X86ISelLowering.cpp revision 1449f29100a0d3950a1a17e962f7cf718198e283
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "llvm/CallingConv.h"
22#include "llvm/Constants.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/GlobalAlias.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/Function.h"
27#include "llvm/Instructions.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/LLVMContext.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineJumpTableInfo.h"
34#include "llvm/CodeGen/MachineModuleInfo.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/PseudoSourceValue.h"
37#include "llvm/MC/MCAsmInfo.h"
38#include "llvm/MC/MCContext.h"
39#include "llvm/MC/MCExpr.h"
40#include "llvm/MC/MCSymbol.h"
41#include "llvm/ADT/BitVector.h"
42#include "llvm/ADT/SmallSet.h"
43#include "llvm/ADT/Statistic.h"
44#include "llvm/ADT/StringExtras.h"
45#include "llvm/ADT/VectorExtras.h"
46#include "llvm/Support/CommandLine.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/Dwarf.h"
49#include "llvm/Support/ErrorHandling.h"
50#include "llvm/Support/MathExtras.h"
51#include "llvm/Support/raw_ostream.h"
52using namespace llvm;
53using namespace dwarf;
54
55STATISTIC(NumTailCalls, "Number of tail calls");
56
57static cl::opt<bool>
58DisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX"));
59
60// Disable16Bit - 16-bit operations typically have a larger encoding than
61// corresponding 32-bit instructions, and 16-bit code is slow on some
62// processors. This is an experimental flag to disable 16-bit operations
63// (which forces them to be Legalized to 32-bit operations).
64static cl::opt<bool>
65Disable16Bit("disable-16bit", cl::Hidden,
66             cl::desc("Disable use of 16-bit instructions"));
67
68// Forward declarations.
69static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
70                       SDValue V2);
71
72static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
73  switch (TM.getSubtarget<X86Subtarget>().TargetType) {
74  default: llvm_unreachable("unknown subtarget type");
75  case X86Subtarget::isDarwin:
76    if (TM.getSubtarget<X86Subtarget>().is64Bit())
77      return new X8664_MachoTargetObjectFile();
78    return new TargetLoweringObjectFileMachO();
79  case X86Subtarget::isELF:
80   if (TM.getSubtarget<X86Subtarget>().is64Bit())
81     return new X8664_ELFTargetObjectFile(TM);
82    return new X8632_ELFTargetObjectFile(TM);
83  case X86Subtarget::isMingw:
84  case X86Subtarget::isCygwin:
85  case X86Subtarget::isWindows:
86    return new TargetLoweringObjectFileCOFF();
87  }
88}
89
90X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
91  : TargetLowering(TM, createTLOF(TM)) {
92  Subtarget = &TM.getSubtarget<X86Subtarget>();
93  X86ScalarSSEf64 = Subtarget->hasSSE2();
94  X86ScalarSSEf32 = Subtarget->hasSSE1();
95  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
96
97  RegInfo = TM.getRegisterInfo();
98  TD = getTargetData();
99
100  // Set up the TargetLowering object.
101
102  // X86 is weird, it always uses i8 for shift amounts and setcc results.
103  setShiftAmountType(MVT::i8);
104  setBooleanContents(ZeroOrOneBooleanContent);
105  setSchedulingPreference(SchedulingForRegPressure);
106  setStackPointerRegisterToSaveRestore(X86StackPtr);
107
108  if (Subtarget->isTargetDarwin()) {
109    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
110    setUseUnderscoreSetJmp(false);
111    setUseUnderscoreLongJmp(false);
112  } else if (Subtarget->isTargetMingw()) {
113    // MS runtime is weird: it exports _setjmp, but longjmp!
114    setUseUnderscoreSetJmp(true);
115    setUseUnderscoreLongJmp(false);
116  } else {
117    setUseUnderscoreSetJmp(true);
118    setUseUnderscoreLongJmp(true);
119  }
120
121  // Set up the register classes.
122  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
123  if (!Disable16Bit)
124    addRegisterClass(MVT::i16, X86::GR16RegisterClass);
125  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
126  if (Subtarget->is64Bit())
127    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
128
129  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
130
131  // We don't accept any truncstore of integer registers.
132  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
133  if (!Disable16Bit)
134    setTruncStoreAction(MVT::i64, MVT::i16, Expand);
135  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
136  if (!Disable16Bit)
137    setTruncStoreAction(MVT::i32, MVT::i16, Expand);
138  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
139  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
140
141  // SETOEQ and SETUNE require checking two conditions.
142  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
143  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
144  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
145  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
146  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
147  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
148
149  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
150  // operation.
151  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
152  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
153  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
154
155  if (Subtarget->is64Bit()) {
156    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
157    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
158  } else if (!UseSoftFloat) {
159    if (X86ScalarSSEf64) {
160      // We have an impenetrably clever algorithm for ui64->double only.
161      setOperationAction(ISD::UINT_TO_FP   , MVT::i64  , Custom);
162    }
163    // We have an algorithm for SSE2, and we turn this into a 64-bit
164    // FILD for other targets.
165    setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Custom);
166  }
167
168  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
169  // this operation.
170  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
171  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
172
173  if (!UseSoftFloat) {
174    // SSE has no i16 to fp conversion, only i32
175    if (X86ScalarSSEf32) {
176      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
177      // f32 and f64 cases are Legal, f80 case is not
178      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
179    } else {
180      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
181      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
182    }
183  } else {
184    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
185    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
186  }
187
188  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
189  // are Legal, f80 is custom lowered.
190  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
191  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
192
193  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
194  // this operation.
195  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
196  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
197
198  if (X86ScalarSSEf32) {
199    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
200    // f32 and f64 cases are Legal, f80 case is not
201    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
202  } else {
203    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
204    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
205  }
206
207  // Handle FP_TO_UINT by promoting the destination to a larger signed
208  // conversion.
209  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
210  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
211  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
212
213  if (Subtarget->is64Bit()) {
214    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
215    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
216  } else if (!UseSoftFloat) {
217    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
218      // Expand FP_TO_UINT into a select.
219      // FIXME: We would like to use a Custom expander here eventually to do
220      // the optimal thing for SSE vs. the default expansion in the legalizer.
221      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
222    else
223      // With SSE3 we can use fisttpll to convert to a signed i64; without
224      // SSE, we're stuck with a fistpll.
225      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
226  }
227
228  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
229  if (!X86ScalarSSEf64) {
230    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
231    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
232  }
233
234  // Scalar integer divide and remainder are lowered to use operations that
235  // produce two results, to match the available instructions. This exposes
236  // the two-result form to trivial CSE, which is able to combine x/y and x%y
237  // into a single instruction.
238  //
239  // Scalar integer multiply-high is also lowered to use two-result
240  // operations, to match the available instructions. However, plain multiply
241  // (low) operations are left as Legal, as there are single-result
242  // instructions for this in x86. Using the two-result multiply instructions
243  // when both high and low results are needed must be arranged by dagcombine.
244  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
245  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
246  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
247  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
248  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
249  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
250  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
251  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
252  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
253  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
254  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
255  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
256  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
257  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
258  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
259  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
260  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
261  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
262  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
263  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
264  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
265  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
266  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
267  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
268
269  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
270  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
271  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
272  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
273  if (Subtarget->is64Bit())
274    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
275  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
276  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
277  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
278  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
279  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
280  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
281  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
282  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
283
284  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
285  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
286  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
287  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
288  if (Disable16Bit) {
289    setOperationAction(ISD::CTTZ           , MVT::i16  , Expand);
290    setOperationAction(ISD::CTLZ           , MVT::i16  , Expand);
291  } else {
292    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
293    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
294  }
295  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
296  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
297  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
298  if (Subtarget->is64Bit()) {
299    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
300    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
301    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
302  }
303
304  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
305  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
306
307  // These should be promoted to a larger select which is supported.
308  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
309  // X86 wants to expand cmov itself.
310  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
311  if (Disable16Bit)
312    setOperationAction(ISD::SELECT        , MVT::i16  , Expand);
313  else
314    setOperationAction(ISD::SELECT        , MVT::i16  , Custom);
315  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
316  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
317  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
318  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
319  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
320  if (Disable16Bit)
321    setOperationAction(ISD::SETCC         , MVT::i16  , Expand);
322  else
323    setOperationAction(ISD::SETCC         , MVT::i16  , Custom);
324  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
325  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
326  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
327  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
328  if (Subtarget->is64Bit()) {
329    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
330    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
331  }
332  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
333
334  // Darwin ABI issue.
335  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
336  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
337  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
338  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
339  if (Subtarget->is64Bit())
340    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
341  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
342  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
343  if (Subtarget->is64Bit()) {
344    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
345    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
346    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
347    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
348    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
349  }
350  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
351  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
352  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
353  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
354  if (Subtarget->is64Bit()) {
355    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
356    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
357    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
358  }
359
360  if (Subtarget->hasSSE1())
361    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
362
363  if (!Subtarget->hasSSE2())
364    setOperationAction(ISD::MEMBARRIER    , MVT::Other, Expand);
365
366  // Expand certain atomics
367  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom);
368  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom);
369  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
370  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
371
372  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom);
373  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom);
374  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
375  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
376
377  if (!Subtarget->is64Bit()) {
378    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
379    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
380    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
381    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
382    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
383    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
384    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
385  }
386
387  // FIXME - use subtarget debug flags
388  if (!Subtarget->isTargetDarwin() &&
389      !Subtarget->isTargetELF() &&
390      !Subtarget->isTargetCygMing()) {
391    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
392  }
393
394  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
395  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
396  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
397  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
398  if (Subtarget->is64Bit()) {
399    setExceptionPointerRegister(X86::RAX);
400    setExceptionSelectorRegister(X86::RDX);
401  } else {
402    setExceptionPointerRegister(X86::EAX);
403    setExceptionSelectorRegister(X86::EDX);
404  }
405  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
406  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
407
408  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
409
410  setOperationAction(ISD::TRAP, MVT::Other, Legal);
411
412  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
413  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
414  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
415  if (Subtarget->is64Bit()) {
416    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
417    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
418  } else {
419    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
420    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
421  }
422
423  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
424  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
425  if (Subtarget->is64Bit())
426    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
427  if (Subtarget->isTargetCygMing())
428    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
429  else
430    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
431
432  if (!UseSoftFloat && X86ScalarSSEf64) {
433    // f32 and f64 use SSE.
434    // Set up the FP register classes.
435    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
436    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
437
438    // Use ANDPD to simulate FABS.
439    setOperationAction(ISD::FABS , MVT::f64, Custom);
440    setOperationAction(ISD::FABS , MVT::f32, Custom);
441
442    // Use XORP to simulate FNEG.
443    setOperationAction(ISD::FNEG , MVT::f64, Custom);
444    setOperationAction(ISD::FNEG , MVT::f32, Custom);
445
446    // Use ANDPD and ORPD to simulate FCOPYSIGN.
447    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
448    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
449
450    // We don't support sin/cos/fmod
451    setOperationAction(ISD::FSIN , MVT::f64, Expand);
452    setOperationAction(ISD::FCOS , MVT::f64, Expand);
453    setOperationAction(ISD::FSIN , MVT::f32, Expand);
454    setOperationAction(ISD::FCOS , MVT::f32, Expand);
455
456    // Expand FP immediates into loads from the stack, except for the special
457    // cases we handle.
458    addLegalFPImmediate(APFloat(+0.0)); // xorpd
459    addLegalFPImmediate(APFloat(+0.0f)); // xorps
460  } else if (!UseSoftFloat && X86ScalarSSEf32) {
461    // Use SSE for f32, x87 for f64.
462    // Set up the FP register classes.
463    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
464    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
465
466    // Use ANDPS to simulate FABS.
467    setOperationAction(ISD::FABS , MVT::f32, Custom);
468
469    // Use XORP to simulate FNEG.
470    setOperationAction(ISD::FNEG , MVT::f32, Custom);
471
472    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
473
474    // Use ANDPS and ORPS to simulate FCOPYSIGN.
475    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
476    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
477
478    // We don't support sin/cos/fmod
479    setOperationAction(ISD::FSIN , MVT::f32, Expand);
480    setOperationAction(ISD::FCOS , MVT::f32, Expand);
481
482    // Special cases we handle for FP constants.
483    addLegalFPImmediate(APFloat(+0.0f)); // xorps
484    addLegalFPImmediate(APFloat(+0.0)); // FLD0
485    addLegalFPImmediate(APFloat(+1.0)); // FLD1
486    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
487    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
488
489    if (!UnsafeFPMath) {
490      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
491      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
492    }
493  } else if (!UseSoftFloat) {
494    // f32 and f64 in x87.
495    // Set up the FP register classes.
496    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
497    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
498
499    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
500    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
501    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
502    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
503
504    if (!UnsafeFPMath) {
505      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
506      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
507    }
508    addLegalFPImmediate(APFloat(+0.0)); // FLD0
509    addLegalFPImmediate(APFloat(+1.0)); // FLD1
510    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
511    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
512    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
513    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
514    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
515    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
516  }
517
518  // Long double always uses X87.
519  if (!UseSoftFloat) {
520    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
521    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
522    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
523    {
524      bool ignored;
525      APFloat TmpFlt(+0.0);
526      TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
527                     &ignored);
528      addLegalFPImmediate(TmpFlt);  // FLD0
529      TmpFlt.changeSign();
530      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
531      APFloat TmpFlt2(+1.0);
532      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
533                      &ignored);
534      addLegalFPImmediate(TmpFlt2);  // FLD1
535      TmpFlt2.changeSign();
536      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
537    }
538
539    if (!UnsafeFPMath) {
540      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
541      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
542    }
543  }
544
545  // Always use a library call for pow.
546  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
547  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
548  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
549
550  setOperationAction(ISD::FLOG, MVT::f80, Expand);
551  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
552  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
553  setOperationAction(ISD::FEXP, MVT::f80, Expand);
554  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
555
556  // First set operation action for all vector types to either promote
557  // (for widening) or expand (for scalarization). Then we will selectively
558  // turn on ones that can be effectively codegen'd.
559  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
560       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
561    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
562    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
563    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
564    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
565    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
566    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
567    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
568    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
569    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
570    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
571    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
572    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
573    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
574    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
575    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
576    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
577    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
578    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
579    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
580    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
581    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
582    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
583    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
584    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
585    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
586    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
587    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
588    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
589    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
590    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
591    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
592    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
593    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
594    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
595    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
596    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
597    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
598    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
599    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
600    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
601    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
602    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
603    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
604    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
605    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
606    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
607    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
608    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
609    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
610    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
611    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
612    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
613    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
614    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
615         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
616      setTruncStoreAction((MVT::SimpleValueType)VT,
617                          (MVT::SimpleValueType)InnerVT, Expand);
618    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
619    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
620    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
621  }
622
623  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
624  // with -msoft-float, disable use of MMX as well.
625  if (!UseSoftFloat && !DisableMMX && Subtarget->hasMMX()) {
626    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
627    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
628    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
629    addRegisterClass(MVT::v2f32, X86::VR64RegisterClass);
630    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
631
632    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
633    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
634    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
635    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
636
637    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
638    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
639    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
640    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
641
642    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
643    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
644
645    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
646    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
647    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
648    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
649    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
650    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
651    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
652
653    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
654    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
655    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
656    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
657    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
658    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
659    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
660
661    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
662    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
663    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
664    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
665    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
666    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
667    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
668
669    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
670    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
671    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
672    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
673    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
674    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
675    setOperationAction(ISD::LOAD,               MVT::v2f32, Promote);
676    AddPromotedToType (ISD::LOAD,               MVT::v2f32, MVT::v1i64);
677    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
678
679    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
680    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
681    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
682    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f32, Custom);
683    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
684
685    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
686    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
687    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
688    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
689
690    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2f32, Custom);
691    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
692    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
693    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
694
695    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i16, Custom);
696
697    setOperationAction(ISD::SELECT,             MVT::v8i8, Promote);
698    setOperationAction(ISD::SELECT,             MVT::v4i16, Promote);
699    setOperationAction(ISD::SELECT,             MVT::v2i32, Promote);
700    setOperationAction(ISD::SELECT,             MVT::v1i64, Custom);
701    setOperationAction(ISD::VSETCC,             MVT::v8i8, Custom);
702    setOperationAction(ISD::VSETCC,             MVT::v4i16, Custom);
703    setOperationAction(ISD::VSETCC,             MVT::v2i32, Custom);
704  }
705
706  if (!UseSoftFloat && Subtarget->hasSSE1()) {
707    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
708
709    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
710    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
711    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
712    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
713    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
714    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
715    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
716    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
717    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
718    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
719    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
720    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
721  }
722
723  if (!UseSoftFloat && Subtarget->hasSSE2()) {
724    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
725
726    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
727    // registers cannot be used even for integer operations.
728    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
729    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
730    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
731    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
732
733    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
734    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
735    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
736    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
737    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
738    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
739    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
740    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
741    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
742    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
743    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
744    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
745    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
746    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
747    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
748    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
749
750    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
751    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
752    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
753    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
754
755    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
756    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
757    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
758    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
759    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
760
761    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
762    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
763    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
764    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
765    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
766
767    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
768    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
769      EVT VT = (MVT::SimpleValueType)i;
770      // Do not attempt to custom lower non-power-of-2 vectors
771      if (!isPowerOf2_32(VT.getVectorNumElements()))
772        continue;
773      // Do not attempt to custom lower non-128-bit vectors
774      if (!VT.is128BitVector())
775        continue;
776      setOperationAction(ISD::BUILD_VECTOR,
777                         VT.getSimpleVT().SimpleTy, Custom);
778      setOperationAction(ISD::VECTOR_SHUFFLE,
779                         VT.getSimpleVT().SimpleTy, Custom);
780      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
781                         VT.getSimpleVT().SimpleTy, Custom);
782    }
783
784    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
785    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
786    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
787    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
788    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
789    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
790
791    if (Subtarget->is64Bit()) {
792      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
793      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
794    }
795
796    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
797    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
798      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
799      EVT VT = SVT;
800
801      // Do not attempt to promote non-128-bit vectors
802      if (!VT.is128BitVector()) {
803        continue;
804      }
805      setOperationAction(ISD::AND,    SVT, Promote);
806      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
807      setOperationAction(ISD::OR,     SVT, Promote);
808      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
809      setOperationAction(ISD::XOR,    SVT, Promote);
810      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
811      setOperationAction(ISD::LOAD,   SVT, Promote);
812      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
813      setOperationAction(ISD::SELECT, SVT, Promote);
814      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
815    }
816
817    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
818
819    // Custom lower v2i64 and v2f64 selects.
820    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
821    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
822    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
823    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
824
825    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
826    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
827    if (!DisableMMX && Subtarget->hasMMX()) {
828      setOperationAction(ISD::FP_TO_SINT,         MVT::v2i32, Custom);
829      setOperationAction(ISD::SINT_TO_FP,         MVT::v2i32, Custom);
830    }
831  }
832
833  if (Subtarget->hasSSE41()) {
834    // FIXME: Do we need to handle scalar-to-vector here?
835    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
836
837    // i8 and i16 vectors are custom , because the source register and source
838    // source memory operand types are not the same width.  f32 vectors are
839    // custom since the immediate controlling the insert encodes additional
840    // information.
841    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
842    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
843    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
844    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
845
846    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
847    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
848    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
849    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
850
851    if (Subtarget->is64Bit()) {
852      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
853      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
854    }
855  }
856
857  if (Subtarget->hasSSE42()) {
858    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
859  }
860
861  if (!UseSoftFloat && Subtarget->hasAVX()) {
862    addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
863    addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
864    addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
865    addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
866
867    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
868    setOperationAction(ISD::LOAD,               MVT::v8i32, Legal);
869    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
870    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
871    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
872    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
873    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
874    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
875    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
876    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
877    //setOperationAction(ISD::BUILD_VECTOR,       MVT::v8f32, Custom);
878    //setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8f32, Custom);
879    //setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8f32, Custom);
880    //setOperationAction(ISD::SELECT,             MVT::v8f32, Custom);
881    //setOperationAction(ISD::VSETCC,             MVT::v8f32, Custom);
882
883    // Operations to consider commented out -v16i16 v32i8
884    //setOperationAction(ISD::ADD,                MVT::v16i16, Legal);
885    setOperationAction(ISD::ADD,                MVT::v8i32, Custom);
886    setOperationAction(ISD::ADD,                MVT::v4i64, Custom);
887    //setOperationAction(ISD::SUB,                MVT::v32i8, Legal);
888    //setOperationAction(ISD::SUB,                MVT::v16i16, Legal);
889    setOperationAction(ISD::SUB,                MVT::v8i32, Custom);
890    setOperationAction(ISD::SUB,                MVT::v4i64, Custom);
891    //setOperationAction(ISD::MUL,                MVT::v16i16, Legal);
892    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
893    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
894    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
895    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
896    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
897    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
898
899    setOperationAction(ISD::VSETCC,             MVT::v4f64, Custom);
900    // setOperationAction(ISD::VSETCC,             MVT::v32i8, Custom);
901    // setOperationAction(ISD::VSETCC,             MVT::v16i16, Custom);
902    setOperationAction(ISD::VSETCC,             MVT::v8i32, Custom);
903
904    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v32i8, Custom);
905    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i16, Custom);
906    // setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i16, Custom);
907    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i32, Custom);
908    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8f32, Custom);
909
910    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f64, Custom);
911    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i64, Custom);
912    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f64, Custom);
913    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i64, Custom);
914    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f64, Custom);
915    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f64, Custom);
916
917#if 0
918    // Not sure we want to do this since there are no 256-bit integer
919    // operations in AVX
920
921    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
922    // This includes 256-bit vectors
923    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; ++i) {
924      EVT VT = (MVT::SimpleValueType)i;
925
926      // Do not attempt to custom lower non-power-of-2 vectors
927      if (!isPowerOf2_32(VT.getVectorNumElements()))
928        continue;
929
930      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
931      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
932      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
933    }
934
935    if (Subtarget->is64Bit()) {
936      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i64, Custom);
937      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i64, Custom);
938    }
939#endif
940
941#if 0
942    // Not sure we want to do this since there are no 256-bit integer
943    // operations in AVX
944
945    // Promote v32i8, v16i16, v8i32 load, select, and, or, xor to v4i64.
946    // Including 256-bit vectors
947    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; i++) {
948      EVT VT = (MVT::SimpleValueType)i;
949
950      if (!VT.is256BitVector()) {
951        continue;
952      }
953      setOperationAction(ISD::AND,    VT, Promote);
954      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
955      setOperationAction(ISD::OR,     VT, Promote);
956      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
957      setOperationAction(ISD::XOR,    VT, Promote);
958      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
959      setOperationAction(ISD::LOAD,   VT, Promote);
960      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
961      setOperationAction(ISD::SELECT, VT, Promote);
962      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
963    }
964
965    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
966#endif
967  }
968
969  // We want to custom lower some of our intrinsics.
970  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
971
972  // Add/Sub/Mul with overflow operations are custom lowered.
973  setOperationAction(ISD::SADDO, MVT::i32, Custom);
974  setOperationAction(ISD::SADDO, MVT::i64, Custom);
975  setOperationAction(ISD::UADDO, MVT::i32, Custom);
976  setOperationAction(ISD::UADDO, MVT::i64, Custom);
977  setOperationAction(ISD::SSUBO, MVT::i32, Custom);
978  setOperationAction(ISD::SSUBO, MVT::i64, Custom);
979  setOperationAction(ISD::USUBO, MVT::i32, Custom);
980  setOperationAction(ISD::USUBO, MVT::i64, Custom);
981  setOperationAction(ISD::SMULO, MVT::i32, Custom);
982  setOperationAction(ISD::SMULO, MVT::i64, Custom);
983
984  if (!Subtarget->is64Bit()) {
985    // These libcalls are not available in 32-bit.
986    setLibcallName(RTLIB::SHL_I128, 0);
987    setLibcallName(RTLIB::SRL_I128, 0);
988    setLibcallName(RTLIB::SRA_I128, 0);
989  }
990
991  // We have target-specific dag combine patterns for the following nodes:
992  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
993  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
994  setTargetDAGCombine(ISD::BUILD_VECTOR);
995  setTargetDAGCombine(ISD::SELECT);
996  setTargetDAGCombine(ISD::SHL);
997  setTargetDAGCombine(ISD::SRA);
998  setTargetDAGCombine(ISD::SRL);
999  setTargetDAGCombine(ISD::OR);
1000  setTargetDAGCombine(ISD::STORE);
1001  setTargetDAGCombine(ISD::MEMBARRIER);
1002  setTargetDAGCombine(ISD::ZERO_EXTEND);
1003  if (Subtarget->is64Bit())
1004    setTargetDAGCombine(ISD::MUL);
1005
1006  computeRegisterProperties();
1007
1008  // FIXME: These should be based on subtarget info. Plus, the values should
1009  // be smaller when we are in optimizing for size mode.
1010  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1011  maxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores
1012  maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
1013  setPrefLoopAlignment(16);
1014  benefitFromCodePlacementOpt = true;
1015}
1016
1017
1018MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
1019  return MVT::i8;
1020}
1021
1022
1023/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1024/// the desired ByVal argument alignment.
1025static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
1026  if (MaxAlign == 16)
1027    return;
1028  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1029    if (VTy->getBitWidth() == 128)
1030      MaxAlign = 16;
1031  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1032    unsigned EltAlign = 0;
1033    getMaxByValAlign(ATy->getElementType(), EltAlign);
1034    if (EltAlign > MaxAlign)
1035      MaxAlign = EltAlign;
1036  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1037    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1038      unsigned EltAlign = 0;
1039      getMaxByValAlign(STy->getElementType(i), EltAlign);
1040      if (EltAlign > MaxAlign)
1041        MaxAlign = EltAlign;
1042      if (MaxAlign == 16)
1043        break;
1044    }
1045  }
1046  return;
1047}
1048
1049/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1050/// function arguments in the caller parameter area. For X86, aggregates
1051/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1052/// are at 4-byte boundaries.
1053unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1054  if (Subtarget->is64Bit()) {
1055    // Max of 8 and alignment of type.
1056    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1057    if (TyAlign > 8)
1058      return TyAlign;
1059    return 8;
1060  }
1061
1062  unsigned Align = 4;
1063  if (Subtarget->hasSSE1())
1064    getMaxByValAlign(Ty, Align);
1065  return Align;
1066}
1067
1068/// getOptimalMemOpType - Returns the target specific optimal type for load
1069/// and store operations as a result of memset, memcpy, and memmove
1070/// lowering. It returns MVT::iAny if SelectionDAG should be responsible for
1071/// determining it.
1072EVT
1073X86TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align,
1074                                       bool isSrcConst, bool isSrcStr,
1075                                       SelectionDAG &DAG) const {
1076  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1077  // linux.  This is because the stack realignment code can't handle certain
1078  // cases like PR2962.  This should be removed when PR2962 is fixed.
1079  const Function *F = DAG.getMachineFunction().getFunction();
1080  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
1081  if (!NoImplicitFloatOps && Subtarget->getStackAlignment() >= 16) {
1082    if ((isSrcConst || isSrcStr) && Subtarget->hasSSE2() && Size >= 16)
1083      return MVT::v4i32;
1084    if ((isSrcConst || isSrcStr) && Subtarget->hasSSE1() && Size >= 16)
1085      return MVT::v4f32;
1086  }
1087  if (Subtarget->is64Bit() && Size >= 8)
1088    return MVT::i64;
1089  return MVT::i32;
1090}
1091
1092/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1093/// current function.  The returned value is a member of the
1094/// MachineJumpTableInfo::JTEntryKind enum.
1095unsigned X86TargetLowering::getJumpTableEncoding() const {
1096  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1097  // symbol.
1098  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1099      Subtarget->isPICStyleGOT())
1100    return MachineJumpTableInfo::EK_Custom32;
1101
1102  // Otherwise, use the normal jump table encoding heuristics.
1103  return TargetLowering::getJumpTableEncoding();
1104}
1105
1106/// getPICBaseSymbol - Return the X86-32 PIC base.
1107MCSymbol *
1108X86TargetLowering::getPICBaseSymbol(const MachineFunction *MF,
1109                                    MCContext &Ctx) const {
1110  const MCAsmInfo &MAI = *getTargetMachine().getMCAsmInfo();
1111  return Ctx.GetOrCreateTemporarySymbol(Twine(MAI.getPrivateGlobalPrefix())+
1112                                        Twine(MF->getFunctionNumber())+"$pb");
1113}
1114
1115
1116const MCExpr *
1117X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1118                                             const MachineBasicBlock *MBB,
1119                                             unsigned uid,MCContext &Ctx) const{
1120  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1121         Subtarget->isPICStyleGOT());
1122  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1123  // entries.
1124  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1125                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1126}
1127
1128/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1129/// jumptable.
1130SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1131                                                    SelectionDAG &DAG) const {
1132  if (!Subtarget->is64Bit())
1133    // This doesn't have DebugLoc associated with it, but is not really the
1134    // same as a Register.
1135    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc::getUnknownLoc(),
1136                       getPointerTy());
1137  return Table;
1138}
1139
1140/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1141/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1142/// MCExpr.
1143const MCExpr *X86TargetLowering::
1144getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1145                             MCContext &Ctx) const {
1146  // X86-64 uses RIP relative addressing based on the jump table label.
1147  if (Subtarget->isPICStyleRIPRel())
1148    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1149
1150  // Otherwise, the reference is relative to the PIC base.
1151  return MCSymbolRefExpr::Create(getPICBaseSymbol(MF, Ctx), Ctx);
1152}
1153
1154/// getFunctionAlignment - Return the Log2 alignment of this function.
1155unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const {
1156  return F->hasFnAttr(Attribute::OptimizeForSize) ? 0 : 4;
1157}
1158
1159//===----------------------------------------------------------------------===//
1160//               Return Value Calling Convention Implementation
1161//===----------------------------------------------------------------------===//
1162
1163#include "X86GenCallingConv.inc"
1164
1165bool
1166X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1167                        const SmallVectorImpl<EVT> &OutTys,
1168                        const SmallVectorImpl<ISD::ArgFlagsTy> &ArgsFlags,
1169                        SelectionDAG &DAG) {
1170  SmallVector<CCValAssign, 16> RVLocs;
1171  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1172                 RVLocs, *DAG.getContext());
1173  return CCInfo.CheckReturn(OutTys, ArgsFlags, RetCC_X86);
1174}
1175
1176SDValue
1177X86TargetLowering::LowerReturn(SDValue Chain,
1178                               CallingConv::ID CallConv, bool isVarArg,
1179                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1180                               DebugLoc dl, SelectionDAG &DAG) {
1181
1182  SmallVector<CCValAssign, 16> RVLocs;
1183  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1184                 RVLocs, *DAG.getContext());
1185  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1186
1187  // Add the regs to the liveout set for the function.
1188  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1189  for (unsigned i = 0; i != RVLocs.size(); ++i)
1190    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1191      MRI.addLiveOut(RVLocs[i].getLocReg());
1192
1193  SDValue Flag;
1194
1195  SmallVector<SDValue, 6> RetOps;
1196  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1197  // Operand #1 = Bytes To Pop
1198  RetOps.push_back(DAG.getTargetConstant(getBytesToPopOnReturn(), MVT::i16));
1199
1200  // Copy the result values into the output registers.
1201  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1202    CCValAssign &VA = RVLocs[i];
1203    assert(VA.isRegLoc() && "Can only return in registers!");
1204    SDValue ValToCopy = Outs[i].Val;
1205
1206    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1207    // the RET instruction and handled by the FP Stackifier.
1208    if (VA.getLocReg() == X86::ST0 ||
1209        VA.getLocReg() == X86::ST1) {
1210      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1211      // change the value to the FP stack register class.
1212      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1213        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1214      RetOps.push_back(ValToCopy);
1215      // Don't emit a copytoreg.
1216      continue;
1217    }
1218
1219    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1220    // which is returned in RAX / RDX.
1221    if (Subtarget->is64Bit()) {
1222      EVT ValVT = ValToCopy.getValueType();
1223      if (ValVT.isVector() && ValVT.getSizeInBits() == 64) {
1224        ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, ValToCopy);
1225        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1)
1226          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, ValToCopy);
1227      }
1228    }
1229
1230    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1231    Flag = Chain.getValue(1);
1232  }
1233
1234  // The x86-64 ABI for returning structs by value requires that we copy
1235  // the sret argument into %rax for the return. We saved the argument into
1236  // a virtual register in the entry block, so now we copy the value out
1237  // and into %rax.
1238  if (Subtarget->is64Bit() &&
1239      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1240    MachineFunction &MF = DAG.getMachineFunction();
1241    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1242    unsigned Reg = FuncInfo->getSRetReturnReg();
1243    if (!Reg) {
1244      Reg = MRI.createVirtualRegister(getRegClassFor(MVT::i64));
1245      FuncInfo->setSRetReturnReg(Reg);
1246    }
1247    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1248
1249    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1250    Flag = Chain.getValue(1);
1251
1252    // RAX now acts like a return value.
1253    MRI.addLiveOut(X86::RAX);
1254  }
1255
1256  RetOps[0] = Chain;  // Update chain.
1257
1258  // Add the flag if we have it.
1259  if (Flag.getNode())
1260    RetOps.push_back(Flag);
1261
1262  return DAG.getNode(X86ISD::RET_FLAG, dl,
1263                     MVT::Other, &RetOps[0], RetOps.size());
1264}
1265
1266/// LowerCallResult - Lower the result values of a call into the
1267/// appropriate copies out of appropriate physical registers.
1268///
1269SDValue
1270X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1271                                   CallingConv::ID CallConv, bool isVarArg,
1272                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1273                                   DebugLoc dl, SelectionDAG &DAG,
1274                                   SmallVectorImpl<SDValue> &InVals) {
1275
1276  // Assign locations to each value returned by this call.
1277  SmallVector<CCValAssign, 16> RVLocs;
1278  bool Is64Bit = Subtarget->is64Bit();
1279  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1280                 RVLocs, *DAG.getContext());
1281  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1282
1283  // Copy all of the result registers out of their specified physreg.
1284  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1285    CCValAssign &VA = RVLocs[i];
1286    EVT CopyVT = VA.getValVT();
1287
1288    // If this is x86-64, and we disabled SSE, we can't return FP values
1289    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1290        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1291      llvm_report_error("SSE register return with SSE disabled");
1292    }
1293
1294    // If this is a call to a function that returns an fp value on the floating
1295    // point stack, but where we prefer to use the value in xmm registers, copy
1296    // it out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1297    if ((VA.getLocReg() == X86::ST0 ||
1298         VA.getLocReg() == X86::ST1) &&
1299        isScalarFPTypeInSSEReg(VA.getValVT())) {
1300      CopyVT = MVT::f80;
1301    }
1302
1303    SDValue Val;
1304    if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
1305      // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1306      if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1307        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1308                                   MVT::v2i64, InFlag).getValue(1);
1309        Val = Chain.getValue(0);
1310        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1311                          Val, DAG.getConstant(0, MVT::i64));
1312      } else {
1313        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1314                                   MVT::i64, InFlag).getValue(1);
1315        Val = Chain.getValue(0);
1316      }
1317      Val = DAG.getNode(ISD::BIT_CONVERT, dl, CopyVT, Val);
1318    } else {
1319      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1320                                 CopyVT, InFlag).getValue(1);
1321      Val = Chain.getValue(0);
1322    }
1323    InFlag = Chain.getValue(2);
1324
1325    if (CopyVT != VA.getValVT()) {
1326      // Round the F80 the right size, which also moves to the appropriate xmm
1327      // register.
1328      Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1329                        // This truncation won't change the value.
1330                        DAG.getIntPtrConstant(1));
1331    }
1332
1333    InVals.push_back(Val);
1334  }
1335
1336  return Chain;
1337}
1338
1339
1340//===----------------------------------------------------------------------===//
1341//                C & StdCall & Fast Calling Convention implementation
1342//===----------------------------------------------------------------------===//
1343//  StdCall calling convention seems to be standard for many Windows' API
1344//  routines and around. It differs from C calling convention just a little:
1345//  callee should clean up the stack, not caller. Symbols should be also
1346//  decorated in some fancy way :) It doesn't support any vector arguments.
1347//  For info on fast calling convention see Fast Calling Convention (tail call)
1348//  implementation LowerX86_32FastCCCallTo.
1349
1350/// CallIsStructReturn - Determines whether a call uses struct return
1351/// semantics.
1352static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1353  if (Outs.empty())
1354    return false;
1355
1356  return Outs[0].Flags.isSRet();
1357}
1358
1359/// ArgsAreStructReturn - Determines whether a function uses struct
1360/// return semantics.
1361static bool
1362ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1363  if (Ins.empty())
1364    return false;
1365
1366  return Ins[0].Flags.isSRet();
1367}
1368
1369/// IsCalleePop - Determines whether the callee is required to pop its
1370/// own arguments. Callee pop is necessary to support tail calls.
1371bool X86TargetLowering::IsCalleePop(bool IsVarArg, CallingConv::ID CallingConv){
1372  if (IsVarArg)
1373    return false;
1374
1375  switch (CallingConv) {
1376  default:
1377    return false;
1378  case CallingConv::X86_StdCall:
1379    return !Subtarget->is64Bit();
1380  case CallingConv::X86_FastCall:
1381    return !Subtarget->is64Bit();
1382  case CallingConv::Fast:
1383    return GuaranteedTailCallOpt;
1384  case CallingConv::GHC:
1385    return GuaranteedTailCallOpt;
1386  }
1387}
1388
1389/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1390/// given CallingConvention value.
1391CCAssignFn *X86TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const {
1392  if (Subtarget->is64Bit()) {
1393    if (CC == CallingConv::GHC)
1394      return CC_X86_64_GHC;
1395    else if (Subtarget->isTargetWin64())
1396      return CC_X86_Win64_C;
1397    else
1398      return CC_X86_64_C;
1399  }
1400
1401  if (CC == CallingConv::X86_FastCall)
1402    return CC_X86_32_FastCall;
1403  else if (CC == CallingConv::Fast)
1404    return CC_X86_32_FastCC;
1405  else if (CC == CallingConv::GHC)
1406    return CC_X86_32_GHC;
1407  else
1408    return CC_X86_32_C;
1409}
1410
1411/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1412/// by "Src" to address "Dst" with size and alignment information specified by
1413/// the specific parameter attribute. The copy will be passed as a byval
1414/// function parameter.
1415static SDValue
1416CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1417                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1418                          DebugLoc dl) {
1419  SDValue SizeNode     = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1420  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1421                       /*AlwaysInline=*/true, NULL, 0, NULL, 0);
1422}
1423
1424/// IsTailCallConvention - Return true if the calling convention is one that
1425/// supports tail call optimization.
1426static bool IsTailCallConvention(CallingConv::ID CC) {
1427  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1428}
1429
1430/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1431/// a tailcall target by changing its ABI.
1432static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1433  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1434}
1435
1436SDValue
1437X86TargetLowering::LowerMemArgument(SDValue Chain,
1438                                    CallingConv::ID CallConv,
1439                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1440                                    DebugLoc dl, SelectionDAG &DAG,
1441                                    const CCValAssign &VA,
1442                                    MachineFrameInfo *MFI,
1443                                    unsigned i) {
1444  // Create the nodes corresponding to a load from this parameter slot.
1445  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1446  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1447  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1448  EVT ValVT;
1449
1450  // If value is passed by pointer we have address passed instead of the value
1451  // itself.
1452  if (VA.getLocInfo() == CCValAssign::Indirect)
1453    ValVT = VA.getLocVT();
1454  else
1455    ValVT = VA.getValVT();
1456
1457  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1458  // changed with more analysis.
1459  // In case of tail call optimization mark all arguments mutable. Since they
1460  // could be overwritten by lowering of arguments in case of a tail call.
1461  if (Flags.isByVal()) {
1462    int FI = MFI->CreateFixedObject(Flags.getByValSize(),
1463                                    VA.getLocMemOffset(), isImmutable, false);
1464    return DAG.getFrameIndex(FI, getPointerTy());
1465  } else {
1466    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1467                                    VA.getLocMemOffset(), isImmutable, false);
1468    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1469    return DAG.getLoad(ValVT, dl, Chain, FIN,
1470                       PseudoSourceValue::getFixedStack(FI), 0,
1471                       false, false, 0);
1472  }
1473}
1474
1475SDValue
1476X86TargetLowering::LowerFormalArguments(SDValue Chain,
1477                                        CallingConv::ID CallConv,
1478                                        bool isVarArg,
1479                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1480                                        DebugLoc dl,
1481                                        SelectionDAG &DAG,
1482                                        SmallVectorImpl<SDValue> &InVals) {
1483  MachineFunction &MF = DAG.getMachineFunction();
1484  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1485
1486  const Function* Fn = MF.getFunction();
1487  if (Fn->hasExternalLinkage() &&
1488      Subtarget->isTargetCygMing() &&
1489      Fn->getName() == "main")
1490    FuncInfo->setForceFramePointer(true);
1491
1492  MachineFrameInfo *MFI = MF.getFrameInfo();
1493  bool Is64Bit = Subtarget->is64Bit();
1494  bool IsWin64 = Subtarget->isTargetWin64();
1495
1496  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1497         "Var args not supported with calling convention fastcc or ghc");
1498
1499  // Assign locations to all of the incoming arguments.
1500  SmallVector<CCValAssign, 16> ArgLocs;
1501  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1502                 ArgLocs, *DAG.getContext());
1503  CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv));
1504
1505  unsigned LastVal = ~0U;
1506  SDValue ArgValue;
1507  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1508    CCValAssign &VA = ArgLocs[i];
1509    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1510    // places.
1511    assert(VA.getValNo() != LastVal &&
1512           "Don't support value assigned to multiple locs yet");
1513    LastVal = VA.getValNo();
1514
1515    if (VA.isRegLoc()) {
1516      EVT RegVT = VA.getLocVT();
1517      TargetRegisterClass *RC = NULL;
1518      if (RegVT == MVT::i32)
1519        RC = X86::GR32RegisterClass;
1520      else if (Is64Bit && RegVT == MVT::i64)
1521        RC = X86::GR64RegisterClass;
1522      else if (RegVT == MVT::f32)
1523        RC = X86::FR32RegisterClass;
1524      else if (RegVT == MVT::f64)
1525        RC = X86::FR64RegisterClass;
1526      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1527        RC = X86::VR128RegisterClass;
1528      else if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
1529        RC = X86::VR64RegisterClass;
1530      else
1531        llvm_unreachable("Unknown argument type!");
1532
1533      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1534      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1535
1536      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1537      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1538      // right size.
1539      if (VA.getLocInfo() == CCValAssign::SExt)
1540        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1541                               DAG.getValueType(VA.getValVT()));
1542      else if (VA.getLocInfo() == CCValAssign::ZExt)
1543        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1544                               DAG.getValueType(VA.getValVT()));
1545      else if (VA.getLocInfo() == CCValAssign::BCvt)
1546        ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1547
1548      if (VA.isExtInLoc()) {
1549        // Handle MMX values passed in XMM regs.
1550        if (RegVT.isVector()) {
1551          ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1552                                 ArgValue, DAG.getConstant(0, MVT::i64));
1553          ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1554        } else
1555          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1556      }
1557    } else {
1558      assert(VA.isMemLoc());
1559      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1560    }
1561
1562    // If value is passed via pointer - do a load.
1563    if (VA.getLocInfo() == CCValAssign::Indirect)
1564      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue, NULL, 0,
1565                             false, false, 0);
1566
1567    InVals.push_back(ArgValue);
1568  }
1569
1570  // The x86-64 ABI for returning structs by value requires that we copy
1571  // the sret argument into %rax for the return. Save the argument into
1572  // a virtual register so that we can access it from the return points.
1573  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1574    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1575    unsigned Reg = FuncInfo->getSRetReturnReg();
1576    if (!Reg) {
1577      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1578      FuncInfo->setSRetReturnReg(Reg);
1579    }
1580    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1581    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1582  }
1583
1584  unsigned StackSize = CCInfo.getNextStackOffset();
1585  // Align stack specially for tail calls.
1586  if (FuncIsMadeTailCallSafe(CallConv))
1587    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1588
1589  // If the function takes variable number of arguments, make a frame index for
1590  // the start of the first vararg value... for expansion of llvm.va_start.
1591  if (isVarArg) {
1592    if (Is64Bit || CallConv != CallingConv::X86_FastCall) {
1593      VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize, true, false);
1594    }
1595    if (Is64Bit) {
1596      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1597
1598      // FIXME: We should really autogenerate these arrays
1599      static const unsigned GPR64ArgRegsWin64[] = {
1600        X86::RCX, X86::RDX, X86::R8,  X86::R9
1601      };
1602      static const unsigned XMMArgRegsWin64[] = {
1603        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1604      };
1605      static const unsigned GPR64ArgRegs64Bit[] = {
1606        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1607      };
1608      static const unsigned XMMArgRegs64Bit[] = {
1609        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1610        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1611      };
1612      const unsigned *GPR64ArgRegs, *XMMArgRegs;
1613
1614      if (IsWin64) {
1615        TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
1616        GPR64ArgRegs = GPR64ArgRegsWin64;
1617        XMMArgRegs = XMMArgRegsWin64;
1618      } else {
1619        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1620        GPR64ArgRegs = GPR64ArgRegs64Bit;
1621        XMMArgRegs = XMMArgRegs64Bit;
1622      }
1623      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1624                                                       TotalNumIntRegs);
1625      unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
1626                                                       TotalNumXMMRegs);
1627
1628      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1629      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1630             "SSE register cannot be used when SSE is disabled!");
1631      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1632             "SSE register cannot be used when SSE is disabled!");
1633      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1())
1634        // Kernel mode asks for SSE to be disabled, so don't push them
1635        // on the stack.
1636        TotalNumXMMRegs = 0;
1637
1638      // For X86-64, if there are vararg parameters that are passed via
1639      // registers, then we must store them to their spots on the stack so they
1640      // may be loaded by deferencing the result of va_next.
1641      VarArgsGPOffset = NumIntRegs * 8;
1642      VarArgsFPOffset = TotalNumIntRegs * 8 + NumXMMRegs * 16;
1643      RegSaveFrameIndex = MFI->CreateStackObject(TotalNumIntRegs * 8 +
1644                                                 TotalNumXMMRegs * 16, 16,
1645                                                 false);
1646
1647      // Store the integer parameter registers.
1648      SmallVector<SDValue, 8> MemOps;
1649      SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1650      unsigned Offset = VarArgsGPOffset;
1651      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1652        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1653                                  DAG.getIntPtrConstant(Offset));
1654        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1655                                     X86::GR64RegisterClass);
1656        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1657        SDValue Store =
1658          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1659                       PseudoSourceValue::getFixedStack(RegSaveFrameIndex),
1660                       Offset, false, false, 0);
1661        MemOps.push_back(Store);
1662        Offset += 8;
1663      }
1664
1665      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1666        // Now store the XMM (fp + vector) parameter registers.
1667        SmallVector<SDValue, 11> SaveXMMOps;
1668        SaveXMMOps.push_back(Chain);
1669
1670        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1671        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1672        SaveXMMOps.push_back(ALVal);
1673
1674        SaveXMMOps.push_back(DAG.getIntPtrConstant(RegSaveFrameIndex));
1675        SaveXMMOps.push_back(DAG.getIntPtrConstant(VarArgsFPOffset));
1676
1677        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1678          unsigned VReg = MF.addLiveIn(XMMArgRegs[NumXMMRegs],
1679                                       X86::VR128RegisterClass);
1680          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1681          SaveXMMOps.push_back(Val);
1682        }
1683        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1684                                     MVT::Other,
1685                                     &SaveXMMOps[0], SaveXMMOps.size()));
1686      }
1687
1688      if (!MemOps.empty())
1689        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1690                            &MemOps[0], MemOps.size());
1691    }
1692  }
1693
1694  // Some CCs need callee pop.
1695  if (IsCalleePop(isVarArg, CallConv)) {
1696    BytesToPopOnReturn  = StackSize; // Callee pops everything.
1697  } else {
1698    BytesToPopOnReturn  = 0; // Callee pops nothing.
1699    // If this is an sret function, the return should pop the hidden pointer.
1700    if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
1701      BytesToPopOnReturn = 4;
1702  }
1703
1704  if (!Is64Bit) {
1705    RegSaveFrameIndex = 0xAAAAAAA;   // RegSaveFrameIndex is X86-64 only.
1706    if (CallConv == CallingConv::X86_FastCall)
1707      VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1708  }
1709
1710  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1711
1712  return Chain;
1713}
1714
1715SDValue
1716X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1717                                    SDValue StackPtr, SDValue Arg,
1718                                    DebugLoc dl, SelectionDAG &DAG,
1719                                    const CCValAssign &VA,
1720                                    ISD::ArgFlagsTy Flags) {
1721  const unsigned FirstStackArgOffset = (Subtarget->isTargetWin64() ? 32 : 0);
1722  unsigned LocMemOffset = FirstStackArgOffset + VA.getLocMemOffset();
1723  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1724  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1725  if (Flags.isByVal()) {
1726    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1727  }
1728  return DAG.getStore(Chain, dl, Arg, PtrOff,
1729                      PseudoSourceValue::getStack(), LocMemOffset,
1730                      false, false, 0);
1731}
1732
1733/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1734/// optimization is performed and it is required.
1735SDValue
1736X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1737                                           SDValue &OutRetAddr, SDValue Chain,
1738                                           bool IsTailCall, bool Is64Bit,
1739                                           int FPDiff, DebugLoc dl) {
1740  // Adjust the Return address stack slot.
1741  EVT VT = getPointerTy();
1742  OutRetAddr = getReturnAddressFrameIndex(DAG);
1743
1744  // Load the "old" Return address.
1745  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, NULL, 0, false, false, 0);
1746  return SDValue(OutRetAddr.getNode(), 1);
1747}
1748
1749/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1750/// optimization is performed and it is required (FPDiff!=0).
1751static SDValue
1752EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1753                         SDValue Chain, SDValue RetAddrFrIdx,
1754                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1755  // Store the return address to the appropriate stack slot.
1756  if (!FPDiff) return Chain;
1757  // Calculate the new stack slot for the return address.
1758  int SlotSize = Is64Bit ? 8 : 4;
1759  int NewReturnAddrFI =
1760    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false, false);
1761  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1762  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1763  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1764                       PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0,
1765                       false, false, 0);
1766  return Chain;
1767}
1768
1769SDValue
1770X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1771                             CallingConv::ID CallConv, bool isVarArg,
1772                             bool &isTailCall,
1773                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1774                             const SmallVectorImpl<ISD::InputArg> &Ins,
1775                             DebugLoc dl, SelectionDAG &DAG,
1776                             SmallVectorImpl<SDValue> &InVals) {
1777  MachineFunction &MF = DAG.getMachineFunction();
1778  bool Is64Bit        = Subtarget->is64Bit();
1779  bool IsStructRet    = CallIsStructReturn(Outs);
1780  bool IsSibcall      = false;
1781
1782  if (isTailCall) {
1783    // Check if it's really possible to do a tail call.
1784    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1785                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1786                                                   Outs, Ins, DAG);
1787
1788    // Sibcalls are automatically detected tailcalls which do not require
1789    // ABI changes.
1790    if (!GuaranteedTailCallOpt && isTailCall)
1791      IsSibcall = true;
1792
1793    if (isTailCall)
1794      ++NumTailCalls;
1795  }
1796
1797  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1798         "Var args not supported with calling convention fastcc or ghc");
1799
1800  // Analyze operands of the call, assigning locations to each operand.
1801  SmallVector<CCValAssign, 16> ArgLocs;
1802  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1803                 ArgLocs, *DAG.getContext());
1804  CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv));
1805
1806  // Get a count of how many bytes are to be pushed on the stack.
1807  unsigned NumBytes = CCInfo.getNextStackOffset();
1808  if (IsSibcall)
1809    // This is a sibcall. The memory operands are available in caller's
1810    // own caller's stack.
1811    NumBytes = 0;
1812  else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
1813    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1814
1815  int FPDiff = 0;
1816  if (isTailCall && !IsSibcall) {
1817    // Lower arguments at fp - stackoffset + fpdiff.
1818    unsigned NumBytesCallerPushed =
1819      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1820    FPDiff = NumBytesCallerPushed - NumBytes;
1821
1822    // Set the delta of movement of the returnaddr stackslot.
1823    // But only set if delta is greater than previous delta.
1824    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1825      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1826  }
1827
1828  if (!IsSibcall)
1829    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1830
1831  SDValue RetAddrFrIdx;
1832  // Load return adress for tail calls.
1833  if (isTailCall && FPDiff)
1834    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
1835                                    Is64Bit, FPDiff, dl);
1836
1837  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1838  SmallVector<SDValue, 8> MemOpChains;
1839  SDValue StackPtr;
1840
1841  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1842  // of tail call optimization arguments are handle later.
1843  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1844    CCValAssign &VA = ArgLocs[i];
1845    EVT RegVT = VA.getLocVT();
1846    SDValue Arg = Outs[i].Val;
1847    ISD::ArgFlagsTy Flags = Outs[i].Flags;
1848    bool isByVal = Flags.isByVal();
1849
1850    // Promote the value if needed.
1851    switch (VA.getLocInfo()) {
1852    default: llvm_unreachable("Unknown loc info!");
1853    case CCValAssign::Full: break;
1854    case CCValAssign::SExt:
1855      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
1856      break;
1857    case CCValAssign::ZExt:
1858      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
1859      break;
1860    case CCValAssign::AExt:
1861      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
1862        // Special case: passing MMX values in XMM registers.
1863        Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
1864        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
1865        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
1866      } else
1867        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
1868      break;
1869    case CCValAssign::BCvt:
1870      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, RegVT, Arg);
1871      break;
1872    case CCValAssign::Indirect: {
1873      // Store the argument.
1874      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
1875      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1876      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
1877                           PseudoSourceValue::getFixedStack(FI), 0,
1878                           false, false, 0);
1879      Arg = SpillSlot;
1880      break;
1881    }
1882    }
1883
1884    if (VA.isRegLoc()) {
1885      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1886    } else if (!IsSibcall && (!isTailCall || isByVal)) {
1887      assert(VA.isMemLoc());
1888      if (StackPtr.getNode() == 0)
1889        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
1890      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1891                                             dl, DAG, VA, Flags));
1892    }
1893  }
1894
1895  if (!MemOpChains.empty())
1896    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1897                        &MemOpChains[0], MemOpChains.size());
1898
1899  // Build a sequence of copy-to-reg nodes chained together with token chain
1900  // and flag operands which copy the outgoing args into registers.
1901  SDValue InFlag;
1902  // Tail call byval lowering might overwrite argument registers so in case of
1903  // tail call optimization the copies to registers are lowered later.
1904  if (!isTailCall)
1905    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1906      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1907                               RegsToPass[i].second, InFlag);
1908      InFlag = Chain.getValue(1);
1909    }
1910
1911  if (Subtarget->isPICStyleGOT()) {
1912    // ELF / PIC requires GOT in the EBX register before function calls via PLT
1913    // GOT pointer.
1914    if (!isTailCall) {
1915      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
1916                               DAG.getNode(X86ISD::GlobalBaseReg,
1917                                           DebugLoc::getUnknownLoc(),
1918                                           getPointerTy()),
1919                               InFlag);
1920      InFlag = Chain.getValue(1);
1921    } else {
1922      // If we are tail calling and generating PIC/GOT style code load the
1923      // address of the callee into ECX. The value in ecx is used as target of
1924      // the tail jump. This is done to circumvent the ebx/callee-saved problem
1925      // for tail calls on PIC/GOT architectures. Normally we would just put the
1926      // address of GOT into ebx and then call target@PLT. But for tail calls
1927      // ebx would be restored (since ebx is callee saved) before jumping to the
1928      // target@PLT.
1929
1930      // Note: The actual moving to ECX is done further down.
1931      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
1932      if (G && !G->getGlobal()->hasHiddenVisibility() &&
1933          !G->getGlobal()->hasProtectedVisibility())
1934        Callee = LowerGlobalAddress(Callee, DAG);
1935      else if (isa<ExternalSymbolSDNode>(Callee))
1936        Callee = LowerExternalSymbol(Callee, DAG);
1937    }
1938  }
1939
1940  if (Is64Bit && isVarArg) {
1941    // From AMD64 ABI document:
1942    // For calls that may call functions that use varargs or stdargs
1943    // (prototype-less calls or calls to functions containing ellipsis (...) in
1944    // the declaration) %al is used as hidden argument to specify the number
1945    // of SSE registers used. The contents of %al do not need to match exactly
1946    // the number of registers, but must be an ubound on the number of SSE
1947    // registers used and is in the range 0 - 8 inclusive.
1948
1949    // FIXME: Verify this on Win64
1950    // Count the number of XMM registers allocated.
1951    static const unsigned XMMArgRegs[] = {
1952      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1953      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1954    };
1955    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1956    assert((Subtarget->hasSSE1() || !NumXMMRegs)
1957           && "SSE registers cannot be used when SSE is disabled");
1958
1959    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
1960                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1961    InFlag = Chain.getValue(1);
1962  }
1963
1964
1965  // For tail calls lower the arguments to the 'real' stack slot.
1966  if (isTailCall) {
1967    // Force all the incoming stack arguments to be loaded from the stack
1968    // before any new outgoing arguments are stored to the stack, because the
1969    // outgoing stack slots may alias the incoming argument stack slots, and
1970    // the alias isn't otherwise explicit. This is slightly more conservative
1971    // than necessary, because it means that each store effectively depends
1972    // on every argument instead of just those arguments it would clobber.
1973    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
1974
1975    SmallVector<SDValue, 8> MemOpChains2;
1976    SDValue FIN;
1977    int FI = 0;
1978    // Do not flag preceeding copytoreg stuff together with the following stuff.
1979    InFlag = SDValue();
1980    if (GuaranteedTailCallOpt) {
1981      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1982        CCValAssign &VA = ArgLocs[i];
1983        if (VA.isRegLoc())
1984          continue;
1985        assert(VA.isMemLoc());
1986        SDValue Arg = Outs[i].Val;
1987        ISD::ArgFlagsTy Flags = Outs[i].Flags;
1988        // Create frame index.
1989        int32_t Offset = VA.getLocMemOffset()+FPDiff;
1990        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
1991        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true, false);
1992        FIN = DAG.getFrameIndex(FI, getPointerTy());
1993
1994        if (Flags.isByVal()) {
1995          // Copy relative to framepointer.
1996          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
1997          if (StackPtr.getNode() == 0)
1998            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
1999                                          getPointerTy());
2000          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2001
2002          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2003                                                           ArgChain,
2004                                                           Flags, DAG, dl));
2005        } else {
2006          // Store relative to framepointer.
2007          MemOpChains2.push_back(
2008            DAG.getStore(ArgChain, dl, Arg, FIN,
2009                         PseudoSourceValue::getFixedStack(FI), 0,
2010                         false, false, 0));
2011        }
2012      }
2013    }
2014
2015    if (!MemOpChains2.empty())
2016      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2017                          &MemOpChains2[0], MemOpChains2.size());
2018
2019    // Copy arguments to their registers.
2020    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2021      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2022                               RegsToPass[i].second, InFlag);
2023      InFlag = Chain.getValue(1);
2024    }
2025    InFlag =SDValue();
2026
2027    // Store the return address to the appropriate stack slot.
2028    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2029                                     FPDiff, dl);
2030  }
2031
2032  bool WasGlobalOrExternal = false;
2033  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2034    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2035    // In the 64-bit large code model, we have to make all calls
2036    // through a register, since the call instruction's 32-bit
2037    // pc-relative offset may not be large enough to hold the whole
2038    // address.
2039  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2040    WasGlobalOrExternal = true;
2041    // If the callee is a GlobalAddress node (quite common, every direct call
2042    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2043    // it.
2044
2045    // We should use extra load for direct calls to dllimported functions in
2046    // non-JIT mode.
2047    GlobalValue *GV = G->getGlobal();
2048    if (!GV->hasDLLImportLinkage()) {
2049      unsigned char OpFlags = 0;
2050
2051      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2052      // external symbols most go through the PLT in PIC mode.  If the symbol
2053      // has hidden or protected visibility, or if it is static or local, then
2054      // we don't need to use the PLT - we can directly call it.
2055      if (Subtarget->isTargetELF() &&
2056          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2057          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2058        OpFlags = X86II::MO_PLT;
2059      } else if (Subtarget->isPICStyleStubAny() &&
2060               (GV->isDeclaration() || GV->isWeakForLinker()) &&
2061               Subtarget->getDarwinVers() < 9) {
2062        // PC-relative references to external symbols should go through $stub,
2063        // unless we're building with the leopard linker or later, which
2064        // automatically synthesizes these stubs.
2065        OpFlags = X86II::MO_DARWIN_STUB;
2066      }
2067
2068      Callee = DAG.getTargetGlobalAddress(GV, getPointerTy(),
2069                                          G->getOffset(), OpFlags);
2070    }
2071  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2072    WasGlobalOrExternal = true;
2073    unsigned char OpFlags = 0;
2074
2075    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to external
2076    // symbols should go through the PLT.
2077    if (Subtarget->isTargetELF() &&
2078        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2079      OpFlags = X86II::MO_PLT;
2080    } else if (Subtarget->isPICStyleStubAny() &&
2081             Subtarget->getDarwinVers() < 9) {
2082      // PC-relative references to external symbols should go through $stub,
2083      // unless we're building with the leopard linker or later, which
2084      // automatically synthesizes these stubs.
2085      OpFlags = X86II::MO_DARWIN_STUB;
2086    }
2087
2088    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2089                                         OpFlags);
2090  }
2091
2092  // Returns a chain & a flag for retval copy to use.
2093  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
2094  SmallVector<SDValue, 8> Ops;
2095
2096  if (!IsSibcall && isTailCall) {
2097    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2098                           DAG.getIntPtrConstant(0, true), InFlag);
2099    InFlag = Chain.getValue(1);
2100  }
2101
2102  Ops.push_back(Chain);
2103  Ops.push_back(Callee);
2104
2105  if (isTailCall)
2106    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2107
2108  // Add argument registers to the end of the list so that they are known live
2109  // into the call.
2110  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2111    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2112                                  RegsToPass[i].second.getValueType()));
2113
2114  // Add an implicit use GOT pointer in EBX.
2115  if (!isTailCall && Subtarget->isPICStyleGOT())
2116    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2117
2118  // Add an implicit use of AL for x86 vararg functions.
2119  if (Is64Bit && isVarArg)
2120    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2121
2122  if (InFlag.getNode())
2123    Ops.push_back(InFlag);
2124
2125  if (isTailCall) {
2126    // If this is the first return lowered for this function, add the regs
2127    // to the liveout set for the function.
2128    if (MF.getRegInfo().liveout_empty()) {
2129      SmallVector<CCValAssign, 16> RVLocs;
2130      CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
2131                     *DAG.getContext());
2132      CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2133      for (unsigned i = 0; i != RVLocs.size(); ++i)
2134        if (RVLocs[i].isRegLoc())
2135          MF.getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2136    }
2137    return DAG.getNode(X86ISD::TC_RETURN, dl,
2138                       NodeTys, &Ops[0], Ops.size());
2139  }
2140
2141  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2142  InFlag = Chain.getValue(1);
2143
2144  // Create the CALLSEQ_END node.
2145  unsigned NumBytesForCalleeToPush;
2146  if (IsCalleePop(isVarArg, CallConv))
2147    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2148  else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2149    // If this is a call to a struct-return function, the callee
2150    // pops the hidden struct pointer, so we have to push it back.
2151    // This is common for Darwin/X86, Linux & Mingw32 targets.
2152    NumBytesForCalleeToPush = 4;
2153  else
2154    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2155
2156  // Returns a flag for retval copy to use.
2157  if (!IsSibcall) {
2158    Chain = DAG.getCALLSEQ_END(Chain,
2159                               DAG.getIntPtrConstant(NumBytes, true),
2160                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2161                                                     true),
2162                               InFlag);
2163    InFlag = Chain.getValue(1);
2164  }
2165
2166  // Handle result values, copying them out of physregs into vregs that we
2167  // return.
2168  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2169                         Ins, dl, DAG, InVals);
2170}
2171
2172
2173//===----------------------------------------------------------------------===//
2174//                Fast Calling Convention (tail call) implementation
2175//===----------------------------------------------------------------------===//
2176
2177//  Like std call, callee cleans arguments, convention except that ECX is
2178//  reserved for storing the tail called function address. Only 2 registers are
2179//  free for argument passing (inreg). Tail call optimization is performed
2180//  provided:
2181//                * tailcallopt is enabled
2182//                * caller/callee are fastcc
2183//  On X86_64 architecture with GOT-style position independent code only local
2184//  (within module) calls are supported at the moment.
2185//  To keep the stack aligned according to platform abi the function
2186//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2187//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2188//  If a tail called function callee has more arguments than the caller the
2189//  caller needs to make sure that there is room to move the RETADDR to. This is
2190//  achieved by reserving an area the size of the argument delta right after the
2191//  original REtADDR, but before the saved framepointer or the spilled registers
2192//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2193//  stack layout:
2194//    arg1
2195//    arg2
2196//    RETADDR
2197//    [ new RETADDR
2198//      move area ]
2199//    (possible EBP)
2200//    ESI
2201//    EDI
2202//    local1 ..
2203
2204/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2205/// for a 16 byte align requirement.
2206unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2207                                                        SelectionDAG& DAG) {
2208  MachineFunction &MF = DAG.getMachineFunction();
2209  const TargetMachine &TM = MF.getTarget();
2210  const TargetFrameInfo &TFI = *TM.getFrameInfo();
2211  unsigned StackAlignment = TFI.getStackAlignment();
2212  uint64_t AlignMask = StackAlignment - 1;
2213  int64_t Offset = StackSize;
2214  uint64_t SlotSize = TD->getPointerSize();
2215  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2216    // Number smaller than 12 so just add the difference.
2217    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2218  } else {
2219    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2220    Offset = ((~AlignMask) & Offset) + StackAlignment +
2221      (StackAlignment-SlotSize);
2222  }
2223  return Offset;
2224}
2225
2226/// MatchingStackOffset - Return true if the given stack call argument is
2227/// already available in the same position (relatively) of the caller's
2228/// incoming argument stack.
2229static
2230bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2231                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2232                         const X86InstrInfo *TII) {
2233  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2234  int FI = INT_MAX;
2235  if (Arg.getOpcode() == ISD::CopyFromReg) {
2236    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2237    if (!VR || TargetRegisterInfo::isPhysicalRegister(VR))
2238      return false;
2239    MachineInstr *Def = MRI->getVRegDef(VR);
2240    if (!Def)
2241      return false;
2242    if (!Flags.isByVal()) {
2243      if (!TII->isLoadFromStackSlot(Def, FI))
2244        return false;
2245    } else {
2246      unsigned Opcode = Def->getOpcode();
2247      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2248          Def->getOperand(1).isFI()) {
2249        FI = Def->getOperand(1).getIndex();
2250        Bytes = Flags.getByValSize();
2251      } else
2252        return false;
2253    }
2254  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2255    if (Flags.isByVal())
2256      // ByVal argument is passed in as a pointer but it's now being
2257      // dereferenced. e.g.
2258      // define @foo(%struct.X* %A) {
2259      //   tail call @bar(%struct.X* byval %A)
2260      // }
2261      return false;
2262    SDValue Ptr = Ld->getBasePtr();
2263    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2264    if (!FINode)
2265      return false;
2266    FI = FINode->getIndex();
2267  } else
2268    return false;
2269
2270  assert(FI != INT_MAX);
2271  if (!MFI->isFixedObjectIndex(FI))
2272    return false;
2273  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2274}
2275
2276/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2277/// for tail call optimization. Targets which want to do tail call
2278/// optimization should implement this function.
2279bool
2280X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2281                                                     CallingConv::ID CalleeCC,
2282                                                     bool isVarArg,
2283                                                     bool isCalleeStructRet,
2284                                                     bool isCallerStructRet,
2285                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2286                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2287                                                     SelectionDAG& DAG) const {
2288  if (!IsTailCallConvention(CalleeCC) &&
2289      CalleeCC != CallingConv::C)
2290    return false;
2291
2292  // If -tailcallopt is specified, make fastcc functions tail-callable.
2293  const Function *CallerF = DAG.getMachineFunction().getFunction();
2294  if (GuaranteedTailCallOpt) {
2295    if (IsTailCallConvention(CalleeCC) &&
2296        CallerF->getCallingConv() == CalleeCC)
2297      return true;
2298    return false;
2299  }
2300
2301  // Look for obvious safe cases to perform tail call optimization that does not
2302  // requite ABI changes. This is what gcc calls sibcall.
2303
2304  // Do not sibcall optimize vararg calls for now.
2305  if (isVarArg)
2306    return false;
2307
2308  // Also avoid sibcall optimization if either caller or callee uses struct
2309  // return semantics.
2310  if (isCalleeStructRet || isCallerStructRet)
2311    return false;
2312
2313  // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2314  // Therefore if it's not used by the call it is not safe to optimize this into
2315  // a sibcall.
2316  bool Unused = false;
2317  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2318    if (!Ins[i].Used) {
2319      Unused = true;
2320      break;
2321    }
2322  }
2323  if (Unused) {
2324    SmallVector<CCValAssign, 16> RVLocs;
2325    CCState CCInfo(CalleeCC, false, getTargetMachine(),
2326                   RVLocs, *DAG.getContext());
2327    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2328    for (unsigned i = 0; i != RVLocs.size(); ++i) {
2329      CCValAssign &VA = RVLocs[i];
2330      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2331        return false;
2332    }
2333  }
2334
2335  // If the callee takes no arguments then go on to check the results of the
2336  // call.
2337  if (!Outs.empty()) {
2338    // Check if stack adjustment is needed. For now, do not do this if any
2339    // argument is passed on the stack.
2340    SmallVector<CCValAssign, 16> ArgLocs;
2341    CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
2342                   ArgLocs, *DAG.getContext());
2343    CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC));
2344    if (CCInfo.getNextStackOffset()) {
2345      MachineFunction &MF = DAG.getMachineFunction();
2346      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2347        return false;
2348      if (Subtarget->isTargetWin64())
2349        // Win64 ABI has additional complications.
2350        return false;
2351
2352      // Check if the arguments are already laid out in the right way as
2353      // the caller's fixed stack objects.
2354      MachineFrameInfo *MFI = MF.getFrameInfo();
2355      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2356      const X86InstrInfo *TII =
2357        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2358      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2359        CCValAssign &VA = ArgLocs[i];
2360        EVT RegVT = VA.getLocVT();
2361        SDValue Arg = Outs[i].Val;
2362        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2363        if (VA.getLocInfo() == CCValAssign::Indirect)
2364          return false;
2365        if (!VA.isRegLoc()) {
2366          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2367                                   MFI, MRI, TII))
2368            return false;
2369        }
2370      }
2371    }
2372  }
2373
2374  return true;
2375}
2376
2377FastISel *
2378X86TargetLowering::createFastISel(MachineFunction &mf, MachineModuleInfo *mmo,
2379                            DwarfWriter *dw,
2380                            DenseMap<const Value *, unsigned> &vm,
2381                            DenseMap<const BasicBlock*, MachineBasicBlock*> &bm,
2382                            DenseMap<const AllocaInst *, int> &am
2383#ifndef NDEBUG
2384                          , SmallSet<Instruction*, 8> &cil
2385#endif
2386                                  ) {
2387  return X86::createFastISel(mf, mmo, dw, vm, bm, am
2388#ifndef NDEBUG
2389                             , cil
2390#endif
2391                             );
2392}
2393
2394
2395//===----------------------------------------------------------------------===//
2396//                           Other Lowering Hooks
2397//===----------------------------------------------------------------------===//
2398
2399
2400SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
2401  MachineFunction &MF = DAG.getMachineFunction();
2402  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2403  int ReturnAddrIndex = FuncInfo->getRAIndex();
2404
2405  if (ReturnAddrIndex == 0) {
2406    // Set up a frame object for the return address.
2407    uint64_t SlotSize = TD->getPointerSize();
2408    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2409                                                           false, false);
2410    FuncInfo->setRAIndex(ReturnAddrIndex);
2411  }
2412
2413  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2414}
2415
2416
2417bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2418                                       bool hasSymbolicDisplacement) {
2419  // Offset should fit into 32 bit immediate field.
2420  if (!isInt32(Offset))
2421    return false;
2422
2423  // If we don't have a symbolic displacement - we don't have any extra
2424  // restrictions.
2425  if (!hasSymbolicDisplacement)
2426    return true;
2427
2428  // FIXME: Some tweaks might be needed for medium code model.
2429  if (M != CodeModel::Small && M != CodeModel::Kernel)
2430    return false;
2431
2432  // For small code model we assume that latest object is 16MB before end of 31
2433  // bits boundary. We may also accept pretty large negative constants knowing
2434  // that all objects are in the positive half of address space.
2435  if (M == CodeModel::Small && Offset < 16*1024*1024)
2436    return true;
2437
2438  // For kernel code model we know that all object resist in the negative half
2439  // of 32bits address space. We may not accept negative offsets, since they may
2440  // be just off and we may accept pretty large positive ones.
2441  if (M == CodeModel::Kernel && Offset > 0)
2442    return true;
2443
2444  return false;
2445}
2446
2447/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2448/// specific condition code, returning the condition code and the LHS/RHS of the
2449/// comparison to make.
2450static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2451                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2452  if (!isFP) {
2453    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2454      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2455        // X > -1   -> X == 0, jump !sign.
2456        RHS = DAG.getConstant(0, RHS.getValueType());
2457        return X86::COND_NS;
2458      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2459        // X < 0   -> X == 0, jump on sign.
2460        return X86::COND_S;
2461      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2462        // X < 1   -> X <= 0
2463        RHS = DAG.getConstant(0, RHS.getValueType());
2464        return X86::COND_LE;
2465      }
2466    }
2467
2468    switch (SetCCOpcode) {
2469    default: llvm_unreachable("Invalid integer condition!");
2470    case ISD::SETEQ:  return X86::COND_E;
2471    case ISD::SETGT:  return X86::COND_G;
2472    case ISD::SETGE:  return X86::COND_GE;
2473    case ISD::SETLT:  return X86::COND_L;
2474    case ISD::SETLE:  return X86::COND_LE;
2475    case ISD::SETNE:  return X86::COND_NE;
2476    case ISD::SETULT: return X86::COND_B;
2477    case ISD::SETUGT: return X86::COND_A;
2478    case ISD::SETULE: return X86::COND_BE;
2479    case ISD::SETUGE: return X86::COND_AE;
2480    }
2481  }
2482
2483  // First determine if it is required or is profitable to flip the operands.
2484
2485  // If LHS is a foldable load, but RHS is not, flip the condition.
2486  if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
2487      !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
2488    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2489    std::swap(LHS, RHS);
2490  }
2491
2492  switch (SetCCOpcode) {
2493  default: break;
2494  case ISD::SETOLT:
2495  case ISD::SETOLE:
2496  case ISD::SETUGT:
2497  case ISD::SETUGE:
2498    std::swap(LHS, RHS);
2499    break;
2500  }
2501
2502  // On a floating point condition, the flags are set as follows:
2503  // ZF  PF  CF   op
2504  //  0 | 0 | 0 | X > Y
2505  //  0 | 0 | 1 | X < Y
2506  //  1 | 0 | 0 | X == Y
2507  //  1 | 1 | 1 | unordered
2508  switch (SetCCOpcode) {
2509  default: llvm_unreachable("Condcode should be pre-legalized away");
2510  case ISD::SETUEQ:
2511  case ISD::SETEQ:   return X86::COND_E;
2512  case ISD::SETOLT:              // flipped
2513  case ISD::SETOGT:
2514  case ISD::SETGT:   return X86::COND_A;
2515  case ISD::SETOLE:              // flipped
2516  case ISD::SETOGE:
2517  case ISD::SETGE:   return X86::COND_AE;
2518  case ISD::SETUGT:              // flipped
2519  case ISD::SETULT:
2520  case ISD::SETLT:   return X86::COND_B;
2521  case ISD::SETUGE:              // flipped
2522  case ISD::SETULE:
2523  case ISD::SETLE:   return X86::COND_BE;
2524  case ISD::SETONE:
2525  case ISD::SETNE:   return X86::COND_NE;
2526  case ISD::SETUO:   return X86::COND_P;
2527  case ISD::SETO:    return X86::COND_NP;
2528  case ISD::SETOEQ:
2529  case ISD::SETUNE:  return X86::COND_INVALID;
2530  }
2531}
2532
2533/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2534/// code. Current x86 isa includes the following FP cmov instructions:
2535/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2536static bool hasFPCMov(unsigned X86CC) {
2537  switch (X86CC) {
2538  default:
2539    return false;
2540  case X86::COND_B:
2541  case X86::COND_BE:
2542  case X86::COND_E:
2543  case X86::COND_P:
2544  case X86::COND_A:
2545  case X86::COND_AE:
2546  case X86::COND_NE:
2547  case X86::COND_NP:
2548    return true;
2549  }
2550}
2551
2552/// isFPImmLegal - Returns true if the target can instruction select the
2553/// specified FP immediate natively. If false, the legalizer will
2554/// materialize the FP immediate as a load from a constant pool.
2555bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
2556  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
2557    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
2558      return true;
2559  }
2560  return false;
2561}
2562
2563/// isUndefOrInRange - Return true if Val is undef or if its value falls within
2564/// the specified range (L, H].
2565static bool isUndefOrInRange(int Val, int Low, int Hi) {
2566  return (Val < 0) || (Val >= Low && Val < Hi);
2567}
2568
2569/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2570/// specified value.
2571static bool isUndefOrEqual(int Val, int CmpVal) {
2572  if (Val < 0 || Val == CmpVal)
2573    return true;
2574  return false;
2575}
2576
2577/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2578/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
2579/// the second operand.
2580static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2581  if (VT == MVT::v4f32 || VT == MVT::v4i32 || VT == MVT::v4i16)
2582    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
2583  if (VT == MVT::v2f64 || VT == MVT::v2i64)
2584    return (Mask[0] < 2 && Mask[1] < 2);
2585  return false;
2586}
2587
2588bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
2589  SmallVector<int, 8> M;
2590  N->getMask(M);
2591  return ::isPSHUFDMask(M, N->getValueType(0));
2592}
2593
2594/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2595/// is suitable for input to PSHUFHW.
2596static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2597  if (VT != MVT::v8i16)
2598    return false;
2599
2600  // Lower quadword copied in order or undef.
2601  for (int i = 0; i != 4; ++i)
2602    if (Mask[i] >= 0 && Mask[i] != i)
2603      return false;
2604
2605  // Upper quadword shuffled.
2606  for (int i = 4; i != 8; ++i)
2607    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
2608      return false;
2609
2610  return true;
2611}
2612
2613bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
2614  SmallVector<int, 8> M;
2615  N->getMask(M);
2616  return ::isPSHUFHWMask(M, N->getValueType(0));
2617}
2618
2619/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
2620/// is suitable for input to PSHUFLW.
2621static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2622  if (VT != MVT::v8i16)
2623    return false;
2624
2625  // Upper quadword copied in order.
2626  for (int i = 4; i != 8; ++i)
2627    if (Mask[i] >= 0 && Mask[i] != i)
2628      return false;
2629
2630  // Lower quadword shuffled.
2631  for (int i = 0; i != 4; ++i)
2632    if (Mask[i] >= 4)
2633      return false;
2634
2635  return true;
2636}
2637
2638bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
2639  SmallVector<int, 8> M;
2640  N->getMask(M);
2641  return ::isPSHUFLWMask(M, N->getValueType(0));
2642}
2643
2644/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
2645/// is suitable for input to PALIGNR.
2646static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
2647                          bool hasSSSE3) {
2648  int i, e = VT.getVectorNumElements();
2649
2650  // Do not handle v2i64 / v2f64 shuffles with palignr.
2651  if (e < 4 || !hasSSSE3)
2652    return false;
2653
2654  for (i = 0; i != e; ++i)
2655    if (Mask[i] >= 0)
2656      break;
2657
2658  // All undef, not a palignr.
2659  if (i == e)
2660    return false;
2661
2662  // Determine if it's ok to perform a palignr with only the LHS, since we
2663  // don't have access to the actual shuffle elements to see if RHS is undef.
2664  bool Unary = Mask[i] < (int)e;
2665  bool NeedsUnary = false;
2666
2667  int s = Mask[i] - i;
2668
2669  // Check the rest of the elements to see if they are consecutive.
2670  for (++i; i != e; ++i) {
2671    int m = Mask[i];
2672    if (m < 0)
2673      continue;
2674
2675    Unary = Unary && (m < (int)e);
2676    NeedsUnary = NeedsUnary || (m < s);
2677
2678    if (NeedsUnary && !Unary)
2679      return false;
2680    if (Unary && m != ((s+i) & (e-1)))
2681      return false;
2682    if (!Unary && m != (s+i))
2683      return false;
2684  }
2685  return true;
2686}
2687
2688bool X86::isPALIGNRMask(ShuffleVectorSDNode *N) {
2689  SmallVector<int, 8> M;
2690  N->getMask(M);
2691  return ::isPALIGNRMask(M, N->getValueType(0), true);
2692}
2693
2694/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2695/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2696static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2697  int NumElems = VT.getVectorNumElements();
2698  if (NumElems != 2 && NumElems != 4)
2699    return false;
2700
2701  int Half = NumElems / 2;
2702  for (int i = 0; i < Half; ++i)
2703    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2704      return false;
2705  for (int i = Half; i < NumElems; ++i)
2706    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2707      return false;
2708
2709  return true;
2710}
2711
2712bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
2713  SmallVector<int, 8> M;
2714  N->getMask(M);
2715  return ::isSHUFPMask(M, N->getValueType(0));
2716}
2717
2718/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2719/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2720/// half elements to come from vector 1 (which would equal the dest.) and
2721/// the upper half to come from vector 2.
2722static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2723  int NumElems = VT.getVectorNumElements();
2724
2725  if (NumElems != 2 && NumElems != 4)
2726    return false;
2727
2728  int Half = NumElems / 2;
2729  for (int i = 0; i < Half; ++i)
2730    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2731      return false;
2732  for (int i = Half; i < NumElems; ++i)
2733    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2734      return false;
2735  return true;
2736}
2737
2738static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
2739  SmallVector<int, 8> M;
2740  N->getMask(M);
2741  return isCommutedSHUFPMask(M, N->getValueType(0));
2742}
2743
2744/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2745/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2746bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
2747  if (N->getValueType(0).getVectorNumElements() != 4)
2748    return false;
2749
2750  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2751  return isUndefOrEqual(N->getMaskElt(0), 6) &&
2752         isUndefOrEqual(N->getMaskElt(1), 7) &&
2753         isUndefOrEqual(N->getMaskElt(2), 2) &&
2754         isUndefOrEqual(N->getMaskElt(3), 3);
2755}
2756
2757/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2758/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2759/// <2, 3, 2, 3>
2760bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
2761  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2762
2763  if (NumElems != 4)
2764    return false;
2765
2766  return isUndefOrEqual(N->getMaskElt(0), 2) &&
2767  isUndefOrEqual(N->getMaskElt(1), 3) &&
2768  isUndefOrEqual(N->getMaskElt(2), 2) &&
2769  isUndefOrEqual(N->getMaskElt(3), 3);
2770}
2771
2772/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2773/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2774bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
2775  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2776
2777  if (NumElems != 2 && NumElems != 4)
2778    return false;
2779
2780  for (unsigned i = 0; i < NumElems/2; ++i)
2781    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
2782      return false;
2783
2784  for (unsigned i = NumElems/2; i < NumElems; ++i)
2785    if (!isUndefOrEqual(N->getMaskElt(i), i))
2786      return false;
2787
2788  return true;
2789}
2790
2791/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
2792/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
2793bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
2794  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2795
2796  if (NumElems != 2 && NumElems != 4)
2797    return false;
2798
2799  for (unsigned i = 0; i < NumElems/2; ++i)
2800    if (!isUndefOrEqual(N->getMaskElt(i), i))
2801      return false;
2802
2803  for (unsigned i = 0; i < NumElems/2; ++i)
2804    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
2805      return false;
2806
2807  return true;
2808}
2809
2810/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2811/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2812static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
2813                         bool V2IsSplat = false) {
2814  int NumElts = VT.getVectorNumElements();
2815  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2816    return false;
2817
2818  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2819    int BitI  = Mask[i];
2820    int BitI1 = Mask[i+1];
2821    if (!isUndefOrEqual(BitI, j))
2822      return false;
2823    if (V2IsSplat) {
2824      if (!isUndefOrEqual(BitI1, NumElts))
2825        return false;
2826    } else {
2827      if (!isUndefOrEqual(BitI1, j + NumElts))
2828        return false;
2829    }
2830  }
2831  return true;
2832}
2833
2834bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2835  SmallVector<int, 8> M;
2836  N->getMask(M);
2837  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
2838}
2839
2840/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2841/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2842static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
2843                         bool V2IsSplat = false) {
2844  int NumElts = VT.getVectorNumElements();
2845  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2846    return false;
2847
2848  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2849    int BitI  = Mask[i];
2850    int BitI1 = Mask[i+1];
2851    if (!isUndefOrEqual(BitI, j + NumElts/2))
2852      return false;
2853    if (V2IsSplat) {
2854      if (isUndefOrEqual(BitI1, NumElts))
2855        return false;
2856    } else {
2857      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2858        return false;
2859    }
2860  }
2861  return true;
2862}
2863
2864bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2865  SmallVector<int, 8> M;
2866  N->getMask(M);
2867  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
2868}
2869
2870/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2871/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2872/// <0, 0, 1, 1>
2873static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
2874  int NumElems = VT.getVectorNumElements();
2875  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2876    return false;
2877
2878  for (int i = 0, j = 0; i != NumElems; i += 2, ++j) {
2879    int BitI  = Mask[i];
2880    int BitI1 = Mask[i+1];
2881    if (!isUndefOrEqual(BitI, j))
2882      return false;
2883    if (!isUndefOrEqual(BitI1, j))
2884      return false;
2885  }
2886  return true;
2887}
2888
2889bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
2890  SmallVector<int, 8> M;
2891  N->getMask(M);
2892  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
2893}
2894
2895/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2896/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2897/// <2, 2, 3, 3>
2898static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
2899  int NumElems = VT.getVectorNumElements();
2900  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2901    return false;
2902
2903  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2904    int BitI  = Mask[i];
2905    int BitI1 = Mask[i+1];
2906    if (!isUndefOrEqual(BitI, j))
2907      return false;
2908    if (!isUndefOrEqual(BitI1, j))
2909      return false;
2910  }
2911  return true;
2912}
2913
2914bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
2915  SmallVector<int, 8> M;
2916  N->getMask(M);
2917  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
2918}
2919
2920/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2921/// specifies a shuffle of elements that is suitable for input to MOVSS,
2922/// MOVSD, and MOVD, i.e. setting the lowest element.
2923static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2924  if (VT.getVectorElementType().getSizeInBits() < 32)
2925    return false;
2926
2927  int NumElts = VT.getVectorNumElements();
2928
2929  if (!isUndefOrEqual(Mask[0], NumElts))
2930    return false;
2931
2932  for (int i = 1; i < NumElts; ++i)
2933    if (!isUndefOrEqual(Mask[i], i))
2934      return false;
2935
2936  return true;
2937}
2938
2939bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
2940  SmallVector<int, 8> M;
2941  N->getMask(M);
2942  return ::isMOVLMask(M, N->getValueType(0));
2943}
2944
2945/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2946/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
2947/// element of vector 2 and the other elements to come from vector 1 in order.
2948static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
2949                               bool V2IsSplat = false, bool V2IsUndef = false) {
2950  int NumOps = VT.getVectorNumElements();
2951  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2952    return false;
2953
2954  if (!isUndefOrEqual(Mask[0], 0))
2955    return false;
2956
2957  for (int i = 1; i < NumOps; ++i)
2958    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
2959          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
2960          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
2961      return false;
2962
2963  return true;
2964}
2965
2966static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
2967                           bool V2IsUndef = false) {
2968  SmallVector<int, 8> M;
2969  N->getMask(M);
2970  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
2971}
2972
2973/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2974/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2975bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
2976  if (N->getValueType(0).getVectorNumElements() != 4)
2977    return false;
2978
2979  // Expect 1, 1, 3, 3
2980  for (unsigned i = 0; i < 2; ++i) {
2981    int Elt = N->getMaskElt(i);
2982    if (Elt >= 0 && Elt != 1)
2983      return false;
2984  }
2985
2986  bool HasHi = false;
2987  for (unsigned i = 2; i < 4; ++i) {
2988    int Elt = N->getMaskElt(i);
2989    if (Elt >= 0 && Elt != 3)
2990      return false;
2991    if (Elt == 3)
2992      HasHi = true;
2993  }
2994  // Don't use movshdup if it can be done with a shufps.
2995  // FIXME: verify that matching u, u, 3, 3 is what we want.
2996  return HasHi;
2997}
2998
2999/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3000/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3001bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
3002  if (N->getValueType(0).getVectorNumElements() != 4)
3003    return false;
3004
3005  // Expect 0, 0, 2, 2
3006  for (unsigned i = 0; i < 2; ++i)
3007    if (N->getMaskElt(i) > 0)
3008      return false;
3009
3010  bool HasHi = false;
3011  for (unsigned i = 2; i < 4; ++i) {
3012    int Elt = N->getMaskElt(i);
3013    if (Elt >= 0 && Elt != 2)
3014      return false;
3015    if (Elt == 2)
3016      HasHi = true;
3017  }
3018  // Don't use movsldup if it can be done with a shufps.
3019  return HasHi;
3020}
3021
3022/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3023/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
3024bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3025  int e = N->getValueType(0).getVectorNumElements() / 2;
3026
3027  for (int i = 0; i < e; ++i)
3028    if (!isUndefOrEqual(N->getMaskElt(i), i))
3029      return false;
3030  for (int i = 0; i < e; ++i)
3031    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3032      return false;
3033  return true;
3034}
3035
3036/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3037/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3038unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
3039  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3040  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
3041
3042  unsigned Shift = (NumOperands == 4) ? 2 : 1;
3043  unsigned Mask = 0;
3044  for (int i = 0; i < NumOperands; ++i) {
3045    int Val = SVOp->getMaskElt(NumOperands-i-1);
3046    if (Val < 0) Val = 0;
3047    if (Val >= NumOperands) Val -= NumOperands;
3048    Mask |= Val;
3049    if (i != NumOperands - 1)
3050      Mask <<= Shift;
3051  }
3052  return Mask;
3053}
3054
3055/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3056/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3057unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3058  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3059  unsigned Mask = 0;
3060  // 8 nodes, but we only care about the last 4.
3061  for (unsigned i = 7; i >= 4; --i) {
3062    int Val = SVOp->getMaskElt(i);
3063    if (Val >= 0)
3064      Mask |= (Val - 4);
3065    if (i != 4)
3066      Mask <<= 2;
3067  }
3068  return Mask;
3069}
3070
3071/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3072/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3073unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
3074  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3075  unsigned Mask = 0;
3076  // 8 nodes, but we only care about the first 4.
3077  for (int i = 3; i >= 0; --i) {
3078    int Val = SVOp->getMaskElt(i);
3079    if (Val >= 0)
3080      Mask |= Val;
3081    if (i != 0)
3082      Mask <<= 2;
3083  }
3084  return Mask;
3085}
3086
3087/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3088/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3089unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
3090  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3091  EVT VVT = N->getValueType(0);
3092  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
3093  int Val = 0;
3094
3095  unsigned i, e;
3096  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
3097    Val = SVOp->getMaskElt(i);
3098    if (Val >= 0)
3099      break;
3100  }
3101  return (Val - i) * EltSize;
3102}
3103
3104/// isZeroNode - Returns true if Elt is a constant zero or a floating point
3105/// constant +0.0.
3106bool X86::isZeroNode(SDValue Elt) {
3107  return ((isa<ConstantSDNode>(Elt) &&
3108           cast<ConstantSDNode>(Elt)->getZExtValue() == 0) ||
3109          (isa<ConstantFPSDNode>(Elt) &&
3110           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
3111}
3112
3113/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
3114/// their permute mask.
3115static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
3116                                    SelectionDAG &DAG) {
3117  EVT VT = SVOp->getValueType(0);
3118  unsigned NumElems = VT.getVectorNumElements();
3119  SmallVector<int, 8> MaskVec;
3120
3121  for (unsigned i = 0; i != NumElems; ++i) {
3122    int idx = SVOp->getMaskElt(i);
3123    if (idx < 0)
3124      MaskVec.push_back(idx);
3125    else if (idx < (int)NumElems)
3126      MaskVec.push_back(idx + NumElems);
3127    else
3128      MaskVec.push_back(idx - NumElems);
3129  }
3130  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
3131                              SVOp->getOperand(0), &MaskVec[0]);
3132}
3133
3134/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3135/// the two vector operands have swapped position.
3136static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
3137  unsigned NumElems = VT.getVectorNumElements();
3138  for (unsigned i = 0; i != NumElems; ++i) {
3139    int idx = Mask[i];
3140    if (idx < 0)
3141      continue;
3142    else if (idx < (int)NumElems)
3143      Mask[i] = idx + NumElems;
3144    else
3145      Mask[i] = idx - NumElems;
3146  }
3147}
3148
3149/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
3150/// match movhlps. The lower half elements should come from upper half of
3151/// V1 (and in order), and the upper half elements should come from the upper
3152/// half of V2 (and in order).
3153static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
3154  if (Op->getValueType(0).getVectorNumElements() != 4)
3155    return false;
3156  for (unsigned i = 0, e = 2; i != e; ++i)
3157    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
3158      return false;
3159  for (unsigned i = 2; i != 4; ++i)
3160    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
3161      return false;
3162  return true;
3163}
3164
3165/// isScalarLoadToVector - Returns true if the node is a scalar load that
3166/// is promoted to a vector. It also returns the LoadSDNode by reference if
3167/// required.
3168static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
3169  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
3170    return false;
3171  N = N->getOperand(0).getNode();
3172  if (!ISD::isNON_EXTLoad(N))
3173    return false;
3174  if (LD)
3175    *LD = cast<LoadSDNode>(N);
3176  return true;
3177}
3178
3179/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
3180/// match movlp{s|d}. The lower half elements should come from lower half of
3181/// V1 (and in order), and the upper half elements should come from the upper
3182/// half of V2 (and in order). And since V1 will become the source of the
3183/// MOVLP, it must be either a vector load or a scalar load to vector.
3184static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
3185                               ShuffleVectorSDNode *Op) {
3186  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
3187    return false;
3188  // Is V2 is a vector load, don't do this transformation. We will try to use
3189  // load folding shufps op.
3190  if (ISD::isNON_EXTLoad(V2))
3191    return false;
3192
3193  unsigned NumElems = Op->getValueType(0).getVectorNumElements();
3194
3195  if (NumElems != 2 && NumElems != 4)
3196    return false;
3197  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3198    if (!isUndefOrEqual(Op->getMaskElt(i), i))
3199      return false;
3200  for (unsigned i = NumElems/2; i != NumElems; ++i)
3201    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
3202      return false;
3203  return true;
3204}
3205
3206/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
3207/// all the same.
3208static bool isSplatVector(SDNode *N) {
3209  if (N->getOpcode() != ISD::BUILD_VECTOR)
3210    return false;
3211
3212  SDValue SplatValue = N->getOperand(0);
3213  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
3214    if (N->getOperand(i) != SplatValue)
3215      return false;
3216  return true;
3217}
3218
3219/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
3220/// to an zero vector.
3221/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
3222static bool isZeroShuffle(ShuffleVectorSDNode *N) {
3223  SDValue V1 = N->getOperand(0);
3224  SDValue V2 = N->getOperand(1);
3225  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3226  for (unsigned i = 0; i != NumElems; ++i) {
3227    int Idx = N->getMaskElt(i);
3228    if (Idx >= (int)NumElems) {
3229      unsigned Opc = V2.getOpcode();
3230      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
3231        continue;
3232      if (Opc != ISD::BUILD_VECTOR ||
3233          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
3234        return false;
3235    } else if (Idx >= 0) {
3236      unsigned Opc = V1.getOpcode();
3237      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
3238        continue;
3239      if (Opc != ISD::BUILD_VECTOR ||
3240          !X86::isZeroNode(V1.getOperand(Idx)))
3241        return false;
3242    }
3243  }
3244  return true;
3245}
3246
3247/// getZeroVector - Returns a vector of specified type with all zero elements.
3248///
3249static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
3250                             DebugLoc dl) {
3251  assert(VT.isVector() && "Expected a vector type");
3252
3253  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3254  // type.  This ensures they get CSE'd.
3255  SDValue Vec;
3256  if (VT.getSizeInBits() == 64) { // MMX
3257    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3258    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
3259  } else if (HasSSE2) {  // SSE2
3260    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3261    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3262  } else { // SSE1
3263    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3264    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
3265  }
3266  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3267}
3268
3269/// getOnesVector - Returns a vector of specified type with all bits set.
3270///
3271static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3272  assert(VT.isVector() && "Expected a vector type");
3273
3274  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3275  // type.  This ensures they get CSE'd.
3276  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
3277  SDValue Vec;
3278  if (VT.getSizeInBits() == 64)  // MMX
3279    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
3280  else                                              // SSE
3281    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3282  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3283}
3284
3285
3286/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
3287/// that point to V2 points to its first element.
3288static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3289  EVT VT = SVOp->getValueType(0);
3290  unsigned NumElems = VT.getVectorNumElements();
3291
3292  bool Changed = false;
3293  SmallVector<int, 8> MaskVec;
3294  SVOp->getMask(MaskVec);
3295
3296  for (unsigned i = 0; i != NumElems; ++i) {
3297    if (MaskVec[i] > (int)NumElems) {
3298      MaskVec[i] = NumElems;
3299      Changed = true;
3300    }
3301  }
3302  if (Changed)
3303    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
3304                                SVOp->getOperand(1), &MaskVec[0]);
3305  return SDValue(SVOp, 0);
3306}
3307
3308/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
3309/// operation of specified width.
3310static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3311                       SDValue V2) {
3312  unsigned NumElems = VT.getVectorNumElements();
3313  SmallVector<int, 8> Mask;
3314  Mask.push_back(NumElems);
3315  for (unsigned i = 1; i != NumElems; ++i)
3316    Mask.push_back(i);
3317  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3318}
3319
3320/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
3321static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3322                          SDValue V2) {
3323  unsigned NumElems = VT.getVectorNumElements();
3324  SmallVector<int, 8> Mask;
3325  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3326    Mask.push_back(i);
3327    Mask.push_back(i + NumElems);
3328  }
3329  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3330}
3331
3332/// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
3333static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3334                          SDValue V2) {
3335  unsigned NumElems = VT.getVectorNumElements();
3336  unsigned Half = NumElems/2;
3337  SmallVector<int, 8> Mask;
3338  for (unsigned i = 0; i != Half; ++i) {
3339    Mask.push_back(i + Half);
3340    Mask.push_back(i + NumElems + Half);
3341  }
3342  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3343}
3344
3345/// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32.
3346static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG,
3347                            bool HasSSE2) {
3348  if (SV->getValueType(0).getVectorNumElements() <= 4)
3349    return SDValue(SV, 0);
3350
3351  EVT PVT = MVT::v4f32;
3352  EVT VT = SV->getValueType(0);
3353  DebugLoc dl = SV->getDebugLoc();
3354  SDValue V1 = SV->getOperand(0);
3355  int NumElems = VT.getVectorNumElements();
3356  int EltNo = SV->getSplatIndex();
3357
3358  // unpack elements to the correct location
3359  while (NumElems > 4) {
3360    if (EltNo < NumElems/2) {
3361      V1 = getUnpackl(DAG, dl, VT, V1, V1);
3362    } else {
3363      V1 = getUnpackh(DAG, dl, VT, V1, V1);
3364      EltNo -= NumElems/2;
3365    }
3366    NumElems >>= 1;
3367  }
3368
3369  // Perform the splat.
3370  int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
3371  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1);
3372  V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
3373  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, V1);
3374}
3375
3376/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3377/// vector of zero or undef vector.  This produces a shuffle where the low
3378/// element of V2 is swizzled into the zero/undef vector, landing at element
3379/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
3380static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3381                                             bool isZero, bool HasSSE2,
3382                                             SelectionDAG &DAG) {
3383  EVT VT = V2.getValueType();
3384  SDValue V1 = isZero
3385    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
3386  unsigned NumElems = VT.getVectorNumElements();
3387  SmallVector<int, 16> MaskVec;
3388  for (unsigned i = 0; i != NumElems; ++i)
3389    // If this is the insertion idx, put the low elt of V2 here.
3390    MaskVec.push_back(i == Idx ? NumElems : i);
3391  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
3392}
3393
3394/// getNumOfConsecutiveZeros - Return the number of elements in a result of
3395/// a shuffle that is zero.
3396static
3397unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, int NumElems,
3398                                  bool Low, SelectionDAG &DAG) {
3399  unsigned NumZeros = 0;
3400  for (int i = 0; i < NumElems; ++i) {
3401    unsigned Index = Low ? i : NumElems-i-1;
3402    int Idx = SVOp->getMaskElt(Index);
3403    if (Idx < 0) {
3404      ++NumZeros;
3405      continue;
3406    }
3407    SDValue Elt = DAG.getShuffleScalarElt(SVOp, Index);
3408    if (Elt.getNode() && X86::isZeroNode(Elt))
3409      ++NumZeros;
3410    else
3411      break;
3412  }
3413  return NumZeros;
3414}
3415
3416/// isVectorShift - Returns true if the shuffle can be implemented as a
3417/// logical left or right shift of a vector.
3418/// FIXME: split into pslldqi, psrldqi, palignr variants.
3419static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3420                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3421  int NumElems = SVOp->getValueType(0).getVectorNumElements();
3422
3423  isLeft = true;
3424  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, true, DAG);
3425  if (!NumZeros) {
3426    isLeft = false;
3427    NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, false, DAG);
3428    if (!NumZeros)
3429      return false;
3430  }
3431  bool SeenV1 = false;
3432  bool SeenV2 = false;
3433  for (int i = NumZeros; i < NumElems; ++i) {
3434    int Val = isLeft ? (i - NumZeros) : i;
3435    int Idx = SVOp->getMaskElt(isLeft ? i : (i - NumZeros));
3436    if (Idx < 0)
3437      continue;
3438    if (Idx < NumElems)
3439      SeenV1 = true;
3440    else {
3441      Idx -= NumElems;
3442      SeenV2 = true;
3443    }
3444    if (Idx != Val)
3445      return false;
3446  }
3447  if (SeenV1 && SeenV2)
3448    return false;
3449
3450  ShVal = SeenV1 ? SVOp->getOperand(0) : SVOp->getOperand(1);
3451  ShAmt = NumZeros;
3452  return true;
3453}
3454
3455
3456/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3457///
3458static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
3459                                       unsigned NumNonZero, unsigned NumZero,
3460                                       SelectionDAG &DAG, TargetLowering &TLI) {
3461  if (NumNonZero > 8)
3462    return SDValue();
3463
3464  DebugLoc dl = Op.getDebugLoc();
3465  SDValue V(0, 0);
3466  bool First = true;
3467  for (unsigned i = 0; i < 16; ++i) {
3468    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3469    if (ThisIsNonZero && First) {
3470      if (NumZero)
3471        V = getZeroVector(MVT::v8i16, true, DAG, dl);
3472      else
3473        V = DAG.getUNDEF(MVT::v8i16);
3474      First = false;
3475    }
3476
3477    if ((i & 1) != 0) {
3478      SDValue ThisElt(0, 0), LastElt(0, 0);
3479      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3480      if (LastIsNonZero) {
3481        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
3482                              MVT::i16, Op.getOperand(i-1));
3483      }
3484      if (ThisIsNonZero) {
3485        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
3486        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
3487                              ThisElt, DAG.getConstant(8, MVT::i8));
3488        if (LastIsNonZero)
3489          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
3490      } else
3491        ThisElt = LastElt;
3492
3493      if (ThisElt.getNode())
3494        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
3495                        DAG.getIntPtrConstant(i/2));
3496    }
3497  }
3498
3499  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V);
3500}
3501
3502/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3503///
3504static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
3505                                       unsigned NumNonZero, unsigned NumZero,
3506                                       SelectionDAG &DAG, TargetLowering &TLI) {
3507  if (NumNonZero > 4)
3508    return SDValue();
3509
3510  DebugLoc dl = Op.getDebugLoc();
3511  SDValue V(0, 0);
3512  bool First = true;
3513  for (unsigned i = 0; i < 8; ++i) {
3514    bool isNonZero = (NonZeros & (1 << i)) != 0;
3515    if (isNonZero) {
3516      if (First) {
3517        if (NumZero)
3518          V = getZeroVector(MVT::v8i16, true, DAG, dl);
3519        else
3520          V = DAG.getUNDEF(MVT::v8i16);
3521        First = false;
3522      }
3523      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
3524                      MVT::v8i16, V, Op.getOperand(i),
3525                      DAG.getIntPtrConstant(i));
3526    }
3527  }
3528
3529  return V;
3530}
3531
3532/// getVShift - Return a vector logical shift node.
3533///
3534static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
3535                         unsigned NumBits, SelectionDAG &DAG,
3536                         const TargetLowering &TLI, DebugLoc dl) {
3537  bool isMMX = VT.getSizeInBits() == 64;
3538  EVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
3539  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3540  SrcOp = DAG.getNode(ISD::BIT_CONVERT, dl, ShVT, SrcOp);
3541  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3542                     DAG.getNode(Opc, dl, ShVT, SrcOp,
3543                             DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3544}
3545
3546SDValue
3547X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
3548                                          SelectionDAG &DAG) {
3549
3550  // Check if the scalar load can be widened into a vector load. And if
3551  // the address is "base + cst" see if the cst can be "absorbed" into
3552  // the shuffle mask.
3553  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
3554    SDValue Ptr = LD->getBasePtr();
3555    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
3556      return SDValue();
3557    EVT PVT = LD->getValueType(0);
3558    if (PVT != MVT::i32 && PVT != MVT::f32)
3559      return SDValue();
3560
3561    int FI = -1;
3562    int64_t Offset = 0;
3563    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
3564      FI = FINode->getIndex();
3565      Offset = 0;
3566    } else if (Ptr.getOpcode() == ISD::ADD &&
3567               isa<ConstantSDNode>(Ptr.getOperand(1)) &&
3568               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
3569      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
3570      Offset = Ptr.getConstantOperandVal(1);
3571      Ptr = Ptr.getOperand(0);
3572    } else {
3573      return SDValue();
3574    }
3575
3576    SDValue Chain = LD->getChain();
3577    // Make sure the stack object alignment is at least 16.
3578    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3579    if (DAG.InferPtrAlignment(Ptr) < 16) {
3580      if (MFI->isFixedObjectIndex(FI)) {
3581        // Can't change the alignment. FIXME: It's possible to compute
3582        // the exact stack offset and reference FI + adjust offset instead.
3583        // If someone *really* cares about this. That's the way to implement it.
3584        return SDValue();
3585      } else {
3586        MFI->setObjectAlignment(FI, 16);
3587      }
3588    }
3589
3590    // (Offset % 16) must be multiple of 4. Then address is then
3591    // Ptr + (Offset & ~15).
3592    if (Offset < 0)
3593      return SDValue();
3594    if ((Offset % 16) & 3)
3595      return SDValue();
3596    int64_t StartOffset = Offset & ~15;
3597    if (StartOffset)
3598      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
3599                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
3600
3601    int EltNo = (Offset - StartOffset) >> 2;
3602    int Mask[4] = { EltNo, EltNo, EltNo, EltNo };
3603    EVT VT = (PVT == MVT::i32) ? MVT::v4i32 : MVT::v4f32;
3604    SDValue V1 = DAG.getLoad(VT, dl, Chain, Ptr,LD->getSrcValue(),0,
3605                             false, false, 0);
3606    // Canonicalize it to a v4i32 shuffle.
3607    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32, V1);
3608    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3609                       DAG.getVectorShuffle(MVT::v4i32, dl, V1,
3610                                            DAG.getUNDEF(MVT::v4i32), &Mask[0]));
3611  }
3612
3613  return SDValue();
3614}
3615
3616/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
3617/// vector of type 'VT', see if the elements can be replaced by a single large
3618/// load which has the same value as a build_vector whose operands are 'elts'.
3619///
3620/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
3621///
3622/// FIXME: we'd also like to handle the case where the last elements are zero
3623/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
3624/// There's even a handy isZeroNode for that purpose.
3625static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
3626                                        DebugLoc &dl, SelectionDAG &DAG) {
3627  EVT EltVT = VT.getVectorElementType();
3628  unsigned NumElems = Elts.size();
3629
3630  LoadSDNode *LDBase = NULL;
3631  unsigned LastLoadedElt = -1U;
3632
3633  // For each element in the initializer, see if we've found a load or an undef.
3634  // If we don't find an initial load element, or later load elements are
3635  // non-consecutive, bail out.
3636  for (unsigned i = 0; i < NumElems; ++i) {
3637    SDValue Elt = Elts[i];
3638
3639    if (!Elt.getNode() ||
3640        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
3641      return SDValue();
3642    if (!LDBase) {
3643      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
3644        return SDValue();
3645      LDBase = cast<LoadSDNode>(Elt.getNode());
3646      LastLoadedElt = i;
3647      continue;
3648    }
3649    if (Elt.getOpcode() == ISD::UNDEF)
3650      continue;
3651
3652    LoadSDNode *LD = cast<LoadSDNode>(Elt);
3653    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
3654      return SDValue();
3655    LastLoadedElt = i;
3656  }
3657
3658  // If we have found an entire vector of loads and undefs, then return a large
3659  // load of the entire vector width starting at the base pointer.  If we found
3660  // consecutive loads for the low half, generate a vzext_load node.
3661  if (LastLoadedElt == NumElems - 1) {
3662    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
3663      return DAG.getLoad(VT, dl, LDBase->getChain(), LDBase->getBasePtr(),
3664                         LDBase->getSrcValue(), LDBase->getSrcValueOffset(),
3665                         LDBase->isVolatile(), LDBase->isNonTemporal(), 0);
3666    return DAG.getLoad(VT, dl, LDBase->getChain(), LDBase->getBasePtr(),
3667                       LDBase->getSrcValue(), LDBase->getSrcValueOffset(),
3668                       LDBase->isVolatile(), LDBase->isNonTemporal(),
3669                       LDBase->getAlignment());
3670  } else if (NumElems == 4 && LastLoadedElt == 1) {
3671    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
3672    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
3673    SDValue ResNode = DAG.getNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2);
3674    return DAG.getNode(ISD::BIT_CONVERT, dl, VT, ResNode);
3675  }
3676  return SDValue();
3677}
3678
3679SDValue
3680X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
3681  DebugLoc dl = Op.getDebugLoc();
3682  // All zero's are handled with pxor, all one's are handled with pcmpeqd.
3683  if (ISD::isBuildVectorAllZeros(Op.getNode())
3684      || ISD::isBuildVectorAllOnes(Op.getNode())) {
3685    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3686    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3687    // eliminated on x86-32 hosts.
3688    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
3689      return Op;
3690
3691    if (ISD::isBuildVectorAllOnes(Op.getNode()))
3692      return getOnesVector(Op.getValueType(), DAG, dl);
3693    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
3694  }
3695
3696  EVT VT = Op.getValueType();
3697  EVT ExtVT = VT.getVectorElementType();
3698  unsigned EVTBits = ExtVT.getSizeInBits();
3699
3700  unsigned NumElems = Op.getNumOperands();
3701  unsigned NumZero  = 0;
3702  unsigned NumNonZero = 0;
3703  unsigned NonZeros = 0;
3704  bool IsAllConstants = true;
3705  SmallSet<SDValue, 8> Values;
3706  for (unsigned i = 0; i < NumElems; ++i) {
3707    SDValue Elt = Op.getOperand(i);
3708    if (Elt.getOpcode() == ISD::UNDEF)
3709      continue;
3710    Values.insert(Elt);
3711    if (Elt.getOpcode() != ISD::Constant &&
3712        Elt.getOpcode() != ISD::ConstantFP)
3713      IsAllConstants = false;
3714    if (X86::isZeroNode(Elt))
3715      NumZero++;
3716    else {
3717      NonZeros |= (1 << i);
3718      NumNonZero++;
3719    }
3720  }
3721
3722  if (NumNonZero == 0) {
3723    // All undef vector. Return an UNDEF.  All zero vectors were handled above.
3724    return DAG.getUNDEF(VT);
3725  }
3726
3727  // Special case for single non-zero, non-undef, element.
3728  if (NumNonZero == 1) {
3729    unsigned Idx = CountTrailingZeros_32(NonZeros);
3730    SDValue Item = Op.getOperand(Idx);
3731
3732    // If this is an insertion of an i64 value on x86-32, and if the top bits of
3733    // the value are obviously zero, truncate the value to i32 and do the
3734    // insertion that way.  Only do this if the value is non-constant or if the
3735    // value is a constant being inserted into element 0.  It is cheaper to do
3736    // a constant pool load than it is to do a movd + shuffle.
3737    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
3738        (!IsAllConstants || Idx == 0)) {
3739      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
3740        // Handle MMX and SSE both.
3741        EVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
3742        unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
3743
3744        // Truncate the value (which may itself be a constant) to i32, and
3745        // convert it to a vector with movd (S2V+shuffle to zero extend).
3746        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
3747        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
3748        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3749                                           Subtarget->hasSSE2(), DAG);
3750
3751        // Now we have our 32-bit value zero extended in the low element of
3752        // a vector.  If Idx != 0, swizzle it into place.
3753        if (Idx != 0) {
3754          SmallVector<int, 4> Mask;
3755          Mask.push_back(Idx);
3756          for (unsigned i = 1; i != VecElts; ++i)
3757            Mask.push_back(i);
3758          Item = DAG.getVectorShuffle(VecVT, dl, Item,
3759                                      DAG.getUNDEF(Item.getValueType()),
3760                                      &Mask[0]);
3761        }
3762        return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Item);
3763      }
3764    }
3765
3766    // If we have a constant or non-constant insertion into the low element of
3767    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3768    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
3769    // depending on what the source datatype is.
3770    if (Idx == 0) {
3771      if (NumZero == 0) {
3772        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3773      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
3774          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
3775        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3776        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3777        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
3778                                           DAG);
3779      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
3780        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
3781        EVT MiddleVT = VT.getSizeInBits() == 64 ? MVT::v2i32 : MVT::v4i32;
3782        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
3783        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3784                                           Subtarget->hasSSE2(), DAG);
3785        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Item);
3786      }
3787    }
3788
3789    // Is it a vector logical left shift?
3790    if (NumElems == 2 && Idx == 1 &&
3791        X86::isZeroNode(Op.getOperand(0)) &&
3792        !X86::isZeroNode(Op.getOperand(1))) {
3793      unsigned NumBits = VT.getSizeInBits();
3794      return getVShift(true, VT,
3795                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
3796                                   VT, Op.getOperand(1)),
3797                       NumBits/2, DAG, *this, dl);
3798    }
3799
3800    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
3801      return SDValue();
3802
3803    // Otherwise, if this is a vector with i32 or f32 elements, and the element
3804    // is a non-constant being inserted into an element other than the low one,
3805    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
3806    // movd/movss) to move this into the low element, then shuffle it into
3807    // place.
3808    if (EVTBits == 32) {
3809      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3810
3811      // Turn it into a shuffle of zero and zero-extended scalar to vector.
3812      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3813                                         Subtarget->hasSSE2(), DAG);
3814      SmallVector<int, 8> MaskVec;
3815      for (unsigned i = 0; i < NumElems; i++)
3816        MaskVec.push_back(i == Idx ? 0 : 1);
3817      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
3818    }
3819  }
3820
3821  // Splat is obviously ok. Let legalizer expand it to a shuffle.
3822  if (Values.size() == 1) {
3823    if (EVTBits == 32) {
3824      // Instead of a shuffle like this:
3825      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
3826      // Check if it's possible to issue this instead.
3827      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
3828      unsigned Idx = CountTrailingZeros_32(NonZeros);
3829      SDValue Item = Op.getOperand(Idx);
3830      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
3831        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
3832    }
3833    return SDValue();
3834  }
3835
3836  // A vector full of immediates; various special cases are already
3837  // handled, so this is best done with a single constant-pool load.
3838  if (IsAllConstants)
3839    return SDValue();
3840
3841  // Let legalizer expand 2-wide build_vectors.
3842  if (EVTBits == 64) {
3843    if (NumNonZero == 1) {
3844      // One half is zero or undef.
3845      unsigned Idx = CountTrailingZeros_32(NonZeros);
3846      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
3847                                 Op.getOperand(Idx));
3848      return getShuffleVectorZeroOrUndef(V2, Idx, true,
3849                                         Subtarget->hasSSE2(), DAG);
3850    }
3851    return SDValue();
3852  }
3853
3854  // If element VT is < 32 bits, convert it to inserts into a zero vector.
3855  if (EVTBits == 8 && NumElems == 16) {
3856    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3857                                        *this);
3858    if (V.getNode()) return V;
3859  }
3860
3861  if (EVTBits == 16 && NumElems == 8) {
3862    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3863                                        *this);
3864    if (V.getNode()) return V;
3865  }
3866
3867  // If element VT is == 32 bits, turn it into a number of shuffles.
3868  SmallVector<SDValue, 8> V;
3869  V.resize(NumElems);
3870  if (NumElems == 4 && NumZero > 0) {
3871    for (unsigned i = 0; i < 4; ++i) {
3872      bool isZero = !(NonZeros & (1 << i));
3873      if (isZero)
3874        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
3875      else
3876        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3877    }
3878
3879    for (unsigned i = 0; i < 2; ++i) {
3880      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3881        default: break;
3882        case 0:
3883          V[i] = V[i*2];  // Must be a zero vector.
3884          break;
3885        case 1:
3886          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
3887          break;
3888        case 2:
3889          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
3890          break;
3891        case 3:
3892          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
3893          break;
3894      }
3895    }
3896
3897    SmallVector<int, 8> MaskVec;
3898    bool Reverse = (NonZeros & 0x3) == 2;
3899    for (unsigned i = 0; i < 2; ++i)
3900      MaskVec.push_back(Reverse ? 1-i : i);
3901    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3902    for (unsigned i = 0; i < 2; ++i)
3903      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
3904    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
3905  }
3906
3907  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
3908    // Check for a build vector of consecutive loads.
3909    for (unsigned i = 0; i < NumElems; ++i)
3910      V[i] = Op.getOperand(i);
3911
3912    // Check for elements which are consecutive loads.
3913    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
3914    if (LD.getNode())
3915      return LD;
3916
3917    // For SSE 4.1, use inserts into undef.
3918    if (getSubtarget()->hasSSE41()) {
3919      V[0] = DAG.getUNDEF(VT);
3920      for (unsigned i = 0; i < NumElems; ++i)
3921        if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
3922          V[0] = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, V[0],
3923                             Op.getOperand(i), DAG.getIntPtrConstant(i));
3924      return V[0];
3925    }
3926
3927    // Otherwise, expand into a number of unpckl*
3928    // e.g. for v4f32
3929    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3930    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3931    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
3932    for (unsigned i = 0; i < NumElems; ++i)
3933      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3934    NumElems >>= 1;
3935    while (NumElems != 0) {
3936      for (unsigned i = 0; i < NumElems; ++i)
3937        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + NumElems]);
3938      NumElems >>= 1;
3939    }
3940    return V[0];
3941  }
3942  return SDValue();
3943}
3944
3945SDValue
3946X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
3947  // We support concatenate two MMX registers and place them in a MMX
3948  // register.  This is better than doing a stack convert.
3949  DebugLoc dl = Op.getDebugLoc();
3950  EVT ResVT = Op.getValueType();
3951  assert(Op.getNumOperands() == 2);
3952  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
3953         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
3954  int Mask[2];
3955  SDValue InVec = DAG.getNode(ISD::BIT_CONVERT,dl, MVT::v1i64, Op.getOperand(0));
3956  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
3957  InVec = Op.getOperand(1);
3958  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
3959    unsigned NumElts = ResVT.getVectorNumElements();
3960    VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
3961    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
3962                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
3963  } else {
3964    InVec = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v1i64, InVec);
3965    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
3966    Mask[0] = 0; Mask[1] = 2;
3967    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
3968  }
3969  return DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
3970}
3971
3972// v8i16 shuffles - Prefer shuffles in the following order:
3973// 1. [all]   pshuflw, pshufhw, optional move
3974// 2. [ssse3] 1 x pshufb
3975// 3. [ssse3] 2 x pshufb + 1 x por
3976// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
3977static
3978SDValue LowerVECTOR_SHUFFLEv8i16(ShuffleVectorSDNode *SVOp,
3979                                 SelectionDAG &DAG, X86TargetLowering &TLI) {
3980  SDValue V1 = SVOp->getOperand(0);
3981  SDValue V2 = SVOp->getOperand(1);
3982  DebugLoc dl = SVOp->getDebugLoc();
3983  SmallVector<int, 8> MaskVals;
3984
3985  // Determine if more than 1 of the words in each of the low and high quadwords
3986  // of the result come from the same quadword of one of the two inputs.  Undef
3987  // mask values count as coming from any quadword, for better codegen.
3988  SmallVector<unsigned, 4> LoQuad(4);
3989  SmallVector<unsigned, 4> HiQuad(4);
3990  BitVector InputQuads(4);
3991  for (unsigned i = 0; i < 8; ++i) {
3992    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
3993    int EltIdx = SVOp->getMaskElt(i);
3994    MaskVals.push_back(EltIdx);
3995    if (EltIdx < 0) {
3996      ++Quad[0];
3997      ++Quad[1];
3998      ++Quad[2];
3999      ++Quad[3];
4000      continue;
4001    }
4002    ++Quad[EltIdx / 4];
4003    InputQuads.set(EltIdx / 4);
4004  }
4005
4006  int BestLoQuad = -1;
4007  unsigned MaxQuad = 1;
4008  for (unsigned i = 0; i < 4; ++i) {
4009    if (LoQuad[i] > MaxQuad) {
4010      BestLoQuad = i;
4011      MaxQuad = LoQuad[i];
4012    }
4013  }
4014
4015  int BestHiQuad = -1;
4016  MaxQuad = 1;
4017  for (unsigned i = 0; i < 4; ++i) {
4018    if (HiQuad[i] > MaxQuad) {
4019      BestHiQuad = i;
4020      MaxQuad = HiQuad[i];
4021    }
4022  }
4023
4024  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
4025  // of the two input vectors, shuffle them into one input vector so only a
4026  // single pshufb instruction is necessary. If There are more than 2 input
4027  // quads, disable the next transformation since it does not help SSSE3.
4028  bool V1Used = InputQuads[0] || InputQuads[1];
4029  bool V2Used = InputQuads[2] || InputQuads[3];
4030  if (TLI.getSubtarget()->hasSSSE3()) {
4031    if (InputQuads.count() == 2 && V1Used && V2Used) {
4032      BestLoQuad = InputQuads.find_first();
4033      BestHiQuad = InputQuads.find_next(BestLoQuad);
4034    }
4035    if (InputQuads.count() > 2) {
4036      BestLoQuad = -1;
4037      BestHiQuad = -1;
4038    }
4039  }
4040
4041  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
4042  // the shuffle mask.  If a quad is scored as -1, that means that it contains
4043  // words from all 4 input quadwords.
4044  SDValue NewV;
4045  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
4046    SmallVector<int, 8> MaskV;
4047    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
4048    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
4049    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
4050                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V1),
4051                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V2), &MaskV[0]);
4052    NewV = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, NewV);
4053
4054    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
4055    // source words for the shuffle, to aid later transformations.
4056    bool AllWordsInNewV = true;
4057    bool InOrder[2] = { true, true };
4058    for (unsigned i = 0; i != 8; ++i) {
4059      int idx = MaskVals[i];
4060      if (idx != (int)i)
4061        InOrder[i/4] = false;
4062      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
4063        continue;
4064      AllWordsInNewV = false;
4065      break;
4066    }
4067
4068    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
4069    if (AllWordsInNewV) {
4070      for (int i = 0; i != 8; ++i) {
4071        int idx = MaskVals[i];
4072        if (idx < 0)
4073          continue;
4074        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
4075        if ((idx != i) && idx < 4)
4076          pshufhw = false;
4077        if ((idx != i) && idx > 3)
4078          pshuflw = false;
4079      }
4080      V1 = NewV;
4081      V2Used = false;
4082      BestLoQuad = 0;
4083      BestHiQuad = 1;
4084    }
4085
4086    // If we've eliminated the use of V2, and the new mask is a pshuflw or
4087    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
4088    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
4089      return DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
4090                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
4091    }
4092  }
4093
4094  // If we have SSSE3, and all words of the result are from 1 input vector,
4095  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
4096  // is present, fall back to case 4.
4097  if (TLI.getSubtarget()->hasSSSE3()) {
4098    SmallVector<SDValue,16> pshufbMask;
4099
4100    // If we have elements from both input vectors, set the high bit of the
4101    // shuffle mask element to zero out elements that come from V2 in the V1
4102    // mask, and elements that come from V1 in the V2 mask, so that the two
4103    // results can be OR'd together.
4104    bool TwoInputs = V1Used && V2Used;
4105    for (unsigned i = 0; i != 8; ++i) {
4106      int EltIdx = MaskVals[i] * 2;
4107      if (TwoInputs && (EltIdx >= 16)) {
4108        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4109        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4110        continue;
4111      }
4112      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
4113      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
4114    }
4115    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V1);
4116    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4117                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4118                                 MVT::v16i8, &pshufbMask[0], 16));
4119    if (!TwoInputs)
4120      return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4121
4122    // Calculate the shuffle mask for the second input, shuffle it, and
4123    // OR it with the first shuffled input.
4124    pshufbMask.clear();
4125    for (unsigned i = 0; i != 8; ++i) {
4126      int EltIdx = MaskVals[i] * 2;
4127      if (EltIdx < 16) {
4128        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4129        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4130        continue;
4131      }
4132      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4133      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
4134    }
4135    V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V2);
4136    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4137                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4138                                 MVT::v16i8, &pshufbMask[0], 16));
4139    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4140    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4141  }
4142
4143  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
4144  // and update MaskVals with new element order.
4145  BitVector InOrder(8);
4146  if (BestLoQuad >= 0) {
4147    SmallVector<int, 8> MaskV;
4148    for (int i = 0; i != 4; ++i) {
4149      int idx = MaskVals[i];
4150      if (idx < 0) {
4151        MaskV.push_back(-1);
4152        InOrder.set(i);
4153      } else if ((idx / 4) == BestLoQuad) {
4154        MaskV.push_back(idx & 3);
4155        InOrder.set(i);
4156      } else {
4157        MaskV.push_back(-1);
4158      }
4159    }
4160    for (unsigned i = 4; i != 8; ++i)
4161      MaskV.push_back(i);
4162    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4163                                &MaskV[0]);
4164  }
4165
4166  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
4167  // and update MaskVals with the new element order.
4168  if (BestHiQuad >= 0) {
4169    SmallVector<int, 8> MaskV;
4170    for (unsigned i = 0; i != 4; ++i)
4171      MaskV.push_back(i);
4172    for (unsigned i = 4; i != 8; ++i) {
4173      int idx = MaskVals[i];
4174      if (idx < 0) {
4175        MaskV.push_back(-1);
4176        InOrder.set(i);
4177      } else if ((idx / 4) == BestHiQuad) {
4178        MaskV.push_back((idx & 3) + 4);
4179        InOrder.set(i);
4180      } else {
4181        MaskV.push_back(-1);
4182      }
4183    }
4184    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4185                                &MaskV[0]);
4186  }
4187
4188  // In case BestHi & BestLo were both -1, which means each quadword has a word
4189  // from each of the four input quadwords, calculate the InOrder bitvector now
4190  // before falling through to the insert/extract cleanup.
4191  if (BestLoQuad == -1 && BestHiQuad == -1) {
4192    NewV = V1;
4193    for (int i = 0; i != 8; ++i)
4194      if (MaskVals[i] < 0 || MaskVals[i] == i)
4195        InOrder.set(i);
4196  }
4197
4198  // The other elements are put in the right place using pextrw and pinsrw.
4199  for (unsigned i = 0; i != 8; ++i) {
4200    if (InOrder[i])
4201      continue;
4202    int EltIdx = MaskVals[i];
4203    if (EltIdx < 0)
4204      continue;
4205    SDValue ExtOp = (EltIdx < 8)
4206    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
4207                  DAG.getIntPtrConstant(EltIdx))
4208    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
4209                  DAG.getIntPtrConstant(EltIdx - 8));
4210    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
4211                       DAG.getIntPtrConstant(i));
4212  }
4213  return NewV;
4214}
4215
4216// v16i8 shuffles - Prefer shuffles in the following order:
4217// 1. [ssse3] 1 x pshufb
4218// 2. [ssse3] 2 x pshufb + 1 x por
4219// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
4220static
4221SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
4222                                 SelectionDAG &DAG, X86TargetLowering &TLI) {
4223  SDValue V1 = SVOp->getOperand(0);
4224  SDValue V2 = SVOp->getOperand(1);
4225  DebugLoc dl = SVOp->getDebugLoc();
4226  SmallVector<int, 16> MaskVals;
4227  SVOp->getMask(MaskVals);
4228
4229  // If we have SSSE3, case 1 is generated when all result bytes come from
4230  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
4231  // present, fall back to case 3.
4232  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
4233  bool V1Only = true;
4234  bool V2Only = true;
4235  for (unsigned i = 0; i < 16; ++i) {
4236    int EltIdx = MaskVals[i];
4237    if (EltIdx < 0)
4238      continue;
4239    if (EltIdx < 16)
4240      V2Only = false;
4241    else
4242      V1Only = false;
4243  }
4244
4245  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
4246  if (TLI.getSubtarget()->hasSSSE3()) {
4247    SmallVector<SDValue,16> pshufbMask;
4248
4249    // If all result elements are from one input vector, then only translate
4250    // undef mask values to 0x80 (zero out result) in the pshufb mask.
4251    //
4252    // Otherwise, we have elements from both input vectors, and must zero out
4253    // elements that come from V2 in the first mask, and V1 in the second mask
4254    // so that we can OR them together.
4255    bool TwoInputs = !(V1Only || V2Only);
4256    for (unsigned i = 0; i != 16; ++i) {
4257      int EltIdx = MaskVals[i];
4258      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
4259        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4260        continue;
4261      }
4262      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
4263    }
4264    // If all the elements are from V2, assign it to V1 and return after
4265    // building the first pshufb.
4266    if (V2Only)
4267      V1 = V2;
4268    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4269                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4270                                 MVT::v16i8, &pshufbMask[0], 16));
4271    if (!TwoInputs)
4272      return V1;
4273
4274    // Calculate the shuffle mask for the second input, shuffle it, and
4275    // OR it with the first shuffled input.
4276    pshufbMask.clear();
4277    for (unsigned i = 0; i != 16; ++i) {
4278      int EltIdx = MaskVals[i];
4279      if (EltIdx < 16) {
4280        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4281        continue;
4282      }
4283      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4284    }
4285    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4286                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4287                                 MVT::v16i8, &pshufbMask[0], 16));
4288    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4289  }
4290
4291  // No SSSE3 - Calculate in place words and then fix all out of place words
4292  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
4293  // the 16 different words that comprise the two doublequadword input vectors.
4294  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4295  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V2);
4296  SDValue NewV = V2Only ? V2 : V1;
4297  for (int i = 0; i != 8; ++i) {
4298    int Elt0 = MaskVals[i*2];
4299    int Elt1 = MaskVals[i*2+1];
4300
4301    // This word of the result is all undef, skip it.
4302    if (Elt0 < 0 && Elt1 < 0)
4303      continue;
4304
4305    // This word of the result is already in the correct place, skip it.
4306    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
4307      continue;
4308    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
4309      continue;
4310
4311    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
4312    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
4313    SDValue InsElt;
4314
4315    // If Elt0 and Elt1 are defined, are consecutive, and can be load
4316    // using a single extract together, load it and store it.
4317    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
4318      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4319                           DAG.getIntPtrConstant(Elt1 / 2));
4320      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4321                        DAG.getIntPtrConstant(i));
4322      continue;
4323    }
4324
4325    // If Elt1 is defined, extract it from the appropriate source.  If the
4326    // source byte is not also odd, shift the extracted word left 8 bits
4327    // otherwise clear the bottom 8 bits if we need to do an or.
4328    if (Elt1 >= 0) {
4329      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4330                           DAG.getIntPtrConstant(Elt1 / 2));
4331      if ((Elt1 & 1) == 0)
4332        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
4333                             DAG.getConstant(8, TLI.getShiftAmountTy()));
4334      else if (Elt0 >= 0)
4335        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
4336                             DAG.getConstant(0xFF00, MVT::i16));
4337    }
4338    // If Elt0 is defined, extract it from the appropriate source.  If the
4339    // source byte is not also even, shift the extracted word right 8 bits. If
4340    // Elt1 was also defined, OR the extracted values together before
4341    // inserting them in the result.
4342    if (Elt0 >= 0) {
4343      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
4344                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
4345      if ((Elt0 & 1) != 0)
4346        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
4347                              DAG.getConstant(8, TLI.getShiftAmountTy()));
4348      else if (Elt1 >= 0)
4349        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
4350                             DAG.getConstant(0x00FF, MVT::i16));
4351      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
4352                         : InsElt0;
4353    }
4354    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4355                       DAG.getIntPtrConstant(i));
4356  }
4357  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, NewV);
4358}
4359
4360/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
4361/// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
4362/// done when every pair / quad of shuffle mask elements point to elements in
4363/// the right sequence. e.g.
4364/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
4365static
4366SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
4367                                 SelectionDAG &DAG,
4368                                 TargetLowering &TLI, DebugLoc dl) {
4369  EVT VT = SVOp->getValueType(0);
4370  SDValue V1 = SVOp->getOperand(0);
4371  SDValue V2 = SVOp->getOperand(1);
4372  unsigned NumElems = VT.getVectorNumElements();
4373  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
4374  EVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
4375  EVT MaskEltVT = MaskVT.getVectorElementType();
4376  EVT NewVT = MaskVT;
4377  switch (VT.getSimpleVT().SimpleTy) {
4378  default: assert(false && "Unexpected!");
4379  case MVT::v4f32: NewVT = MVT::v2f64; break;
4380  case MVT::v4i32: NewVT = MVT::v2i64; break;
4381  case MVT::v8i16: NewVT = MVT::v4i32; break;
4382  case MVT::v16i8: NewVT = MVT::v4i32; break;
4383  }
4384
4385  if (NewWidth == 2) {
4386    if (VT.isInteger())
4387      NewVT = MVT::v2i64;
4388    else
4389      NewVT = MVT::v2f64;
4390  }
4391  int Scale = NumElems / NewWidth;
4392  SmallVector<int, 8> MaskVec;
4393  for (unsigned i = 0; i < NumElems; i += Scale) {
4394    int StartIdx = -1;
4395    for (int j = 0; j < Scale; ++j) {
4396      int EltIdx = SVOp->getMaskElt(i+j);
4397      if (EltIdx < 0)
4398        continue;
4399      if (StartIdx == -1)
4400        StartIdx = EltIdx - (EltIdx % Scale);
4401      if (EltIdx != StartIdx + j)
4402        return SDValue();
4403    }
4404    if (StartIdx == -1)
4405      MaskVec.push_back(-1);
4406    else
4407      MaskVec.push_back(StartIdx / Scale);
4408  }
4409
4410  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V1);
4411  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V2);
4412  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
4413}
4414
4415/// getVZextMovL - Return a zero-extending vector move low node.
4416///
4417static SDValue getVZextMovL(EVT VT, EVT OpVT,
4418                            SDValue SrcOp, SelectionDAG &DAG,
4419                            const X86Subtarget *Subtarget, DebugLoc dl) {
4420  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
4421    LoadSDNode *LD = NULL;
4422    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
4423      LD = dyn_cast<LoadSDNode>(SrcOp);
4424    if (!LD) {
4425      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
4426      // instead.
4427      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
4428      if ((ExtVT.SimpleTy != MVT::i64 || Subtarget->is64Bit()) &&
4429          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
4430          SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
4431          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
4432        // PR2108
4433        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
4434        return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4435                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4436                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4437                                                   OpVT,
4438                                                   SrcOp.getOperand(0)
4439                                                          .getOperand(0))));
4440      }
4441    }
4442  }
4443
4444  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4445                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4446                                 DAG.getNode(ISD::BIT_CONVERT, dl,
4447                                             OpVT, SrcOp)));
4448}
4449
4450/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
4451/// shuffles.
4452static SDValue
4453LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4454  SDValue V1 = SVOp->getOperand(0);
4455  SDValue V2 = SVOp->getOperand(1);
4456  DebugLoc dl = SVOp->getDebugLoc();
4457  EVT VT = SVOp->getValueType(0);
4458
4459  SmallVector<std::pair<int, int>, 8> Locs;
4460  Locs.resize(4);
4461  SmallVector<int, 8> Mask1(4U, -1);
4462  SmallVector<int, 8> PermMask;
4463  SVOp->getMask(PermMask);
4464
4465  unsigned NumHi = 0;
4466  unsigned NumLo = 0;
4467  for (unsigned i = 0; i != 4; ++i) {
4468    int Idx = PermMask[i];
4469    if (Idx < 0) {
4470      Locs[i] = std::make_pair(-1, -1);
4471    } else {
4472      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
4473      if (Idx < 4) {
4474        Locs[i] = std::make_pair(0, NumLo);
4475        Mask1[NumLo] = Idx;
4476        NumLo++;
4477      } else {
4478        Locs[i] = std::make_pair(1, NumHi);
4479        if (2+NumHi < 4)
4480          Mask1[2+NumHi] = Idx;
4481        NumHi++;
4482      }
4483    }
4484  }
4485
4486  if (NumLo <= 2 && NumHi <= 2) {
4487    // If no more than two elements come from either vector. This can be
4488    // implemented with two shuffles. First shuffle gather the elements.
4489    // The second shuffle, which takes the first shuffle as both of its
4490    // vector operands, put the elements into the right order.
4491    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4492
4493    SmallVector<int, 8> Mask2(4U, -1);
4494
4495    for (unsigned i = 0; i != 4; ++i) {
4496      if (Locs[i].first == -1)
4497        continue;
4498      else {
4499        unsigned Idx = (i < 2) ? 0 : 4;
4500        Idx += Locs[i].first * 2 + Locs[i].second;
4501        Mask2[i] = Idx;
4502      }
4503    }
4504
4505    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
4506  } else if (NumLo == 3 || NumHi == 3) {
4507    // Otherwise, we must have three elements from one vector, call it X, and
4508    // one element from the other, call it Y.  First, use a shufps to build an
4509    // intermediate vector with the one element from Y and the element from X
4510    // that will be in the same half in the final destination (the indexes don't
4511    // matter). Then, use a shufps to build the final vector, taking the half
4512    // containing the element from Y from the intermediate, and the other half
4513    // from X.
4514    if (NumHi == 3) {
4515      // Normalize it so the 3 elements come from V1.
4516      CommuteVectorShuffleMask(PermMask, VT);
4517      std::swap(V1, V2);
4518    }
4519
4520    // Find the element from V2.
4521    unsigned HiIndex;
4522    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
4523      int Val = PermMask[HiIndex];
4524      if (Val < 0)
4525        continue;
4526      if (Val >= 4)
4527        break;
4528    }
4529
4530    Mask1[0] = PermMask[HiIndex];
4531    Mask1[1] = -1;
4532    Mask1[2] = PermMask[HiIndex^1];
4533    Mask1[3] = -1;
4534    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4535
4536    if (HiIndex >= 2) {
4537      Mask1[0] = PermMask[0];
4538      Mask1[1] = PermMask[1];
4539      Mask1[2] = HiIndex & 1 ? 6 : 4;
4540      Mask1[3] = HiIndex & 1 ? 4 : 6;
4541      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4542    } else {
4543      Mask1[0] = HiIndex & 1 ? 2 : 0;
4544      Mask1[1] = HiIndex & 1 ? 0 : 2;
4545      Mask1[2] = PermMask[2];
4546      Mask1[3] = PermMask[3];
4547      if (Mask1[2] >= 0)
4548        Mask1[2] += 4;
4549      if (Mask1[3] >= 0)
4550        Mask1[3] += 4;
4551      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
4552    }
4553  }
4554
4555  // Break it into (shuffle shuffle_hi, shuffle_lo).
4556  Locs.clear();
4557  SmallVector<int,8> LoMask(4U, -1);
4558  SmallVector<int,8> HiMask(4U, -1);
4559
4560  SmallVector<int,8> *MaskPtr = &LoMask;
4561  unsigned MaskIdx = 0;
4562  unsigned LoIdx = 0;
4563  unsigned HiIdx = 2;
4564  for (unsigned i = 0; i != 4; ++i) {
4565    if (i == 2) {
4566      MaskPtr = &HiMask;
4567      MaskIdx = 1;
4568      LoIdx = 0;
4569      HiIdx = 2;
4570    }
4571    int Idx = PermMask[i];
4572    if (Idx < 0) {
4573      Locs[i] = std::make_pair(-1, -1);
4574    } else if (Idx < 4) {
4575      Locs[i] = std::make_pair(MaskIdx, LoIdx);
4576      (*MaskPtr)[LoIdx] = Idx;
4577      LoIdx++;
4578    } else {
4579      Locs[i] = std::make_pair(MaskIdx, HiIdx);
4580      (*MaskPtr)[HiIdx] = Idx;
4581      HiIdx++;
4582    }
4583  }
4584
4585  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
4586  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
4587  SmallVector<int, 8> MaskOps;
4588  for (unsigned i = 0; i != 4; ++i) {
4589    if (Locs[i].first == -1) {
4590      MaskOps.push_back(-1);
4591    } else {
4592      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
4593      MaskOps.push_back(Idx);
4594    }
4595  }
4596  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
4597}
4598
4599SDValue
4600X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
4601  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4602  SDValue V1 = Op.getOperand(0);
4603  SDValue V2 = Op.getOperand(1);
4604  EVT VT = Op.getValueType();
4605  DebugLoc dl = Op.getDebugLoc();
4606  unsigned NumElems = VT.getVectorNumElements();
4607  bool isMMX = VT.getSizeInBits() == 64;
4608  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
4609  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
4610  bool V1IsSplat = false;
4611  bool V2IsSplat = false;
4612
4613  if (isZeroShuffle(SVOp))
4614    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4615
4616  // Promote splats to v4f32.
4617  if (SVOp->isSplat()) {
4618    if (isMMX || NumElems < 4)
4619      return Op;
4620    return PromoteSplat(SVOp, DAG, Subtarget->hasSSE2());
4621  }
4622
4623  // If the shuffle can be profitably rewritten as a narrower shuffle, then
4624  // do it!
4625  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
4626    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4627    if (NewOp.getNode())
4628      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4629                         LowerVECTOR_SHUFFLE(NewOp, DAG));
4630  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
4631    // FIXME: Figure out a cleaner way to do this.
4632    // Try to make use of movq to zero out the top part.
4633    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
4634      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4635      if (NewOp.getNode()) {
4636        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
4637          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
4638                              DAG, Subtarget, dl);
4639      }
4640    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
4641      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4642      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
4643        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
4644                            DAG, Subtarget, dl);
4645    }
4646  }
4647
4648  if (X86::isPSHUFDMask(SVOp))
4649    return Op;
4650
4651  // Check if this can be converted into a logical shift.
4652  bool isLeft = false;
4653  unsigned ShAmt = 0;
4654  SDValue ShVal;
4655  bool isShift = getSubtarget()->hasSSE2() &&
4656    isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
4657  if (isShift && ShVal.hasOneUse()) {
4658    // If the shifted value has multiple uses, it may be cheaper to use
4659    // v_set0 + movlhps or movhlps, etc.
4660    EVT EltVT = VT.getVectorElementType();
4661    ShAmt *= EltVT.getSizeInBits();
4662    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4663  }
4664
4665  if (X86::isMOVLMask(SVOp)) {
4666    if (V1IsUndef)
4667      return V2;
4668    if (ISD::isBuildVectorAllZeros(V1.getNode()))
4669      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
4670    if (!isMMX)
4671      return Op;
4672  }
4673
4674  // FIXME: fold these into legal mask.
4675  if (!isMMX && (X86::isMOVSHDUPMask(SVOp) ||
4676                 X86::isMOVSLDUPMask(SVOp) ||
4677                 X86::isMOVHLPSMask(SVOp) ||
4678                 X86::isMOVLHPSMask(SVOp) ||
4679                 X86::isMOVLPMask(SVOp)))
4680    return Op;
4681
4682  if (ShouldXformToMOVHLPS(SVOp) ||
4683      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
4684    return CommuteVectorShuffle(SVOp, DAG);
4685
4686  if (isShift) {
4687    // No better options. Use a vshl / vsrl.
4688    EVT EltVT = VT.getVectorElementType();
4689    ShAmt *= EltVT.getSizeInBits();
4690    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4691  }
4692
4693  bool Commuted = false;
4694  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
4695  // 1,1,1,1 -> v8i16 though.
4696  V1IsSplat = isSplatVector(V1.getNode());
4697  V2IsSplat = isSplatVector(V2.getNode());
4698
4699  // Canonicalize the splat or undef, if present, to be on the RHS.
4700  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
4701    Op = CommuteVectorShuffle(SVOp, DAG);
4702    SVOp = cast<ShuffleVectorSDNode>(Op);
4703    V1 = SVOp->getOperand(0);
4704    V2 = SVOp->getOperand(1);
4705    std::swap(V1IsSplat, V2IsSplat);
4706    std::swap(V1IsUndef, V2IsUndef);
4707    Commuted = true;
4708  }
4709
4710  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
4711    // Shuffling low element of v1 into undef, just return v1.
4712    if (V2IsUndef)
4713      return V1;
4714    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
4715    // the instruction selector will not match, so get a canonical MOVL with
4716    // swapped operands to undo the commute.
4717    return getMOVL(DAG, dl, VT, V2, V1);
4718  }
4719
4720  if (X86::isUNPCKL_v_undef_Mask(SVOp) ||
4721      X86::isUNPCKH_v_undef_Mask(SVOp) ||
4722      X86::isUNPCKLMask(SVOp) ||
4723      X86::isUNPCKHMask(SVOp))
4724    return Op;
4725
4726  if (V2IsSplat) {
4727    // Normalize mask so all entries that point to V2 points to its first
4728    // element then try to match unpck{h|l} again. If match, return a
4729    // new vector_shuffle with the corrected mask.
4730    SDValue NewMask = NormalizeMask(SVOp, DAG);
4731    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
4732    if (NSVOp != SVOp) {
4733      if (X86::isUNPCKLMask(NSVOp, true)) {
4734        return NewMask;
4735      } else if (X86::isUNPCKHMask(NSVOp, true)) {
4736        return NewMask;
4737      }
4738    }
4739  }
4740
4741  if (Commuted) {
4742    // Commute is back and try unpck* again.
4743    // FIXME: this seems wrong.
4744    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
4745    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
4746    if (X86::isUNPCKL_v_undef_Mask(NewSVOp) ||
4747        X86::isUNPCKH_v_undef_Mask(NewSVOp) ||
4748        X86::isUNPCKLMask(NewSVOp) ||
4749        X86::isUNPCKHMask(NewSVOp))
4750      return NewOp;
4751  }
4752
4753  // FIXME: for mmx, bitcast v2i32 to v4i16 for shuffle.
4754
4755  // Normalize the node to match x86 shuffle ops if needed
4756  if (!isMMX && V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
4757    return CommuteVectorShuffle(SVOp, DAG);
4758
4759  // Check for legal shuffle and return?
4760  SmallVector<int, 16> PermMask;
4761  SVOp->getMask(PermMask);
4762  if (isShuffleMaskLegal(PermMask, VT))
4763    return Op;
4764
4765  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
4766  if (VT == MVT::v8i16) {
4767    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(SVOp, DAG, *this);
4768    if (NewOp.getNode())
4769      return NewOp;
4770  }
4771
4772  if (VT == MVT::v16i8) {
4773    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
4774    if (NewOp.getNode())
4775      return NewOp;
4776  }
4777
4778  // Handle all 4 wide cases with a number of shuffles except for MMX.
4779  if (NumElems == 4 && !isMMX)
4780    return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
4781
4782  return SDValue();
4783}
4784
4785SDValue
4786X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
4787                                                SelectionDAG &DAG) {
4788  EVT VT = Op.getValueType();
4789  DebugLoc dl = Op.getDebugLoc();
4790  if (VT.getSizeInBits() == 8) {
4791    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
4792                                    Op.getOperand(0), Op.getOperand(1));
4793    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4794                                    DAG.getValueType(VT));
4795    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4796  } else if (VT.getSizeInBits() == 16) {
4797    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4798    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
4799    if (Idx == 0)
4800      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4801                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4802                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4803                                                 MVT::v4i32,
4804                                                 Op.getOperand(0)),
4805                                     Op.getOperand(1)));
4806    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
4807                                    Op.getOperand(0), Op.getOperand(1));
4808    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4809                                    DAG.getValueType(VT));
4810    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4811  } else if (VT == MVT::f32) {
4812    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
4813    // the result back to FR32 register. It's only worth matching if the
4814    // result has a single use which is a store or a bitcast to i32.  And in
4815    // the case of a store, it's not worth it if the index is a constant 0,
4816    // because a MOVSSmr can be used instead, which is smaller and faster.
4817    if (!Op.hasOneUse())
4818      return SDValue();
4819    SDNode *User = *Op.getNode()->use_begin();
4820    if ((User->getOpcode() != ISD::STORE ||
4821         (isa<ConstantSDNode>(Op.getOperand(1)) &&
4822          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
4823        (User->getOpcode() != ISD::BIT_CONVERT ||
4824         User->getValueType(0) != MVT::i32))
4825      return SDValue();
4826    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4827                                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32,
4828                                              Op.getOperand(0)),
4829                                              Op.getOperand(1));
4830    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Extract);
4831  } else if (VT == MVT::i32) {
4832    // ExtractPS works with constant index.
4833    if (isa<ConstantSDNode>(Op.getOperand(1)))
4834      return Op;
4835  }
4836  return SDValue();
4837}
4838
4839
4840SDValue
4841X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4842  if (!isa<ConstantSDNode>(Op.getOperand(1)))
4843    return SDValue();
4844
4845  if (Subtarget->hasSSE41()) {
4846    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
4847    if (Res.getNode())
4848      return Res;
4849  }
4850
4851  EVT VT = Op.getValueType();
4852  DebugLoc dl = Op.getDebugLoc();
4853  // TODO: handle v16i8.
4854  if (VT.getSizeInBits() == 16) {
4855    SDValue Vec = Op.getOperand(0);
4856    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4857    if (Idx == 0)
4858      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4859                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4860                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4861                                                 MVT::v4i32, Vec),
4862                                     Op.getOperand(1)));
4863    // Transform it so it match pextrw which produces a 32-bit result.
4864    EVT EltVT = MVT::i32;
4865    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
4866                                    Op.getOperand(0), Op.getOperand(1));
4867    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
4868                                    DAG.getValueType(VT));
4869    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4870  } else if (VT.getSizeInBits() == 32) {
4871    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4872    if (Idx == 0)
4873      return Op;
4874
4875    // SHUFPS the element to the lowest double word, then movss.
4876    int Mask[4] = { Idx, -1, -1, -1 };
4877    EVT VVT = Op.getOperand(0).getValueType();
4878    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
4879                                       DAG.getUNDEF(VVT), Mask);
4880    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4881                       DAG.getIntPtrConstant(0));
4882  } else if (VT.getSizeInBits() == 64) {
4883    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
4884    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
4885    //        to match extract_elt for f64.
4886    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4887    if (Idx == 0)
4888      return Op;
4889
4890    // UNPCKHPD the element to the lowest double word, then movsd.
4891    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
4892    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
4893    int Mask[2] = { 1, -1 };
4894    EVT VVT = Op.getOperand(0).getValueType();
4895    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
4896                                       DAG.getUNDEF(VVT), Mask);
4897    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4898                       DAG.getIntPtrConstant(0));
4899  }
4900
4901  return SDValue();
4902}
4903
4904SDValue
4905X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG){
4906  EVT VT = Op.getValueType();
4907  EVT EltVT = VT.getVectorElementType();
4908  DebugLoc dl = Op.getDebugLoc();
4909
4910  SDValue N0 = Op.getOperand(0);
4911  SDValue N1 = Op.getOperand(1);
4912  SDValue N2 = Op.getOperand(2);
4913
4914  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
4915      isa<ConstantSDNode>(N2)) {
4916    unsigned Opc;
4917    if (VT == MVT::v8i16)
4918      Opc = X86ISD::PINSRW;
4919    else if (VT == MVT::v4i16)
4920      Opc = X86ISD::MMX_PINSRW;
4921    else if (VT == MVT::v16i8)
4922      Opc = X86ISD::PINSRB;
4923    else
4924      Opc = X86ISD::PINSRB;
4925
4926    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
4927    // argument.
4928    if (N1.getValueType() != MVT::i32)
4929      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
4930    if (N2.getValueType() != MVT::i32)
4931      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4932    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
4933  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
4934    // Bits [7:6] of the constant are the source select.  This will always be
4935    //  zero here.  The DAG Combiner may combine an extract_elt index into these
4936    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
4937    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
4938    // Bits [5:4] of the constant are the destination select.  This is the
4939    //  value of the incoming immediate.
4940    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
4941    //   combine either bitwise AND or insert of float 0.0 to set these bits.
4942    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
4943    // Create this as a scalar to vector..
4944    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
4945    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
4946  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
4947    // PINSR* works with constant index.
4948    return Op;
4949  }
4950  return SDValue();
4951}
4952
4953SDValue
4954X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4955  EVT VT = Op.getValueType();
4956  EVT EltVT = VT.getVectorElementType();
4957
4958  if (Subtarget->hasSSE41())
4959    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
4960
4961  if (EltVT == MVT::i8)
4962    return SDValue();
4963
4964  DebugLoc dl = Op.getDebugLoc();
4965  SDValue N0 = Op.getOperand(0);
4966  SDValue N1 = Op.getOperand(1);
4967  SDValue N2 = Op.getOperand(2);
4968
4969  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
4970    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
4971    // as its second argument.
4972    if (N1.getValueType() != MVT::i32)
4973      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
4974    if (N2.getValueType() != MVT::i32)
4975      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4976    return DAG.getNode(VT == MVT::v8i16 ? X86ISD::PINSRW : X86ISD::MMX_PINSRW,
4977                       dl, VT, N0, N1, N2);
4978  }
4979  return SDValue();
4980}
4981
4982SDValue
4983X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
4984  DebugLoc dl = Op.getDebugLoc();
4985  if (Op.getValueType() == MVT::v2f32)
4986    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f32,
4987                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i32,
4988                                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32,
4989                                               Op.getOperand(0))));
4990
4991  if (Op.getValueType() == MVT::v1i64 && Op.getOperand(0).getValueType() == MVT::i64)
4992    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
4993
4994  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
4995  EVT VT = MVT::v2i32;
4996  switch (Op.getValueType().getSimpleVT().SimpleTy) {
4997  default: break;
4998  case MVT::v16i8:
4999  case MVT::v8i16:
5000    VT = MVT::v4i32;
5001    break;
5002  }
5003  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(),
5004                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, AnyExt));
5005}
5006
5007// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
5008// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
5009// one of the above mentioned nodes. It has to be wrapped because otherwise
5010// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
5011// be used to form addressing mode. These wrapped nodes will be selected
5012// into MOV32ri.
5013SDValue
5014X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
5015  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
5016
5017  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5018  // global base reg.
5019  unsigned char OpFlag = 0;
5020  unsigned WrapperKind = X86ISD::Wrapper;
5021  CodeModel::Model M = getTargetMachine().getCodeModel();
5022
5023  if (Subtarget->isPICStyleRIPRel() &&
5024      (M == CodeModel::Small || M == CodeModel::Kernel))
5025    WrapperKind = X86ISD::WrapperRIP;
5026  else if (Subtarget->isPICStyleGOT())
5027    OpFlag = X86II::MO_GOTOFF;
5028  else if (Subtarget->isPICStyleStubPIC())
5029    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5030
5031  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
5032                                             CP->getAlignment(),
5033                                             CP->getOffset(), OpFlag);
5034  DebugLoc DL = CP->getDebugLoc();
5035  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5036  // With PIC, the address is actually $g + Offset.
5037  if (OpFlag) {
5038    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5039                         DAG.getNode(X86ISD::GlobalBaseReg,
5040                                     DebugLoc::getUnknownLoc(), getPointerTy()),
5041                         Result);
5042  }
5043
5044  return Result;
5045}
5046
5047SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
5048  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
5049
5050  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5051  // global base reg.
5052  unsigned char OpFlag = 0;
5053  unsigned WrapperKind = X86ISD::Wrapper;
5054  CodeModel::Model M = getTargetMachine().getCodeModel();
5055
5056  if (Subtarget->isPICStyleRIPRel() &&
5057      (M == CodeModel::Small || M == CodeModel::Kernel))
5058    WrapperKind = X86ISD::WrapperRIP;
5059  else if (Subtarget->isPICStyleGOT())
5060    OpFlag = X86II::MO_GOTOFF;
5061  else if (Subtarget->isPICStyleStubPIC())
5062    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5063
5064  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
5065                                          OpFlag);
5066  DebugLoc DL = JT->getDebugLoc();
5067  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5068
5069  // With PIC, the address is actually $g + Offset.
5070  if (OpFlag) {
5071    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5072                         DAG.getNode(X86ISD::GlobalBaseReg,
5073                                     DebugLoc::getUnknownLoc(), getPointerTy()),
5074                         Result);
5075  }
5076
5077  return Result;
5078}
5079
5080SDValue
5081X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) {
5082  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
5083
5084  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5085  // global base reg.
5086  unsigned char OpFlag = 0;
5087  unsigned WrapperKind = X86ISD::Wrapper;
5088  CodeModel::Model M = getTargetMachine().getCodeModel();
5089
5090  if (Subtarget->isPICStyleRIPRel() &&
5091      (M == CodeModel::Small || M == CodeModel::Kernel))
5092    WrapperKind = X86ISD::WrapperRIP;
5093  else if (Subtarget->isPICStyleGOT())
5094    OpFlag = X86II::MO_GOTOFF;
5095  else if (Subtarget->isPICStyleStubPIC())
5096    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5097
5098  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
5099
5100  DebugLoc DL = Op.getDebugLoc();
5101  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5102
5103
5104  // With PIC, the address is actually $g + Offset.
5105  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
5106      !Subtarget->is64Bit()) {
5107    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5108                         DAG.getNode(X86ISD::GlobalBaseReg,
5109                                     DebugLoc::getUnknownLoc(),
5110                                     getPointerTy()),
5111                         Result);
5112  }
5113
5114  return Result;
5115}
5116
5117SDValue
5118X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) {
5119  // Create the TargetBlockAddressAddress node.
5120  unsigned char OpFlags =
5121    Subtarget->ClassifyBlockAddressReference();
5122  CodeModel::Model M = getTargetMachine().getCodeModel();
5123  BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
5124  DebugLoc dl = Op.getDebugLoc();
5125  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
5126                                       /*isTarget=*/true, OpFlags);
5127
5128  if (Subtarget->isPICStyleRIPRel() &&
5129      (M == CodeModel::Small || M == CodeModel::Kernel))
5130    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5131  else
5132    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5133
5134  // With PIC, the address is actually $g + Offset.
5135  if (isGlobalRelativeToPICBase(OpFlags)) {
5136    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5137                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5138                         Result);
5139  }
5140
5141  return Result;
5142}
5143
5144SDValue
5145X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
5146                                      int64_t Offset,
5147                                      SelectionDAG &DAG) const {
5148  // Create the TargetGlobalAddress node, folding in the constant
5149  // offset if it is legal.
5150  unsigned char OpFlags =
5151    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
5152  CodeModel::Model M = getTargetMachine().getCodeModel();
5153  SDValue Result;
5154  if (OpFlags == X86II::MO_NO_FLAG &&
5155      X86::isOffsetSuitableForCodeModel(Offset, M)) {
5156    // A direct static reference to a global.
5157    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), Offset);
5158    Offset = 0;
5159  } else {
5160    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), 0, OpFlags);
5161  }
5162
5163  if (Subtarget->isPICStyleRIPRel() &&
5164      (M == CodeModel::Small || M == CodeModel::Kernel))
5165    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5166  else
5167    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5168
5169  // With PIC, the address is actually $g + Offset.
5170  if (isGlobalRelativeToPICBase(OpFlags)) {
5171    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5172                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5173                         Result);
5174  }
5175
5176  // For globals that require a load from a stub to get the address, emit the
5177  // load.
5178  if (isGlobalStubReference(OpFlags))
5179    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
5180                         PseudoSourceValue::getGOT(), 0, false, false, 0);
5181
5182  // If there was a non-zero offset that we didn't fold, create an explicit
5183  // addition for it.
5184  if (Offset != 0)
5185    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
5186                         DAG.getConstant(Offset, getPointerTy()));
5187
5188  return Result;
5189}
5190
5191SDValue
5192X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) {
5193  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
5194  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
5195  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
5196}
5197
5198static SDValue
5199GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
5200           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
5201           unsigned char OperandFlags) {
5202  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5203  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
5204  DebugLoc dl = GA->getDebugLoc();
5205  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
5206                                           GA->getValueType(0),
5207                                           GA->getOffset(),
5208                                           OperandFlags);
5209  if (InFlag) {
5210    SDValue Ops[] = { Chain,  TGA, *InFlag };
5211    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
5212  } else {
5213    SDValue Ops[]  = { Chain, TGA };
5214    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
5215  }
5216
5217  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
5218  MFI->setHasCalls(true);
5219
5220  SDValue Flag = Chain.getValue(1);
5221  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
5222}
5223
5224// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
5225static SDValue
5226LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5227                                const EVT PtrVT) {
5228  SDValue InFlag;
5229  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
5230  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
5231                                     DAG.getNode(X86ISD::GlobalBaseReg,
5232                                                 DebugLoc::getUnknownLoc(),
5233                                                 PtrVT), InFlag);
5234  InFlag = Chain.getValue(1);
5235
5236  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
5237}
5238
5239// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
5240static SDValue
5241LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5242                                const EVT PtrVT) {
5243  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
5244                    X86::RAX, X86II::MO_TLSGD);
5245}
5246
5247// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
5248// "local exec" model.
5249static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5250                                   const EVT PtrVT, TLSModel::Model model,
5251                                   bool is64Bit) {
5252  DebugLoc dl = GA->getDebugLoc();
5253  // Get the Thread Pointer
5254  SDValue Base = DAG.getNode(X86ISD::SegmentBaseAddress,
5255                             DebugLoc::getUnknownLoc(), PtrVT,
5256                             DAG.getRegister(is64Bit? X86::FS : X86::GS,
5257                                             MVT::i32));
5258
5259  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Base,
5260                                      NULL, 0, false, false, 0);
5261
5262  unsigned char OperandFlags = 0;
5263  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
5264  // initialexec.
5265  unsigned WrapperKind = X86ISD::Wrapper;
5266  if (model == TLSModel::LocalExec) {
5267    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
5268  } else if (is64Bit) {
5269    assert(model == TLSModel::InitialExec);
5270    OperandFlags = X86II::MO_GOTTPOFF;
5271    WrapperKind = X86ISD::WrapperRIP;
5272  } else {
5273    assert(model == TLSModel::InitialExec);
5274    OperandFlags = X86II::MO_INDNTPOFF;
5275  }
5276
5277  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
5278  // exec)
5279  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
5280                                           GA->getOffset(), OperandFlags);
5281  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
5282
5283  if (model == TLSModel::InitialExec)
5284    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
5285                         PseudoSourceValue::getGOT(), 0, false, false, 0);
5286
5287  // The address of the thread local variable is the add of the thread
5288  // pointer with the offset of the variable.
5289  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
5290}
5291
5292SDValue
5293X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
5294  // TODO: implement the "local dynamic" model
5295  // TODO: implement the "initial exec"model for pic executables
5296  assert(Subtarget->isTargetELF() &&
5297         "TLS not implemented for non-ELF targets");
5298  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
5299  const GlobalValue *GV = GA->getGlobal();
5300
5301  // If GV is an alias then use the aliasee for determining
5302  // thread-localness.
5303  if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
5304    GV = GA->resolveAliasedGlobal(false);
5305
5306  TLSModel::Model model = getTLSModel(GV,
5307                                      getTargetMachine().getRelocationModel());
5308
5309  switch (model) {
5310  case TLSModel::GeneralDynamic:
5311  case TLSModel::LocalDynamic: // not implemented
5312    if (Subtarget->is64Bit())
5313      return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
5314    return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
5315
5316  case TLSModel::InitialExec:
5317  case TLSModel::LocalExec:
5318    return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
5319                               Subtarget->is64Bit());
5320  }
5321
5322  llvm_unreachable("Unreachable");
5323  return SDValue();
5324}
5325
5326
5327/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
5328/// take a 2 x i32 value to shift plus a shift amount.
5329SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) {
5330  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
5331  EVT VT = Op.getValueType();
5332  unsigned VTBits = VT.getSizeInBits();
5333  DebugLoc dl = Op.getDebugLoc();
5334  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
5335  SDValue ShOpLo = Op.getOperand(0);
5336  SDValue ShOpHi = Op.getOperand(1);
5337  SDValue ShAmt  = Op.getOperand(2);
5338  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
5339                                     DAG.getConstant(VTBits - 1, MVT::i8))
5340                       : DAG.getConstant(0, VT);
5341
5342  SDValue Tmp2, Tmp3;
5343  if (Op.getOpcode() == ISD::SHL_PARTS) {
5344    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
5345    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
5346  } else {
5347    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
5348    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
5349  }
5350
5351  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
5352                                DAG.getConstant(VTBits, MVT::i8));
5353  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
5354                             AndNode, DAG.getConstant(0, MVT::i8));
5355
5356  SDValue Hi, Lo;
5357  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5358  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
5359  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
5360
5361  if (Op.getOpcode() == ISD::SHL_PARTS) {
5362    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
5363    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
5364  } else {
5365    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
5366    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
5367  }
5368
5369  SDValue Ops[2] = { Lo, Hi };
5370  return DAG.getMergeValues(Ops, 2, dl);
5371}
5372
5373SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
5374  EVT SrcVT = Op.getOperand(0).getValueType();
5375
5376  if (SrcVT.isVector()) {
5377    if (SrcVT == MVT::v2i32 && Op.getValueType() == MVT::v2f64) {
5378      return Op;
5379    }
5380    return SDValue();
5381  }
5382
5383  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
5384         "Unknown SINT_TO_FP to lower!");
5385
5386  // These are really Legal; return the operand so the caller accepts it as
5387  // Legal.
5388  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
5389    return Op;
5390  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
5391      Subtarget->is64Bit()) {
5392    return Op;
5393  }
5394
5395  DebugLoc dl = Op.getDebugLoc();
5396  unsigned Size = SrcVT.getSizeInBits()/8;
5397  MachineFunction &MF = DAG.getMachineFunction();
5398  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
5399  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5400  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5401                               StackSlot,
5402                               PseudoSourceValue::getFixedStack(SSFI), 0,
5403                               false, false, 0);
5404  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
5405}
5406
5407SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
5408                                     SDValue StackSlot,
5409                                     SelectionDAG &DAG) {
5410  // Build the FILD
5411  DebugLoc dl = Op.getDebugLoc();
5412  SDVTList Tys;
5413  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
5414  if (useSSE)
5415    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
5416  else
5417    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
5418  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
5419  SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, dl,
5420                               Tys, Ops, array_lengthof(Ops));
5421
5422  if (useSSE) {
5423    Chain = Result.getValue(1);
5424    SDValue InFlag = Result.getValue(2);
5425
5426    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
5427    // shouldn't be necessary except that RFP cannot be live across
5428    // multiple blocks. When stackifier is fixed, they can be uncoupled.
5429    MachineFunction &MF = DAG.getMachineFunction();
5430    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
5431    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5432    Tys = DAG.getVTList(MVT::Other);
5433    SDValue Ops[] = {
5434      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
5435    };
5436    Chain = DAG.getNode(X86ISD::FST, dl, Tys, Ops, array_lengthof(Ops));
5437    Result = DAG.getLoad(Op.getValueType(), dl, Chain, StackSlot,
5438                         PseudoSourceValue::getFixedStack(SSFI), 0,
5439                         false, false, 0);
5440  }
5441
5442  return Result;
5443}
5444
5445// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
5446SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) {
5447  // This algorithm is not obvious. Here it is in C code, more or less:
5448  /*
5449    double uint64_to_double( uint32_t hi, uint32_t lo ) {
5450      static const __m128i exp = { 0x4330000045300000ULL, 0 };
5451      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
5452
5453      // Copy ints to xmm registers.
5454      __m128i xh = _mm_cvtsi32_si128( hi );
5455      __m128i xl = _mm_cvtsi32_si128( lo );
5456
5457      // Combine into low half of a single xmm register.
5458      __m128i x = _mm_unpacklo_epi32( xh, xl );
5459      __m128d d;
5460      double sd;
5461
5462      // Merge in appropriate exponents to give the integer bits the right
5463      // magnitude.
5464      x = _mm_unpacklo_epi32( x, exp );
5465
5466      // Subtract away the biases to deal with the IEEE-754 double precision
5467      // implicit 1.
5468      d = _mm_sub_pd( (__m128d) x, bias );
5469
5470      // All conversions up to here are exact. The correctly rounded result is
5471      // calculated using the current rounding mode using the following
5472      // horizontal add.
5473      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
5474      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
5475                                // store doesn't really need to be here (except
5476                                // maybe to zero the other double)
5477      return sd;
5478    }
5479  */
5480
5481  DebugLoc dl = Op.getDebugLoc();
5482  LLVMContext *Context = DAG.getContext();
5483
5484  // Build some magic constants.
5485  std::vector<Constant*> CV0;
5486  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
5487  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
5488  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
5489  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
5490  Constant *C0 = ConstantVector::get(CV0);
5491  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
5492
5493  std::vector<Constant*> CV1;
5494  CV1.push_back(
5495    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
5496  CV1.push_back(
5497    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
5498  Constant *C1 = ConstantVector::get(CV1);
5499  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
5500
5501  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5502                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5503                                        Op.getOperand(0),
5504                                        DAG.getIntPtrConstant(1)));
5505  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5506                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5507                                        Op.getOperand(0),
5508                                        DAG.getIntPtrConstant(0)));
5509  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
5510  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
5511                              PseudoSourceValue::getConstantPool(), 0,
5512                              false, false, 16);
5513  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
5514  SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Unpck2);
5515  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
5516                              PseudoSourceValue::getConstantPool(), 0,
5517                              false, false, 16);
5518  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
5519
5520  // Add the halves; easiest way is to swap them into another reg first.
5521  int ShufMask[2] = { 1, -1 };
5522  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
5523                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
5524  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
5525  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
5526                     DAG.getIntPtrConstant(0));
5527}
5528
5529// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
5530SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) {
5531  DebugLoc dl = Op.getDebugLoc();
5532  // FP constant to bias correct the final result.
5533  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
5534                                   MVT::f64);
5535
5536  // Load the 32-bit value into an XMM register.
5537  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5538                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5539                                         Op.getOperand(0),
5540                                         DAG.getIntPtrConstant(0)));
5541
5542  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5543                     DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Load),
5544                     DAG.getIntPtrConstant(0));
5545
5546  // Or the load with the bias.
5547  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
5548                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5549                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5550                                                   MVT::v2f64, Load)),
5551                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5552                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5553                                                   MVT::v2f64, Bias)));
5554  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5555                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Or),
5556                   DAG.getIntPtrConstant(0));
5557
5558  // Subtract the bias.
5559  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
5560
5561  // Handle final rounding.
5562  EVT DestVT = Op.getValueType();
5563
5564  if (DestVT.bitsLT(MVT::f64)) {
5565    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
5566                       DAG.getIntPtrConstant(0));
5567  } else if (DestVT.bitsGT(MVT::f64)) {
5568    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
5569  }
5570
5571  // Handle final rounding.
5572  return Sub;
5573}
5574
5575SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
5576  SDValue N0 = Op.getOperand(0);
5577  DebugLoc dl = Op.getDebugLoc();
5578
5579  // Now not UINT_TO_FP is legal (it's marked custom), dag combiner won't
5580  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
5581  // the optimization here.
5582  if (DAG.SignBitIsZero(N0))
5583    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
5584
5585  EVT SrcVT = N0.getValueType();
5586  if (SrcVT == MVT::i64) {
5587    // We only handle SSE2 f64 target here; caller can expand the rest.
5588    if (Op.getValueType() != MVT::f64 || !X86ScalarSSEf64)
5589      return SDValue();
5590
5591    return LowerUINT_TO_FP_i64(Op, DAG);
5592  } else if (SrcVT == MVT::i32 && X86ScalarSSEf64) {
5593    return LowerUINT_TO_FP_i32(Op, DAG);
5594  }
5595
5596  assert(SrcVT == MVT::i32 && "Unknown UINT_TO_FP to lower!");
5597
5598  // Make a 64-bit buffer, and use it to build an FILD.
5599  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
5600  SDValue WordOff = DAG.getConstant(4, getPointerTy());
5601  SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
5602                                   getPointerTy(), StackSlot, WordOff);
5603  SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5604                                StackSlot, NULL, 0, false, false, 0);
5605  SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
5606                                OffsetSlot, NULL, 0, false, false, 0);
5607  return BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
5608}
5609
5610std::pair<SDValue,SDValue> X86TargetLowering::
5611FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) {
5612  DebugLoc dl = Op.getDebugLoc();
5613
5614  EVT DstTy = Op.getValueType();
5615
5616  if (!IsSigned) {
5617    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
5618    DstTy = MVT::i64;
5619  }
5620
5621  assert(DstTy.getSimpleVT() <= MVT::i64 &&
5622         DstTy.getSimpleVT() >= MVT::i16 &&
5623         "Unknown FP_TO_SINT to lower!");
5624
5625  // These are really Legal.
5626  if (DstTy == MVT::i32 &&
5627      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5628    return std::make_pair(SDValue(), SDValue());
5629  if (Subtarget->is64Bit() &&
5630      DstTy == MVT::i64 &&
5631      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5632    return std::make_pair(SDValue(), SDValue());
5633
5634  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
5635  // stack slot.
5636  MachineFunction &MF = DAG.getMachineFunction();
5637  unsigned MemSize = DstTy.getSizeInBits()/8;
5638  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
5639  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5640
5641  unsigned Opc;
5642  switch (DstTy.getSimpleVT().SimpleTy) {
5643  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
5644  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
5645  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
5646  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
5647  }
5648
5649  SDValue Chain = DAG.getEntryNode();
5650  SDValue Value = Op.getOperand(0);
5651  if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
5652    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
5653    Chain = DAG.getStore(Chain, dl, Value, StackSlot,
5654                         PseudoSourceValue::getFixedStack(SSFI), 0,
5655                         false, false, 0);
5656    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
5657    SDValue Ops[] = {
5658      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
5659    };
5660    Value = DAG.getNode(X86ISD::FLD, dl, Tys, Ops, 3);
5661    Chain = Value.getValue(1);
5662    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
5663    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5664  }
5665
5666  // Build the FP_TO_INT*_IN_MEM
5667  SDValue Ops[] = { Chain, Value, StackSlot };
5668  SDValue FIST = DAG.getNode(Opc, dl, MVT::Other, Ops, 3);
5669
5670  return std::make_pair(FIST, StackSlot);
5671}
5672
5673SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
5674  if (Op.getValueType().isVector()) {
5675    if (Op.getValueType() == MVT::v2i32 &&
5676        Op.getOperand(0).getValueType() == MVT::v2f64) {
5677      return Op;
5678    }
5679    return SDValue();
5680  }
5681
5682  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
5683  SDValue FIST = Vals.first, StackSlot = Vals.second;
5684  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
5685  if (FIST.getNode() == 0) return Op;
5686
5687  // Load the result.
5688  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5689                     FIST, StackSlot, NULL, 0, false, false, 0);
5690}
5691
5692SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) {
5693  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
5694  SDValue FIST = Vals.first, StackSlot = Vals.second;
5695  assert(FIST.getNode() && "Unexpected failure");
5696
5697  // Load the result.
5698  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5699                     FIST, StackSlot, NULL, 0, false, false, 0);
5700}
5701
5702SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) {
5703  LLVMContext *Context = DAG.getContext();
5704  DebugLoc dl = Op.getDebugLoc();
5705  EVT VT = Op.getValueType();
5706  EVT EltVT = VT;
5707  if (VT.isVector())
5708    EltVT = VT.getVectorElementType();
5709  std::vector<Constant*> CV;
5710  if (EltVT == MVT::f64) {
5711    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
5712    CV.push_back(C);
5713    CV.push_back(C);
5714  } else {
5715    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
5716    CV.push_back(C);
5717    CV.push_back(C);
5718    CV.push_back(C);
5719    CV.push_back(C);
5720  }
5721  Constant *C = ConstantVector::get(CV);
5722  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5723  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5724                             PseudoSourceValue::getConstantPool(), 0,
5725                             false, false, 16);
5726  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
5727}
5728
5729SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) {
5730  LLVMContext *Context = DAG.getContext();
5731  DebugLoc dl = Op.getDebugLoc();
5732  EVT VT = Op.getValueType();
5733  EVT EltVT = VT;
5734  if (VT.isVector())
5735    EltVT = VT.getVectorElementType();
5736  std::vector<Constant*> CV;
5737  if (EltVT == MVT::f64) {
5738    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
5739    CV.push_back(C);
5740    CV.push_back(C);
5741  } else {
5742    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
5743    CV.push_back(C);
5744    CV.push_back(C);
5745    CV.push_back(C);
5746    CV.push_back(C);
5747  }
5748  Constant *C = ConstantVector::get(CV);
5749  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5750  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5751                             PseudoSourceValue::getConstantPool(), 0,
5752                             false, false, 16);
5753  if (VT.isVector()) {
5754    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
5755                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
5756                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5757                                Op.getOperand(0)),
5758                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, Mask)));
5759  } else {
5760    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
5761  }
5762}
5763
5764SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
5765  LLVMContext *Context = DAG.getContext();
5766  SDValue Op0 = Op.getOperand(0);
5767  SDValue Op1 = Op.getOperand(1);
5768  DebugLoc dl = Op.getDebugLoc();
5769  EVT VT = Op.getValueType();
5770  EVT SrcVT = Op1.getValueType();
5771
5772  // If second operand is smaller, extend it first.
5773  if (SrcVT.bitsLT(VT)) {
5774    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
5775    SrcVT = VT;
5776  }
5777  // And if it is bigger, shrink it first.
5778  if (SrcVT.bitsGT(VT)) {
5779    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
5780    SrcVT = VT;
5781  }
5782
5783  // At this point the operands and the result should have the same
5784  // type, and that won't be f80 since that is not custom lowered.
5785
5786  // First get the sign bit of second operand.
5787  std::vector<Constant*> CV;
5788  if (SrcVT == MVT::f64) {
5789    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
5790    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
5791  } else {
5792    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
5793    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5794    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5795    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5796  }
5797  Constant *C = ConstantVector::get(CV);
5798  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5799  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
5800                              PseudoSourceValue::getConstantPool(), 0,
5801                              false, false, 16);
5802  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
5803
5804  // Shift sign bit right or left if the two operands have different types.
5805  if (SrcVT.bitsGT(VT)) {
5806    // Op0 is MVT::f32, Op1 is MVT::f64.
5807    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
5808    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
5809                          DAG.getConstant(32, MVT::i32));
5810    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, SignBit);
5811    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
5812                          DAG.getIntPtrConstant(0));
5813  }
5814
5815  // Clear first operand sign bit.
5816  CV.clear();
5817  if (VT == MVT::f64) {
5818    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
5819    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
5820  } else {
5821    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
5822    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5823    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5824    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5825  }
5826  C = ConstantVector::get(CV);
5827  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5828  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5829                              PseudoSourceValue::getConstantPool(), 0,
5830                              false, false, 16);
5831  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
5832
5833  // Or the value with the sign bit.
5834  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
5835}
5836
5837/// Emit nodes that will be selected as "test Op0,Op0", or something
5838/// equivalent.
5839SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
5840                                    SelectionDAG &DAG) {
5841  DebugLoc dl = Op.getDebugLoc();
5842
5843  // CF and OF aren't always set the way we want. Determine which
5844  // of these we need.
5845  bool NeedCF = false;
5846  bool NeedOF = false;
5847  switch (X86CC) {
5848  case X86::COND_A: case X86::COND_AE:
5849  case X86::COND_B: case X86::COND_BE:
5850    NeedCF = true;
5851    break;
5852  case X86::COND_G: case X86::COND_GE:
5853  case X86::COND_L: case X86::COND_LE:
5854  case X86::COND_O: case X86::COND_NO:
5855    NeedOF = true;
5856    break;
5857  default: break;
5858  }
5859
5860  // See if we can use the EFLAGS value from the operand instead of
5861  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
5862  // we prove that the arithmetic won't overflow, we can't use OF or CF.
5863  if (Op.getResNo() == 0 && !NeedOF && !NeedCF) {
5864    unsigned Opcode = 0;
5865    unsigned NumOperands = 0;
5866    switch (Op.getNode()->getOpcode()) {
5867    case ISD::ADD:
5868      // Due to an isel shortcoming, be conservative if this add is likely to
5869      // be selected as part of a load-modify-store instruction. When the root
5870      // node in a match is a store, isel doesn't know how to remap non-chain
5871      // non-flag uses of other nodes in the match, such as the ADD in this
5872      // case. This leads to the ADD being left around and reselected, with
5873      // the result being two adds in the output.
5874      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5875           UE = Op.getNode()->use_end(); UI != UE; ++UI)
5876        if (UI->getOpcode() == ISD::STORE)
5877          goto default_case;
5878      if (ConstantSDNode *C =
5879            dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
5880        // An add of one will be selected as an INC.
5881        if (C->getAPIntValue() == 1) {
5882          Opcode = X86ISD::INC;
5883          NumOperands = 1;
5884          break;
5885        }
5886        // An add of negative one (subtract of one) will be selected as a DEC.
5887        if (C->getAPIntValue().isAllOnesValue()) {
5888          Opcode = X86ISD::DEC;
5889          NumOperands = 1;
5890          break;
5891        }
5892      }
5893      // Otherwise use a regular EFLAGS-setting add.
5894      Opcode = X86ISD::ADD;
5895      NumOperands = 2;
5896      break;
5897    case ISD::AND: {
5898      // If the primary and result isn't used, don't bother using X86ISD::AND,
5899      // because a TEST instruction will be better.
5900      bool NonFlagUse = false;
5901      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5902             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
5903        SDNode *User = *UI;
5904        unsigned UOpNo = UI.getOperandNo();
5905        if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
5906          // Look pass truncate.
5907          UOpNo = User->use_begin().getOperandNo();
5908          User = *User->use_begin();
5909        }
5910        if (User->getOpcode() != ISD::BRCOND &&
5911            User->getOpcode() != ISD::SETCC &&
5912            (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
5913          NonFlagUse = true;
5914          break;
5915        }
5916      }
5917      if (!NonFlagUse)
5918        break;
5919    }
5920    // FALL THROUGH
5921    case ISD::SUB:
5922    case ISD::OR:
5923    case ISD::XOR:
5924      // Due to the ISEL shortcoming noted above, be conservative if this op is
5925      // likely to be selected as part of a load-modify-store instruction.
5926      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5927           UE = Op.getNode()->use_end(); UI != UE; ++UI)
5928        if (UI->getOpcode() == ISD::STORE)
5929          goto default_case;
5930      // Otherwise use a regular EFLAGS-setting instruction.
5931      switch (Op.getNode()->getOpcode()) {
5932      case ISD::SUB: Opcode = X86ISD::SUB; break;
5933      case ISD::OR:  Opcode = X86ISD::OR;  break;
5934      case ISD::XOR: Opcode = X86ISD::XOR; break;
5935      case ISD::AND: Opcode = X86ISD::AND; break;
5936      default: llvm_unreachable("unexpected operator!");
5937      }
5938      NumOperands = 2;
5939      break;
5940    case X86ISD::ADD:
5941    case X86ISD::SUB:
5942    case X86ISD::INC:
5943    case X86ISD::DEC:
5944    case X86ISD::OR:
5945    case X86ISD::XOR:
5946    case X86ISD::AND:
5947      return SDValue(Op.getNode(), 1);
5948    default:
5949    default_case:
5950      break;
5951    }
5952    if (Opcode != 0) {
5953      SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
5954      SmallVector<SDValue, 4> Ops;
5955      for (unsigned i = 0; i != NumOperands; ++i)
5956        Ops.push_back(Op.getOperand(i));
5957      SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
5958      DAG.ReplaceAllUsesWith(Op, New);
5959      return SDValue(New.getNode(), 1);
5960    }
5961  }
5962
5963  // Otherwise just emit a CMP with 0, which is the TEST pattern.
5964  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
5965                     DAG.getConstant(0, Op.getValueType()));
5966}
5967
5968/// Emit nodes that will be selected as "cmp Op0,Op1", or something
5969/// equivalent.
5970SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
5971                                   SelectionDAG &DAG) {
5972  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
5973    if (C->getAPIntValue() == 0)
5974      return EmitTest(Op0, X86CC, DAG);
5975
5976  DebugLoc dl = Op0.getDebugLoc();
5977  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
5978}
5979
5980/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
5981/// if it's possible.
5982static SDValue LowerToBT(SDValue And, ISD::CondCode CC,
5983                         DebugLoc dl, SelectionDAG &DAG) {
5984  SDValue Op0 = And.getOperand(0);
5985  SDValue Op1 = And.getOperand(1);
5986  if (Op0.getOpcode() == ISD::TRUNCATE)
5987    Op0 = Op0.getOperand(0);
5988  if (Op1.getOpcode() == ISD::TRUNCATE)
5989    Op1 = Op1.getOperand(0);
5990
5991  SDValue LHS, RHS;
5992  if (Op1.getOpcode() == ISD::SHL) {
5993    if (ConstantSDNode *And10C = dyn_cast<ConstantSDNode>(Op1.getOperand(0)))
5994      if (And10C->getZExtValue() == 1) {
5995        LHS = Op0;
5996        RHS = Op1.getOperand(1);
5997      }
5998  } else if (Op0.getOpcode() == ISD::SHL) {
5999    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
6000      if (And00C->getZExtValue() == 1) {
6001        LHS = Op1;
6002        RHS = Op0.getOperand(1);
6003      }
6004  } else if (Op1.getOpcode() == ISD::Constant) {
6005    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
6006    SDValue AndLHS = Op0;
6007    if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
6008      LHS = AndLHS.getOperand(0);
6009      RHS = AndLHS.getOperand(1);
6010    }
6011  }
6012
6013  if (LHS.getNode()) {
6014    // If LHS is i8, promote it to i16 with any_extend.  There is no i8 BT
6015    // instruction.  Since the shift amount is in-range-or-undefined, we know
6016    // that doing a bittest on the i16 value is ok.  We extend to i32 because
6017    // the encoding for the i16 version is larger than the i32 version.
6018    if (LHS.getValueType() == MVT::i8)
6019      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
6020
6021    // If the operand types disagree, extend the shift amount to match.  Since
6022    // BT ignores high bits (like shifts) we can use anyextend.
6023    if (LHS.getValueType() != RHS.getValueType())
6024      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
6025
6026    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
6027    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
6028    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6029                       DAG.getConstant(Cond, MVT::i8), BT);
6030  }
6031
6032  return SDValue();
6033}
6034
6035SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
6036  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
6037  SDValue Op0 = Op.getOperand(0);
6038  SDValue Op1 = Op.getOperand(1);
6039  DebugLoc dl = Op.getDebugLoc();
6040  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6041
6042  // Optimize to BT if possible.
6043  // Lower (X & (1 << N)) == 0 to BT(X, N).
6044  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
6045  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
6046  if (Op0.getOpcode() == ISD::AND &&
6047      Op0.hasOneUse() &&
6048      Op1.getOpcode() == ISD::Constant &&
6049      cast<ConstantSDNode>(Op1)->getZExtValue() == 0 &&
6050      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
6051    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
6052    if (NewSetCC.getNode())
6053      return NewSetCC;
6054  }
6055
6056  // Look for "(setcc) == / != 1" to avoid unncessary setcc.
6057  if (Op0.getOpcode() == X86ISD::SETCC &&
6058      Op1.getOpcode() == ISD::Constant &&
6059      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
6060       cast<ConstantSDNode>(Op1)->isNullValue()) &&
6061      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
6062    X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
6063    bool Invert = (CC == ISD::SETNE) ^
6064      cast<ConstantSDNode>(Op1)->isNullValue();
6065    if (Invert)
6066      CCode = X86::GetOppositeBranchCondition(CCode);
6067    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6068                       DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
6069  }
6070
6071  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
6072  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
6073  if (X86CC == X86::COND_INVALID)
6074    return SDValue();
6075
6076  SDValue Cond = EmitCmp(Op0, Op1, X86CC, DAG);
6077
6078  // Use sbb x, x to materialize carry bit into a GPR.
6079  if (X86CC == X86::COND_B)
6080    return DAG.getNode(ISD::AND, dl, MVT::i8,
6081                       DAG.getNode(X86ISD::SETCC_CARRY, dl, MVT::i8,
6082                                   DAG.getConstant(X86CC, MVT::i8), Cond),
6083                       DAG.getConstant(1, MVT::i8));
6084
6085  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6086                     DAG.getConstant(X86CC, MVT::i8), Cond);
6087}
6088
6089SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
6090  SDValue Cond;
6091  SDValue Op0 = Op.getOperand(0);
6092  SDValue Op1 = Op.getOperand(1);
6093  SDValue CC = Op.getOperand(2);
6094  EVT VT = Op.getValueType();
6095  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
6096  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
6097  DebugLoc dl = Op.getDebugLoc();
6098
6099  if (isFP) {
6100    unsigned SSECC = 8;
6101    EVT VT0 = Op0.getValueType();
6102    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
6103    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
6104    bool Swap = false;
6105
6106    switch (SetCCOpcode) {
6107    default: break;
6108    case ISD::SETOEQ:
6109    case ISD::SETEQ:  SSECC = 0; break;
6110    case ISD::SETOGT:
6111    case ISD::SETGT: Swap = true; // Fallthrough
6112    case ISD::SETLT:
6113    case ISD::SETOLT: SSECC = 1; break;
6114    case ISD::SETOGE:
6115    case ISD::SETGE: Swap = true; // Fallthrough
6116    case ISD::SETLE:
6117    case ISD::SETOLE: SSECC = 2; break;
6118    case ISD::SETUO:  SSECC = 3; break;
6119    case ISD::SETUNE:
6120    case ISD::SETNE:  SSECC = 4; break;
6121    case ISD::SETULE: Swap = true;
6122    case ISD::SETUGE: SSECC = 5; break;
6123    case ISD::SETULT: Swap = true;
6124    case ISD::SETUGT: SSECC = 6; break;
6125    case ISD::SETO:   SSECC = 7; break;
6126    }
6127    if (Swap)
6128      std::swap(Op0, Op1);
6129
6130    // In the two special cases we can't handle, emit two comparisons.
6131    if (SSECC == 8) {
6132      if (SetCCOpcode == ISD::SETUEQ) {
6133        SDValue UNORD, EQ;
6134        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
6135        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
6136        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
6137      }
6138      else if (SetCCOpcode == ISD::SETONE) {
6139        SDValue ORD, NEQ;
6140        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
6141        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
6142        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
6143      }
6144      llvm_unreachable("Illegal FP comparison");
6145    }
6146    // Handle all other FP comparisons here.
6147    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
6148  }
6149
6150  // We are handling one of the integer comparisons here.  Since SSE only has
6151  // GT and EQ comparisons for integer, swapping operands and multiple
6152  // operations may be required for some comparisons.
6153  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
6154  bool Swap = false, Invert = false, FlipSigns = false;
6155
6156  switch (VT.getSimpleVT().SimpleTy) {
6157  default: break;
6158  case MVT::v8i8:
6159  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
6160  case MVT::v4i16:
6161  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
6162  case MVT::v2i32:
6163  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
6164  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
6165  }
6166
6167  switch (SetCCOpcode) {
6168  default: break;
6169  case ISD::SETNE:  Invert = true;
6170  case ISD::SETEQ:  Opc = EQOpc; break;
6171  case ISD::SETLT:  Swap = true;
6172  case ISD::SETGT:  Opc = GTOpc; break;
6173  case ISD::SETGE:  Swap = true;
6174  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
6175  case ISD::SETULT: Swap = true;
6176  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
6177  case ISD::SETUGE: Swap = true;
6178  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
6179  }
6180  if (Swap)
6181    std::swap(Op0, Op1);
6182
6183  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
6184  // bits of the inputs before performing those operations.
6185  if (FlipSigns) {
6186    EVT EltVT = VT.getVectorElementType();
6187    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
6188                                      EltVT);
6189    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
6190    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
6191                                    SignBits.size());
6192    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
6193    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
6194  }
6195
6196  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
6197
6198  // If the logical-not of the result is required, perform that now.
6199  if (Invert)
6200    Result = DAG.getNOT(dl, Result, VT);
6201
6202  return Result;
6203}
6204
6205// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
6206static bool isX86LogicalCmp(SDValue Op) {
6207  unsigned Opc = Op.getNode()->getOpcode();
6208  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
6209    return true;
6210  if (Op.getResNo() == 1 &&
6211      (Opc == X86ISD::ADD ||
6212       Opc == X86ISD::SUB ||
6213       Opc == X86ISD::SMUL ||
6214       Opc == X86ISD::UMUL ||
6215       Opc == X86ISD::INC ||
6216       Opc == X86ISD::DEC ||
6217       Opc == X86ISD::OR ||
6218       Opc == X86ISD::XOR ||
6219       Opc == X86ISD::AND))
6220    return true;
6221
6222  return false;
6223}
6224
6225SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) {
6226  bool addTest = true;
6227  SDValue Cond  = Op.getOperand(0);
6228  DebugLoc dl = Op.getDebugLoc();
6229  SDValue CC;
6230
6231  if (Cond.getOpcode() == ISD::SETCC) {
6232    SDValue NewCond = LowerSETCC(Cond, DAG);
6233    if (NewCond.getNode())
6234      Cond = NewCond;
6235  }
6236
6237  // (select (x == 0), -1, 0) -> (sign_bit (x - 1))
6238  SDValue Op1 = Op.getOperand(1);
6239  SDValue Op2 = Op.getOperand(2);
6240  if (Cond.getOpcode() == X86ISD::SETCC &&
6241      cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue() == X86::COND_E) {
6242    SDValue Cmp = Cond.getOperand(1);
6243    if (Cmp.getOpcode() == X86ISD::CMP) {
6244      ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op1);
6245      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
6246      ConstantSDNode *RHSC =
6247        dyn_cast<ConstantSDNode>(Cmp.getOperand(1).getNode());
6248      if (N1C && N1C->isAllOnesValue() &&
6249          N2C && N2C->isNullValue() &&
6250          RHSC && RHSC->isNullValue()) {
6251        SDValue CmpOp0 = Cmp.getOperand(0);
6252        Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
6253                          CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
6254        return DAG.getNode(X86ISD::SETCC_CARRY, dl, Op.getValueType(),
6255                           DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
6256      }
6257    }
6258  }
6259
6260  // Look pass (and (setcc_carry (cmp ...)), 1).
6261  if (Cond.getOpcode() == ISD::AND &&
6262      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
6263    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
6264    if (C && C->getAPIntValue() == 1)
6265      Cond = Cond.getOperand(0);
6266  }
6267
6268  // If condition flag is set by a X86ISD::CMP, then use it as the condition
6269  // setting operand in place of the X86ISD::SETCC.
6270  if (Cond.getOpcode() == X86ISD::SETCC ||
6271      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
6272    CC = Cond.getOperand(0);
6273
6274    SDValue Cmp = Cond.getOperand(1);
6275    unsigned Opc = Cmp.getOpcode();
6276    EVT VT = Op.getValueType();
6277
6278    bool IllegalFPCMov = false;
6279    if (VT.isFloatingPoint() && !VT.isVector() &&
6280        !isScalarFPTypeInSSEReg(VT))  // FPStack?
6281      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
6282
6283    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
6284        Opc == X86ISD::BT) { // FIXME
6285      Cond = Cmp;
6286      addTest = false;
6287    }
6288  }
6289
6290  if (addTest) {
6291    // Look pass the truncate.
6292    if (Cond.getOpcode() == ISD::TRUNCATE)
6293      Cond = Cond.getOperand(0);
6294
6295    // We know the result of AND is compared against zero. Try to match
6296    // it to BT.
6297    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
6298      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
6299      if (NewSetCC.getNode()) {
6300        CC = NewSetCC.getOperand(0);
6301        Cond = NewSetCC.getOperand(1);
6302        addTest = false;
6303      }
6304    }
6305  }
6306
6307  if (addTest) {
6308    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6309    Cond = EmitTest(Cond, X86::COND_NE, DAG);
6310  }
6311
6312  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
6313  // condition is true.
6314  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Flag);
6315  SDValue Ops[] = { Op2, Op1, CC, Cond };
6316  return DAG.getNode(X86ISD::CMOV, dl, VTs, Ops, array_lengthof(Ops));
6317}
6318
6319// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
6320// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
6321// from the AND / OR.
6322static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
6323  Opc = Op.getOpcode();
6324  if (Opc != ISD::OR && Opc != ISD::AND)
6325    return false;
6326  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
6327          Op.getOperand(0).hasOneUse() &&
6328          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
6329          Op.getOperand(1).hasOneUse());
6330}
6331
6332// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
6333// 1 and that the SETCC node has a single use.
6334static bool isXor1OfSetCC(SDValue Op) {
6335  if (Op.getOpcode() != ISD::XOR)
6336    return false;
6337  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6338  if (N1C && N1C->getAPIntValue() == 1) {
6339    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
6340      Op.getOperand(0).hasOneUse();
6341  }
6342  return false;
6343}
6344
6345SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) {
6346  bool addTest = true;
6347  SDValue Chain = Op.getOperand(0);
6348  SDValue Cond  = Op.getOperand(1);
6349  SDValue Dest  = Op.getOperand(2);
6350  DebugLoc dl = Op.getDebugLoc();
6351  SDValue CC;
6352
6353  if (Cond.getOpcode() == ISD::SETCC) {
6354    SDValue NewCond = LowerSETCC(Cond, DAG);
6355    if (NewCond.getNode())
6356      Cond = NewCond;
6357  }
6358#if 0
6359  // FIXME: LowerXALUO doesn't handle these!!
6360  else if (Cond.getOpcode() == X86ISD::ADD  ||
6361           Cond.getOpcode() == X86ISD::SUB  ||
6362           Cond.getOpcode() == X86ISD::SMUL ||
6363           Cond.getOpcode() == X86ISD::UMUL)
6364    Cond = LowerXALUO(Cond, DAG);
6365#endif
6366
6367  // Look pass (and (setcc_carry (cmp ...)), 1).
6368  if (Cond.getOpcode() == ISD::AND &&
6369      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
6370    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
6371    if (C && C->getAPIntValue() == 1)
6372      Cond = Cond.getOperand(0);
6373  }
6374
6375  // If condition flag is set by a X86ISD::CMP, then use it as the condition
6376  // setting operand in place of the X86ISD::SETCC.
6377  if (Cond.getOpcode() == X86ISD::SETCC ||
6378      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
6379    CC = Cond.getOperand(0);
6380
6381    SDValue Cmp = Cond.getOperand(1);
6382    unsigned Opc = Cmp.getOpcode();
6383    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
6384    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
6385      Cond = Cmp;
6386      addTest = false;
6387    } else {
6388      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
6389      default: break;
6390      case X86::COND_O:
6391      case X86::COND_B:
6392        // These can only come from an arithmetic instruction with overflow,
6393        // e.g. SADDO, UADDO.
6394        Cond = Cond.getNode()->getOperand(1);
6395        addTest = false;
6396        break;
6397      }
6398    }
6399  } else {
6400    unsigned CondOpc;
6401    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
6402      SDValue Cmp = Cond.getOperand(0).getOperand(1);
6403      if (CondOpc == ISD::OR) {
6404        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
6405        // two branches instead of an explicit OR instruction with a
6406        // separate test.
6407        if (Cmp == Cond.getOperand(1).getOperand(1) &&
6408            isX86LogicalCmp(Cmp)) {
6409          CC = Cond.getOperand(0).getOperand(0);
6410          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6411                              Chain, Dest, CC, Cmp);
6412          CC = Cond.getOperand(1).getOperand(0);
6413          Cond = Cmp;
6414          addTest = false;
6415        }
6416      } else { // ISD::AND
6417        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
6418        // two branches instead of an explicit AND instruction with a
6419        // separate test. However, we only do this if this block doesn't
6420        // have a fall-through edge, because this requires an explicit
6421        // jmp when the condition is false.
6422        if (Cmp == Cond.getOperand(1).getOperand(1) &&
6423            isX86LogicalCmp(Cmp) &&
6424            Op.getNode()->hasOneUse()) {
6425          X86::CondCode CCode =
6426            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
6427          CCode = X86::GetOppositeBranchCondition(CCode);
6428          CC = DAG.getConstant(CCode, MVT::i8);
6429          SDValue User = SDValue(*Op.getNode()->use_begin(), 0);
6430          // Look for an unconditional branch following this conditional branch.
6431          // We need this because we need to reverse the successors in order
6432          // to implement FCMP_OEQ.
6433          if (User.getOpcode() == ISD::BR) {
6434            SDValue FalseBB = User.getOperand(1);
6435            SDValue NewBR =
6436              DAG.UpdateNodeOperands(User, User.getOperand(0), Dest);
6437            assert(NewBR == User);
6438            Dest = FalseBB;
6439
6440            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6441                                Chain, Dest, CC, Cmp);
6442            X86::CondCode CCode =
6443              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
6444            CCode = X86::GetOppositeBranchCondition(CCode);
6445            CC = DAG.getConstant(CCode, MVT::i8);
6446            Cond = Cmp;
6447            addTest = false;
6448          }
6449        }
6450      }
6451    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
6452      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
6453      // It should be transformed during dag combiner except when the condition
6454      // is set by a arithmetics with overflow node.
6455      X86::CondCode CCode =
6456        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
6457      CCode = X86::GetOppositeBranchCondition(CCode);
6458      CC = DAG.getConstant(CCode, MVT::i8);
6459      Cond = Cond.getOperand(0).getOperand(1);
6460      addTest = false;
6461    }
6462  }
6463
6464  if (addTest) {
6465    // Look pass the truncate.
6466    if (Cond.getOpcode() == ISD::TRUNCATE)
6467      Cond = Cond.getOperand(0);
6468
6469    // We know the result of AND is compared against zero. Try to match
6470    // it to BT.
6471    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
6472      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
6473      if (NewSetCC.getNode()) {
6474        CC = NewSetCC.getOperand(0);
6475        Cond = NewSetCC.getOperand(1);
6476        addTest = false;
6477      }
6478    }
6479  }
6480
6481  if (addTest) {
6482    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6483    Cond = EmitTest(Cond, X86::COND_NE, DAG);
6484  }
6485  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6486                     Chain, Dest, CC, Cond);
6487}
6488
6489
6490// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
6491// Calls to _alloca is needed to probe the stack when allocating more than 4k
6492// bytes in one go. Touching the stack at 4K increments is necessary to ensure
6493// that the guard pages used by the OS virtual memory manager are allocated in
6494// correct sequence.
6495SDValue
6496X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
6497                                           SelectionDAG &DAG) {
6498  assert(Subtarget->isTargetCygMing() &&
6499         "This should be used only on Cygwin/Mingw targets");
6500  DebugLoc dl = Op.getDebugLoc();
6501
6502  // Get the inputs.
6503  SDValue Chain = Op.getOperand(0);
6504  SDValue Size  = Op.getOperand(1);
6505  // FIXME: Ensure alignment here
6506
6507  SDValue Flag;
6508
6509  EVT IntPtr = getPointerTy();
6510  EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
6511
6512  Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
6513  Flag = Chain.getValue(1);
6514
6515  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
6516
6517  Chain = DAG.getNode(X86ISD::MINGW_ALLOCA, dl, NodeTys, Chain, Flag);
6518  Flag = Chain.getValue(1);
6519
6520  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
6521
6522  SDValue Ops1[2] = { Chain.getValue(0), Chain };
6523  return DAG.getMergeValues(Ops1, 2, dl);
6524}
6525
6526SDValue
6527X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
6528                                           SDValue Chain,
6529                                           SDValue Dst, SDValue Src,
6530                                           SDValue Size, unsigned Align,
6531                                           const Value *DstSV,
6532                                           uint64_t DstSVOff) {
6533  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6534
6535  // If not DWORD aligned or size is more than the threshold, call the library.
6536  // The libc version is likely to be faster for these cases. It can use the
6537  // address value and run time information about the CPU.
6538  if ((Align & 3) != 0 ||
6539      !ConstantSize ||
6540      ConstantSize->getZExtValue() >
6541        getSubtarget()->getMaxInlineSizeThreshold()) {
6542    SDValue InFlag(0, 0);
6543
6544    // Check to see if there is a specialized entry-point for memory zeroing.
6545    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src);
6546
6547    if (const char *bzeroEntry =  V &&
6548        V->isNullValue() ? Subtarget->getBZeroEntry() : 0) {
6549      EVT IntPtr = getPointerTy();
6550      const Type *IntPtrTy = TD->getIntPtrType(*DAG.getContext());
6551      TargetLowering::ArgListTy Args;
6552      TargetLowering::ArgListEntry Entry;
6553      Entry.Node = Dst;
6554      Entry.Ty = IntPtrTy;
6555      Args.push_back(Entry);
6556      Entry.Node = Size;
6557      Args.push_back(Entry);
6558      std::pair<SDValue,SDValue> CallResult =
6559        LowerCallTo(Chain, Type::getVoidTy(*DAG.getContext()),
6560                    false, false, false, false,
6561                    0, CallingConv::C, false, /*isReturnValueUsed=*/false,
6562                    DAG.getExternalSymbol(bzeroEntry, IntPtr), Args, DAG, dl);
6563      return CallResult.second;
6564    }
6565
6566    // Otherwise have the target-independent code call memset.
6567    return SDValue();
6568  }
6569
6570  uint64_t SizeVal = ConstantSize->getZExtValue();
6571  SDValue InFlag(0, 0);
6572  EVT AVT;
6573  SDValue Count;
6574  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src);
6575  unsigned BytesLeft = 0;
6576  bool TwoRepStos = false;
6577  if (ValC) {
6578    unsigned ValReg;
6579    uint64_t Val = ValC->getZExtValue() & 255;
6580
6581    // If the value is a constant, then we can potentially use larger sets.
6582    switch (Align & 3) {
6583    case 2:   // WORD aligned
6584      AVT = MVT::i16;
6585      ValReg = X86::AX;
6586      Val = (Val << 8) | Val;
6587      break;
6588    case 0:  // DWORD aligned
6589      AVT = MVT::i32;
6590      ValReg = X86::EAX;
6591      Val = (Val << 8)  | Val;
6592      Val = (Val << 16) | Val;
6593      if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) {  // QWORD aligned
6594        AVT = MVT::i64;
6595        ValReg = X86::RAX;
6596        Val = (Val << 32) | Val;
6597      }
6598      break;
6599    default:  // Byte aligned
6600      AVT = MVT::i8;
6601      ValReg = X86::AL;
6602      Count = DAG.getIntPtrConstant(SizeVal);
6603      break;
6604    }
6605
6606    if (AVT.bitsGT(MVT::i8)) {
6607      unsigned UBytes = AVT.getSizeInBits() / 8;
6608      Count = DAG.getIntPtrConstant(SizeVal / UBytes);
6609      BytesLeft = SizeVal % UBytes;
6610    }
6611
6612    Chain  = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, AVT),
6613                              InFlag);
6614    InFlag = Chain.getValue(1);
6615  } else {
6616    AVT = MVT::i8;
6617    Count  = DAG.getIntPtrConstant(SizeVal);
6618    Chain  = DAG.getCopyToReg(Chain, dl, X86::AL, Src, InFlag);
6619    InFlag = Chain.getValue(1);
6620  }
6621
6622  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
6623                                                              X86::ECX,
6624                            Count, InFlag);
6625  InFlag = Chain.getValue(1);
6626  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
6627                                                              X86::EDI,
6628                            Dst, InFlag);
6629  InFlag = Chain.getValue(1);
6630
6631  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6632  SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag };
6633  Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops, array_lengthof(Ops));
6634
6635  if (TwoRepStos) {
6636    InFlag = Chain.getValue(1);
6637    Count  = Size;
6638    EVT CVT = Count.getValueType();
6639    SDValue Left = DAG.getNode(ISD::AND, dl, CVT, Count,
6640                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
6641    Chain  = DAG.getCopyToReg(Chain, dl, (CVT == MVT::i64) ? X86::RCX :
6642                                                             X86::ECX,
6643                              Left, InFlag);
6644    InFlag = Chain.getValue(1);
6645    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6646    SDValue Ops[] = { Chain, DAG.getValueType(MVT::i8), InFlag };
6647    Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops, array_lengthof(Ops));
6648  } else if (BytesLeft) {
6649    // Handle the last 1 - 7 bytes.
6650    unsigned Offset = SizeVal - BytesLeft;
6651    EVT AddrVT = Dst.getValueType();
6652    EVT SizeVT = Size.getValueType();
6653
6654    Chain = DAG.getMemset(Chain, dl,
6655                          DAG.getNode(ISD::ADD, dl, AddrVT, Dst,
6656                                      DAG.getConstant(Offset, AddrVT)),
6657                          Src,
6658                          DAG.getConstant(BytesLeft, SizeVT),
6659                          Align, DstSV, DstSVOff + Offset);
6660  }
6661
6662  // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
6663  return Chain;
6664}
6665
6666SDValue
6667X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
6668                                      SDValue Chain, SDValue Dst, SDValue Src,
6669                                      SDValue Size, unsigned Align,
6670                                      bool AlwaysInline,
6671                                      const Value *DstSV, uint64_t DstSVOff,
6672                                      const Value *SrcSV, uint64_t SrcSVOff) {
6673  // This requires the copy size to be a constant, preferrably
6674  // within a subtarget-specific limit.
6675  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6676  if (!ConstantSize)
6677    return SDValue();
6678  uint64_t SizeVal = ConstantSize->getZExtValue();
6679  if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
6680    return SDValue();
6681
6682  /// If not DWORD aligned, call the library.
6683  if ((Align & 3) != 0)
6684    return SDValue();
6685
6686  // DWORD aligned
6687  EVT AVT = MVT::i32;
6688  if (Subtarget->is64Bit() && ((Align & 0x7) == 0))  // QWORD aligned
6689    AVT = MVT::i64;
6690
6691  unsigned UBytes = AVT.getSizeInBits() / 8;
6692  unsigned CountVal = SizeVal / UBytes;
6693  SDValue Count = DAG.getIntPtrConstant(CountVal);
6694  unsigned BytesLeft = SizeVal % UBytes;
6695
6696  SDValue InFlag(0, 0);
6697  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
6698                                                              X86::ECX,
6699                            Count, InFlag);
6700  InFlag = Chain.getValue(1);
6701  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
6702                                                             X86::EDI,
6703                            Dst, InFlag);
6704  InFlag = Chain.getValue(1);
6705  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RSI :
6706                                                              X86::ESI,
6707                            Src, InFlag);
6708  InFlag = Chain.getValue(1);
6709
6710  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6711  SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag };
6712  SDValue RepMovs = DAG.getNode(X86ISD::REP_MOVS, dl, Tys, Ops,
6713                                array_lengthof(Ops));
6714
6715  SmallVector<SDValue, 4> Results;
6716  Results.push_back(RepMovs);
6717  if (BytesLeft) {
6718    // Handle the last 1 - 7 bytes.
6719    unsigned Offset = SizeVal - BytesLeft;
6720    EVT DstVT = Dst.getValueType();
6721    EVT SrcVT = Src.getValueType();
6722    EVT SizeVT = Size.getValueType();
6723    Results.push_back(DAG.getMemcpy(Chain, dl,
6724                                    DAG.getNode(ISD::ADD, dl, DstVT, Dst,
6725                                                DAG.getConstant(Offset, DstVT)),
6726                                    DAG.getNode(ISD::ADD, dl, SrcVT, Src,
6727                                                DAG.getConstant(Offset, SrcVT)),
6728                                    DAG.getConstant(BytesLeft, SizeVT),
6729                                    Align, AlwaysInline,
6730                                    DstSV, DstSVOff + Offset,
6731                                    SrcSV, SrcSVOff + Offset));
6732  }
6733
6734  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6735                     &Results[0], Results.size());
6736}
6737
6738SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) {
6739  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
6740  DebugLoc dl = Op.getDebugLoc();
6741
6742  if (!Subtarget->is64Bit()) {
6743    // vastart just stores the address of the VarArgsFrameIndex slot into the
6744    // memory location argument.
6745    SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
6746    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0,
6747                        false, false, 0);
6748  }
6749
6750  // __va_list_tag:
6751  //   gp_offset         (0 - 6 * 8)
6752  //   fp_offset         (48 - 48 + 8 * 16)
6753  //   overflow_arg_area (point to parameters coming in memory).
6754  //   reg_save_area
6755  SmallVector<SDValue, 8> MemOps;
6756  SDValue FIN = Op.getOperand(1);
6757  // Store gp_offset
6758  SDValue Store = DAG.getStore(Op.getOperand(0), dl,
6759                               DAG.getConstant(VarArgsGPOffset, MVT::i32),
6760                               FIN, SV, 0, false, false, 0);
6761  MemOps.push_back(Store);
6762
6763  // Store fp_offset
6764  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6765                    FIN, DAG.getIntPtrConstant(4));
6766  Store = DAG.getStore(Op.getOperand(0), dl,
6767                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
6768                       FIN, SV, 0, false, false, 0);
6769  MemOps.push_back(Store);
6770
6771  // Store ptr to overflow_arg_area
6772  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6773                    FIN, DAG.getIntPtrConstant(4));
6774  SDValue OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
6775  Store = DAG.getStore(Op.getOperand(0), dl, OVFIN, FIN, SV, 0,
6776                       false, false, 0);
6777  MemOps.push_back(Store);
6778
6779  // Store ptr to reg_save_area.
6780  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6781                    FIN, DAG.getIntPtrConstant(8));
6782  SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
6783  Store = DAG.getStore(Op.getOperand(0), dl, RSFIN, FIN, SV, 0,
6784                       false, false, 0);
6785  MemOps.push_back(Store);
6786  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6787                     &MemOps[0], MemOps.size());
6788}
6789
6790SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) {
6791  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6792  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
6793  SDValue Chain = Op.getOperand(0);
6794  SDValue SrcPtr = Op.getOperand(1);
6795  SDValue SrcSV = Op.getOperand(2);
6796
6797  llvm_report_error("VAArgInst is not yet implemented for x86-64!");
6798  return SDValue();
6799}
6800
6801SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) {
6802  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6803  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
6804  SDValue Chain = Op.getOperand(0);
6805  SDValue DstPtr = Op.getOperand(1);
6806  SDValue SrcPtr = Op.getOperand(2);
6807  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
6808  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
6809  DebugLoc dl = Op.getDebugLoc();
6810
6811  return DAG.getMemcpy(Chain, dl, DstPtr, SrcPtr,
6812                       DAG.getIntPtrConstant(24), 8, false,
6813                       DstSV, 0, SrcSV, 0);
6814}
6815
6816SDValue
6817X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
6818  DebugLoc dl = Op.getDebugLoc();
6819  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6820  switch (IntNo) {
6821  default: return SDValue();    // Don't custom lower most intrinsics.
6822  // Comparison intrinsics.
6823  case Intrinsic::x86_sse_comieq_ss:
6824  case Intrinsic::x86_sse_comilt_ss:
6825  case Intrinsic::x86_sse_comile_ss:
6826  case Intrinsic::x86_sse_comigt_ss:
6827  case Intrinsic::x86_sse_comige_ss:
6828  case Intrinsic::x86_sse_comineq_ss:
6829  case Intrinsic::x86_sse_ucomieq_ss:
6830  case Intrinsic::x86_sse_ucomilt_ss:
6831  case Intrinsic::x86_sse_ucomile_ss:
6832  case Intrinsic::x86_sse_ucomigt_ss:
6833  case Intrinsic::x86_sse_ucomige_ss:
6834  case Intrinsic::x86_sse_ucomineq_ss:
6835  case Intrinsic::x86_sse2_comieq_sd:
6836  case Intrinsic::x86_sse2_comilt_sd:
6837  case Intrinsic::x86_sse2_comile_sd:
6838  case Intrinsic::x86_sse2_comigt_sd:
6839  case Intrinsic::x86_sse2_comige_sd:
6840  case Intrinsic::x86_sse2_comineq_sd:
6841  case Intrinsic::x86_sse2_ucomieq_sd:
6842  case Intrinsic::x86_sse2_ucomilt_sd:
6843  case Intrinsic::x86_sse2_ucomile_sd:
6844  case Intrinsic::x86_sse2_ucomigt_sd:
6845  case Intrinsic::x86_sse2_ucomige_sd:
6846  case Intrinsic::x86_sse2_ucomineq_sd: {
6847    unsigned Opc = 0;
6848    ISD::CondCode CC = ISD::SETCC_INVALID;
6849    switch (IntNo) {
6850    default: break;
6851    case Intrinsic::x86_sse_comieq_ss:
6852    case Intrinsic::x86_sse2_comieq_sd:
6853      Opc = X86ISD::COMI;
6854      CC = ISD::SETEQ;
6855      break;
6856    case Intrinsic::x86_sse_comilt_ss:
6857    case Intrinsic::x86_sse2_comilt_sd:
6858      Opc = X86ISD::COMI;
6859      CC = ISD::SETLT;
6860      break;
6861    case Intrinsic::x86_sse_comile_ss:
6862    case Intrinsic::x86_sse2_comile_sd:
6863      Opc = X86ISD::COMI;
6864      CC = ISD::SETLE;
6865      break;
6866    case Intrinsic::x86_sse_comigt_ss:
6867    case Intrinsic::x86_sse2_comigt_sd:
6868      Opc = X86ISD::COMI;
6869      CC = ISD::SETGT;
6870      break;
6871    case Intrinsic::x86_sse_comige_ss:
6872    case Intrinsic::x86_sse2_comige_sd:
6873      Opc = X86ISD::COMI;
6874      CC = ISD::SETGE;
6875      break;
6876    case Intrinsic::x86_sse_comineq_ss:
6877    case Intrinsic::x86_sse2_comineq_sd:
6878      Opc = X86ISD::COMI;
6879      CC = ISD::SETNE;
6880      break;
6881    case Intrinsic::x86_sse_ucomieq_ss:
6882    case Intrinsic::x86_sse2_ucomieq_sd:
6883      Opc = X86ISD::UCOMI;
6884      CC = ISD::SETEQ;
6885      break;
6886    case Intrinsic::x86_sse_ucomilt_ss:
6887    case Intrinsic::x86_sse2_ucomilt_sd:
6888      Opc = X86ISD::UCOMI;
6889      CC = ISD::SETLT;
6890      break;
6891    case Intrinsic::x86_sse_ucomile_ss:
6892    case Intrinsic::x86_sse2_ucomile_sd:
6893      Opc = X86ISD::UCOMI;
6894      CC = ISD::SETLE;
6895      break;
6896    case Intrinsic::x86_sse_ucomigt_ss:
6897    case Intrinsic::x86_sse2_ucomigt_sd:
6898      Opc = X86ISD::UCOMI;
6899      CC = ISD::SETGT;
6900      break;
6901    case Intrinsic::x86_sse_ucomige_ss:
6902    case Intrinsic::x86_sse2_ucomige_sd:
6903      Opc = X86ISD::UCOMI;
6904      CC = ISD::SETGE;
6905      break;
6906    case Intrinsic::x86_sse_ucomineq_ss:
6907    case Intrinsic::x86_sse2_ucomineq_sd:
6908      Opc = X86ISD::UCOMI;
6909      CC = ISD::SETNE;
6910      break;
6911    }
6912
6913    SDValue LHS = Op.getOperand(1);
6914    SDValue RHS = Op.getOperand(2);
6915    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
6916    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
6917    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
6918    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6919                                DAG.getConstant(X86CC, MVT::i8), Cond);
6920    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
6921  }
6922  // ptest intrinsics. The intrinsic these come from are designed to return
6923  // an integer value, not just an instruction so lower it to the ptest
6924  // pattern and a setcc for the result.
6925  case Intrinsic::x86_sse41_ptestz:
6926  case Intrinsic::x86_sse41_ptestc:
6927  case Intrinsic::x86_sse41_ptestnzc:{
6928    unsigned X86CC = 0;
6929    switch (IntNo) {
6930    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
6931    case Intrinsic::x86_sse41_ptestz:
6932      // ZF = 1
6933      X86CC = X86::COND_E;
6934      break;
6935    case Intrinsic::x86_sse41_ptestc:
6936      // CF = 1
6937      X86CC = X86::COND_B;
6938      break;
6939    case Intrinsic::x86_sse41_ptestnzc:
6940      // ZF and CF = 0
6941      X86CC = X86::COND_A;
6942      break;
6943    }
6944
6945    SDValue LHS = Op.getOperand(1);
6946    SDValue RHS = Op.getOperand(2);
6947    SDValue Test = DAG.getNode(X86ISD::PTEST, dl, MVT::i32, LHS, RHS);
6948    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
6949    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
6950    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
6951  }
6952
6953  // Fix vector shift instructions where the last operand is a non-immediate
6954  // i32 value.
6955  case Intrinsic::x86_sse2_pslli_w:
6956  case Intrinsic::x86_sse2_pslli_d:
6957  case Intrinsic::x86_sse2_pslli_q:
6958  case Intrinsic::x86_sse2_psrli_w:
6959  case Intrinsic::x86_sse2_psrli_d:
6960  case Intrinsic::x86_sse2_psrli_q:
6961  case Intrinsic::x86_sse2_psrai_w:
6962  case Intrinsic::x86_sse2_psrai_d:
6963  case Intrinsic::x86_mmx_pslli_w:
6964  case Intrinsic::x86_mmx_pslli_d:
6965  case Intrinsic::x86_mmx_pslli_q:
6966  case Intrinsic::x86_mmx_psrli_w:
6967  case Intrinsic::x86_mmx_psrli_d:
6968  case Intrinsic::x86_mmx_psrli_q:
6969  case Intrinsic::x86_mmx_psrai_w:
6970  case Intrinsic::x86_mmx_psrai_d: {
6971    SDValue ShAmt = Op.getOperand(2);
6972    if (isa<ConstantSDNode>(ShAmt))
6973      return SDValue();
6974
6975    unsigned NewIntNo = 0;
6976    EVT ShAmtVT = MVT::v4i32;
6977    switch (IntNo) {
6978    case Intrinsic::x86_sse2_pslli_w:
6979      NewIntNo = Intrinsic::x86_sse2_psll_w;
6980      break;
6981    case Intrinsic::x86_sse2_pslli_d:
6982      NewIntNo = Intrinsic::x86_sse2_psll_d;
6983      break;
6984    case Intrinsic::x86_sse2_pslli_q:
6985      NewIntNo = Intrinsic::x86_sse2_psll_q;
6986      break;
6987    case Intrinsic::x86_sse2_psrli_w:
6988      NewIntNo = Intrinsic::x86_sse2_psrl_w;
6989      break;
6990    case Intrinsic::x86_sse2_psrli_d:
6991      NewIntNo = Intrinsic::x86_sse2_psrl_d;
6992      break;
6993    case Intrinsic::x86_sse2_psrli_q:
6994      NewIntNo = Intrinsic::x86_sse2_psrl_q;
6995      break;
6996    case Intrinsic::x86_sse2_psrai_w:
6997      NewIntNo = Intrinsic::x86_sse2_psra_w;
6998      break;
6999    case Intrinsic::x86_sse2_psrai_d:
7000      NewIntNo = Intrinsic::x86_sse2_psra_d;
7001      break;
7002    default: {
7003      ShAmtVT = MVT::v2i32;
7004      switch (IntNo) {
7005      case Intrinsic::x86_mmx_pslli_w:
7006        NewIntNo = Intrinsic::x86_mmx_psll_w;
7007        break;
7008      case Intrinsic::x86_mmx_pslli_d:
7009        NewIntNo = Intrinsic::x86_mmx_psll_d;
7010        break;
7011      case Intrinsic::x86_mmx_pslli_q:
7012        NewIntNo = Intrinsic::x86_mmx_psll_q;
7013        break;
7014      case Intrinsic::x86_mmx_psrli_w:
7015        NewIntNo = Intrinsic::x86_mmx_psrl_w;
7016        break;
7017      case Intrinsic::x86_mmx_psrli_d:
7018        NewIntNo = Intrinsic::x86_mmx_psrl_d;
7019        break;
7020      case Intrinsic::x86_mmx_psrli_q:
7021        NewIntNo = Intrinsic::x86_mmx_psrl_q;
7022        break;
7023      case Intrinsic::x86_mmx_psrai_w:
7024        NewIntNo = Intrinsic::x86_mmx_psra_w;
7025        break;
7026      case Intrinsic::x86_mmx_psrai_d:
7027        NewIntNo = Intrinsic::x86_mmx_psra_d;
7028        break;
7029      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7030      }
7031      break;
7032    }
7033    }
7034
7035    // The vector shift intrinsics with scalars uses 32b shift amounts but
7036    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
7037    // to be zero.
7038    SDValue ShOps[4];
7039    ShOps[0] = ShAmt;
7040    ShOps[1] = DAG.getConstant(0, MVT::i32);
7041    if (ShAmtVT == MVT::v4i32) {
7042      ShOps[2] = DAG.getUNDEF(MVT::i32);
7043      ShOps[3] = DAG.getUNDEF(MVT::i32);
7044      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
7045    } else {
7046      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
7047    }
7048
7049    EVT VT = Op.getValueType();
7050    ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, VT, ShAmt);
7051    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7052                       DAG.getConstant(NewIntNo, MVT::i32),
7053                       Op.getOperand(1), ShAmt);
7054  }
7055  }
7056}
7057
7058SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
7059  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7060  DebugLoc dl = Op.getDebugLoc();
7061
7062  if (Depth > 0) {
7063    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
7064    SDValue Offset =
7065      DAG.getConstant(TD->getPointerSize(),
7066                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
7067    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7068                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
7069                                   FrameAddr, Offset),
7070                       NULL, 0, false, false, 0);
7071  }
7072
7073  // Just load the return address.
7074  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
7075  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7076                     RetAddrFI, NULL, 0, false, false, 0);
7077}
7078
7079SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
7080  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7081  MFI->setFrameAddressIsTaken(true);
7082  EVT VT = Op.getValueType();
7083  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
7084  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7085  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
7086  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
7087  while (Depth--)
7088    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0,
7089                            false, false, 0);
7090  return FrameAddr;
7091}
7092
7093SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
7094                                                     SelectionDAG &DAG) {
7095  return DAG.getIntPtrConstant(2*TD->getPointerSize());
7096}
7097
7098SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
7099{
7100  MachineFunction &MF = DAG.getMachineFunction();
7101  SDValue Chain     = Op.getOperand(0);
7102  SDValue Offset    = Op.getOperand(1);
7103  SDValue Handler   = Op.getOperand(2);
7104  DebugLoc dl       = Op.getDebugLoc();
7105
7106  SDValue Frame = DAG.getRegister(Subtarget->is64Bit() ? X86::RBP : X86::EBP,
7107                                  getPointerTy());
7108  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
7109
7110  SDValue StoreAddr = DAG.getNode(ISD::SUB, dl, getPointerTy(), Frame,
7111                                  DAG.getIntPtrConstant(-TD->getPointerSize()));
7112  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
7113  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, NULL, 0, false, false, 0);
7114  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
7115  MF.getRegInfo().addLiveOut(StoreAddrReg);
7116
7117  return DAG.getNode(X86ISD::EH_RETURN, dl,
7118                     MVT::Other,
7119                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
7120}
7121
7122SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
7123                                             SelectionDAG &DAG) {
7124  SDValue Root = Op.getOperand(0);
7125  SDValue Trmp = Op.getOperand(1); // trampoline
7126  SDValue FPtr = Op.getOperand(2); // nested function
7127  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
7128  DebugLoc dl  = Op.getDebugLoc();
7129
7130  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
7131
7132  if (Subtarget->is64Bit()) {
7133    SDValue OutChains[6];
7134
7135    // Large code-model.
7136    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
7137    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
7138
7139    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
7140    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
7141
7142    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
7143
7144    // Load the pointer to the nested function into R11.
7145    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
7146    SDValue Addr = Trmp;
7147    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7148                                Addr, TrmpAddr, 0, false, false, 0);
7149
7150    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7151                       DAG.getConstant(2, MVT::i64));
7152    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, TrmpAddr, 2,
7153                                false, false, 2);
7154
7155    // Load the 'nest' parameter value into R10.
7156    // R10 is specified in X86CallingConv.td
7157    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
7158    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7159                       DAG.getConstant(10, MVT::i64));
7160    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7161                                Addr, TrmpAddr, 10, false, false, 0);
7162
7163    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7164                       DAG.getConstant(12, MVT::i64));
7165    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 12,
7166                                false, false, 2);
7167
7168    // Jump to the nested function.
7169    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
7170    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7171                       DAG.getConstant(20, MVT::i64));
7172    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7173                                Addr, TrmpAddr, 20, false, false, 0);
7174
7175    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
7176    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7177                       DAG.getConstant(22, MVT::i64));
7178    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
7179                                TrmpAddr, 22, false, false, 0);
7180
7181    SDValue Ops[] =
7182      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
7183    return DAG.getMergeValues(Ops, 2, dl);
7184  } else {
7185    const Function *Func =
7186      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
7187    CallingConv::ID CC = Func->getCallingConv();
7188    unsigned NestReg;
7189
7190    switch (CC) {
7191    default:
7192      llvm_unreachable("Unsupported calling convention");
7193    case CallingConv::C:
7194    case CallingConv::X86_StdCall: {
7195      // Pass 'nest' parameter in ECX.
7196      // Must be kept in sync with X86CallingConv.td
7197      NestReg = X86::ECX;
7198
7199      // Check that ECX wasn't needed by an 'inreg' parameter.
7200      const FunctionType *FTy = Func->getFunctionType();
7201      const AttrListPtr &Attrs = Func->getAttributes();
7202
7203      if (!Attrs.isEmpty() && !Func->isVarArg()) {
7204        unsigned InRegCount = 0;
7205        unsigned Idx = 1;
7206
7207        for (FunctionType::param_iterator I = FTy->param_begin(),
7208             E = FTy->param_end(); I != E; ++I, ++Idx)
7209          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
7210            // FIXME: should only count parameters that are lowered to integers.
7211            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
7212
7213        if (InRegCount > 2) {
7214          llvm_report_error("Nest register in use - reduce number of inreg parameters!");
7215        }
7216      }
7217      break;
7218    }
7219    case CallingConv::X86_FastCall:
7220    case CallingConv::Fast:
7221      // Pass 'nest' parameter in EAX.
7222      // Must be kept in sync with X86CallingConv.td
7223      NestReg = X86::EAX;
7224      break;
7225    }
7226
7227    SDValue OutChains[4];
7228    SDValue Addr, Disp;
7229
7230    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7231                       DAG.getConstant(10, MVT::i32));
7232    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
7233
7234    // This is storing the opcode for MOV32ri.
7235    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
7236    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
7237    OutChains[0] = DAG.getStore(Root, dl,
7238                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
7239                                Trmp, TrmpAddr, 0, false, false, 0);
7240
7241    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7242                       DAG.getConstant(1, MVT::i32));
7243    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 1,
7244                                false, false, 1);
7245
7246    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
7247    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7248                       DAG.getConstant(5, MVT::i32));
7249    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
7250                                TrmpAddr, 5, false, false, 1);
7251
7252    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7253                       DAG.getConstant(6, MVT::i32));
7254    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, TrmpAddr, 6,
7255                                false, false, 1);
7256
7257    SDValue Ops[] =
7258      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
7259    return DAG.getMergeValues(Ops, 2, dl);
7260  }
7261}
7262
7263SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
7264  /*
7265   The rounding mode is in bits 11:10 of FPSR, and has the following
7266   settings:
7267     00 Round to nearest
7268     01 Round to -inf
7269     10 Round to +inf
7270     11 Round to 0
7271
7272  FLT_ROUNDS, on the other hand, expects the following:
7273    -1 Undefined
7274     0 Round to 0
7275     1 Round to nearest
7276     2 Round to +inf
7277     3 Round to -inf
7278
7279  To perform the conversion, we do:
7280    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
7281  */
7282
7283  MachineFunction &MF = DAG.getMachineFunction();
7284  const TargetMachine &TM = MF.getTarget();
7285  const TargetFrameInfo &TFI = *TM.getFrameInfo();
7286  unsigned StackAlignment = TFI.getStackAlignment();
7287  EVT VT = Op.getValueType();
7288  DebugLoc dl = Op.getDebugLoc();
7289
7290  // Save FP Control Word to stack slot
7291  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
7292  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7293
7294  SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, dl, MVT::Other,
7295                              DAG.getEntryNode(), StackSlot);
7296
7297  // Load FP Control Word from stack slot
7298  SDValue CWD = DAG.getLoad(MVT::i16, dl, Chain, StackSlot, NULL, 0,
7299                            false, false, 0);
7300
7301  // Transform as necessary
7302  SDValue CWD1 =
7303    DAG.getNode(ISD::SRL, dl, MVT::i16,
7304                DAG.getNode(ISD::AND, dl, MVT::i16,
7305                            CWD, DAG.getConstant(0x800, MVT::i16)),
7306                DAG.getConstant(11, MVT::i8));
7307  SDValue CWD2 =
7308    DAG.getNode(ISD::SRL, dl, MVT::i16,
7309                DAG.getNode(ISD::AND, dl, MVT::i16,
7310                            CWD, DAG.getConstant(0x400, MVT::i16)),
7311                DAG.getConstant(9, MVT::i8));
7312
7313  SDValue RetVal =
7314    DAG.getNode(ISD::AND, dl, MVT::i16,
7315                DAG.getNode(ISD::ADD, dl, MVT::i16,
7316                            DAG.getNode(ISD::OR, dl, MVT::i16, CWD1, CWD2),
7317                            DAG.getConstant(1, MVT::i16)),
7318                DAG.getConstant(3, MVT::i16));
7319
7320
7321  return DAG.getNode((VT.getSizeInBits() < 16 ?
7322                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
7323}
7324
7325SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
7326  EVT VT = Op.getValueType();
7327  EVT OpVT = VT;
7328  unsigned NumBits = VT.getSizeInBits();
7329  DebugLoc dl = Op.getDebugLoc();
7330
7331  Op = Op.getOperand(0);
7332  if (VT == MVT::i8) {
7333    // Zero extend to i32 since there is not an i8 bsr.
7334    OpVT = MVT::i32;
7335    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
7336  }
7337
7338  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
7339  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
7340  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
7341
7342  // If src is zero (i.e. bsr sets ZF), returns NumBits.
7343  SDValue Ops[] = {
7344    Op,
7345    DAG.getConstant(NumBits+NumBits-1, OpVT),
7346    DAG.getConstant(X86::COND_E, MVT::i8),
7347    Op.getValue(1)
7348  };
7349  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
7350
7351  // Finally xor with NumBits-1.
7352  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
7353
7354  if (VT == MVT::i8)
7355    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
7356  return Op;
7357}
7358
7359SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
7360  EVT VT = Op.getValueType();
7361  EVT OpVT = VT;
7362  unsigned NumBits = VT.getSizeInBits();
7363  DebugLoc dl = Op.getDebugLoc();
7364
7365  Op = Op.getOperand(0);
7366  if (VT == MVT::i8) {
7367    OpVT = MVT::i32;
7368    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
7369  }
7370
7371  // Issue a bsf (scan bits forward) which also sets EFLAGS.
7372  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
7373  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
7374
7375  // If src is zero (i.e. bsf sets ZF), returns NumBits.
7376  SDValue Ops[] = {
7377    Op,
7378    DAG.getConstant(NumBits, OpVT),
7379    DAG.getConstant(X86::COND_E, MVT::i8),
7380    Op.getValue(1)
7381  };
7382  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
7383
7384  if (VT == MVT::i8)
7385    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
7386  return Op;
7387}
7388
7389SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) {
7390  EVT VT = Op.getValueType();
7391  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
7392  DebugLoc dl = Op.getDebugLoc();
7393
7394  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
7395  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
7396  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
7397  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
7398  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
7399  //
7400  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
7401  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
7402  //  return AloBlo + AloBhi + AhiBlo;
7403
7404  SDValue A = Op.getOperand(0);
7405  SDValue B = Op.getOperand(1);
7406
7407  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7408                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
7409                       A, DAG.getConstant(32, MVT::i32));
7410  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7411                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
7412                       B, DAG.getConstant(32, MVT::i32));
7413  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7414                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7415                       A, B);
7416  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7417                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7418                       A, Bhi);
7419  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7420                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7421                       Ahi, B);
7422  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7423                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
7424                       AloBhi, DAG.getConstant(32, MVT::i32));
7425  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7426                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
7427                       AhiBlo, DAG.getConstant(32, MVT::i32));
7428  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
7429  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
7430  return Res;
7431}
7432
7433
7434SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) {
7435  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
7436  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
7437  // looks for this combo and may remove the "setcc" instruction if the "setcc"
7438  // has only one use.
7439  SDNode *N = Op.getNode();
7440  SDValue LHS = N->getOperand(0);
7441  SDValue RHS = N->getOperand(1);
7442  unsigned BaseOp = 0;
7443  unsigned Cond = 0;
7444  DebugLoc dl = Op.getDebugLoc();
7445
7446  switch (Op.getOpcode()) {
7447  default: llvm_unreachable("Unknown ovf instruction!");
7448  case ISD::SADDO:
7449    // A subtract of one will be selected as a INC. Note that INC doesn't
7450    // set CF, so we can't do this for UADDO.
7451    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
7452      if (C->getAPIntValue() == 1) {
7453        BaseOp = X86ISD::INC;
7454        Cond = X86::COND_O;
7455        break;
7456      }
7457    BaseOp = X86ISD::ADD;
7458    Cond = X86::COND_O;
7459    break;
7460  case ISD::UADDO:
7461    BaseOp = X86ISD::ADD;
7462    Cond = X86::COND_B;
7463    break;
7464  case ISD::SSUBO:
7465    // A subtract of one will be selected as a DEC. Note that DEC doesn't
7466    // set CF, so we can't do this for USUBO.
7467    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
7468      if (C->getAPIntValue() == 1) {
7469        BaseOp = X86ISD::DEC;
7470        Cond = X86::COND_O;
7471        break;
7472      }
7473    BaseOp = X86ISD::SUB;
7474    Cond = X86::COND_O;
7475    break;
7476  case ISD::USUBO:
7477    BaseOp = X86ISD::SUB;
7478    Cond = X86::COND_B;
7479    break;
7480  case ISD::SMULO:
7481    BaseOp = X86ISD::SMUL;
7482    Cond = X86::COND_O;
7483    break;
7484  case ISD::UMULO:
7485    BaseOp = X86ISD::UMUL;
7486    Cond = X86::COND_B;
7487    break;
7488  }
7489
7490  // Also sets EFLAGS.
7491  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
7492  SDValue Sum = DAG.getNode(BaseOp, dl, VTs, LHS, RHS);
7493
7494  SDValue SetCC =
7495    DAG.getNode(X86ISD::SETCC, dl, N->getValueType(1),
7496                DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1));
7497
7498  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
7499  return Sum;
7500}
7501
7502SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) {
7503  EVT T = Op.getValueType();
7504  DebugLoc dl = Op.getDebugLoc();
7505  unsigned Reg = 0;
7506  unsigned size = 0;
7507  switch(T.getSimpleVT().SimpleTy) {
7508  default:
7509    assert(false && "Invalid value type!");
7510  case MVT::i8:  Reg = X86::AL;  size = 1; break;
7511  case MVT::i16: Reg = X86::AX;  size = 2; break;
7512  case MVT::i32: Reg = X86::EAX; size = 4; break;
7513  case MVT::i64:
7514    assert(Subtarget->is64Bit() && "Node not type legal!");
7515    Reg = X86::RAX; size = 8;
7516    break;
7517  }
7518  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), dl, Reg,
7519                                    Op.getOperand(2), SDValue());
7520  SDValue Ops[] = { cpIn.getValue(0),
7521                    Op.getOperand(1),
7522                    Op.getOperand(3),
7523                    DAG.getTargetConstant(size, MVT::i8),
7524                    cpIn.getValue(1) };
7525  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7526  SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, dl, Tys, Ops, 5);
7527  SDValue cpOut =
7528    DAG.getCopyFromReg(Result.getValue(0), dl, Reg, T, Result.getValue(1));
7529  return cpOut;
7530}
7531
7532SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
7533                                                 SelectionDAG &DAG) {
7534  assert(Subtarget->is64Bit() && "Result not type legalized?");
7535  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7536  SDValue TheChain = Op.getOperand(0);
7537  DebugLoc dl = Op.getDebugLoc();
7538  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
7539  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
7540  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
7541                                   rax.getValue(2));
7542  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
7543                            DAG.getConstant(32, MVT::i8));
7544  SDValue Ops[] = {
7545    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
7546    rdx.getValue(1)
7547  };
7548  return DAG.getMergeValues(Ops, 2, dl);
7549}
7550
7551SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
7552  SDNode *Node = Op.getNode();
7553  DebugLoc dl = Node->getDebugLoc();
7554  EVT T = Node->getValueType(0);
7555  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
7556                              DAG.getConstant(0, T), Node->getOperand(2));
7557  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
7558                       cast<AtomicSDNode>(Node)->getMemoryVT(),
7559                       Node->getOperand(0),
7560                       Node->getOperand(1), negOp,
7561                       cast<AtomicSDNode>(Node)->getSrcValue(),
7562                       cast<AtomicSDNode>(Node)->getAlignment());
7563}
7564
7565/// LowerOperation - Provide custom lowering hooks for some operations.
7566///
7567SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
7568  switch (Op.getOpcode()) {
7569  default: llvm_unreachable("Should not custom lower this!");
7570  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
7571  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
7572  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
7573  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
7574  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
7575  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
7576  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
7577  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
7578  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
7579  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
7580  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
7581  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
7582  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
7583  case ISD::SHL_PARTS:
7584  case ISD::SRA_PARTS:
7585  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
7586  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
7587  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
7588  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
7589  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
7590  case ISD::FABS:               return LowerFABS(Op, DAG);
7591  case ISD::FNEG:               return LowerFNEG(Op, DAG);
7592  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
7593  case ISD::SETCC:              return LowerSETCC(Op, DAG);
7594  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
7595  case ISD::SELECT:             return LowerSELECT(Op, DAG);
7596  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
7597  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
7598  case ISD::VASTART:            return LowerVASTART(Op, DAG);
7599  case ISD::VAARG:              return LowerVAARG(Op, DAG);
7600  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
7601  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
7602  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
7603  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
7604  case ISD::FRAME_TO_ARGS_OFFSET:
7605                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
7606  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
7607  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
7608  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
7609  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
7610  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
7611  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
7612  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
7613  case ISD::SADDO:
7614  case ISD::UADDO:
7615  case ISD::SSUBO:
7616  case ISD::USUBO:
7617  case ISD::SMULO:
7618  case ISD::UMULO:              return LowerXALUO(Op, DAG);
7619  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
7620  }
7621}
7622
7623void X86TargetLowering::
7624ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
7625                        SelectionDAG &DAG, unsigned NewOp) {
7626  EVT T = Node->getValueType(0);
7627  DebugLoc dl = Node->getDebugLoc();
7628  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
7629
7630  SDValue Chain = Node->getOperand(0);
7631  SDValue In1 = Node->getOperand(1);
7632  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7633                             Node->getOperand(2), DAG.getIntPtrConstant(0));
7634  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7635                             Node->getOperand(2), DAG.getIntPtrConstant(1));
7636  SDValue Ops[] = { Chain, In1, In2L, In2H };
7637  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
7638  SDValue Result =
7639    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
7640                            cast<MemSDNode>(Node)->getMemOperand());
7641  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
7642  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
7643  Results.push_back(Result.getValue(2));
7644}
7645
7646/// ReplaceNodeResults - Replace a node with an illegal result type
7647/// with a new node built out of custom code.
7648void X86TargetLowering::ReplaceNodeResults(SDNode *N,
7649                                           SmallVectorImpl<SDValue>&Results,
7650                                           SelectionDAG &DAG) {
7651  DebugLoc dl = N->getDebugLoc();
7652  switch (N->getOpcode()) {
7653  default:
7654    assert(false && "Do not know how to custom type legalize this operation!");
7655    return;
7656  case ISD::FP_TO_SINT: {
7657    std::pair<SDValue,SDValue> Vals =
7658        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
7659    SDValue FIST = Vals.first, StackSlot = Vals.second;
7660    if (FIST.getNode() != 0) {
7661      EVT VT = N->getValueType(0);
7662      // Return a load from the stack slot.
7663      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, NULL, 0,
7664                                    false, false, 0));
7665    }
7666    return;
7667  }
7668  case ISD::READCYCLECOUNTER: {
7669    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7670    SDValue TheChain = N->getOperand(0);
7671    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
7672    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
7673                                     rd.getValue(1));
7674    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
7675                                     eax.getValue(2));
7676    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
7677    SDValue Ops[] = { eax, edx };
7678    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
7679    Results.push_back(edx.getValue(1));
7680    return;
7681  }
7682  case ISD::ATOMIC_CMP_SWAP: {
7683    EVT T = N->getValueType(0);
7684    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
7685    SDValue cpInL, cpInH;
7686    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
7687                        DAG.getConstant(0, MVT::i32));
7688    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
7689                        DAG.getConstant(1, MVT::i32));
7690    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
7691    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
7692                             cpInL.getValue(1));
7693    SDValue swapInL, swapInH;
7694    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
7695                          DAG.getConstant(0, MVT::i32));
7696    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
7697                          DAG.getConstant(1, MVT::i32));
7698    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
7699                               cpInH.getValue(1));
7700    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
7701                               swapInL.getValue(1));
7702    SDValue Ops[] = { swapInH.getValue(0),
7703                      N->getOperand(1),
7704                      swapInH.getValue(1) };
7705    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7706    SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, dl, Tys, Ops, 3);
7707    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
7708                                        MVT::i32, Result.getValue(1));
7709    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
7710                                        MVT::i32, cpOutL.getValue(2));
7711    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
7712    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
7713    Results.push_back(cpOutH.getValue(1));
7714    return;
7715  }
7716  case ISD::ATOMIC_LOAD_ADD:
7717    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
7718    return;
7719  case ISD::ATOMIC_LOAD_AND:
7720    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
7721    return;
7722  case ISD::ATOMIC_LOAD_NAND:
7723    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
7724    return;
7725  case ISD::ATOMIC_LOAD_OR:
7726    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
7727    return;
7728  case ISD::ATOMIC_LOAD_SUB:
7729    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
7730    return;
7731  case ISD::ATOMIC_LOAD_XOR:
7732    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
7733    return;
7734  case ISD::ATOMIC_SWAP:
7735    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
7736    return;
7737  }
7738}
7739
7740const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
7741  switch (Opcode) {
7742  default: return NULL;
7743  case X86ISD::BSF:                return "X86ISD::BSF";
7744  case X86ISD::BSR:                return "X86ISD::BSR";
7745  case X86ISD::SHLD:               return "X86ISD::SHLD";
7746  case X86ISD::SHRD:               return "X86ISD::SHRD";
7747  case X86ISD::FAND:               return "X86ISD::FAND";
7748  case X86ISD::FOR:                return "X86ISD::FOR";
7749  case X86ISD::FXOR:               return "X86ISD::FXOR";
7750  case X86ISD::FSRL:               return "X86ISD::FSRL";
7751  case X86ISD::FILD:               return "X86ISD::FILD";
7752  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
7753  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
7754  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
7755  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
7756  case X86ISD::FLD:                return "X86ISD::FLD";
7757  case X86ISD::FST:                return "X86ISD::FST";
7758  case X86ISD::CALL:               return "X86ISD::CALL";
7759  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
7760  case X86ISD::BT:                 return "X86ISD::BT";
7761  case X86ISD::CMP:                return "X86ISD::CMP";
7762  case X86ISD::COMI:               return "X86ISD::COMI";
7763  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
7764  case X86ISD::SETCC:              return "X86ISD::SETCC";
7765  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
7766  case X86ISD::CMOV:               return "X86ISD::CMOV";
7767  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
7768  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
7769  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
7770  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
7771  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
7772  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
7773  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
7774  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
7775  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
7776  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
7777  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
7778  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
7779  case X86ISD::MMX_PINSRW:         return "X86ISD::MMX_PINSRW";
7780  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
7781  case X86ISD::FMAX:               return "X86ISD::FMAX";
7782  case X86ISD::FMIN:               return "X86ISD::FMIN";
7783  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
7784  case X86ISD::FRCP:               return "X86ISD::FRCP";
7785  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
7786  case X86ISD::SegmentBaseAddress: return "X86ISD::SegmentBaseAddress";
7787  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
7788  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
7789  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
7790  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
7791  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
7792  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
7793  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
7794  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
7795  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
7796  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
7797  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
7798  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
7799  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
7800  case X86ISD::VSHL:               return "X86ISD::VSHL";
7801  case X86ISD::VSRL:               return "X86ISD::VSRL";
7802  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
7803  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
7804  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
7805  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
7806  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
7807  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
7808  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
7809  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
7810  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
7811  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
7812  case X86ISD::ADD:                return "X86ISD::ADD";
7813  case X86ISD::SUB:                return "X86ISD::SUB";
7814  case X86ISD::SMUL:               return "X86ISD::SMUL";
7815  case X86ISD::UMUL:               return "X86ISD::UMUL";
7816  case X86ISD::INC:                return "X86ISD::INC";
7817  case X86ISD::DEC:                return "X86ISD::DEC";
7818  case X86ISD::OR:                 return "X86ISD::OR";
7819  case X86ISD::XOR:                return "X86ISD::XOR";
7820  case X86ISD::AND:                return "X86ISD::AND";
7821  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
7822  case X86ISD::PTEST:              return "X86ISD::PTEST";
7823  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
7824  case X86ISD::MINGW_ALLOCA:       return "X86ISD::MINGW_ALLOCA";
7825  }
7826}
7827
7828// isLegalAddressingMode - Return true if the addressing mode represented
7829// by AM is legal for this target, for a load/store of the specified type.
7830bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
7831                                              const Type *Ty) const {
7832  // X86 supports extremely general addressing modes.
7833  CodeModel::Model M = getTargetMachine().getCodeModel();
7834
7835  // X86 allows a sign-extended 32-bit immediate field as a displacement.
7836  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
7837    return false;
7838
7839  if (AM.BaseGV) {
7840    unsigned GVFlags =
7841      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
7842
7843    // If a reference to this global requires an extra load, we can't fold it.
7844    if (isGlobalStubReference(GVFlags))
7845      return false;
7846
7847    // If BaseGV requires a register for the PIC base, we cannot also have a
7848    // BaseReg specified.
7849    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
7850      return false;
7851
7852    // If lower 4G is not available, then we must use rip-relative addressing.
7853    if (Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
7854      return false;
7855  }
7856
7857  switch (AM.Scale) {
7858  case 0:
7859  case 1:
7860  case 2:
7861  case 4:
7862  case 8:
7863    // These scales always work.
7864    break;
7865  case 3:
7866  case 5:
7867  case 9:
7868    // These scales are formed with basereg+scalereg.  Only accept if there is
7869    // no basereg yet.
7870    if (AM.HasBaseReg)
7871      return false;
7872    break;
7873  default:  // Other stuff never works.
7874    return false;
7875  }
7876
7877  return true;
7878}
7879
7880
7881bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
7882  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
7883    return false;
7884  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
7885  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
7886  if (NumBits1 <= NumBits2)
7887    return false;
7888  return true;
7889}
7890
7891bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
7892  if (!VT1.isInteger() || !VT2.isInteger())
7893    return false;
7894  unsigned NumBits1 = VT1.getSizeInBits();
7895  unsigned NumBits2 = VT2.getSizeInBits();
7896  if (NumBits1 <= NumBits2)
7897    return false;
7898  return true;
7899}
7900
7901bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
7902  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
7903  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
7904}
7905
7906bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
7907  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
7908  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
7909}
7910
7911bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
7912  // i16 instructions are longer (0x66 prefix) and potentially slower.
7913  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
7914}
7915
7916/// isShuffleMaskLegal - Targets can use this to indicate that they only
7917/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
7918/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
7919/// are assumed to be legal.
7920bool
7921X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
7922                                      EVT VT) const {
7923  // Only do shuffles on 128-bit vector types for now.
7924  if (VT.getSizeInBits() == 64)
7925    return false;
7926
7927  // FIXME: pshufb, blends, shifts.
7928  return (VT.getVectorNumElements() == 2 ||
7929          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
7930          isMOVLMask(M, VT) ||
7931          isSHUFPMask(M, VT) ||
7932          isPSHUFDMask(M, VT) ||
7933          isPSHUFHWMask(M, VT) ||
7934          isPSHUFLWMask(M, VT) ||
7935          isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
7936          isUNPCKLMask(M, VT) ||
7937          isUNPCKHMask(M, VT) ||
7938          isUNPCKL_v_undef_Mask(M, VT) ||
7939          isUNPCKH_v_undef_Mask(M, VT));
7940}
7941
7942bool
7943X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
7944                                          EVT VT) const {
7945  unsigned NumElts = VT.getVectorNumElements();
7946  // FIXME: This collection of masks seems suspect.
7947  if (NumElts == 2)
7948    return true;
7949  if (NumElts == 4 && VT.getSizeInBits() == 128) {
7950    return (isMOVLMask(Mask, VT)  ||
7951            isCommutedMOVLMask(Mask, VT, true) ||
7952            isSHUFPMask(Mask, VT) ||
7953            isCommutedSHUFPMask(Mask, VT));
7954  }
7955  return false;
7956}
7957
7958//===----------------------------------------------------------------------===//
7959//                           X86 Scheduler Hooks
7960//===----------------------------------------------------------------------===//
7961
7962// private utility function
7963MachineBasicBlock *
7964X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
7965                                                       MachineBasicBlock *MBB,
7966                                                       unsigned regOpc,
7967                                                       unsigned immOpc,
7968                                                       unsigned LoadOpc,
7969                                                       unsigned CXchgOpc,
7970                                                       unsigned copyOpc,
7971                                                       unsigned notOpc,
7972                                                       unsigned EAXreg,
7973                                                       TargetRegisterClass *RC,
7974                                                       bool invSrc) const {
7975  // For the atomic bitwise operator, we generate
7976  //   thisMBB:
7977  //   newMBB:
7978  //     ld  t1 = [bitinstr.addr]
7979  //     op  t2 = t1, [bitinstr.val]
7980  //     mov EAX = t1
7981  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
7982  //     bz  newMBB
7983  //     fallthrough -->nextMBB
7984  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7985  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7986  MachineFunction::iterator MBBIter = MBB;
7987  ++MBBIter;
7988
7989  /// First build the CFG
7990  MachineFunction *F = MBB->getParent();
7991  MachineBasicBlock *thisMBB = MBB;
7992  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7993  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7994  F->insert(MBBIter, newMBB);
7995  F->insert(MBBIter, nextMBB);
7996
7997  // Move all successors to thisMBB to nextMBB
7998  nextMBB->transferSuccessors(thisMBB);
7999
8000  // Update thisMBB to fall through to newMBB
8001  thisMBB->addSuccessor(newMBB);
8002
8003  // newMBB jumps to itself and fall through to nextMBB
8004  newMBB->addSuccessor(nextMBB);
8005  newMBB->addSuccessor(newMBB);
8006
8007  // Insert instructions into newMBB based on incoming instruction
8008  assert(bInstr->getNumOperands() < X86AddrNumOperands + 4 &&
8009         "unexpected number of operands");
8010  DebugLoc dl = bInstr->getDebugLoc();
8011  MachineOperand& destOper = bInstr->getOperand(0);
8012  MachineOperand* argOpers[2 + X86AddrNumOperands];
8013  int numArgs = bInstr->getNumOperands() - 1;
8014  for (int i=0; i < numArgs; ++i)
8015    argOpers[i] = &bInstr->getOperand(i+1);
8016
8017  // x86 address has 4 operands: base, index, scale, and displacement
8018  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
8019  int valArgIndx = lastAddrIndx + 1;
8020
8021  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
8022  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
8023  for (int i=0; i <= lastAddrIndx; ++i)
8024    (*MIB).addOperand(*argOpers[i]);
8025
8026  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
8027  if (invSrc) {
8028    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
8029  }
8030  else
8031    tt = t1;
8032
8033  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
8034  assert((argOpers[valArgIndx]->isReg() ||
8035          argOpers[valArgIndx]->isImm()) &&
8036         "invalid operand");
8037  if (argOpers[valArgIndx]->isReg())
8038    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
8039  else
8040    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
8041  MIB.addReg(tt);
8042  (*MIB).addOperand(*argOpers[valArgIndx]);
8043
8044  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), EAXreg);
8045  MIB.addReg(t1);
8046
8047  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
8048  for (int i=0; i <= lastAddrIndx; ++i)
8049    (*MIB).addOperand(*argOpers[i]);
8050  MIB.addReg(t2);
8051  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8052  (*MIB).setMemRefs(bInstr->memoperands_begin(),
8053                    bInstr->memoperands_end());
8054
8055  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), destOper.getReg());
8056  MIB.addReg(EAXreg);
8057
8058  // insert branch
8059  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8060
8061  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
8062  return nextMBB;
8063}
8064
8065// private utility function:  64 bit atomics on 32 bit host.
8066MachineBasicBlock *
8067X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
8068                                                       MachineBasicBlock *MBB,
8069                                                       unsigned regOpcL,
8070                                                       unsigned regOpcH,
8071                                                       unsigned immOpcL,
8072                                                       unsigned immOpcH,
8073                                                       bool invSrc) const {
8074  // For the atomic bitwise operator, we generate
8075  //   thisMBB (instructions are in pairs, except cmpxchg8b)
8076  //     ld t1,t2 = [bitinstr.addr]
8077  //   newMBB:
8078  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
8079  //     op  t5, t6 <- out1, out2, [bitinstr.val]
8080  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
8081  //     mov ECX, EBX <- t5, t6
8082  //     mov EAX, EDX <- t1, t2
8083  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
8084  //     mov t3, t4 <- EAX, EDX
8085  //     bz  newMBB
8086  //     result in out1, out2
8087  //     fallthrough -->nextMBB
8088
8089  const TargetRegisterClass *RC = X86::GR32RegisterClass;
8090  const unsigned LoadOpc = X86::MOV32rm;
8091  const unsigned copyOpc = X86::MOV32rr;
8092  const unsigned NotOpc = X86::NOT32r;
8093  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8094  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8095  MachineFunction::iterator MBBIter = MBB;
8096  ++MBBIter;
8097
8098  /// First build the CFG
8099  MachineFunction *F = MBB->getParent();
8100  MachineBasicBlock *thisMBB = MBB;
8101  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8102  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8103  F->insert(MBBIter, newMBB);
8104  F->insert(MBBIter, nextMBB);
8105
8106  // Move all successors to thisMBB to nextMBB
8107  nextMBB->transferSuccessors(thisMBB);
8108
8109  // Update thisMBB to fall through to newMBB
8110  thisMBB->addSuccessor(newMBB);
8111
8112  // newMBB jumps to itself and fall through to nextMBB
8113  newMBB->addSuccessor(nextMBB);
8114  newMBB->addSuccessor(newMBB);
8115
8116  DebugLoc dl = bInstr->getDebugLoc();
8117  // Insert instructions into newMBB based on incoming instruction
8118  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
8119  assert(bInstr->getNumOperands() < X86AddrNumOperands + 14 &&
8120         "unexpected number of operands");
8121  MachineOperand& dest1Oper = bInstr->getOperand(0);
8122  MachineOperand& dest2Oper = bInstr->getOperand(1);
8123  MachineOperand* argOpers[2 + X86AddrNumOperands];
8124  for (int i=0; i < 2 + X86AddrNumOperands; ++i)
8125    argOpers[i] = &bInstr->getOperand(i+2);
8126
8127  // x86 address has 5 operands: base, index, scale, displacement, and segment.
8128  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
8129
8130  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
8131  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
8132  for (int i=0; i <= lastAddrIndx; ++i)
8133    (*MIB).addOperand(*argOpers[i]);
8134  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
8135  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
8136  // add 4 to displacement.
8137  for (int i=0; i <= lastAddrIndx-2; ++i)
8138    (*MIB).addOperand(*argOpers[i]);
8139  MachineOperand newOp3 = *(argOpers[3]);
8140  if (newOp3.isImm())
8141    newOp3.setImm(newOp3.getImm()+4);
8142  else
8143    newOp3.setOffset(newOp3.getOffset()+4);
8144  (*MIB).addOperand(newOp3);
8145  (*MIB).addOperand(*argOpers[lastAddrIndx]);
8146
8147  // t3/4 are defined later, at the bottom of the loop
8148  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
8149  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
8150  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
8151    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
8152  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
8153    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
8154
8155  // The subsequent operations should be using the destination registers of
8156  //the PHI instructions.
8157  if (invSrc) {
8158    t1 = F->getRegInfo().createVirtualRegister(RC);
8159    t2 = F->getRegInfo().createVirtualRegister(RC);
8160    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
8161    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
8162  } else {
8163    t1 = dest1Oper.getReg();
8164    t2 = dest2Oper.getReg();
8165  }
8166
8167  int valArgIndx = lastAddrIndx + 1;
8168  assert((argOpers[valArgIndx]->isReg() ||
8169          argOpers[valArgIndx]->isImm()) &&
8170         "invalid operand");
8171  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
8172  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
8173  if (argOpers[valArgIndx]->isReg())
8174    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
8175  else
8176    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
8177  if (regOpcL != X86::MOV32rr)
8178    MIB.addReg(t1);
8179  (*MIB).addOperand(*argOpers[valArgIndx]);
8180  assert(argOpers[valArgIndx + 1]->isReg() ==
8181         argOpers[valArgIndx]->isReg());
8182  assert(argOpers[valArgIndx + 1]->isImm() ==
8183         argOpers[valArgIndx]->isImm());
8184  if (argOpers[valArgIndx + 1]->isReg())
8185    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
8186  else
8187    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
8188  if (regOpcH != X86::MOV32rr)
8189    MIB.addReg(t2);
8190  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
8191
8192  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EAX);
8193  MIB.addReg(t1);
8194  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EDX);
8195  MIB.addReg(t2);
8196
8197  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EBX);
8198  MIB.addReg(t5);
8199  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::ECX);
8200  MIB.addReg(t6);
8201
8202  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
8203  for (int i=0; i <= lastAddrIndx; ++i)
8204    (*MIB).addOperand(*argOpers[i]);
8205
8206  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8207  (*MIB).setMemRefs(bInstr->memoperands_begin(),
8208                    bInstr->memoperands_end());
8209
8210  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t3);
8211  MIB.addReg(X86::EAX);
8212  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t4);
8213  MIB.addReg(X86::EDX);
8214
8215  // insert branch
8216  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8217
8218  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
8219  return nextMBB;
8220}
8221
8222// private utility function
8223MachineBasicBlock *
8224X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
8225                                                      MachineBasicBlock *MBB,
8226                                                      unsigned cmovOpc) const {
8227  // For the atomic min/max operator, we generate
8228  //   thisMBB:
8229  //   newMBB:
8230  //     ld t1 = [min/max.addr]
8231  //     mov t2 = [min/max.val]
8232  //     cmp  t1, t2
8233  //     cmov[cond] t2 = t1
8234  //     mov EAX = t1
8235  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
8236  //     bz   newMBB
8237  //     fallthrough -->nextMBB
8238  //
8239  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8240  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8241  MachineFunction::iterator MBBIter = MBB;
8242  ++MBBIter;
8243
8244  /// First build the CFG
8245  MachineFunction *F = MBB->getParent();
8246  MachineBasicBlock *thisMBB = MBB;
8247  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8248  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8249  F->insert(MBBIter, newMBB);
8250  F->insert(MBBIter, nextMBB);
8251
8252  // Move all successors of thisMBB to nextMBB
8253  nextMBB->transferSuccessors(thisMBB);
8254
8255  // Update thisMBB to fall through to newMBB
8256  thisMBB->addSuccessor(newMBB);
8257
8258  // newMBB jumps to newMBB and fall through to nextMBB
8259  newMBB->addSuccessor(nextMBB);
8260  newMBB->addSuccessor(newMBB);
8261
8262  DebugLoc dl = mInstr->getDebugLoc();
8263  // Insert instructions into newMBB based on incoming instruction
8264  assert(mInstr->getNumOperands() < X86AddrNumOperands + 4 &&
8265         "unexpected number of operands");
8266  MachineOperand& destOper = mInstr->getOperand(0);
8267  MachineOperand* argOpers[2 + X86AddrNumOperands];
8268  int numArgs = mInstr->getNumOperands() - 1;
8269  for (int i=0; i < numArgs; ++i)
8270    argOpers[i] = &mInstr->getOperand(i+1);
8271
8272  // x86 address has 4 operands: base, index, scale, and displacement
8273  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
8274  int valArgIndx = lastAddrIndx + 1;
8275
8276  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8277  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
8278  for (int i=0; i <= lastAddrIndx; ++i)
8279    (*MIB).addOperand(*argOpers[i]);
8280
8281  // We only support register and immediate values
8282  assert((argOpers[valArgIndx]->isReg() ||
8283          argOpers[valArgIndx]->isImm()) &&
8284         "invalid operand");
8285
8286  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8287  if (argOpers[valArgIndx]->isReg())
8288    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
8289  else
8290    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
8291  (*MIB).addOperand(*argOpers[valArgIndx]);
8292
8293  MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), X86::EAX);
8294  MIB.addReg(t1);
8295
8296  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
8297  MIB.addReg(t1);
8298  MIB.addReg(t2);
8299
8300  // Generate movc
8301  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8302  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
8303  MIB.addReg(t2);
8304  MIB.addReg(t1);
8305
8306  // Cmp and exchange if none has modified the memory location
8307  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
8308  for (int i=0; i <= lastAddrIndx; ++i)
8309    (*MIB).addOperand(*argOpers[i]);
8310  MIB.addReg(t3);
8311  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8312  (*MIB).setMemRefs(mInstr->memoperands_begin(),
8313                    mInstr->memoperands_end());
8314
8315  MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), destOper.getReg());
8316  MIB.addReg(X86::EAX);
8317
8318  // insert branch
8319  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8320
8321  F->DeleteMachineInstr(mInstr);   // The pseudo instruction is gone now.
8322  return nextMBB;
8323}
8324
8325// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
8326// all of this code can be replaced with that in the .td file.
8327MachineBasicBlock *
8328X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
8329                            unsigned numArgs, bool memArg) const {
8330
8331  MachineFunction *F = BB->getParent();
8332  DebugLoc dl = MI->getDebugLoc();
8333  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8334
8335  unsigned Opc;
8336  if (memArg)
8337    Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
8338  else
8339    Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
8340
8341  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(Opc));
8342
8343  for (unsigned i = 0; i < numArgs; ++i) {
8344    MachineOperand &Op = MI->getOperand(i+1);
8345
8346    if (!(Op.isReg() && Op.isImplicit()))
8347      MIB.addOperand(Op);
8348  }
8349
8350  BuildMI(BB, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
8351    .addReg(X86::XMM0);
8352
8353  F->DeleteMachineInstr(MI);
8354
8355  return BB;
8356}
8357
8358MachineBasicBlock *
8359X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
8360                                                 MachineInstr *MI,
8361                                                 MachineBasicBlock *MBB) const {
8362  // Emit code to save XMM registers to the stack. The ABI says that the
8363  // number of registers to save is given in %al, so it's theoretically
8364  // possible to do an indirect jump trick to avoid saving all of them,
8365  // however this code takes a simpler approach and just executes all
8366  // of the stores if %al is non-zero. It's less code, and it's probably
8367  // easier on the hardware branch predictor, and stores aren't all that
8368  // expensive anyway.
8369
8370  // Create the new basic blocks. One block contains all the XMM stores,
8371  // and one block is the final destination regardless of whether any
8372  // stores were performed.
8373  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8374  MachineFunction *F = MBB->getParent();
8375  MachineFunction::iterator MBBIter = MBB;
8376  ++MBBIter;
8377  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
8378  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
8379  F->insert(MBBIter, XMMSaveMBB);
8380  F->insert(MBBIter, EndMBB);
8381
8382  // Set up the CFG.
8383  // Move any original successors of MBB to the end block.
8384  EndMBB->transferSuccessors(MBB);
8385  // The original block will now fall through to the XMM save block.
8386  MBB->addSuccessor(XMMSaveMBB);
8387  // The XMMSaveMBB will fall through to the end block.
8388  XMMSaveMBB->addSuccessor(EndMBB);
8389
8390  // Now add the instructions.
8391  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8392  DebugLoc DL = MI->getDebugLoc();
8393
8394  unsigned CountReg = MI->getOperand(0).getReg();
8395  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
8396  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
8397
8398  if (!Subtarget->isTargetWin64()) {
8399    // If %al is 0, branch around the XMM save block.
8400    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
8401    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
8402    MBB->addSuccessor(EndMBB);
8403  }
8404
8405  // In the XMM save block, save all the XMM argument registers.
8406  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
8407    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
8408    MachineMemOperand *MMO =
8409      F->getMachineMemOperand(
8410        PseudoSourceValue::getFixedStack(RegSaveFrameIndex),
8411        MachineMemOperand::MOStore, Offset,
8412        /*Size=*/16, /*Align=*/16);
8413    BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
8414      .addFrameIndex(RegSaveFrameIndex)
8415      .addImm(/*Scale=*/1)
8416      .addReg(/*IndexReg=*/0)
8417      .addImm(/*Disp=*/Offset)
8418      .addReg(/*Segment=*/0)
8419      .addReg(MI->getOperand(i).getReg())
8420      .addMemOperand(MMO);
8421  }
8422
8423  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
8424
8425  return EndMBB;
8426}
8427
8428MachineBasicBlock *
8429X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
8430                                     MachineBasicBlock *BB,
8431                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
8432  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8433  DebugLoc DL = MI->getDebugLoc();
8434
8435  // To "insert" a SELECT_CC instruction, we actually have to insert the
8436  // diamond control-flow pattern.  The incoming instruction knows the
8437  // destination vreg to set, the condition code register to branch on, the
8438  // true/false values to select between, and a branch opcode to use.
8439  const BasicBlock *LLVM_BB = BB->getBasicBlock();
8440  MachineFunction::iterator It = BB;
8441  ++It;
8442
8443  //  thisMBB:
8444  //  ...
8445  //   TrueVal = ...
8446  //   cmpTY ccX, r1, r2
8447  //   bCC copy1MBB
8448  //   fallthrough --> copy0MBB
8449  MachineBasicBlock *thisMBB = BB;
8450  MachineFunction *F = BB->getParent();
8451  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
8452  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
8453  unsigned Opc =
8454    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
8455  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
8456  F->insert(It, copy0MBB);
8457  F->insert(It, sinkMBB);
8458  // Update machine-CFG edges by first adding all successors of the current
8459  // block to the new block which will contain the Phi node for the select.
8460  // Also inform sdisel of the edge changes.
8461  for (MachineBasicBlock::succ_iterator I = BB->succ_begin(),
8462         E = BB->succ_end(); I != E; ++I) {
8463    EM->insert(std::make_pair(*I, sinkMBB));
8464    sinkMBB->addSuccessor(*I);
8465  }
8466  // Next, remove all successors of the current block, and add the true
8467  // and fallthrough blocks as its successors.
8468  while (!BB->succ_empty())
8469    BB->removeSuccessor(BB->succ_begin());
8470  // Add the true and fallthrough blocks as its successors.
8471  BB->addSuccessor(copy0MBB);
8472  BB->addSuccessor(sinkMBB);
8473
8474  //  copy0MBB:
8475  //   %FalseValue = ...
8476  //   # fallthrough to sinkMBB
8477  BB = copy0MBB;
8478
8479  // Update machine-CFG edges
8480  BB->addSuccessor(sinkMBB);
8481
8482  //  sinkMBB:
8483  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
8484  //  ...
8485  BB = sinkMBB;
8486  BuildMI(BB, DL, TII->get(X86::PHI), MI->getOperand(0).getReg())
8487    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
8488    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
8489
8490  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
8491  return BB;
8492}
8493
8494MachineBasicBlock *
8495X86TargetLowering::EmitLoweredMingwAlloca(MachineInstr *MI,
8496                                          MachineBasicBlock *BB,
8497                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
8498  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8499  DebugLoc DL = MI->getDebugLoc();
8500  MachineFunction *F = BB->getParent();
8501
8502  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
8503  // non-trivial part is impdef of ESP.
8504  // FIXME: The code should be tweaked as soon as we'll try to do codegen for
8505  // mingw-w64.
8506
8507  BuildMI(BB, DL, TII->get(X86::CALLpcrel32))
8508    .addExternalSymbol("_alloca")
8509    .addReg(X86::EAX, RegState::Implicit)
8510    .addReg(X86::ESP, RegState::Implicit)
8511    .addReg(X86::EAX, RegState::Define | RegState::Implicit)
8512    .addReg(X86::ESP, RegState::Define | RegState::Implicit);
8513
8514  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
8515  return BB;
8516}
8517
8518MachineBasicBlock *
8519X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
8520                                               MachineBasicBlock *BB,
8521                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
8522  switch (MI->getOpcode()) {
8523  default: assert(false && "Unexpected instr type to insert");
8524  case X86::MINGW_ALLOCA:
8525    return EmitLoweredMingwAlloca(MI, BB, EM);
8526  case X86::CMOV_GR8:
8527  case X86::CMOV_V1I64:
8528  case X86::CMOV_FR32:
8529  case X86::CMOV_FR64:
8530  case X86::CMOV_V4F32:
8531  case X86::CMOV_V2F64:
8532  case X86::CMOV_V2I64:
8533  case X86::CMOV_GR16:
8534  case X86::CMOV_GR32:
8535  case X86::CMOV_RFP32:
8536  case X86::CMOV_RFP64:
8537  case X86::CMOV_RFP80:
8538    return EmitLoweredSelect(MI, BB, EM);
8539
8540  case X86::FP32_TO_INT16_IN_MEM:
8541  case X86::FP32_TO_INT32_IN_MEM:
8542  case X86::FP32_TO_INT64_IN_MEM:
8543  case X86::FP64_TO_INT16_IN_MEM:
8544  case X86::FP64_TO_INT32_IN_MEM:
8545  case X86::FP64_TO_INT64_IN_MEM:
8546  case X86::FP80_TO_INT16_IN_MEM:
8547  case X86::FP80_TO_INT32_IN_MEM:
8548  case X86::FP80_TO_INT64_IN_MEM: {
8549    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8550    DebugLoc DL = MI->getDebugLoc();
8551
8552    // Change the floating point control register to use "round towards zero"
8553    // mode when truncating to an integer value.
8554    MachineFunction *F = BB->getParent();
8555    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
8556    addFrameReference(BuildMI(BB, DL, TII->get(X86::FNSTCW16m)), CWFrameIdx);
8557
8558    // Load the old value of the high byte of the control word...
8559    unsigned OldCW =
8560      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
8561    addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16rm), OldCW),
8562                      CWFrameIdx);
8563
8564    // Set the high part to be round to zero...
8565    addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
8566      .addImm(0xC7F);
8567
8568    // Reload the modified control word now...
8569    addFrameReference(BuildMI(BB, DL, TII->get(X86::FLDCW16m)), CWFrameIdx);
8570
8571    // Restore the memory image of control word to original value
8572    addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
8573      .addReg(OldCW);
8574
8575    // Get the X86 opcode to use.
8576    unsigned Opc;
8577    switch (MI->getOpcode()) {
8578    default: llvm_unreachable("illegal opcode!");
8579    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
8580    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
8581    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
8582    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
8583    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
8584    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
8585    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
8586    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
8587    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
8588    }
8589
8590    X86AddressMode AM;
8591    MachineOperand &Op = MI->getOperand(0);
8592    if (Op.isReg()) {
8593      AM.BaseType = X86AddressMode::RegBase;
8594      AM.Base.Reg = Op.getReg();
8595    } else {
8596      AM.BaseType = X86AddressMode::FrameIndexBase;
8597      AM.Base.FrameIndex = Op.getIndex();
8598    }
8599    Op = MI->getOperand(1);
8600    if (Op.isImm())
8601      AM.Scale = Op.getImm();
8602    Op = MI->getOperand(2);
8603    if (Op.isImm())
8604      AM.IndexReg = Op.getImm();
8605    Op = MI->getOperand(3);
8606    if (Op.isGlobal()) {
8607      AM.GV = Op.getGlobal();
8608    } else {
8609      AM.Disp = Op.getImm();
8610    }
8611    addFullAddress(BuildMI(BB, DL, TII->get(Opc)), AM)
8612                      .addReg(MI->getOperand(X86AddrNumOperands).getReg());
8613
8614    // Reload the original control word now.
8615    addFrameReference(BuildMI(BB, DL, TII->get(X86::FLDCW16m)), CWFrameIdx);
8616
8617    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
8618    return BB;
8619  }
8620    // DBG_VALUE.  Only the frame index case is done here.
8621  case X86::DBG_VALUE: {
8622    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8623    DebugLoc DL = MI->getDebugLoc();
8624    X86AddressMode AM;
8625    MachineFunction *F = BB->getParent();
8626    AM.BaseType = X86AddressMode::FrameIndexBase;
8627    AM.Base.FrameIndex = MI->getOperand(0).getImm();
8628    addFullAddress(BuildMI(BB, DL, TII->get(X86::DBG_VALUE)), AM).
8629      addImm(MI->getOperand(1).getImm()).
8630      addMetadata(MI->getOperand(2).getMetadata());
8631    F->DeleteMachineInstr(MI);      // Remove pseudo.
8632    return BB;
8633  }
8634
8635    // String/text processing lowering.
8636  case X86::PCMPISTRM128REG:
8637    return EmitPCMP(MI, BB, 3, false /* in-mem */);
8638  case X86::PCMPISTRM128MEM:
8639    return EmitPCMP(MI, BB, 3, true /* in-mem */);
8640  case X86::PCMPESTRM128REG:
8641    return EmitPCMP(MI, BB, 5, false /* in mem */);
8642  case X86::PCMPESTRM128MEM:
8643    return EmitPCMP(MI, BB, 5, true /* in mem */);
8644
8645    // Atomic Lowering.
8646  case X86::ATOMAND32:
8647    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
8648                                               X86::AND32ri, X86::MOV32rm,
8649                                               X86::LCMPXCHG32, X86::MOV32rr,
8650                                               X86::NOT32r, X86::EAX,
8651                                               X86::GR32RegisterClass);
8652  case X86::ATOMOR32:
8653    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
8654                                               X86::OR32ri, X86::MOV32rm,
8655                                               X86::LCMPXCHG32, X86::MOV32rr,
8656                                               X86::NOT32r, X86::EAX,
8657                                               X86::GR32RegisterClass);
8658  case X86::ATOMXOR32:
8659    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
8660                                               X86::XOR32ri, X86::MOV32rm,
8661                                               X86::LCMPXCHG32, X86::MOV32rr,
8662                                               X86::NOT32r, X86::EAX,
8663                                               X86::GR32RegisterClass);
8664  case X86::ATOMNAND32:
8665    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
8666                                               X86::AND32ri, X86::MOV32rm,
8667                                               X86::LCMPXCHG32, X86::MOV32rr,
8668                                               X86::NOT32r, X86::EAX,
8669                                               X86::GR32RegisterClass, true);
8670  case X86::ATOMMIN32:
8671    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
8672  case X86::ATOMMAX32:
8673    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
8674  case X86::ATOMUMIN32:
8675    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
8676  case X86::ATOMUMAX32:
8677    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
8678
8679  case X86::ATOMAND16:
8680    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
8681                                               X86::AND16ri, X86::MOV16rm,
8682                                               X86::LCMPXCHG16, X86::MOV16rr,
8683                                               X86::NOT16r, X86::AX,
8684                                               X86::GR16RegisterClass);
8685  case X86::ATOMOR16:
8686    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
8687                                               X86::OR16ri, X86::MOV16rm,
8688                                               X86::LCMPXCHG16, X86::MOV16rr,
8689                                               X86::NOT16r, X86::AX,
8690                                               X86::GR16RegisterClass);
8691  case X86::ATOMXOR16:
8692    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
8693                                               X86::XOR16ri, X86::MOV16rm,
8694                                               X86::LCMPXCHG16, X86::MOV16rr,
8695                                               X86::NOT16r, X86::AX,
8696                                               X86::GR16RegisterClass);
8697  case X86::ATOMNAND16:
8698    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
8699                                               X86::AND16ri, X86::MOV16rm,
8700                                               X86::LCMPXCHG16, X86::MOV16rr,
8701                                               X86::NOT16r, X86::AX,
8702                                               X86::GR16RegisterClass, true);
8703  case X86::ATOMMIN16:
8704    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
8705  case X86::ATOMMAX16:
8706    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
8707  case X86::ATOMUMIN16:
8708    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
8709  case X86::ATOMUMAX16:
8710    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
8711
8712  case X86::ATOMAND8:
8713    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
8714                                               X86::AND8ri, X86::MOV8rm,
8715                                               X86::LCMPXCHG8, X86::MOV8rr,
8716                                               X86::NOT8r, X86::AL,
8717                                               X86::GR8RegisterClass);
8718  case X86::ATOMOR8:
8719    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
8720                                               X86::OR8ri, X86::MOV8rm,
8721                                               X86::LCMPXCHG8, X86::MOV8rr,
8722                                               X86::NOT8r, X86::AL,
8723                                               X86::GR8RegisterClass);
8724  case X86::ATOMXOR8:
8725    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
8726                                               X86::XOR8ri, X86::MOV8rm,
8727                                               X86::LCMPXCHG8, X86::MOV8rr,
8728                                               X86::NOT8r, X86::AL,
8729                                               X86::GR8RegisterClass);
8730  case X86::ATOMNAND8:
8731    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
8732                                               X86::AND8ri, X86::MOV8rm,
8733                                               X86::LCMPXCHG8, X86::MOV8rr,
8734                                               X86::NOT8r, X86::AL,
8735                                               X86::GR8RegisterClass, true);
8736  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
8737  // This group is for 64-bit host.
8738  case X86::ATOMAND64:
8739    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
8740                                               X86::AND64ri32, X86::MOV64rm,
8741                                               X86::LCMPXCHG64, X86::MOV64rr,
8742                                               X86::NOT64r, X86::RAX,
8743                                               X86::GR64RegisterClass);
8744  case X86::ATOMOR64:
8745    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
8746                                               X86::OR64ri32, X86::MOV64rm,
8747                                               X86::LCMPXCHG64, X86::MOV64rr,
8748                                               X86::NOT64r, X86::RAX,
8749                                               X86::GR64RegisterClass);
8750  case X86::ATOMXOR64:
8751    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
8752                                               X86::XOR64ri32, X86::MOV64rm,
8753                                               X86::LCMPXCHG64, X86::MOV64rr,
8754                                               X86::NOT64r, X86::RAX,
8755                                               X86::GR64RegisterClass);
8756  case X86::ATOMNAND64:
8757    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
8758                                               X86::AND64ri32, X86::MOV64rm,
8759                                               X86::LCMPXCHG64, X86::MOV64rr,
8760                                               X86::NOT64r, X86::RAX,
8761                                               X86::GR64RegisterClass, true);
8762  case X86::ATOMMIN64:
8763    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
8764  case X86::ATOMMAX64:
8765    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
8766  case X86::ATOMUMIN64:
8767    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
8768  case X86::ATOMUMAX64:
8769    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
8770
8771  // This group does 64-bit operations on a 32-bit host.
8772  case X86::ATOMAND6432:
8773    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8774                                               X86::AND32rr, X86::AND32rr,
8775                                               X86::AND32ri, X86::AND32ri,
8776                                               false);
8777  case X86::ATOMOR6432:
8778    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8779                                               X86::OR32rr, X86::OR32rr,
8780                                               X86::OR32ri, X86::OR32ri,
8781                                               false);
8782  case X86::ATOMXOR6432:
8783    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8784                                               X86::XOR32rr, X86::XOR32rr,
8785                                               X86::XOR32ri, X86::XOR32ri,
8786                                               false);
8787  case X86::ATOMNAND6432:
8788    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8789                                               X86::AND32rr, X86::AND32rr,
8790                                               X86::AND32ri, X86::AND32ri,
8791                                               true);
8792  case X86::ATOMADD6432:
8793    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8794                                               X86::ADD32rr, X86::ADC32rr,
8795                                               X86::ADD32ri, X86::ADC32ri,
8796                                               false);
8797  case X86::ATOMSUB6432:
8798    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8799                                               X86::SUB32rr, X86::SBB32rr,
8800                                               X86::SUB32ri, X86::SBB32ri,
8801                                               false);
8802  case X86::ATOMSWAP6432:
8803    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8804                                               X86::MOV32rr, X86::MOV32rr,
8805                                               X86::MOV32ri, X86::MOV32ri,
8806                                               false);
8807  case X86::VASTART_SAVE_XMM_REGS:
8808    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
8809  }
8810}
8811
8812//===----------------------------------------------------------------------===//
8813//                           X86 Optimization Hooks
8814//===----------------------------------------------------------------------===//
8815
8816void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
8817                                                       const APInt &Mask,
8818                                                       APInt &KnownZero,
8819                                                       APInt &KnownOne,
8820                                                       const SelectionDAG &DAG,
8821                                                       unsigned Depth) const {
8822  unsigned Opc = Op.getOpcode();
8823  assert((Opc >= ISD::BUILTIN_OP_END ||
8824          Opc == ISD::INTRINSIC_WO_CHAIN ||
8825          Opc == ISD::INTRINSIC_W_CHAIN ||
8826          Opc == ISD::INTRINSIC_VOID) &&
8827         "Should use MaskedValueIsZero if you don't know whether Op"
8828         " is a target node!");
8829
8830  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
8831  switch (Opc) {
8832  default: break;
8833  case X86ISD::ADD:
8834  case X86ISD::SUB:
8835  case X86ISD::SMUL:
8836  case X86ISD::UMUL:
8837  case X86ISD::INC:
8838  case X86ISD::DEC:
8839  case X86ISD::OR:
8840  case X86ISD::XOR:
8841  case X86ISD::AND:
8842    // These nodes' second result is a boolean.
8843    if (Op.getResNo() == 0)
8844      break;
8845    // Fallthrough
8846  case X86ISD::SETCC:
8847    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
8848                                       Mask.getBitWidth() - 1);
8849    break;
8850  }
8851}
8852
8853/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
8854/// node is a GlobalAddress + offset.
8855bool X86TargetLowering::isGAPlusOffset(SDNode *N,
8856                                       GlobalValue* &GA, int64_t &Offset) const{
8857  if (N->getOpcode() == X86ISD::Wrapper) {
8858    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
8859      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
8860      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
8861      return true;
8862    }
8863  }
8864  return TargetLowering::isGAPlusOffset(N, GA, Offset);
8865}
8866
8867/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
8868/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
8869/// if the load addresses are consecutive, non-overlapping, and in the right
8870/// order.
8871static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
8872                                     const TargetLowering &TLI) {
8873  DebugLoc dl = N->getDebugLoc();
8874  EVT VT = N->getValueType(0);
8875  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
8876
8877  if (VT.getSizeInBits() != 128)
8878    return SDValue();
8879
8880  SmallVector<SDValue, 16> Elts;
8881  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
8882    Elts.push_back(DAG.getShuffleScalarElt(SVN, i));
8883
8884  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
8885}
8886
8887/// PerformShuffleCombine - Detect vector gather/scatter index generation
8888/// and convert it from being a bunch of shuffles and extracts to a simple
8889/// store and scalar loads to extract the elements.
8890static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
8891                                                const TargetLowering &TLI) {
8892  SDValue InputVector = N->getOperand(0);
8893
8894  // Only operate on vectors of 4 elements, where the alternative shuffling
8895  // gets to be more expensive.
8896  if (InputVector.getValueType() != MVT::v4i32)
8897    return SDValue();
8898
8899  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
8900  // single use which is a sign-extend or zero-extend, and all elements are
8901  // used.
8902  SmallVector<SDNode *, 4> Uses;
8903  unsigned ExtractedElements = 0;
8904  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
8905       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
8906    if (UI.getUse().getResNo() != InputVector.getResNo())
8907      return SDValue();
8908
8909    SDNode *Extract = *UI;
8910    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
8911      return SDValue();
8912
8913    if (Extract->getValueType(0) != MVT::i32)
8914      return SDValue();
8915    if (!Extract->hasOneUse())
8916      return SDValue();
8917    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
8918        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
8919      return SDValue();
8920    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
8921      return SDValue();
8922
8923    // Record which element was extracted.
8924    ExtractedElements |=
8925      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
8926
8927    Uses.push_back(Extract);
8928  }
8929
8930  // If not all the elements were used, this may not be worthwhile.
8931  if (ExtractedElements != 15)
8932    return SDValue();
8933
8934  // Ok, we've now decided to do the transformation.
8935  DebugLoc dl = InputVector.getDebugLoc();
8936
8937  // Store the value to a temporary stack slot.
8938  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
8939  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr, NULL, 0,
8940                            false, false, 0);
8941
8942  // Replace each use (extract) with a load of the appropriate element.
8943  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
8944       UE = Uses.end(); UI != UE; ++UI) {
8945    SDNode *Extract = *UI;
8946
8947    // Compute the element's address.
8948    SDValue Idx = Extract->getOperand(1);
8949    unsigned EltSize =
8950        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
8951    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
8952    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
8953
8954    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), OffsetVal, StackPtr);
8955
8956    // Load the scalar.
8957    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch, ScalarAddr,
8958                          NULL, 0, false, false, 0);
8959
8960    // Replace the exact with the load.
8961    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
8962  }
8963
8964  // The replacement was made in place; don't return anything.
8965  return SDValue();
8966}
8967
8968/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
8969static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
8970                                    const X86Subtarget *Subtarget) {
8971  DebugLoc DL = N->getDebugLoc();
8972  SDValue Cond = N->getOperand(0);
8973  // Get the LHS/RHS of the select.
8974  SDValue LHS = N->getOperand(1);
8975  SDValue RHS = N->getOperand(2);
8976
8977  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
8978  // instructions match the semantics of the common C idiom x<y?x:y but not
8979  // x<=y?x:y, because of how they handle negative zero (which can be
8980  // ignored in unsafe-math mode).
8981  if (Subtarget->hasSSE2() &&
8982      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
8983      Cond.getOpcode() == ISD::SETCC) {
8984    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
8985
8986    unsigned Opcode = 0;
8987    // Check for x CC y ? x : y.
8988    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
8989        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
8990      switch (CC) {
8991      default: break;
8992      case ISD::SETULT:
8993        // Converting this to a min would handle NaNs incorrectly, and swapping
8994        // the operands would cause it to handle comparisons between positive
8995        // and negative zero incorrectly.
8996        if (!FiniteOnlyFPMath() &&
8997            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))) {
8998          if (!UnsafeFPMath &&
8999              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
9000            break;
9001          std::swap(LHS, RHS);
9002        }
9003        Opcode = X86ISD::FMIN;
9004        break;
9005      case ISD::SETOLE:
9006        // Converting this to a min would handle comparisons between positive
9007        // and negative zero incorrectly.
9008        if (!UnsafeFPMath &&
9009            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
9010          break;
9011        Opcode = X86ISD::FMIN;
9012        break;
9013      case ISD::SETULE:
9014        // Converting this to a min would handle both negative zeros and NaNs
9015        // incorrectly, but we can swap the operands to fix both.
9016        std::swap(LHS, RHS);
9017      case ISD::SETOLT:
9018      case ISD::SETLT:
9019      case ISD::SETLE:
9020        Opcode = X86ISD::FMIN;
9021        break;
9022
9023      case ISD::SETOGE:
9024        // Converting this to a max would handle comparisons between positive
9025        // and negative zero incorrectly.
9026        if (!UnsafeFPMath &&
9027            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(LHS))
9028          break;
9029        Opcode = X86ISD::FMAX;
9030        break;
9031      case ISD::SETUGT:
9032        // Converting this to a max would handle NaNs incorrectly, and swapping
9033        // the operands would cause it to handle comparisons between positive
9034        // and negative zero incorrectly.
9035        if (!FiniteOnlyFPMath() &&
9036            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))) {
9037          if (!UnsafeFPMath &&
9038              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
9039            break;
9040          std::swap(LHS, RHS);
9041        }
9042        Opcode = X86ISD::FMAX;
9043        break;
9044      case ISD::SETUGE:
9045        // Converting this to a max would handle both negative zeros and NaNs
9046        // incorrectly, but we can swap the operands to fix both.
9047        std::swap(LHS, RHS);
9048      case ISD::SETOGT:
9049      case ISD::SETGT:
9050      case ISD::SETGE:
9051        Opcode = X86ISD::FMAX;
9052        break;
9053      }
9054    // Check for x CC y ? y : x -- a min/max with reversed arms.
9055    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
9056               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
9057      switch (CC) {
9058      default: break;
9059      case ISD::SETOGE:
9060        // Converting this to a min would handle comparisons between positive
9061        // and negative zero incorrectly, and swapping the operands would
9062        // cause it to handle NaNs incorrectly.
9063        if (!UnsafeFPMath &&
9064            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
9065          if (!FiniteOnlyFPMath() &&
9066              (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
9067            break;
9068          std::swap(LHS, RHS);
9069        }
9070        Opcode = X86ISD::FMIN;
9071        break;
9072      case ISD::SETUGT:
9073        // Converting this to a min would handle NaNs incorrectly.
9074        if (!UnsafeFPMath &&
9075            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
9076          break;
9077        Opcode = X86ISD::FMIN;
9078        break;
9079      case ISD::SETUGE:
9080        // Converting this to a min would handle both negative zeros and NaNs
9081        // incorrectly, but we can swap the operands to fix both.
9082        std::swap(LHS, RHS);
9083      case ISD::SETOGT:
9084      case ISD::SETGT:
9085      case ISD::SETGE:
9086        Opcode = X86ISD::FMIN;
9087        break;
9088
9089      case ISD::SETULT:
9090        // Converting this to a max would handle NaNs incorrectly.
9091        if (!FiniteOnlyFPMath() &&
9092            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
9093          break;
9094        Opcode = X86ISD::FMAX;
9095        break;
9096      case ISD::SETOLE:
9097        // Converting this to a max would handle comparisons between positive
9098        // and negative zero incorrectly, and swapping the operands would
9099        // cause it to handle NaNs incorrectly.
9100        if (!UnsafeFPMath &&
9101            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
9102          if (!FiniteOnlyFPMath() &&
9103              (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
9104            break;
9105          std::swap(LHS, RHS);
9106        }
9107        Opcode = X86ISD::FMAX;
9108        break;
9109      case ISD::SETULE:
9110        // Converting this to a max would handle both negative zeros and NaNs
9111        // incorrectly, but we can swap the operands to fix both.
9112        std::swap(LHS, RHS);
9113      case ISD::SETOLT:
9114      case ISD::SETLT:
9115      case ISD::SETLE:
9116        Opcode = X86ISD::FMAX;
9117        break;
9118      }
9119    }
9120
9121    if (Opcode)
9122      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
9123  }
9124
9125  // If this is a select between two integer constants, try to do some
9126  // optimizations.
9127  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
9128    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
9129      // Don't do this for crazy integer types.
9130      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
9131        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
9132        // so that TrueC (the true value) is larger than FalseC.
9133        bool NeedsCondInvert = false;
9134
9135        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
9136            // Efficiently invertible.
9137            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
9138             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
9139              isa<ConstantSDNode>(Cond.getOperand(1))))) {
9140          NeedsCondInvert = true;
9141          std::swap(TrueC, FalseC);
9142        }
9143
9144        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
9145        if (FalseC->getAPIntValue() == 0 &&
9146            TrueC->getAPIntValue().isPowerOf2()) {
9147          if (NeedsCondInvert) // Invert the condition if needed.
9148            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
9149                               DAG.getConstant(1, Cond.getValueType()));
9150
9151          // Zero extend the condition if needed.
9152          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
9153
9154          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
9155          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
9156                             DAG.getConstant(ShAmt, MVT::i8));
9157        }
9158
9159        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
9160        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
9161          if (NeedsCondInvert) // Invert the condition if needed.
9162            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
9163                               DAG.getConstant(1, Cond.getValueType()));
9164
9165          // Zero extend the condition if needed.
9166          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
9167                             FalseC->getValueType(0), Cond);
9168          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9169                             SDValue(FalseC, 0));
9170        }
9171
9172        // Optimize cases that will turn into an LEA instruction.  This requires
9173        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
9174        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
9175          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
9176          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
9177
9178          bool isFastMultiplier = false;
9179          if (Diff < 10) {
9180            switch ((unsigned char)Diff) {
9181              default: break;
9182              case 1:  // result = add base, cond
9183              case 2:  // result = lea base(    , cond*2)
9184              case 3:  // result = lea base(cond, cond*2)
9185              case 4:  // result = lea base(    , cond*4)
9186              case 5:  // result = lea base(cond, cond*4)
9187              case 8:  // result = lea base(    , cond*8)
9188              case 9:  // result = lea base(cond, cond*8)
9189                isFastMultiplier = true;
9190                break;
9191            }
9192          }
9193
9194          if (isFastMultiplier) {
9195            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
9196            if (NeedsCondInvert) // Invert the condition if needed.
9197              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
9198                                 DAG.getConstant(1, Cond.getValueType()));
9199
9200            // Zero extend the condition if needed.
9201            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
9202                               Cond);
9203            // Scale the condition by the difference.
9204            if (Diff != 1)
9205              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
9206                                 DAG.getConstant(Diff, Cond.getValueType()));
9207
9208            // Add the base if non-zero.
9209            if (FalseC->getAPIntValue() != 0)
9210              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9211                                 SDValue(FalseC, 0));
9212            return Cond;
9213          }
9214        }
9215      }
9216  }
9217
9218  return SDValue();
9219}
9220
9221/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
9222static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
9223                                  TargetLowering::DAGCombinerInfo &DCI) {
9224  DebugLoc DL = N->getDebugLoc();
9225
9226  // If the flag operand isn't dead, don't touch this CMOV.
9227  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
9228    return SDValue();
9229
9230  // If this is a select between two integer constants, try to do some
9231  // optimizations.  Note that the operands are ordered the opposite of SELECT
9232  // operands.
9233  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
9234    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
9235      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
9236      // larger than FalseC (the false value).
9237      X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
9238
9239      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
9240        CC = X86::GetOppositeBranchCondition(CC);
9241        std::swap(TrueC, FalseC);
9242      }
9243
9244      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
9245      // This is efficient for any integer data type (including i8/i16) and
9246      // shift amount.
9247      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
9248        SDValue Cond = N->getOperand(3);
9249        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9250                           DAG.getConstant(CC, MVT::i8), Cond);
9251
9252        // Zero extend the condition if needed.
9253        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
9254
9255        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
9256        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
9257                           DAG.getConstant(ShAmt, MVT::i8));
9258        if (N->getNumValues() == 2)  // Dead flag value?
9259          return DCI.CombineTo(N, Cond, SDValue());
9260        return Cond;
9261      }
9262
9263      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
9264      // for any integer data type, including i8/i16.
9265      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
9266        SDValue Cond = N->getOperand(3);
9267        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9268                           DAG.getConstant(CC, MVT::i8), Cond);
9269
9270        // Zero extend the condition if needed.
9271        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
9272                           FalseC->getValueType(0), Cond);
9273        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9274                           SDValue(FalseC, 0));
9275
9276        if (N->getNumValues() == 2)  // Dead flag value?
9277          return DCI.CombineTo(N, Cond, SDValue());
9278        return Cond;
9279      }
9280
9281      // Optimize cases that will turn into an LEA instruction.  This requires
9282      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
9283      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
9284        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
9285        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
9286
9287        bool isFastMultiplier = false;
9288        if (Diff < 10) {
9289          switch ((unsigned char)Diff) {
9290          default: break;
9291          case 1:  // result = add base, cond
9292          case 2:  // result = lea base(    , cond*2)
9293          case 3:  // result = lea base(cond, cond*2)
9294          case 4:  // result = lea base(    , cond*4)
9295          case 5:  // result = lea base(cond, cond*4)
9296          case 8:  // result = lea base(    , cond*8)
9297          case 9:  // result = lea base(cond, cond*8)
9298            isFastMultiplier = true;
9299            break;
9300          }
9301        }
9302
9303        if (isFastMultiplier) {
9304          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
9305          SDValue Cond = N->getOperand(3);
9306          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9307                             DAG.getConstant(CC, MVT::i8), Cond);
9308          // Zero extend the condition if needed.
9309          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
9310                             Cond);
9311          // Scale the condition by the difference.
9312          if (Diff != 1)
9313            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
9314                               DAG.getConstant(Diff, Cond.getValueType()));
9315
9316          // Add the base if non-zero.
9317          if (FalseC->getAPIntValue() != 0)
9318            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9319                               SDValue(FalseC, 0));
9320          if (N->getNumValues() == 2)  // Dead flag value?
9321            return DCI.CombineTo(N, Cond, SDValue());
9322          return Cond;
9323        }
9324      }
9325    }
9326  }
9327  return SDValue();
9328}
9329
9330
9331/// PerformMulCombine - Optimize a single multiply with constant into two
9332/// in order to implement it with two cheaper instructions, e.g.
9333/// LEA + SHL, LEA + LEA.
9334static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
9335                                 TargetLowering::DAGCombinerInfo &DCI) {
9336  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
9337    return SDValue();
9338
9339  EVT VT = N->getValueType(0);
9340  if (VT != MVT::i64)
9341    return SDValue();
9342
9343  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
9344  if (!C)
9345    return SDValue();
9346  uint64_t MulAmt = C->getZExtValue();
9347  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
9348    return SDValue();
9349
9350  uint64_t MulAmt1 = 0;
9351  uint64_t MulAmt2 = 0;
9352  if ((MulAmt % 9) == 0) {
9353    MulAmt1 = 9;
9354    MulAmt2 = MulAmt / 9;
9355  } else if ((MulAmt % 5) == 0) {
9356    MulAmt1 = 5;
9357    MulAmt2 = MulAmt / 5;
9358  } else if ((MulAmt % 3) == 0) {
9359    MulAmt1 = 3;
9360    MulAmt2 = MulAmt / 3;
9361  }
9362  if (MulAmt2 &&
9363      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
9364    DebugLoc DL = N->getDebugLoc();
9365
9366    if (isPowerOf2_64(MulAmt2) &&
9367        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
9368      // If second multiplifer is pow2, issue it first. We want the multiply by
9369      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
9370      // is an add.
9371      std::swap(MulAmt1, MulAmt2);
9372
9373    SDValue NewMul;
9374    if (isPowerOf2_64(MulAmt1))
9375      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
9376                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
9377    else
9378      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
9379                           DAG.getConstant(MulAmt1, VT));
9380
9381    if (isPowerOf2_64(MulAmt2))
9382      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
9383                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
9384    else
9385      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
9386                           DAG.getConstant(MulAmt2, VT));
9387
9388    // Do not add new nodes to DAG combiner worklist.
9389    DCI.CombineTo(N, NewMul, false);
9390  }
9391  return SDValue();
9392}
9393
9394static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
9395  SDValue N0 = N->getOperand(0);
9396  SDValue N1 = N->getOperand(1);
9397  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
9398  EVT VT = N0.getValueType();
9399
9400  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
9401  // since the result of setcc_c is all zero's or all ones.
9402  if (N1C && N0.getOpcode() == ISD::AND &&
9403      N0.getOperand(1).getOpcode() == ISD::Constant) {
9404    SDValue N00 = N0.getOperand(0);
9405    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
9406        ((N00.getOpcode() == ISD::ANY_EXTEND ||
9407          N00.getOpcode() == ISD::ZERO_EXTEND) &&
9408         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
9409      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
9410      APInt ShAmt = N1C->getAPIntValue();
9411      Mask = Mask.shl(ShAmt);
9412      if (Mask != 0)
9413        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
9414                           N00, DAG.getConstant(Mask, VT));
9415    }
9416  }
9417
9418  return SDValue();
9419}
9420
9421/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
9422///                       when possible.
9423static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
9424                                   const X86Subtarget *Subtarget) {
9425  EVT VT = N->getValueType(0);
9426  if (!VT.isVector() && VT.isInteger() &&
9427      N->getOpcode() == ISD::SHL)
9428    return PerformSHLCombine(N, DAG);
9429
9430  // On X86 with SSE2 support, we can transform this to a vector shift if
9431  // all elements are shifted by the same amount.  We can't do this in legalize
9432  // because the a constant vector is typically transformed to a constant pool
9433  // so we have no knowledge of the shift amount.
9434  if (!Subtarget->hasSSE2())
9435    return SDValue();
9436
9437  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
9438    return SDValue();
9439
9440  SDValue ShAmtOp = N->getOperand(1);
9441  EVT EltVT = VT.getVectorElementType();
9442  DebugLoc DL = N->getDebugLoc();
9443  SDValue BaseShAmt = SDValue();
9444  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
9445    unsigned NumElts = VT.getVectorNumElements();
9446    unsigned i = 0;
9447    for (; i != NumElts; ++i) {
9448      SDValue Arg = ShAmtOp.getOperand(i);
9449      if (Arg.getOpcode() == ISD::UNDEF) continue;
9450      BaseShAmt = Arg;
9451      break;
9452    }
9453    for (; i != NumElts; ++i) {
9454      SDValue Arg = ShAmtOp.getOperand(i);
9455      if (Arg.getOpcode() == ISD::UNDEF) continue;
9456      if (Arg != BaseShAmt) {
9457        return SDValue();
9458      }
9459    }
9460  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
9461             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
9462    SDValue InVec = ShAmtOp.getOperand(0);
9463    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
9464      unsigned NumElts = InVec.getValueType().getVectorNumElements();
9465      unsigned i = 0;
9466      for (; i != NumElts; ++i) {
9467        SDValue Arg = InVec.getOperand(i);
9468        if (Arg.getOpcode() == ISD::UNDEF) continue;
9469        BaseShAmt = Arg;
9470        break;
9471      }
9472    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
9473       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
9474         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
9475         if (C->getZExtValue() == SplatIdx)
9476           BaseShAmt = InVec.getOperand(1);
9477       }
9478    }
9479    if (BaseShAmt.getNode() == 0)
9480      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
9481                              DAG.getIntPtrConstant(0));
9482  } else
9483    return SDValue();
9484
9485  // The shift amount is an i32.
9486  if (EltVT.bitsGT(MVT::i32))
9487    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
9488  else if (EltVT.bitsLT(MVT::i32))
9489    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
9490
9491  // The shift amount is identical so we can do a vector shift.
9492  SDValue  ValOp = N->getOperand(0);
9493  switch (N->getOpcode()) {
9494  default:
9495    llvm_unreachable("Unknown shift opcode!");
9496    break;
9497  case ISD::SHL:
9498    if (VT == MVT::v2i64)
9499      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9500                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9501                         ValOp, BaseShAmt);
9502    if (VT == MVT::v4i32)
9503      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9504                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
9505                         ValOp, BaseShAmt);
9506    if (VT == MVT::v8i16)
9507      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9508                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
9509                         ValOp, BaseShAmt);
9510    break;
9511  case ISD::SRA:
9512    if (VT == MVT::v4i32)
9513      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9514                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
9515                         ValOp, BaseShAmt);
9516    if (VT == MVT::v8i16)
9517      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9518                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
9519                         ValOp, BaseShAmt);
9520    break;
9521  case ISD::SRL:
9522    if (VT == MVT::v2i64)
9523      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9524                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9525                         ValOp, BaseShAmt);
9526    if (VT == MVT::v4i32)
9527      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9528                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
9529                         ValOp, BaseShAmt);
9530    if (VT ==  MVT::v8i16)
9531      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9532                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
9533                         ValOp, BaseShAmt);
9534    break;
9535  }
9536  return SDValue();
9537}
9538
9539static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
9540                                const X86Subtarget *Subtarget) {
9541  EVT VT = N->getValueType(0);
9542  if (VT != MVT::i64 || !Subtarget->is64Bit())
9543    return SDValue();
9544
9545  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
9546  SDValue N0 = N->getOperand(0);
9547  SDValue N1 = N->getOperand(1);
9548  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
9549    std::swap(N0, N1);
9550  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
9551    return SDValue();
9552
9553  SDValue ShAmt0 = N0.getOperand(1);
9554  if (ShAmt0.getValueType() != MVT::i8)
9555    return SDValue();
9556  SDValue ShAmt1 = N1.getOperand(1);
9557  if (ShAmt1.getValueType() != MVT::i8)
9558    return SDValue();
9559  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
9560    ShAmt0 = ShAmt0.getOperand(0);
9561  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
9562    ShAmt1 = ShAmt1.getOperand(0);
9563
9564  DebugLoc DL = N->getDebugLoc();
9565  unsigned Opc = X86ISD::SHLD;
9566  SDValue Op0 = N0.getOperand(0);
9567  SDValue Op1 = N1.getOperand(0);
9568  if (ShAmt0.getOpcode() == ISD::SUB) {
9569    Opc = X86ISD::SHRD;
9570    std::swap(Op0, Op1);
9571    std::swap(ShAmt0, ShAmt1);
9572  }
9573
9574  if (ShAmt1.getOpcode() == ISD::SUB) {
9575    SDValue Sum = ShAmt1.getOperand(0);
9576    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
9577      if (SumC->getSExtValue() == 64 &&
9578          ShAmt1.getOperand(1) == ShAmt0)
9579        return DAG.getNode(Opc, DL, VT,
9580                           Op0, Op1,
9581                           DAG.getNode(ISD::TRUNCATE, DL,
9582                                       MVT::i8, ShAmt0));
9583    }
9584  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
9585    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
9586    if (ShAmt0C &&
9587        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == 64)
9588      return DAG.getNode(Opc, DL, VT,
9589                         N0.getOperand(0), N1.getOperand(0),
9590                         DAG.getNode(ISD::TRUNCATE, DL,
9591                                       MVT::i8, ShAmt0));
9592  }
9593
9594  return SDValue();
9595}
9596
9597/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
9598static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
9599                                   const X86Subtarget *Subtarget) {
9600  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
9601  // the FP state in cases where an emms may be missing.
9602  // A preferable solution to the general problem is to figure out the right
9603  // places to insert EMMS.  This qualifies as a quick hack.
9604
9605  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
9606  StoreSDNode *St = cast<StoreSDNode>(N);
9607  EVT VT = St->getValue().getValueType();
9608  if (VT.getSizeInBits() != 64)
9609    return SDValue();
9610
9611  const Function *F = DAG.getMachineFunction().getFunction();
9612  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
9613  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
9614    && Subtarget->hasSSE2();
9615  if ((VT.isVector() ||
9616       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
9617      isa<LoadSDNode>(St->getValue()) &&
9618      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
9619      St->getChain().hasOneUse() && !St->isVolatile()) {
9620    SDNode* LdVal = St->getValue().getNode();
9621    LoadSDNode *Ld = 0;
9622    int TokenFactorIndex = -1;
9623    SmallVector<SDValue, 8> Ops;
9624    SDNode* ChainVal = St->getChain().getNode();
9625    // Must be a store of a load.  We currently handle two cases:  the load
9626    // is a direct child, and it's under an intervening TokenFactor.  It is
9627    // possible to dig deeper under nested TokenFactors.
9628    if (ChainVal == LdVal)
9629      Ld = cast<LoadSDNode>(St->getChain());
9630    else if (St->getValue().hasOneUse() &&
9631             ChainVal->getOpcode() == ISD::TokenFactor) {
9632      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
9633        if (ChainVal->getOperand(i).getNode() == LdVal) {
9634          TokenFactorIndex = i;
9635          Ld = cast<LoadSDNode>(St->getValue());
9636        } else
9637          Ops.push_back(ChainVal->getOperand(i));
9638      }
9639    }
9640
9641    if (!Ld || !ISD::isNormalLoad(Ld))
9642      return SDValue();
9643
9644    // If this is not the MMX case, i.e. we are just turning i64 load/store
9645    // into f64 load/store, avoid the transformation if there are multiple
9646    // uses of the loaded value.
9647    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
9648      return SDValue();
9649
9650    DebugLoc LdDL = Ld->getDebugLoc();
9651    DebugLoc StDL = N->getDebugLoc();
9652    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
9653    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
9654    // pair instead.
9655    if (Subtarget->is64Bit() || F64IsLegal) {
9656      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
9657      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(),
9658                                  Ld->getBasePtr(), Ld->getSrcValue(),
9659                                  Ld->getSrcValueOffset(), Ld->isVolatile(),
9660                                  Ld->isNonTemporal(), Ld->getAlignment());
9661      SDValue NewChain = NewLd.getValue(1);
9662      if (TokenFactorIndex != -1) {
9663        Ops.push_back(NewChain);
9664        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
9665                               Ops.size());
9666      }
9667      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
9668                          St->getSrcValue(), St->getSrcValueOffset(),
9669                          St->isVolatile(), St->isNonTemporal(),
9670                          St->getAlignment());
9671    }
9672
9673    // Otherwise, lower to two pairs of 32-bit loads / stores.
9674    SDValue LoAddr = Ld->getBasePtr();
9675    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
9676                                 DAG.getConstant(4, MVT::i32));
9677
9678    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
9679                               Ld->getSrcValue(), Ld->getSrcValueOffset(),
9680                               Ld->isVolatile(), Ld->isNonTemporal(),
9681                               Ld->getAlignment());
9682    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
9683                               Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
9684                               Ld->isVolatile(), Ld->isNonTemporal(),
9685                               MinAlign(Ld->getAlignment(), 4));
9686
9687    SDValue NewChain = LoLd.getValue(1);
9688    if (TokenFactorIndex != -1) {
9689      Ops.push_back(LoLd);
9690      Ops.push_back(HiLd);
9691      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
9692                             Ops.size());
9693    }
9694
9695    LoAddr = St->getBasePtr();
9696    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
9697                         DAG.getConstant(4, MVT::i32));
9698
9699    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
9700                                St->getSrcValue(), St->getSrcValueOffset(),
9701                                St->isVolatile(), St->isNonTemporal(),
9702                                St->getAlignment());
9703    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
9704                                St->getSrcValue(),
9705                                St->getSrcValueOffset() + 4,
9706                                St->isVolatile(),
9707                                St->isNonTemporal(),
9708                                MinAlign(St->getAlignment(), 4));
9709    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
9710  }
9711  return SDValue();
9712}
9713
9714/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
9715/// X86ISD::FXOR nodes.
9716static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
9717  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
9718  // F[X]OR(0.0, x) -> x
9719  // F[X]OR(x, 0.0) -> x
9720  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
9721    if (C->getValueAPF().isPosZero())
9722      return N->getOperand(1);
9723  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
9724    if (C->getValueAPF().isPosZero())
9725      return N->getOperand(0);
9726  return SDValue();
9727}
9728
9729/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
9730static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
9731  // FAND(0.0, x) -> 0.0
9732  // FAND(x, 0.0) -> 0.0
9733  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
9734    if (C->getValueAPF().isPosZero())
9735      return N->getOperand(0);
9736  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
9737    if (C->getValueAPF().isPosZero())
9738      return N->getOperand(1);
9739  return SDValue();
9740}
9741
9742static SDValue PerformBTCombine(SDNode *N,
9743                                SelectionDAG &DAG,
9744                                TargetLowering::DAGCombinerInfo &DCI) {
9745  // BT ignores high bits in the bit index operand.
9746  SDValue Op1 = N->getOperand(1);
9747  if (Op1.hasOneUse()) {
9748    unsigned BitWidth = Op1.getValueSizeInBits();
9749    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
9750    APInt KnownZero, KnownOne;
9751    TargetLowering::TargetLoweringOpt TLO(DAG);
9752    TargetLowering &TLI = DAG.getTargetLoweringInfo();
9753    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
9754        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
9755      DCI.CommitTargetLoweringOpt(TLO);
9756  }
9757  return SDValue();
9758}
9759
9760static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
9761  SDValue Op = N->getOperand(0);
9762  if (Op.getOpcode() == ISD::BIT_CONVERT)
9763    Op = Op.getOperand(0);
9764  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
9765  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
9766      VT.getVectorElementType().getSizeInBits() ==
9767      OpVT.getVectorElementType().getSizeInBits()) {
9768    return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
9769  }
9770  return SDValue();
9771}
9772
9773// On X86 and X86-64, atomic operations are lowered to locked instructions.
9774// Locked instructions, in turn, have implicit fence semantics (all memory
9775// operations are flushed before issuing the locked instruction, and the
9776// are not buffered), so we can fold away the common pattern of
9777// fence-atomic-fence.
9778static SDValue PerformMEMBARRIERCombine(SDNode* N, SelectionDAG &DAG) {
9779  SDValue atomic = N->getOperand(0);
9780  switch (atomic.getOpcode()) {
9781    case ISD::ATOMIC_CMP_SWAP:
9782    case ISD::ATOMIC_SWAP:
9783    case ISD::ATOMIC_LOAD_ADD:
9784    case ISD::ATOMIC_LOAD_SUB:
9785    case ISD::ATOMIC_LOAD_AND:
9786    case ISD::ATOMIC_LOAD_OR:
9787    case ISD::ATOMIC_LOAD_XOR:
9788    case ISD::ATOMIC_LOAD_NAND:
9789    case ISD::ATOMIC_LOAD_MIN:
9790    case ISD::ATOMIC_LOAD_MAX:
9791    case ISD::ATOMIC_LOAD_UMIN:
9792    case ISD::ATOMIC_LOAD_UMAX:
9793      break;
9794    default:
9795      return SDValue();
9796  }
9797
9798  SDValue fence = atomic.getOperand(0);
9799  if (fence.getOpcode() != ISD::MEMBARRIER)
9800    return SDValue();
9801
9802  switch (atomic.getOpcode()) {
9803    case ISD::ATOMIC_CMP_SWAP:
9804      return DAG.UpdateNodeOperands(atomic, fence.getOperand(0),
9805                                    atomic.getOperand(1), atomic.getOperand(2),
9806                                    atomic.getOperand(3));
9807    case ISD::ATOMIC_SWAP:
9808    case ISD::ATOMIC_LOAD_ADD:
9809    case ISD::ATOMIC_LOAD_SUB:
9810    case ISD::ATOMIC_LOAD_AND:
9811    case ISD::ATOMIC_LOAD_OR:
9812    case ISD::ATOMIC_LOAD_XOR:
9813    case ISD::ATOMIC_LOAD_NAND:
9814    case ISD::ATOMIC_LOAD_MIN:
9815    case ISD::ATOMIC_LOAD_MAX:
9816    case ISD::ATOMIC_LOAD_UMIN:
9817    case ISD::ATOMIC_LOAD_UMAX:
9818      return DAG.UpdateNodeOperands(atomic, fence.getOperand(0),
9819                                    atomic.getOperand(1), atomic.getOperand(2));
9820    default:
9821      return SDValue();
9822  }
9823}
9824
9825static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
9826  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
9827  //           (and (i32 x86isd::setcc_carry), 1)
9828  // This eliminates the zext. This transformation is necessary because
9829  // ISD::SETCC is always legalized to i8.
9830  DebugLoc dl = N->getDebugLoc();
9831  SDValue N0 = N->getOperand(0);
9832  EVT VT = N->getValueType(0);
9833  if (N0.getOpcode() == ISD::AND &&
9834      N0.hasOneUse() &&
9835      N0.getOperand(0).hasOneUse()) {
9836    SDValue N00 = N0.getOperand(0);
9837    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
9838      return SDValue();
9839    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
9840    if (!C || C->getZExtValue() != 1)
9841      return SDValue();
9842    return DAG.getNode(ISD::AND, dl, VT,
9843                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
9844                                   N00.getOperand(0), N00.getOperand(1)),
9845                       DAG.getConstant(1, VT));
9846  }
9847
9848  return SDValue();
9849}
9850
9851SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
9852                                             DAGCombinerInfo &DCI) const {
9853  SelectionDAG &DAG = DCI.DAG;
9854  switch (N->getOpcode()) {
9855  default: break;
9856  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
9857  case ISD::EXTRACT_VECTOR_ELT:
9858                        return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
9859  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
9860  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
9861  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
9862  case ISD::SHL:
9863  case ISD::SRA:
9864  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
9865  case ISD::OR:             return PerformOrCombine(N, DAG, Subtarget);
9866  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
9867  case X86ISD::FXOR:
9868  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
9869  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
9870  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
9871  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
9872  case ISD::MEMBARRIER:     return PerformMEMBARRIERCombine(N, DAG);
9873  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
9874  }
9875
9876  return SDValue();
9877}
9878
9879//===----------------------------------------------------------------------===//
9880//                           X86 Inline Assembly Support
9881//===----------------------------------------------------------------------===//
9882
9883static bool LowerToBSwap(CallInst *CI) {
9884  // FIXME: this should verify that we are targetting a 486 or better.  If not,
9885  // we will turn this bswap into something that will be lowered to logical ops
9886  // instead of emitting the bswap asm.  For now, we don't support 486 or lower
9887  // so don't worry about this.
9888
9889  // Verify this is a simple bswap.
9890  if (CI->getNumOperands() != 2 ||
9891      CI->getType() != CI->getOperand(1)->getType() ||
9892      !CI->getType()->isIntegerTy())
9893    return false;
9894
9895  const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
9896  if (!Ty || Ty->getBitWidth() % 16 != 0)
9897    return false;
9898
9899  // Okay, we can do this xform, do so now.
9900  const Type *Tys[] = { Ty };
9901  Module *M = CI->getParent()->getParent()->getParent();
9902  Constant *Int = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
9903
9904  Value *Op = CI->getOperand(1);
9905  Op = CallInst::Create(Int, Op, CI->getName(), CI);
9906
9907  CI->replaceAllUsesWith(Op);
9908  CI->eraseFromParent();
9909  return true;
9910}
9911
9912bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
9913  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
9914  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
9915
9916  std::string AsmStr = IA->getAsmString();
9917
9918  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
9919  SmallVector<StringRef, 4> AsmPieces;
9920  SplitString(AsmStr, AsmPieces, "\n");  // ; as separator?
9921
9922  switch (AsmPieces.size()) {
9923  default: return false;
9924  case 1:
9925    AsmStr = AsmPieces[0];
9926    AsmPieces.clear();
9927    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
9928
9929    // bswap $0
9930    if (AsmPieces.size() == 2 &&
9931        (AsmPieces[0] == "bswap" ||
9932         AsmPieces[0] == "bswapq" ||
9933         AsmPieces[0] == "bswapl") &&
9934        (AsmPieces[1] == "$0" ||
9935         AsmPieces[1] == "${0:q}")) {
9936      // No need to check constraints, nothing other than the equivalent of
9937      // "=r,0" would be valid here.
9938      return LowerToBSwap(CI);
9939    }
9940    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
9941    if (CI->getType()->isIntegerTy(16) &&
9942        AsmPieces.size() == 3 &&
9943        (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
9944        AsmPieces[1] == "$$8," &&
9945        AsmPieces[2] == "${0:w}" &&
9946        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
9947      AsmPieces.clear();
9948      const std::string &Constraints = IA->getConstraintString();
9949      SplitString(StringRef(Constraints).substr(5), AsmPieces, ",");
9950      std::sort(AsmPieces.begin(), AsmPieces.end());
9951      if (AsmPieces.size() == 4 &&
9952          AsmPieces[0] == "~{cc}" &&
9953          AsmPieces[1] == "~{dirflag}" &&
9954          AsmPieces[2] == "~{flags}" &&
9955          AsmPieces[3] == "~{fpsr}") {
9956        return LowerToBSwap(CI);
9957      }
9958    }
9959    break;
9960  case 3:
9961    if (CI->getType()->isIntegerTy(64) &&
9962        Constraints.size() >= 2 &&
9963        Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
9964        Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
9965      // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
9966      SmallVector<StringRef, 4> Words;
9967      SplitString(AsmPieces[0], Words, " \t");
9968      if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
9969        Words.clear();
9970        SplitString(AsmPieces[1], Words, " \t");
9971        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
9972          Words.clear();
9973          SplitString(AsmPieces[2], Words, " \t,");
9974          if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
9975              Words[2] == "%edx") {
9976            return LowerToBSwap(CI);
9977          }
9978        }
9979      }
9980    }
9981    break;
9982  }
9983  return false;
9984}
9985
9986
9987
9988/// getConstraintType - Given a constraint letter, return the type of
9989/// constraint it is for this target.
9990X86TargetLowering::ConstraintType
9991X86TargetLowering::getConstraintType(const std::string &Constraint) const {
9992  if (Constraint.size() == 1) {
9993    switch (Constraint[0]) {
9994    case 'A':
9995      return C_Register;
9996    case 'f':
9997    case 'r':
9998    case 'R':
9999    case 'l':
10000    case 'q':
10001    case 'Q':
10002    case 'x':
10003    case 'y':
10004    case 'Y':
10005      return C_RegisterClass;
10006    case 'e':
10007    case 'Z':
10008      return C_Other;
10009    default:
10010      break;
10011    }
10012  }
10013  return TargetLowering::getConstraintType(Constraint);
10014}
10015
10016/// LowerXConstraint - try to replace an X constraint, which matches anything,
10017/// with another that has more specific requirements based on the type of the
10018/// corresponding operand.
10019const char *X86TargetLowering::
10020LowerXConstraint(EVT ConstraintVT) const {
10021  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
10022  // 'f' like normal targets.
10023  if (ConstraintVT.isFloatingPoint()) {
10024    if (Subtarget->hasSSE2())
10025      return "Y";
10026    if (Subtarget->hasSSE1())
10027      return "x";
10028  }
10029
10030  return TargetLowering::LowerXConstraint(ConstraintVT);
10031}
10032
10033/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
10034/// vector.  If it is invalid, don't add anything to Ops.
10035void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
10036                                                     char Constraint,
10037                                                     bool hasMemory,
10038                                                     std::vector<SDValue>&Ops,
10039                                                     SelectionDAG &DAG) const {
10040  SDValue Result(0, 0);
10041
10042  switch (Constraint) {
10043  default: break;
10044  case 'I':
10045    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10046      if (C->getZExtValue() <= 31) {
10047        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10048        break;
10049      }
10050    }
10051    return;
10052  case 'J':
10053    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10054      if (C->getZExtValue() <= 63) {
10055        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10056        break;
10057      }
10058    }
10059    return;
10060  case 'K':
10061    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10062      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
10063        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10064        break;
10065      }
10066    }
10067    return;
10068  case 'N':
10069    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10070      if (C->getZExtValue() <= 255) {
10071        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10072        break;
10073      }
10074    }
10075    return;
10076  case 'e': {
10077    // 32-bit signed value
10078    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10079      const ConstantInt *CI = C->getConstantIntValue();
10080      if (CI->isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
10081                                  C->getSExtValue())) {
10082        // Widen to 64 bits here to get it sign extended.
10083        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
10084        break;
10085      }
10086    // FIXME gcc accepts some relocatable values here too, but only in certain
10087    // memory models; it's complicated.
10088    }
10089    return;
10090  }
10091  case 'Z': {
10092    // 32-bit unsigned value
10093    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10094      const ConstantInt *CI = C->getConstantIntValue();
10095      if (CI->isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
10096                                  C->getZExtValue())) {
10097        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10098        break;
10099      }
10100    }
10101    // FIXME gcc accepts some relocatable values here too, but only in certain
10102    // memory models; it's complicated.
10103    return;
10104  }
10105  case 'i': {
10106    // Literal immediates are always ok.
10107    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
10108      // Widen to 64 bits here to get it sign extended.
10109      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
10110      break;
10111    }
10112
10113    // If we are in non-pic codegen mode, we allow the address of a global (with
10114    // an optional displacement) to be used with 'i'.
10115    GlobalAddressSDNode *GA = 0;
10116    int64_t Offset = 0;
10117
10118    // Match either (GA), (GA+C), (GA+C1+C2), etc.
10119    while (1) {
10120      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
10121        Offset += GA->getOffset();
10122        break;
10123      } else if (Op.getOpcode() == ISD::ADD) {
10124        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
10125          Offset += C->getZExtValue();
10126          Op = Op.getOperand(0);
10127          continue;
10128        }
10129      } else if (Op.getOpcode() == ISD::SUB) {
10130        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
10131          Offset += -C->getZExtValue();
10132          Op = Op.getOperand(0);
10133          continue;
10134        }
10135      }
10136
10137      // Otherwise, this isn't something we can handle, reject it.
10138      return;
10139    }
10140
10141    GlobalValue *GV = GA->getGlobal();
10142    // If we require an extra load to get this address, as in PIC mode, we
10143    // can't accept it.
10144    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
10145                                                        getTargetMachine())))
10146      return;
10147
10148    if (hasMemory)
10149      Op = LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
10150    else
10151      Op = DAG.getTargetGlobalAddress(GV, GA->getValueType(0), Offset);
10152    Result = Op;
10153    break;
10154  }
10155  }
10156
10157  if (Result.getNode()) {
10158    Ops.push_back(Result);
10159    return;
10160  }
10161  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory,
10162                                                      Ops, DAG);
10163}
10164
10165std::vector<unsigned> X86TargetLowering::
10166getRegClassForInlineAsmConstraint(const std::string &Constraint,
10167                                  EVT VT) const {
10168  if (Constraint.size() == 1) {
10169    // FIXME: not handling fp-stack yet!
10170    switch (Constraint[0]) {      // GCC X86 Constraint Letters
10171    default: break;  // Unknown constraint letter
10172    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
10173      if (Subtarget->is64Bit()) {
10174        if (VT == MVT::i32)
10175          return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
10176                                       X86::ESI, X86::EDI, X86::R8D, X86::R9D,
10177                                       X86::R10D,X86::R11D,X86::R12D,
10178                                       X86::R13D,X86::R14D,X86::R15D,
10179                                       X86::EBP, X86::ESP, 0);
10180        else if (VT == MVT::i16)
10181          return make_vector<unsigned>(X86::AX,  X86::DX,  X86::CX, X86::BX,
10182                                       X86::SI,  X86::DI,  X86::R8W,X86::R9W,
10183                                       X86::R10W,X86::R11W,X86::R12W,
10184                                       X86::R13W,X86::R14W,X86::R15W,
10185                                       X86::BP,  X86::SP, 0);
10186        else if (VT == MVT::i8)
10187          return make_vector<unsigned>(X86::AL,  X86::DL,  X86::CL, X86::BL,
10188                                       X86::SIL, X86::DIL, X86::R8B,X86::R9B,
10189                                       X86::R10B,X86::R11B,X86::R12B,
10190                                       X86::R13B,X86::R14B,X86::R15B,
10191                                       X86::BPL, X86::SPL, 0);
10192
10193        else if (VT == MVT::i64)
10194          return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
10195                                       X86::RSI, X86::RDI, X86::R8,  X86::R9,
10196                                       X86::R10, X86::R11, X86::R12,
10197                                       X86::R13, X86::R14, X86::R15,
10198                                       X86::RBP, X86::RSP, 0);
10199
10200        break;
10201      }
10202      // 32-bit fallthrough
10203    case 'Q':   // Q_REGS
10204      if (VT == MVT::i32)
10205        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
10206      else if (VT == MVT::i16)
10207        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
10208      else if (VT == MVT::i8)
10209        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
10210      else if (VT == MVT::i64)
10211        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
10212      break;
10213    }
10214  }
10215
10216  return std::vector<unsigned>();
10217}
10218
10219std::pair<unsigned, const TargetRegisterClass*>
10220X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
10221                                                EVT VT) const {
10222  // First, see if this is a constraint that directly corresponds to an LLVM
10223  // register class.
10224  if (Constraint.size() == 1) {
10225    // GCC Constraint Letters
10226    switch (Constraint[0]) {
10227    default: break;
10228    case 'r':   // GENERAL_REGS
10229    case 'l':   // INDEX_REGS
10230      if (VT == MVT::i8)
10231        return std::make_pair(0U, X86::GR8RegisterClass);
10232      if (VT == MVT::i16)
10233        return std::make_pair(0U, X86::GR16RegisterClass);
10234      if (VT == MVT::i32 || !Subtarget->is64Bit())
10235        return std::make_pair(0U, X86::GR32RegisterClass);
10236      return std::make_pair(0U, X86::GR64RegisterClass);
10237    case 'R':   // LEGACY_REGS
10238      if (VT == MVT::i8)
10239        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
10240      if (VT == MVT::i16)
10241        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
10242      if (VT == MVT::i32 || !Subtarget->is64Bit())
10243        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
10244      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
10245    case 'f':  // FP Stack registers.
10246      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
10247      // value to the correct fpstack register class.
10248      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
10249        return std::make_pair(0U, X86::RFP32RegisterClass);
10250      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
10251        return std::make_pair(0U, X86::RFP64RegisterClass);
10252      return std::make_pair(0U, X86::RFP80RegisterClass);
10253    case 'y':   // MMX_REGS if MMX allowed.
10254      if (!Subtarget->hasMMX()) break;
10255      return std::make_pair(0U, X86::VR64RegisterClass);
10256    case 'Y':   // SSE_REGS if SSE2 allowed
10257      if (!Subtarget->hasSSE2()) break;
10258      // FALL THROUGH.
10259    case 'x':   // SSE_REGS if SSE1 allowed
10260      if (!Subtarget->hasSSE1()) break;
10261
10262      switch (VT.getSimpleVT().SimpleTy) {
10263      default: break;
10264      // Scalar SSE types.
10265      case MVT::f32:
10266      case MVT::i32:
10267        return std::make_pair(0U, X86::FR32RegisterClass);
10268      case MVT::f64:
10269      case MVT::i64:
10270        return std::make_pair(0U, X86::FR64RegisterClass);
10271      // Vector types.
10272      case MVT::v16i8:
10273      case MVT::v8i16:
10274      case MVT::v4i32:
10275      case MVT::v2i64:
10276      case MVT::v4f32:
10277      case MVT::v2f64:
10278        return std::make_pair(0U, X86::VR128RegisterClass);
10279      }
10280      break;
10281    }
10282  }
10283
10284  // Use the default implementation in TargetLowering to convert the register
10285  // constraint into a member of a register class.
10286  std::pair<unsigned, const TargetRegisterClass*> Res;
10287  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
10288
10289  // Not found as a standard register?
10290  if (Res.second == 0) {
10291    // Map st(0) -> st(7) -> ST0
10292    if (Constraint.size() == 7 && Constraint[0] == '{' &&
10293        tolower(Constraint[1]) == 's' &&
10294        tolower(Constraint[2]) == 't' &&
10295        Constraint[3] == '(' &&
10296        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
10297        Constraint[5] == ')' &&
10298        Constraint[6] == '}') {
10299
10300      Res.first = X86::ST0+Constraint[4]-'0';
10301      Res.second = X86::RFP80RegisterClass;
10302      return Res;
10303    }
10304
10305    // GCC allows "st(0)" to be called just plain "st".
10306    if (StringRef("{st}").equals_lower(Constraint)) {
10307      Res.first = X86::ST0;
10308      Res.second = X86::RFP80RegisterClass;
10309      return Res;
10310    }
10311
10312    // flags -> EFLAGS
10313    if (StringRef("{flags}").equals_lower(Constraint)) {
10314      Res.first = X86::EFLAGS;
10315      Res.second = X86::CCRRegisterClass;
10316      return Res;
10317    }
10318
10319    // 'A' means EAX + EDX.
10320    if (Constraint == "A") {
10321      Res.first = X86::EAX;
10322      Res.second = X86::GR32_ADRegisterClass;
10323      return Res;
10324    }
10325    return Res;
10326  }
10327
10328  // Otherwise, check to see if this is a register class of the wrong value
10329  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
10330  // turn into {ax},{dx}.
10331  if (Res.second->hasType(VT))
10332    return Res;   // Correct type already, nothing to do.
10333
10334  // All of the single-register GCC register classes map their values onto
10335  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
10336  // really want an 8-bit or 32-bit register, map to the appropriate register
10337  // class and return the appropriate register.
10338  if (Res.second == X86::GR16RegisterClass) {
10339    if (VT == MVT::i8) {
10340      unsigned DestReg = 0;
10341      switch (Res.first) {
10342      default: break;
10343      case X86::AX: DestReg = X86::AL; break;
10344      case X86::DX: DestReg = X86::DL; break;
10345      case X86::CX: DestReg = X86::CL; break;
10346      case X86::BX: DestReg = X86::BL; break;
10347      }
10348      if (DestReg) {
10349        Res.first = DestReg;
10350        Res.second = X86::GR8RegisterClass;
10351      }
10352    } else if (VT == MVT::i32) {
10353      unsigned DestReg = 0;
10354      switch (Res.first) {
10355      default: break;
10356      case X86::AX: DestReg = X86::EAX; break;
10357      case X86::DX: DestReg = X86::EDX; break;
10358      case X86::CX: DestReg = X86::ECX; break;
10359      case X86::BX: DestReg = X86::EBX; break;
10360      case X86::SI: DestReg = X86::ESI; break;
10361      case X86::DI: DestReg = X86::EDI; break;
10362      case X86::BP: DestReg = X86::EBP; break;
10363      case X86::SP: DestReg = X86::ESP; break;
10364      }
10365      if (DestReg) {
10366        Res.first = DestReg;
10367        Res.second = X86::GR32RegisterClass;
10368      }
10369    } else if (VT == MVT::i64) {
10370      unsigned DestReg = 0;
10371      switch (Res.first) {
10372      default: break;
10373      case X86::AX: DestReg = X86::RAX; break;
10374      case X86::DX: DestReg = X86::RDX; break;
10375      case X86::CX: DestReg = X86::RCX; break;
10376      case X86::BX: DestReg = X86::RBX; break;
10377      case X86::SI: DestReg = X86::RSI; break;
10378      case X86::DI: DestReg = X86::RDI; break;
10379      case X86::BP: DestReg = X86::RBP; break;
10380      case X86::SP: DestReg = X86::RSP; break;
10381      }
10382      if (DestReg) {
10383        Res.first = DestReg;
10384        Res.second = X86::GR64RegisterClass;
10385      }
10386    }
10387  } else if (Res.second == X86::FR32RegisterClass ||
10388             Res.second == X86::FR64RegisterClass ||
10389             Res.second == X86::VR128RegisterClass) {
10390    // Handle references to XMM physical registers that got mapped into the
10391    // wrong class.  This can happen with constraints like {xmm0} where the
10392    // target independent register mapper will just pick the first match it can
10393    // find, ignoring the required type.
10394    if (VT == MVT::f32)
10395      Res.second = X86::FR32RegisterClass;
10396    else if (VT == MVT::f64)
10397      Res.second = X86::FR64RegisterClass;
10398    else if (X86::VR128RegisterClass->hasType(VT))
10399      Res.second = X86::VR128RegisterClass;
10400  }
10401
10402  return Res;
10403}
10404