = 0; i != 4; ++i)
5728      MaskV.push_back(i);
5729    for (unsigned i = 4; i != 8; ++i) {
5730      int idx = MaskVals[i];
5731      if (idx < 0) {
5732        MaskV.push_back(-1);
5733        InOrder.set(i);
5734      } else if ((idx / 4) == BestHiQuad) {
5735        MaskV.push_back((idx & 3) + 4);
5736        InOrder.set(i);
5737      } else {
5738        MaskV.push_back(-1);
5739      }
5740    }
5741    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5742                                &MaskV[0]);
5743
5744    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3orAVX())
5745      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5746                              NewV.getOperand(0),
5747                              X86::getShufflePSHUFHWImmediate(NewV.getNode()),
5748                              DAG);
5749  }
5750
5751  // In case BestHi & BestLo were both -1, which means each quadword has a word
5752  // from each of the four input quadwords, calculate the InOrder bitvector now
5753  // before falling through to the insert/extract cleanup.
5754  if (BestLoQuad == -1 && BestHiQuad == -1) {
5755    NewV = V1;
5756    for (int i = 0; i != 8; ++i)
5757      if (MaskVals[i] < 0 || MaskVals[i] == i)
5758        InOrder.set(i);
5759  }
5760
5761  // The other elements are put in the right place using pextrw and pinsrw.
5762  for (unsigned i = 0; i != 8; ++i) {
5763    if (InOrder[i])
5764      continue;
5765    int EltIdx = MaskVals[i];
5766    if (EltIdx < 0)
5767      continue;
5768    SDValue ExtOp = (EltIdx < 8)
5769    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5770                  DAG.getIntPtrConstant(EltIdx))
5771    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5772                  DAG.getIntPtrConstant(EltIdx - 8));
5773    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5774                       DAG.getIntPtrConstant(i));
5775  }
5776  return NewV;
5777}
5778
5779// v16i8 shuffles - Prefer shuffles in the following order:
5780// 1. [ssse3] 1 x pshufb
5781// 2. [ssse3] 2 x pshufb + 1 x por
5782// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5783static
5784SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5785                                 SelectionDAG &DAG,
5786                                 const X86TargetLowering &TLI) {
5787  SDValue V1 = SVOp->getOperand(0);
5788  SDValue V2 = SVOp->getOperand(1);
5789  DebugLoc dl = SVOp->getDebugLoc();
5790  SmallVector<int, 16> MaskVals;
5791  SVOp->getMask(MaskVals);
5792
5793  // If we have SSSE3, case 1 is generated when all result bytes come from
5794  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5795  // present, fall back to case 3.
5796  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
5797  bool V1Only = true;
5798  bool V2Only = true;
5799  for (unsigned i = 0; i < 16; ++i) {
5800    int EltIdx = MaskVals[i];
5801    if (EltIdx < 0)
5802      continue;
5803    if (EltIdx < 16)
5804      V2Only = false;
5805    else
5806      V1Only = false;
5807  }
5808
5809  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5810  if (TLI.getSubtarget()->hasSSSE3orAVX()) {
5811    SmallVector<SDValue,16> pshufbMask;
5812
5813    // If all result elements are from one input vector, then only translate
5814    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5815    //
5816    // Otherwise, we have elements from both input vectors, and must zero out
5817    // elements that come from V2 in the first mask, and V1 in the second mask
5818    // so that we can OR them together.
5819    bool TwoInputs = !(V1Only || V2Only);
5820    for (unsigned i = 0; i != 16; ++i) {
5821      int EltIdx = MaskVals[i];
5822      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
5823        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5824        continue;
5825      }
5826      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5827    }
5828    // If all the elements are from V2, assign it to V1 and return after
5829    // building the first pshufb.
5830    if (V2Only)
5831      V1 = V2;
5832    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5833                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5834                                 MVT::v16i8, &pshufbMask[0], 16));
5835    if (!TwoInputs)
5836      return V1;
5837
5838    // Calculate the shuffle mask for the second input, shuffle it, and
5839    // OR it with the first shuffled input.
5840    pshufbMask.clear();
5841    for (unsigned i = 0; i != 16; ++i) {
5842      int EltIdx = MaskVals[i];
5843      if (EltIdx < 16) {
5844        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5845        continue;
5846      }
5847      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5848    }
5849    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5850                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5851                                 MVT::v16i8, &pshufbMask[0], 16));
5852    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5853  }
5854
5855  // No SSSE3 - Calculate in place words and then fix all out of place words
5856  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5857  // the 16 different words that comprise the two doublequadword input vectors.
5858  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5859  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5860  SDValue NewV = V2Only ? V2 : V1;
5861  for (int i = 0; i != 8; ++i) {
5862    int Elt0 = MaskVals[i*2];
5863    int Elt1 = MaskVals[i*2+1];
5864
5865    // This word of the result is all undef, skip it.
5866    if (Elt0 < 0 && Elt1 < 0)
5867      continue;
5868
5869    // This word of the result is already in the correct place, skip it.
5870    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
5871      continue;
5872    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
5873      continue;
5874
5875    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5876    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5877    SDValue InsElt;
5878
5879    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5880    // using a single extract together, load it and store it.
5881    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5882      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5883                           DAG.getIntPtrConstant(Elt1 / 2));
5884      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5885                        DAG.getIntPtrConstant(i));
5886      continue;
5887    }
5888
5889    // If Elt1 is defined, extract it from the appropriate source.  If the
5890    // source byte is not also odd, shift the extracted word left 8 bits
5891    // otherwise clear the bottom 8 bits if we need to do an or.
5892    if (Elt1 >= 0) {
5893      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5894                           DAG.getIntPtrConstant(Elt1 / 2));
5895      if ((Elt1 & 1) == 0)
5896        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5897                             DAG.getConstant(8,
5898                                  TLI.getShiftAmountTy(InsElt.getValueType())));
5899      else if (Elt0 >= 0)
5900        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5901                             DAG.getConstant(0xFF00, MVT::i16));
5902    }
5903    // If Elt0 is defined, extract it from the appropriate source.  If the
5904    // source byte is not also even, shift the extracted word right 8 bits. If
5905    // Elt1 was also defined, OR the extracted values together before
5906    // inserting them in the result.
5907    if (Elt0 >= 0) {
5908      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5909                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5910      if ((Elt0 & 1) != 0)
5911        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5912                              DAG.getConstant(8,
5913                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
5914      else if (Elt1 >= 0)
5915        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5916                             DAG.getConstant(0x00FF, MVT::i16));
5917      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5918                         : InsElt0;
5919    }
5920    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5921                       DAG.getIntPtrConstant(i));
5922  }
5923  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5924}
5925
5926/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5927/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5928/// done when every pair / quad of shuffle mask elements point to elements in
5929/// the right sequence. e.g.
5930/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5931static
5932SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5933                                 SelectionDAG &DAG, DebugLoc dl) {
5934  EVT VT = SVOp->getValueType(0);
5935  SDValue V1 = SVOp->getOperand(0);
5936  SDValue V2 = SVOp->getOperand(1);
5937  unsigned NumElems = VT.getVectorNumElements();
5938  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
5939  EVT NewVT;
5940  switch (VT.getSimpleVT().SimpleTy) {
5941  default: assert(false && "Unexpected!");
5942  case MVT::v4f32: NewVT = MVT::v2f64; break;
5943  case MVT::v4i32: NewVT = MVT::v2i64; break;
5944  case MVT::v8i16: NewVT = MVT::v4i32; break;
5945  case MVT::v16i8: NewVT = MVT::v4i32; break;
5946  }
5947
5948  int Scale = NumElems / NewWidth;
5949  SmallVector<int, 8> MaskVec;
5950  for (unsigned i = 0; i < NumElems; i += Scale) {
5951    int StartIdx = -1;
5952    for (int j = 0; j < Scale; ++j) {
5953      int EltIdx = SVOp->getMaskElt(i+j);
5954      if (EltIdx < 0)
5955        continue;
5956      if (StartIdx == -1)
5957        StartIdx = EltIdx - (EltIdx % Scale);
5958      if (EltIdx != StartIdx + j)
5959        return SDValue();
5960    }
5961    if (StartIdx == -1)
5962      MaskVec.push_back(-1);
5963    else
5964      MaskVec.push_back(StartIdx / Scale);
5965  }
5966
5967  V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
5968  V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
5969  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
5970}
5971
5972/// getVZextMovL - Return a zero-extending vector move low node.
5973///
5974static SDValue getVZextMovL(EVT VT, EVT OpVT,
5975                            SDValue SrcOp, SelectionDAG &DAG,
5976                            const X86Subtarget *Subtarget, DebugLoc dl) {
5977  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
5978    LoadSDNode *LD = NULL;
5979    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
5980      LD = dyn_cast<LoadSDNode>(SrcOp);
5981    if (!LD) {
5982      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
5983      // instead.
5984      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
5985      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
5986          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5987          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
5988          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
5989        // PR2108
5990        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
5991        return DAG.getNode(ISD::BITCAST, dl, VT,
5992                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5993                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5994                                                   OpVT,
5995                                                   SrcOp.getOperand(0)
5996                                                          .getOperand(0))));
5997      }
5998    }
5999  }
6000
6001  return DAG.getNode(ISD::BITCAST, dl, VT,
6002                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
6003                                 DAG.getNode(ISD::BITCAST, dl,
6004                                             OpVT, SrcOp)));
6005}
6006
6007/// areShuffleHalvesWithinDisjointLanes - Check whether each half of a vector
6008/// shuffle node referes to only one lane in the sources.
6009static bool areShuffleHalvesWithinDisjointLanes(ShuffleVectorSDNode *SVOp) {
6010  EVT VT = SVOp->getValueType(0);
6011  int NumElems = VT.getVectorNumElements();
6012  int HalfSize = NumElems/2;
6013  SmallVector<int, 16> M;
6014  SVOp->getMask(M);
6015  bool MatchA = false, MatchB = false;
6016
6017  for (int l = 0; l < NumElems*2; l += HalfSize) {
6018    if (isUndefOrInRange(M, 0, HalfSize, l, l+HalfSize)) {
6019      MatchA = true;
6020      break;
6021    }
6022  }
6023
6024  for (int l = 0; l < NumElems*2; l += HalfSize) {
6025    if (isUndefOrInRange(M, HalfSize, HalfSize, l, l+HalfSize)) {
6026      MatchB = true;
6027      break;
6028    }
6029  }
6030
6031  return MatchA && MatchB;
6032}
6033
6034/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
6035/// which could not be matched by any known target speficic shuffle
6036static SDValue
6037LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6038  if (areShuffleHalvesWithinDisjointLanes(SVOp)) {
6039    // If each half of a vector shuffle node referes to only one lane in the
6040    // source vectors, extract each used 128-bit lane and shuffle them using
6041    // 128-bit shuffles. Then, concatenate the results. Otherwise leave
6042    // the work to the legalizer.
6043    DebugLoc dl = SVOp->getDebugLoc();
6044    EVT VT = SVOp->getValueType(0);
6045    int NumElems = VT.getVectorNumElements();
6046    int HalfSize = NumElems/2;
6047
6048    // Extract the reference for each half
6049    int FstVecExtractIdx = 0, SndVecExtractIdx = 0;
6050    int FstVecOpNum = 0, SndVecOpNum = 0;
6051    for (int i = 0; i < HalfSize; ++i) {
6052      int Elt = SVOp->getMaskElt(i);
6053      if (SVOp->getMaskElt(i) < 0)
6054        continue;
6055      FstVecOpNum = Elt/NumElems;
6056      FstVecExtractIdx = Elt % NumElems < HalfSize ? 0 : HalfSize;
6057      break;
6058    }
6059    for (int i = HalfSize; i < NumElems; ++i) {
6060      int Elt = SVOp->getMaskElt(i);
6061      if (SVOp->getMaskElt(i) < 0)
6062        continue;
6063      SndVecOpNum = Elt/NumElems;
6064      SndVecExtractIdx = Elt % NumElems < HalfSize ? 0 : HalfSize;
6065      break;
6066    }
6067
6068    // Extract the subvectors
6069    SDValue V1 = Extract128BitVector(SVOp->getOperand(FstVecOpNum),
6070                      DAG.getConstant(FstVecExtractIdx, MVT::i32), DAG, dl);
6071    SDValue V2 = Extract128BitVector(SVOp->getOperand(SndVecOpNum),
6072                      DAG.getConstant(SndVecExtractIdx, MVT::i32), DAG, dl);
6073
6074    // Generate 128-bit shuffles
6075    SmallVector<int, 16> MaskV1, MaskV2;
6076    for (int i = 0; i < HalfSize; ++i) {
6077      int Elt = SVOp->getMaskElt(i);
6078      MaskV1.push_back(Elt < 0 ? Elt : Elt % HalfSize);
6079    }
6080    for (int i = HalfSize; i < NumElems; ++i) {
6081      int Elt = SVOp->getMaskElt(i);
6082      MaskV2.push_back(Elt < 0 ? Elt : Elt % HalfSize);
6083    }
6084
6085    EVT NVT = V1.getValueType();
6086    V1 = DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &MaskV1[0]);
6087    V2 = DAG.getVectorShuffle(NVT, dl, V2, DAG.getUNDEF(NVT), &MaskV2[0]);
6088
6089    // Concatenate the result back
6090    SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), V1,
6091                                   DAG.getConstant(0, MVT::i32), DAG, dl);
6092    return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
6093                              DAG, dl);
6094  }
6095
6096  return SDValue();
6097}
6098
6099/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6100/// 4 elements, and match them with several different shuffle types.
6101static SDValue
6102LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6103  SDValue V1 = SVOp->getOperand(0);
6104  SDValue V2 = SVOp->getOperand(1);
6105  DebugLoc dl = SVOp->getDebugLoc();
6106  EVT VT = SVOp->getValueType(0);
6107
6108  assert(VT.getSizeInBits() == 128 && "Unsupported vector size");
6109
6110  SmallVector<std::pair<int, int>, 8> Locs;
6111  Locs.resize(4);
6112  SmallVector<int, 8> Mask1(4U, -1);
6113  SmallVector<int, 8> PermMask;
6114  SVOp->getMask(PermMask);
6115
6116  unsigned NumHi = 0;
6117  unsigned NumLo = 0;
6118  for (unsigned i = 0; i != 4; ++i) {
6119    int Idx = PermMask[i];
6120    if (Idx < 0) {
6121      Locs[i] = std::make_pair(-1, -1);
6122    } else {
6123      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6124      if (Idx < 4) {
6125        Locs[i] = std::make_pair(0, NumLo);
6126        Mask1[NumLo] = Idx;
6127        NumLo++;
6128      } else {
6129        Locs[i] = std::make_pair(1, NumHi);
6130        if (2+NumHi < 4)
6131          Mask1[2+NumHi] = Idx;
6132        NumHi++;
6133      }
6134    }
6135  }
6136
6137  if (NumLo <= 2 && NumHi <= 2) {
6138    // If no more than two elements come from either vector. This can be
6139    // implemented with two shuffles. First shuffle gather the elements.
6140    // The second shuffle, which takes the first shuffle as both of its
6141    // vector operands, put the elements into the right order.
6142    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6143
6144    SmallVector<int, 8> Mask2(4U, -1);
6145
6146    for (unsigned i = 0; i != 4; ++i) {
6147      if (Locs[i].first == -1)
6148        continue;
6149      else {
6150        unsigned Idx = (i < 2) ? 0 : 4;
6151        Idx += Locs[i].first * 2 + Locs[i].second;
6152        Mask2[i] = Idx;
6153      }
6154    }
6155
6156    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6157  } else if (NumLo == 3 || NumHi == 3) {
6158    // Otherwise, we must have three elements from one vector, call it X, and
6159    // one element from the other, call it Y.  First, use a shufps to build an
6160    // intermediate vector with the one element from Y and the element from X
6161    // that will be in the same half in the final destination (the indexes don't
6162    // matter). Then, use a shufps to build the final vector, taking the half
6163    // containing the element from Y from the intermediate, and the other half
6164    // from X.
6165    if (NumHi == 3) {
6166      // Normalize it so the 3 elements come from V1.
6167      CommuteVectorShuffleMask(PermMask, VT);
6168      std::swap(V1, V2);
6169    }
6170
6171    // Find the element from V2.
6172    unsigned HiIndex;
6173    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6174      int Val = PermMask[HiIndex];
6175      if (Val < 0)
6176        continue;
6177      if (Val >= 4)
6178        break;
6179    }
6180
6181    Mask1[0] = PermMask[HiIndex];
6182    Mask1[1] = -1;
6183    Mask1[2] = PermMask[HiIndex^1];
6184    Mask1[3] = -1;
6185    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6186
6187    if (HiIndex >= 2) {
6188      Mask1[0] = PermMask[0];
6189      Mask1[1] = PermMask[1];
6190      Mask1[2] = HiIndex & 1 ? 6 : 4;
6191      Mask1[3] = HiIndex & 1 ? 4 : 6;
6192      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6193    } else {
6194      Mask1[0] = HiIndex & 1 ? 2 : 0;
6195      Mask1[1] = HiIndex & 1 ? 0 : 2;
6196      Mask1[2] = PermMask[2];
6197      Mask1[3] = PermMask[3];
6198      if (Mask1[2] >= 0)
6199        Mask1[2] += 4;
6200      if (Mask1[3] >= 0)
6201        Mask1[3] += 4;
6202      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6203    }
6204  }
6205
6206  // Break it into (shuffle shuffle_hi, shuffle_lo).
6207  Locs.clear();
6208  Locs.resize(4);
6209  SmallVector<int,8> LoMask(4U, -1);
6210  SmallVector<int,8> HiMask(4U, -1);
6211
6212  SmallVector<int,8> *MaskPtr = &LoMask;
6213  unsigned MaskIdx = 0;
6214  unsigned LoIdx = 0;
6215  unsigned HiIdx = 2;
6216  for (unsigned i = 0; i != 4; ++i) {
6217    if (i == 2) {
6218      MaskPtr = &HiMask;
6219      MaskIdx = 1;
6220      LoIdx = 0;
6221      HiIdx = 2;
6222    }
6223    int Idx = PermMask[i];
6224    if (Idx < 0) {
6225      Locs[i] = std::make_pair(-1, -1);
6226    } else if (Idx < 4) {
6227      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6228      (*MaskPtr)[LoIdx] = Idx;
6229      LoIdx++;
6230    } else {
6231      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6232      (*MaskPtr)[HiIdx] = Idx;
6233      HiIdx++;
6234    }
6235  }
6236
6237  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6238  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6239  SmallVector<int, 8> MaskOps;
6240  for (unsigned i = 0; i != 4; ++i) {
6241    if (Locs[i].first == -1) {
6242      MaskOps.push_back(-1);
6243    } else {
6244      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
6245      MaskOps.push_back(Idx);
6246    }
6247  }
6248  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6249}
6250
6251static bool MayFoldVectorLoad(SDValue V) {
6252  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6253    V = V.getOperand(0);
6254  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6255    V = V.getOperand(0);
6256  if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
6257      V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
6258    // BUILD_VECTOR (load), undef
6259    V = V.getOperand(0);
6260  if (MayFoldLoad(V))
6261    return true;
6262  return false;
6263}
6264
6265// FIXME: the version above should always be used. Since there's
6266// a bug where several vector shuffles can't be folded because the
6267// DAG is not updated during lowering and a node claims to have two
6268// uses while it only has one, use this version, and let isel match
6269// another instruction if the load really happens to have more than
6270// one use. Remove this version after this bug get fixed.
6271// rdar://8434668, PR8156
6272static bool RelaxedMayFoldVectorLoad(SDValue V) {
6273  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6274    V = V.getOperand(0);
6275  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6276    V = V.getOperand(0);
6277  if (ISD::isNormalLoad(V.getNode()))
6278    return true;
6279  return false;
6280}
6281
6282/// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
6283/// a vector extract, and if both can be later optimized into a single load.
6284/// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
6285/// here because otherwise a target specific shuffle node is going to be
6286/// emitted for this shuffle, and the optimization not done.
6287/// FIXME: This is probably not the best approach, but fix the problem
6288/// until the right path is decided.
6289static
6290bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
6291                                         const TargetLowering &TLI) {
6292  EVT VT = V.getValueType();
6293  ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
6294
6295  // Be sure that the vector shuffle is present in a pattern like this:
6296  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
6297  if (!V.hasOneUse())
6298    return false;
6299
6300  SDNode *N = *V.getNode()->use_begin();
6301  if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
6302    return false;
6303
6304  SDValue EltNo = N->getOperand(1);
6305  if (!isa<ConstantSDNode>(EltNo))
6306    return false;
6307
6308  // If the bit convert changed the number of elements, it is unsafe
6309  // to examine the mask.
6310  bool HasShuffleIntoBitcast = false;
6311  if (V.getOpcode() == ISD::BITCAST) {
6312    EVT SrcVT = V.getOperand(0).getValueType();
6313    if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
6314      return false;
6315    V = V.getOperand(0);
6316    HasShuffleIntoBitcast = true;
6317  }
6318
6319  // Select the input vector, guarding against out of range extract vector.
6320  unsigned NumElems = VT.getVectorNumElements();
6321  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
6322  int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
6323  V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
6324
6325  // Skip one more bit_convert if necessary
6326  if (V.getOpcode() == ISD::BITCAST)
6327    V = V.getOperand(0);
6328
6329  if (ISD::isNormalLoad(V.getNode())) {
6330    // Is the original load suitable?
6331    LoadSDNode *LN0 = cast<LoadSDNode>(V);
6332
6333    // FIXME: avoid the multi-use bug that is preventing lots of
6334    // of foldings to be detected, this is still wrong of course, but
6335    // give the temporary desired behavior, and if it happens that
6336    // the load has real more uses, during isel it will not fold, and
6337    // will generate poor code.
6338    if (!LN0 || LN0->isVolatile()) // || !LN0->hasOneUse()
6339      return false;
6340
6341    if (!HasShuffleIntoBitcast)
6342      return true;
6343
6344    // If there's a bitcast before the shuffle, check if the load type and
6345    // alignment is valid.
6346    unsigned Align = LN0->getAlignment();
6347    unsigned NewAlign =
6348      TLI.getTargetData()->getABITypeAlignment(
6349                                    VT.getTypeForEVT(*DAG.getContext()));
6350
6351    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
6352      return false;
6353  }
6354
6355  return true;
6356}
6357
6358static
6359SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6360  EVT VT = Op.getValueType();
6361
6362  // Canonizalize to v2f64.
6363  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6364  return DAG.getNode(ISD::BITCAST, dl, VT,
6365                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6366                                          V1, DAG));
6367}
6368
6369static
6370SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6371                        bool HasXMMInt) {
6372  SDValue V1 = Op.getOperand(0);
6373  SDValue V2 = Op.getOperand(1);
6374  EVT VT = Op.getValueType();
6375
6376  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6377
6378  if (HasXMMInt && VT == MVT::v2f64)
6379    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6380
6381  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6382  return DAG.getNode(ISD::BITCAST, dl, VT,
6383                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6384                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6385                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6386}
6387
6388static
6389SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6390  SDValue V1 = Op.getOperand(0);
6391  SDValue V2 = Op.getOperand(1);
6392  EVT VT = Op.getValueType();
6393
6394  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6395         "unsupported shuffle type");
6396
6397  if (V2.getOpcode() == ISD::UNDEF)
6398    V2 = V1;
6399
6400  // v4i32 or v4f32
6401  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6402}
6403
6404static inline unsigned getSHUFPOpcode(EVT VT) {
6405  switch(VT.getSimpleVT().SimpleTy) {
6406  case MVT::v8i32: // Use fp unit for int unpack.
6407  case MVT::v8f32:
6408  case MVT::v4i32: // Use fp unit for int unpack.
6409  case MVT::v4f32: return X86ISD::SHUFPS;
6410  case MVT::v4i64: // Use fp unit for int unpack.
6411  case MVT::v4f64:
6412  case MVT::v2i64: // Use fp unit for int unpack.
6413  case MVT::v2f64: return X86ISD::SHUFPD;
6414  default:
6415    llvm_unreachable("Unknown type for shufp*");
6416  }
6417  return 0;
6418}
6419
6420static
6421SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasXMMInt) {
6422  SDValue V1 = Op.getOperand(0);
6423  SDValue V2 = Op.getOperand(1);
6424  EVT VT = Op.getValueType();
6425  unsigned NumElems = VT.getVectorNumElements();
6426
6427  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6428  // operand of these instructions is only memory, so check if there's a
6429  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6430  // same masks.
6431  bool CanFoldLoad = false;
6432
6433  // Trivial case, when V2 comes from a load.
6434  if (MayFoldVectorLoad(V2))
6435    CanFoldLoad = true;
6436
6437  // When V1 is a load, it can be folded later into a store in isel, example:
6438  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6439  //    turns into:
6440  //  (MOVLPSmr addr:$src1, VR128:$src2)
6441  // So, recognize this potential and also use MOVLPS or MOVLPD
6442  else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6443    CanFoldLoad = true;
6444
6445  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6446  if (CanFoldLoad) {
6447    if (HasXMMInt && NumElems == 2)
6448      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6449
6450    if (NumElems == 4)
6451      // If we don't care about the second element, procede to use movss.
6452      if (SVOp->getMaskElt(1) != -1)
6453        return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6454  }
6455
6456  // movl and movlp will both match v2i64, but v2i64 is never matched by
6457  // movl earlier because we make it strict to avoid messing with the movlp load
6458  // folding logic (see the code above getMOVLP call). Match it here then,
6459  // this is horrible, but will stay like this until we move all shuffle
6460  // matching to x86 specific nodes. Note that for the 1st condition all
6461  // types are matched with movsd.
6462  if (HasXMMInt) {
6463    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6464    // as to remove this logic from here, as much as possible
6465    if (NumElems == 2 || !X86::isMOVLMask(SVOp))
6466      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6467    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6468  }
6469
6470  assert(VT != MVT::v4i32 && "unsupported shuffle type");
6471
6472  // Invert the operand order and use SHUFPS to match it.
6473  return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V2, V1,
6474                              X86::getShuffleSHUFImmediate(SVOp), DAG);
6475}
6476
6477static inline unsigned getUNPCKLOpcode(EVT VT, bool HasAVX2) {
6478  switch(VT.getSimpleVT().SimpleTy) {
6479  case MVT::v32i8:
6480  case MVT::v16i8:
6481  case MVT::v16i16:
6482  case MVT::v8i16:
6483  case MVT::v4i32:
6484  case MVT::v2i64: return X86ISD::PUNPCKL;
6485  case MVT::v8i32:
6486  case MVT::v4i64:
6487    if (HasAVX2)   return X86ISD::PUNPCKL;
6488    // else use fp unit for int unpack.
6489  case MVT::v8f32:
6490  case MVT::v4f32:
6491  case MVT::v4f64:
6492  case MVT::v2f64: return X86ISD::UNPCKLP;
6493  default:
6494    llvm_unreachable("Unknown type for unpckl");
6495  }
6496  return 0;
6497}
6498
6499static inline unsigned getUNPCKHOpcode(EVT VT, bool HasAVX2) {
6500  switch(VT.getSimpleVT().SimpleTy) {
6501  case MVT::v32i8:
6502  case MVT::v16i8:
6503  case MVT::v16i16:
6504  case MVT::v8i16:
6505  case MVT::v4i32:
6506  case MVT::v2i64: return X86ISD::PUNPCKH;
6507  case MVT::v4i64:
6508  case MVT::v8i32:
6509    if (HasAVX2)   return X86ISD::PUNPCKH;
6510    // else use fp unit for int unpack.
6511  case MVT::v8f32:
6512  case MVT::v4f32:
6513  case MVT::v4f64:
6514  case MVT::v2f64: return X86ISD::UNPCKHP;
6515  default:
6516    llvm_unreachable("Unknown type for unpckh");
6517  }
6518  return 0;
6519}
6520
6521static
6522SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
6523                               const TargetLowering &TLI,
6524                               const X86Subtarget *Subtarget) {
6525  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6526  EVT VT = Op.getValueType();
6527  DebugLoc dl = Op.getDebugLoc();
6528  SDValue V1 = Op.getOperand(0);
6529  SDValue V2 = Op.getOperand(1);
6530
6531  if (isZeroShuffle(SVOp))
6532    return getZeroVector(VT, Subtarget->hasXMMInt(), DAG, dl);
6533
6534  // Handle splat operations
6535  if (SVOp->isSplat()) {
6536    unsigned NumElem = VT.getVectorNumElements();
6537    int Size = VT.getSizeInBits();
6538    // Special case, this is the only place now where it's allowed to return
6539    // a vector_shuffle operation without using a target specific node, because
6540    // *hopefully* it will be optimized away by the dag combiner. FIXME: should
6541    // this be moved to DAGCombine instead?
6542    if (NumElem <= 4 && CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
6543      return Op;
6544
6545    // Use vbroadcast whenever the splat comes from a foldable load
6546    SDValue LD = isVectorBroadcast(Op, Subtarget->hasAVX2());
6547    if (Subtarget->hasAVX() && LD.getNode())
6548      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, LD);
6549
6550    // Handle splats by matching through known shuffle masks
6551    if ((Size == 128 && NumElem <= 4) ||
6552        (Size == 256 && NumElem < 8))
6553      return SDValue();
6554
6555    // All remaning splats are promoted to target supported vector shuffles.
6556    return PromoteSplat(SVOp, DAG);
6557  }
6558
6559  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6560  // do it!
6561  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
6562    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6563    if (NewOp.getNode())
6564      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6565  } else if ((VT == MVT::v4i32 ||
6566             (VT == MVT::v4f32 && Subtarget->hasXMMInt()))) {
6567    // FIXME: Figure out a cleaner way to do this.
6568    // Try to make use of movq to zero out the top part.
6569    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6570      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6571      if (NewOp.getNode()) {
6572        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
6573          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
6574                              DAG, Subtarget, dl);
6575      }
6576    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6577      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6578      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
6579        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
6580                            DAG, Subtarget, dl);
6581    }
6582  }
6583  return SDValue();
6584}
6585
6586SDValue
6587X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6588  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6589  SDValue V1 = Op.getOperand(0);
6590  SDValue V2 = Op.getOperand(1);
6591  EVT VT = Op.getValueType();
6592  DebugLoc dl = Op.getDebugLoc();
6593  unsigned NumElems = VT.getVectorNumElements();
6594  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6595  bool V1IsSplat = false;
6596  bool V2IsSplat = false;
6597  bool HasXMMInt = Subtarget->hasXMMInt();
6598  bool HasAVX2   = Subtarget->hasAVX2();
6599  MachineFunction &MF = DAG.getMachineFunction();
6600  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
6601
6602  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
6603
6604  assert(V1.getOpcode() != ISD::UNDEF && "Op 1 of shuffle should not be undef");
6605
6606  // Vector shuffle lowering takes 3 steps:
6607  //
6608  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6609  //    narrowing and commutation of operands should be handled.
6610  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6611  //    shuffle nodes.
6612  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6613  //    so the shuffle can be broken into other shuffles and the legalizer can
6614  //    try the lowering again.
6615  //
6616  // The general idea is that no vector_shuffle operation should be left to
6617  // be matched during isel, all of them must be converted to a target specific
6618  // node here.
6619
6620  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6621  // narrowing and commutation of operands should be handled. The actual code
6622  // doesn't include all of those, work in progress...
6623  SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
6624  if (NewOp.getNode())
6625    return NewOp;
6626
6627  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6628  // unpckh_undef). Only use pshufd if speed is more important than size.
6629  if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp))
6630    return getTargetShuffleNode(getUNPCKLOpcode(VT, HasAVX2), dl, VT, V1, V1,
6631                                DAG);
6632  if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp))
6633    return getTargetShuffleNode(getUNPCKHOpcode(VT, HasAVX2), dl, VT, V1, V1,
6634                                DAG);
6635
6636  if (X86::isMOVDDUPMask(SVOp) && Subtarget->hasSSE3orAVX() &&
6637      V2IsUndef && RelaxedMayFoldVectorLoad(V1))
6638    return getMOVDDup(Op, dl, V1, DAG);
6639
6640  if (X86::isMOVHLPS_v_undef_Mask(SVOp))
6641    return getMOVHighToLow(Op, dl, DAG);
6642
6643  // Use to match splats
6644  if (HasXMMInt && X86::isUNPCKHMask(SVOp, HasAVX2) && V2IsUndef &&
6645      (VT == MVT::v2f64 || VT == MVT::v2i64))
6646    return getTargetShuffleNode(getUNPCKHOpcode(VT, HasAVX2), dl, VT, V1, V1,
6647                                DAG);
6648
6649  if (X86::isPSHUFDMask(SVOp)) {
6650    // The actual implementation will match the mask in the if above and then
6651    // during isel it can match several different instructions, not only pshufd
6652    // as its name says, sad but true, emulate the behavior for now...
6653    if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6654        return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6655
6656    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
6657
6658    if (HasXMMInt && (VT == MVT::v4f32 || VT == MVT::v4i32))
6659      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6660
6661    return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V1,
6662                                TargetMask, DAG);
6663  }
6664
6665  // Check if this can be converted into a logical shift.
6666  bool isLeft = false;
6667  unsigned ShAmt = 0;
6668  SDValue ShVal;
6669  bool isShift = HasXMMInt && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6670  if (isShift && ShVal.hasOneUse()) {
6671    // If the shifted value has multiple uses, it may be cheaper to use
6672    // v_set0 + movlhps or movhlps, etc.
6673    EVT EltVT = VT.getVectorElementType();
6674    ShAmt *= EltVT.getSizeInBits();
6675    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6676  }
6677
6678  if (X86::isMOVLMask(SVOp)) {
6679    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6680      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6681    if (!X86::isMOVLPMask(SVOp)) {
6682      if (HasXMMInt && (VT == MVT::v2i64 || VT == MVT::v2f64))
6683        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6684
6685      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6686        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6687    }
6688  }
6689
6690  // FIXME: fold these into legal mask.
6691  if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp, HasAVX2))
6692    return getMOVLowToHigh(Op, dl, DAG, HasXMMInt);
6693
6694  if (X86::isMOVHLPSMask(SVOp))
6695    return getMOVHighToLow(Op, dl, DAG);
6696
6697  if (X86::isMOVSHDUPMask(SVOp, Subtarget))
6698    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6699
6700  if (X86::isMOVSLDUPMask(SVOp, Subtarget))
6701    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6702
6703  if (X86::isMOVLPMask(SVOp))
6704    return getMOVLP(Op, dl, DAG, HasXMMInt);
6705
6706  if (ShouldXformToMOVHLPS(SVOp) ||
6707      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
6708    return CommuteVectorShuffle(SVOp, DAG);
6709
6710  if (isShift) {
6711    // No better options. Use a vshl / vsrl.
6712    EVT EltVT = VT.getVectorElementType();
6713    ShAmt *= EltVT.getSizeInBits();
6714    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6715  }
6716
6717  bool Commuted = false;
6718  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6719  // 1,1,1,1 -> v8i16 though.
6720  V1IsSplat = isSplatVector(V1.getNode());
6721  V2IsSplat = isSplatVector(V2.getNode());
6722
6723  // Canonicalize the splat or undef, if present, to be on the RHS.
6724  if (V1IsSplat && !V2IsSplat) {
6725    Op = CommuteVectorShuffle(SVOp, DAG);
6726    SVOp = cast<ShuffleVectorSDNode>(Op);
6727    V1 = SVOp->getOperand(0);
6728    V2 = SVOp->getOperand(1);
6729    std::swap(V1IsSplat, V2IsSplat);
6730    Commuted = true;
6731  }
6732
6733  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
6734    // Shuffling low element of v1 into undef, just return v1.
6735    if (V2IsUndef)
6736      return V1;
6737    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6738    // the instruction selector will not match, so get a canonical MOVL with
6739    // swapped operands to undo the commute.
6740    return getMOVL(DAG, dl, VT, V2, V1);
6741  }
6742
6743  if (X86::isUNPCKLMask(SVOp, HasAVX2))
6744    return getTargetShuffleNode(getUNPCKLOpcode(VT, HasAVX2), dl, VT, V1, V2,
6745                                DAG);
6746
6747  if (X86::isUNPCKHMask(SVOp, HasAVX2))
6748    return getTargetShuffleNode(getUNPCKHOpcode(VT, HasAVX2), dl, VT, V1, V2,
6749                                DAG);
6750
6751  if (V2IsSplat) {
6752    // Normalize mask so all entries that point to V2 points to its first
6753    // element then try to match unpck{h|l} again. If match, return a
6754    // new vector_shuffle with the corrected mask.
6755    SDValue NewMask = NormalizeMask(SVOp, DAG);
6756    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
6757    if (NSVOp != SVOp) {
6758      if (X86::isUNPCKLMask(NSVOp, HasAVX2, true)) {
6759        return NewMask;
6760      } else if (X86::isUNPCKHMask(NSVOp, HasAVX2, true)) {
6761        return NewMask;
6762      }
6763    }
6764  }
6765
6766  if (Commuted) {
6767    // Commute is back and try unpck* again.
6768    // FIXME: this seems wrong.
6769    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
6770    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
6771
6772    if (X86::isUNPCKLMask(NewSVOp, HasAVX2))
6773      return getTargetShuffleNode(getUNPCKLOpcode(VT, HasAVX2), dl, VT, V2, V1,
6774                                  DAG);
6775
6776    if (X86::isUNPCKHMask(NewSVOp, HasAVX2))
6777      return getTargetShuffleNode(getUNPCKHOpcode(VT, HasAVX2), dl, VT, V2, V1,
6778                                  DAG);
6779  }
6780
6781  // Normalize the node to match x86 shuffle ops if needed
6782  if (!V2IsUndef && (isCommutedSHUFP(SVOp) ||
6783                     isCommutedVSHUFPY(SVOp, Subtarget->hasAVX())))
6784    return CommuteVectorShuffle(SVOp, DAG);
6785
6786  // The checks below are all present in isShuffleMaskLegal, but they are
6787  // inlined here right now to enable us to directly emit target specific
6788  // nodes, and remove one by one until they don't return Op anymore.
6789  SmallVector<int, 16> M;
6790  SVOp->getMask(M);
6791
6792  if (isPALIGNRMask(M, VT, Subtarget->hasSSSE3orAVX()))
6793    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6794                                X86::getShufflePALIGNRImmediate(SVOp),
6795                                DAG);
6796
6797  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6798      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6799    if (VT == MVT::v2f64)
6800      return getTargetShuffleNode(X86ISD::UNPCKLP, dl, VT, V1, V1, DAG);
6801    if (VT == MVT::v2i64)
6802      return getTargetShuffleNode(X86ISD::PUNPCKL, dl, VT, V1, V1, DAG);
6803  }
6804
6805  if (isPSHUFHWMask(M, VT))
6806    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6807                                X86::getShufflePSHUFHWImmediate(SVOp),
6808                                DAG);
6809
6810  if (isPSHUFLWMask(M, VT))
6811    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6812                                X86::getShufflePSHUFLWImmediate(SVOp),
6813                                DAG);
6814
6815  if (isSHUFPMask(M, VT))
6816    return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
6817                                X86::getShuffleSHUFImmediate(SVOp), DAG);
6818
6819  if (X86::isUNPCKL_v_undef_Mask(SVOp))
6820    return getTargetShuffleNode(getUNPCKLOpcode(VT, HasAVX2), dl, VT, V1, V1,
6821                                DAG);
6822  if (X86::isUNPCKH_v_undef_Mask(SVOp))
6823    return getTargetShuffleNode(getUNPCKHOpcode(VT, HasAVX2), dl, VT, V1, V1,
6824                                DAG);
6825
6826  //===--------------------------------------------------------------------===//
6827  // Generate target specific nodes for 128 or 256-bit shuffles only
6828  // supported in the AVX instruction set.
6829  //
6830
6831  // Handle VMOVDDUPY permutations
6832  if (isMOVDDUPYMask(SVOp, Subtarget))
6833    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
6834
6835  // Handle VPERMILPS/D* permutations
6836  if (isVPERMILPMask(M, VT, Subtarget->hasAVX()))
6837    return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
6838                                getShuffleVPERMILPImmediate(SVOp), DAG);
6839
6840  // Handle VPERM2F128/VPERM2I128 permutations
6841  if (isVPERM2X128Mask(M, VT, Subtarget->hasAVX()))
6842    return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
6843                                V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
6844
6845  // Handle VSHUFPS/DY permutations
6846  if (isVSHUFPYMask(M, VT, Subtarget->hasAVX()))
6847    return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
6848                                getShuffleVSHUFPYImmediate(SVOp), DAG);
6849
6850  //===--------------------------------------------------------------------===//
6851  // Since no target specific shuffle was selected for this generic one,
6852  // lower it into other known shuffles. FIXME: this isn't true yet, but
6853  // this is the plan.
6854  //
6855
6856  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6857  if (VT == MVT::v8i16) {
6858    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
6859    if (NewOp.getNode())
6860      return NewOp;
6861  }
6862
6863  if (VT == MVT::v16i8) {
6864    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6865    if (NewOp.getNode())
6866      return NewOp;
6867  }
6868
6869  // Handle all 128-bit wide vectors with 4 elements, and match them with
6870  // several different shuffle types.
6871  if (NumElems == 4 && VT.getSizeInBits() == 128)
6872    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6873
6874  // Handle general 256-bit shuffles
6875  if (VT.is256BitVector())
6876    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6877
6878  return SDValue();
6879}
6880
6881SDValue
6882X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6883                                                SelectionDAG &DAG) const {
6884  EVT VT = Op.getValueType();
6885  DebugLoc dl = Op.getDebugLoc();
6886
6887  if (Op.getOperand(0).getValueType().getSizeInBits() != 128)
6888    return SDValue();
6889
6890  if (VT.getSizeInBits() == 8) {
6891    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6892                                    Op.getOperand(0), Op.getOperand(1));
6893    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6894                                    DAG.getValueType(VT));
6895    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6896  } else if (VT.getSizeInBits() == 16) {
6897    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6898    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6899    if (Idx == 0)
6900      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6901                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6902                                     DAG.getNode(ISD::BITCAST, dl,
6903                                                 MVT::v4i32,
6904                                                 Op.getOperand(0)),
6905                                     Op.getOperand(1)));
6906    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6907                                    Op.getOperand(0), Op.getOperand(1));
6908    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6909                                    DAG.getValueType(VT));
6910    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6911  } else if (VT == MVT::f32) {
6912    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6913    // the result back to FR32 register. It's only worth matching if the
6914    // result has a single use which is a store or a bitcast to i32.  And in
6915    // the case of a store, it's not worth it if the index is a constant 0,
6916    // because a MOVSSmr can be used instead, which is smaller and faster.
6917    if (!Op.hasOneUse())
6918      return SDValue();
6919    SDNode *User = *Op.getNode()->use_begin();
6920    if ((User->getOpcode() != ISD::STORE ||
6921         (isa<ConstantSDNode>(Op.getOperand(1)) &&
6922          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6923        (User->getOpcode() != ISD::BITCAST ||
6924         User->getValueType(0) != MVT::i32))
6925      return SDValue();
6926    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6927                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
6928                                              Op.getOperand(0)),
6929                                              Op.getOperand(1));
6930    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
6931  } else if (VT == MVT::i32 || VT == MVT::i64) {
6932    // ExtractPS/pextrq works with constant index.
6933    if (isa<ConstantSDNode>(Op.getOperand(1)))
6934      return Op;
6935  }
6936  return SDValue();
6937}
6938
6939
6940SDValue
6941X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6942                                           SelectionDAG &DAG) const {
6943  if (!isa<ConstantSDNode>(Op.getOperand(1)))
6944    return SDValue();
6945
6946  SDValue Vec = Op.getOperand(0);
6947  EVT VecVT = Vec.getValueType();
6948
6949  // If this is a 256-bit vector result, first extract the 128-bit vector and
6950  // then extract the element from the 128-bit vector.
6951  if (VecVT.getSizeInBits() == 256) {
6952    DebugLoc dl = Op.getNode()->getDebugLoc();
6953    unsigned NumElems = VecVT.getVectorNumElements();
6954    SDValue Idx = Op.getOperand(1);
6955    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6956
6957    // Get the 128-bit vector.
6958    bool Upper = IdxVal >= NumElems/2;
6959    Vec = Extract128BitVector(Vec,
6960                    DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32), DAG, dl);
6961
6962    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6963                    Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : Idx);
6964  }
6965
6966  assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
6967
6968  if (Subtarget->hasSSE41orAVX()) {
6969    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6970    if (Res.getNode())
6971      return Res;
6972  }
6973
6974  EVT VT = Op.getValueType();
6975  DebugLoc dl = Op.getDebugLoc();
6976  // TODO: handle v16i8.
6977  if (VT.getSizeInBits() == 16) {
6978    SDValue Vec = Op.getOperand(0);
6979    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6980    if (Idx == 0)
6981      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6982                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6983                                     DAG.getNode(ISD::BITCAST, dl,
6984                                                 MVT::v4i32, Vec),
6985                                     Op.getOperand(1)));
6986    // Transform it so it match pextrw which produces a 32-bit result.
6987    EVT EltVT = MVT::i32;
6988    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6989                                    Op.getOperand(0), Op.getOperand(1));
6990    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6991                                    DAG.getValueType(VT));
6992    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6993  } else if (VT.getSizeInBits() == 32) {
6994    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6995    if (Idx == 0)
6996      return Op;
6997
6998    // SHUFPS the element to the lowest double word, then movss.
6999    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
7000    EVT VVT = Op.getOperand(0).getValueType();
7001    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
7002                                       DAG.getUNDEF(VVT), Mask);
7003    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
7004                       DAG.getIntPtrConstant(0));
7005  } else if (VT.getSizeInBits() == 64) {
7006    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
7007    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
7008    //        to match extract_elt for f64.
7009    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7010    if (Idx == 0)
7011      return Op;
7012
7013    // UNPCKHPD the element to the lowest double word, then movsd.
7014    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
7015    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
7016    int Mask[2] = { 1, -1 };
7017    EVT VVT = Op.getOperand(0).getValueType();
7018    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
7019                                       DAG.getUNDEF(VVT), Mask);
7020    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
7021                       DAG.getIntPtrConstant(0));
7022  }
7023
7024  return SDValue();
7025}
7026
7027SDValue
7028X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
7029                                               SelectionDAG &DAG) const {
7030  EVT VT = Op.getValueType();
7031  EVT EltVT = VT.getVectorElementType();
7032  DebugLoc dl = Op.getDebugLoc();
7033
7034  SDValue N0 = Op.getOperand(0);
7035  SDValue N1 = Op.getOperand(1);
7036  SDValue N2 = Op.getOperand(2);
7037
7038  if (VT.getSizeInBits() == 256)
7039    return SDValue();
7040
7041  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
7042      isa<ConstantSDNode>(N2)) {
7043    unsigned Opc;
7044    if (VT == MVT::v8i16)
7045      Opc = X86ISD::PINSRW;
7046    else if (VT == MVT::v16i8)
7047      Opc = X86ISD::PINSRB;
7048    else
7049      Opc = X86ISD::PINSRB;
7050
7051    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
7052    // argument.
7053    if (N1.getValueType() != MVT::i32)
7054      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7055    if (N2.getValueType() != MVT::i32)
7056      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7057    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
7058  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
7059    // Bits [7:6] of the constant are the source select.  This will always be
7060    //  zero here.  The DAG Combiner may combine an extract_elt index into these
7061    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
7062    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
7063    // Bits [5:4] of the constant are the destination select.  This is the
7064    //  value of the incoming immediate.
7065    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
7066    //   combine either bitwise AND or insert of float 0.0 to set these bits.
7067    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
7068    // Create this as a scalar to vector..
7069    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
7070    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
7071  } else if ((EltVT == MVT::i32 || EltVT == MVT::i64) &&
7072             isa<ConstantSDNode>(N2)) {
7073    // PINSR* works with constant index.
7074    return Op;
7075  }
7076  return SDValue();
7077}
7078
7079SDValue
7080X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
7081  EVT VT = Op.getValueType();
7082  EVT EltVT = VT.getVectorElementType();
7083
7084  DebugLoc dl = Op.getDebugLoc();
7085  SDValue N0 = Op.getOperand(0);
7086  SDValue N1 = Op.getOperand(1);
7087  SDValue N2 = Op.getOperand(2);
7088
7089  // If this is a 256-bit vector result, first extract the 128-bit vector,
7090  // insert the element into the extracted half and then place it back.
7091  if (VT.getSizeInBits() == 256) {
7092    if (!isa<ConstantSDNode>(N2))
7093      return SDValue();
7094
7095    // Get the desired 128-bit vector half.
7096    unsigned NumElems = VT.getVectorNumElements();
7097    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
7098    bool Upper = IdxVal >= NumElems/2;
7099    SDValue Ins128Idx = DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32);
7100    SDValue V = Extract128BitVector(N0, Ins128Idx, DAG, dl);
7101
7102    // Insert the element into the desired half.
7103    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V,
7104                 N1, Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : N2);
7105
7106    // Insert the changed part back to the 256-bit vector
7107    return Insert128BitVector(N0, V, Ins128Idx, DAG, dl);
7108  }
7109
7110  if (Subtarget->hasSSE41orAVX())
7111    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
7112
7113  if (EltVT == MVT::i8)
7114    return SDValue();
7115
7116  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
7117    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
7118    // as its second argument.
7119    if (N1.getValueType() != MVT::i32)
7120      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7121    if (N2.getValueType() != MVT::i32)
7122      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7123    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
7124  }
7125  return SDValue();
7126}
7127
7128SDValue
7129X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
7130  LLVMContext *Context = DAG.getContext();
7131  DebugLoc dl = Op.getDebugLoc();
7132  EVT OpVT = Op.getValueType();
7133
7134  // If this is a 256-bit vector result, first insert into a 128-bit
7135  // vector and then insert into the 256-bit vector.
7136  if (OpVT.getSizeInBits() > 128) {
7137    // Insert into a 128-bit vector.
7138    EVT VT128 = EVT::getVectorVT(*Context,
7139                                 OpVT.getVectorElementType(),
7140                                 OpVT.getVectorNumElements() / 2);
7141
7142    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
7143
7144    // Insert the 128-bit vector.
7145    return Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, OpVT), Op,
7146                              DAG.getConstant(0, MVT::i32),
7147                              DAG, dl);
7148  }
7149
7150  if (Op.getValueType() == MVT::v1i64 &&
7151      Op.getOperand(0).getValueType() == MVT::i64)
7152    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
7153
7154  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
7155  assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
7156         "Expected an SSE type!");
7157  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
7158                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
7159}
7160
7161// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
7162// a simple subregister reference or explicit instructions to grab
7163// upper bits of a vector.
7164SDValue
7165X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7166  if (Subtarget->hasAVX()) {
7167    DebugLoc dl = Op.getNode()->getDebugLoc();
7168    SDValue Vec = Op.getNode()->getOperand(0);
7169    SDValue Idx = Op.getNode()->getOperand(1);
7170
7171    if (Op.getNode()->getValueType(0).getSizeInBits() == 128
7172        && Vec.getNode()->getValueType(0).getSizeInBits() == 256) {
7173        return Extract128BitVector(Vec, Idx, DAG, dl);
7174    }
7175  }
7176  return SDValue();
7177}
7178
7179// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
7180// simple superregister reference or explicit instructions to insert
7181// the upper bits of a vector.
7182SDValue
7183X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7184  if (Subtarget->hasAVX()) {
7185    DebugLoc dl = Op.getNode()->getDebugLoc();
7186    SDValue Vec = Op.getNode()->getOperand(0);
7187    SDValue SubVec = Op.getNode()->getOperand(1);
7188    SDValue Idx = Op.getNode()->getOperand(2);
7189
7190    if (Op.getNode()->getValueType(0).getSizeInBits() == 256
7191        && SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
7192      return Insert128BitVector(Vec, SubVec, Idx, DAG, dl);
7193    }
7194  }
7195  return SDValue();
7196}
7197
7198// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7199// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7200// one of the above mentioned nodes. It has to be wrapped because otherwise
7201// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7202// be used to form addressing mode. These wrapped nodes will be selected
7203// into MOV32ri.
7204SDValue
7205X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7206  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7207
7208  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7209  // global base reg.
7210  unsigned char OpFlag = 0;
7211  unsigned WrapperKind = X86ISD::Wrapper;
7212  CodeModel::Model M = getTargetMachine().getCodeModel();
7213
7214  if (Subtarget->isPICStyleRIPRel() &&
7215      (M == CodeModel::Small || M == CodeModel::Kernel))
7216    WrapperKind = X86ISD::WrapperRIP;
7217  else if (Subtarget->isPICStyleGOT())
7218    OpFlag = X86II::MO_GOTOFF;
7219  else if (Subtarget->isPICStyleStubPIC())
7220    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7221
7222  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7223                                             CP->getAlignment(),
7224                                             CP->getOffset(), OpFlag);
7225  DebugLoc DL = CP->getDebugLoc();
7226  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7227  // With PIC, the address is actually $g + Offset.
7228  if (OpFlag) {
7229    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7230                         DAG.getNode(X86ISD::GlobalBaseReg,
7231                                     DebugLoc(), getPointerTy()),
7232                         Result);
7233  }
7234
7235  return Result;
7236}
7237
7238SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7239  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7240
7241  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7242  // global base reg.
7243  unsigned char OpFlag = 0;
7244  unsigned WrapperKind = X86ISD::Wrapper;
7245  CodeModel::Model M = getTargetMachine().getCodeModel();
7246
7247  if (Subtarget->isPICStyleRIPRel() &&
7248      (M == CodeModel::Small || M == CodeModel::Kernel))
7249    WrapperKind = X86ISD::WrapperRIP;
7250  else if (Subtarget->isPICStyleGOT())
7251    OpFlag = X86II::MO_GOTOFF;
7252  else if (Subtarget->isPICStyleStubPIC())
7253    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7254
7255  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7256                                          OpFlag);
7257  DebugLoc DL = JT->getDebugLoc();
7258  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7259
7260  // With PIC, the address is actually $g + Offset.
7261  if (OpFlag)
7262    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7263                         DAG.getNode(X86ISD::GlobalBaseReg,
7264                                     DebugLoc(), getPointerTy()),
7265                         Result);
7266
7267  return Result;
7268}
7269
7270SDValue
7271X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7272  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7273
7274  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7275  // global base reg.
7276  unsigned char OpFlag = 0;
7277  unsigned WrapperKind = X86ISD::Wrapper;
7278  CodeModel::Model M = getTargetMachine().getCodeModel();
7279
7280  if (Subtarget->isPICStyleRIPRel() &&
7281      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7282    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7283      OpFlag = X86II::MO_GOTPCREL;
7284    WrapperKind = X86ISD::WrapperRIP;
7285  } else if (Subtarget->isPICStyleGOT()) {
7286    OpFlag = X86II::MO_GOT;
7287  } else if (Subtarget->isPICStyleStubPIC()) {
7288    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7289  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7290    OpFlag = X86II::MO_DARWIN_NONLAZY;
7291  }
7292
7293  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7294
7295  DebugLoc DL = Op.getDebugLoc();
7296  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7297
7298
7299  // With PIC, the address is actually $g + Offset.
7300  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7301      !Subtarget->is64Bit()) {
7302    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7303                         DAG.getNode(X86ISD::GlobalBaseReg,
7304                                     DebugLoc(), getPointerTy()),
7305                         Result);
7306  }
7307
7308  // For symbols that require a load from a stub to get the address, emit the
7309  // load.
7310  if (isGlobalStubReference(OpFlag))
7311    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7312                         MachinePointerInfo::getGOT(), false, false, false, 0);
7313
7314  return Result;
7315}
7316
7317SDValue
7318X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7319  // Create the TargetBlockAddressAddress node.
7320  unsigned char OpFlags =
7321    Subtarget->ClassifyBlockAddressReference();
7322  CodeModel::Model M = getTargetMachine().getCodeModel();
7323  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7324  DebugLoc dl = Op.getDebugLoc();
7325  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
7326                                       /*isTarget=*/true, OpFlags);
7327
7328  if (Subtarget->isPICStyleRIPRel() &&
7329      (M == CodeModel::Small || M == CodeModel::Kernel))
7330    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7331  else
7332    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7333
7334  // With PIC, the address is actually $g + Offset.
7335  if (isGlobalRelativeToPICBase(OpFlags)) {
7336    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7337                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7338                         Result);
7339  }
7340
7341  return Result;
7342}
7343
7344SDValue
7345X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7346                                      int64_t Offset,
7347                                      SelectionDAG &DAG) const {
7348  // Create the TargetGlobalAddress node, folding in the constant
7349  // offset if it is legal.
7350  unsigned char OpFlags =
7351    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7352  CodeModel::Model M = getTargetMachine().getCodeModel();
7353  SDValue Result;
7354  if (OpFlags == X86II::MO_NO_FLAG &&
7355      X86::isOffsetSuitableForCodeModel(Offset, M)) {
7356    // A direct static reference to a global.
7357    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7358    Offset = 0;
7359  } else {
7360    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7361  }
7362
7363  if (Subtarget->isPICStyleRIPRel() &&
7364      (M == CodeModel::Small || M == CodeModel::Kernel))
7365    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7366  else
7367    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7368
7369  // With PIC, the address is actually $g + Offset.
7370  if (isGlobalRelativeToPICBase(OpFlags)) {
7371    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7372                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7373                         Result);
7374  }
7375
7376  // For globals that require a load from a stub to get the address, emit the
7377  // load.
7378  if (isGlobalStubReference(OpFlags))
7379    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7380                         MachinePointerInfo::getGOT(), false, false, false, 0);
7381
7382  // If there was a non-zero offset that we didn't fold, create an explicit
7383  // addition for it.
7384  if (Offset != 0)
7385    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7386                         DAG.getConstant(Offset, getPointerTy()));
7387
7388  return Result;
7389}
7390
7391SDValue
7392X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7393  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7394  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7395  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7396}
7397
7398static SDValue
7399GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7400           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7401           unsigned char OperandFlags) {
7402  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7403  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7404  DebugLoc dl = GA->getDebugLoc();
7405  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7406                                           GA->getValueType(0),
7407                                           GA->getOffset(),
7408                                           OperandFlags);
7409  if (InFlag) {
7410    SDValue Ops[] = { Chain,  TGA, *InFlag };
7411    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
7412  } else {
7413    SDValue Ops[]  = { Chain, TGA };
7414    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
7415  }
7416
7417  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7418  MFI->setAdjustsStack(true);
7419
7420  SDValue Flag = Chain.getValue(1);
7421  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7422}
7423
7424// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7425static SDValue
7426LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7427                                const EVT PtrVT) {
7428  SDValue InFlag;
7429  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
7430  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7431                                     DAG.getNode(X86ISD::GlobalBaseReg,
7432                                                 DebugLoc(), PtrVT), InFlag);
7433  InFlag = Chain.getValue(1);
7434
7435  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7436}
7437
7438// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7439static SDValue
7440LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7441                                const EVT PtrVT) {
7442  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7443                    X86::RAX, X86II::MO_TLSGD);
7444}
7445
7446// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
7447// "local exec" model.
7448static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7449                                   const EVT PtrVT, TLSModel::Model model,
7450                                   bool is64Bit) {
7451  DebugLoc dl = GA->getDebugLoc();
7452
7453  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7454  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7455                                                         is64Bit ? 257 : 256));
7456
7457  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7458                                      DAG.getIntPtrConstant(0),
7459                                      MachinePointerInfo(Ptr),
7460                                      false, false, false, 0);
7461
7462  unsigned char OperandFlags = 0;
7463  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7464  // initialexec.
7465  unsigned WrapperKind = X86ISD::Wrapper;
7466  if (model == TLSModel::LocalExec) {
7467    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7468  } else if (is64Bit) {
7469    assert(model == TLSModel::InitialExec);
7470    OperandFlags = X86II::MO_GOTTPOFF;
7471    WrapperKind = X86ISD::WrapperRIP;
7472  } else {
7473    assert(model == TLSModel::InitialExec);
7474    OperandFlags = X86II::MO_INDNTPOFF;
7475  }
7476
7477  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
7478  // exec)
7479  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7480                                           GA->getValueType(0),
7481                                           GA->getOffset(), OperandFlags);
7482  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7483
7484  if (model == TLSModel::InitialExec)
7485    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7486                         MachinePointerInfo::getGOT(), false, false, false, 0);
7487
7488  // The address of the thread local variable is the add of the thread
7489  // pointer with the offset of the variable.
7490  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7491}
7492
7493SDValue
7494X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7495
7496  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7497  const GlobalValue *GV = GA->getGlobal();
7498
7499  if (Subtarget->isTargetELF()) {
7500    // TODO: implement the "local dynamic" model
7501    // TODO: implement the "initial exec"model for pic executables
7502
7503    // If GV is an alias then use the aliasee for determining
7504    // thread-localness.
7505    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7506      GV = GA->resolveAliasedGlobal(false);
7507
7508    TLSModel::Model model
7509      = getTLSModel(GV, getTargetMachine().getRelocationModel());
7510
7511    switch (model) {
7512      case TLSModel::GeneralDynamic:
7513      case TLSModel::LocalDynamic: // not implemented
7514        if (Subtarget->is64Bit())
7515          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7516        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7517
7518      case TLSModel::InitialExec:
7519      case TLSModel::LocalExec:
7520        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7521                                   Subtarget->is64Bit());
7522    }
7523  } else if (Subtarget->isTargetDarwin()) {
7524    // Darwin only has one model of TLS.  Lower to that.
7525    unsigned char OpFlag = 0;
7526    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7527                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7528
7529    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7530    // global base reg.
7531    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7532                  !Subtarget->is64Bit();
7533    if (PIC32)
7534      OpFlag = X86II::MO_TLVP_PIC_BASE;
7535    else
7536      OpFlag = X86II::MO_TLVP;
7537    DebugLoc DL = Op.getDebugLoc();
7538    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7539                                                GA->getValueType(0),
7540                                                GA->getOffset(), OpFlag);
7541    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7542
7543    // With PIC32, the address is actually $g + Offset.
7544    if (PIC32)
7545      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7546                           DAG.getNode(X86ISD::GlobalBaseReg,
7547                                       DebugLoc(), getPointerTy()),
7548                           Offset);
7549
7550    // Lowering the machine isd will make sure everything is in the right
7551    // location.
7552    SDValue Chain = DAG.getEntryNode();
7553    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7554    SDValue Args[] = { Chain, Offset };
7555    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7556
7557    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7558    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7559    MFI->setAdjustsStack(true);
7560
7561    // And our return value (tls address) is in the standard call return value
7562    // location.
7563    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7564    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
7565                              Chain.getValue(1));
7566  }
7567
7568  assert(false &&
7569         "TLS not implemented for this target.");
7570
7571  llvm_unreachable("Unreachable");
7572  return SDValue();
7573}
7574
7575
7576/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values and
7577/// take a 2 x i32 value to shift plus a shift amount.
7578SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const {
7579  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7580  EVT VT = Op.getValueType();
7581  unsigned VTBits = VT.getSizeInBits();
7582  DebugLoc dl = Op.getDebugLoc();
7583  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7584  SDValue ShOpLo = Op.getOperand(0);
7585  SDValue ShOpHi = Op.getOperand(1);
7586  SDValue ShAmt  = Op.getOperand(2);
7587  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7588                                     DAG.getConstant(VTBits - 1, MVT::i8))
7589                       : DAG.getConstant(0, VT);
7590
7591  SDValue Tmp2, Tmp3;
7592  if (Op.getOpcode() == ISD::SHL_PARTS) {
7593    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7594    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7595  } else {
7596    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7597    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7598  }
7599
7600  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7601                                DAG.getConstant(VTBits, MVT::i8));
7602  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7603                             AndNode, DAG.getConstant(0, MVT::i8));
7604
7605  SDValue Hi, Lo;
7606  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7607  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7608  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7609
7610  if (Op.getOpcode() == ISD::SHL_PARTS) {
7611    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7612    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7613  } else {
7614    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7615    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7616  }
7617
7618  SDValue Ops[2] = { Lo, Hi };
7619  return DAG.getMergeValues(Ops, 2, dl);
7620}
7621
7622SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7623                                           SelectionDAG &DAG) const {
7624  EVT SrcVT = Op.getOperand(0).getValueType();
7625
7626  if (SrcVT.isVector())
7627    return SDValue();
7628
7629  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7630         "Unknown SINT_TO_FP to lower!");
7631
7632  // These are really Legal; return the operand so the caller accepts it as
7633  // Legal.
7634  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7635    return Op;
7636  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7637      Subtarget->is64Bit()) {
7638    return Op;
7639  }
7640
7641  DebugLoc dl = Op.getDebugLoc();
7642  unsigned Size = SrcVT.getSizeInBits()/8;
7643  MachineFunction &MF = DAG.getMachineFunction();
7644  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7645  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7646  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7647                               StackSlot,
7648                               MachinePointerInfo::getFixedStack(SSFI),
7649                               false, false, 0);
7650  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7651}
7652
7653SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7654                                     SDValue StackSlot,
7655                                     SelectionDAG &DAG) const {
7656  // Build the FILD
7657  DebugLoc DL = Op.getDebugLoc();
7658  SDVTList Tys;
7659  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7660  if (useSSE)
7661    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7662  else
7663    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7664
7665  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7666
7667  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7668  MachineMemOperand *MMO;
7669  if (FI) {
7670    int SSFI = FI->getIndex();
7671    MMO =
7672      DAG.getMachineFunction()
7673      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7674                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7675  } else {
7676    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7677    StackSlot = StackSlot.getOperand(1);
7678  }
7679  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7680  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7681                                           X86ISD::FILD, DL,
7682                                           Tys, Ops, array_lengthof(Ops),
7683                                           SrcVT, MMO);
7684
7685  if (useSSE) {
7686    Chain = Result.getValue(1);
7687    SDValue InFlag = Result.getValue(2);
7688
7689    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7690    // shouldn't be necessary except that RFP cannot be live across
7691    // multiple blocks. When stackifier is fixed, they can be uncoupled.
7692    MachineFunction &MF = DAG.getMachineFunction();
7693    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7694    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7695    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7696    Tys = DAG.getVTList(MVT::Other);
7697    SDValue Ops[] = {
7698      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7699    };
7700    MachineMemOperand *MMO =
7701      DAG.getMachineFunction()
7702      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7703                            MachineMemOperand::MOStore, SSFISize, SSFISize);
7704
7705    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7706                                    Ops, array_lengthof(Ops),
7707                                    Op.getValueType(), MMO);
7708    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7709                         MachinePointerInfo::getFixedStack(SSFI),
7710                         false, false, false, 0);
7711  }
7712
7713  return Result;
7714}
7715
7716// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7717SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7718                                               SelectionDAG &DAG) const {
7719  // This algorithm is not obvious. Here it is in C code, more or less:
7720  /*
7721    double uint64_to_double( uint32_t hi, uint32_t lo ) {
7722      static const __m128i exp = { 0x4330000045300000ULL, 0 };
7723      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
7724
7725      // Copy ints to xmm registers.
7726      __m128i xh = _mm_cvtsi32_si128( hi );
7727      __m128i xl = _mm_cvtsi32_si128( lo );
7728
7729      // Combine into low half of a single xmm register.
7730      __m128i x = _mm_unpacklo_epi32( xh, xl );
7731      __m128d d;
7732      double sd;
7733
7734      // Merge in appropriate exponents to give the integer bits the right
7735      // magnitude.
7736      x = _mm_unpacklo_epi32( x, exp );
7737
7738      // Subtract away the biases to deal with the IEEE-754 double precision
7739      // implicit 1.
7740      d = _mm_sub_pd( (__m128d) x, bias );
7741
7742      // All conversions up to here are exact. The correctly rounded result is
7743      // calculated using the current rounding mode using the following
7744      // horizontal add.
7745      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
7746      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
7747                                // store doesn't really need to be here (except
7748                                // maybe to zero the other double)
7749      return sd;
7750    }
7751  */
7752
7753  DebugLoc dl = Op.getDebugLoc();
7754  LLVMContext *Context = DAG.getContext();
7755
7756  // Build some magic constants.
7757  std::vector<Constant*> CV0;
7758  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
7759  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
7760  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7761  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7762  Constant *C0 = ConstantVector::get(CV0);
7763  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7764
7765  std::vector<Constant*> CV1;
7766  CV1.push_back(
7767    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7768  CV1.push_back(
7769    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7770  Constant *C1 = ConstantVector::get(CV1);
7771  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7772
7773  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7774                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7775                                        Op.getOperand(0),
7776                                        DAG.getIntPtrConstant(1)));
7777  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7778                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7779                                        Op.getOperand(0),
7780                                        DAG.getIntPtrConstant(0)));
7781  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
7782  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7783                              MachinePointerInfo::getConstantPool(),
7784                              false, false, false, 16);
7785  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
7786  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck2);
7787  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7788                              MachinePointerInfo::getConstantPool(),
7789                              false, false, false, 16);
7790  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7791
7792  // Add the halves; easiest way is to swap them into another reg first.
7793  int ShufMask[2] = { 1, -1 };
7794  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
7795                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
7796  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
7797  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
7798                     DAG.getIntPtrConstant(0));
7799}
7800
7801// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
7802SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7803                                               SelectionDAG &DAG) const {
7804  DebugLoc dl = Op.getDebugLoc();
7805  // FP constant to bias correct the final result.
7806  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7807                                   MVT::f64);
7808
7809  // Load the 32-bit value into an XMM register.
7810  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7811                             Op.getOperand(0));
7812
7813  // Zero out the upper parts of the register.
7814  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget->hasXMMInt(),
7815                                     DAG);
7816
7817  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7818                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7819                     DAG.getIntPtrConstant(0));
7820
7821  // Or the load with the bias.
7822  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7823                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7824                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7825                                                   MVT::v2f64, Load)),
7826                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7827                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7828                                                   MVT::v2f64, Bias)));
7829  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7830                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7831                   DAG.getIntPtrConstant(0));
7832
7833  // Subtract the bias.
7834  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7835
7836  // Handle final rounding.
7837  EVT DestVT = Op.getValueType();
7838
7839  if (DestVT.bitsLT(MVT::f64)) {
7840    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7841                       DAG.getIntPtrConstant(0));
7842  } else if (DestVT.bitsGT(MVT::f64)) {
7843    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7844  }
7845
7846  // Handle final rounding.
7847  return Sub;
7848}
7849
7850SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
7851                                           SelectionDAG &DAG) const {
7852  SDValue N0 = Op.getOperand(0);
7853  DebugLoc dl = Op.getDebugLoc();
7854
7855  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
7856  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
7857  // the optimization here.
7858  if (DAG.SignBitIsZero(N0))
7859    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
7860
7861  EVT SrcVT = N0.getValueType();
7862  EVT DstVT = Op.getValueType();
7863  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
7864    return LowerUINT_TO_FP_i64(Op, DAG);
7865  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
7866    return LowerUINT_TO_FP_i32(Op, DAG);
7867
7868  // Make a 64-bit buffer, and use it to build an FILD.
7869  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
7870  if (SrcVT == MVT::i32) {
7871    SDValue WordOff = DAG.getConstant(4, getPointerTy());
7872    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
7873                                     getPointerTy(), StackSlot, WordOff);
7874    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7875                                  StackSlot, MachinePointerInfo(),
7876                                  false, false, 0);
7877    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
7878                                  OffsetSlot, MachinePointerInfo(),
7879                                  false, false, 0);
7880    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
7881    return Fild;
7882  }
7883
7884  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
7885  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7886                                StackSlot, MachinePointerInfo(),
7887                               false, false, 0);
7888  // For i64 source, we need to add the appropriate power of 2 if the input
7889  // was negative.  This is the same as the optimization in
7890  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
7891  // we must be careful to do the computation in x87 extended precision, not
7892  // in SSE. (The generic code can't know it's OK to do this, or how to.)
7893  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
7894  MachineMemOperand *MMO =
7895    DAG.getMachineFunction()
7896    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7897                          MachineMemOperand::MOLoad, 8, 8);
7898
7899  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
7900  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
7901  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
7902                                         MVT::i64, MMO);
7903
7904  APInt FF(32, 0x5F800000ULL);
7905
7906  // Check whether the sign bit is set.
7907  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
7908                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
7909                                 ISD::SETLT);
7910
7911  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
7912  SDValue FudgePtr = DAG.getConstantPool(
7913                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
7914                                         getPointerTy());
7915
7916  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
7917  SDValue Zero = DAG.getIntPtrConstant(0);
7918  SDValue Four = DAG.getIntPtrConstant(4);
7919  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
7920                               Zero, Four);
7921  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
7922
7923  // Load the value out, extending it from f32 to f80.
7924  // FIXME: Avoid the extend by constructing the right constant pool?
7925  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
7926                                 FudgePtr, MachinePointerInfo::getConstantPool(),
7927                                 MVT::f32, false, false, 4);
7928  // Extend everything to 80 bits to force it to be done on x87.
7929  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
7930  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
7931}
7932
7933std::pair<SDValue,SDValue> X86TargetLowering::
7934FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
7935  DebugLoc DL = Op.getDebugLoc();
7936
7937  EVT DstTy = Op.getValueType();
7938
7939  if (!IsSigned) {
7940    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
7941    DstTy = MVT::i64;
7942  }
7943
7944  assert(DstTy.getSimpleVT() <= MVT::i64 &&
7945         DstTy.getSimpleVT() >= MVT::i16 &&
7946         "Unknown FP_TO_SINT to lower!");
7947
7948  // These are really Legal.
7949  if (DstTy == MVT::i32 &&
7950      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7951    return std::make_pair(SDValue(), SDValue());
7952  if (Subtarget->is64Bit() &&
7953      DstTy == MVT::i64 &&
7954      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7955    return std::make_pair(SDValue(), SDValue());
7956
7957  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
7958  // stack slot.
7959  MachineFunction &MF = DAG.getMachineFunction();
7960  unsigned MemSize = DstTy.getSizeInBits()/8;
7961  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7962  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7963
7964
7965
7966  unsigned Opc;
7967  switch (DstTy.getSimpleVT().SimpleTy) {
7968  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
7969  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
7970  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
7971  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
7972  }
7973
7974  SDValue Chain = DAG.getEntryNode();
7975  SDValue Value = Op.getOperand(0);
7976  EVT TheVT = Op.getOperand(0).getValueType();
7977  if (isScalarFPTypeInSSEReg(TheVT)) {
7978    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
7979    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
7980                         MachinePointerInfo::getFixedStack(SSFI),
7981                         false, false, 0);
7982    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
7983    SDValue Ops[] = {
7984      Chain, StackSlot, DAG.getValueType(TheVT)
7985    };
7986
7987    MachineMemOperand *MMO =
7988      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7989                              MachineMemOperand::MOLoad, MemSize, MemSize);
7990    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
7991                                    DstTy, MMO);
7992    Chain = Value.getValue(1);
7993    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7994    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7995  }
7996
7997  MachineMemOperand *MMO =
7998    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7999                            MachineMemOperand::MOStore, MemSize, MemSize);
8000
8001  // Build the FP_TO_INT*_IN_MEM
8002  SDValue Ops[] = { Chain, Value, StackSlot };
8003  SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
8004                                         Ops, 3, DstTy, MMO);
8005
8006  return std::make_pair(FIST, StackSlot);
8007}
8008
8009SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
8010                                           SelectionDAG &DAG) const {
8011  if (Op.getValueType().isVector())
8012    return SDValue();
8013
8014  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
8015  SDValue FIST = Vals.first, StackSlot = Vals.second;
8016  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
8017  if (FIST.getNode() == 0) return Op;
8018
8019  // Load the result.
8020  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
8021                     FIST, StackSlot, MachinePointerInfo(),
8022                     false, false, false, 0);
8023}
8024
8025SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
8026                                           SelectionDAG &DAG) const {
8027  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
8028  SDValue FIST = Vals.first, StackSlot = Vals.second;
8029  assert(FIST.getNode() && "Unexpected failure");
8030
8031  // Load the result.
8032  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
8033                     FIST, StackSlot, MachinePointerInfo(),
8034                     false, false, false, 0);
8035}
8036
8037SDValue X86TargetLowering::LowerFABS(SDValue Op,
8038                                     SelectionDAG &DAG) const {
8039  LLVMContext *Context = DAG.getContext();
8040  DebugLoc dl = Op.getDebugLoc();
8041  EVT VT = Op.getValueType();
8042  EVT EltVT = VT;
8043  if (VT.isVector())
8044    EltVT = VT.getVectorElementType();
8045  std::vector<Constant*> CV;
8046  if (EltVT == MVT::f64) {
8047    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
8048    CV.push_back(C);
8049    CV.push_back(C);
8050  } else {
8051    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
8052    CV.push_back(C);
8053    CV.push_back(C);
8054    CV.push_back(C);
8055    CV.push_back(C);
8056  }
8057  Constant *C = ConstantVector::get(CV);
8058  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8059  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8060                             MachinePointerInfo::getConstantPool(),
8061                             false, false, false, 16);
8062  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
8063}
8064
8065SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
8066  LLVMContext *Context = DAG.getContext();
8067  DebugLoc dl = Op.getDebugLoc();
8068  EVT VT = Op.getValueType();
8069  EVT EltVT = VT;
8070  if (VT.isVector())
8071    EltVT = VT.getVectorElementType();
8072  std::vector<Constant*> CV;
8073  if (EltVT == MVT::f64) {
8074    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
8075    CV.push_back(C);
8076    CV.push_back(C);
8077  } else {
8078    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
8079    CV.push_back(C);
8080    CV.push_back(C);
8081    CV.push_back(C);
8082    CV.push_back(C);
8083  }
8084  Constant *C = ConstantVector::get(CV);
8085  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8086  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8087                             MachinePointerInfo::getConstantPool(),
8088                             false, false, false, 16);
8089  if (VT.isVector()) {
8090    return DAG.getNode(ISD::BITCAST, dl, VT,
8091                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
8092                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
8093                                Op.getOperand(0)),
8094                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Mask)));
8095  } else {
8096    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
8097  }
8098}
8099
8100SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
8101  LLVMContext *Context = DAG.getContext();
8102  SDValue Op0 = Op.getOperand(0);
8103  SDValue Op1 = Op.getOperand(1);
8104  DebugLoc dl = Op.getDebugLoc();
8105  EVT VT = Op.getValueType();
8106  EVT SrcVT = Op1.getValueType();
8107
8108  // If second operand is smaller, extend it first.
8109  if (SrcVT.bitsLT(VT)) {
8110    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
8111    SrcVT = VT;
8112  }
8113  // And if it is bigger, shrink it first.
8114  if (SrcVT.bitsGT(VT)) {
8115    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
8116    SrcVT = VT;
8117  }
8118
8119  // At this point the operands and the result should have the same
8120  // type, and that won't be f80 since that is not custom lowered.
8121
8122  // First get the sign bit of second operand.
8123  std::vector<Constant*> CV;
8124  if (SrcVT == MVT::f64) {
8125    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
8126    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8127  } else {
8128    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
8129    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8130    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8131    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8132  }
8133  Constant *C = ConstantVector::get(CV);
8134  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8135  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
8136                              MachinePointerInfo::getConstantPool(),
8137                              false, false, false, 16);
8138  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
8139
8140  // Shift sign bit right or left if the two operands have different types.
8141  if (SrcVT.bitsGT(VT)) {
8142    // Op0 is MVT::f32, Op1 is MVT::f64.
8143    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
8144    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
8145                          DAG.getConstant(32, MVT::i32));
8146    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
8147    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
8148                          DAG.getIntPtrConstant(0));
8149  }
8150
8151  // Clear first operand sign bit.
8152  CV.clear();
8153  if (VT == MVT::f64) {
8154    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
8155    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8156  } else {
8157    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
8158    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8159    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8160    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8161  }
8162  C = ConstantVector::get(CV);
8163  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8164  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8165                              MachinePointerInfo::getConstantPool(),
8166                              false, false, false, 16);
8167  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
8168
8169  // Or the value with the sign bit.
8170  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
8171}
8172
8173SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
8174  SDValue N0 = Op.getOperand(0);
8175  DebugLoc dl = Op.getDebugLoc();
8176  EVT VT = Op.getValueType();
8177
8178  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
8179  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
8180                                  DAG.getConstant(1, VT));
8181  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
8182}
8183
8184/// Emit nodes that will be selected as "test Op0,Op0", or something
8185/// equivalent.
8186SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
8187                                    SelectionDAG &DAG) const {
8188  DebugLoc dl = Op.getDebugLoc();
8189
8190  // CF and OF aren't always set the way we want. Determine which
8191  // of these we need.
8192  bool NeedCF = false;
8193  bool NeedOF = false;
8194  switch (X86CC) {
8195  default: break;
8196  case X86::COND_A: case X86::COND_AE:
8197  case X86::COND_B: case X86::COND_BE:
8198    NeedCF = true;
8199    break;
8200  case X86::COND_G: case X86::COND_GE:
8201  case X86::COND_L: case X86::COND_LE:
8202  case X86::COND_O: case X86::COND_NO:
8203    NeedOF = true;
8204    break;
8205  }
8206
8207  // See if we can use the EFLAGS value from the operand instead of
8208  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8209  // we prove that the arithmetic won't overflow, we can't use OF or CF.
8210  if (Op.getResNo() != 0 || NeedOF || NeedCF)
8211    // Emit a CMP with 0, which is the TEST pattern.
8212    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8213                       DAG.getConstant(0, Op.getValueType()));
8214
8215  unsigned Opcode = 0;
8216  unsigned NumOperands = 0;
8217  switch (Op.getNode()->getOpcode()) {
8218  case ISD::ADD:
8219    // Due to an isel shortcoming, be conservative if this add is likely to be
8220    // selected as part of a load-modify-store instruction. When the root node
8221    // in a match is a store, isel doesn't know how to remap non-chain non-flag
8222    // uses of other nodes in the match, such as the ADD in this case. This
8223    // leads to the ADD being left around and reselected, with the result being
8224    // two adds in the output.  Alas, even if none our users are stores, that
8225    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
8226    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
8227    // climbing the DAG back to the root, and it doesn't seem to be worth the
8228    // effort.
8229    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8230         UE = Op.getNode()->use_end(); UI != UE; ++UI)
8231      if (UI->getOpcode() != ISD::CopyToReg &&
8232          UI->getOpcode() != ISD::SETCC &&
8233          UI->getOpcode() != ISD::STORE)
8234        goto default_case;
8235
8236    if (ConstantSDNode *C =
8237        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
8238      // An add of one will be selected as an INC.
8239      if (C->getAPIntValue() == 1) {
8240        Opcode = X86ISD::INC;
8241        NumOperands = 1;
8242        break;
8243      }
8244
8245      // An add of negative one (subtract of one) will be selected as a DEC.
8246      if (C->getAPIntValue().isAllOnesValue()) {
8247        Opcode = X86ISD::DEC;
8248        NumOperands = 1;
8249        break;
8250      }
8251    }
8252
8253    // Otherwise use a regular EFLAGS-setting add.
8254    Opcode = X86ISD::ADD;
8255    NumOperands = 2;
8256    break;
8257  case ISD::AND: {
8258    // If the primary and result isn't used, don't bother using X86ISD::AND,
8259    // because a TEST instruction will be better.
8260    bool NonFlagUse = false;
8261    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8262           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8263      SDNode *User = *UI;
8264      unsigned UOpNo = UI.getOperandNo();
8265      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8266        // Look pass truncate.
8267        UOpNo = User->use_begin().getOperandNo();
8268        User = *User->use_begin();
8269      }
8270
8271      if (User->getOpcode() != ISD::BRCOND &&
8272          User->getOpcode() != ISD::SETCC &&
8273          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
8274        NonFlagUse = true;
8275        break;
8276      }
8277    }
8278
8279    if (!NonFlagUse)
8280      break;
8281  }
8282    // FALL THROUGH
8283  case ISD::SUB:
8284  case ISD::OR:
8285  case ISD::XOR:
8286    // Due to the ISEL shortcoming noted above, be conservative if this op is
8287    // likely to be selected as part of a load-modify-store instruction.
8288    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8289           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8290      if (UI->getOpcode() == ISD::STORE)
8291        goto default_case;
8292
8293    // Otherwise use a regular EFLAGS-setting instruction.
8294    switch (Op.getNode()->getOpcode()) {
8295    default: llvm_unreachable("unexpected operator!");
8296    case ISD::SUB: Opcode = X86ISD::SUB; break;
8297    case ISD::OR:  Opcode = X86ISD::OR;  break;
8298    case ISD::XOR: Opcode = X86ISD::XOR; break;
8299    case ISD::AND: Opcode = X86ISD::AND; break;
8300    }
8301
8302    NumOperands = 2;
8303    break;
8304  case X86ISD::ADD:
8305  case X86ISD::SUB:
8306  case X86ISD::INC:
8307  case X86ISD::DEC:
8308  case X86ISD::OR:
8309  case X86ISD::XOR:
8310  case X86ISD::AND:
8311    return SDValue(Op.getNode(), 1);
8312  default:
8313  default_case:
8314    break;
8315  }
8316
8317  if (Opcode == 0)
8318    // Emit a CMP with 0, which is the TEST pattern.
8319    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8320                       DAG.getConstant(0, Op.getValueType()));
8321
8322  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
8323  SmallVector<SDValue, 4> Ops;
8324  for (unsigned i = 0; i != NumOperands; ++i)
8325    Ops.push_back(Op.getOperand(i));
8326
8327  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
8328  DAG.ReplaceAllUsesWith(Op, New);
8329  return SDValue(New.getNode(), 1);
8330}
8331
8332/// Emit nodes that will be selected as "cmp Op0,Op1", or something
8333/// equivalent.
8334SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
8335                                   SelectionDAG &DAG) const {
8336  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
8337    if (C->getAPIntValue() == 0)
8338      return EmitTest(Op0, X86CC, DAG);
8339
8340  DebugLoc dl = Op0.getDebugLoc();
8341  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
8342}
8343
8344/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
8345/// if it's possible.
8346SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
8347                                     DebugLoc dl, SelectionDAG &DAG) const {
8348  SDValue Op0 = And.getOperand(0);
8349  SDValue Op1 = And.getOperand(1);
8350  if (Op0.getOpcode() == ISD::TRUNCATE)
8351    Op0 = Op0.getOperand(0);
8352  if (Op1.getOpcode() == ISD::TRUNCATE)
8353    Op1 = Op1.getOperand(0);
8354
8355  SDValue LHS, RHS;
8356  if (Op1.getOpcode() == ISD::SHL)
8357    std::swap(Op0, Op1);
8358  if (Op0.getOpcode() == ISD::SHL) {
8359    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
8360      if (And00C->getZExtValue() == 1) {
8361        // If we looked past a truncate, check that it's only truncating away
8362        // known zeros.
8363        unsigned BitWidth = Op0.getValueSizeInBits();
8364        unsigned AndBitWidth = And.getValueSizeInBits();
8365        if (BitWidth > AndBitWidth) {
8366          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
8367          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
8368          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
8369            return SDValue();
8370        }
8371        LHS = Op1;
8372        RHS = Op0.getOperand(1);
8373      }
8374  } else if (Op1.getOpcode() == ISD::Constant) {
8375    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
8376    uint64_t AndRHSVal = AndRHS->getZExtValue();
8377    SDValue AndLHS = Op0;
8378
8379    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
8380      LHS = AndLHS.getOperand(0);
8381      RHS = AndLHS.getOperand(1);
8382    }
8383
8384    // Use BT if the immediate can't be encoded in a TEST instruction.
8385    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
8386      LHS = AndLHS;
8387      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
8388    }
8389  }
8390
8391  if (LHS.getNode()) {
8392    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
8393    // instruction.  Since the shift amount is in-range-or-undefined, we know
8394    // that doing a bittest on the i32 value is ok.  We extend to i32 because
8395    // the encoding for the i16 version is larger than the i32 version.
8396    // Also promote i16 to i32 for performance / code size reason.
8397    if (LHS.getValueType() == MVT::i8 ||
8398        LHS.getValueType() == MVT::i16)
8399      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
8400
8401    // If the operand types disagree, extend the shift amount to match.  Since
8402    // BT ignores high bits (like shifts) we can use anyextend.
8403    if (LHS.getValueType() != RHS.getValueType())
8404      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
8405
8406    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
8407    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
8408    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8409                       DAG.getConstant(Cond, MVT::i8), BT);
8410  }
8411
8412  return SDValue();
8413}
8414
8415SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
8416
8417  if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
8418
8419  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
8420  SDValue Op0 = Op.getOperand(0);
8421  SDValue Op1 = Op.getOperand(1);
8422  DebugLoc dl = Op.getDebugLoc();
8423  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8424
8425  // Optimize to BT if possible.
8426  // Lower (X & (1 << N)) == 0 to BT(X, N).
8427  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
8428  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
8429  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
8430      Op1.getOpcode() == ISD::Constant &&
8431      cast<ConstantSDNode>(Op1)->isNullValue() &&
8432      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8433    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
8434    if (NewSetCC.getNode())
8435      return NewSetCC;
8436  }
8437
8438  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
8439  // these.
8440  if (Op1.getOpcode() == ISD::Constant &&
8441      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
8442       cast<ConstantSDNode>(Op1)->isNullValue()) &&
8443      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8444
8445    // If the input is a setcc, then reuse the input setcc or use a new one with
8446    // the inverted condition.
8447    if (Op0.getOpcode() == X86ISD::SETCC) {
8448      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
8449      bool Invert = (CC == ISD::SETNE) ^
8450        cast<ConstantSDNode>(Op1)->isNullValue();
8451      if (!Invert) return Op0;
8452
8453      CCode = X86::GetOppositeBranchCondition(CCode);
8454      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8455                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
8456    }
8457  }
8458
8459  bool isFP = Op1.getValueType().isFloatingPoint();
8460  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
8461  if (X86CC == X86::COND_INVALID)
8462    return SDValue();
8463
8464  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
8465  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8466                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
8467}
8468
8469// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
8470// ones, and then concatenate the result back.
8471static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
8472  EVT VT = Op.getValueType();
8473
8474  assert(VT.getSizeInBits() == 256 && Op.getOpcode() == ISD::SETCC &&
8475         "Unsupported value type for operation");
8476
8477  int NumElems = VT.getVectorNumElements();
8478  DebugLoc dl = Op.getDebugLoc();
8479  SDValue CC = Op.getOperand(2);
8480  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
8481  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
8482
8483  // Extract the LHS vectors
8484  SDValue LHS = Op.getOperand(0);
8485  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
8486  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
8487
8488  // Extract the RHS vectors
8489  SDValue RHS = Op.getOperand(1);
8490  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
8491  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
8492
8493  // Issue the operation on the smaller types and concatenate the result back
8494  MVT EltVT = VT.getVectorElementType().getSimpleVT();
8495  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
8496  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8497                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
8498                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
8499}
8500
8501
8502SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
8503  SDValue Cond;
8504  SDValue Op0 = Op.getOperand(0);
8505  SDValue Op1 = Op.getOperand(1);
8506  SDValue CC = Op.getOperand(2);
8507  EVT VT = Op.getValueType();
8508  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
8509  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
8510  DebugLoc dl = Op.getDebugLoc();
8511
8512  if (isFP) {
8513    unsigned SSECC = 8;
8514    EVT EltVT = Op0.getValueType().getVectorElementType();
8515    assert(EltVT == MVT::f32 || EltVT == MVT::f64);
8516
8517    unsigned Opc = EltVT == MVT::f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
8518    bool Swap = false;
8519
8520    // SSE Condition code mapping:
8521    //  0 - EQ
8522    //  1 - LT
8523    //  2 - LE
8524    //  3 - UNORD
8525    //  4 - NEQ
8526    //  5 - NLT
8527    //  6 - NLE
8528    //  7 - ORD
8529    switch (SetCCOpcode) {
8530    default: break;
8531    case ISD::SETOEQ:
8532    case ISD::SETEQ:  SSECC = 0; break;
8533    case ISD::SETOGT:
8534    case ISD::SETGT: Swap = true; // Fallthrough
8535    case ISD::SETLT:
8536    case ISD::SETOLT: SSECC = 1; break;
8537    case ISD::SETOGE:
8538    case ISD::SETGE: Swap = true; // Fallthrough
8539    case ISD::SETLE:
8540    case ISD::SETOLE: SSECC = 2; break;
8541    case ISD::SETUO:  SSECC = 3; break;
8542    case ISD::SETUNE:
8543    case ISD::SETNE:  SSECC = 4; break;
8544    case ISD::SETULE: Swap = true;
8545    case ISD::SETUGE: SSECC = 5; break;
8546    case ISD::SETULT: Swap = true;
8547    case ISD::SETUGT: SSECC = 6; break;
8548    case ISD::SETO:   SSECC = 7; break;
8549    }
8550    if (Swap)
8551      std::swap(Op0, Op1);
8552
8553    // In the two special cases we can't handle, emit two comparisons.
8554    if (SSECC == 8) {
8555      if (SetCCOpcode == ISD::SETUEQ) {
8556        SDValue UNORD, EQ;
8557        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
8558        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
8559        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
8560      } else if (SetCCOpcode == ISD::SETONE) {
8561        SDValue ORD, NEQ;
8562        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
8563        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
8564        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
8565      }
8566      llvm_unreachable("Illegal FP comparison");
8567    }
8568    // Handle all other FP comparisons here.
8569    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
8570  }
8571
8572  // Break 256-bit integer vector compare into smaller ones.
8573  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
8574    return Lower256IntVSETCC(Op, DAG);
8575
8576  // We are handling one of the integer comparisons here.  Since SSE only has
8577  // GT and EQ comparisons for integer, swapping operands and multiple
8578  // operations may be required for some comparisons.
8579  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
8580  bool Swap = false, Invert = false, FlipSigns = false;
8581
8582  switch (VT.getVectorElementType().getSimpleVT().SimpleTy) {
8583  default: break;
8584  case MVT::i8:   EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
8585  case MVT::i16:  EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
8586  case MVT::i32:  EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
8587  case MVT::i64:  EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
8588  }
8589
8590  switch (SetCCOpcode) {
8591  default: break;
8592  case ISD::SETNE:  Invert = true;
8593  case ISD::SETEQ:  Opc = EQOpc; break;
8594  case ISD::SETLT:  Swap = true;
8595  case ISD::SETGT:  Opc = GTOpc; break;
8596  case ISD::SETGE:  Swap = true;
8597  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
8598  case ISD::SETULT: Swap = true;
8599  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
8600  case ISD::SETUGE: Swap = true;
8601  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
8602  }
8603  if (Swap)
8604    std::swap(Op0, Op1);
8605
8606  // Check that the operation in question is available (most are plain SSE2,
8607  // but PCMPGTQ and PCMPEQQ have different requirements).
8608  if (Opc == X86ISD::PCMPGTQ && !Subtarget->hasSSE42orAVX())
8609    return SDValue();
8610  if (Opc == X86ISD::PCMPEQQ && !Subtarget->hasSSE41orAVX())
8611    return SDValue();
8612
8613  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
8614  // bits of the inputs before performing those operations.
8615  if (FlipSigns) {
8616    EVT EltVT = VT.getVectorElementType();
8617    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
8618                                      EltVT);
8619    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
8620    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
8621                                    SignBits.size());
8622    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
8623    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
8624  }
8625
8626  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
8627
8628  // If the logical-not of the result is required, perform that now.
8629  if (Invert)
8630    Result = DAG.getNOT(dl, Result, VT);
8631
8632  return Result;
8633}
8634
8635// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
8636static bool isX86LogicalCmp(SDValue Op) {
8637  unsigned Opc = Op.getNode()->getOpcode();
8638  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
8639    return true;
8640  if (Op.getResNo() == 1 &&
8641      (Opc == X86ISD::ADD ||
8642       Opc == X86ISD::SUB ||
8643       Opc == X86ISD::ADC ||
8644       Opc == X86ISD::SBB ||
8645       Opc == X86ISD::SMUL ||
8646       Opc == X86ISD::UMUL ||
8647       Opc == X86ISD::INC ||
8648       Opc == X86ISD::DEC ||
8649       Opc == X86ISD::OR ||
8650       Opc == X86ISD::XOR ||
8651       Opc == X86ISD::AND))
8652    return true;
8653
8654  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
8655    return true;
8656
8657  return false;
8658}
8659
8660static bool isZero(SDValue V) {
8661  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8662  return C && C->isNullValue();
8663}
8664
8665static bool isAllOnes(SDValue V) {
8666  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8667  return C && C->isAllOnesValue();
8668}
8669
8670SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8671  bool addTest = true;
8672  SDValue Cond  = Op.getOperand(0);
8673  SDValue Op1 = Op.getOperand(1);
8674  SDValue Op2 = Op.getOperand(2);
8675  DebugLoc DL = Op.getDebugLoc();
8676  SDValue CC;
8677
8678  if (Cond.getOpcode() == ISD::SETCC) {
8679    SDValue NewCond = LowerSETCC(Cond, DAG);
8680    if (NewCond.getNode())
8681      Cond = NewCond;
8682  }
8683
8684  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
8685  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
8686  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
8687  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
8688  if (Cond.getOpcode() == X86ISD::SETCC &&
8689      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
8690      isZero(Cond.getOperand(1).getOperand(1))) {
8691    SDValue Cmp = Cond.getOperand(1);
8692
8693    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
8694
8695    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
8696        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
8697      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
8698
8699      SDValue CmpOp0 = Cmp.getOperand(0);
8700      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
8701                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
8702
8703      SDValue Res =   // Res = 0 or -1.
8704        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8705                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
8706
8707      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
8708        Res = DAG.getNOT(DL, Res, Res.getValueType());
8709
8710      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
8711      if (N2C == 0 || !N2C->isNullValue())
8712        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
8713      return Res;
8714    }
8715  }
8716
8717  // Look past (and (setcc_carry (cmp ...)), 1).
8718  if (Cond.getOpcode() == ISD::AND &&
8719      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8720    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8721    if (C && C->getAPIntValue() == 1)
8722      Cond = Cond.getOperand(0);
8723  }
8724
8725  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8726  // setting operand in place of the X86ISD::SETCC.
8727  unsigned CondOpcode = Cond.getOpcode();
8728  if (CondOpcode == X86ISD::SETCC ||
8729      CondOpcode == X86ISD::SETCC_CARRY) {
8730    CC = Cond.getOperand(0);
8731
8732    SDValue Cmp = Cond.getOperand(1);
8733    unsigned Opc = Cmp.getOpcode();
8734    EVT VT = Op.getValueType();
8735
8736    bool IllegalFPCMov = false;
8737    if (VT.isFloatingPoint() && !VT.isVector() &&
8738        !isScalarFPTypeInSSEReg(VT))  // FPStack?
8739      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
8740
8741    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
8742        Opc == X86ISD::BT) { // FIXME
8743      Cond = Cmp;
8744      addTest = false;
8745    }
8746  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8747             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8748             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8749              Cond.getOperand(0).getValueType() != MVT::i8)) {
8750    SDValue LHS = Cond.getOperand(0);
8751    SDValue RHS = Cond.getOperand(1);
8752    unsigned X86Opcode;
8753    unsigned X86Cond;
8754    SDVTList VTs;
8755    switch (CondOpcode) {
8756    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8757    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8758    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8759    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8760    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8761    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8762    default: llvm_unreachable("unexpected overflowing operator");
8763    }
8764    if (CondOpcode == ISD::UMULO)
8765      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8766                          MVT::i32);
8767    else
8768      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8769
8770    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
8771
8772    if (CondOpcode == ISD::UMULO)
8773      Cond = X86Op.getValue(2);
8774    else
8775      Cond = X86Op.getValue(1);
8776
8777    CC = DAG.getConstant(X86Cond, MVT::i8);
8778    addTest = false;
8779  }
8780
8781  if (addTest) {
8782    // Look pass the truncate.
8783    if (Cond.getOpcode() == ISD::TRUNCATE)
8784      Cond = Cond.getOperand(0);
8785
8786    // We know the result of AND is compared against zero. Try to match
8787    // it to BT.
8788    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8789      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
8790      if (NewSetCC.getNode()) {
8791        CC = NewSetCC.getOperand(0);
8792        Cond = NewSetCC.getOperand(1);
8793        addTest = false;
8794      }
8795    }
8796  }
8797
8798  if (addTest) {
8799    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8800    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8801  }
8802
8803  // a <  b ? -1 :  0 -> RES = ~setcc_carry
8804  // a <  b ?  0 : -1 -> RES = setcc_carry
8805  // a >= b ? -1 :  0 -> RES = setcc_carry
8806  // a >= b ?  0 : -1 -> RES = ~setcc_carry
8807  if (Cond.getOpcode() == X86ISD::CMP) {
8808    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
8809
8810    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
8811        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
8812      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8813                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
8814      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
8815        return DAG.getNOT(DL, Res, Res.getValueType());
8816      return Res;
8817    }
8818  }
8819
8820  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
8821  // condition is true.
8822  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
8823  SDValue Ops[] = { Op2, Op1, CC, Cond };
8824  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
8825}
8826
8827// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
8828// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
8829// from the AND / OR.
8830static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
8831  Opc = Op.getOpcode();
8832  if (Opc != ISD::OR && Opc != ISD::AND)
8833    return false;
8834  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8835          Op.getOperand(0).hasOneUse() &&
8836          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
8837          Op.getOperand(1).hasOneUse());
8838}
8839
8840// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
8841// 1 and that the SETCC node has a single use.
8842static bool isXor1OfSetCC(SDValue Op) {
8843  if (Op.getOpcode() != ISD::XOR)
8844    return false;
8845  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8846  if (N1C && N1C->getAPIntValue() == 1) {
8847    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8848      Op.getOperand(0).hasOneUse();
8849  }
8850  return false;
8851}
8852
8853SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
8854  bool addTest = true;
8855  SDValue Chain = Op.getOperand(0);
8856  SDValue Cond  = Op.getOperand(1);
8857  SDValue Dest  = Op.getOperand(2);
8858  DebugLoc dl = Op.getDebugLoc();
8859  SDValue CC;
8860  bool Inverted = false;
8861
8862  if (Cond.getOpcode() == ISD::SETCC) {
8863    // Check for setcc([su]{add,sub,mul}o == 0).
8864    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
8865        isa<ConstantSDNode>(Cond.getOperand(1)) &&
8866        cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
8867        Cond.getOperand(0).getResNo() == 1 &&
8868        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
8869         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
8870         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
8871         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
8872         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
8873         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
8874      Inverted = true;
8875      Cond = Cond.getOperand(0);
8876    } else {
8877      SDValue NewCond = LowerSETCC(Cond, DAG);
8878      if (NewCond.getNode())
8879        Cond = NewCond;
8880    }
8881  }
8882#if 0
8883  // FIXME: LowerXALUO doesn't handle these!!
8884  else if (Cond.getOpcode() == X86ISD::ADD  ||
8885           Cond.getOpcode() == X86ISD::SUB  ||
8886           Cond.getOpcode() == X86ISD::SMUL ||
8887           Cond.getOpcode() == X86ISD::UMUL)
8888    Cond = LowerXALUO(Cond, DAG);
8889#endif
8890
8891  // Look pass (and (setcc_carry (cmp ...)), 1).
8892  if (Cond.getOpcode() == ISD::AND &&
8893      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8894    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8895    if (C && C->getAPIntValue() == 1)
8896      Cond = Cond.getOperand(0);
8897  }
8898
8899  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8900  // setting operand in place of the X86ISD::SETCC.
8901  unsigned CondOpcode = Cond.getOpcode();
8902  if (CondOpcode == X86ISD::SETCC ||
8903      CondOpcode == X86ISD::SETCC_CARRY) {
8904    CC = Cond.getOperand(0);
8905
8906    SDValue Cmp = Cond.getOperand(1);
8907    unsigned Opc = Cmp.getOpcode();
8908    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
8909    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
8910      Cond = Cmp;
8911      addTest = false;
8912    } else {
8913      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
8914      default: break;
8915      case X86::COND_O:
8916      case X86::COND_B:
8917        // These can only come from an arithmetic instruction with overflow,
8918        // e.g. SADDO, UADDO.
8919        Cond = Cond.getNode()->getOperand(1);
8920        addTest = false;
8921        break;
8922      }
8923    }
8924  }
8925  CondOpcode = Cond.getOpcode();
8926  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8927      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8928      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8929       Cond.getOperand(0).getValueType() != MVT::i8)) {
8930    SDValue LHS = Cond.getOperand(0);
8931    SDValue RHS = Cond.getOperand(1);
8932    unsigned X86Opcode;
8933    unsigned X86Cond;
8934    SDVTList VTs;
8935    switch (CondOpcode) {
8936    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8937    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8938    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8939    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8940    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8941    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8942    default: llvm_unreachable("unexpected overflowing operator");
8943    }
8944    if (Inverted)
8945      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
8946    if (CondOpcode == ISD::UMULO)
8947      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8948                          MVT::i32);
8949    else
8950      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8951
8952    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
8953
8954    if (CondOpcode == ISD::UMULO)
8955      Cond = X86Op.getValue(2);
8956    else
8957      Cond = X86Op.getValue(1);
8958
8959    CC = DAG.getConstant(X86Cond, MVT::i8);
8960    addTest = false;
8961  } else {
8962    unsigned CondOpc;
8963    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
8964      SDValue Cmp = Cond.getOperand(0).getOperand(1);
8965      if (CondOpc == ISD::OR) {
8966        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
8967        // two branches instead of an explicit OR instruction with a
8968        // separate test.
8969        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8970            isX86LogicalCmp(Cmp)) {
8971          CC = Cond.getOperand(0).getOperand(0);
8972          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8973                              Chain, Dest, CC, Cmp);
8974          CC = Cond.getOperand(1).getOperand(0);
8975          Cond = Cmp;
8976          addTest = false;
8977        }
8978      } else { // ISD::AND
8979        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
8980        // two branches instead of an explicit AND instruction with a
8981        // separate test. However, we only do this if this block doesn't
8982        // have a fall-through edge, because this requires an explicit
8983        // jmp when the condition is false.
8984        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8985            isX86LogicalCmp(Cmp) &&
8986            Op.getNode()->hasOneUse()) {
8987          X86::CondCode CCode =
8988            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8989          CCode = X86::GetOppositeBranchCondition(CCode);
8990          CC = DAG.getConstant(CCode, MVT::i8);
8991          SDNode *User = *Op.getNode()->use_begin();
8992          // Look for an unconditional branch following this conditional branch.
8993          // We need this because we need to reverse the successors in order
8994          // to implement FCMP_OEQ.
8995          if (User->getOpcode() == ISD::BR) {
8996            SDValue FalseBB = User->getOperand(1);
8997            SDNode *NewBR =
8998              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8999            assert(NewBR == User);
9000            (void)NewBR;
9001            Dest = FalseBB;
9002
9003            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9004                                Chain, Dest, CC, Cmp);
9005            X86::CondCode CCode =
9006              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
9007            CCode = X86::GetOppositeBranchCondition(CCode);
9008            CC = DAG.getConstant(CCode, MVT::i8);
9009            Cond = Cmp;
9010            addTest = false;
9011          }
9012        }
9013      }
9014    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
9015      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
9016      // It should be transformed during dag combiner except when the condition
9017      // is set by a arithmetics with overflow node.
9018      X86::CondCode CCode =
9019        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
9020      CCode = X86::GetOppositeBranchCondition(CCode);
9021      CC = DAG.getConstant(CCode, MVT::i8);
9022      Cond = Cond.getOperand(0).getOperand(1);
9023      addTest = false;
9024    } else if (Cond.getOpcode() == ISD::SETCC &&
9025               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
9026      // For FCMP_OEQ, we can emit
9027      // two branches instead of an explicit AND instruction with a
9028      // separate test. However, we only do this if this block doesn't
9029      // have a fall-through edge, because this requires an explicit
9030      // jmp when the condition is false.
9031      if (Op.getNode()->hasOneUse()) {
9032        SDNode *User = *Op.getNode()->use_begin();
9033        // Look for an unconditional branch following this conditional branch.
9034        // We need this because we need to reverse the successors in order
9035        // to implement FCMP_OEQ.
9036        if (User->getOpcode() == ISD::BR) {
9037          SDValue FalseBB = User->getOperand(1);
9038          SDNode *NewBR =
9039            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9040          assert(NewBR == User);
9041          (void)NewBR;
9042          Dest = FalseBB;
9043
9044          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
9045                                    Cond.getOperand(0), Cond.getOperand(1));
9046          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9047          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9048                              Chain, Dest, CC, Cmp);
9049          CC = DAG.getConstant(X86::COND_P, MVT::i8);
9050          Cond = Cmp;
9051          addTest = false;
9052        }
9053      }
9054    } else if (Cond.getOpcode() == ISD::SETCC &&
9055               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
9056      // For FCMP_UNE, we can emit
9057      // two branches instead of an explicit AND instruction with a
9058      // separate test. However, we only do this if this block doesn't
9059      // have a fall-through edge, because this requires an explicit
9060      // jmp when the condition is false.
9061      if (Op.getNode()->hasOneUse()) {
9062        SDNode *User = *Op.getNode()->use_begin();
9063        // Look for an unconditional branch following this conditional branch.
9064        // We need this because we need to reverse the successors in order
9065        // to implement FCMP_UNE.
9066        if (User->getOpcode() == ISD::BR) {
9067          SDValue FalseBB = User->getOperand(1);
9068          SDNode *NewBR =
9069            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9070          assert(NewBR == User);
9071          (void)NewBR;
9072
9073          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
9074                                    Cond.getOperand(0), Cond.getOperand(1));
9075          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9076          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9077                              Chain, Dest, CC, Cmp);
9078          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
9079          Cond = Cmp;
9080          addTest = false;
9081          Dest = FalseBB;
9082        }
9083      }
9084    }
9085  }
9086
9087  if (addTest) {
9088    // Look pass the truncate.
9089    if (Cond.getOpcode() == ISD::TRUNCATE)
9090      Cond = Cond.getOperand(0);
9091
9092    // We know the result of AND is compared against zero. Try to match
9093    // it to BT.
9094    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
9095      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
9096      if (NewSetCC.getNode()) {
9097        CC = NewSetCC.getOperand(0);
9098        Cond = NewSetCC.getOperand(1);
9099        addTest = false;
9100      }
9101    }
9102  }
9103
9104  if (addTest) {
9105    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9106    Cond = EmitTest(Cond, X86::COND_NE, DAG);
9107  }
9108  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9109                     Chain, Dest, CC, Cond);
9110}
9111
9112
9113// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
9114// Calls to _alloca is needed to probe the stack when allocating more than 4k
9115// bytes in one go. Touching the stack at 4K increments is necessary to ensure
9116// that the guard pages used by the OS virtual memory manager are allocated in
9117// correct sequence.
9118SDValue
9119X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
9120                                           SelectionDAG &DAG) const {
9121  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
9122          EnableSegmentedStacks) &&
9123         "This should be used only on Windows targets or when segmented stacks "
9124         "are being used");
9125  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
9126  DebugLoc dl = Op.getDebugLoc();
9127
9128  // Get the inputs.
9129  SDValue Chain = Op.getOperand(0);
9130  SDValue Size  = Op.getOperand(1);
9131  // FIXME: Ensure alignment here
9132
9133  bool Is64Bit = Subtarget->is64Bit();
9134  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
9135
9136  if (EnableSegmentedStacks) {
9137    MachineFunction &MF = DAG.getMachineFunction();
9138    MachineRegisterInfo &MRI = MF.getRegInfo();
9139
9140    if (Is64Bit) {
9141      // The 64 bit implementation of segmented stacks needs to clobber both r10
9142      // r11. This makes it impossible to use it along with nested parameters.
9143      const Function *F = MF.getFunction();
9144
9145      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
9146           I != E; I++)
9147        if (I->hasNestAttr())
9148          report_fatal_error("Cannot use segmented stacks with functions that "
9149                             "have nested arguments.");
9150    }
9151
9152    const TargetRegisterClass *AddrRegClass =
9153      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
9154    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
9155    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
9156    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
9157                                DAG.getRegister(Vreg, SPTy));
9158    SDValue Ops1[2] = { Value, Chain };
9159    return DAG.getMergeValues(Ops1, 2, dl);
9160  } else {
9161    SDValue Flag;
9162    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
9163
9164    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
9165    Flag = Chain.getValue(1);
9166    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9167
9168    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
9169    Flag = Chain.getValue(1);
9170
9171    Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
9172
9173    SDValue Ops1[2] = { Chain.getValue(0), Chain };
9174    return DAG.getMergeValues(Ops1, 2, dl);
9175  }
9176}
9177
9178SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
9179  MachineFunction &MF = DAG.getMachineFunction();
9180  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
9181
9182  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9183  DebugLoc DL = Op.getDebugLoc();
9184
9185  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
9186    // vastart just stores the address of the VarArgsFrameIndex slot into the
9187    // memory location argument.
9188    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9189                                   getPointerTy());
9190    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
9191                        MachinePointerInfo(SV), false, false, 0);
9192  }
9193
9194  // __va_list_tag:
9195  //   gp_offset         (0 - 6 * 8)
9196  //   fp_offset         (48 - 48 + 8 * 16)
9197  //   overflow_arg_area (point to parameters coming in memory).
9198  //   reg_save_area
9199  SmallVector<SDValue, 8> MemOps;
9200  SDValue FIN = Op.getOperand(1);
9201  // Store gp_offset
9202  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
9203                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
9204                                               MVT::i32),
9205                               FIN, MachinePointerInfo(SV), false, false, 0);
9206  MemOps.push_back(Store);
9207
9208  // Store fp_offset
9209  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9210                    FIN, DAG.getIntPtrConstant(4));
9211  Store = DAG.getStore(Op.getOperand(0), DL,
9212                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
9213                                       MVT::i32),
9214                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
9215  MemOps.push_back(Store);
9216
9217  // Store ptr to overflow_arg_area
9218  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9219                    FIN, DAG.getIntPtrConstant(4));
9220  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9221                                    getPointerTy());
9222  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
9223                       MachinePointerInfo(SV, 8),
9224                       false, false, 0);
9225  MemOps.push_back(Store);
9226
9227  // Store ptr to reg_save_area.
9228  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9229                    FIN, DAG.getIntPtrConstant(8));
9230  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
9231                                    getPointerTy());
9232  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
9233                       MachinePointerInfo(SV, 16), false, false, 0);
9234  MemOps.push_back(Store);
9235  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
9236                     &MemOps[0], MemOps.size());
9237}
9238
9239SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
9240  assert(Subtarget->is64Bit() &&
9241         "LowerVAARG only handles 64-bit va_arg!");
9242  assert((Subtarget->isTargetLinux() ||
9243          Subtarget->isTargetDarwin()) &&
9244          "Unhandled target in LowerVAARG");
9245  assert(Op.getNode()->getNumOperands() == 4);
9246  SDValue Chain = Op.getOperand(0);
9247  SDValue SrcPtr = Op.getOperand(1);
9248  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9249  unsigned Align = Op.getConstantOperandVal(3);
9250  DebugLoc dl = Op.getDebugLoc();
9251
9252  EVT ArgVT = Op.getNode()->getValueType(0);
9253  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9254  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
9255  uint8_t ArgMode;
9256
9257  // Decide which area this value should be read from.
9258  // TODO: Implement the AMD64 ABI in its entirety. This simple
9259  // selection mechanism works only for the basic types.
9260  if (ArgVT == MVT::f80) {
9261    llvm_unreachable("va_arg for f80 not yet implemented");
9262  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
9263    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
9264  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
9265    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
9266  } else {
9267    llvm_unreachable("Unhandled argument type in LowerVAARG");
9268  }
9269
9270  if (ArgMode == 2) {
9271    // Sanity Check: Make sure using fp_offset makes sense.
9272    assert(!UseSoftFloat &&
9273           !(DAG.getMachineFunction()
9274                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
9275           Subtarget->hasXMM());
9276  }
9277
9278  // Insert VAARG_64 node into the DAG
9279  // VAARG_64 returns two values: Variable Argument Address, Chain
9280  SmallVector<SDValue, 11> InstOps;
9281  InstOps.push_back(Chain);
9282  InstOps.push_back(SrcPtr);
9283  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
9284  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
9285  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
9286  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
9287  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
9288                                          VTs, &InstOps[0], InstOps.size(),
9289                                          MVT::i64,
9290                                          MachinePointerInfo(SV),
9291                                          /*Align=*/0,
9292                                          /*Volatile=*/false,
9293                                          /*ReadMem=*/true,
9294                                          /*WriteMem=*/true);
9295  Chain = VAARG.getValue(1);
9296
9297  // Load the next argument and return it
9298  return DAG.getLoad(ArgVT, dl,
9299                     Chain,
9300                     VAARG,
9301                     MachinePointerInfo(),
9302                     false, false, false, 0);
9303}
9304
9305SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
9306  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
9307  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
9308  SDValue Chain = Op.getOperand(0);
9309  SDValue DstPtr = Op.getOperand(1);
9310  SDValue SrcPtr = Op.getOperand(2);
9311  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
9312  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9313  DebugLoc DL = Op.getDebugLoc();
9314
9315  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
9316                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
9317                       false,
9318                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
9319}
9320
9321SDValue
9322X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
9323  DebugLoc dl = Op.getDebugLoc();
9324  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9325  switch (IntNo) {
9326  default: return SDValue();    // Don't custom lower most intrinsics.
9327  // Comparison intrinsics.
9328  case Intrinsic::x86_sse_comieq_ss:
9329  case Intrinsic::x86_sse_comilt_ss:
9330  case Intrinsic::x86_sse_comile_ss:
9331  case Intrinsic::x86_sse_comigt_ss:
9332  case Intrinsic::x86_sse_comige_ss:
9333  case Intrinsic::x86_sse_comineq_ss:
9334  case Intrinsic::x86_sse_ucomieq_ss:
9335  case Intrinsic::x86_sse_ucomilt_ss:
9336  case Intrinsic::x86_sse_ucomile_ss:
9337  case Intrinsic::x86_sse_ucomigt_ss:
9338  case Intrinsic::x86_sse_ucomige_ss:
9339  case Intrinsic::x86_sse_ucomineq_ss:
9340  case Intrinsic::x86_sse2_comieq_sd:
9341  case Intrinsic::x86_sse2_comilt_sd:
9342  case Intrinsic::x86_sse2_comile_sd:
9343  case Intrinsic::x86_sse2_comigt_sd:
9344  case Intrinsic::x86_sse2_comige_sd:
9345  case Intrinsic::x86_sse2_comineq_sd:
9346  case Intrinsic::x86_sse2_ucomieq_sd:
9347  case Intrinsic::x86_sse2_ucomilt_sd:
9348  case Intrinsic::x86_sse2_ucomile_sd:
9349  case Intrinsic::x86_sse2_ucomigt_sd:
9350  case Intrinsic::x86_sse2_ucomige_sd:
9351  case Intrinsic::x86_sse2_ucomineq_sd: {
9352    unsigned Opc = 0;
9353    ISD::CondCode CC = ISD::SETCC_INVALID;
9354    switch (IntNo) {
9355    default: break;
9356    case Intrinsic::x86_sse_comieq_ss:
9357    case Intrinsic::x86_sse2_comieq_sd:
9358      Opc = X86ISD::COMI;
9359      CC = ISD::SETEQ;
9360      break;
9361    case Intrinsic::x86_sse_comilt_ss:
9362    case Intrinsic::x86_sse2_comilt_sd:
9363      Opc = X86ISD::COMI;
9364      CC = ISD::SETLT;
9365      break;
9366    case Intrinsic::x86_sse_comile_ss:
9367    case Intrinsic::x86_sse2_comile_sd:
9368      Opc = X86ISD::COMI;
9369      CC = ISD::SETLE;
9370      break;
9371    case Intrinsic::x86_sse_comigt_ss:
9372    case Intrinsic::x86_sse2_comigt_sd:
9373      Opc = X86ISD::COMI;
9374      CC = ISD::SETGT;
9375      break;
9376    case Intrinsic::x86_sse_comige_ss:
9377    case Intrinsic::x86_sse2_comige_sd:
9378      Opc = X86ISD::COMI;
9379      CC = ISD::SETGE;
9380      break;
9381    case Intrinsic::x86_sse_comineq_ss:
9382    case Intrinsic::x86_sse2_comineq_sd:
9383      Opc = X86ISD::COMI;
9384      CC = ISD::SETNE;
9385      break;
9386    case Intrinsic::x86_sse_ucomieq_ss:
9387    case Intrinsic::x86_sse2_ucomieq_sd:
9388      Opc = X86ISD::UCOMI;
9389      CC = ISD::SETEQ;
9390      break;
9391    case Intrinsic::x86_sse_ucomilt_ss:
9392    case Intrinsic::x86_sse2_ucomilt_sd:
9393      Opc = X86ISD::UCOMI;
9394      CC = ISD::SETLT;
9395      break;
9396    case Intrinsic::x86_sse_ucomile_ss:
9397    case Intrinsic::x86_sse2_ucomile_sd:
9398      Opc = X86ISD::UCOMI;
9399      CC = ISD::SETLE;
9400      break;
9401    case Intrinsic::x86_sse_ucomigt_ss:
9402    case Intrinsic::x86_sse2_ucomigt_sd:
9403      Opc = X86ISD::UCOMI;
9404      CC = ISD::SETGT;
9405      break;
9406    case Intrinsic::x86_sse_ucomige_ss:
9407    case Intrinsic::x86_sse2_ucomige_sd:
9408      Opc = X86ISD::UCOMI;
9409      CC = ISD::SETGE;
9410      break;
9411    case Intrinsic::x86_sse_ucomineq_ss:
9412    case Intrinsic::x86_sse2_ucomineq_sd:
9413      Opc = X86ISD::UCOMI;
9414      CC = ISD::SETNE;
9415      break;
9416    }
9417
9418    SDValue LHS = Op.getOperand(1);
9419    SDValue RHS = Op.getOperand(2);
9420    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
9421    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
9422    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
9423    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9424                                DAG.getConstant(X86CC, MVT::i8), Cond);
9425    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9426  }
9427  // Arithmetic intrinsics.
9428  case Intrinsic::x86_sse3_hadd_ps:
9429  case Intrinsic::x86_sse3_hadd_pd:
9430  case Intrinsic::x86_avx_hadd_ps_256:
9431  case Intrinsic::x86_avx_hadd_pd_256:
9432    return DAG.getNode(X86ISD::FHADD, dl, Op.getValueType(),
9433                       Op.getOperand(1), Op.getOperand(2));
9434  case Intrinsic::x86_sse3_hsub_ps:
9435  case Intrinsic::x86_sse3_hsub_pd:
9436  case Intrinsic::x86_avx_hsub_ps_256:
9437  case Intrinsic::x86_avx_hsub_pd_256:
9438    return DAG.getNode(X86ISD::FHSUB, dl, Op.getValueType(),
9439                       Op.getOperand(1), Op.getOperand(2));
9440  case Intrinsic::x86_avx2_psllv_d:
9441  case Intrinsic::x86_avx2_psllv_q:
9442  case Intrinsic::x86_avx2_psllv_d_256:
9443  case Intrinsic::x86_avx2_psllv_q_256:
9444    return DAG.getNode(ISD::SHL, dl, Op.getValueType(),
9445                      Op.getOperand(1), Op.getOperand(2));
9446  case Intrinsic::x86_avx2_psrlv_d:
9447  case Intrinsic::x86_avx2_psrlv_q:
9448  case Intrinsic::x86_avx2_psrlv_d_256:
9449  case Intrinsic::x86_avx2_psrlv_q_256:
9450    return DAG.getNode(ISD::SRL, dl, Op.getValueType(),
9451                      Op.getOperand(1), Op.getOperand(2));
9452  case Intrinsic::x86_avx2_psrav_d:
9453  case Intrinsic::x86_avx2_psrav_d_256:
9454    return DAG.getNode(ISD::SRA, dl, Op.getValueType(),
9455                      Op.getOperand(1), Op.getOperand(2));
9456
9457  // ptest and testp intrinsics. The intrinsic these come from are designed to
9458  // return an integer value, not just an instruction so lower it to the ptest
9459  // or testp pattern and a setcc for the result.
9460  case Intrinsic::x86_sse41_ptestz:
9461  case Intrinsic::x86_sse41_ptestc:
9462  case Intrinsic::x86_sse41_ptestnzc:
9463  case Intrinsic::x86_avx_ptestz_256:
9464  case Intrinsic::x86_avx_ptestc_256:
9465  case Intrinsic::x86_avx_ptestnzc_256:
9466  case Intrinsic::x86_avx_vtestz_ps:
9467  case Intrinsic::x86_avx_vtestc_ps:
9468  case Intrinsic::x86_avx_vtestnzc_ps:
9469  case Intrinsic::x86_avx_vtestz_pd:
9470  case Intrinsic::x86_avx_vtestc_pd:
9471  case Intrinsic::x86_avx_vtestnzc_pd:
9472  case Intrinsic::x86_avx_vtestz_ps_256:
9473  case Intrinsic::x86_avx_vtestc_ps_256:
9474  case Intrinsic::x86_avx_vtestnzc_ps_256:
9475  case Intrinsic::x86_avx_vtestz_pd_256:
9476  case Intrinsic::x86_avx_vtestc_pd_256:
9477  case Intrinsic::x86_avx_vtestnzc_pd_256: {
9478    bool IsTestPacked = false;
9479    unsigned X86CC = 0;
9480    switch (IntNo) {
9481    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
9482    case Intrinsic::x86_avx_vtestz_ps:
9483    case Intrinsic::x86_avx_vtestz_pd:
9484    case Intrinsic::x86_avx_vtestz_ps_256:
9485    case Intrinsic::x86_avx_vtestz_pd_256:
9486      IsTestPacked = true; // Fallthrough
9487    case Intrinsic::x86_sse41_ptestz:
9488    case Intrinsic::x86_avx_ptestz_256:
9489      // ZF = 1
9490      X86CC = X86::COND_E;
9491      break;
9492    case Intrinsic::x86_avx_vtestc_ps:
9493    case Intrinsic::x86_avx_vtestc_pd:
9494    case Intrinsic::x86_avx_vtestc_ps_256:
9495    case Intrinsic::x86_avx_vtestc_pd_256:
9496      IsTestPacked = true; // Fallthrough
9497    case Intrinsic::x86_sse41_ptestc:
9498    case Intrinsic::x86_avx_ptestc_256:
9499      // CF = 1
9500      X86CC = X86::COND_B;
9501      break;
9502    case Intrinsic::x86_avx_vtestnzc_ps:
9503    case Intrinsic::x86_avx_vtestnzc_pd:
9504    case Intrinsic::x86_avx_vtestnzc_ps_256:
9505    case Intrinsic::x86_avx_vtestnzc_pd_256:
9506      IsTestPacked = true; // Fallthrough
9507    case Intrinsic::x86_sse41_ptestnzc:
9508    case Intrinsic::x86_avx_ptestnzc_256:
9509      // ZF and CF = 0
9510      X86CC = X86::COND_A;
9511      break;
9512    }
9513
9514    SDValue LHS = Op.getOperand(1);
9515    SDValue RHS = Op.getOperand(2);
9516    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
9517    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
9518    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
9519    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
9520    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9521  }
9522
9523  // Fix vector shift instructions where the last operand is a non-immediate
9524  // i32 value.
9525  case Intrinsic::x86_avx2_pslli_w:
9526  case Intrinsic::x86_avx2_pslli_d:
9527  case Intrinsic::x86_avx2_pslli_q:
9528  case Intrinsic::x86_avx2_psrli_w:
9529  case Intrinsic::x86_avx2_psrli_d:
9530  case Intrinsic::x86_avx2_psrli_q:
9531  case Intrinsic::x86_avx2_psrai_w:
9532  case Intrinsic::x86_avx2_psrai_d:
9533  case Intrinsic::x86_sse2_pslli_w:
9534  case Intrinsic::x86_sse2_pslli_d:
9535  case Intrinsic::x86_sse2_pslli_q:
9536  case Intrinsic::x86_sse2_psrli_w:
9537  case Intrinsic::x86_sse2_psrli_d:
9538  case Intrinsic::x86_sse2_psrli_q:
9539  case Intrinsic::x86_sse2_psrai_w:
9540  case Intrinsic::x86_sse2_psrai_d:
9541  case Intrinsic::x86_mmx_pslli_w:
9542  case Intrinsic::x86_mmx_pslli_d:
9543  case Intrinsic::x86_mmx_pslli_q:
9544  case Intrinsic::x86_mmx_psrli_w:
9545  case Intrinsic::x86_mmx_psrli_d:
9546  case Intrinsic::x86_mmx_psrli_q:
9547  case Intrinsic::x86_mmx_psrai_w:
9548  case Intrinsic::x86_mmx_psrai_d: {
9549    SDValue ShAmt = Op.getOperand(2);
9550    if (isa<ConstantSDNode>(ShAmt))
9551      return SDValue();
9552
9553    unsigned NewIntNo = 0;
9554    EVT ShAmtVT = MVT::v4i32;
9555    switch (IntNo) {
9556    case Intrinsic::x86_sse2_pslli_w:
9557      NewIntNo = Intrinsic::x86_sse2_psll_w;
9558      break;
9559    case Intrinsic::x86_sse2_pslli_d:
9560      NewIntNo = Intrinsic::x86_sse2_psll_d;
9561      break;
9562    case Intrinsic::x86_sse2_pslli_q:
9563      NewIntNo = Intrinsic::x86_sse2_psll_q;
9564      break;
9565    case Intrinsic::x86_sse2_psrli_w:
9566      NewIntNo = Intrinsic::x86_sse2_psrl_w;
9567      break;
9568    case Intrinsic::x86_sse2_psrli_d:
9569      NewIntNo = Intrinsic::x86_sse2_psrl_d;
9570      break;
9571    case Intrinsic::x86_sse2_psrli_q:
9572      NewIntNo = Intrinsic::x86_sse2_psrl_q;
9573      break;
9574    case Intrinsic::x86_sse2_psrai_w:
9575      NewIntNo = Intrinsic::x86_sse2_psra_w;
9576      break;
9577    case Intrinsic::x86_sse2_psrai_d:
9578      NewIntNo = Intrinsic::x86_sse2_psra_d;
9579      break;
9580    case Intrinsic::x86_avx2_pslli_w:
9581      NewIntNo = Intrinsic::x86_avx2_psll_w;
9582      break;
9583    case Intrinsic::x86_avx2_pslli_d:
9584      NewIntNo = Intrinsic::x86_avx2_psll_d;
9585      break;
9586    case Intrinsic::x86_avx2_pslli_q:
9587      NewIntNo = Intrinsic::x86_avx2_psll_q;
9588      break;
9589    case Intrinsic::x86_avx2_psrli_w:
9590      NewIntNo = Intrinsic::x86_avx2_psrl_w;
9591      break;
9592    case Intrinsic::x86_avx2_psrli_d:
9593      NewIntNo = Intrinsic::x86_avx2_psrl_d;
9594      break;
9595    case Intrinsic::x86_avx2_psrli_q:
9596      NewIntNo = Intrinsic::x86_avx2_psrl_q;
9597      break;
9598    case Intrinsic::x86_avx2_psrai_w:
9599      NewIntNo = Intrinsic::x86_avx2_psra_w;
9600      break;
9601    case Intrinsic::x86_avx2_psrai_d:
9602      NewIntNo = Intrinsic::x86_avx2_psra_d;
9603      break;
9604    default: {
9605      ShAmtVT = MVT::v2i32;
9606      switch (IntNo) {
9607      case Intrinsic::x86_mmx_pslli_w:
9608        NewIntNo = Intrinsic::x86_mmx_psll_w;
9609        break;
9610      case Intrinsic::x86_mmx_pslli_d:
9611        NewIntNo = Intrinsic::x86_mmx_psll_d;
9612        break;
9613      case Intrinsic::x86_mmx_pslli_q:
9614        NewIntNo = Intrinsic::x86_mmx_psll_q;
9615        break;
9616      case Intrinsic::x86_mmx_psrli_w:
9617        NewIntNo = Intrinsic::x86_mmx_psrl_w;
9618        break;
9619      case Intrinsic::x86_mmx_psrli_d:
9620        NewIntNo = Intrinsic::x86_mmx_psrl_d;
9621        break;
9622      case Intrinsic::x86_mmx_psrli_q:
9623        NewIntNo = Intrinsic::x86_mmx_psrl_q;
9624        break;
9625      case Intrinsic::x86_mmx_psrai_w:
9626        NewIntNo = Intrinsic::x86_mmx_psra_w;
9627        break;
9628      case Intrinsic::x86_mmx_psrai_d:
9629        NewIntNo = Intrinsic::x86_mmx_psra_d;
9630        break;
9631      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9632      }
9633      break;
9634    }
9635    }
9636
9637    // The vector shift intrinsics with scalars uses 32b shift amounts but
9638    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
9639    // to be zero.
9640    SDValue ShOps[4];
9641    ShOps[0] = ShAmt;
9642    ShOps[1] = DAG.getConstant(0, MVT::i32);
9643    if (ShAmtVT == MVT::v4i32) {
9644      ShOps[2] = DAG.getUNDEF(MVT::i32);
9645      ShOps[3] = DAG.getUNDEF(MVT::i32);
9646      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
9647    } else {
9648      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
9649// FIXME this must be lowered to get rid of the invalid type.
9650    }
9651
9652    EVT VT = Op.getValueType();
9653    ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9654    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9655                       DAG.getConstant(NewIntNo, MVT::i32),
9656                       Op.getOperand(1), ShAmt);
9657  }
9658  }
9659}
9660
9661SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
9662                                           SelectionDAG &DAG) const {
9663  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9664  MFI->setReturnAddressIsTaken(true);
9665
9666  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9667  DebugLoc dl = Op.getDebugLoc();
9668
9669  if (Depth > 0) {
9670    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
9671    SDValue Offset =
9672      DAG.getConstant(TD->getPointerSize(),
9673                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
9674    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9675                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
9676                                   FrameAddr, Offset),
9677                       MachinePointerInfo(), false, false, false, 0);
9678  }
9679
9680  // Just load the return address.
9681  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
9682  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9683                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
9684}
9685
9686SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
9687  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9688  MFI->setFrameAddressIsTaken(true);
9689
9690  EVT VT = Op.getValueType();
9691  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
9692  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9693  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
9694  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
9695  while (Depth--)
9696    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
9697                            MachinePointerInfo(),
9698                            false, false, false, 0);
9699  return FrameAddr;
9700}
9701
9702SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
9703                                                     SelectionDAG &DAG) const {
9704  return DAG.getIntPtrConstant(2*TD->getPointerSize());
9705}
9706
9707SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
9708  MachineFunction &MF = DAG.getMachineFunction();
9709  SDValue Chain     = Op.getOperand(0);
9710  SDValue Offset    = Op.getOperand(1);
9711  SDValue Handler   = Op.getOperand(2);
9712  DebugLoc dl       = Op.getDebugLoc();
9713
9714  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
9715                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
9716                                     getPointerTy());
9717  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
9718
9719  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
9720                                  DAG.getIntPtrConstant(TD->getPointerSize()));
9721  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
9722  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
9723                       false, false, 0);
9724  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
9725  MF.getRegInfo().addLiveOut(StoreAddrReg);
9726
9727  return DAG.getNode(X86ISD::EH_RETURN, dl,
9728                     MVT::Other,
9729                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
9730}
9731
9732SDValue X86TargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
9733                                                  SelectionDAG &DAG) const {
9734  return Op.getOperand(0);
9735}
9736
9737SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
9738                                                SelectionDAG &DAG) const {
9739  SDValue Root = Op.getOperand(0);
9740  SDValue Trmp = Op.getOperand(1); // trampoline
9741  SDValue FPtr = Op.getOperand(2); // nested function
9742  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
9743  DebugLoc dl  = Op.getDebugLoc();
9744
9745  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9746
9747  if (Subtarget->is64Bit()) {
9748    SDValue OutChains[6];
9749
9750    // Large code-model.
9751    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
9752    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
9753
9754    const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
9755    const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
9756
9757    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
9758
9759    // Load the pointer to the nested function into R11.
9760    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
9761    SDValue Addr = Trmp;
9762    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9763                                Addr, MachinePointerInfo(TrmpAddr),
9764                                false, false, 0);
9765
9766    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9767                       DAG.getConstant(2, MVT::i64));
9768    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
9769                                MachinePointerInfo(TrmpAddr, 2),
9770                                false, false, 2);
9771
9772    // Load the 'nest' parameter value into R10.
9773    // R10 is specified in X86CallingConv.td
9774    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
9775    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9776                       DAG.getConstant(10, MVT::i64));
9777    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9778                                Addr, MachinePointerInfo(TrmpAddr, 10),
9779                                false, false, 0);
9780
9781    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9782                       DAG.getConstant(12, MVT::i64));
9783    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
9784                                MachinePointerInfo(TrmpAddr, 12),
9785                                false, false, 2);
9786
9787    // Jump to the nested function.
9788    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
9789    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9790                       DAG.getConstant(20, MVT::i64));
9791    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9792                                Addr, MachinePointerInfo(TrmpAddr, 20),
9793                                false, false, 0);
9794
9795    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
9796    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9797                       DAG.getConstant(22, MVT::i64));
9798    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
9799                                MachinePointerInfo(TrmpAddr, 22),
9800                                false, false, 0);
9801
9802    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
9803  } else {
9804    const Function *Func =
9805      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
9806    CallingConv::ID CC = Func->getCallingConv();
9807    unsigned NestReg;
9808
9809    switch (CC) {
9810    default:
9811      llvm_unreachable("Unsupported calling convention");
9812    case CallingConv::C:
9813    case CallingConv::X86_StdCall: {
9814      // Pass 'nest' parameter in ECX.
9815      // Must be kept in sync with X86CallingConv.td
9816      NestReg = X86::ECX;
9817
9818      // Check that ECX wasn't needed by an 'inreg' parameter.
9819      FunctionType *FTy = Func->getFunctionType();
9820      const AttrListPtr &Attrs = Func->getAttributes();
9821
9822      if (!Attrs.isEmpty() && !Func->isVarArg()) {
9823        unsigned InRegCount = 0;
9824        unsigned Idx = 1;
9825
9826        for (FunctionType::param_iterator I = FTy->param_begin(),
9827             E = FTy->param_end(); I != E; ++I, ++Idx)
9828          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
9829            // FIXME: should only count parameters that are lowered to integers.
9830            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
9831
9832        if (InRegCount > 2) {
9833          report_fatal_error("Nest register in use - reduce number of inreg"
9834                             " parameters!");
9835        }
9836      }
9837      break;
9838    }
9839    case CallingConv::X86_FastCall:
9840    case CallingConv::X86_ThisCall:
9841    case CallingConv::Fast:
9842      // Pass 'nest' parameter in EAX.
9843      // Must be kept in sync with X86CallingConv.td
9844      NestReg = X86::EAX;
9845      break;
9846    }
9847
9848    SDValue OutChains[4];
9849    SDValue Addr, Disp;
9850
9851    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9852                       DAG.getConstant(10, MVT::i32));
9853    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
9854
9855    // This is storing the opcode for MOV32ri.
9856    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
9857    const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
9858    OutChains[0] = DAG.getStore(Root, dl,
9859                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
9860                                Trmp, MachinePointerInfo(TrmpAddr),
9861                                false, false, 0);
9862
9863    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9864                       DAG.getConstant(1, MVT::i32));
9865    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
9866                                MachinePointerInfo(TrmpAddr, 1),
9867                                false, false, 1);
9868
9869    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
9870    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9871                       DAG.getConstant(5, MVT::i32));
9872    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
9873                                MachinePointerInfo(TrmpAddr, 5),
9874                                false, false, 1);
9875
9876    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9877                       DAG.getConstant(6, MVT::i32));
9878    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
9879                                MachinePointerInfo(TrmpAddr, 6),
9880                                false, false, 1);
9881
9882    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
9883  }
9884}
9885
9886SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
9887                                            SelectionDAG &DAG) const {
9888  /*
9889   The rounding mode is in bits 11:10 of FPSR, and has the following
9890   settings:
9891     00 Round to nearest
9892     01 Round to -inf
9893     10 Round to +inf
9894     11 Round to 0
9895
9896  FLT_ROUNDS, on the other hand, expects the following:
9897    -1 Undefined
9898     0 Round to 0
9899     1 Round to nearest
9900     2 Round to +inf
9901     3 Round to -inf
9902
9903  To perform the conversion, we do:
9904    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
9905  */
9906
9907  MachineFunction &MF = DAG.getMachineFunction();
9908  const TargetMachine &TM = MF.getTarget();
9909  const TargetFrameLowering &TFI = *TM.getFrameLowering();
9910  unsigned StackAlignment = TFI.getStackAlignment();
9911  EVT VT = Op.getValueType();
9912  DebugLoc DL = Op.getDebugLoc();
9913
9914  // Save FP Control Word to stack slot
9915  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
9916  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
9917
9918
9919  MachineMemOperand *MMO =
9920   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
9921                           MachineMemOperand::MOStore, 2, 2);
9922
9923  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
9924  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
9925                                          DAG.getVTList(MVT::Other),
9926                                          Ops, 2, MVT::i16, MMO);
9927
9928  // Load FP Control Word from stack slot
9929  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
9930                            MachinePointerInfo(), false, false, false, 0);
9931
9932  // Transform as necessary
9933  SDValue CWD1 =
9934    DAG.getNode(ISD::SRL, DL, MVT::i16,
9935                DAG.getNode(ISD::AND, DL, MVT::i16,
9936                            CWD, DAG.getConstant(0x800, MVT::i16)),
9937                DAG.getConstant(11, MVT::i8));
9938  SDValue CWD2 =
9939    DAG.getNode(ISD::SRL, DL, MVT::i16,
9940                DAG.getNode(ISD::AND, DL, MVT::i16,
9941                            CWD, DAG.getConstant(0x400, MVT::i16)),
9942                DAG.getConstant(9, MVT::i8));
9943
9944  SDValue RetVal =
9945    DAG.getNode(ISD::AND, DL, MVT::i16,
9946                DAG.getNode(ISD::ADD, DL, MVT::i16,
9947                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
9948                            DAG.getConstant(1, MVT::i16)),
9949                DAG.getConstant(3, MVT::i16));
9950
9951
9952  return DAG.getNode((VT.getSizeInBits() < 16 ?
9953                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
9954}
9955
9956SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
9957  EVT VT = Op.getValueType();
9958  EVT OpVT = VT;
9959  unsigned NumBits = VT.getSizeInBits();
9960  DebugLoc dl = Op.getDebugLoc();
9961
9962  Op = Op.getOperand(0);
9963  if (VT == MVT::i8) {
9964    // Zero extend to i32 since there is not an i8 bsr.
9965    OpVT = MVT::i32;
9966    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9967  }
9968
9969  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
9970  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9971  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
9972
9973  // If src is zero (i.e. bsr sets ZF), returns NumBits.
9974  SDValue Ops[] = {
9975    Op,
9976    DAG.getConstant(NumBits+NumBits-1, OpVT),
9977    DAG.getConstant(X86::COND_E, MVT::i8),
9978    Op.getValue(1)
9979  };
9980  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
9981
9982  // Finally xor with NumBits-1.
9983  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
9984
9985  if (VT == MVT::i8)
9986    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9987  return Op;
9988}
9989
9990SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
9991  EVT VT = Op.getValueType();
9992  EVT OpVT = VT;
9993  unsigned NumBits = VT.getSizeInBits();
9994  DebugLoc dl = Op.getDebugLoc();
9995
9996  Op = Op.getOperand(0);
9997  if (VT == MVT::i8) {
9998    OpVT = MVT::i32;
9999    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
10000  }
10001
10002  // Issue a bsf (scan bits forward) which also sets EFLAGS.
10003  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10004  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
10005
10006  // If src is zero (i.e. bsf sets ZF), returns NumBits.
10007  SDValue Ops[] = {
10008    Op,
10009    DAG.getConstant(NumBits, OpVT),
10010    DAG.getConstant(X86::COND_E, MVT::i8),
10011    Op.getValue(1)
10012  };
10013  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
10014
10015  if (VT == MVT::i8)
10016    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10017  return Op;
10018}
10019
10020// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
10021// ones, and then concatenate the result back.
10022static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
10023  EVT VT = Op.getValueType();
10024
10025  assert(VT.getSizeInBits() == 256 && VT.isInteger() &&
10026         "Unsupported value type for operation");
10027
10028  int NumElems = VT.getVectorNumElements();
10029  DebugLoc dl = Op.getDebugLoc();
10030  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
10031  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
10032
10033  // Extract the LHS vectors
10034  SDValue LHS = Op.getOperand(0);
10035  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
10036  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
10037
10038  // Extract the RHS vectors
10039  SDValue RHS = Op.getOperand(1);
10040  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
10041  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
10042
10043  MVT EltVT = VT.getVectorElementType().getSimpleVT();
10044  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10045
10046  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
10047                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
10048                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
10049}
10050
10051SDValue X86TargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
10052  assert(Op.getValueType().getSizeInBits() == 256 &&
10053         Op.getValueType().isInteger() &&
10054         "Only handle AVX 256-bit vector integer operation");
10055  return Lower256IntArith(Op, DAG);
10056}
10057
10058SDValue X86TargetLowering::LowerSUB(SDValue Op, SelectionDAG &DAG) const {
10059  assert(Op.getValueType().getSizeInBits() == 256 &&
10060         Op.getValueType().isInteger() &&
10061         "Only handle AVX 256-bit vector integer operation");
10062  return Lower256IntArith(Op, DAG);
10063}
10064
10065SDValue X86TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10066  EVT VT = Op.getValueType();
10067
10068  // Decompose 256-bit ops into smaller 128-bit ops.
10069  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
10070    return Lower256IntArith(Op, DAG);
10071
10072  DebugLoc dl = Op.getDebugLoc();
10073
10074  SDValue A = Op.getOperand(0);
10075  SDValue B = Op.getOperand(1);
10076
10077  if (VT == MVT::v4i64) {
10078    assert(Subtarget->hasAVX2() && "Lowering v4i64 multiply requires AVX2");
10079
10080    //  ulong2 Ahi = __builtin_ia32_psrlqi256( a, 32);
10081    //  ulong2 Bhi = __builtin_ia32_psrlqi256( b, 32);
10082    //  ulong2 AloBlo = __builtin_ia32_pmuludq256( a, b );
10083    //  ulong2 AloBhi = __builtin_ia32_pmuludq256( a, Bhi );
10084    //  ulong2 AhiBlo = __builtin_ia32_pmuludq256( Ahi, b );
10085    //
10086    //  AloBhi = __builtin_ia32_psllqi256( AloBhi, 32 );
10087    //  AhiBlo = __builtin_ia32_psllqi256( AhiBlo, 32 );
10088    //  return AloBlo + AloBhi + AhiBlo;
10089
10090    SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10091                         DAG.getConstant(Intrinsic::x86_avx2_psrli_q, MVT::i32),
10092                         A, DAG.getConstant(32, MVT::i32));
10093    SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10094                         DAG.getConstant(Intrinsic::x86_avx2_psrli_q, MVT::i32),
10095                         B, DAG.getConstant(32, MVT::i32));
10096    SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10097                         DAG.getConstant(Intrinsic::x86_avx2_pmulu_dq, MVT::i32),
10098                         A, B);
10099    SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10100                         DAG.getConstant(Intrinsic::x86_avx2_pmulu_dq, MVT::i32),
10101                         A, Bhi);
10102    SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10103                         DAG.getConstant(Intrinsic::x86_avx2_pmulu_dq, MVT::i32),
10104                         Ahi, B);
10105    AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10106                         DAG.getConstant(Intrinsic::x86_avx2_pslli_q, MVT::i32),
10107                         AloBhi, DAG.getConstant(32, MVT::i32));
10108    AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10109                         DAG.getConstant(Intrinsic::x86_avx2_pslli_q, MVT::i32),
10110                         AhiBlo, DAG.getConstant(32, MVT::i32));
10111    SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
10112    Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
10113    return Res;
10114  }
10115
10116  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
10117
10118  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
10119  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
10120  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
10121  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
10122  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
10123  //
10124  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
10125  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
10126  //  return AloBlo + AloBhi + AhiBlo;
10127
10128  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10129                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
10130                       A, DAG.getConstant(32, MVT::i32));
10131  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10132                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
10133                       B, DAG.getConstant(32, MVT::i32));
10134  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10135                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
10136                       A, B);
10137  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10138                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
10139                       A, Bhi);
10140  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10141                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
10142                       Ahi, B);
10143  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10144                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
10145                       AloBhi, DAG.getConstant(32, MVT::i32));
10146  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10147                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
10148                       AhiBlo, DAG.getConstant(32, MVT::i32));
10149  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
10150  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
10151  return Res;
10152}
10153
10154SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
10155
10156  EVT VT = Op.getValueType();
10157  DebugLoc dl = Op.getDebugLoc();
10158  SDValue R = Op.getOperand(0);
10159  SDValue Amt = Op.getOperand(1);
10160  LLVMContext *Context = DAG.getContext();
10161
10162  if (!Subtarget->hasXMMInt())
10163    return SDValue();
10164
10165  // Optimize shl/srl/sra with constant shift amount.
10166  if (isSplatVector(Amt.getNode())) {
10167    SDValue SclrAmt = Amt->getOperand(0);
10168    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
10169      uint64_t ShiftAmt = C->getZExtValue();
10170
10171      if (VT == MVT::v16i8 && Op.getOpcode() == ISD::SHL) {
10172        // Make a large shift.
10173        SDValue SHL =
10174          DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10175                      DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
10176                      R, DAG.getConstant(ShiftAmt, MVT::i32));
10177        // Zero out the rightmost bits.
10178        SmallVector<SDValue, 16> V(16, DAG.getConstant(uint8_t(-1U << ShiftAmt),
10179                                                       MVT::i8));
10180        return DAG.getNode(ISD::AND, dl, VT, SHL,
10181                           DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10182      }
10183
10184      if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SHL)
10185       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10186                     DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
10187                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10188
10189      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SHL)
10190       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10191                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
10192                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10193
10194      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SHL)
10195       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10196                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
10197                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10198
10199      if (VT == MVT::v16i8 && Op.getOpcode() == ISD::SRL) {
10200        // Make a large shift.
10201        SDValue SRL =
10202          DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10203                      DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
10204                      R, DAG.getConstant(ShiftAmt, MVT::i32));
10205        // Zero out the leftmost bits.
10206        SmallVector<SDValue, 16> V(16, DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10207                                                       MVT::i8));
10208        return DAG.getNode(ISD::AND, dl, VT, SRL,
10209                           DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10210      }
10211
10212      if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SRL)
10213       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10214                     DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
10215                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10216
10217      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRL)
10218       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10219                     DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
10220                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10221
10222      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRL)
10223       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10224                     DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
10225                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10226
10227      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRA)
10228       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10229                     DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
10230                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10231
10232      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRA)
10233       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10234                     DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
10235                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10236
10237      if (VT == MVT::v16i8 && Op.getOpcode() == ISD::SRA) {
10238        if (ShiftAmt == 7) {
10239          // R s>> 7  ===  R s< 0
10240          SDValue Zeros = getZeroVector(VT, true /* HasXMMInt */, DAG, dl);
10241          return DAG.getNode(X86ISD::PCMPGTB, dl, VT, Zeros, R);
10242        }
10243
10244        // R s>> a === ((R u>> a) ^ m) - m
10245        SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10246        SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
10247                                                       MVT::i8));
10248        SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
10249        Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10250        Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10251        return Res;
10252      }
10253
10254      if (Subtarget->hasAVX2() && VT == MVT::v32i8) {
10255        if (Op.getOpcode() == ISD::SHL) {
10256          // Make a large shift.
10257          SDValue SHL =
10258            DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10259                        DAG.getConstant(Intrinsic::x86_avx2_pslli_w, MVT::i32),
10260                        R, DAG.getConstant(ShiftAmt, MVT::i32));
10261          // Zero out the rightmost bits.
10262          SmallVector<SDValue, 32> V(32, DAG.getConstant(uint8_t(-1U << ShiftAmt),
10263                                                         MVT::i8));
10264          return DAG.getNode(ISD::AND, dl, VT, SHL,
10265                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10266        }
10267        if (Op.getOpcode() == ISD::SRL) {
10268          // Make a large shift.
10269          SDValue SRL =
10270            DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10271                        DAG.getConstant(Intrinsic::x86_avx2_psrli_w, MVT::i32),
10272                        R, DAG.getConstant(ShiftAmt, MVT::i32));
10273          // Zero out the leftmost bits.
10274          SmallVector<SDValue, 32> V(32, DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10275                                                         MVT::i8));
10276          return DAG.getNode(ISD::AND, dl, VT, SRL,
10277                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10278        }
10279        if (Op.getOpcode() == ISD::SRA) {
10280          if (ShiftAmt == 7) {
10281            // R s>> 7  ===  R s< 0
10282            SDValue Zeros = getZeroVector(VT, true /* HasXMMInt */, DAG, dl);
10283            return DAG.getNode(X86ISD::PCMPGTB, dl, VT, Zeros, R);
10284          }
10285
10286          // R s>> a === ((R u>> a) ^ m) - m
10287          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10288          SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
10289                                                         MVT::i8));
10290          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
10291          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10292          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10293          return Res;
10294        }
10295      }
10296    }
10297  }
10298
10299  // Lower SHL with variable shift amount.
10300  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
10301    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10302                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
10303                     Op.getOperand(1), DAG.getConstant(23, MVT::i32));
10304
10305    ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
10306
10307    std::vector<Constant*> CV(4, CI);
10308    Constant *C = ConstantVector::get(CV);
10309    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10310    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10311                                 MachinePointerInfo::getConstantPool(),
10312                                 false, false, false, 16);
10313
10314    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
10315    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
10316    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
10317    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
10318  }
10319  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
10320    // a = a << 5;
10321    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10322                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
10323                     Op.getOperand(1), DAG.getConstant(5, MVT::i32));
10324
10325    ConstantInt *CM1 = ConstantInt::get(*Context, APInt(8, 15));
10326    ConstantInt *CM2 = ConstantInt::get(*Context, APInt(8, 63));
10327
10328    std::vector<Constant*> CVM1(16, CM1);
10329    std::vector<Constant*> CVM2(16, CM2);
10330    Constant *C = ConstantVector::get(CVM1);
10331    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10332    SDValue M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10333                            MachinePointerInfo::getConstantPool(),
10334                            false, false, false, 16);
10335
10336    // r = pblendv(r, psllw(r & (char16)15, 4), a);
10337    M = DAG.getNode(ISD::AND, dl, VT, R, M);
10338    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10339                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
10340                    DAG.getConstant(4, MVT::i32));
10341    R = DAG.getNode(ISD::VSELECT, dl, VT, Op, R, M);
10342    // a += a
10343    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10344
10345    C = ConstantVector::get(CVM2);
10346    CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10347    M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10348                    MachinePointerInfo::getConstantPool(),
10349                    false, false, false, 16);
10350
10351    // r = pblendv(r, psllw(r & (char16)63, 2), a);
10352    M = DAG.getNode(ISD::AND, dl, VT, R, M);
10353    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10354                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
10355                    DAG.getConstant(2, MVT::i32));
10356    R = DAG.getNode(ISD::VSELECT, dl, VT, Op, R, M);
10357    // a += a
10358    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10359
10360    // return pblendv(r, r+r, a);
10361    R = DAG.getNode(ISD::VSELECT, dl, VT, Op,
10362                    R, DAG.getNode(ISD::ADD, dl, VT, R, R));
10363    return R;
10364  }
10365
10366  // Decompose 256-bit shifts into smaller 128-bit shifts.
10367  if (VT.getSizeInBits() == 256) {
10368    int NumElems = VT.getVectorNumElements();
10369    MVT EltVT = VT.getVectorElementType().getSimpleVT();
10370    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10371
10372    // Extract the two vectors
10373    SDValue V1 = Extract128BitVector(R, DAG.getConstant(0, MVT::i32), DAG, dl);
10374    SDValue V2 = Extract128BitVector(R, DAG.getConstant(NumElems/2, MVT::i32),
10375                                     DAG, dl);
10376
10377    // Recreate the shift amount vectors
10378    SDValue Amt1, Amt2;
10379    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
10380      // Constant shift amount
10381      SmallVector<SDValue, 4> Amt1Csts;
10382      SmallVector<SDValue, 4> Amt2Csts;
10383      for (int i = 0; i < NumElems/2; ++i)
10384        Amt1Csts.push_back(Amt->getOperand(i));
10385      for (int i = NumElems/2; i < NumElems; ++i)
10386        Amt2Csts.push_back(Amt->getOperand(i));
10387
10388      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10389                                 &Amt1Csts[0], NumElems/2);
10390      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10391                                 &Amt2Csts[0], NumElems/2);
10392    } else {
10393      // Variable shift amount
10394      Amt1 = Extract128BitVector(Amt, DAG.getConstant(0, MVT::i32), DAG, dl);
10395      Amt2 = Extract128BitVector(Amt, DAG.getConstant(NumElems/2, MVT::i32),
10396                                 DAG, dl);
10397    }
10398
10399    // Issue new vector shifts for the smaller types
10400    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
10401    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
10402
10403    // Concatenate the result back
10404    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
10405  }
10406
10407  return SDValue();
10408}
10409
10410SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
10411  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
10412  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
10413  // looks for this combo and may remove the "setcc" instruction if the "setcc"
10414  // has only one use.
10415  SDNode *N = Op.getNode();
10416  SDValue LHS = N->getOperand(0);
10417  SDValue RHS = N->getOperand(1);
10418  unsigned BaseOp = 0;
10419  unsigned Cond = 0;
10420  DebugLoc DL = Op.getDebugLoc();
10421  switch (Op.getOpcode()) {
10422  default: llvm_unreachable("Unknown ovf instruction!");
10423  case ISD::SADDO:
10424    // A subtract of one will be selected as a INC. Note that INC doesn't
10425    // set CF, so we can't do this for UADDO.
10426    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10427      if (C->isOne()) {
10428        BaseOp = X86ISD::INC;
10429        Cond = X86::COND_O;
10430        break;
10431      }
10432    BaseOp = X86ISD::ADD;
10433    Cond = X86::COND_O;
10434    break;
10435  case ISD::UADDO:
10436    BaseOp = X86ISD::ADD;
10437    Cond = X86::COND_B;
10438    break;
10439  case ISD::SSUBO:
10440    // A subtract of one will be selected as a DEC. Note that DEC doesn't
10441    // set CF, so we can't do this for USUBO.
10442    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10443      if (C->isOne()) {
10444        BaseOp = X86ISD::DEC;
10445        Cond = X86::COND_O;
10446        break;
10447      }
10448    BaseOp = X86ISD::SUB;
10449    Cond = X86::COND_O;
10450    break;
10451  case ISD::USUBO:
10452    BaseOp = X86ISD::SUB;
10453    Cond = X86::COND_B;
10454    break;
10455  case ISD::SMULO:
10456    BaseOp = X86ISD::SMUL;
10457    Cond = X86::COND_O;
10458    break;
10459  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
10460    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
10461                                 MVT::i32);
10462    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
10463
10464    SDValue SetCC =
10465      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10466                  DAG.getConstant(X86::COND_O, MVT::i32),
10467                  SDValue(Sum.getNode(), 2));
10468
10469    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10470  }
10471  }
10472
10473  // Also sets EFLAGS.
10474  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
10475  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
10476
10477  SDValue SetCC =
10478    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
10479                DAG.getConstant(Cond, MVT::i32),
10480                SDValue(Sum.getNode(), 1));
10481
10482  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10483}
10484
10485SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const{
10486  DebugLoc dl = Op.getDebugLoc();
10487  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
10488  EVT VT = Op.getValueType();
10489
10490  if (Subtarget->hasXMMInt() && VT.isVector()) {
10491    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
10492                        ExtraVT.getScalarType().getSizeInBits();
10493    SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
10494
10495    unsigned SHLIntrinsicsID = 0;
10496    unsigned SRAIntrinsicsID = 0;
10497    switch (VT.getSimpleVT().SimpleTy) {
10498      default:
10499        return SDValue();
10500      case MVT::v4i32:
10501        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_d;
10502        SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_d;
10503        break;
10504      case MVT::v8i16:
10505        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_w;
10506        SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_w;
10507        break;
10508      case MVT::v8i32:
10509      case MVT::v16i16:
10510        if (!Subtarget->hasAVX())
10511          return SDValue();
10512        if (!Subtarget->hasAVX2()) {
10513          // needs to be split
10514          int NumElems = VT.getVectorNumElements();
10515          SDValue Idx0 = DAG.getConstant(0, MVT::i32);
10516          SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
10517
10518          // Extract the LHS vectors
10519          SDValue LHS = Op.getOperand(0);
10520          SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
10521          SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
10522
10523          MVT EltVT = VT.getVectorElementType().getSimpleVT();
10524          EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10525
10526          EVT ExtraEltVT = ExtraVT.getVectorElementType();
10527          int ExtraNumElems = ExtraVT.getVectorNumElements();
10528          ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
10529                                     ExtraNumElems/2);
10530          SDValue Extra = DAG.getValueType(ExtraVT);
10531
10532          LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
10533          LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
10534
10535          return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);;
10536        }
10537        if (VT == MVT::v8i32) {
10538          SHLIntrinsicsID = Intrinsic::x86_avx2_pslli_d;
10539          SRAIntrinsicsID = Intrinsic::x86_avx2_psrai_d;
10540        } else {
10541          SHLIntrinsicsID = Intrinsic::x86_avx2_pslli_w;
10542          SRAIntrinsicsID = Intrinsic::x86_avx2_psrai_w;
10543        }
10544    }
10545
10546    SDValue Tmp1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10547                         DAG.getConstant(SHLIntrinsicsID, MVT::i32),
10548                         Op.getOperand(0), ShAmt);
10549
10550    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10551                       DAG.getConstant(SRAIntrinsicsID, MVT::i32),
10552                       Tmp1, ShAmt);
10553  }
10554
10555  return SDValue();
10556}
10557
10558
10559SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
10560  DebugLoc dl = Op.getDebugLoc();
10561
10562  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
10563  // There isn't any reason to disable it if the target processor supports it.
10564  if (!Subtarget->hasXMMInt() && !Subtarget->is64Bit()) {
10565    SDValue Chain = Op.getOperand(0);
10566    SDValue Zero = DAG.getConstant(0, MVT::i32);
10567    SDValue Ops[] = {
10568      DAG.getRegister(X86::ESP, MVT::i32), // Base
10569      DAG.getTargetConstant(1, MVT::i8),   // Scale
10570      DAG.getRegister(0, MVT::i32),        // Index
10571      DAG.getTargetConstant(0, MVT::i32),  // Disp
10572      DAG.getRegister(0, MVT::i32),        // Segment.
10573      Zero,
10574      Chain
10575    };
10576    SDNode *Res =
10577      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10578                          array_lengthof(Ops));
10579    return SDValue(Res, 0);
10580  }
10581
10582  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
10583  if (!isDev)
10584    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10585
10586  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10587  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
10588  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
10589  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
10590
10591  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
10592  if (!Op1 && !Op2 && !Op3 && Op4)
10593    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
10594
10595  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
10596  if (Op1 && !Op2 && !Op3 && !Op4)
10597    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
10598
10599  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
10600  //           (MFENCE)>;
10601  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10602}
10603
10604SDValue X86TargetLowering::LowerATOMIC_FENCE(SDValue Op,
10605                                             SelectionDAG &DAG) const {
10606  DebugLoc dl = Op.getDebugLoc();
10607  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
10608    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
10609  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
10610    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
10611
10612  // The only fence that needs an instruction is a sequentially-consistent
10613  // cross-thread fence.
10614  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
10615    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
10616    // no-sse2). There isn't any reason to disable it if the target processor
10617    // supports it.
10618    if (Subtarget->hasXMMInt() || Subtarget->is64Bit())
10619      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10620
10621    SDValue Chain = Op.getOperand(0);
10622    SDValue Zero = DAG.getConstant(0, MVT::i32);
10623    SDValue Ops[] = {
10624      DAG.getRegister(X86::ESP, MVT::i32), // Base
10625      DAG.getTargetConstant(1, MVT::i8),   // Scale
10626      DAG.getRegister(0, MVT::i32),        // Index
10627      DAG.getTargetConstant(0, MVT::i32),  // Disp
10628      DAG.getRegister(0, MVT::i32),        // Segment.
10629      Zero,
10630      Chain
10631    };
10632    SDNode *Res =
10633      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10634                         array_lengthof(Ops));
10635    return SDValue(Res, 0);
10636  }
10637
10638  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
10639  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10640}
10641
10642
10643SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
10644  EVT T = Op.getValueType();
10645  DebugLoc DL = Op.getDebugLoc();
10646  unsigned Reg = 0;
10647  unsigned size = 0;
10648  switch(T.getSimpleVT().SimpleTy) {
10649  default:
10650    assert(false && "Invalid value type!");
10651  case MVT::i8:  Reg = X86::AL;  size = 1; break;
10652  case MVT::i16: Reg = X86::AX;  size = 2; break;
10653  case MVT::i32: Reg = X86::EAX; size = 4; break;
10654  case MVT::i64:
10655    assert(Subtarget->is64Bit() && "Node not type legal!");
10656    Reg = X86::RAX; size = 8;
10657    break;
10658  }
10659  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
10660                                    Op.getOperand(2), SDValue());
10661  SDValue Ops[] = { cpIn.getValue(0),
10662                    Op.getOperand(1),
10663                    Op.getOperand(3),
10664                    DAG.getTargetConstant(size, MVT::i8),
10665                    cpIn.getValue(1) };
10666  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10667  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
10668  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
10669                                           Ops, 5, T, MMO);
10670  SDValue cpOut =
10671    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
10672  return cpOut;
10673}
10674
10675SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
10676                                                 SelectionDAG &DAG) const {
10677  assert(Subtarget->is64Bit() && "Result not type legalized?");
10678  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10679  SDValue TheChain = Op.getOperand(0);
10680  DebugLoc dl = Op.getDebugLoc();
10681  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10682  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
10683  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
10684                                   rax.getValue(2));
10685  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
10686                            DAG.getConstant(32, MVT::i8));
10687  SDValue Ops[] = {
10688    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
10689    rdx.getValue(1)
10690  };
10691  return DAG.getMergeValues(Ops, 2, dl);
10692}
10693
10694SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
10695                                            SelectionDAG &DAG) const {
10696  EVT SrcVT = Op.getOperand(0).getValueType();
10697  EVT DstVT = Op.getValueType();
10698  assert(Subtarget->is64Bit() && !Subtarget->hasXMMInt() &&
10699         Subtarget->hasMMX() && "Unexpected custom BITCAST");
10700  assert((DstVT == MVT::i64 ||
10701          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
10702         "Unexpected custom BITCAST");
10703  // i64 <=> MMX conversions are Legal.
10704  if (SrcVT==MVT::i64 && DstVT.isVector())
10705    return Op;
10706  if (DstVT==MVT::i64 && SrcVT.isVector())
10707    return Op;
10708  // MMX <=> MMX conversions are Legal.
10709  if (SrcVT.isVector() && DstVT.isVector())
10710    return Op;
10711  // All other conversions need to be expanded.
10712  return SDValue();
10713}
10714
10715SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
10716  SDNode *Node = Op.getNode();
10717  DebugLoc dl = Node->getDebugLoc();
10718  EVT T = Node->getValueType(0);
10719  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
10720                              DAG.getConstant(0, T), Node->getOperand(2));
10721  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
10722                       cast<AtomicSDNode>(Node)->getMemoryVT(),
10723                       Node->getOperand(0),
10724                       Node->getOperand(1), negOp,
10725                       cast<AtomicSDNode>(Node)->getSrcValue(),
10726                       cast<AtomicSDNode>(Node)->getAlignment(),
10727                       cast<AtomicSDNode>(Node)->getOrdering(),
10728                       cast<AtomicSDNode>(Node)->getSynchScope());
10729}
10730
10731static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
10732  SDNode *Node = Op.getNode();
10733  DebugLoc dl = Node->getDebugLoc();
10734  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10735
10736  // Convert seq_cst store -> xchg
10737  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
10738  // FIXME: On 32-bit, store -> fist or movq would be more efficient
10739  //        (The only way to get a 16-byte store is cmpxchg16b)
10740  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
10741  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
10742      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
10743    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
10744                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
10745                                 Node->getOperand(0),
10746                                 Node->getOperand(1), Node->getOperand(2),
10747                                 cast<AtomicSDNode>(Node)->getMemOperand(),
10748                                 cast<AtomicSDNode>(Node)->getOrdering(),
10749                                 cast<AtomicSDNode>(Node)->getSynchScope());
10750    return Swap.getValue(1);
10751  }
10752  // Other atomic stores have a simple pattern.
10753  return Op;
10754}
10755
10756static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
10757  EVT VT = Op.getNode()->getValueType(0);
10758
10759  // Let legalize expand this if it isn't a legal type yet.
10760  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
10761    return SDValue();
10762
10763  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10764
10765  unsigned Opc;
10766  bool ExtraOp = false;
10767  switch (Op.getOpcode()) {
10768  default: assert(0 && "Invalid code");
10769  case ISD::ADDC: Opc = X86ISD::ADD; break;
10770  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
10771  case ISD::SUBC: Opc = X86ISD::SUB; break;
10772  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
10773  }
10774
10775  if (!ExtraOp)
10776    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10777                       Op.getOperand(1));
10778  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10779                     Op.getOperand(1), Op.getOperand(2));
10780}
10781
10782/// LowerOperation - Provide custom lowering hooks for some operations.
10783///
10784SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10785  switch (Op.getOpcode()) {
10786  default: llvm_unreachable("Should not custom lower this!");
10787  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
10788  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
10789  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op,DAG);
10790  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
10791  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
10792  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
10793  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10794  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
10795  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10796  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
10797  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10798  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
10799  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
10800  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10801  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10802  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10803  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10804  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
10805  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10806  case ISD::SHL_PARTS:
10807  case ISD::SRA_PARTS:
10808  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
10809  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
10810  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
10811  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
10812  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
10813  case ISD::FABS:               return LowerFABS(Op, DAG);
10814  case ISD::FNEG:               return LowerFNEG(Op, DAG);
10815  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
10816  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
10817  case ISD::SETCC:              return LowerSETCC(Op, DAG);
10818  case ISD::SELECT:             return LowerSELECT(Op, DAG);
10819  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
10820  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10821  case ISD::VASTART:            return LowerVASTART(Op, DAG);
10822  case ISD::VAARG:              return LowerVAARG(Op, DAG);
10823  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10824  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10825  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10826  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10827  case ISD::FRAME_TO_ARGS_OFFSET:
10828                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
10829  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10830  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
10831  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10832  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10833  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10834  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
10835  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
10836  case ISD::MUL:                return LowerMUL(Op, DAG);
10837  case ISD::SRA:
10838  case ISD::SRL:
10839  case ISD::SHL:                return LowerShift(Op, DAG);
10840  case ISD::SADDO:
10841  case ISD::UADDO:
10842  case ISD::SSUBO:
10843  case ISD::USUBO:
10844  case ISD::SMULO:
10845  case ISD::UMULO:              return LowerXALUO(Op, DAG);
10846  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
10847  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10848  case ISD::ADDC:
10849  case ISD::ADDE:
10850  case ISD::SUBC:
10851  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
10852  case ISD::ADD:                return LowerADD(Op, DAG);
10853  case ISD::SUB:                return LowerSUB(Op, DAG);
10854  }
10855}
10856
10857static void ReplaceATOMIC_LOAD(SDNode *Node,
10858                                  SmallVectorImpl<SDValue> &Results,
10859                                  SelectionDAG &DAG) {
10860  DebugLoc dl = Node->getDebugLoc();
10861  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10862
10863  // Convert wide load -> cmpxchg8b/cmpxchg16b
10864  // FIXME: On 32-bit, load -> fild or movq would be more efficient
10865  //        (The only way to get a 16-byte load is cmpxchg16b)
10866  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
10867  SDValue Zero = DAG.getConstant(0, VT);
10868  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
10869                               Node->getOperand(0),
10870                               Node->getOperand(1), Zero, Zero,
10871                               cast<AtomicSDNode>(Node)->getMemOperand(),
10872                               cast<AtomicSDNode>(Node)->getOrdering(),
10873                               cast<AtomicSDNode>(Node)->getSynchScope());
10874  Results.push_back(Swap.getValue(0));
10875  Results.push_back(Swap.getValue(1));
10876}
10877
10878void X86TargetLowering::
10879ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
10880                        SelectionDAG &DAG, unsigned NewOp) const {
10881  DebugLoc dl = Node->getDebugLoc();
10882  assert (Node->getValueType(0) == MVT::i64 &&
10883          "Only know how to expand i64 atomics");
10884
10885  SDValue Chain = Node->getOperand(0);
10886  SDValue In1 = Node->getOperand(1);
10887  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10888                             Node->getOperand(2), DAG.getIntPtrConstant(0));
10889  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10890                             Node->getOperand(2), DAG.getIntPtrConstant(1));
10891  SDValue Ops[] = { Chain, In1, In2L, In2H };
10892  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10893  SDValue Result =
10894    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
10895                            cast<MemSDNode>(Node)->getMemOperand());
10896  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
10897  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
10898  Results.push_back(Result.getValue(2));
10899}
10900
10901/// ReplaceNodeResults - Replace a node with an illegal result type
10902/// with a new node built out of custom code.
10903void X86TargetLowering::ReplaceNodeResults(SDNode *N,
10904                                           SmallVectorImpl<SDValue>&Results,
10905                                           SelectionDAG &DAG) const {
10906  DebugLoc dl = N->getDebugLoc();
10907  switch (N->getOpcode()) {
10908  default:
10909    assert(false && "Do not know how to custom type legalize this operation!");
10910    return;
10911  case ISD::SIGN_EXTEND_INREG:
10912  case ISD::ADDC:
10913  case ISD::ADDE:
10914  case ISD::SUBC:
10915  case ISD::SUBE:
10916    // We don't want to expand or promote these.
10917    return;
10918  case ISD::FP_TO_SINT: {
10919    std::pair<SDValue,SDValue> Vals =
10920        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
10921    SDValue FIST = Vals.first, StackSlot = Vals.second;
10922    if (FIST.getNode() != 0) {
10923      EVT VT = N->getValueType(0);
10924      // Return a load from the stack slot.
10925      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
10926                                    MachinePointerInfo(),
10927                                    false, false, false, 0));
10928    }
10929    return;
10930  }
10931  case ISD::READCYCLECOUNTER: {
10932    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10933    SDValue TheChain = N->getOperand(0);
10934    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10935    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
10936                                     rd.getValue(1));
10937    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
10938                                     eax.getValue(2));
10939    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
10940    SDValue Ops[] = { eax, edx };
10941    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
10942    Results.push_back(edx.getValue(1));
10943    return;
10944  }
10945  case ISD::ATOMIC_CMP_SWAP: {
10946    EVT T = N->getValueType(0);
10947    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
10948    bool Regs64bit = T == MVT::i128;
10949    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
10950    SDValue cpInL, cpInH;
10951    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10952                        DAG.getConstant(0, HalfT));
10953    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10954                        DAG.getConstant(1, HalfT));
10955    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
10956                             Regs64bit ? X86::RAX : X86::EAX,
10957                             cpInL, SDValue());
10958    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
10959                             Regs64bit ? X86::RDX : X86::EDX,
10960                             cpInH, cpInL.getValue(1));
10961    SDValue swapInL, swapInH;
10962    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10963                          DAG.getConstant(0, HalfT));
10964    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10965                          DAG.getConstant(1, HalfT));
10966    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
10967                               Regs64bit ? X86::RBX : X86::EBX,
10968                               swapInL, cpInH.getValue(1));
10969    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
10970                               Regs64bit ? X86::RCX : X86::ECX,
10971                               swapInH, swapInL.getValue(1));
10972    SDValue Ops[] = { swapInH.getValue(0),
10973                      N->getOperand(1),
10974                      swapInH.getValue(1) };
10975    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10976    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
10977    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
10978                                  X86ISD::LCMPXCHG8_DAG;
10979    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
10980                                             Ops, 3, T, MMO);
10981    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
10982                                        Regs64bit ? X86::RAX : X86::EAX,
10983                                        HalfT, Result.getValue(1));
10984    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
10985                                        Regs64bit ? X86::RDX : X86::EDX,
10986                                        HalfT, cpOutL.getValue(2));
10987    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
10988    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
10989    Results.push_back(cpOutH.getValue(1));
10990    return;
10991  }
10992  case ISD::ATOMIC_LOAD_ADD:
10993    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
10994    return;
10995  case ISD::ATOMIC_LOAD_AND:
10996    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
10997    return;
10998  case ISD::ATOMIC_LOAD_NAND:
10999    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
11000    return;
11001  case ISD::ATOMIC_LOAD_OR:
11002    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
11003    return;
11004  case ISD::ATOMIC_LOAD_SUB:
11005    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
11006    return;
11007  case ISD::ATOMIC_LOAD_XOR:
11008    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
11009    return;
11010  case ISD::ATOMIC_SWAP:
11011    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
11012    return;
11013  case ISD::ATOMIC_LOAD:
11014    ReplaceATOMIC_LOAD(N, Results, DAG);
11015  }
11016}
11017
11018const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
11019  switch (Opcode) {
11020  default: return NULL;
11021  case X86ISD::BSF:                return "X86ISD::BSF";
11022  case X86ISD::BSR:                return "X86ISD::BSR";
11023  case X86ISD::SHLD:               return "X86ISD::SHLD";
11024  case X86ISD::SHRD:               return "X86ISD::SHRD";
11025  case X86ISD::FAND:               return "X86ISD::FAND";
11026  case X86ISD::FOR:                return "X86ISD::FOR";
11027  case X86ISD::FXOR:               return "X86ISD::FXOR";
11028  case X86ISD::FSRL:               return "X86ISD::FSRL";
11029  case X86ISD::FILD:               return "X86ISD::FILD";
11030  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
11031  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
11032  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
11033  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
11034  case X86ISD::FLD:                return "X86ISD::FLD";
11035  case X86ISD::FST:                return "X86ISD::FST";
11036  case X86ISD::CALL:               return "X86ISD::CALL";
11037  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
11038  case X86ISD::BT:                 return "X86ISD::BT";
11039  case X86ISD::CMP:                return "X86ISD::CMP";
11040  case X86ISD::COMI:               return "X86ISD::COMI";
11041  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
11042  case X86ISD::SETCC:              return "X86ISD::SETCC";
11043  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
11044  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
11045  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
11046  case X86ISD::CMOV:               return "X86ISD::CMOV";
11047  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
11048  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
11049  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
11050  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
11051  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
11052  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
11053  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
11054  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
11055  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
11056  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
11057  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
11058  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
11059  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
11060  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
11061  case X86ISD::PSIGN:              return "X86ISD::PSIGN";
11062  case X86ISD::BLENDV:             return "X86ISD::BLENDV";
11063  case X86ISD::FHADD:              return "X86ISD::FHADD";
11064  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
11065  case X86ISD::FMAX:               return "X86ISD::FMAX";
11066  case X86ISD::FMIN:               return "X86ISD::FMIN";
11067  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
11068  case X86ISD::FRCP:               return "X86ISD::FRCP";
11069  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
11070  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
11071  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
11072  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
11073  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
11074  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
11075  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
11076  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
11077  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
11078  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
11079  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
11080  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
11081  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
11082  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
11083  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
11084  case X86ISD::VSHL:               return "X86ISD::VSHL";
11085  case X86ISD::VSRL:               return "X86ISD::VSRL";
11086  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
11087  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
11088  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
11089  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
11090  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
11091  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
11092  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
11093  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
11094  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
11095  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
11096  case X86ISD::ADD:                return "X86ISD::ADD";
11097  case X86ISD::SUB:                return "X86ISD::SUB";
11098  case X86ISD::ADC:                return "X86ISD::ADC";
11099  case X86ISD::SBB:                return "X86ISD::SBB";
11100  case X86ISD::SMUL:               return "X86ISD::SMUL";
11101  case X86ISD::UMUL:               return "X86ISD::UMUL";
11102  case X86ISD::INC:                return "X86ISD::INC";
11103  case X86ISD::DEC:                return "X86ISD::DEC";
11104  case X86ISD::OR:                 return "X86ISD::OR";
11105  case X86ISD::XOR:                return "X86ISD::XOR";
11106  case X86ISD::AND:                return "X86ISD::AND";
11107  case X86ISD::ANDN:               return "X86ISD::ANDN";
11108  case X86ISD::BLSI:               return "X86ISD::BLSI";
11109  case X86ISD::BLSMSK:             return "X86ISD::BLSMSK";
11110  case X86ISD::BLSR:               return "X86ISD::BLSR";
11111  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
11112  case X86ISD::PTEST:              return "X86ISD::PTEST";
11113  case X86ISD::TESTP:              return "X86ISD::TESTP";
11114  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
11115  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
11116  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
11117  case X86ISD::PSHUFHW_LD:         return "X86ISD::PSHUFHW_LD";
11118  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
11119  case X86ISD::PSHUFLW_LD:         return "X86ISD::PSHUFLW_LD";
11120  case X86ISD::SHUFPS:             return "X86ISD::SHUFPS";
11121  case X86ISD::SHUFPD:             return "X86ISD::SHUFPD";
11122  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
11123  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
11124  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
11125  case X86ISD::MOVHLPD:            return "X86ISD::MOVHLPD";
11126  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
11127  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
11128  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
11129  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
11130  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
11131  case X86ISD::MOVSHDUP_LD:        return "X86ISD::MOVSHDUP_LD";
11132  case X86ISD::MOVSLDUP_LD:        return "X86ISD::MOVSLDUP_LD";
11133  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
11134  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
11135  case X86ISD::UNPCKLP:            return "X86ISD::UNPCKLP";
11136  case X86ISD::UNPCKHP:            return "X86ISD::UNPCKHP";
11137  case X86ISD::PUNPCKL:            return "X86ISD::PUNPCKL";
11138  case X86ISD::PUNPCKH:            return "X86ISD::PUNPCKH";
11139  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
11140  case X86ISD::VPERMILP:           return "X86ISD::VPERMILP";
11141  case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
11142  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
11143  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
11144  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
11145  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
11146  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
11147  }
11148}
11149
11150// isLegalAddressingMode - Return true if the addressing mode represented
11151// by AM is legal for this target, for a load/store of the specified type.
11152bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
11153                                              Type *Ty) const {
11154  // X86 supports extremely general addressing modes.
11155  CodeModel::Model M = getTargetMachine().getCodeModel();
11156  Reloc::Model R = getTargetMachine().getRelocationModel();
11157
11158  // X86 allows a sign-extended 32-bit immediate field as a displacement.
11159  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
11160    return false;
11161
11162  if (AM.BaseGV) {
11163    unsigned GVFlags =
11164      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
11165
11166    // If a reference to this global requires an extra load, we can't fold it.
11167    if (isGlobalStubReference(GVFlags))
11168      return false;
11169
11170    // If BaseGV requires a register for the PIC base, we cannot also have a
11171    // BaseReg specified.
11172    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
11173      return false;
11174
11175    // If lower 4G is not available, then we must use rip-relative addressing.
11176    if ((M != CodeModel::Small || R != Reloc::Static) &&
11177        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
11178      return false;
11179  }
11180
11181  switch (AM.Scale) {
11182  case 0:
11183  case 1:
11184  case 2:
11185  case 4:
11186  case 8:
11187    // These scales always work.
11188    break;
11189  case 3:
11190  case 5:
11191  case 9:
11192    // These scales are formed with basereg+scalereg.  Only accept if there is
11193    // no basereg yet.
11194    if (AM.HasBaseReg)
11195      return false;
11196    break;
11197  default:  // Other stuff never works.
11198    return false;
11199  }
11200
11201  return true;
11202}
11203
11204
11205bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
11206  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
11207    return false;
11208  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
11209  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
11210  if (NumBits1 <= NumBits2)
11211    return false;
11212  return true;
11213}
11214
11215bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
11216  if (!VT1.isInteger() || !VT2.isInteger())
11217    return false;
11218  unsigned NumBits1 = VT1.getSizeInBits();
11219  unsigned NumBits2 = VT2.getSizeInBits();
11220  if (NumBits1 <= NumBits2)
11221    return false;
11222  return true;
11223}
11224
11225bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
11226  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11227  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
11228}
11229
11230bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
11231  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11232  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
11233}
11234
11235bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
11236  // i16 instructions are longer (0x66 prefix) and potentially slower.
11237  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
11238}
11239
11240/// isShuffleMaskLegal - Targets can use this to indicate that they only
11241/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
11242/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
11243/// are assumed to be legal.
11244bool
11245X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
11246                                      EVT VT) const {
11247  // Very little shuffling can be done for 64-bit vectors right now.
11248  if (VT.getSizeInBits() == 64)
11249    return isPALIGNRMask(M, VT, Subtarget->hasSSSE3orAVX());
11250
11251  // FIXME: pshufb, blends, shifts.
11252  return (VT.getVectorNumElements() == 2 ||
11253          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
11254          isMOVLMask(M, VT) ||
11255          isSHUFPMask(M, VT) ||
11256          isPSHUFDMask(M, VT) ||
11257          isPSHUFHWMask(M, VT) ||
11258          isPSHUFLWMask(M, VT) ||
11259          isPALIGNRMask(M, VT, Subtarget->hasSSSE3orAVX()) ||
11260          isUNPCKLMask(M, VT, Subtarget->hasAVX2()) ||
11261          isUNPCKHMask(M, VT, Subtarget->hasAVX2()) ||
11262          isUNPCKL_v_undef_Mask(M, VT) ||
11263          isUNPCKH_v_undef_Mask(M, VT));
11264}
11265
11266bool
11267X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
11268                                          EVT VT) const {
11269  unsigned NumElts = VT.getVectorNumElements();
11270  // FIXME: This collection of masks seems suspect.
11271  if (NumElts == 2)
11272    return true;
11273  if (NumElts == 4 && VT.getSizeInBits() == 128) {
11274    return (isMOVLMask(Mask, VT)  ||
11275            isCommutedMOVLMask(Mask, VT, true) ||
11276            isSHUFPMask(Mask, VT) ||
11277            isCommutedSHUFPMask(Mask, VT));
11278  }
11279  return false;
11280}
11281
11282//===----------------------------------------------------------------------===//
11283//                           X86 Scheduler Hooks
11284//===----------------------------------------------------------------------===//
11285
11286// private utility function
11287MachineBasicBlock *
11288X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
11289                                                       MachineBasicBlock *MBB,
11290                                                       unsigned regOpc,
11291                                                       unsigned immOpc,
11292                                                       unsigned LoadOpc,
11293                                                       unsigned CXchgOpc,
11294                                                       unsigned notOpc,
11295                                                       unsigned EAXreg,
11296                                                       TargetRegisterClass *RC,
11297                                                       bool invSrc) const {
11298  // For the atomic bitwise operator, we generate
11299  //   thisMBB:
11300  //   newMBB:
11301  //     ld  t1 = [bitinstr.addr]
11302  //     op  t2 = t1, [bitinstr.val]
11303  //     mov EAX = t1
11304  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11305  //     bz  newMBB
11306  //     fallthrough -->nextMBB
11307  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11308  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11309  MachineFunction::iterator MBBIter = MBB;
11310  ++MBBIter;
11311
11312  /// First build the CFG
11313  MachineFunction *F = MBB->getParent();
11314  MachineBasicBlock *thisMBB = MBB;
11315  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11316  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11317  F->insert(MBBIter, newMBB);
11318  F->insert(MBBIter, nextMBB);
11319
11320  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11321  nextMBB->splice(nextMBB->begin(), thisMBB,
11322                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11323                  thisMBB->end());
11324  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11325
11326  // Update thisMBB to fall through to newMBB
11327  thisMBB->addSuccessor(newMBB);
11328
11329  // newMBB jumps to itself and fall through to nextMBB
11330  newMBB->addSuccessor(nextMBB);
11331  newMBB->addSuccessor(newMBB);
11332
11333  // Insert instructions into newMBB based on incoming instruction
11334  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11335         "unexpected number of operands");
11336  DebugLoc dl = bInstr->getDebugLoc();
11337  MachineOperand& destOper = bInstr->getOperand(0);
11338  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11339  int numArgs = bInstr->getNumOperands() - 1;
11340  for (int i=0; i < numArgs; ++i)
11341    argOpers[i] = &bInstr->getOperand(i+1);
11342
11343  // x86 address has 4 operands: base, index, scale, and displacement
11344  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11345  int valArgIndx = lastAddrIndx + 1;
11346
11347  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11348  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
11349  for (int i=0; i <= lastAddrIndx; ++i)
11350    (*MIB).addOperand(*argOpers[i]);
11351
11352  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
11353  if (invSrc) {
11354    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
11355  }
11356  else
11357    tt = t1;
11358
11359  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11360  assert((argOpers[valArgIndx]->isReg() ||
11361          argOpers[valArgIndx]->isImm()) &&
11362         "invalid operand");
11363  if (argOpers[valArgIndx]->isReg())
11364    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
11365  else
11366    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
11367  MIB.addReg(tt);
11368  (*MIB).addOperand(*argOpers[valArgIndx]);
11369
11370  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
11371  MIB.addReg(t1);
11372
11373  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
11374  for (int i=0; i <= lastAddrIndx; ++i)
11375    (*MIB).addOperand(*argOpers[i]);
11376  MIB.addReg(t2);
11377  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11378  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11379                    bInstr->memoperands_end());
11380
11381  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11382  MIB.addReg(EAXreg);
11383
11384  // insert branch
11385  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11386
11387  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11388  return nextMBB;
11389}
11390
11391// private utility function:  64 bit atomics on 32 bit host.
11392MachineBasicBlock *
11393X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
11394                                                       MachineBasicBlock *MBB,
11395                                                       unsigned regOpcL,
11396                                                       unsigned regOpcH,
11397                                                       unsigned immOpcL,
11398                                                       unsigned immOpcH,
11399                                                       bool invSrc) const {
11400  // For the atomic bitwise operator, we generate
11401  //   thisMBB (instructions are in pairs, except cmpxchg8b)
11402  //     ld t1,t2 = [bitinstr.addr]
11403  //   newMBB:
11404  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
11405  //     op  t5, t6 <- out1, out2, [bitinstr.val]
11406  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
11407  //     mov ECX, EBX <- t5, t6
11408  //     mov EAX, EDX <- t1, t2
11409  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
11410  //     mov t3, t4 <- EAX, EDX
11411  //     bz  newMBB
11412  //     result in out1, out2
11413  //     fallthrough -->nextMBB
11414
11415  const TargetRegisterClass *RC = X86::GR32RegisterClass;
11416  const unsigned LoadOpc = X86::MOV32rm;
11417  const unsigned NotOpc = X86::NOT32r;
11418  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11419  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11420  MachineFunction::iterator MBBIter = MBB;
11421  ++MBBIter;
11422
11423  /// First build the CFG
11424  MachineFunction *F = MBB->getParent();
11425  MachineBasicBlock *thisMBB = MBB;
11426  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11427  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11428  F->insert(MBBIter, newMBB);
11429  F->insert(MBBIter, nextMBB);
11430
11431  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11432  nextMBB->splice(nextMBB->begin(), thisMBB,
11433                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11434                  thisMBB->end());
11435  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11436
11437  // Update thisMBB to fall through to newMBB
11438  thisMBB->addSuccessor(newMBB);
11439
11440  // newMBB jumps to itself and fall through to nextMBB
11441  newMBB->addSuccessor(nextMBB);
11442  newMBB->addSuccessor(newMBB);
11443
11444  DebugLoc dl = bInstr->getDebugLoc();
11445  // Insert instructions into newMBB based on incoming instruction
11446  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
11447  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
11448         "unexpected number of operands");
11449  MachineOperand& dest1Oper = bInstr->getOperand(0);
11450  MachineOperand& dest2Oper = bInstr->getOperand(1);
11451  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11452  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
11453    argOpers[i] = &bInstr->getOperand(i+2);
11454
11455    // We use some of the operands multiple times, so conservatively just
11456    // clear any kill flags that might be present.
11457    if (argOpers[i]->isReg() && argOpers[i]->isUse())
11458      argOpers[i]->setIsKill(false);
11459  }
11460
11461  // x86 address has 5 operands: base, index, scale, displacement, and segment.
11462  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11463
11464  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11465  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
11466  for (int i=0; i <= lastAddrIndx; ++i)
11467    (*MIB).addOperand(*argOpers[i]);
11468  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11469  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
11470  // add 4 to displacement.
11471  for (int i=0; i <= lastAddrIndx-2; ++i)
11472    (*MIB).addOperand(*argOpers[i]);
11473  MachineOperand newOp3 = *(argOpers[3]);
11474  if (newOp3.isImm())
11475    newOp3.setImm(newOp3.getImm()+4);
11476  else
11477    newOp3.setOffset(newOp3.getOffset()+4);
11478  (*MIB).addOperand(newOp3);
11479  (*MIB).addOperand(*argOpers[lastAddrIndx]);
11480
11481  // t3/4 are defined later, at the bottom of the loop
11482  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
11483  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
11484  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
11485    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
11486  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
11487    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
11488
11489  // The subsequent operations should be using the destination registers of
11490  //the PHI instructions.
11491  if (invSrc) {
11492    t1 = F->getRegInfo().createVirtualRegister(RC);
11493    t2 = F->getRegInfo().createVirtualRegister(RC);
11494    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
11495    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
11496  } else {
11497    t1 = dest1Oper.getReg();
11498    t2 = dest2Oper.getReg();
11499  }
11500
11501  int valArgIndx = lastAddrIndx + 1;
11502  assert((argOpers[valArgIndx]->isReg() ||
11503          argOpers[valArgIndx]->isImm()) &&
11504         "invalid operand");
11505  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
11506  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
11507  if (argOpers[valArgIndx]->isReg())
11508    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
11509  else
11510    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
11511  if (regOpcL != X86::MOV32rr)
11512    MIB.addReg(t1);
11513  (*MIB).addOperand(*argOpers[valArgIndx]);
11514  assert(argOpers[valArgIndx + 1]->isReg() ==
11515         argOpers[valArgIndx]->isReg());
11516  assert(argOpers[valArgIndx + 1]->isImm() ==
11517         argOpers[valArgIndx]->isImm());
11518  if (argOpers[valArgIndx + 1]->isReg())
11519    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
11520  else
11521    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
11522  if (regOpcH != X86::MOV32rr)
11523    MIB.addReg(t2);
11524  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
11525
11526  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11527  MIB.addReg(t1);
11528  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
11529  MIB.addReg(t2);
11530
11531  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
11532  MIB.addReg(t5);
11533  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
11534  MIB.addReg(t6);
11535
11536  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
11537  for (int i=0; i <= lastAddrIndx; ++i)
11538    (*MIB).addOperand(*argOpers[i]);
11539
11540  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11541  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11542                    bInstr->memoperands_end());
11543
11544  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
11545  MIB.addReg(X86::EAX);
11546  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
11547  MIB.addReg(X86::EDX);
11548
11549  // insert branch
11550  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11551
11552  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11553  return nextMBB;
11554}
11555
11556// private utility function
11557MachineBasicBlock *
11558X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
11559                                                      MachineBasicBlock *MBB,
11560                                                      unsigned cmovOpc) const {
11561  // For the atomic min/max operator, we generate
11562  //   thisMBB:
11563  //   newMBB:
11564  //     ld t1 = [min/max.addr]
11565  //     mov t2 = [min/max.val]
11566  //     cmp  t1, t2
11567  //     cmov[cond] t2 = t1
11568  //     mov EAX = t1
11569  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11570  //     bz   newMBB
11571  //     fallthrough -->nextMBB
11572  //
11573  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11574  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11575  MachineFunction::iterator MBBIter = MBB;
11576  ++MBBIter;
11577
11578  /// First build the CFG
11579  MachineFunction *F = MBB->getParent();
11580  MachineBasicBlock *thisMBB = MBB;
11581  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11582  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11583  F->insert(MBBIter, newMBB);
11584  F->insert(MBBIter, nextMBB);
11585
11586  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11587  nextMBB->splice(nextMBB->begin(), thisMBB,
11588                  llvm::next(MachineBasicBlock::iterator(mInstr)),
11589                  thisMBB->end());
11590  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11591
11592  // Update thisMBB to fall through to newMBB
11593  thisMBB->addSuccessor(newMBB);
11594
11595  // newMBB jumps to newMBB and fall through to nextMBB
11596  newMBB->addSuccessor(nextMBB);
11597  newMBB->addSuccessor(newMBB);
11598
11599  DebugLoc dl = mInstr->getDebugLoc();
11600  // Insert instructions into newMBB based on incoming instruction
11601  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11602         "unexpected number of operands");
11603  MachineOperand& destOper = mInstr->getOperand(0);
11604  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11605  int numArgs = mInstr->getNumOperands() - 1;
11606  for (int i=0; i < numArgs; ++i)
11607    argOpers[i] = &mInstr->getOperand(i+1);
11608
11609  // x86 address has 4 operands: base, index, scale, and displacement
11610  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11611  int valArgIndx = lastAddrIndx + 1;
11612
11613  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11614  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
11615  for (int i=0; i <= lastAddrIndx; ++i)
11616    (*MIB).addOperand(*argOpers[i]);
11617
11618  // We only support register and immediate values
11619  assert((argOpers[valArgIndx]->isReg() ||
11620          argOpers[valArgIndx]->isImm()) &&
11621         "invalid operand");
11622
11623  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11624  if (argOpers[valArgIndx]->isReg())
11625    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
11626  else
11627    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
11628  (*MIB).addOperand(*argOpers[valArgIndx]);
11629
11630  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11631  MIB.addReg(t1);
11632
11633  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
11634  MIB.addReg(t1);
11635  MIB.addReg(t2);
11636
11637  // Generate movc
11638  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11639  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
11640  MIB.addReg(t2);
11641  MIB.addReg(t1);
11642
11643  // Cmp and exchange if none has modified the memory location
11644  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
11645  for (int i=0; i <= lastAddrIndx; ++i)
11646    (*MIB).addOperand(*argOpers[i]);
11647  MIB.addReg(t3);
11648  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11649  (*MIB).setMemRefs(mInstr->memoperands_begin(),
11650                    mInstr->memoperands_end());
11651
11652  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11653  MIB.addReg(X86::EAX);
11654
11655  // insert branch
11656  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11657
11658  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
11659  return nextMBB;
11660}
11661
11662// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
11663// or XMM0_V32I8 in AVX all of this code can be replaced with that
11664// in the .td file.
11665MachineBasicBlock *
11666X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
11667                            unsigned numArgs, bool memArg) const {
11668  assert(Subtarget->hasSSE42orAVX() &&
11669         "Target must have SSE4.2 or AVX features enabled");
11670
11671  DebugLoc dl = MI->getDebugLoc();
11672  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11673  unsigned Opc;
11674  if (!Subtarget->hasAVX()) {
11675    if (memArg)
11676      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
11677    else
11678      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
11679  } else {
11680    if (memArg)
11681      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
11682    else
11683      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
11684  }
11685
11686  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
11687  for (unsigned i = 0; i < numArgs; ++i) {
11688    MachineOperand &Op = MI->getOperand(i+1);
11689    if (!(Op.isReg() && Op.isImplicit()))
11690      MIB.addOperand(Op);
11691  }
11692  BuildMI(*BB, MI, dl,
11693    TII->get(Subtarget->hasAVX() ? X86::VMOVAPSrr : X86::MOVAPSrr),
11694             MI->getOperand(0).getReg())
11695    .addReg(X86::XMM0);
11696
11697  MI->eraseFromParent();
11698  return BB;
11699}
11700
11701MachineBasicBlock *
11702X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
11703  DebugLoc dl = MI->getDebugLoc();
11704  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11705
11706  // Address into RAX/EAX, other two args into ECX, EDX.
11707  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
11708  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
11709  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
11710  for (int i = 0; i < X86::AddrNumOperands; ++i)
11711    MIB.addOperand(MI->getOperand(i));
11712
11713  unsigned ValOps = X86::AddrNumOperands;
11714  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11715    .addReg(MI->getOperand(ValOps).getReg());
11716  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
11717    .addReg(MI->getOperand(ValOps+1).getReg());
11718
11719  // The instruction doesn't actually take any operands though.
11720  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
11721
11722  MI->eraseFromParent(); // The pseudo is gone now.
11723  return BB;
11724}
11725
11726MachineBasicBlock *
11727X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
11728  DebugLoc dl = MI->getDebugLoc();
11729  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11730
11731  // First arg in ECX, the second in EAX.
11732  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11733    .addReg(MI->getOperand(0).getReg());
11734  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
11735    .addReg(MI->getOperand(1).getReg());
11736
11737  // The instruction doesn't actually take any operands though.
11738  BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
11739
11740  MI->eraseFromParent(); // The pseudo is gone now.
11741  return BB;
11742}
11743
11744MachineBasicBlock *
11745X86TargetLowering::EmitVAARG64WithCustomInserter(
11746                   MachineInstr *MI,
11747                   MachineBasicBlock *MBB) const {
11748  // Emit va_arg instruction on X86-64.
11749
11750  // Operands to this pseudo-instruction:
11751  // 0  ) Output        : destination address (reg)
11752  // 1-5) Input         : va_list address (addr, i64mem)
11753  // 6  ) ArgSize       : Size (in bytes) of vararg type
11754  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
11755  // 8  ) Align         : Alignment of type
11756  // 9  ) EFLAGS (implicit-def)
11757
11758  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
11759  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
11760
11761  unsigned DestReg = MI->getOperand(0).getReg();
11762  MachineOperand &Base = MI->getOperand(1);
11763  MachineOperand &Scale = MI->getOperand(2);
11764  MachineOperand &Index = MI->getOperand(3);
11765  MachineOperand &Disp = MI->getOperand(4);
11766  MachineOperand &Segment = MI->getOperand(5);
11767  unsigned ArgSize = MI->getOperand(6).getImm();
11768  unsigned ArgMode = MI->getOperand(7).getImm();
11769  unsigned Align = MI->getOperand(8).getImm();
11770
11771  // Memory Reference
11772  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
11773  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
11774  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
11775
11776  // Machine Information
11777  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11778  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
11779  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
11780  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
11781  DebugLoc DL = MI->getDebugLoc();
11782
11783  // struct va_list {
11784  //   i32   gp_offset
11785  //   i32   fp_offset
11786  //   i64   overflow_area (address)
11787  //   i64   reg_save_area (address)
11788  // }
11789  // sizeof(va_list) = 24
11790  // alignment(va_list) = 8
11791
11792  unsigned TotalNumIntRegs = 6;
11793  unsigned TotalNumXMMRegs = 8;
11794  bool UseGPOffset = (ArgMode == 1);
11795  bool UseFPOffset = (ArgMode == 2);
11796  unsigned MaxOffset = TotalNumIntRegs * 8 +
11797                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
11798
11799  /* Align ArgSize to a multiple of 8 */
11800  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
11801  bool NeedsAlign = (Align > 8);
11802
11803  MachineBasicBlock *thisMBB = MBB;
11804  MachineBasicBlock *overflowMBB;
11805  MachineBasicBlock *offsetMBB;
11806  MachineBasicBlock *endMBB;
11807
11808  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
11809  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
11810  unsigned OffsetReg = 0;
11811
11812  if (!UseGPOffset && !UseFPOffset) {
11813    // If we only pull from the overflow region, we don't create a branch.
11814    // We don't need to alter control flow.
11815    OffsetDestReg = 0; // unused
11816    OverflowDestReg = DestReg;
11817
11818    offsetMBB = NULL;
11819    overflowMBB = thisMBB;
11820    endMBB = thisMBB;
11821  } else {
11822    // First emit code to check if gp_offset (or fp_offset) is below the bound.
11823    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
11824    // If not, pull from overflow_area. (branch to overflowMBB)
11825    //
11826    //       thisMBB
11827    //         |     .
11828    //         |        .
11829    //     offsetMBB   overflowMBB
11830    //         |        .
11831    //         |     .
11832    //        endMBB
11833
11834    // Registers for the PHI in endMBB
11835    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
11836    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
11837
11838    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11839    MachineFunction *MF = MBB->getParent();
11840    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11841    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11842    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11843
11844    MachineFunction::iterator MBBIter = MBB;
11845    ++MBBIter;
11846
11847    // Insert the new basic blocks
11848    MF->insert(MBBIter, offsetMBB);
11849    MF->insert(MBBIter, overflowMBB);
11850    MF->insert(MBBIter, endMBB);
11851
11852    // Transfer the remainder of MBB and its successor edges to endMBB.
11853    endMBB->splice(endMBB->begin(), thisMBB,
11854                    llvm::next(MachineBasicBlock::iterator(MI)),
11855                    thisMBB->end());
11856    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11857
11858    // Make offsetMBB and overflowMBB successors of thisMBB
11859    thisMBB->addSuccessor(offsetMBB);
11860    thisMBB->addSuccessor(overflowMBB);
11861
11862    // endMBB is a successor of both offsetMBB and overflowMBB
11863    offsetMBB->addSuccessor(endMBB);
11864    overflowMBB->addSuccessor(endMBB);
11865
11866    // Load the offset value into a register
11867    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11868    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
11869      .addOperand(Base)
11870      .addOperand(Scale)
11871      .addOperand(Index)
11872      .addDisp(Disp, UseFPOffset ? 4 : 0)
11873      .addOperand(Segment)
11874      .setMemRefs(MMOBegin, MMOEnd);
11875
11876    // Check if there is enough room left to pull this argument.
11877    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
11878      .addReg(OffsetReg)
11879      .addImm(MaxOffset + 8 - ArgSizeA8);
11880
11881    // Branch to "overflowMBB" if offset >= max
11882    // Fall through to "offsetMBB" otherwise
11883    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
11884      .addMBB(overflowMBB);
11885  }
11886
11887  // In offsetMBB, emit code to use the reg_save_area.
11888  if (offsetMBB) {
11889    assert(OffsetReg != 0);
11890
11891    // Read the reg_save_area address.
11892    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
11893    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
11894      .addOperand(Base)
11895      .addOperand(Scale)
11896      .addOperand(Index)
11897      .addDisp(Disp, 16)
11898      .addOperand(Segment)
11899      .setMemRefs(MMOBegin, MMOEnd);
11900
11901    // Zero-extend the offset
11902    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
11903      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
11904        .addImm(0)
11905        .addReg(OffsetReg)
11906        .addImm(X86::sub_32bit);
11907
11908    // Add the offset to the reg_save_area to get the final address.
11909    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
11910      .addReg(OffsetReg64)
11911      .addReg(RegSaveReg);
11912
11913    // Compute the offset for the next argument
11914    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11915    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
11916      .addReg(OffsetReg)
11917      .addImm(UseFPOffset ? 16 : 8);
11918
11919    // Store it back into the va_list.
11920    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
11921      .addOperand(Base)
11922      .addOperand(Scale)
11923      .addOperand(Index)
11924      .addDisp(Disp, UseFPOffset ? 4 : 0)
11925      .addOperand(Segment)
11926      .addReg(NextOffsetReg)
11927      .setMemRefs(MMOBegin, MMOEnd);
11928
11929    // Jump to endMBB
11930    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
11931      .addMBB(endMBB);
11932  }
11933
11934  //
11935  // Emit code to use overflow area
11936  //
11937
11938  // Load the overflow_area address into a register.
11939  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
11940  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
11941    .addOperand(Base)
11942    .addOperand(Scale)
11943    .addOperand(Index)
11944    .addDisp(Disp, 8)
11945    .addOperand(Segment)
11946    .setMemRefs(MMOBegin, MMOEnd);
11947
11948  // If we need to align it, do so. Otherwise, just copy the address
11949  // to OverflowDestReg.
11950  if (NeedsAlign) {
11951    // Align the overflow address
11952    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
11953    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
11954
11955    // aligned_addr = (addr + (align-1)) & ~(align-1)
11956    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
11957      .addReg(OverflowAddrReg)
11958      .addImm(Align-1);
11959
11960    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
11961      .addReg(TmpReg)
11962      .addImm(~(uint64_t)(Align-1));
11963  } else {
11964    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
11965      .addReg(OverflowAddrReg);
11966  }
11967
11968  // Compute the next overflow address after this argument.
11969  // (the overflow address should be kept 8-byte aligned)
11970  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
11971  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
11972    .addReg(OverflowDestReg)
11973    .addImm(ArgSizeA8);
11974
11975  // Store the new overflow address.
11976  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
11977    .addOperand(Base)
11978    .addOperand(Scale)
11979    .addOperand(Index)
11980    .addDisp(Disp, 8)
11981    .addOperand(Segment)
11982    .addReg(NextAddrReg)
11983    .setMemRefs(MMOBegin, MMOEnd);
11984
11985  // If we branched, emit the PHI to the front of endMBB.
11986  if (offsetMBB) {
11987    BuildMI(*endMBB, endMBB->begin(), DL,
11988            TII->get(X86::PHI), DestReg)
11989      .addReg(OffsetDestReg).addMBB(offsetMBB)
11990      .addReg(OverflowDestReg).addMBB(overflowMBB);
11991  }
11992
11993  // Erase the pseudo instruction
11994  MI->eraseFromParent();
11995
11996  return endMBB;
11997}
11998
11999MachineBasicBlock *
12000X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
12001                                                 MachineInstr *MI,
12002                                                 MachineBasicBlock *MBB) const {
12003  // Emit code to save XMM registers to the stack. The ABI says that the
12004  // number of registers to save is given in %al, so it's theoretically
12005  // possible to do an indirect jump trick to avoid saving all of them,
12006  // however this code takes a simpler approach and just executes all
12007  // of the stores if %al is non-zero. It's less code, and it's probably
12008  // easier on the hardware branch predictor, and stores aren't all that
12009  // expensive anyway.
12010
12011  // Create the new basic blocks. One block contains all the XMM stores,
12012  // and one block is the final destination regardless of whether any
12013  // stores were performed.
12014  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
12015  MachineFunction *F = MBB->getParent();
12016  MachineFunction::iterator MBBIter = MBB;
12017  ++MBBIter;
12018  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
12019  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
12020  F->insert(MBBIter, XMMSaveMBB);
12021  F->insert(MBBIter, EndMBB);
12022
12023  // Transfer the remainder of MBB and its successor edges to EndMBB.
12024  EndMBB->splice(EndMBB->begin(), MBB,
12025                 llvm::next(MachineBasicBlock::iterator(MI)),
12026                 MBB->end());
12027  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
12028
12029  // The original block will now fall through to the XMM save block.
12030  MBB->addSuccessor(XMMSaveMBB);
12031  // The XMMSaveMBB will fall through to the end block.
12032  XMMSaveMBB->addSuccessor(EndMBB);
12033
12034  // Now add the instructions.
12035  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12036  DebugLoc DL = MI->getDebugLoc();
12037
12038  unsigned CountReg = MI->getOperand(0).getReg();
12039  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
12040  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
12041
12042  if (!Subtarget->isTargetWin64()) {
12043    // If %al is 0, branch around the XMM save block.
12044    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
12045    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
12046    MBB->addSuccessor(EndMBB);
12047  }
12048
12049  unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
12050  // In the XMM save block, save all the XMM argument registers.
12051  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
12052    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
12053    MachineMemOperand *MMO =
12054      F->getMachineMemOperand(
12055          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
12056        MachineMemOperand::MOStore,
12057        /*Size=*/16, /*Align=*/16);
12058    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
12059      .addFrameIndex(RegSaveFrameIndex)
12060      .addImm(/*Scale=*/1)
12061      .addReg(/*IndexReg=*/0)
12062      .addImm(/*Disp=*/Offset)
12063      .addReg(/*Segment=*/0)
12064      .addReg(MI->getOperand(i).getReg())
12065      .addMemOperand(MMO);
12066  }
12067
12068  MI->eraseFromParent();   // The pseudo instruction is gone now.
12069
12070  return EndMBB;
12071}
12072
12073MachineBasicBlock *
12074X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
12075                                     MachineBasicBlock *BB) const {
12076  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12077  DebugLoc DL = MI->getDebugLoc();
12078
12079  // To "insert" a SELECT_CC instruction, we actually have to insert the
12080  // diamond control-flow pattern.  The incoming instruction knows the
12081  // destination vreg to set, the condition code register to branch on, the
12082  // true/false values to select between, and a branch opcode to use.
12083  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12084  MachineFunction::iterator It = BB;
12085  ++It;
12086
12087  //  thisMBB:
12088  //  ...
12089  //   TrueVal = ...
12090  //   cmpTY ccX, r1, r2
12091  //   bCC copy1MBB
12092  //   fallthrough --> copy0MBB
12093  MachineBasicBlock *thisMBB = BB;
12094  MachineFunction *F = BB->getParent();
12095  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
12096  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
12097  F->insert(It, copy0MBB);
12098  F->insert(It, sinkMBB);
12099
12100  // If the EFLAGS register isn't dead in the terminator, then claim that it's
12101  // live into the sink and copy blocks.
12102  if (!MI->killsRegister(X86::EFLAGS)) {
12103    copy0MBB->addLiveIn(X86::EFLAGS);
12104    sinkMBB->addLiveIn(X86::EFLAGS);
12105  }
12106
12107  // Transfer the remainder of BB and its successor edges to sinkMBB.
12108  sinkMBB->splice(sinkMBB->begin(), BB,
12109                  llvm::next(MachineBasicBlock::iterator(MI)),
12110                  BB->end());
12111  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12112
12113  // Add the true and fallthrough blocks as its successors.
12114  BB->addSuccessor(copy0MBB);
12115  BB->addSuccessor(sinkMBB);
12116
12117  // Create the conditional branch instruction.
12118  unsigned Opc =
12119    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
12120  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
12121
12122  //  copy0MBB:
12123  //   %FalseValue = ...
12124  //   # fallthrough to sinkMBB
12125  copy0MBB->addSuccessor(sinkMBB);
12126
12127  //  sinkMBB:
12128  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
12129  //  ...
12130  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12131          TII->get(X86::PHI), MI->getOperand(0).getReg())
12132    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
12133    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
12134
12135  MI->eraseFromParent();   // The pseudo instruction is gone now.
12136  return sinkMBB;
12137}
12138
12139MachineBasicBlock *
12140X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
12141                                        bool Is64Bit) const {
12142  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12143  DebugLoc DL = MI->getDebugLoc();
12144  MachineFunction *MF = BB->getParent();
12145  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12146
12147  assert(EnableSegmentedStacks);
12148
12149  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
12150  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
12151
12152  // BB:
12153  //  ... [Till the alloca]
12154  // If stacklet is not large enough, jump to mallocMBB
12155  //
12156  // bumpMBB:
12157  //  Allocate by subtracting from RSP
12158  //  Jump to continueMBB
12159  //
12160  // mallocMBB:
12161  //  Allocate by call to runtime
12162  //
12163  // continueMBB:
12164  //  ...
12165  //  [rest of original BB]
12166  //
12167
12168  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12169  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12170  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12171
12172  MachineRegisterInfo &MRI = MF->getRegInfo();
12173  const TargetRegisterClass *AddrRegClass =
12174    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
12175
12176  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12177    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12178    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
12179    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
12180    sizeVReg = MI->getOperand(1).getReg(),
12181    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
12182
12183  MachineFunction::iterator MBBIter = BB;
12184  ++MBBIter;
12185
12186  MF->insert(MBBIter, bumpMBB);
12187  MF->insert(MBBIter, mallocMBB);
12188  MF->insert(MBBIter, continueMBB);
12189
12190  continueMBB->splice(continueMBB->begin(), BB, llvm::next
12191                      (MachineBasicBlock::iterator(MI)), BB->end());
12192  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
12193
12194  // Add code to the main basic block to check if the stack limit has been hit,
12195  // and if so, jump to mallocMBB otherwise to bumpMBB.
12196  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
12197  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
12198    .addReg(tmpSPVReg).addReg(sizeVReg);
12199  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
12200    .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg)
12201    .addReg(SPLimitVReg);
12202  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
12203
12204  // bumpMBB simply decreases the stack pointer, since we know the current
12205  // stacklet has enough space.
12206  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
12207    .addReg(SPLimitVReg);
12208  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
12209    .addReg(SPLimitVReg);
12210  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12211
12212  // Calls into a routine in libgcc to allocate more space from the heap.
12213  if (Is64Bit) {
12214    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
12215      .addReg(sizeVReg);
12216    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
12217    .addExternalSymbol("__morestack_allocate_stack_space").addReg(X86::RDI);
12218  } else {
12219    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
12220      .addImm(12);
12221    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
12222    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
12223      .addExternalSymbol("__morestack_allocate_stack_space");
12224  }
12225
12226  if (!Is64Bit)
12227    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
12228      .addImm(16);
12229
12230  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
12231    .addReg(Is64Bit ? X86::RAX : X86::EAX);
12232  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12233
12234  // Set up the CFG correctly.
12235  BB->addSuccessor(bumpMBB);
12236  BB->addSuccessor(mallocMBB);
12237  mallocMBB->addSuccessor(continueMBB);
12238  bumpMBB->addSuccessor(continueMBB);
12239
12240  // Take care of the PHI nodes.
12241  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
12242          MI->getOperand(0).getReg())
12243    .addReg(mallocPtrVReg).addMBB(mallocMBB)
12244    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
12245
12246  // Delete the original pseudo instruction.
12247  MI->eraseFromParent();
12248
12249  // And we're done.
12250  return continueMBB;
12251}
12252
12253MachineBasicBlock *
12254X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
12255                                          MachineBasicBlock *BB) const {
12256  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12257  DebugLoc DL = MI->getDebugLoc();
12258
12259  assert(!Subtarget->isTargetEnvMacho());
12260
12261  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
12262  // non-trivial part is impdef of ESP.
12263
12264  if (Subtarget->isTargetWin64()) {
12265    if (Subtarget->isTargetCygMing()) {
12266      // ___chkstk(Mingw64):
12267      // Clobbers R10, R11, RAX and EFLAGS.
12268      // Updates RSP.
12269      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12270        .addExternalSymbol("___chkstk")
12271        .addReg(X86::RAX, RegState::Implicit)
12272        .addReg(X86::RSP, RegState::Implicit)
12273        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
12274        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
12275        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12276    } else {
12277      // __chkstk(MSVCRT): does not update stack pointer.
12278      // Clobbers R10, R11 and EFLAGS.
12279      // FIXME: RAX(allocated size) might be reused and not killed.
12280      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12281        .addExternalSymbol("__chkstk")
12282        .addReg(X86::RAX, RegState::Implicit)
12283        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12284      // RAX has the offset to subtracted from RSP.
12285      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
12286        .addReg(X86::RSP)
12287        .addReg(X86::RAX);
12288    }
12289  } else {
12290    const char *StackProbeSymbol =
12291      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
12292
12293    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
12294      .addExternalSymbol(StackProbeSymbol)
12295      .addReg(X86::EAX, RegState::Implicit)
12296      .addReg(X86::ESP, RegState::Implicit)
12297      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
12298      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
12299      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12300  }
12301
12302  MI->eraseFromParent();   // The pseudo instruction is gone now.
12303  return BB;
12304}
12305
12306MachineBasicBlock *
12307X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
12308                                      MachineBasicBlock *BB) const {
12309  // This is pretty easy.  We're taking the value that we received from
12310  // our load from the relocation, sticking it in either RDI (x86-64)
12311  // or EAX and doing an indirect call.  The return value will then
12312  // be in the normal return register.
12313  const X86InstrInfo *TII
12314    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
12315  DebugLoc DL = MI->getDebugLoc();
12316  MachineFunction *F = BB->getParent();
12317
12318  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
12319  assert(MI->getOperand(3).isGlobal() && "This should be a global");
12320
12321  if (Subtarget->is64Bit()) {
12322    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12323                                      TII->get(X86::MOV64rm), X86::RDI)
12324    .addReg(X86::RIP)
12325    .addImm(0).addReg(0)
12326    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12327                      MI->getOperand(3).getTargetFlags())
12328    .addReg(0);
12329    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
12330    addDirectMem(MIB, X86::RDI);
12331  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
12332    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12333                                      TII->get(X86::MOV32rm), X86::EAX)
12334    .addReg(0)
12335    .addImm(0).addReg(0)
12336    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12337                      MI->getOperand(3).getTargetFlags())
12338    .addReg(0);
12339    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12340    addDirectMem(MIB, X86::EAX);
12341  } else {
12342    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12343                                      TII->get(X86::MOV32rm), X86::EAX)
12344    .addReg(TII->getGlobalBaseReg(F))
12345    .addImm(0).addReg(0)
12346    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12347                      MI->getOperand(3).getTargetFlags())
12348    .addReg(0);
12349    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12350    addDirectMem(MIB, X86::EAX);
12351  }
12352
12353  MI->eraseFromParent(); // The pseudo instruction is gone now.
12354  return BB;
12355}
12356
12357MachineBasicBlock *
12358X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
12359                                               MachineBasicBlock *BB) const {
12360  switch (MI->getOpcode()) {
12361  default: assert(0 && "Unexpected instr type to insert");
12362  case X86::TAILJMPd64:
12363  case X86::TAILJMPr64:
12364  case X86::TAILJMPm64:
12365    assert(0 && "TAILJMP64 would not be touched here.");
12366  case X86::TCRETURNdi64:
12367  case X86::TCRETURNri64:
12368  case X86::TCRETURNmi64:
12369    // Defs of TCRETURNxx64 has Win64's callee-saved registers, as subset.
12370    // On AMD64, additional defs should be added before register allocation.
12371    if (!Subtarget->isTargetWin64()) {
12372      MI->addRegisterDefined(X86::RSI);
12373      MI->addRegisterDefined(X86::RDI);
12374      MI->addRegisterDefined(X86::XMM6);
12375      MI->addRegisterDefined(X86::XMM7);
12376      MI->addRegisterDefined(X86::XMM8);
12377      MI->addRegisterDefined(X86::XMM9);
12378      MI->addRegisterDefined(X86::XMM10);
12379      MI->addRegisterDefined(X86::XMM11);
12380      MI->addRegisterDefined(X86::XMM12);
12381      MI->addRegisterDefined(X86::XMM13);
12382      MI->addRegisterDefined(X86::XMM14);
12383      MI->addRegisterDefined(X86::XMM15);
12384    }
12385    return BB;
12386  case X86::WIN_ALLOCA:
12387    return EmitLoweredWinAlloca(MI, BB);
12388  case X86::SEG_ALLOCA_32:
12389    return EmitLoweredSegAlloca(MI, BB, false);
12390  case X86::SEG_ALLOCA_64:
12391    return EmitLoweredSegAlloca(MI, BB, true);
12392  case X86::TLSCall_32:
12393  case X86::TLSCall_64:
12394    return EmitLoweredTLSCall(MI, BB);
12395  case X86::CMOV_GR8:
12396  case X86::CMOV_FR32:
12397  case X86::CMOV_FR64:
12398  case X86::CMOV_V4F32:
12399  case X86::CMOV_V2F64:
12400  case X86::CMOV_V2I64:
12401  case X86::CMOV_V8F32:
12402  case X86::CMOV_V4F64:
12403  case X86::CMOV_V4I64:
12404  case X86::CMOV_GR16:
12405  case X86::CMOV_GR32:
12406  case X86::CMOV_RFP32:
12407  case X86::CMOV_RFP64:
12408  case X86::CMOV_RFP80:
12409    return EmitLoweredSelect(MI, BB);
12410
12411  case X86::FP32_TO_INT16_IN_MEM:
12412  case X86::FP32_TO_INT32_IN_MEM:
12413  case X86::FP32_TO_INT64_IN_MEM:
12414  case X86::FP64_TO_INT16_IN_MEM:
12415  case X86::FP64_TO_INT32_IN_MEM:
12416  case X86::FP64_TO_INT64_IN_MEM:
12417  case X86::FP80_TO_INT16_IN_MEM:
12418  case X86::FP80_TO_INT32_IN_MEM:
12419  case X86::FP80_TO_INT64_IN_MEM: {
12420    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12421    DebugLoc DL = MI->getDebugLoc();
12422
12423    // Change the floating point control register to use "round towards zero"
12424    // mode when truncating to an integer value.
12425    MachineFunction *F = BB->getParent();
12426    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
12427    addFrameReference(BuildMI(*BB, MI, DL,
12428                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
12429
12430    // Load the old value of the high byte of the control word...
12431    unsigned OldCW =
12432      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
12433    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
12434                      CWFrameIdx);
12435
12436    // Set the high part to be round to zero...
12437    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
12438      .addImm(0xC7F);
12439
12440    // Reload the modified control word now...
12441    addFrameReference(BuildMI(*BB, MI, DL,
12442                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12443
12444    // Restore the memory image of control word to original value
12445    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
12446      .addReg(OldCW);
12447
12448    // Get the X86 opcode to use.
12449    unsigned Opc;
12450    switch (MI->getOpcode()) {
12451    default: llvm_unreachable("illegal opcode!");
12452    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
12453    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
12454    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
12455    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
12456    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
12457    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
12458    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
12459    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
12460    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
12461    }
12462
12463    X86AddressMode AM;
12464    MachineOperand &Op = MI->getOperand(0);
12465    if (Op.isReg()) {
12466      AM.BaseType = X86AddressMode::RegBase;
12467      AM.Base.Reg = Op.getReg();
12468    } else {
12469      AM.BaseType = X86AddressMode::FrameIndexBase;
12470      AM.Base.FrameIndex = Op.getIndex();
12471    }
12472    Op = MI->getOperand(1);
12473    if (Op.isImm())
12474      AM.Scale = Op.getImm();
12475    Op = MI->getOperand(2);
12476    if (Op.isImm())
12477      AM.IndexReg = Op.getImm();
12478    Op = MI->getOperand(3);
12479    if (Op.isGlobal()) {
12480      AM.GV = Op.getGlobal();
12481    } else {
12482      AM.Disp = Op.getImm();
12483    }
12484    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
12485                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
12486
12487    // Reload the original control word now.
12488    addFrameReference(BuildMI(*BB, MI, DL,
12489                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12490
12491    MI->eraseFromParent();   // The pseudo instruction is gone now.
12492    return BB;
12493  }
12494    // String/text processing lowering.
12495  case X86::PCMPISTRM128REG:
12496  case X86::VPCMPISTRM128REG:
12497    return EmitPCMP(MI, BB, 3, false /* in-mem */);
12498  case X86::PCMPISTRM128MEM:
12499  case X86::VPCMPISTRM128MEM:
12500    return EmitPCMP(MI, BB, 3, true /* in-mem */);
12501  case X86::PCMPESTRM128REG:
12502  case X86::VPCMPESTRM128REG:
12503    return EmitPCMP(MI, BB, 5, false /* in mem */);
12504  case X86::PCMPESTRM128MEM:
12505  case X86::VPCMPESTRM128MEM:
12506    return EmitPCMP(MI, BB, 5, true /* in mem */);
12507
12508    // Thread synchronization.
12509  case X86::MONITOR:
12510    return EmitMonitor(MI, BB);
12511  case X86::MWAIT:
12512    return EmitMwait(MI, BB);
12513
12514    // Atomic Lowering.
12515  case X86::ATOMAND32:
12516    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12517                                               X86::AND32ri, X86::MOV32rm,
12518                                               X86::LCMPXCHG32,
12519                                               X86::NOT32r, X86::EAX,
12520                                               X86::GR32RegisterClass);
12521  case X86::ATOMOR32:
12522    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
12523                                               X86::OR32ri, X86::MOV32rm,
12524                                               X86::LCMPXCHG32,
12525                                               X86::NOT32r, X86::EAX,
12526                                               X86::GR32RegisterClass);
12527  case X86::ATOMXOR32:
12528    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
12529                                               X86::XOR32ri, X86::MOV32rm,
12530                                               X86::LCMPXCHG32,
12531                                               X86::NOT32r, X86::EAX,
12532                                               X86::GR32RegisterClass);
12533  case X86::ATOMNAND32:
12534    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12535                                               X86::AND32ri, X86::MOV32rm,
12536                                               X86::LCMPXCHG32,
12537                                               X86::NOT32r, X86::EAX,
12538                                               X86::GR32RegisterClass, true);
12539  case X86::ATOMMIN32:
12540    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
12541  case X86::ATOMMAX32:
12542    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
12543  case X86::ATOMUMIN32:
12544    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
12545  case X86::ATOMUMAX32:
12546    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
12547
12548  case X86::ATOMAND16:
12549    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12550                                               X86::AND16ri, X86::MOV16rm,
12551                                               X86::LCMPXCHG16,
12552                                               X86::NOT16r, X86::AX,
12553                                               X86::GR16RegisterClass);
12554  case X86::ATOMOR16:
12555    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
12556                                               X86::OR16ri, X86::MOV16rm,
12557                                               X86::LCMPXCHG16,
12558                                               X86::NOT16r, X86::AX,
12559                                               X86::GR16RegisterClass);
12560  case X86::ATOMXOR16:
12561    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
12562                                               X86::XOR16ri, X86::MOV16rm,
12563                                               X86::LCMPXCHG16,
12564                                               X86::NOT16r, X86::AX,
12565                                               X86::GR16RegisterClass);
12566  case X86::ATOMNAND16:
12567    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12568                                               X86::AND16ri, X86::MOV16rm,
12569                                               X86::LCMPXCHG16,
12570                                               X86::NOT16r, X86::AX,
12571                                               X86::GR16RegisterClass, true);
12572  case X86::ATOMMIN16:
12573    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
12574  case X86::ATOMMAX16:
12575    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
12576  case X86::ATOMUMIN16:
12577    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
12578  case X86::ATOMUMAX16:
12579    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
12580
12581  case X86::ATOMAND8:
12582    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12583                                               X86::AND8ri, X86::MOV8rm,
12584                                               X86::LCMPXCHG8,
12585                                               X86::NOT8r, X86::AL,
12586                                               X86::GR8RegisterClass);
12587  case X86::ATOMOR8:
12588    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
12589                                               X86::OR8ri, X86::MOV8rm,
12590                                               X86::LCMPXCHG8,
12591                                               X86::NOT8r, X86::AL,
12592                                               X86::GR8RegisterClass);
12593  case X86::ATOMXOR8:
12594    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
12595                                               X86::XOR8ri, X86::MOV8rm,
12596                                               X86::LCMPXCHG8,
12597                                               X86::NOT8r, X86::AL,
12598                                               X86::GR8RegisterClass);
12599  case X86::ATOMNAND8:
12600    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12601                                               X86::AND8ri, X86::MOV8rm,
12602                                               X86::LCMPXCHG8,
12603                                               X86::NOT8r, X86::AL,
12604                                               X86::GR8RegisterClass, true);
12605  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
12606  // This group is for 64-bit host.
12607  case X86::ATOMAND64:
12608    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12609                                               X86::AND64ri32, X86::MOV64rm,
12610                                               X86::LCMPXCHG64,
12611                                               X86::NOT64r, X86::RAX,
12612                                               X86::GR64RegisterClass);
12613  case X86::ATOMOR64:
12614    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
12615                                               X86::OR64ri32, X86::MOV64rm,
12616                                               X86::LCMPXCHG64,
12617                                               X86::NOT64r, X86::RAX,
12618                                               X86::GR64RegisterClass);
12619  case X86::ATOMXOR64:
12620    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
12621                                               X86::XOR64ri32, X86::MOV64rm,
12622                                               X86::LCMPXCHG64,
12623                                               X86::NOT64r, X86::RAX,
12624                                               X86::GR64RegisterClass);
12625  case X86::ATOMNAND64:
12626    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12627                                               X86::AND64ri32, X86::MOV64rm,
12628                                               X86::LCMPXCHG64,
12629                                               X86::NOT64r, X86::RAX,
12630                                               X86::GR64RegisterClass, true);
12631  case X86::ATOMMIN64:
12632    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
12633  case X86::ATOMMAX64:
12634    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
12635  case X86::ATOMUMIN64:
12636    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
12637  case X86::ATOMUMAX64:
12638    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
12639
12640  // This group does 64-bit operations on a 32-bit host.
12641  case X86::ATOMAND6432:
12642    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12643                                               X86::AND32rr, X86::AND32rr,
12644                                               X86::AND32ri, X86::AND32ri,
12645                                               false);
12646  case X86::ATOMOR6432:
12647    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12648                                               X86::OR32rr, X86::OR32rr,
12649                                               X86::OR32ri, X86::OR32ri,
12650                                               false);
12651  case X86::ATOMXOR6432:
12652    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12653                                               X86::XOR32rr, X86::XOR32rr,
12654                                               X86::XOR32ri, X86::XOR32ri,
12655                                               false);
12656  case X86::ATOMNAND6432:
12657    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12658                                               X86::AND32rr, X86::AND32rr,
12659                                               X86::AND32ri, X86::AND32ri,
12660                                               true);
12661  case X86::ATOMADD6432:
12662    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12663                                               X86::ADD32rr, X86::ADC32rr,
12664                                               X86::ADD32ri, X86::ADC32ri,
12665                                               false);
12666  case X86::ATOMSUB6432:
12667    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12668                                               X86::SUB32rr, X86::SBB32rr,
12669                                               X86::SUB32ri, X86::SBB32ri,
12670                                               false);
12671  case X86::ATOMSWAP6432:
12672    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12673                                               X86::MOV32rr, X86::MOV32rr,
12674                                               X86::MOV32ri, X86::MOV32ri,
12675                                               false);
12676  case X86::VASTART_SAVE_XMM_REGS:
12677    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
12678
12679  case X86::VAARG_64:
12680    return EmitVAARG64WithCustomInserter(MI, BB);
12681  }
12682}
12683
12684//===----------------------------------------------------------------------===//
12685//                           X86 Optimization Hooks
12686//===----------------------------------------------------------------------===//
12687
12688void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
12689                                                       const APInt &Mask,
12690                                                       APInt &KnownZero,
12691                                                       APInt &KnownOne,
12692                                                       const SelectionDAG &DAG,
12693                                                       unsigned Depth) const {
12694  unsigned Opc = Op.getOpcode();
12695  assert((Opc >= ISD::BUILTIN_OP_END ||
12696          Opc == ISD::INTRINSIC_WO_CHAIN ||
12697          Opc == ISD::INTRINSIC_W_CHAIN ||
12698          Opc == ISD::INTRINSIC_VOID) &&
12699         "Should use MaskedValueIsZero if you don't know whether Op"
12700         " is a target node!");
12701
12702  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
12703  switch (Opc) {
12704  default: break;
12705  case X86ISD::ADD:
12706  case X86ISD::SUB:
12707  case X86ISD::ADC:
12708  case X86ISD::SBB:
12709  case X86ISD::SMUL:
12710  case X86ISD::UMUL:
12711  case X86ISD::INC:
12712  case X86ISD::DEC:
12713  case X86ISD::OR:
12714  case X86ISD::XOR:
12715  case X86ISD::AND:
12716    // These nodes' second result is a boolean.
12717    if (Op.getResNo() == 0)
12718      break;
12719    // Fallthrough
12720  case X86ISD::SETCC:
12721    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
12722                                       Mask.getBitWidth() - 1);
12723    break;
12724  case ISD::INTRINSIC_WO_CHAIN: {
12725    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
12726    unsigned NumLoBits = 0;
12727    switch (IntId) {
12728    default: break;
12729    case Intrinsic::x86_sse_movmsk_ps:
12730    case Intrinsic::x86_avx_movmsk_ps_256:
12731    case Intrinsic::x86_sse2_movmsk_pd:
12732    case Intrinsic::x86_avx_movmsk_pd_256:
12733    case Intrinsic::x86_mmx_pmovmskb:
12734    case Intrinsic::x86_sse2_pmovmskb_128: {
12735      // High bits of movmskp{s|d}, pmovmskb are known zero.
12736      switch (IntId) {
12737        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
12738        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
12739        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
12740        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
12741        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
12742        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
12743      }
12744      KnownZero = APInt::getHighBitsSet(Mask.getBitWidth(),
12745                                        Mask.getBitWidth() - NumLoBits);
12746      break;
12747    }
12748    }
12749    break;
12750  }
12751  }
12752}
12753
12754unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
12755                                                         unsigned Depth) const {
12756  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
12757  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
12758    return Op.getValueType().getScalarType().getSizeInBits();
12759
12760  // Fallback case.
12761  return 1;
12762}
12763
12764/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
12765/// node is a GlobalAddress + offset.
12766bool X86TargetLowering::isGAPlusOffset(SDNode *N,
12767                                       const GlobalValue* &GA,
12768                                       int64_t &Offset) const {
12769  if (N->getOpcode() == X86ISD::Wrapper) {
12770    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
12771      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
12772      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
12773      return true;
12774    }
12775  }
12776  return TargetLowering::isGAPlusOffset(N, GA, Offset);
12777}
12778
12779/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
12780/// same as extracting the high 128-bit part of 256-bit vector and then
12781/// inserting the result into the low part of a new 256-bit vector
12782static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
12783  EVT VT = SVOp->getValueType(0);
12784  int NumElems = VT.getVectorNumElements();
12785
12786  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12787  for (int i = 0, j = NumElems/2; i < NumElems/2; ++i, ++j)
12788    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12789        SVOp->getMaskElt(j) >= 0)
12790      return false;
12791
12792  return true;
12793}
12794
12795/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
12796/// same as extracting the low 128-bit part of 256-bit vector and then
12797/// inserting the result into the high part of a new 256-bit vector
12798static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
12799  EVT VT = SVOp->getValueType(0);
12800  int NumElems = VT.getVectorNumElements();
12801
12802  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12803  for (int i = NumElems/2, j = 0; i < NumElems; ++i, ++j)
12804    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12805        SVOp->getMaskElt(j) >= 0)
12806      return false;
12807
12808  return true;
12809}
12810
12811/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
12812static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
12813                                        TargetLowering::DAGCombinerInfo &DCI) {
12814  DebugLoc dl = N->getDebugLoc();
12815  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
12816  SDValue V1 = SVOp->getOperand(0);
12817  SDValue V2 = SVOp->getOperand(1);
12818  EVT VT = SVOp->getValueType(0);
12819  int NumElems = VT.getVectorNumElements();
12820
12821  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
12822      V2.getOpcode() == ISD::CONCAT_VECTORS) {
12823    //
12824    //                   0,0,0,...
12825    //                      |
12826    //    V      UNDEF    BUILD_VECTOR    UNDEF
12827    //     \      /           \           /
12828    //  CONCAT_VECTOR         CONCAT_VECTOR
12829    //         \                  /
12830    //          \                /
12831    //          RESULT: V + zero extended
12832    //
12833    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
12834        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
12835        V1.getOperand(1).getOpcode() != ISD::UNDEF)
12836      return SDValue();
12837
12838    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
12839      return SDValue();
12840
12841    // To match the shuffle mask, the first half of the mask should
12842    // be exactly the first vector, and all the rest a splat with the
12843    // first element of the second one.
12844    for (int i = 0; i < NumElems/2; ++i)
12845      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
12846          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
12847        return SDValue();
12848
12849    // Emit a zeroed vector and insert the desired subvector on its
12850    // first half.
12851    SDValue Zeros = getZeroVector(VT, true /* HasXMMInt */, DAG, dl);
12852    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0),
12853                         DAG.getConstant(0, MVT::i32), DAG, dl);
12854    return DCI.CombineTo(N, InsV);
12855  }
12856
12857  //===--------------------------------------------------------------------===//
12858  // Combine some shuffles into subvector extracts and inserts:
12859  //
12860
12861  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12862  if (isShuffleHigh128VectorInsertLow(SVOp)) {
12863    SDValue V = Extract128BitVector(V1, DAG.getConstant(NumElems/2, MVT::i32),
12864                                    DAG, dl);
12865    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12866                                      V, DAG.getConstant(0, MVT::i32), DAG, dl);
12867    return DCI.CombineTo(N, InsV);
12868  }
12869
12870  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12871  if (isShuffleLow128VectorInsertHigh(SVOp)) {
12872    SDValue V = Extract128BitVector(V1, DAG.getConstant(0, MVT::i32), DAG, dl);
12873    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12874                             V, DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
12875    return DCI.CombineTo(N, InsV);
12876  }
12877
12878  return SDValue();
12879}
12880
12881/// PerformShuffleCombine - Performs several different shuffle combines.
12882static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
12883                                     TargetLowering::DAGCombinerInfo &DCI,
12884                                     const X86Subtarget *Subtarget) {
12885  DebugLoc dl = N->getDebugLoc();
12886  EVT VT = N->getValueType(0);
12887
12888  // Don't create instructions with illegal types after legalize types has run.
12889  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12890  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
12891    return SDValue();
12892
12893  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
12894  if (Subtarget->hasAVX() && VT.getSizeInBits() == 256 &&
12895      N->getOpcode() == ISD::VECTOR_SHUFFLE)
12896    return PerformShuffleCombine256(N, DAG, DCI);
12897
12898  // Only handle 128 wide vector from here on.
12899  if (VT.getSizeInBits() != 128)
12900    return SDValue();
12901
12902  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
12903  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
12904  // consecutive, non-overlapping, and in the right order.
12905  SmallVector<SDValue, 16> Elts;
12906  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
12907    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
12908
12909  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
12910}
12911
12912/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
12913/// generation and convert it from being a bunch of shuffles and extracts
12914/// to a simple store and scalar loads to extract the elements.
12915static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
12916                                                const TargetLowering &TLI) {
12917  SDValue InputVector = N->getOperand(0);
12918
12919  // Only operate on vectors of 4 elements, where the alternative shuffling
12920  // gets to be more expensive.
12921  if (InputVector.getValueType() != MVT::v4i32)
12922    return SDValue();
12923
12924  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
12925  // single use which is a sign-extend or zero-extend, and all elements are
12926  // used.
12927  SmallVector<SDNode *, 4> Uses;
12928  unsigned ExtractedElements = 0;
12929  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
12930       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
12931    if (UI.getUse().getResNo() != InputVector.getResNo())
12932      return SDValue();
12933
12934    SDNode *Extract = *UI;
12935    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12936      return SDValue();
12937
12938    if (Extract->getValueType(0) != MVT::i32)
12939      return SDValue();
12940    if (!Extract->hasOneUse())
12941      return SDValue();
12942    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
12943        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
12944      return SDValue();
12945    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
12946      return SDValue();
12947
12948    // Record which element was extracted.
12949    ExtractedElements |=
12950      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
12951
12952    Uses.push_back(Extract);
12953  }
12954
12955  // If not all the elements were used, this may not be worthwhile.
12956  if (ExtractedElements != 15)
12957    return SDValue();
12958
12959  // Ok, we've now decided to do the transformation.
12960  DebugLoc dl = InputVector.getDebugLoc();
12961
12962  // Store the value to a temporary stack slot.
12963  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
12964  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
12965                            MachinePointerInfo(), false, false, 0);
12966
12967  // Replace each use (extract) with a load of the appropriate element.
12968  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
12969       UE = Uses.end(); UI != UE; ++UI) {
12970    SDNode *Extract = *UI;
12971
12972    // cOMpute the element's address.
12973    SDValue Idx = Extract->getOperand(1);
12974    unsigned EltSize =
12975        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
12976    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
12977    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
12978
12979    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
12980                                     StackPtr, OffsetVal);
12981
12982    // Load the scalar.
12983    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
12984                                     ScalarAddr, MachinePointerInfo(),
12985                                     false, false, false, 0);
12986
12987    // Replace the exact with the load.
12988    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
12989  }
12990
12991  // The replacement was made in place; don't return anything.
12992  return SDValue();
12993}
12994
12995/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
12996/// nodes.
12997static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
12998                                    const X86Subtarget *Subtarget) {
12999  DebugLoc DL = N->getDebugLoc();
13000  SDValue Cond = N->getOperand(0);
13001  // Get the LHS/RHS of the select.
13002  SDValue LHS = N->getOperand(1);
13003  SDValue RHS = N->getOperand(2);
13004  EVT VT = LHS.getValueType();
13005
13006  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
13007  // instructions match the semantics of the common C idiom x<y?x:y but not
13008  // x<=y?x:y, because of how they handle negative zero (which can be
13009  // ignored in unsafe-math mode).
13010  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
13011      VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
13012      (Subtarget->hasXMMInt() ||
13013       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
13014    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13015
13016    unsigned Opcode = 0;
13017    // Check for x CC y ? x : y.
13018    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
13019        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
13020      switch (CC) {
13021      default: break;
13022      case ISD::SETULT:
13023        // Converting this to a min would handle NaNs incorrectly, and swapping
13024        // the operands would cause it to handle comparisons between positive
13025        // and negative zero incorrectly.
13026        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
13027          if (!UnsafeFPMath &&
13028              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
13029            break;
13030          std::swap(LHS, RHS);
13031        }
13032        Opcode = X86ISD::FMIN;
13033        break;
13034      case ISD::SETOLE:
13035        // Converting this to a min would handle comparisons between positive
13036        // and negative zero incorrectly.
13037        if (!UnsafeFPMath &&
13038            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
13039          break;
13040        Opcode = X86ISD::FMIN;
13041        break;
13042      case ISD::SETULE:
13043        // Converting this to a min would handle both negative zeros and NaNs
13044        // incorrectly, but we can swap the operands to fix both.
13045        std::swap(LHS, RHS);
13046      case ISD::SETOLT:
13047      case ISD::SETLT:
13048      case ISD::SETLE:
13049        Opcode = X86ISD::FMIN;
13050        break;
13051
13052      case ISD::SETOGE:
13053        // Converting this to a max would handle comparisons between positive
13054        // and negative zero incorrectly.
13055        if (!UnsafeFPMath &&
13056            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
13057          break;
13058        Opcode = X86ISD::FMAX;
13059        break;
13060      case ISD::SETUGT:
13061        // Converting this to a max would handle NaNs incorrectly, and swapping
13062        // the operands would cause it to handle comparisons between positive
13063        // and negative zero incorrectly.
13064        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
13065          if (!UnsafeFPMath &&
13066              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
13067            break;
13068          std::swap(LHS, RHS);
13069        }
13070        Opcode = X86ISD::FMAX;
13071        break;
13072      case ISD::SETUGE:
13073        // Converting this to a max would handle both negative zeros and NaNs
13074        // incorrectly, but we can swap the operands to fix both.
13075        std::swap(LHS, RHS);
13076      case ISD::SETOGT:
13077      case ISD::SETGT:
13078      case ISD::SETGE:
13079        Opcode = X86ISD::FMAX;
13080        break;
13081      }
13082    // Check for x CC y ? y : x -- a min/max with reversed arms.
13083    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
13084               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
13085      switch (CC) {
13086      default: break;
13087      case ISD::SETOGE:
13088        // Converting this to a min would handle comparisons between positive
13089        // and negative zero incorrectly, and swapping the operands would
13090        // cause it to handle NaNs incorrectly.
13091        if (!UnsafeFPMath &&
13092            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
13093          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13094            break;
13095          std::swap(LHS, RHS);
13096        }
13097        Opcode = X86ISD::FMIN;
13098        break;
13099      case ISD::SETUGT:
13100        // Converting this to a min would handle NaNs incorrectly.
13101        if (!UnsafeFPMath &&
13102            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
13103          break;
13104        Opcode = X86ISD::FMIN;
13105        break;
13106      case ISD::SETUGE:
13107        // Converting this to a min would handle both negative zeros and NaNs
13108        // incorrectly, but we can swap the operands to fix both.
13109        std::swap(LHS, RHS);
13110      case ISD::SETOGT:
13111      case ISD::SETGT:
13112      case ISD::SETGE:
13113        Opcode = X86ISD::FMIN;
13114        break;
13115
13116      case ISD::SETULT:
13117        // Converting this to a max would handle NaNs incorrectly.
13118        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13119          break;
13120        Opcode = X86ISD::FMAX;
13121        break;
13122      case ISD::SETOLE:
13123        // Converting this to a max would handle comparisons between positive
13124        // and negative zero incorrectly, and swapping the operands would
13125        // cause it to handle NaNs incorrectly.
13126        if (!UnsafeFPMath &&
13127            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
13128          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13129            break;
13130          std::swap(LHS, RHS);
13131        }
13132        Opcode = X86ISD::FMAX;
13133        break;
13134      case ISD::SETULE:
13135        // Converting this to a max would handle both negative zeros and NaNs
13136        // incorrectly, but we can swap the operands to fix both.
13137        std::swap(LHS, RHS);
13138      case ISD::SETOLT:
13139      case ISD::SETLT:
13140      case ISD::SETLE:
13141        Opcode = X86ISD::FMAX;
13142        break;
13143      }
13144    }
13145
13146    if (Opcode)
13147      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
13148  }
13149
13150  // If this is a select between two integer constants, try to do some
13151  // optimizations.
13152  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
13153    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
13154      // Don't do this for crazy integer types.
13155      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
13156        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
13157        // so that TrueC (the true value) is larger than FalseC.
13158        bool NeedsCondInvert = false;
13159
13160        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
13161            // Efficiently invertible.
13162            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
13163             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
13164              isa<ConstantSDNode>(Cond.getOperand(1))))) {
13165          NeedsCondInvert = true;
13166          std::swap(TrueC, FalseC);
13167        }
13168
13169        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
13170        if (FalseC->getAPIntValue() == 0 &&
13171            TrueC->getAPIntValue().isPowerOf2()) {
13172          if (NeedsCondInvert) // Invert the condition if needed.
13173            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13174                               DAG.getConstant(1, Cond.getValueType()));
13175
13176          // Zero extend the condition if needed.
13177          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
13178
13179          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13180          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
13181                             DAG.getConstant(ShAmt, MVT::i8));
13182        }
13183
13184        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
13185        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13186          if (NeedsCondInvert) // Invert the condition if needed.
13187            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13188                               DAG.getConstant(1, Cond.getValueType()));
13189
13190          // Zero extend the condition if needed.
13191          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13192                             FalseC->getValueType(0), Cond);
13193          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13194                             SDValue(FalseC, 0));
13195        }
13196
13197        // Optimize cases that will turn into an LEA instruction.  This requires
13198        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13199        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13200          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13201          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13202
13203          bool isFastMultiplier = false;
13204          if (Diff < 10) {
13205            switch ((unsigned char)Diff) {
13206              default: break;
13207              case 1:  // result = add base, cond
13208              case 2:  // result = lea base(    , cond*2)
13209              case 3:  // result = lea base(cond, cond*2)
13210              case 4:  // result = lea base(    , cond*4)
13211              case 5:  // result = lea base(cond, cond*4)
13212              case 8:  // result = lea base(    , cond*8)
13213              case 9:  // result = lea base(cond, cond*8)
13214                isFastMultiplier = true;
13215                break;
13216            }
13217          }
13218
13219          if (isFastMultiplier) {
13220            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13221            if (NeedsCondInvert) // Invert the condition if needed.
13222              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13223                                 DAG.getConstant(1, Cond.getValueType()));
13224
13225            // Zero extend the condition if needed.
13226            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13227                               Cond);
13228            // Scale the condition by the difference.
13229            if (Diff != 1)
13230              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13231                                 DAG.getConstant(Diff, Cond.getValueType()));
13232
13233            // Add the base if non-zero.
13234            if (FalseC->getAPIntValue() != 0)
13235              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13236                                 SDValue(FalseC, 0));
13237            return Cond;
13238          }
13239        }
13240      }
13241  }
13242
13243  return SDValue();
13244}
13245
13246/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
13247static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
13248                                  TargetLowering::DAGCombinerInfo &DCI) {
13249  DebugLoc DL = N->getDebugLoc();
13250
13251  // If the flag operand isn't dead, don't touch this CMOV.
13252  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
13253    return SDValue();
13254
13255  SDValue FalseOp = N->getOperand(0);
13256  SDValue TrueOp = N->getOperand(1);
13257  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
13258  SDValue Cond = N->getOperand(3);
13259  if (CC == X86::COND_E || CC == X86::COND_NE) {
13260    switch (Cond.getOpcode()) {
13261    default: break;
13262    case X86ISD::BSR:
13263    case X86ISD::BSF:
13264      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
13265      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
13266        return (CC == X86::COND_E) ? FalseOp : TrueOp;
13267    }
13268  }
13269
13270  // If this is a select between two integer constants, try to do some
13271  // optimizations.  Note that the operands are ordered the opposite of SELECT
13272  // operands.
13273  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
13274    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
13275      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
13276      // larger than FalseC (the false value).
13277      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
13278        CC = X86::GetOppositeBranchCondition(CC);
13279        std::swap(TrueC, FalseC);
13280      }
13281
13282      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
13283      // This is efficient for any integer data type (including i8/i16) and
13284      // shift amount.
13285      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
13286        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13287                           DAG.getConstant(CC, MVT::i8), Cond);
13288
13289        // Zero extend the condition if needed.
13290        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
13291
13292        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13293        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
13294                           DAG.getConstant(ShAmt, MVT::i8));
13295        if (N->getNumValues() == 2)  // Dead flag value?
13296          return DCI.CombineTo(N, Cond, SDValue());
13297        return Cond;
13298      }
13299
13300      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
13301      // for any integer data type, including i8/i16.
13302      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13303        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13304                           DAG.getConstant(CC, MVT::i8), Cond);
13305
13306        // Zero extend the condition if needed.
13307        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13308                           FalseC->getValueType(0), Cond);
13309        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13310                           SDValue(FalseC, 0));
13311
13312        if (N->getNumValues() == 2)  // Dead flag value?
13313          return DCI.CombineTo(N, Cond, SDValue());
13314        return Cond;
13315      }
13316
13317      // Optimize cases that will turn into an LEA instruction.  This requires
13318      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13319      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13320        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13321        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13322
13323        bool isFastMultiplier = false;
13324        if (Diff < 10) {
13325          switch ((unsigned char)Diff) {
13326          default: break;
13327          case 1:  // result = add base, cond
13328          case 2:  // result = lea base(    , cond*2)
13329          case 3:  // result = lea base(cond, cond*2)
13330          case 4:  // result = lea base(    , cond*4)
13331          case 5:  // result = lea base(cond, cond*4)
13332          case 8:  // result = lea base(    , cond*8)
13333          case 9:  // result = lea base(cond, cond*8)
13334            isFastMultiplier = true;
13335            break;
13336          }
13337        }
13338
13339        if (isFastMultiplier) {
13340          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13341          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13342                             DAG.getConstant(CC, MVT::i8), Cond);
13343          // Zero extend the condition if needed.
13344          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13345                             Cond);
13346          // Scale the condition by the difference.
13347          if (Diff != 1)
13348            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13349                               DAG.getConstant(Diff, Cond.getValueType()));
13350
13351          // Add the base if non-zero.
13352          if (FalseC->getAPIntValue() != 0)
13353            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13354                               SDValue(FalseC, 0));
13355          if (N->getNumValues() == 2)  // Dead flag value?
13356            return DCI.CombineTo(N, Cond, SDValue());
13357          return Cond;
13358        }
13359      }
13360    }
13361  }
13362  return SDValue();
13363}
13364
13365
13366/// PerformMulCombine - Optimize a single multiply with constant into two
13367/// in order to implement it with two cheaper instructions, e.g.
13368/// LEA + SHL, LEA + LEA.
13369static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
13370                                 TargetLowering::DAGCombinerInfo &DCI) {
13371  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
13372    return SDValue();
13373
13374  EVT VT = N->getValueType(0);
13375  if (VT != MVT::i64)
13376    return SDValue();
13377
13378  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
13379  if (!C)
13380    return SDValue();
13381  uint64_t MulAmt = C->getZExtValue();
13382  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
13383    return SDValue();
13384
13385  uint64_t MulAmt1 = 0;
13386  uint64_t MulAmt2 = 0;
13387  if ((MulAmt % 9) == 0) {
13388    MulAmt1 = 9;
13389    MulAmt2 = MulAmt / 9;
13390  } else if ((MulAmt % 5) == 0) {
13391    MulAmt1 = 5;
13392    MulAmt2 = MulAmt / 5;
13393  } else if ((MulAmt % 3) == 0) {
13394    MulAmt1 = 3;
13395    MulAmt2 = MulAmt / 3;
13396  }
13397  if (MulAmt2 &&
13398      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
13399    DebugLoc DL = N->getDebugLoc();
13400
13401    if (isPowerOf2_64(MulAmt2) &&
13402        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
13403      // If second multiplifer is pow2, issue it first. We want the multiply by
13404      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
13405      // is an add.
13406      std::swap(MulAmt1, MulAmt2);
13407
13408    SDValue NewMul;
13409    if (isPowerOf2_64(MulAmt1))
13410      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
13411                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
13412    else
13413      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
13414                           DAG.getConstant(MulAmt1, VT));
13415
13416    if (isPowerOf2_64(MulAmt2))
13417      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
13418                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
13419    else
13420      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
13421                           DAG.getConstant(MulAmt2, VT));
13422
13423    // Do not add new nodes to DAG combiner worklist.
13424    DCI.CombineTo(N, NewMul, false);
13425  }
13426  return SDValue();
13427}
13428
13429static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
13430  SDValue N0 = N->getOperand(0);
13431  SDValue N1 = N->getOperand(1);
13432  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
13433  EVT VT = N0.getValueType();
13434
13435  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
13436  // since the result of setcc_c is all zero's or all ones.
13437  if (VT.isInteger() && !VT.isVector() &&
13438      N1C && N0.getOpcode() == ISD::AND &&
13439      N0.getOperand(1).getOpcode() == ISD::Constant) {
13440    SDValue N00 = N0.getOperand(0);
13441    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
13442        ((N00.getOpcode() == ISD::ANY_EXTEND ||
13443          N00.getOpcode() == ISD::ZERO_EXTEND) &&
13444         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
13445      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
13446      APInt ShAmt = N1C->getAPIntValue();
13447      Mask = Mask.shl(ShAmt);
13448      if (Mask != 0)
13449        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
13450                           N00, DAG.getConstant(Mask, VT));
13451    }
13452  }
13453
13454
13455  // Hardware support for vector shifts is sparse which makes us scalarize the
13456  // vector operations in many cases. Also, on sandybridge ADD is faster than
13457  // shl.
13458  // (shl V, 1) -> add V,V
13459  if (isSplatVector(N1.getNode())) {
13460    assert(N0.getValueType().isVector() && "Invalid vector shift type");
13461    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
13462    // We shift all of the values by one. In many cases we do not have
13463    // hardware support for this operation. This is better expressed as an ADD
13464    // of two values.
13465    if (N1C && (1 == N1C->getZExtValue())) {
13466      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0);
13467    }
13468  }
13469
13470  return SDValue();
13471}
13472
13473/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
13474///                       when possible.
13475static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
13476                                   const X86Subtarget *Subtarget) {
13477  EVT VT = N->getValueType(0);
13478  if (N->getOpcode() == ISD::SHL) {
13479    SDValue V = PerformSHLCombine(N, DAG);
13480    if (V.getNode()) return V;
13481  }
13482
13483  // On X86 with SSE2 support, we can transform this to a vector shift if
13484  // all elements are shifted by the same amount.  We can't do this in legalize
13485  // because the a constant vector is typically transformed to a constant pool
13486  // so we have no knowledge of the shift amount.
13487  if (!Subtarget->hasXMMInt())
13488    return SDValue();
13489
13490  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
13491      (!Subtarget->hasAVX2() ||
13492       (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
13493    return SDValue();
13494
13495  SDValue ShAmtOp = N->getOperand(1);
13496  EVT EltVT = VT.getVectorElementType();
13497  DebugLoc DL = N->getDebugLoc();
13498  SDValue BaseShAmt = SDValue();
13499  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
13500    unsigned NumElts = VT.getVectorNumElements();
13501    unsigned i = 0;
13502    for (; i != NumElts; ++i) {
13503      SDValue Arg = ShAmtOp.getOperand(i);
13504      if (Arg.getOpcode() == ISD::UNDEF) continue;
13505      BaseShAmt = Arg;
13506      break;
13507    }
13508    for (; i != NumElts; ++i) {
13509      SDValue Arg = ShAmtOp.getOperand(i);
13510      if (Arg.getOpcode() == ISD::UNDEF) continue;
13511      if (Arg != BaseShAmt) {
13512        return SDValue();
13513      }
13514    }
13515  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
13516             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
13517    SDValue InVec = ShAmtOp.getOperand(0);
13518    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
13519      unsigned NumElts = InVec.getValueType().getVectorNumElements();
13520      unsigned i = 0;
13521      for (; i != NumElts; ++i) {
13522        SDValue Arg = InVec.getOperand(i);
13523        if (Arg.getOpcode() == ISD::UNDEF) continue;
13524        BaseShAmt = Arg;
13525        break;
13526      }
13527    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
13528       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
13529         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
13530         if (C->getZExtValue() == SplatIdx)
13531           BaseShAmt = InVec.getOperand(1);
13532       }
13533    }
13534    if (BaseShAmt.getNode() == 0)
13535      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
13536                              DAG.getIntPtrConstant(0));
13537  } else
13538    return SDValue();
13539
13540  // The shift amount is an i32.
13541  if (EltVT.bitsGT(MVT::i32))
13542    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
13543  else if (EltVT.bitsLT(MVT::i32))
13544    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
13545
13546  // The shift amount is identical so we can do a vector shift.
13547  SDValue  ValOp = N->getOperand(0);
13548  switch (N->getOpcode()) {
13549  default:
13550    llvm_unreachable("Unknown shift opcode!");
13551    break;
13552  case ISD::SHL:
13553    if (VT == MVT::v2i64)
13554      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13555                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
13556                         ValOp, BaseShAmt);
13557    if (VT == MVT::v4i32)
13558      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13559                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
13560                         ValOp, BaseShAmt);
13561    if (VT == MVT::v8i16)
13562      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13563                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
13564                         ValOp, BaseShAmt);
13565    if (VT == MVT::v4i64)
13566      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13567                         DAG.getConstant(Intrinsic::x86_avx2_pslli_q, MVT::i32),
13568                         ValOp, BaseShAmt);
13569    if (VT == MVT::v8i32)
13570      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13571                         DAG.getConstant(Intrinsic::x86_avx2_pslli_d, MVT::i32),
13572                         ValOp, BaseShAmt);
13573    if (VT == MVT::v16i16)
13574      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13575                         DAG.getConstant(Intrinsic::x86_avx2_pslli_w, MVT::i32),
13576                         ValOp, BaseShAmt);
13577    break;
13578  case ISD::SRA:
13579    if (VT == MVT::v4i32)
13580      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13581                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
13582                         ValOp, BaseShAmt);
13583    if (VT == MVT::v8i16)
13584      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13585                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
13586                         ValOp, BaseShAmt);
13587    if (VT == MVT::v8i32)
13588      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13589                         DAG.getConstant(Intrinsic::x86_avx2_psrai_d, MVT::i32),
13590                         ValOp, BaseShAmt);
13591    if (VT == MVT::v16i16)
13592      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13593                         DAG.getConstant(Intrinsic::x86_avx2_psrai_w, MVT::i32),
13594                         ValOp, BaseShAmt);
13595    break;
13596  case ISD::SRL:
13597    if (VT == MVT::v2i64)
13598      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13599                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
13600                         ValOp, BaseShAmt);
13601    if (VT == MVT::v4i32)
13602      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13603                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
13604                         ValOp, BaseShAmt);
13605    if (VT ==  MVT::v8i16)
13606      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13607                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
13608                         ValOp, BaseShAmt);
13609    if (VT == MVT::v4i64)
13610      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13611                         DAG.getConstant(Intrinsic::x86_avx2_psrli_q, MVT::i32),
13612                         ValOp, BaseShAmt);
13613    if (VT == MVT::v8i32)
13614      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13615                         DAG.getConstant(Intrinsic::x86_avx2_psrli_d, MVT::i32),
13616                         ValOp, BaseShAmt);
13617    if (VT ==  MVT::v16i16)
13618      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13619                         DAG.getConstant(Intrinsic::x86_avx2_psrli_w, MVT::i32),
13620                         ValOp, BaseShAmt);
13621    break;
13622  }
13623  return SDValue();
13624}
13625
13626
13627// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
13628// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
13629// and friends.  Likewise for OR -> CMPNEQSS.
13630static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
13631                            TargetLowering::DAGCombinerInfo &DCI,
13632                            const X86Subtarget *Subtarget) {
13633  unsigned opcode;
13634
13635  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
13636  // we're requiring SSE2 for both.
13637  if (Subtarget->hasXMMInt() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
13638    SDValue N0 = N->getOperand(0);
13639    SDValue N1 = N->getOperand(1);
13640    SDValue CMP0 = N0->getOperand(1);
13641    SDValue CMP1 = N1->getOperand(1);
13642    DebugLoc DL = N->getDebugLoc();
13643
13644    // The SETCCs should both refer to the same CMP.
13645    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
13646      return SDValue();
13647
13648    SDValue CMP00 = CMP0->getOperand(0);
13649    SDValue CMP01 = CMP0->getOperand(1);
13650    EVT     VT    = CMP00.getValueType();
13651
13652    if (VT == MVT::f32 || VT == MVT::f64) {
13653      bool ExpectingFlags = false;
13654      // Check for any users that want flags:
13655      for (SDNode::use_iterator UI = N->use_begin(),
13656             UE = N->use_end();
13657           !ExpectingFlags && UI != UE; ++UI)
13658        switch (UI->getOpcode()) {
13659        default:
13660        case ISD::BR_CC:
13661        case ISD::BRCOND:
13662        case ISD::SELECT:
13663          ExpectingFlags = true;
13664          break;
13665        case ISD::CopyToReg:
13666        case ISD::SIGN_EXTEND:
13667        case ISD::ZERO_EXTEND:
13668        case ISD::ANY_EXTEND:
13669          break;
13670        }
13671
13672      if (!ExpectingFlags) {
13673        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
13674        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
13675
13676        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
13677          X86::CondCode tmp = cc0;
13678          cc0 = cc1;
13679          cc1 = tmp;
13680        }
13681
13682        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
13683            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
13684          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
13685          X86ISD::NodeType NTOperator = is64BitFP ?
13686            X86ISD::FSETCCsd : X86ISD::FSETCCss;
13687          // FIXME: need symbolic constants for these magic numbers.
13688          // See X86ATTInstPrinter.cpp:printSSECC().
13689          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
13690          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
13691                                              DAG.getConstant(x86cc, MVT::i8));
13692          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
13693                                              OnesOrZeroesF);
13694          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
13695                                      DAG.getConstant(1, MVT::i32));
13696          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
13697          return OneBitOfTruth;
13698        }
13699      }
13700    }
13701  }
13702  return SDValue();
13703}
13704
13705/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
13706/// so it can be folded inside ANDNP.
13707static bool CanFoldXORWithAllOnes(const SDNode *N) {
13708  EVT VT = N->getValueType(0);
13709
13710  // Match direct AllOnes for 128 and 256-bit vectors
13711  if (ISD::isBuildVectorAllOnes(N))
13712    return true;
13713
13714  // Look through a bit convert.
13715  if (N->getOpcode() == ISD::BITCAST)
13716    N = N->getOperand(0).getNode();
13717
13718  // Sometimes the operand may come from a insert_subvector building a 256-bit
13719  // allones vector
13720  if (VT.getSizeInBits() == 256 &&
13721      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
13722    SDValue V1 = N->getOperand(0);
13723    SDValue V2 = N->getOperand(1);
13724
13725    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
13726        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
13727        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
13728        ISD::isBuildVectorAllOnes(V2.getNode()))
13729      return true;
13730  }
13731
13732  return false;
13733}
13734
13735static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
13736                                 TargetLowering::DAGCombinerInfo &DCI,
13737                                 const X86Subtarget *Subtarget) {
13738  if (DCI.isBeforeLegalizeOps())
13739    return SDValue();
13740
13741  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13742  if (R.getNode())
13743    return R;
13744
13745  EVT VT = N->getValueType(0);
13746
13747  // Create ANDN, BLSI, and BLSR instructions
13748  // BLSI is X & (-X)
13749  // BLSR is X & (X-1)
13750  if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
13751    SDValue N0 = N->getOperand(0);
13752    SDValue N1 = N->getOperand(1);
13753    DebugLoc DL = N->getDebugLoc();
13754
13755    // Check LHS for not
13756    if (N0.getOpcode() == ISD::XOR && isAllOnes(N0.getOperand(1)))
13757      return DAG.getNode(X86ISD::ANDN, DL, VT, N0.getOperand(0), N1);
13758    // Check RHS for not
13759    if (N1.getOpcode() == ISD::XOR && isAllOnes(N1.getOperand(1)))
13760      return DAG.getNode(X86ISD::ANDN, DL, VT, N1.getOperand(0), N0);
13761
13762    // Check LHS for neg
13763    if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
13764        isZero(N0.getOperand(0)))
13765      return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
13766
13767    // Check RHS for neg
13768    if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
13769        isZero(N1.getOperand(0)))
13770      return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
13771
13772    // Check LHS for X-1
13773    if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
13774        isAllOnes(N0.getOperand(1)))
13775      return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
13776
13777    // Check RHS for X-1
13778    if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
13779        isAllOnes(N1.getOperand(1)))
13780      return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
13781
13782    return SDValue();
13783  }
13784
13785  // Want to form ANDNP nodes:
13786  // 1) In the hopes of then easily combining them with OR and AND nodes
13787  //    to form PBLEND/PSIGN.
13788  // 2) To match ANDN packed intrinsics
13789  if (VT != MVT::v2i64 && VT != MVT::v4i64)
13790    return SDValue();
13791
13792  SDValue N0 = N->getOperand(0);
13793  SDValue N1 = N->getOperand(1);
13794  DebugLoc DL = N->getDebugLoc();
13795
13796  // Check LHS for vnot
13797  if (N0.getOpcode() == ISD::XOR &&
13798      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
13799      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
13800    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
13801
13802  // Check RHS for vnot
13803  if (N1.getOpcode() == ISD::XOR &&
13804      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
13805      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
13806    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
13807
13808  return SDValue();
13809}
13810
13811static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
13812                                TargetLowering::DAGCombinerInfo &DCI,
13813                                const X86Subtarget *Subtarget) {
13814  if (DCI.isBeforeLegalizeOps())
13815    return SDValue();
13816
13817  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13818  if (R.getNode())
13819    return R;
13820
13821  EVT VT = N->getValueType(0);
13822
13823  SDValue N0 = N->getOperand(0);
13824  SDValue N1 = N->getOperand(1);
13825
13826  // look for psign/blend
13827  if (VT == MVT::v2i64 || VT == MVT::v4i64) {
13828    if (!Subtarget->hasSSSE3orAVX() ||
13829        (VT == MVT::v4i64 && !Subtarget->hasAVX2()))
13830      return SDValue();
13831
13832    // Canonicalize pandn to RHS
13833    if (N0.getOpcode() == X86ISD::ANDNP)
13834      std::swap(N0, N1);
13835    // or (and (m, x), (pandn m, y))
13836    if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
13837      SDValue Mask = N1.getOperand(0);
13838      SDValue X    = N1.getOperand(1);
13839      SDValue Y;
13840      if (N0.getOperand(0) == Mask)
13841        Y = N0.getOperand(1);
13842      if (N0.getOperand(1) == Mask)
13843        Y = N0.getOperand(0);
13844
13845      // Check to see if the mask appeared in both the AND and ANDNP and
13846      if (!Y.getNode())
13847        return SDValue();
13848
13849      // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
13850      if (Mask.getOpcode() != ISD::BITCAST ||
13851          X.getOpcode() != ISD::BITCAST ||
13852          Y.getOpcode() != ISD::BITCAST)
13853        return SDValue();
13854
13855      // Look through mask bitcast.
13856      Mask = Mask.getOperand(0);
13857      EVT MaskVT = Mask.getValueType();
13858
13859      // Validate that the Mask operand is a vector sra node.  The sra node
13860      // will be an intrinsic.
13861      if (Mask.getOpcode() != ISD::INTRINSIC_WO_CHAIN)
13862        return SDValue();
13863
13864      // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
13865      // there is no psrai.b
13866      switch (cast<ConstantSDNode>(Mask.getOperand(0))->getZExtValue()) {
13867      case Intrinsic::x86_sse2_psrai_w:
13868      case Intrinsic::x86_sse2_psrai_d:
13869      case Intrinsic::x86_avx2_psrai_w:
13870      case Intrinsic::x86_avx2_psrai_d:
13871        break;
13872      default: return SDValue();
13873      }
13874
13875      // Check that the SRA is all signbits.
13876      SDValue SraC = Mask.getOperand(2);
13877      unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
13878      unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
13879      if ((SraAmt + 1) != EltBits)
13880        return SDValue();
13881
13882      DebugLoc DL = N->getDebugLoc();
13883
13884      // Now we know we at least have a plendvb with the mask val.  See if
13885      // we can form a psignb/w/d.
13886      // psign = x.type == y.type == mask.type && y = sub(0, x);
13887      X = X.getOperand(0);
13888      Y = Y.getOperand(0);
13889      if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
13890          ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
13891          X.getValueType() == MaskVT && X.getValueType() == Y.getValueType() &&
13892          (EltBits == 8 || EltBits == 16 || EltBits == 32)) {
13893        SDValue Sign = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X,
13894                                   Mask.getOperand(1));
13895        return DAG.getNode(ISD::BITCAST, DL, VT, Sign);
13896      }
13897      // PBLENDVB only available on SSE 4.1
13898      if (!Subtarget->hasSSE41orAVX())
13899        return SDValue();
13900
13901      EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
13902
13903      X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
13904      Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
13905      Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
13906      Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
13907      return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
13908    }
13909  }
13910
13911  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
13912    return SDValue();
13913
13914  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
13915  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
13916    std::swap(N0, N1);
13917  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
13918    return SDValue();
13919  if (!N0.hasOneUse() || !N1.hasOneUse())
13920    return SDValue();
13921
13922  SDValue ShAmt0 = N0.getOperand(1);
13923  if (ShAmt0.getValueType() != MVT::i8)
13924    return SDValue();
13925  SDValue ShAmt1 = N1.getOperand(1);
13926  if (ShAmt1.getValueType() != MVT::i8)
13927    return SDValue();
13928  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
13929    ShAmt0 = ShAmt0.getOperand(0);
13930  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
13931    ShAmt1 = ShAmt1.getOperand(0);
13932
13933  DebugLoc DL = N->getDebugLoc();
13934  unsigned Opc = X86ISD::SHLD;
13935  SDValue Op0 = N0.getOperand(0);
13936  SDValue Op1 = N1.getOperand(0);
13937  if (ShAmt0.getOpcode() == ISD::SUB) {
13938    Opc = X86ISD::SHRD;
13939    std::swap(Op0, Op1);
13940    std::swap(ShAmt0, ShAmt1);
13941  }
13942
13943  unsigned Bits = VT.getSizeInBits();
13944  if (ShAmt1.getOpcode() == ISD::SUB) {
13945    SDValue Sum = ShAmt1.getOperand(0);
13946    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
13947      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
13948      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
13949        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
13950      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
13951        return DAG.getNode(Opc, DL, VT,
13952                           Op0, Op1,
13953                           DAG.getNode(ISD::TRUNCATE, DL,
13954                                       MVT::i8, ShAmt0));
13955    }
13956  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
13957    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
13958    if (ShAmt0C &&
13959        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
13960      return DAG.getNode(Opc, DL, VT,
13961                         N0.getOperand(0), N1.getOperand(0),
13962                         DAG.getNode(ISD::TRUNCATE, DL,
13963                                       MVT::i8, ShAmt0));
13964  }
13965
13966  return SDValue();
13967}
13968
13969static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
13970                                 TargetLowering::DAGCombinerInfo &DCI,
13971                                 const X86Subtarget *Subtarget) {
13972  if (DCI.isBeforeLegalizeOps())
13973    return SDValue();
13974
13975  EVT VT = N->getValueType(0);
13976
13977  if (VT != MVT::i32 && VT != MVT::i64)
13978    return SDValue();
13979
13980  // Create BLSMSK instructions by finding X ^ (X-1)
13981  SDValue N0 = N->getOperand(0);
13982  SDValue N1 = N->getOperand(1);
13983  DebugLoc DL = N->getDebugLoc();
13984
13985  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
13986      isAllOnes(N0.getOperand(1)))
13987    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
13988
13989  if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
13990      isAllOnes(N1.getOperand(1)))
13991    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
13992
13993  return SDValue();
13994}
13995
13996/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
13997static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
13998                                   const X86Subtarget *Subtarget) {
13999  LoadSDNode *Ld = cast<LoadSDNode>(N);
14000  EVT RegVT = Ld->getValueType(0);
14001  EVT MemVT = Ld->getMemoryVT();
14002  DebugLoc dl = Ld->getDebugLoc();
14003  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14004
14005  ISD::LoadExtType Ext = Ld->getExtensionType();
14006
14007  // If this is a vector EXT Load then attempt to optimize it using a
14008  // shuffle. We need SSE4 for the shuffles.
14009  // TODO: It is possible to support ZExt by zeroing the undef values
14010  // during the shuffle phase or after the shuffle.
14011  if (RegVT.isVector() && Ext == ISD::EXTLOAD && Subtarget->hasSSE41()) {
14012    assert(MemVT != RegVT && "Cannot extend to the same type");
14013    assert(MemVT.isVector() && "Must load a vector from memory");
14014
14015    unsigned NumElems = RegVT.getVectorNumElements();
14016    unsigned RegSz = RegVT.getSizeInBits();
14017    unsigned MemSz = MemVT.getSizeInBits();
14018    assert(RegSz > MemSz && "Register size must be greater than the mem size");
14019    // All sizes must be a power of two
14020    if (!isPowerOf2_32(RegSz * MemSz * NumElems)) return SDValue();
14021
14022    // Attempt to load the original value using a single load op.
14023    // Find a scalar type which is equal to the loaded word size.
14024    MVT SclrLoadTy = MVT::i8;
14025    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14026         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14027      MVT Tp = (MVT::SimpleValueType)tp;
14028      if (TLI.isTypeLegal(Tp) &&  Tp.getSizeInBits() == MemSz) {
14029        SclrLoadTy = Tp;
14030        break;
14031      }
14032    }
14033
14034    // Proceed if a load word is found.
14035    if (SclrLoadTy.getSizeInBits() != MemSz) return SDValue();
14036
14037    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
14038      RegSz/SclrLoadTy.getSizeInBits());
14039
14040    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
14041                                  RegSz/MemVT.getScalarType().getSizeInBits());
14042    // Can't shuffle using an illegal type.
14043    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
14044
14045    // Perform a single load.
14046    SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
14047                                  Ld->getBasePtr(),
14048                                  Ld->getPointerInfo(), Ld->isVolatile(),
14049                                  Ld->isNonTemporal(), Ld->isInvariant(),
14050                                  Ld->getAlignment());
14051
14052    // Insert the word loaded into a vector.
14053    SDValue ScalarInVector = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
14054      LoadUnitVecVT, ScalarLoad);
14055
14056    // Bitcast the loaded value to a vector of the original element type, in
14057    // the size of the target vector type.
14058    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, ScalarInVector);
14059    unsigned SizeRatio = RegSz/MemSz;
14060
14061    // Redistribute the loaded elements into the different locations.
14062    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14063    for (unsigned i = 0; i < NumElems; i++) ShuffleVec[i*SizeRatio] = i;
14064
14065    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
14066                                DAG.getUNDEF(SlicedVec.getValueType()),
14067                                ShuffleVec.data());
14068
14069    // Bitcast to the requested type.
14070    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
14071    // Replace the original load with the new sequence
14072    // and return the new chain.
14073    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Shuff);
14074    return SDValue(ScalarLoad.getNode(), 1);
14075  }
14076
14077  return SDValue();
14078}
14079
14080/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
14081static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
14082                                   const X86Subtarget *Subtarget) {
14083  StoreSDNode *St = cast<StoreSDNode>(N);
14084  EVT VT = St->getValue().getValueType();
14085  EVT StVT = St->getMemoryVT();
14086  DebugLoc dl = St->getDebugLoc();
14087  SDValue StoredVal = St->getOperand(1);
14088  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14089
14090  // If we are saving a concatination of two XMM registers, perform two stores.
14091  // This is better in Sandy Bridge cause one 256-bit mem op is done via two
14092  // 128-bit ones. If in the future the cost becomes only one memory access the
14093  // first version would be better.
14094  if (VT.getSizeInBits() == 256 &&
14095    StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
14096    StoredVal.getNumOperands() == 2) {
14097
14098    SDValue Value0 = StoredVal.getOperand(0);
14099    SDValue Value1 = StoredVal.getOperand(1);
14100
14101    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
14102    SDValue Ptr0 = St->getBasePtr();
14103    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
14104
14105    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
14106                                St->getPointerInfo(), St->isVolatile(),
14107                                St->isNonTemporal(), St->getAlignment());
14108    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
14109                                St->getPointerInfo(), St->isVolatile(),
14110                                St->isNonTemporal(), St->getAlignment());
14111    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
14112  }
14113
14114  // Optimize trunc store (of multiple scalars) to shuffle and store.
14115  // First, pack all of the elements in one place. Next, store to memory
14116  // in fewer chunks.
14117  if (St->isTruncatingStore() && VT.isVector()) {
14118    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14119    unsigned NumElems = VT.getVectorNumElements();
14120    assert(StVT != VT && "Cannot truncate to the same type");
14121    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
14122    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
14123
14124    // From, To sizes and ElemCount must be pow of two
14125    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
14126    // We are going to use the original vector elt for storing.
14127    // Accumulated smaller vector elements must be a multiple of the store size.
14128    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
14129
14130    unsigned SizeRatio  = FromSz / ToSz;
14131
14132    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
14133
14134    // Create a type on which we perform the shuffle
14135    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
14136            StVT.getScalarType(), NumElems*SizeRatio);
14137
14138    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
14139
14140    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
14141    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14142    for (unsigned i = 0; i < NumElems; i++ ) ShuffleVec[i] = i * SizeRatio;
14143
14144    // Can't shuffle using an illegal type
14145    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
14146
14147    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
14148                                DAG.getUNDEF(WideVec.getValueType()),
14149                                ShuffleVec.data());
14150    // At this point all of the data is stored at the bottom of the
14151    // register. We now need to save it to mem.
14152
14153    // Find the largest store unit
14154    MVT StoreType = MVT::i8;
14155    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14156         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14157      MVT Tp = (MVT::SimpleValueType)tp;
14158      if (TLI.isTypeLegal(Tp) && StoreType.getSizeInBits() < NumElems * ToSz)
14159        StoreType = Tp;
14160    }
14161
14162    // Bitcast the original vector into a vector of store-size units
14163    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
14164            StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
14165    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
14166    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
14167    SmallVector<SDValue, 8> Chains;
14168    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
14169                                        TLI.getPointerTy());
14170    SDValue Ptr = St->getBasePtr();
14171
14172    // Perform one or more big stores into memory.
14173    for (unsigned i = 0; i < (ToSz*NumElems)/StoreType.getSizeInBits() ; i++) {
14174      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
14175                                   StoreType, ShuffWide,
14176                                   DAG.getIntPtrConstant(i));
14177      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
14178                                St->getPointerInfo(), St->isVolatile(),
14179                                St->isNonTemporal(), St->getAlignment());
14180      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14181      Chains.push_back(Ch);
14182    }
14183
14184    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
14185                               Chains.size());
14186  }
14187
14188
14189  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
14190  // the FP state in cases where an emms may be missing.
14191  // A preferable solution to the general problem is to figure out the right
14192  // places to insert EMMS.  This qualifies as a quick hack.
14193
14194  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
14195  if (VT.getSizeInBits() != 64)
14196    return SDValue();
14197
14198  const Function *F = DAG.getMachineFunction().getFunction();
14199  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
14200  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
14201                     && Subtarget->hasXMMInt();
14202  if ((VT.isVector() ||
14203       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
14204      isa<LoadSDNode>(St->getValue()) &&
14205      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
14206      St->getChain().hasOneUse() && !St->isVolatile()) {
14207    SDNode* LdVal = St->getValue().getNode();
14208    LoadSDNode *Ld = 0;
14209    int TokenFactorIndex = -1;
14210    SmallVector<SDValue, 8> Ops;
14211    SDNode* ChainVal = St->getChain().getNode();
14212    // Must be a store of a load.  We currently handle two cases:  the load
14213    // is a direct child, and it's under an intervening TokenFactor.  It is
14214    // possible to dig deeper under nested TokenFactors.
14215    if (ChainVal == LdVal)
14216      Ld = cast<LoadSDNode>(St->getChain());
14217    else if (St->getValue().hasOneUse() &&
14218             ChainVal->getOpcode() == ISD::TokenFactor) {
14219      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
14220        if (ChainVal->getOperand(i).getNode() == LdVal) {
14221          TokenFactorIndex = i;
14222          Ld = cast<LoadSDNode>(St->getValue());
14223        } else
14224          Ops.push_back(ChainVal->getOperand(i));
14225      }
14226    }
14227
14228    if (!Ld || !ISD::isNormalLoad(Ld))
14229      return SDValue();
14230
14231    // If this is not the MMX case, i.e. we are just turning i64 load/store
14232    // into f64 load/store, avoid the transformation if there are multiple
14233    // uses of the loaded value.
14234    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
14235      return SDValue();
14236
14237    DebugLoc LdDL = Ld->getDebugLoc();
14238    DebugLoc StDL = N->getDebugLoc();
14239    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
14240    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
14241    // pair instead.
14242    if (Subtarget->is64Bit() || F64IsLegal) {
14243      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
14244      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
14245                                  Ld->getPointerInfo(), Ld->isVolatile(),
14246                                  Ld->isNonTemporal(), Ld->isInvariant(),
14247                                  Ld->getAlignment());
14248      SDValue NewChain = NewLd.getValue(1);
14249      if (TokenFactorIndex != -1) {
14250        Ops.push_back(NewChain);
14251        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14252                               Ops.size());
14253      }
14254      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
14255                          St->getPointerInfo(),
14256                          St->isVolatile(), St->isNonTemporal(),
14257                          St->getAlignment());
14258    }
14259
14260    // Otherwise, lower to two pairs of 32-bit loads / stores.
14261    SDValue LoAddr = Ld->getBasePtr();
14262    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
14263                                 DAG.getConstant(4, MVT::i32));
14264
14265    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
14266                               Ld->getPointerInfo(),
14267                               Ld->isVolatile(), Ld->isNonTemporal(),
14268                               Ld->isInvariant(), Ld->getAlignment());
14269    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
14270                               Ld->getPointerInfo().getWithOffset(4),
14271                               Ld->isVolatile(), Ld->isNonTemporal(),
14272                               Ld->isInvariant(),
14273                               MinAlign(Ld->getAlignment(), 4));
14274
14275    SDValue NewChain = LoLd.getValue(1);
14276    if (TokenFactorIndex != -1) {
14277      Ops.push_back(LoLd);
14278      Ops.push_back(HiLd);
14279      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14280                             Ops.size());
14281    }
14282
14283    LoAddr = St->getBasePtr();
14284    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
14285                         DAG.getConstant(4, MVT::i32));
14286
14287    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
14288                                St->getPointerInfo(),
14289                                St->isVolatile(), St->isNonTemporal(),
14290                                St->getAlignment());
14291    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
14292                                St->getPointerInfo().getWithOffset(4),
14293                                St->isVolatile(),
14294                                St->isNonTemporal(),
14295                                MinAlign(St->getAlignment(), 4));
14296    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
14297  }
14298  return SDValue();
14299}
14300
14301/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
14302/// and return the operands for the horizontal operation in LHS and RHS.  A
14303/// horizontal operation performs the binary operation on successive elements
14304/// of its first operand, then on successive elements of its second operand,
14305/// returning the resulting values in a vector.  For example, if
14306///   A = < float a0, float a1, float a2, float a3 >
14307/// and
14308///   B = < float b0, float b1, float b2, float b3 >
14309/// then the result of doing a horizontal operation on A and B is
14310///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
14311/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
14312/// A horizontal-op B, for some already available A and B, and if so then LHS is
14313/// set to A, RHS to B, and the routine returns 'true'.
14314/// Note that the binary operation should have the property that if one of the
14315/// operands is UNDEF then the result is UNDEF.
14316static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool isCommutative) {
14317  // Look for the following pattern: if
14318  //   A = < float a0, float a1, float a2, float a3 >
14319  //   B = < float b0, float b1, float b2, float b3 >
14320  // and
14321  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
14322  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
14323  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
14324  // which is A horizontal-op B.
14325
14326  // At least one of the operands should be a vector shuffle.
14327  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
14328      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
14329    return false;
14330
14331  EVT VT = LHS.getValueType();
14332  unsigned NumElts = VT.getVectorNumElements();
14333  unsigned NumLanes = VT.getSizeInBits()/128;
14334  unsigned NumLaneElts = NumElts / NumLanes;
14335
14336  // View LHS in the form
14337  //   LHS = VECTOR_SHUFFLE A, B, LMask
14338  // If LHS is not a shuffle then pretend it is the shuffle
14339  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
14340  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
14341  // type VT.
14342  SDValue A, B;
14343  SmallVector<int, 16> LMask(NumElts);
14344  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14345    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
14346      A = LHS.getOperand(0);
14347    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
14348      B = LHS.getOperand(1);
14349    cast<ShuffleVectorSDNode>(LHS.getNode())->getMask(LMask);
14350  } else {
14351    if (LHS.getOpcode() != ISD::UNDEF)
14352      A = LHS;
14353    for (unsigned i = 0; i != NumElts; ++i)
14354      LMask[i] = i;
14355  }
14356
14357  // Likewise, view RHS in the form
14358  //   RHS = VECTOR_SHUFFLE C, D, RMask
14359  SDValue C, D;
14360  SmallVector<int, 16> RMask(NumElts);
14361  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14362    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
14363      C = RHS.getOperand(0);
14364    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
14365      D = RHS.getOperand(1);
14366    cast<ShuffleVectorSDNode>(RHS.getNode())->getMask(RMask);
14367  } else {
14368    if (RHS.getOpcode() != ISD::UNDEF)
14369      C = RHS;
14370    for (unsigned i = 0; i != NumElts; ++i)
14371      RMask[i] = i;
14372  }
14373
14374  // Check that the shuffles are both shuffling the same vectors.
14375  if (!(A == C && B == D) && !(A == D && B == C))
14376    return false;
14377
14378  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
14379  if (!A.getNode() && !B.getNode())
14380    return false;
14381
14382  // If A and B occur in reverse order in RHS, then "swap" them (which means
14383  // rewriting the mask).
14384  if (A != C)
14385    for (unsigned i = 0; i != NumElts; ++i) {
14386      unsigned Idx = RMask[i];
14387      if (Idx < NumElts)
14388        RMask[i] += NumElts;
14389      else if (Idx < 2*NumElts)
14390        RMask[i] -= NumElts;
14391    }
14392
14393  // At this point LHS and RHS are equivalent to
14394  //   LHS = VECTOR_SHUFFLE A, B, LMask
14395  //   RHS = VECTOR_SHUFFLE A, B, RMask
14396  // Check that the masks correspond to performing a horizontal operation.
14397  for (unsigned l = 0; l != NumLanes; ++l) {
14398    unsigned LaneStart = l*NumLaneElts;
14399    for (unsigned i = 0; i != NumLaneElts/2; ++i) {
14400      unsigned LIdx = LMask[i+LaneStart];
14401      unsigned RIdx = RMask[i+LaneStart];
14402
14403      // Ignore any UNDEF components.
14404      if (LIdx >= 2*NumElts || RIdx >= 2*NumElts ||
14405          (!A.getNode() && (LIdx < NumElts || RIdx < NumElts)) ||
14406          (!B.getNode() && (LIdx >= NumElts || RIdx >= NumElts)))
14407        continue;
14408
14409      // Check that successive elements are being operated on.  If not, this is
14410      // not a horizontal operation.
14411      if (!(LIdx == 2*i + LaneStart && RIdx == 2*i + LaneStart + 1) &&
14412          !(isCommutative && LIdx == 2*i + LaneStart + 1 && RIdx == 2*i + LaneStart))
14413        return false;
14414    }
14415    for (unsigned i = 0; i != NumLaneElts/2; ++i) {
14416      unsigned LIdx = LMask[i+(NumLaneElts/2)+LaneStart];
14417      unsigned RIdx = RMask[i+(NumLaneElts/2)+LaneStart];
14418
14419      // Ignore any UNDEF components.
14420      if (LIdx >= 2*NumElts || RIdx >= 2*NumElts ||
14421          (!A.getNode() && (LIdx < NumElts || RIdx < NumElts)) ||
14422          (!B.getNode() && (LIdx >= NumElts || RIdx >= NumElts)))
14423        continue;
14424
14425      // Check that successive elements are being operated on.  If not, this is
14426      // not a horizontal operation.
14427      if (!(LIdx == 2*i + LaneStart + NumElts && RIdx == 2*i + LaneStart + NumElts + 1) &&
14428          !(isCommutative && LIdx == 2*i + LaneStart + NumElts + 1 && RIdx == 2*i + LaneStart + NumElts))
14429        return false;
14430    }
14431  }
14432
14433  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
14434  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
14435  return true;
14436}
14437
14438/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
14439static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
14440                                  const X86Subtarget *Subtarget) {
14441  EVT VT = N->getValueType(0);
14442  SDValue LHS = N->getOperand(0);
14443  SDValue RHS = N->getOperand(1);
14444
14445  // Try to synthesize horizontal adds from adds of shuffles.
14446  if (((Subtarget->hasSSE3orAVX() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14447       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14448      isHorizontalBinOp(LHS, RHS, true))
14449    return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
14450  return SDValue();
14451}
14452
14453/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
14454static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
14455                                  const X86Subtarget *Subtarget) {
14456  EVT VT = N->getValueType(0);
14457  SDValue LHS = N->getOperand(0);
14458  SDValue RHS = N->getOperand(1);
14459
14460  // Try to synthesize horizontal subs from subs of shuffles.
14461  if (((Subtarget->hasSSE3orAVX() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14462       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14463      isHorizontalBinOp(LHS, RHS, false))
14464    return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
14465  return SDValue();
14466}
14467
14468/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
14469/// X86ISD::FXOR nodes.
14470static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
14471  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
14472  // F[X]OR(0.0, x) -> x
14473  // F[X]OR(x, 0.0) -> x
14474  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14475    if (C->getValueAPF().isPosZero())
14476      return N->getOperand(1);
14477  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14478    if (C->getValueAPF().isPosZero())
14479      return N->getOperand(0);
14480  return SDValue();
14481}
14482
14483/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
14484static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
14485  // FAND(0.0, x) -> 0.0
14486  // FAND(x, 0.0) -> 0.0
14487  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14488    if (C->getValueAPF().isPosZero())
14489      return N->getOperand(0);
14490  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14491    if (C->getValueAPF().isPosZero())
14492      return N->getOperand(1);
14493  return SDValue();
14494}
14495
14496static SDValue PerformBTCombine(SDNode *N,
14497                                SelectionDAG &DAG,
14498                                TargetLowering::DAGCombinerInfo &DCI) {
14499  // BT ignores high bits in the bit index operand.
14500  SDValue Op1 = N->getOperand(1);
14501  if (Op1.hasOneUse()) {
14502    unsigned BitWidth = Op1.getValueSizeInBits();
14503    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
14504    APInt KnownZero, KnownOne;
14505    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
14506                                          !DCI.isBeforeLegalizeOps());
14507    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14508    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
14509        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
14510      DCI.CommitTargetLoweringOpt(TLO);
14511  }
14512  return SDValue();
14513}
14514
14515static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
14516  SDValue Op = N->getOperand(0);
14517  if (Op.getOpcode() == ISD::BITCAST)
14518    Op = Op.getOperand(0);
14519  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
14520  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
14521      VT.getVectorElementType().getSizeInBits() ==
14522      OpVT.getVectorElementType().getSizeInBits()) {
14523    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
14524  }
14525  return SDValue();
14526}
14527
14528static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
14529  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
14530  //           (and (i32 x86isd::setcc_carry), 1)
14531  // This eliminates the zext. This transformation is necessary because
14532  // ISD::SETCC is always legalized to i8.
14533  DebugLoc dl = N->getDebugLoc();
14534  SDValue N0 = N->getOperand(0);
14535  EVT VT = N->getValueType(0);
14536  if (N0.getOpcode() == ISD::AND &&
14537      N0.hasOneUse() &&
14538      N0.getOperand(0).hasOneUse()) {
14539    SDValue N00 = N0.getOperand(0);
14540    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
14541      return SDValue();
14542    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
14543    if (!C || C->getZExtValue() != 1)
14544      return SDValue();
14545    return DAG.getNode(ISD::AND, dl, VT,
14546                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
14547                                   N00.getOperand(0), N00.getOperand(1)),
14548                       DAG.getConstant(1, VT));
14549  }
14550
14551  return SDValue();
14552}
14553
14554// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
14555static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
14556  unsigned X86CC = N->getConstantOperandVal(0);
14557  SDValue EFLAG = N->getOperand(1);
14558  DebugLoc DL = N->getDebugLoc();
14559
14560  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
14561  // a zext and produces an all-ones bit which is more useful than 0/1 in some
14562  // cases.
14563  if (X86CC == X86::COND_B)
14564    return DAG.getNode(ISD::AND, DL, MVT::i8,
14565                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
14566                                   DAG.getConstant(X86CC, MVT::i8), EFLAG),
14567                       DAG.getConstant(1, MVT::i8));
14568
14569  return SDValue();
14570}
14571
14572static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
14573                                        const X86TargetLowering *XTLI) {
14574  SDValue Op0 = N->getOperand(0);
14575  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
14576  // a 32-bit target where SSE doesn't support i64->FP operations.
14577  if (Op0.getOpcode() == ISD::LOAD) {
14578    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
14579    EVT VT = Ld->getValueType(0);
14580    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
14581        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
14582        !XTLI->getSubtarget()->is64Bit() &&
14583        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
14584      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
14585                                          Ld->getChain(), Op0, DAG);
14586      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
14587      return FILDChain;
14588    }
14589  }
14590  return SDValue();
14591}
14592
14593// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
14594static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
14595                                 X86TargetLowering::DAGCombinerInfo &DCI) {
14596  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
14597  // the result is either zero or one (depending on the input carry bit).
14598  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
14599  if (X86::isZeroNode(N->getOperand(0)) &&
14600      X86::isZeroNode(N->getOperand(1)) &&
14601      // We don't have a good way to replace an EFLAGS use, so only do this when
14602      // dead right now.
14603      SDValue(N, 1).use_empty()) {
14604    DebugLoc DL = N->getDebugLoc();
14605    EVT VT = N->getValueType(0);
14606    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
14607    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
14608                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
14609                                           DAG.getConstant(X86::COND_B,MVT::i8),
14610                                           N->getOperand(2)),
14611                               DAG.getConstant(1, VT));
14612    return DCI.CombineTo(N, Res1, CarryOut);
14613  }
14614
14615  return SDValue();
14616}
14617
14618// fold (add Y, (sete  X, 0)) -> adc  0, Y
14619//      (add Y, (setne X, 0)) -> sbb -1, Y
14620//      (sub (sete  X, 0), Y) -> sbb  0, Y
14621//      (sub (setne X, 0), Y) -> adc -1, Y
14622static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
14623  DebugLoc DL = N->getDebugLoc();
14624
14625  // Look through ZExts.
14626  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
14627  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
14628    return SDValue();
14629
14630  SDValue SetCC = Ext.getOperand(0);
14631  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
14632    return SDValue();
14633
14634  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
14635  if (CC != X86::COND_E && CC != X86::COND_NE)
14636    return SDValue();
14637
14638  SDValue Cmp = SetCC.getOperand(1);
14639  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
14640      !X86::isZeroNode(Cmp.getOperand(1)) ||
14641      !Cmp.getOperand(0).getValueType().isInteger())
14642    return SDValue();
14643
14644  SDValue CmpOp0 = Cmp.getOperand(0);
14645  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
14646                               DAG.getConstant(1, CmpOp0.getValueType()));
14647
14648  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
14649  if (CC == X86::COND_NE)
14650    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
14651                       DL, OtherVal.getValueType(), OtherVal,
14652                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
14653  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
14654                     DL, OtherVal.getValueType(), OtherVal,
14655                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
14656}
14657
14658/// PerformADDCombine - Do target-specific dag combines on integer adds.
14659static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
14660                                 const X86Subtarget *Subtarget) {
14661  EVT VT = N->getValueType(0);
14662  SDValue Op0 = N->getOperand(0);
14663  SDValue Op1 = N->getOperand(1);
14664
14665  // Try to synthesize horizontal adds from adds of shuffles.
14666  if (((Subtarget->hasSSSE3orAVX() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
14667       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || MVT::v8i32))) &&
14668      isHorizontalBinOp(Op0, Op1, true))
14669    return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1);
14670
14671  return OptimizeConditionalInDecrement(N, DAG);
14672}
14673
14674static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
14675                                 const X86Subtarget *Subtarget) {
14676  SDValue Op0 = N->getOperand(0);
14677  SDValue Op1 = N->getOperand(1);
14678
14679  // X86 can't encode an immediate LHS of a sub. See if we can push the
14680  // negation into a preceding instruction.
14681  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
14682    // If the RHS of the sub is a XOR with one use and a constant, invert the
14683    // immediate. Then add one to the LHS of the sub so we can turn
14684    // X-Y -> X+~Y+1, saving one register.
14685    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
14686        isa<ConstantSDNode>(Op1.getOperand(1))) {
14687      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
14688      EVT VT = Op0.getValueType();
14689      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
14690                                   Op1.getOperand(0),
14691                                   DAG.getConstant(~XorC, VT));
14692      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
14693                         DAG.getConstant(C->getAPIntValue()+1, VT));
14694    }
14695  }
14696
14697  // Try to synthesize horizontal adds from adds of shuffles.
14698  EVT VT = N->getValueType(0);
14699  if (((Subtarget->hasSSSE3orAVX() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
14700       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
14701      isHorizontalBinOp(Op0, Op1, true))
14702    return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1);
14703
14704  return OptimizeConditionalInDecrement(N, DAG);
14705}
14706
14707SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
14708                                             DAGCombinerInfo &DCI) const {
14709  SelectionDAG &DAG = DCI.DAG;
14710  switch (N->getOpcode()) {
14711  default: break;
14712  case ISD::EXTRACT_VECTOR_ELT:
14713    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
14714  case ISD::VSELECT:
14715  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
14716  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
14717  case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
14718  case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
14719  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
14720  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
14721  case ISD::SHL:
14722  case ISD::SRA:
14723  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
14724  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
14725  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
14726  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
14727  case ISD::LOAD:           return PerformLOADCombine(N, DAG, Subtarget);
14728  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
14729  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
14730  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
14731  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
14732  case X86ISD::FXOR:
14733  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
14734  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
14735  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
14736  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
14737  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
14738  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
14739  case X86ISD::SHUFPS:      // Handle all target specific shuffles
14740  case X86ISD::SHUFPD:
14741  case X86ISD::PALIGN:
14742  case X86ISD::PUNPCKH:
14743  case X86ISD::UNPCKHP:
14744  case X86ISD::PUNPCKL:
14745  case X86ISD::UNPCKLP:
14746  case X86ISD::MOVHLPS:
14747  case X86ISD::MOVLHPS:
14748  case X86ISD::PSHUFD:
14749  case X86ISD::PSHUFHW:
14750  case X86ISD::PSHUFLW:
14751  case X86ISD::MOVSS:
14752  case X86ISD::MOVSD:
14753  case X86ISD::VPERMILP:
14754  case X86ISD::VPERM2X128:
14755  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
14756  }
14757
14758  return SDValue();
14759}
14760
14761/// isTypeDesirableForOp - Return true if the target has native support for
14762/// the specified value type and it is 'desirable' to use the type for the
14763/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
14764/// instruction encodings are longer and some i16 instructions are slow.
14765bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
14766  if (!isTypeLegal(VT))
14767    return false;
14768  if (VT != MVT::i16)
14769    return true;
14770
14771  switch (Opc) {
14772  default:
14773    return true;
14774  case ISD::LOAD:
14775  case ISD::SIGN_EXTEND:
14776  case ISD::ZERO_EXTEND:
14777  case ISD::ANY_EXTEND:
14778  case ISD::SHL:
14779  case ISD::SRL:
14780  case ISD::SUB:
14781  case ISD::ADD:
14782  case ISD::MUL:
14783  case ISD::AND:
14784  case ISD::OR:
14785  case ISD::XOR:
14786    return false;
14787  }
14788}
14789
14790/// IsDesirableToPromoteOp - This method query the target whether it is
14791/// beneficial for dag combiner to promote the specified node. If true, it
14792/// should return the desired promotion type by reference.
14793bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
14794  EVT VT = Op.getValueType();
14795  if (VT != MVT::i16)
14796    return false;
14797
14798  bool Promote = false;
14799  bool Commute = false;
14800  switch (Op.getOpcode()) {
14801  default: break;
14802  case ISD::LOAD: {
14803    LoadSDNode *LD = cast<LoadSDNode>(Op);
14804    // If the non-extending load has a single use and it's not live out, then it
14805    // might be folded.
14806    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
14807                                                     Op.hasOneUse()*/) {
14808      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
14809             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
14810        // The only case where we'd want to promote LOAD (rather then it being
14811        // promoted as an operand is when it's only use is liveout.
14812        if (UI->getOpcode() != ISD::CopyToReg)
14813          return false;
14814      }
14815    }
14816    Promote = true;
14817    break;
14818  }
14819  case ISD::SIGN_EXTEND:
14820  case ISD::ZERO_EXTEND:
14821  case ISD::ANY_EXTEND:
14822    Promote = true;
14823    break;
14824  case ISD::SHL:
14825  case ISD::SRL: {
14826    SDValue N0 = Op.getOperand(0);
14827    // Look out for (store (shl (load), x)).
14828    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
14829      return false;
14830    Promote = true;
14831    break;
14832  }
14833  case ISD::ADD:
14834  case ISD::MUL:
14835  case ISD::AND:
14836  case ISD::OR:
14837  case ISD::XOR:
14838    Commute = true;
14839    // fallthrough
14840  case ISD::SUB: {
14841    SDValue N0 = Op.getOperand(0);
14842    SDValue N1 = Op.getOperand(1);
14843    if (!Commute && MayFoldLoad(N1))
14844      return false;
14845    // Avoid disabling potential load folding opportunities.
14846    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
14847      return false;
14848    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
14849      return false;
14850    Promote = true;
14851  }
14852  }
14853
14854  PVT = MVT::i32;
14855  return Promote;
14856}
14857
14858//===----------------------------------------------------------------------===//
14859//                           X86 Inline Assembly Support
14860//===----------------------------------------------------------------------===//
14861
14862bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
14863  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
14864
14865  std::string AsmStr = IA->getAsmString();
14866
14867  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
14868  SmallVector<StringRef, 4> AsmPieces;
14869  SplitString(AsmStr, AsmPieces, ";\n");
14870
14871  switch (AsmPieces.size()) {
14872  default: return false;
14873  case 1:
14874    AsmStr = AsmPieces[0];
14875    AsmPieces.clear();
14876    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
14877
14878    // FIXME: this should verify that we are targeting a 486 or better.  If not,
14879    // we will turn this bswap into something that will be lowered to logical ops
14880    // instead of emitting the bswap asm.  For now, we don't support 486 or lower
14881    // so don't worry about this.
14882    // bswap $0
14883    if (AsmPieces.size() == 2 &&
14884        (AsmPieces[0] == "bswap" ||
14885         AsmPieces[0] == "bswapq" ||
14886         AsmPieces[0] == "bswapl") &&
14887        (AsmPieces[1] == "$0" ||
14888         AsmPieces[1] == "${0:q}")) {
14889      // No need to check constraints, nothing other than the equivalent of
14890      // "=r,0" would be valid here.
14891      IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14892      if (!Ty || Ty->getBitWidth() % 16 != 0)
14893        return false;
14894      return IntrinsicLowering::LowerToByteSwap(CI);
14895    }
14896    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
14897    if (CI->getType()->isIntegerTy(16) &&
14898        AsmPieces.size() == 3 &&
14899        (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
14900        AsmPieces[1] == "$$8," &&
14901        AsmPieces[2] == "${0:w}" &&
14902        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
14903      AsmPieces.clear();
14904      const std::string &ConstraintsStr = IA->getConstraintString();
14905      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
14906      std::sort(AsmPieces.begin(), AsmPieces.end());
14907      if (AsmPieces.size() == 4 &&
14908          AsmPieces[0] == "~{cc}" &&
14909          AsmPieces[1] == "~{dirflag}" &&
14910          AsmPieces[2] == "~{flags}" &&
14911          AsmPieces[3] == "~{fpsr}") {
14912        IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14913        if (!Ty || Ty->getBitWidth() % 16 != 0)
14914          return false;
14915        return IntrinsicLowering::LowerToByteSwap(CI);
14916      }
14917    }
14918    break;
14919  case 3:
14920    if (CI->getType()->isIntegerTy(32) &&
14921        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
14922      SmallVector<StringRef, 4> Words;
14923      SplitString(AsmPieces[0], Words, " \t,");
14924      if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
14925          Words[2] == "${0:w}") {
14926        Words.clear();
14927        SplitString(AsmPieces[1], Words, " \t,");
14928        if (Words.size() == 3 && Words[0] == "rorl" && Words[1] == "$$16" &&
14929            Words[2] == "$0") {
14930          Words.clear();
14931          SplitString(AsmPieces[2], Words, " \t,");
14932          if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
14933              Words[2] == "${0:w}") {
14934            AsmPieces.clear();
14935            const std::string &ConstraintsStr = IA->getConstraintString();
14936            SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
14937            std::sort(AsmPieces.begin(), AsmPieces.end());
14938            if (AsmPieces.size() == 4 &&
14939                AsmPieces[0] == "~{cc}" &&
14940                AsmPieces[1] == "~{dirflag}" &&
14941                AsmPieces[2] == "~{flags}" &&
14942                AsmPieces[3] == "~{fpsr}") {
14943              IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14944              if (!Ty || Ty->getBitWidth() % 16 != 0)
14945                return false;
14946              return IntrinsicLowering::LowerToByteSwap(CI);
14947            }
14948          }
14949        }
14950      }
14951    }
14952
14953    if (CI->getType()->isIntegerTy(64)) {
14954      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
14955      if (Constraints.size() >= 2 &&
14956          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
14957          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
14958        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
14959        SmallVector<StringRef, 4> Words;
14960        SplitString(AsmPieces[0], Words, " \t");
14961        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
14962          Words.clear();
14963          SplitString(AsmPieces[1], Words, " \t");
14964          if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
14965            Words.clear();
14966            SplitString(AsmPieces[2], Words, " \t,");
14967            if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
14968                Words[2] == "%edx") {
14969              IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14970              if (!Ty || Ty->getBitWidth() % 16 != 0)
14971                return false;
14972              return IntrinsicLowering::LowerToByteSwap(CI);
14973            }
14974          }
14975        }
14976      }
14977    }
14978    break;
14979  }
14980  return false;
14981}
14982
14983
14984
14985/// getConstraintType - Given a constraint letter, return the type of
14986/// constraint it is for this target.
14987X86TargetLowering::ConstraintType
14988X86TargetLowering::getConstraintType(const std::string &Constraint) const {
14989  if (Constraint.size() == 1) {
14990    switch (Constraint[0]) {
14991    case 'R':
14992    case 'q':
14993    case 'Q':
14994    case 'f':
14995    case 't':
14996    case 'u':
14997    case 'y':
14998    case 'x':
14999    case 'Y':
15000    case 'l':
15001      return C_RegisterClass;
15002    case 'a':
15003    case 'b':
15004    case 'c':
15005    case 'd':
15006    case 'S':
15007    case 'D':
15008    case 'A':
15009      return C_Register;
15010    case 'I':
15011    case 'J':
15012    case 'K':
15013    case 'L':
15014    case 'M':
15015    case 'N':
15016    case 'G':
15017    case 'C':
15018    case 'e':
15019    case 'Z':
15020      return C_Other;
15021    default:
15022      break;
15023    }
15024  }
15025  return TargetLowering::getConstraintType(Constraint);
15026}
15027
15028/// Examine constraint type and operand type and determine a weight value.
15029/// This object must already have been set up with the operand type
15030/// and the current alternative constraint selected.
15031TargetLowering::ConstraintWeight
15032  X86TargetLowering::getSingleConstraintMatchWeight(
15033    AsmOperandInfo &info, const char *constraint) const {
15034  ConstraintWeight weight = CW_Invalid;
15035  Value *CallOperandVal = info.CallOperandVal;
15036    // If we don't have a value, we can't do a match,
15037    // but allow it at the lowest weight.
15038  if (CallOperandVal == NULL)
15039    return CW_Default;
15040  Type *type = CallOperandVal->getType();
15041  // Look at the constraint type.
15042  switch (*constraint) {
15043  default:
15044    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
15045  case 'R':
15046  case 'q':
15047  case 'Q':
15048  case 'a':
15049  case 'b':
15050  case 'c':
15051  case 'd':
15052  case 'S':
15053  case 'D':
15054  case 'A':
15055    if (CallOperandVal->getType()->isIntegerTy())
15056      weight = CW_SpecificReg;
15057    break;
15058  case 'f':
15059  case 't':
15060  case 'u':
15061      if (type->isFloatingPointTy())
15062        weight = CW_SpecificReg;
15063      break;
15064  case 'y':
15065      if (type->isX86_MMXTy() && Subtarget->hasMMX())
15066        weight = CW_SpecificReg;
15067      break;
15068  case 'x':
15069  case 'Y':
15070    if ((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasXMM())
15071      weight = CW_Register;
15072    break;
15073  case 'I':
15074    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
15075      if (C->getZExtValue() <= 31)
15076        weight = CW_Constant;
15077    }
15078    break;
15079  case 'J':
15080    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15081      if (C->getZExtValue() <= 63)
15082        weight = CW_Constant;
15083    }
15084    break;
15085  case 'K':
15086    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15087      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
15088        weight = CW_Constant;
15089    }
15090    break;
15091  case 'L':
15092    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15093      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
15094        weight = CW_Constant;
15095    }
15096    break;
15097  case 'M':
15098    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15099      if (C->getZExtValue() <= 3)
15100        weight = CW_Constant;
15101    }
15102    break;
15103  case 'N':
15104    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15105      if (C->getZExtValue() <= 0xff)
15106        weight = CW_Constant;
15107    }
15108    break;
15109  case 'G':
15110  case 'C':
15111    if (dyn_cast<ConstantFP>(CallOperandVal)) {
15112      weight = CW_Constant;
15113    }
15114    break;
15115  case 'e':
15116    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15117      if ((C->getSExtValue() >= -0x80000000LL) &&
15118          (C->getSExtValue() <= 0x7fffffffLL))
15119        weight = CW_Constant;
15120    }
15121    break;
15122  case 'Z':
15123    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15124      if (C->getZExtValue() <= 0xffffffff)
15125        weight = CW_Constant;
15126    }
15127    break;
15128  }
15129  return weight;
15130}
15131
15132/// LowerXConstraint - try to replace an X constraint, which matches anything,
15133/// with another that has more specific requirements based on the type of the
15134/// corresponding operand.
15135const char *X86TargetLowering::
15136LowerXConstraint(EVT ConstraintVT) const {
15137  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
15138  // 'f' like normal targets.
15139  if (ConstraintVT.isFloatingPoint()) {
15140    if (Subtarget->hasXMMInt())
15141      return "Y";
15142    if (Subtarget->hasXMM())
15143      return "x";
15144  }
15145
15146  return TargetLowering::LowerXConstraint(ConstraintVT);
15147}
15148
15149/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15150/// vector.  If it is invalid, don't add anything to Ops.
15151void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
15152                                                     std::string &Constraint,
15153                                                     std::vector<SDValue>&Ops,
15154                                                     SelectionDAG &DAG) const {
15155  SDValue Result(0, 0);
15156
15157  // Only support length 1 constraints for now.
15158  if (Constraint.length() > 1) return;
15159
15160  char ConstraintLetter = Constraint[0];
15161  switch (ConstraintLetter) {
15162  default: break;
15163  case 'I':
15164    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15165      if (C->getZExtValue() <= 31) {
15166        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15167        break;
15168      }
15169    }
15170    return;
15171  case 'J':
15172    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15173      if (C->getZExtValue() <= 63) {
15174        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15175        break;
15176      }
15177    }
15178    return;
15179  case 'K':
15180    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15181      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
15182        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15183        break;
15184      }
15185    }
15186    return;
15187  case 'N':
15188    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15189      if (C->getZExtValue() <= 255) {
15190        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15191        break;
15192      }
15193    }
15194    return;
15195  case 'e': {
15196    // 32-bit signed value
15197    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15198      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15199                                           C->getSExtValue())) {
15200        // Widen to 64 bits here to get it sign extended.
15201        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
15202        break;
15203      }
15204    // FIXME gcc accepts some relocatable values here too, but only in certain
15205    // memory models; it's complicated.
15206    }
15207    return;
15208  }
15209  case 'Z': {
15210    // 32-bit unsigned value
15211    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15212      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15213                                           C->getZExtValue())) {
15214        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15215        break;
15216      }
15217    }
15218    // FIXME gcc accepts some relocatable values here too, but only in certain
15219    // memory models; it's complicated.
15220    return;
15221  }
15222  case 'i': {
15223    // Literal immediates are always ok.
15224    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
15225      // Widen to 64 bits here to get it sign extended.
15226      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
15227      break;
15228    }
15229
15230    // In any sort of PIC mode addresses need to be computed at runtime by
15231    // adding in a register or some sort of table lookup.  These can't
15232    // be used as immediates.
15233    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
15234      return;
15235
15236    // If we are in non-pic codegen mode, we allow the address of a global (with
15237    // an optional displacement) to be used with 'i'.
15238    GlobalAddressSDNode *GA = 0;
15239    int64_t Offset = 0;
15240
15241    // Match either (GA), (GA+C), (GA+C1+C2), etc.
15242    while (1) {
15243      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
15244        Offset += GA->getOffset();
15245        break;
15246      } else if (Op.getOpcode() == ISD::ADD) {
15247        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15248          Offset += C->getZExtValue();
15249          Op = Op.getOperand(0);
15250          continue;
15251        }
15252      } else if (Op.getOpcode() == ISD::SUB) {
15253        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15254          Offset += -C->getZExtValue();
15255          Op = Op.getOperand(0);
15256          continue;
15257        }
15258      }
15259
15260      // Otherwise, this isn't something we can handle, reject it.
15261      return;
15262    }
15263
15264    const GlobalValue *GV = GA->getGlobal();
15265    // If we require an extra load to get this address, as in PIC mode, we
15266    // can't accept it.
15267    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
15268                                                        getTargetMachine())))
15269      return;
15270
15271    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
15272                                        GA->getValueType(0), Offset);
15273    break;
15274  }
15275  }
15276
15277  if (Result.getNode()) {
15278    Ops.push_back(Result);
15279    return;
15280  }
15281  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
15282}
15283
15284std::pair<unsigned, const TargetRegisterClass*>
15285X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
15286                                                EVT VT) const {
15287  // First, see if this is a constraint that directly corresponds to an LLVM
15288  // register class.
15289  if (Constraint.size() == 1) {
15290    // GCC Constraint Letters
15291    switch (Constraint[0]) {
15292    default: break;
15293      // TODO: Slight differences here in allocation order and leaving
15294      // RIP in the class. Do they matter any more here than they do
15295      // in the normal allocation?
15296    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
15297      if (Subtarget->is64Bit()) {
15298	if (VT == MVT::i32 || VT == MVT::f32)
15299	  return std::make_pair(0U, X86::GR32RegisterClass);
15300	else if (VT == MVT::i16)
15301	  return std::make_pair(0U, X86::GR16RegisterClass);
15302	else if (VT == MVT::i8 || VT == MVT::i1)
15303	  return std::make_pair(0U, X86::GR8RegisterClass);
15304	else if (VT == MVT::i64 || VT == MVT::f64)
15305	  return std::make_pair(0U, X86::GR64RegisterClass);
15306	break;
15307      }
15308      // 32-bit fallthrough
15309    case 'Q':   // Q_REGS
15310      if (VT == MVT::i32 || VT == MVT::f32)
15311	return std::make_pair(0U, X86::GR32_ABCDRegisterClass);
15312      else if (VT == MVT::i16)
15313	return std::make_pair(0U, X86::GR16_ABCDRegisterClass);
15314      else if (VT == MVT::i8 || VT == MVT::i1)
15315	return std::make_pair(0U, X86::GR8_ABCD_LRegisterClass);
15316      else if (VT == MVT::i64)
15317	return std::make_pair(0U, X86::GR64_ABCDRegisterClass);
15318      break;
15319    case 'r':   // GENERAL_REGS
15320    case 'l':   // INDEX_REGS
15321      if (VT == MVT::i8 || VT == MVT::i1)
15322        return std::make_pair(0U, X86::GR8RegisterClass);
15323      if (VT == MVT::i16)
15324        return std::make_pair(0U, X86::GR16RegisterClass);
15325      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
15326        return std::make_pair(0U, X86::GR32RegisterClass);
15327      return std::make_pair(0U, X86::GR64RegisterClass);
15328    case 'R':   // LEGACY_REGS
15329      if (VT == MVT::i8 || VT == MVT::i1)
15330        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
15331      if (VT == MVT::i16)
15332        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
15333      if (VT == MVT::i32 || !Subtarget->is64Bit())
15334        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
15335      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
15336    case 'f':  // FP Stack registers.
15337      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
15338      // value to the correct fpstack register class.
15339      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
15340        return std::make_pair(0U, X86::RFP32RegisterClass);
15341      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
15342        return std::make_pair(0U, X86::RFP64RegisterClass);
15343      return std::make_pair(0U, X86::RFP80RegisterClass);
15344    case 'y':   // MMX_REGS if MMX allowed.
15345      if (!Subtarget->hasMMX()) break;
15346      return std::make_pair(0U, X86::VR64RegisterClass);
15347    case 'Y':   // SSE_REGS if SSE2 allowed
15348      if (!Subtarget->hasXMMInt()) break;
15349      // FALL THROUGH.
15350    case 'x':   // SSE_REGS if SSE1 allowed
15351      if (!Subtarget->hasXMM()) break;
15352
15353      switch (VT.getSimpleVT().SimpleTy) {
15354      default: break;
15355      // Scalar SSE types.
15356      case MVT::f32:
15357      case MVT::i32:
15358        return std::make_pair(0U, X86::FR32RegisterClass);
15359      case MVT::f64:
15360      case MVT::i64:
15361        return std::make_pair(0U, X86::FR64RegisterClass);
15362      // Vector types.
15363      case MVT::v16i8:
15364      case MVT::v8i16:
15365      case MVT::v4i32:
15366      case MVT::v2i64:
15367      case MVT::v4f32:
15368      case MVT::v2f64:
15369        return std::make_pair(0U, X86::VR128RegisterClass);
15370      }
15371      break;
15372    }
15373  }
15374
15375  // Use the default implementation in TargetLowering to convert the register
15376  // constraint into a member of a register class.
15377  std::pair<unsigned, const TargetRegisterClass*> Res;
15378  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
15379
15380  // Not found as a standard register?
15381  if (Res.second == 0) {
15382    // Map st(0) -> st(7) -> ST0
15383    if (Constraint.size() == 7 && Constraint[0] == '{' &&
15384        tolower(Constraint[1]) == 's' &&
15385        tolower(Constraint[2]) == 't' &&
15386        Constraint[3] == '(' &&
15387        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
15388        Constraint[5] == ')' &&
15389        Constraint[6] == '}') {
15390
15391      Res.first = X86::ST0+Constraint[4]-'0';
15392      Res.second = X86::RFP80RegisterClass;
15393      return Res;
15394    }
15395
15396    // GCC allows "st(0)" to be called just plain "st".
15397    if (StringRef("{st}").equals_lower(Constraint)) {
15398      Res.first = X86::ST0;
15399      Res.second = X86::RFP80RegisterClass;
15400      return Res;
15401    }
15402
15403    // flags -> EFLAGS
15404    if (StringRef("{flags}").equals_lower(Constraint)) {
15405      Res.first = X86::EFLAGS;
15406      Res.second = X86::CCRRegisterClass;
15407      return Res;
15408    }
15409
15410    // 'A' means EAX + EDX.
15411    if (Constraint == "A") {
15412      Res.first = X86::EAX;
15413      Res.second = X86::GR32_ADRegisterClass;
15414      return Res;
15415    }
15416    return Res;
15417  }
15418
15419  // Otherwise, check to see if this is a register class of the wrong value
15420  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
15421  // turn into {ax},{dx}.
15422  if (Res.second->hasType(VT))
15423    return Res;   // Correct type already, nothing to do.
15424
15425  // All of the single-register GCC register classes map their values onto
15426  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
15427  // really want an 8-bit or 32-bit register, map to the appropriate register
15428  // class and return the appropriate register.
15429  if (Res.second == X86::GR16RegisterClass) {
15430    if (VT == MVT::i8) {
15431      unsigned DestReg = 0;
15432      switch (Res.first) {
15433      default: break;
15434      case X86::AX: DestReg = X86::AL; break;
15435      case X86::DX: DestReg = X86::DL; break;
15436      case X86::CX: DestReg = X86::CL; break;
15437      case X86::BX: DestReg = X86::BL; break;
15438      }
15439      if (DestReg) {
15440        Res.first = DestReg;
15441        Res.second = X86::GR8RegisterClass;
15442      }
15443    } else if (VT == MVT::i32) {
15444      unsigned DestReg = 0;
15445      switch (Res.first) {
15446      default: break;
15447      case X86::AX: DestReg = X86::EAX; break;
15448      case X86::DX: DestReg = X86::EDX; break;
15449      case X86::CX: DestReg = X86::ECX; break;
15450      case X86::BX: DestReg = X86::EBX; break;
15451      case X86::SI: DestReg = X86::ESI; break;
15452      case X86::DI: DestReg = X86::EDI; break;
15453      case X86::BP: DestReg = X86::EBP; break;
15454      case X86::SP: DestReg = X86::ESP; break;
15455      }
15456      if (DestReg) {
15457        Res.first = DestReg;
15458        Res.second = X86::GR32RegisterClass;
15459      }
15460    } else if (VT == MVT::i64) {
15461      unsigned DestReg = 0;
15462      switch (Res.first) {
15463      default: break;
15464      case X86::AX: DestReg = X86::RAX; break;
15465      case X86::DX: DestReg = X86::RDX; break;
15466      case X86::CX: DestReg = X86::RCX; break;
15467      case X86::BX: DestReg = X86::RBX; break;
15468      case X86::SI: DestReg = X86::RSI; break;
15469      case X86::DI: DestReg = X86::RDI; break;
15470      case X86::BP: DestReg = X86::RBP; break;
15471      case X86::SP: DestReg = X86::RSP; break;
15472      }
15473      if (DestReg) {
15474        Res.first = DestReg;
15475        Res.second = X86::GR64RegisterClass;
15476      }
15477    }
15478  } else if (Res.second == X86::FR32RegisterClass ||
15479             Res.second == X86::FR64RegisterClass ||
15480             Res.second == X86::VR128RegisterClass) {
15481    // Handle references to XMM physical registers that got mapped into the
15482    // wrong class.  This can happen with constraints like {xmm0} where the
15483    // target independent register mapper will just pick the first match it can
15484    // find, ignoring the required type.
15485    if (VT == MVT::f32)
15486      Res.second = X86::FR32RegisterClass;
15487    else if (VT == MVT::f64)
15488      Res.second = X86::FR64RegisterClass;
15489    else if (X86::VR128RegisterClass->hasType(VT))
15490      Res.second = X86::VR128RegisterClass;
15491  }
15492
15493  return Res;
15494}
15495