X86ISelLowering.cpp revision 14b32e194152f7147d6f531346b923152e58900f
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86TargetMachine.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Function.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/ADT/BitVector.h"
27#include "llvm/ADT/VectorExtras.h"
28#include "llvm/Analysis/ScalarEvolutionExpressions.h"
29#include "llvm/CodeGen/CallingConvLower.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/SelectionDAG.h"
34#include "llvm/CodeGen/SSARegMap.h"
35#include "llvm/Support/MathExtras.h"
36#include "llvm/Support/CommandLine.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Target/TargetOptions.h"
39#include "llvm/ADT/SmallSet.h"
40#include "llvm/ADT/StringExtras.h"
41#include "llvm/ParameterAttributes.h"
42using namespace llvm;
43
44X86TargetLowering::X86TargetLowering(TargetMachine &TM)
45  : TargetLowering(TM) {
46  Subtarget = &TM.getSubtarget<X86Subtarget>();
47  X86ScalarSSEf64 = Subtarget->hasSSE2();
48  X86ScalarSSEf32 = Subtarget->hasSSE1();
49  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
50
51
52  RegInfo = TM.getRegisterInfo();
53
54  // Set up the TargetLowering object.
55
56  // X86 is weird, it always uses i8 for shift amounts and setcc results.
57  setShiftAmountType(MVT::i8);
58  setSetCCResultType(MVT::i8);
59  setSetCCResultContents(ZeroOrOneSetCCResult);
60  setSchedulingPreference(SchedulingForRegPressure);
61  setShiftAmountFlavor(Mask);   // shl X, 32 == shl X, 0
62  setStackPointerRegisterToSaveRestore(X86StackPtr);
63
64  if (Subtarget->isTargetDarwin()) {
65    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
66    setUseUnderscoreSetJmp(false);
67    setUseUnderscoreLongJmp(false);
68  } else if (Subtarget->isTargetMingw()) {
69    // MS runtime is weird: it exports _setjmp, but longjmp!
70    setUseUnderscoreSetJmp(true);
71    setUseUnderscoreLongJmp(false);
72  } else {
73    setUseUnderscoreSetJmp(true);
74    setUseUnderscoreLongJmp(true);
75  }
76
77  // Set up the register classes.
78  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
79  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
80  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
81  if (Subtarget->is64Bit())
82    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
83
84  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
85
86  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
87  // operation.
88  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
89  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
90  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
91
92  if (Subtarget->is64Bit()) {
93    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
94    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
95  } else {
96    if (X86ScalarSSEf64)
97      // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
98      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Expand);
99    else
100      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Promote);
101  }
102
103  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
104  // this operation.
105  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
106  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
107  // SSE has no i16 to fp conversion, only i32
108  if (X86ScalarSSEf32) {
109    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
110    // f32 and f64 cases are Legal, f80 case is not
111    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
112  } else {
113    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
114    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
115  }
116
117  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
118  // are Legal, f80 is custom lowered.
119  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
120  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
121
122  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
123  // this operation.
124  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
125  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
126
127  if (X86ScalarSSEf32) {
128    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
129    // f32 and f64 cases are Legal, f80 case is not
130    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
131  } else {
132    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
133    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
134  }
135
136  // Handle FP_TO_UINT by promoting the destination to a larger signed
137  // conversion.
138  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
139  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
140  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
141
142  if (Subtarget->is64Bit()) {
143    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
144    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
145  } else {
146    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
147      // Expand FP_TO_UINT into a select.
148      // FIXME: We would like to use a Custom expander here eventually to do
149      // the optimal thing for SSE vs. the default expansion in the legalizer.
150      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
151    else
152      // With SSE3 we can use fisttpll to convert to a signed i64.
153      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Promote);
154  }
155
156  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
157  if (!X86ScalarSSEf64) {
158    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
159    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
160  }
161
162  // Scalar integer multiply, multiply-high, divide, and remainder are
163  // lowered to use operations that produce two results, to match the
164  // available instructions. This exposes the two-result form to trivial
165  // CSE, which is able to combine x/y and x%y into a single instruction,
166  // for example. The single-result multiply instructions are introduced
167  // in X86ISelDAGToDAG.cpp, after CSE, for uses where the the high part
168  // is not needed.
169  setOperationAction(ISD::MUL             , MVT::i8    , Expand);
170  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
171  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
172  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
173  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
174  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
175  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
176  setOperationAction(ISD::MUL             , MVT::i16   , Expand);
177  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
178  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
179  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
180  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
181  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
182  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
183  setOperationAction(ISD::MUL             , MVT::i32   , Expand);
184  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
185  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
186  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
187  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
188  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
189  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
190  setOperationAction(ISD::MUL             , MVT::i64   , Expand);
191  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
192  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
193  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
194  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
195  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
196  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
197
198  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
199  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
200  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
201  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
202  setOperationAction(ISD::MEMMOVE          , MVT::Other, Expand);
203  if (Subtarget->is64Bit())
204    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
205  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
206  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
207  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
208  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
209  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
210  setOperationAction(ISD::FLT_ROUNDS       , MVT::i32  , Custom);
211
212  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
213  setOperationAction(ISD::CTTZ             , MVT::i8   , Expand);
214  setOperationAction(ISD::CTLZ             , MVT::i8   , Expand);
215  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
216  setOperationAction(ISD::CTTZ             , MVT::i16  , Expand);
217  setOperationAction(ISD::CTLZ             , MVT::i16  , Expand);
218  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
219  setOperationAction(ISD::CTTZ             , MVT::i32  , Expand);
220  setOperationAction(ISD::CTLZ             , MVT::i32  , Expand);
221  if (Subtarget->is64Bit()) {
222    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
223    setOperationAction(ISD::CTTZ           , MVT::i64  , Expand);
224    setOperationAction(ISD::CTLZ           , MVT::i64  , Expand);
225  }
226
227  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
228  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
229
230  // These should be promoted to a larger select which is supported.
231  setOperationAction(ISD::SELECT           , MVT::i1   , Promote);
232  setOperationAction(ISD::SELECT           , MVT::i8   , Promote);
233  // X86 wants to expand cmov itself.
234  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
235  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
236  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
237  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
238  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
239  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
240  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
241  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
242  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
243  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
244  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
245  if (Subtarget->is64Bit()) {
246    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
247    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
248  }
249  // X86 ret instruction may pop stack.
250  setOperationAction(ISD::RET             , MVT::Other, Custom);
251  if (!Subtarget->is64Bit())
252    setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
253
254  // Darwin ABI issue.
255  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
256  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
257  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
258  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
259  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
260  if (Subtarget->is64Bit()) {
261    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
262    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
263    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
264    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
265  }
266  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
267  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
268  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
269  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
270  // X86 wants to expand memset / memcpy itself.
271  setOperationAction(ISD::MEMSET          , MVT::Other, Custom);
272  setOperationAction(ISD::MEMCPY          , MVT::Other, Custom);
273
274  // Use the default ISD::LOCATION expansion.
275  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
276  // FIXME - use subtarget debug flags
277  if (!Subtarget->isTargetDarwin() &&
278      !Subtarget->isTargetELF() &&
279      !Subtarget->isTargetCygMing())
280    setOperationAction(ISD::LABEL, MVT::Other, Expand);
281
282  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
283  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
284  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
285  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
286  if (Subtarget->is64Bit()) {
287    // FIXME: Verify
288    setExceptionPointerRegister(X86::RAX);
289    setExceptionSelectorRegister(X86::RDX);
290  } else {
291    setExceptionPointerRegister(X86::EAX);
292    setExceptionSelectorRegister(X86::EDX);
293  }
294  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
295
296  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
297
298  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
299  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
300  setOperationAction(ISD::VAARG             , MVT::Other, Expand);
301  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
302  if (Subtarget->is64Bit())
303    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
304  else
305    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
306
307  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
308  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
309  if (Subtarget->is64Bit())
310    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
311  if (Subtarget->isTargetCygMing())
312    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
313  else
314    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
315
316  if (X86ScalarSSEf64) {
317    // f32 and f64 use SSE.
318    // Set up the FP register classes.
319    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
320    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
321
322    // Use ANDPD to simulate FABS.
323    setOperationAction(ISD::FABS , MVT::f64, Custom);
324    setOperationAction(ISD::FABS , MVT::f32, Custom);
325
326    // Use XORP to simulate FNEG.
327    setOperationAction(ISD::FNEG , MVT::f64, Custom);
328    setOperationAction(ISD::FNEG , MVT::f32, Custom);
329
330    // Use ANDPD and ORPD to simulate FCOPYSIGN.
331    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
332    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
333
334    // We don't support sin/cos/fmod
335    setOperationAction(ISD::FSIN , MVT::f64, Expand);
336    setOperationAction(ISD::FCOS , MVT::f64, Expand);
337    setOperationAction(ISD::FREM , MVT::f64, Expand);
338    setOperationAction(ISD::FSIN , MVT::f32, Expand);
339    setOperationAction(ISD::FCOS , MVT::f32, Expand);
340    setOperationAction(ISD::FREM , MVT::f32, Expand);
341
342    // Expand FP immediates into loads from the stack, except for the special
343    // cases we handle.
344    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
345    setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
346    addLegalFPImmediate(APFloat(+0.0)); // xorpd
347    addLegalFPImmediate(APFloat(+0.0f)); // xorps
348
349    // Conversions to long double (in X87) go through memory.
350    setConvertAction(MVT::f32, MVT::f80, Expand);
351    setConvertAction(MVT::f64, MVT::f80, Expand);
352
353    // Conversions from long double (in X87) go through memory.
354    setConvertAction(MVT::f80, MVT::f32, Expand);
355    setConvertAction(MVT::f80, MVT::f64, Expand);
356  } else if (X86ScalarSSEf32) {
357    // Use SSE for f32, x87 for f64.
358    // Set up the FP register classes.
359    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
360    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
361
362    // Use ANDPS to simulate FABS.
363    setOperationAction(ISD::FABS , MVT::f32, Custom);
364
365    // Use XORP to simulate FNEG.
366    setOperationAction(ISD::FNEG , MVT::f32, Custom);
367
368    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
369
370    // Use ANDPS and ORPS to simulate FCOPYSIGN.
371    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
372    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
373
374    // We don't support sin/cos/fmod
375    setOperationAction(ISD::FSIN , MVT::f32, Expand);
376    setOperationAction(ISD::FCOS , MVT::f32, Expand);
377    setOperationAction(ISD::FREM , MVT::f32, Expand);
378
379    // Expand FP immediates into loads from the stack, except for the special
380    // cases we handle.
381    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
382    setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
383    addLegalFPImmediate(APFloat(+0.0f)); // xorps
384    addLegalFPImmediate(APFloat(+0.0)); // FLD0
385    addLegalFPImmediate(APFloat(+1.0)); // FLD1
386    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
387    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
388
389    // SSE->x87 conversions go through memory.
390    setConvertAction(MVT::f32, MVT::f64, Expand);
391    setConvertAction(MVT::f32, MVT::f80, Expand);
392
393    // x87->SSE truncations need to go through memory.
394    setConvertAction(MVT::f80, MVT::f32, Expand);
395    setConvertAction(MVT::f64, MVT::f32, Expand);
396    // And x87->x87 truncations also.
397    setConvertAction(MVT::f80, MVT::f64, Expand);
398
399    if (!UnsafeFPMath) {
400      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
401      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
402    }
403  } else {
404    // f32 and f64 in x87.
405    // Set up the FP register classes.
406    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
407    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
408
409    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
410    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
411    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
412    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
413
414    // Floating truncations need to go through memory.
415    setConvertAction(MVT::f80, MVT::f32, Expand);
416    setConvertAction(MVT::f64, MVT::f32, Expand);
417    setConvertAction(MVT::f80, MVT::f64, Expand);
418
419    if (!UnsafeFPMath) {
420      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
421      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
422    }
423
424    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
425    setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
426    addLegalFPImmediate(APFloat(+0.0)); // FLD0
427    addLegalFPImmediate(APFloat(+1.0)); // FLD1
428    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
429    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
430    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
431    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
432    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
433    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
434  }
435
436  // Long double always uses X87.
437  addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
438  setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
439  setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
440  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
441  if (!UnsafeFPMath) {
442    setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
443    setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
444  }
445
446  // Always use a library call for pow.
447  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
448  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
449  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
450
451  // First set operation action for all vector types to expand. Then we
452  // will selectively turn on ones that can be effectively codegen'd.
453  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
454       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
455    setOperationAction(ISD::ADD , (MVT::ValueType)VT, Expand);
456    setOperationAction(ISD::SUB , (MVT::ValueType)VT, Expand);
457    setOperationAction(ISD::FADD, (MVT::ValueType)VT, Expand);
458    setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand);
459    setOperationAction(ISD::FSUB, (MVT::ValueType)VT, Expand);
460    setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
461    setOperationAction(ISD::FMUL, (MVT::ValueType)VT, Expand);
462    setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
463    setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
464    setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
465    setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
466    setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
467    setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Expand);
468    setOperationAction(ISD::VECTOR_SHUFFLE,     (MVT::ValueType)VT, Expand);
469    setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
470    setOperationAction(ISD::INSERT_VECTOR_ELT,  (MVT::ValueType)VT, Expand);
471    setOperationAction(ISD::FABS, (MVT::ValueType)VT, Expand);
472    setOperationAction(ISD::FSIN, (MVT::ValueType)VT, Expand);
473    setOperationAction(ISD::FCOS, (MVT::ValueType)VT, Expand);
474    setOperationAction(ISD::FREM, (MVT::ValueType)VT, Expand);
475    setOperationAction(ISD::FPOWI, (MVT::ValueType)VT, Expand);
476    setOperationAction(ISD::FSQRT, (MVT::ValueType)VT, Expand);
477    setOperationAction(ISD::FCOPYSIGN, (MVT::ValueType)VT, Expand);
478    setOperationAction(ISD::SMUL_LOHI, (MVT::ValueType)VT, Expand);
479    setOperationAction(ISD::UMUL_LOHI, (MVT::ValueType)VT, Expand);
480    setOperationAction(ISD::SDIVREM, (MVT::ValueType)VT, Expand);
481    setOperationAction(ISD::UDIVREM, (MVT::ValueType)VT, Expand);
482    setOperationAction(ISD::FPOW, (MVT::ValueType)VT, Expand);
483    setOperationAction(ISD::CTPOP, (MVT::ValueType)VT, Expand);
484    setOperationAction(ISD::CTTZ, (MVT::ValueType)VT, Expand);
485    setOperationAction(ISD::CTLZ, (MVT::ValueType)VT, Expand);
486  }
487
488  if (Subtarget->hasMMX()) {
489    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
490    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
491    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
492    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
493
494    // FIXME: add MMX packed arithmetics
495
496    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
497    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
498    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
499    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
500
501    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
502    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
503    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
504    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
505
506    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
507    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
508
509    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
510    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
511    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
512    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
513    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
514    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
515    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
516
517    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
518    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
519    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
520    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
521    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
522    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
523    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
524
525    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
526    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
527    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
528    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
529    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
530    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
531    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
532
533    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
534    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
535    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
536    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
537    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
538    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
539    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
540
541    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
542    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
543    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
544    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
545
546    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
547    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
548    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
549    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
550
551    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
552    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
553    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Custom);
554    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
555  }
556
557  if (Subtarget->hasSSE1()) {
558    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
559
560    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
561    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
562    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
563    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
564    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
565    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
566    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
567    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
568    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
569    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
570    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
571  }
572
573  if (Subtarget->hasSSE2()) {
574    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
575    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
576    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
577    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
578    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
579
580    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
581    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
582    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
583    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
584    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
585    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
586    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
587    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
588    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
589    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
590    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
591    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
592    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
593    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
594    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
595
596    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
597    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
598    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
599    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
600    // Implement v4f32 insert_vector_elt in terms of SSE2 v8i16 ones.
601    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
602
603    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
604    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
605      // Do not attempt to custom lower non-power-of-2 vectors
606      if (!isPowerOf2_32(MVT::getVectorNumElements(VT)))
607        continue;
608      setOperationAction(ISD::BUILD_VECTOR,        (MVT::ValueType)VT, Custom);
609      setOperationAction(ISD::VECTOR_SHUFFLE,      (MVT::ValueType)VT, Custom);
610      setOperationAction(ISD::EXTRACT_VECTOR_ELT,  (MVT::ValueType)VT, Custom);
611    }
612    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
613    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
614    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
615    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
616    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
617    if (Subtarget->is64Bit())
618      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
619
620    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
621    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
622      setOperationAction(ISD::AND,    (MVT::ValueType)VT, Promote);
623      AddPromotedToType (ISD::AND,    (MVT::ValueType)VT, MVT::v2i64);
624      setOperationAction(ISD::OR,     (MVT::ValueType)VT, Promote);
625      AddPromotedToType (ISD::OR,     (MVT::ValueType)VT, MVT::v2i64);
626      setOperationAction(ISD::XOR,    (MVT::ValueType)VT, Promote);
627      AddPromotedToType (ISD::XOR,    (MVT::ValueType)VT, MVT::v2i64);
628      setOperationAction(ISD::LOAD,   (MVT::ValueType)VT, Promote);
629      AddPromotedToType (ISD::LOAD,   (MVT::ValueType)VT, MVT::v2i64);
630      setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
631      AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v2i64);
632    }
633
634    // Custom lower v2i64 and v2f64 selects.
635    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
636    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
637    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
638    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
639  }
640
641  // We want to custom lower some of our intrinsics.
642  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
643
644  // We have target-specific dag combine patterns for the following nodes:
645  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
646  setTargetDAGCombine(ISD::SELECT);
647
648  computeRegisterProperties();
649
650  // FIXME: These should be based on subtarget info. Plus, the values should
651  // be smaller when we are in optimizing for size mode.
652  maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores
653  maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores
654  maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores
655  allowUnalignedMemoryAccesses = true; // x86 supports it!
656}
657
658
659/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
660/// jumptable.
661SDOperand X86TargetLowering::getPICJumpTableRelocBase(SDOperand Table,
662                                                      SelectionDAG &DAG) const {
663  if (usesGlobalOffsetTable())
664    return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy());
665  if (!Subtarget->isPICStyleRIPRel())
666    return DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy());
667  return Table;
668}
669
670//===----------------------------------------------------------------------===//
671//               Return Value Calling Convention Implementation
672//===----------------------------------------------------------------------===//
673
674#include "X86GenCallingConv.inc"
675
676/// GetPossiblePreceedingTailCall - Get preceeding X86ISD::TAILCALL node if it
677/// exists skip possible ISD:TokenFactor.
678static SDOperand GetPossiblePreceedingTailCall(SDOperand Chain) {
679  if (Chain.getOpcode()==X86ISD::TAILCALL) {
680    return Chain;
681  } else if (Chain.getOpcode()==ISD::TokenFactor) {
682    if (Chain.getNumOperands() &&
683        Chain.getOperand(0).getOpcode()==X86ISD::TAILCALL)
684      return Chain.getOperand(0);
685  }
686  return Chain;
687}
688
689/// LowerRET - Lower an ISD::RET node.
690SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) {
691  assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
692
693  SmallVector<CCValAssign, 16> RVLocs;
694  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
695  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
696  CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
697  CCInfo.AnalyzeReturn(Op.Val, RetCC_X86);
698
699  // If this is the first return lowered for this function, add the regs to the
700  // liveout set for the function.
701  if (DAG.getMachineFunction().liveout_empty()) {
702    for (unsigned i = 0; i != RVLocs.size(); ++i)
703      if (RVLocs[i].isRegLoc())
704        DAG.getMachineFunction().addLiveOut(RVLocs[i].getLocReg());
705  }
706  SDOperand Chain = Op.getOperand(0);
707
708  // Handle tail call return.
709  Chain = GetPossiblePreceedingTailCall(Chain);
710  if (Chain.getOpcode() == X86ISD::TAILCALL) {
711    SDOperand TailCall = Chain;
712    SDOperand TargetAddress = TailCall.getOperand(1);
713    SDOperand StackAdjustment = TailCall.getOperand(2);
714    assert ( ((TargetAddress.getOpcode() == ISD::Register &&
715               (cast<RegisterSDNode>(TargetAddress)->getReg() == X86::ECX ||
716                cast<RegisterSDNode>(TargetAddress)->getReg() == X86::R9)) ||
717              TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
718              TargetAddress.getOpcode() == ISD::TargetGlobalAddress) &&
719             "Expecting an global address, external symbol, or register");
720    assert( StackAdjustment.getOpcode() == ISD::Constant &&
721            "Expecting a const value");
722
723    SmallVector<SDOperand,8> Operands;
724    Operands.push_back(Chain.getOperand(0));
725    Operands.push_back(TargetAddress);
726    Operands.push_back(StackAdjustment);
727    // Copy registers used by the call. Last operand is a flag so it is not
728    // copied.
729    for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) {
730      Operands.push_back(Chain.getOperand(i));
731    }
732    return DAG.getNode(X86ISD::TC_RETURN, MVT::Other, &Operands[0],
733                       Operands.size());
734  }
735
736  // Regular return.
737  SDOperand Flag;
738
739  // Copy the result values into the output registers.
740  if (RVLocs.size() != 1 || !RVLocs[0].isRegLoc() ||
741      RVLocs[0].getLocReg() != X86::ST0) {
742    for (unsigned i = 0; i != RVLocs.size(); ++i) {
743      CCValAssign &VA = RVLocs[i];
744      assert(VA.isRegLoc() && "Can only return in registers!");
745      Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1),
746                               Flag);
747      Flag = Chain.getValue(1);
748    }
749  } else {
750    // We need to handle a destination of ST0 specially, because it isn't really
751    // a register.
752    SDOperand Value = Op.getOperand(1);
753
754    // If this is an FP return with ScalarSSE, we need to move the value from
755    // an XMM register onto the fp-stack.
756    if ((X86ScalarSSEf32 && RVLocs[0].getValVT()==MVT::f32) ||
757        (X86ScalarSSEf64 && RVLocs[0].getValVT()==MVT::f64)) {
758      SDOperand MemLoc;
759
760      // If this is a load into a scalarsse value, don't store the loaded value
761      // back to the stack, only to reload it: just replace the scalar-sse load.
762      if (ISD::isNON_EXTLoad(Value.Val) &&
763          (Chain == Value.getValue(1) || Chain == Value.getOperand(0))) {
764        Chain  = Value.getOperand(0);
765        MemLoc = Value.getOperand(1);
766      } else {
767        // Spill the value to memory and reload it into top of stack.
768        unsigned Size = MVT::getSizeInBits(RVLocs[0].getValVT())/8;
769        MachineFunction &MF = DAG.getMachineFunction();
770        int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
771        MemLoc = DAG.getFrameIndex(SSFI, getPointerTy());
772        Chain = DAG.getStore(Op.getOperand(0), Value, MemLoc, NULL, 0);
773      }
774      SDVTList Tys = DAG.getVTList(RVLocs[0].getValVT(), MVT::Other);
775      SDOperand Ops[] = {Chain, MemLoc, DAG.getValueType(RVLocs[0].getValVT())};
776      Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
777      Chain = Value.getValue(1);
778    }
779
780    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
781    SDOperand Ops[] = { Chain, Value };
782    Chain = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops, 2);
783    Flag = Chain.getValue(1);
784  }
785
786  SDOperand BytesToPop = DAG.getConstant(getBytesToPopOnReturn(), MVT::i16);
787  if (Flag.Val)
788    return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop, Flag);
789  else
790    return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop);
791}
792
793
794/// LowerCallResult - Lower the result values of an ISD::CALL into the
795/// appropriate copies out of appropriate physical registers.  This assumes that
796/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
797/// being lowered.  The returns a SDNode with the same number of values as the
798/// ISD::CALL.
799SDNode *X86TargetLowering::
800LowerCallResult(SDOperand Chain, SDOperand InFlag, SDNode *TheCall,
801                unsigned CallingConv, SelectionDAG &DAG) {
802
803  // Assign locations to each value returned by this call.
804  SmallVector<CCValAssign, 16> RVLocs;
805  bool isVarArg = cast<ConstantSDNode>(TheCall->getOperand(2))->getValue() != 0;
806  CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
807  CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
808
809
810  SmallVector<SDOperand, 8> ResultVals;
811
812  // Copy all of the result registers out of their specified physreg.
813  if (RVLocs.size() != 1 || RVLocs[0].getLocReg() != X86::ST0) {
814    for (unsigned i = 0; i != RVLocs.size(); ++i) {
815      Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(),
816                                 RVLocs[i].getValVT(), InFlag).getValue(1);
817      InFlag = Chain.getValue(2);
818      ResultVals.push_back(Chain.getValue(0));
819    }
820  } else {
821    // Copies from the FP stack are special, as ST0 isn't a valid register
822    // before the fp stackifier runs.
823
824    // Copy ST0 into an RFP register with FP_GET_RESULT.
825    SDVTList Tys = DAG.getVTList(RVLocs[0].getValVT(), MVT::Other, MVT::Flag);
826    SDOperand GROps[] = { Chain, InFlag };
827    SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, GROps, 2);
828    Chain  = RetVal.getValue(1);
829    InFlag = RetVal.getValue(2);
830
831    // If we are using ScalarSSE, store ST(0) to the stack and reload it into
832    // an XMM register.
833    if ((X86ScalarSSEf32 && RVLocs[0].getValVT() == MVT::f32) ||
834        (X86ScalarSSEf64 && RVLocs[0].getValVT() == MVT::f64)) {
835      // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
836      // shouldn't be necessary except that RFP cannot be live across
837      // multiple blocks. When stackifier is fixed, they can be uncoupled.
838      MachineFunction &MF = DAG.getMachineFunction();
839      int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
840      SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
841      SDOperand Ops[] = {
842        Chain, RetVal, StackSlot, DAG.getValueType(RVLocs[0].getValVT()), InFlag
843      };
844      Chain = DAG.getNode(X86ISD::FST, MVT::Other, Ops, 5);
845      RetVal = DAG.getLoad(RVLocs[0].getValVT(), Chain, StackSlot, NULL, 0);
846      Chain = RetVal.getValue(1);
847    }
848    ResultVals.push_back(RetVal);
849  }
850
851  // Merge everything together with a MERGE_VALUES node.
852  ResultVals.push_back(Chain);
853  return DAG.getNode(ISD::MERGE_VALUES, TheCall->getVTList(),
854                     &ResultVals[0], ResultVals.size()).Val;
855}
856
857
858//===----------------------------------------------------------------------===//
859//                C & StdCall & Fast Calling Convention implementation
860//===----------------------------------------------------------------------===//
861//  StdCall calling convention seems to be standard for many Windows' API
862//  routines and around. It differs from C calling convention just a little:
863//  callee should clean up the stack, not caller. Symbols should be also
864//  decorated in some fancy way :) It doesn't support any vector arguments.
865//  For info on fast calling convention see Fast Calling Convention (tail call)
866//  implementation LowerX86_32FastCCCallTo.
867
868/// AddLiveIn - This helper function adds the specified physical register to the
869/// MachineFunction as a live in value.  It also creates a corresponding virtual
870/// register for it.
871static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
872                          const TargetRegisterClass *RC) {
873  assert(RC->contains(PReg) && "Not the correct regclass!");
874  unsigned VReg = MF.getSSARegMap()->createVirtualRegister(RC);
875  MF.addLiveIn(PReg, VReg);
876  return VReg;
877}
878
879// align stack arguments according to platform alignment needed for tail calls
880unsigned GetAlignedArgumentStackSize(unsigned StackSize, SelectionDAG& DAG);
881
882SDOperand X86TargetLowering::LowerMemArgument(SDOperand Op, SelectionDAG &DAG,
883                                              const CCValAssign &VA,
884                                              MachineFrameInfo *MFI,
885                                              SDOperand Root, unsigned i) {
886  // Create the nodes corresponding to a load from this parameter slot.
887  int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
888                                  VA.getLocMemOffset());
889  SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
890
891  unsigned Flags =  cast<ConstantSDNode>(Op.getOperand(3 + i))->getValue();
892
893  if (Flags & ISD::ParamFlags::ByVal)
894    return FIN;
895  else
896    return DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0);
897}
898
899SDOperand X86TargetLowering::LowerCCCArguments(SDOperand Op, SelectionDAG &DAG,
900                                               bool isStdCall) {
901  unsigned NumArgs = Op.Val->getNumValues() - 1;
902  MachineFunction &MF = DAG.getMachineFunction();
903  MachineFrameInfo *MFI = MF.getFrameInfo();
904  SDOperand Root = Op.getOperand(0);
905  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
906  unsigned CC = MF.getFunction()->getCallingConv();
907  // Assign locations to all of the incoming arguments.
908  SmallVector<CCValAssign, 16> ArgLocs;
909  CCState CCInfo(CC, isVarArg,
910                 getTargetMachine(), ArgLocs);
911  // Check for possible tail call calling convention.
912  if (CC == CallingConv::Fast && PerformTailCallOpt)
913    CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_TailCall);
914  else
915    CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_C);
916
917  SmallVector<SDOperand, 8> ArgValues;
918  unsigned LastVal = ~0U;
919  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
920    CCValAssign &VA = ArgLocs[i];
921    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
922    // places.
923    assert(VA.getValNo() != LastVal &&
924           "Don't support value assigned to multiple locs yet");
925    LastVal = VA.getValNo();
926
927    if (VA.isRegLoc()) {
928      MVT::ValueType RegVT = VA.getLocVT();
929      TargetRegisterClass *RC;
930      if (RegVT == MVT::i32)
931        RC = X86::GR32RegisterClass;
932      else {
933        assert(MVT::isVector(RegVT));
934        RC = X86::VR128RegisterClass;
935      }
936
937      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
938      SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
939
940      // If this is an 8 or 16-bit value, it is really passed promoted to 32
941      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
942      // right size.
943      if (VA.getLocInfo() == CCValAssign::SExt)
944        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
945                               DAG.getValueType(VA.getValVT()));
946      else if (VA.getLocInfo() == CCValAssign::ZExt)
947        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
948                               DAG.getValueType(VA.getValVT()));
949
950      if (VA.getLocInfo() != CCValAssign::Full)
951        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
952
953      ArgValues.push_back(ArgValue);
954    } else {
955      assert(VA.isMemLoc());
956      ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
957    }
958  }
959
960  unsigned StackSize = CCInfo.getNextStackOffset();
961  // align stack specially for tail calls
962  if (CC==CallingConv::Fast)
963    StackSize = GetAlignedArgumentStackSize(StackSize,DAG);
964
965  ArgValues.push_back(Root);
966
967  // If the function takes variable number of arguments, make a frame index for
968  // the start of the first vararg value... for expansion of llvm.va_start.
969  if (isVarArg)
970    VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
971
972  // Tail call calling convention (CallingConv::Fast) does not support varargs.
973  assert( !(isVarArg && CC == CallingConv::Fast) &&
974         "CallingConv::Fast does not support varargs.");
975
976  if (isStdCall && !isVarArg &&
977      (CC==CallingConv::Fast && PerformTailCallOpt || CC!=CallingConv::Fast)) {
978    BytesToPopOnReturn  = StackSize;    // Callee pops everything..
979    BytesCallerReserves = 0;
980  } else {
981    BytesToPopOnReturn  = 0; // Callee pops nothing.
982
983    // If this is an sret function, the return should pop the hidden pointer.
984    if (NumArgs &&
985        (cast<ConstantSDNode>(Op.getOperand(3))->getValue() &
986         ISD::ParamFlags::StructReturn))
987      BytesToPopOnReturn = 4;
988
989    BytesCallerReserves = StackSize;
990  }
991
992  RegSaveFrameIndex = 0xAAAAAAA;  // X86-64 only.
993
994  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
995  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
996
997  // Return the new list of results.
998  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
999                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1000}
1001
1002SDOperand X86TargetLowering::LowerCCCCallTo(SDOperand Op, SelectionDAG &DAG,
1003                                            unsigned CC) {
1004  SDOperand Chain     = Op.getOperand(0);
1005  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1006  SDOperand Callee    = Op.getOperand(4);
1007  unsigned NumOps     = (Op.getNumOperands() - 5) / 2;
1008
1009  // Analyze operands of the call, assigning locations to each operand.
1010  SmallVector<CCValAssign, 16> ArgLocs;
1011  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1012  if(CC==CallingConv::Fast && PerformTailCallOpt)
1013    CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_TailCall);
1014  else
1015    CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_C);
1016
1017  // Get a count of how many bytes are to be pushed on the stack.
1018  unsigned NumBytes = CCInfo.getNextStackOffset();
1019  if (CC==CallingConv::Fast)
1020    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1021
1022  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1023
1024  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1025  SmallVector<SDOperand, 8> MemOpChains;
1026
1027  SDOperand StackPtr;
1028
1029  // Walk the register/memloc assignments, inserting copies/loads.
1030  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1031    CCValAssign &VA = ArgLocs[i];
1032    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1033
1034    // Promote the value if needed.
1035    switch (VA.getLocInfo()) {
1036    default: assert(0 && "Unknown loc info!");
1037    case CCValAssign::Full: break;
1038    case CCValAssign::SExt:
1039      Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1040      break;
1041    case CCValAssign::ZExt:
1042      Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1043      break;
1044    case CCValAssign::AExt:
1045      Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1046      break;
1047    }
1048
1049    if (VA.isRegLoc()) {
1050      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1051    } else {
1052      assert(VA.isMemLoc());
1053      if (StackPtr.Val == 0)
1054        StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
1055
1056      MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1057                                             Arg));
1058    }
1059  }
1060
1061  // If the first argument is an sret pointer, remember it.
1062  bool isSRet = NumOps &&
1063    (cast<ConstantSDNode>(Op.getOperand(6))->getValue() &
1064     ISD::ParamFlags::StructReturn);
1065
1066  if (!MemOpChains.empty())
1067    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1068                        &MemOpChains[0], MemOpChains.size());
1069
1070  // Build a sequence of copy-to-reg nodes chained together with token chain
1071  // and flag operands which copy the outgoing args into registers.
1072  SDOperand InFlag;
1073  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1074    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1075                             InFlag);
1076    InFlag = Chain.getValue(1);
1077  }
1078
1079  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1080  // GOT pointer.
1081  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1082      Subtarget->isPICStyleGOT()) {
1083    Chain = DAG.getCopyToReg(Chain, X86::EBX,
1084                             DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1085                             InFlag);
1086    InFlag = Chain.getValue(1);
1087  }
1088
1089  // If the callee is a GlobalAddress node (quite common, every direct call is)
1090  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1091  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1092    // We should use extra load for direct calls to dllimported functions in
1093    // non-JIT mode.
1094    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1095                                        getTargetMachine(), true))
1096      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1097  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1098    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1099
1100  // Returns a chain & a flag for retval copy to use.
1101  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1102  SmallVector<SDOperand, 8> Ops;
1103  Ops.push_back(Chain);
1104  Ops.push_back(Callee);
1105
1106  // Add argument registers to the end of the list so that they are known live
1107  // into the call.
1108  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1109    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1110                                  RegsToPass[i].second.getValueType()));
1111
1112  // Add an implicit use GOT pointer in EBX.
1113  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1114      Subtarget->isPICStyleGOT())
1115    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1116
1117  if (InFlag.Val)
1118    Ops.push_back(InFlag);
1119
1120  Chain = DAG.getNode(X86ISD::CALL, NodeTys, &Ops[0], Ops.size());
1121  InFlag = Chain.getValue(1);
1122
1123  // Create the CALLSEQ_END node.
1124  unsigned NumBytesForCalleeToPush = 0;
1125
1126  if (CC == CallingConv::X86_StdCall ||
1127      (CC == CallingConv::Fast && PerformTailCallOpt)) {
1128    if (isVarArg)
1129      NumBytesForCalleeToPush = isSRet ? 4 : 0;
1130    else
1131      NumBytesForCalleeToPush = NumBytes;
1132    assert(!(isVarArg && CC==CallingConv::Fast) &&
1133            "CallingConv::Fast does not support varargs.");
1134  } else {
1135    // If this is is a call to a struct-return function, the callee
1136    // pops the hidden struct pointer, so we have to push it back.
1137    // This is common for Darwin/X86, Linux & Mingw32 targets.
1138    NumBytesForCalleeToPush = isSRet ? 4 : 0;
1139  }
1140
1141  Chain = DAG.getCALLSEQ_END(Chain,
1142                             DAG.getConstant(NumBytes, getPointerTy()),
1143                             DAG.getConstant(NumBytesForCalleeToPush,
1144                                             getPointerTy()),
1145                             InFlag);
1146  InFlag = Chain.getValue(1);
1147
1148  // Handle result values, copying them out of physregs into vregs that we
1149  // return.
1150  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1151}
1152
1153
1154//===----------------------------------------------------------------------===//
1155//                   FastCall Calling Convention implementation
1156//===----------------------------------------------------------------------===//
1157//
1158// The X86 'fastcall' calling convention passes up to two integer arguments in
1159// registers (an appropriate portion of ECX/EDX), passes arguments in C order,
1160// and requires that the callee pop its arguments off the stack (allowing proper
1161// tail calls), and has the same return value conventions as C calling convs.
1162//
1163// This calling convention always arranges for the callee pop value to be 8n+4
1164// bytes, which is needed for tail recursion elimination and stack alignment
1165// reasons.
1166SDOperand
1167X86TargetLowering::LowerFastCCArguments(SDOperand Op, SelectionDAG &DAG) {
1168  MachineFunction &MF = DAG.getMachineFunction();
1169  MachineFrameInfo *MFI = MF.getFrameInfo();
1170  SDOperand Root = Op.getOperand(0);
1171  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1172
1173  // Assign locations to all of the incoming arguments.
1174  SmallVector<CCValAssign, 16> ArgLocs;
1175  CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
1176                 getTargetMachine(), ArgLocs);
1177  CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_FastCall);
1178
1179  SmallVector<SDOperand, 8> ArgValues;
1180  unsigned LastVal = ~0U;
1181  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1182    CCValAssign &VA = ArgLocs[i];
1183    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1184    // places.
1185    assert(VA.getValNo() != LastVal &&
1186           "Don't support value assigned to multiple locs yet");
1187    LastVal = VA.getValNo();
1188
1189    if (VA.isRegLoc()) {
1190      MVT::ValueType RegVT = VA.getLocVT();
1191      TargetRegisterClass *RC;
1192      if (RegVT == MVT::i32)
1193        RC = X86::GR32RegisterClass;
1194      else {
1195        assert(MVT::isVector(RegVT));
1196        RC = X86::VR128RegisterClass;
1197      }
1198
1199      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1200      SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1201
1202      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1203      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1204      // right size.
1205      if (VA.getLocInfo() == CCValAssign::SExt)
1206        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1207                               DAG.getValueType(VA.getValVT()));
1208      else if (VA.getLocInfo() == CCValAssign::ZExt)
1209        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1210                               DAG.getValueType(VA.getValVT()));
1211
1212      if (VA.getLocInfo() != CCValAssign::Full)
1213        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1214
1215      ArgValues.push_back(ArgValue);
1216    } else {
1217      assert(VA.isMemLoc());
1218      ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
1219    }
1220  }
1221
1222  ArgValues.push_back(Root);
1223
1224  unsigned StackSize = CCInfo.getNextStackOffset();
1225
1226  if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
1227    // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1228    // arguments and the arguments after the retaddr has been pushed are
1229    // aligned.
1230    if ((StackSize & 7) == 0)
1231      StackSize += 4;
1232  }
1233
1234  VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1235  RegSaveFrameIndex = 0xAAAAAAA;   // X86-64 only.
1236  BytesToPopOnReturn = StackSize;  // Callee pops all stack arguments.
1237  BytesCallerReserves = 0;
1238
1239  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1240  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1241
1242  // Return the new list of results.
1243  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1244                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1245}
1246
1247SDOperand
1248X86TargetLowering::LowerMemOpCallTo(SDOperand Op, SelectionDAG &DAG,
1249                                    const SDOperand &StackPtr,
1250                                    const CCValAssign &VA,
1251                                    SDOperand Chain,
1252                                    SDOperand Arg) {
1253  SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
1254  PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1255  SDOperand FlagsOp = Op.getOperand(6+2*VA.getValNo());
1256  unsigned Flags    = cast<ConstantSDNode>(FlagsOp)->getValue();
1257  if (Flags & ISD::ParamFlags::ByVal) {
1258    unsigned Align = 1 << ((Flags & ISD::ParamFlags::ByValAlign) >>
1259                           ISD::ParamFlags::ByValAlignOffs);
1260
1261    unsigned  Size = (Flags & ISD::ParamFlags::ByValSize) >>
1262        ISD::ParamFlags::ByValSizeOffs;
1263
1264    SDOperand AlignNode = DAG.getConstant(Align, MVT::i32);
1265    SDOperand  SizeNode = DAG.getConstant(Size, MVT::i32);
1266    SDOperand AlwaysInline = DAG.getConstant(1, MVT::i32);
1267
1268    return DAG.getMemcpy(Chain, PtrOff, Arg, SizeNode, AlignNode,
1269                         AlwaysInline);
1270  } else {
1271    return DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
1272  }
1273}
1274
1275SDOperand X86TargetLowering::LowerFastCCCallTo(SDOperand Op, SelectionDAG &DAG,
1276                                               unsigned CC) {
1277  SDOperand Chain     = Op.getOperand(0);
1278  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1279  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1280  SDOperand Callee    = Op.getOperand(4);
1281
1282  // Analyze operands of the call, assigning locations to each operand.
1283  SmallVector<CCValAssign, 16> ArgLocs;
1284  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1285  CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_FastCall);
1286
1287  // Get a count of how many bytes are to be pushed on the stack.
1288  unsigned NumBytes = CCInfo.getNextStackOffset();
1289
1290  if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
1291    // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1292    // arguments and the arguments after the retaddr has been pushed are
1293    // aligned.
1294    if ((NumBytes & 7) == 0)
1295      NumBytes += 4;
1296  }
1297
1298  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1299
1300  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1301  SmallVector<SDOperand, 8> MemOpChains;
1302
1303  SDOperand StackPtr;
1304
1305  // Walk the register/memloc assignments, inserting copies/loads.
1306  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1307    CCValAssign &VA = ArgLocs[i];
1308    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1309
1310    // Promote the value if needed.
1311    switch (VA.getLocInfo()) {
1312      default: assert(0 && "Unknown loc info!");
1313      case CCValAssign::Full: break;
1314      case CCValAssign::SExt:
1315        Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1316        break;
1317      case CCValAssign::ZExt:
1318        Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1319        break;
1320      case CCValAssign::AExt:
1321        Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1322        break;
1323    }
1324
1325    if (VA.isRegLoc()) {
1326      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1327    } else {
1328      assert(VA.isMemLoc());
1329      if (StackPtr.Val == 0)
1330        StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
1331
1332      MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1333                                             Arg));
1334    }
1335  }
1336
1337  if (!MemOpChains.empty())
1338    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1339                        &MemOpChains[0], MemOpChains.size());
1340
1341  // Build a sequence of copy-to-reg nodes chained together with token chain
1342  // and flag operands which copy the outgoing args into registers.
1343  SDOperand InFlag;
1344  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1345    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1346                             InFlag);
1347    InFlag = Chain.getValue(1);
1348  }
1349
1350  // If the callee is a GlobalAddress node (quite common, every direct call is)
1351  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1352  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1353    // We should use extra load for direct calls to dllimported functions in
1354    // non-JIT mode.
1355    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1356                                        getTargetMachine(), true))
1357      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1358  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1359    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1360
1361  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1362  // GOT pointer.
1363  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1364      Subtarget->isPICStyleGOT()) {
1365    Chain = DAG.getCopyToReg(Chain, X86::EBX,
1366                             DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1367                             InFlag);
1368    InFlag = Chain.getValue(1);
1369  }
1370
1371  // Returns a chain & a flag for retval copy to use.
1372  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1373  SmallVector<SDOperand, 8> Ops;
1374  Ops.push_back(Chain);
1375  Ops.push_back(Callee);
1376
1377  // Add argument registers to the end of the list so that they are known live
1378  // into the call.
1379  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1380    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1381                                  RegsToPass[i].second.getValueType()));
1382
1383  // Add an implicit use GOT pointer in EBX.
1384  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1385      Subtarget->isPICStyleGOT())
1386    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1387
1388  if (InFlag.Val)
1389    Ops.push_back(InFlag);
1390
1391  assert(isTailCall==false && "no tail call here");
1392  Chain = DAG.getNode(X86ISD::CALL,
1393                      NodeTys, &Ops[0], Ops.size());
1394  InFlag = Chain.getValue(1);
1395
1396  // Returns a flag for retval copy to use.
1397  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1398  Ops.clear();
1399  Ops.push_back(Chain);
1400  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1401  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1402  Ops.push_back(InFlag);
1403  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1404  InFlag = Chain.getValue(1);
1405
1406  // Handle result values, copying them out of physregs into vregs that we
1407  // return.
1408  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1409}
1410
1411//===----------------------------------------------------------------------===//
1412//                Fast Calling Convention (tail call) implementation
1413//===----------------------------------------------------------------------===//
1414
1415//  Like std call, callee cleans arguments, convention except that ECX is
1416//  reserved for storing the tail called function address. Only 2 registers are
1417//  free for argument passing (inreg). Tail call optimization is performed
1418//  provided:
1419//                * tailcallopt is enabled
1420//                * caller/callee are fastcc
1421//                * elf/pic is disabled OR
1422//                * elf/pic enabled + callee is in module + callee has
1423//                  visibility protected or hidden
1424//  To keep the stack aligned according to platform abi the function
1425//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
1426//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
1427//  If a tail called function callee has more arguments than the caller the
1428//  caller needs to make sure that there is room to move the RETADDR to. This is
1429//  achieved by reserving an area the size of the argument delta right after the
1430//  original REtADDR, but before the saved framepointer or the spilled registers
1431//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
1432//  stack layout:
1433//    arg1
1434//    arg2
1435//    RETADDR
1436//    [ new RETADDR
1437//      move area ]
1438//    (possible EBP)
1439//    ESI
1440//    EDI
1441//    local1 ..
1442
1443/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
1444/// for a 16 byte align requirement.
1445unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
1446                                                        SelectionDAG& DAG) {
1447  if (PerformTailCallOpt) {
1448    MachineFunction &MF = DAG.getMachineFunction();
1449    const TargetMachine &TM = MF.getTarget();
1450    const TargetFrameInfo &TFI = *TM.getFrameInfo();
1451    unsigned StackAlignment = TFI.getStackAlignment();
1452    uint64_t AlignMask = StackAlignment - 1;
1453    int64_t Offset = StackSize;
1454    unsigned SlotSize = Subtarget->is64Bit() ? 8 : 4;
1455    if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
1456      // Number smaller than 12 so just add the difference.
1457      Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
1458    } else {
1459      // Mask out lower bits, add stackalignment once plus the 12 bytes.
1460      Offset = ((~AlignMask) & Offset) + StackAlignment +
1461        (StackAlignment-SlotSize);
1462    }
1463    StackSize = Offset;
1464  }
1465  return StackSize;
1466}
1467
1468/// IsEligibleForTailCallElimination - Check to see whether the next instruction
1469/// following the call is a return. A function is eligible if caller/callee
1470/// calling conventions match, currently only fastcc supports tail calls, and
1471/// the function CALL is immediatly followed by a RET.
1472bool X86TargetLowering::IsEligibleForTailCallOptimization(SDOperand Call,
1473                                                      SDOperand Ret,
1474                                                      SelectionDAG& DAG) const {
1475  if (!PerformTailCallOpt)
1476    return false;
1477
1478  // Check whether CALL node immediatly preceeds the RET node and whether the
1479  // return uses the result of the node or is a void return.
1480  unsigned NumOps = Ret.getNumOperands();
1481  if ((NumOps == 1 &&
1482       (Ret.getOperand(0) == SDOperand(Call.Val,1) ||
1483        Ret.getOperand(0) == SDOperand(Call.Val,0))) ||
1484      (NumOps > 1 &&
1485       Ret.getOperand(0) == SDOperand(Call.Val,Call.Val->getNumValues()-1) &&
1486       Ret.getOperand(1) == SDOperand(Call.Val,0))) {
1487    MachineFunction &MF = DAG.getMachineFunction();
1488    unsigned CallerCC = MF.getFunction()->getCallingConv();
1489    unsigned CalleeCC = cast<ConstantSDNode>(Call.getOperand(1))->getValue();
1490    if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
1491      SDOperand Callee = Call.getOperand(4);
1492      // On elf/pic %ebx needs to be livein.
1493      if (getTargetMachine().getRelocationModel() != Reloc::PIC_ ||
1494          !Subtarget->isPICStyleGOT())
1495        return true;
1496
1497      // Can only do local tail calls with PIC.
1498      GlobalValue * GV = 0;
1499      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
1500      if(G != 0 &&
1501         (GV = G->getGlobal()) &&
1502         (GV->hasHiddenVisibility() || GV->hasProtectedVisibility()))
1503        return true;
1504    }
1505  }
1506
1507  return false;
1508}
1509
1510SDOperand X86TargetLowering::LowerX86_TailCallTo(SDOperand Op,
1511                                                     SelectionDAG &DAG,
1512                                                     unsigned CC) {
1513  SDOperand Chain     = Op.getOperand(0);
1514  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1515  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1516  SDOperand Callee    = Op.getOperand(4);
1517  bool is64Bit        = Subtarget->is64Bit();
1518
1519  assert(isTailCall && PerformTailCallOpt && "Should only emit tail calls.");
1520
1521  // Analyze operands of the call, assigning locations to each operand.
1522  SmallVector<CCValAssign, 16> ArgLocs;
1523  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1524  if (is64Bit)
1525    CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_64_TailCall);
1526  else
1527    CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_TailCall);
1528
1529
1530  // Lower arguments at fp - stackoffset + fpdiff.
1531  MachineFunction &MF = DAG.getMachineFunction();
1532
1533  unsigned NumBytesToBePushed =
1534    GetAlignedArgumentStackSize(CCInfo.getNextStackOffset(), DAG);
1535
1536  unsigned NumBytesCallerPushed =
1537    MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1538  int FPDiff = NumBytesCallerPushed - NumBytesToBePushed;
1539
1540  // Set the delta of movement of the returnaddr stackslot.
1541  // But only set if delta is greater than previous delta.
1542  if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1543    MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1544
1545  Chain = DAG.
1546   getCALLSEQ_START(Chain, DAG.getConstant(NumBytesToBePushed, getPointerTy()));
1547
1548  // Adjust the Return address stack slot.
1549  SDOperand RetAddrFrIdx, NewRetAddrFrIdx;
1550  if (FPDiff) {
1551    MVT::ValueType VT = is64Bit ? MVT::i64 : MVT::i32;
1552    RetAddrFrIdx = getReturnAddressFrameIndex(DAG);
1553    // Load the "old" Return address.
1554    RetAddrFrIdx =
1555      DAG.getLoad(VT, Chain,RetAddrFrIdx, NULL, 0);
1556    // Calculate the new stack slot for the return address.
1557    int SlotSize = is64Bit ? 8 : 4;
1558    int NewReturnAddrFI =
1559      MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize);
1560    NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1561    Chain = SDOperand(RetAddrFrIdx.Val, 1);
1562  }
1563
1564  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1565  SmallVector<SDOperand, 8> MemOpChains;
1566  SmallVector<SDOperand, 8> MemOpChains2;
1567  SDOperand FramePtr, StackPtr;
1568  SDOperand PtrOff;
1569  SDOperand FIN;
1570  int FI = 0;
1571
1572  // Walk the register/memloc assignments, inserting copies/loads.  Lower
1573  // arguments first to the stack slot where they would normally - in case of a
1574  // normal function call - be.
1575  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1576    CCValAssign &VA = ArgLocs[i];
1577    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1578
1579    // Promote the value if needed.
1580    switch (VA.getLocInfo()) {
1581    default: assert(0 && "Unknown loc info!");
1582    case CCValAssign::Full: break;
1583    case CCValAssign::SExt:
1584      Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1585      break;
1586    case CCValAssign::ZExt:
1587      Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1588      break;
1589    case CCValAssign::AExt:
1590      Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1591      break;
1592    }
1593
1594    if (VA.isRegLoc()) {
1595      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1596    } else {
1597      assert(VA.isMemLoc());
1598      if (StackPtr.Val == 0)
1599        StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
1600
1601      MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1602                                             Arg));
1603    }
1604  }
1605
1606  if (!MemOpChains.empty())
1607    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1608                        &MemOpChains[0], MemOpChains.size());
1609
1610  // Build a sequence of copy-to-reg nodes chained together with token chain
1611  // and flag operands which copy the outgoing args into registers.
1612  SDOperand InFlag;
1613  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1614    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1615                             InFlag);
1616    InFlag = Chain.getValue(1);
1617  }
1618  InFlag = SDOperand();
1619
1620  // Copy from stack slots to stack slot of a tail called function. This needs
1621  // to be done because if we would lower the arguments directly to their real
1622  // stack slot we might end up overwriting each other.
1623  // TODO: To make this more efficient (sometimes saving a store/load) we could
1624  // analyse the arguments and emit this store/load/store sequence only for
1625  // arguments which would be overwritten otherwise.
1626  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1627    CCValAssign &VA = ArgLocs[i];
1628    if (!VA.isRegLoc()) {
1629      SDOperand FlagsOp = Op.getOperand(6+2*VA.getValNo());
1630      unsigned Flags    = cast<ConstantSDNode>(FlagsOp)->getValue();
1631
1632      // Get source stack slot.
1633      SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
1634      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1635      // Create frame index.
1636      int32_t Offset = VA.getLocMemOffset()+FPDiff;
1637      uint32_t OpSize = (MVT::getSizeInBits(VA.getLocVT())+7)/8;
1638      FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
1639      FIN = DAG.getFrameIndex(FI, MVT::i32);
1640      if (Flags & ISD::ParamFlags::ByVal) {
1641        // Copy relative to framepointer.
1642        unsigned Align = 1 << ((Flags & ISD::ParamFlags::ByValAlign) >>
1643                               ISD::ParamFlags::ByValAlignOffs);
1644
1645        unsigned  Size = (Flags & ISD::ParamFlags::ByValSize) >>
1646          ISD::ParamFlags::ByValSizeOffs;
1647
1648        SDOperand AlignNode = DAG.getConstant(Align, MVT::i32);
1649        SDOperand  SizeNode = DAG.getConstant(Size, MVT::i32);
1650        SDOperand AlwaysInline = DAG.getConstant(1, MVT::i1);
1651
1652        MemOpChains2.push_back(DAG.getMemcpy(Chain, FIN, PtrOff, SizeNode,
1653                                             AlignNode,AlwaysInline));
1654      } else {
1655        SDOperand LoadedArg = DAG.getLoad(VA.getValVT(), Chain, PtrOff, NULL,0);
1656        // Store relative to framepointer.
1657        MemOpChains2.push_back(DAG.getStore(Chain, LoadedArg, FIN, NULL, 0));
1658      }
1659    }
1660  }
1661
1662  if (!MemOpChains2.empty())
1663    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1664                        &MemOpChains2[0], MemOpChains.size());
1665
1666  // Store the return address to the appropriate stack slot.
1667  if (FPDiff)
1668    Chain = DAG.getStore(Chain,RetAddrFrIdx, NewRetAddrFrIdx, NULL, 0);
1669
1670  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1671  // GOT pointer.
1672  // Does not work with tail call since ebx is not restored correctly by
1673  // tailcaller. TODO: at least for x86 - verify for x86-64
1674
1675  // If the callee is a GlobalAddress node (quite common, every direct call is)
1676  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1677  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1678    // We should use extra load for direct calls to dllimported functions in
1679    // non-JIT mode.
1680    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1681                                        getTargetMachine(), true))
1682      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1683  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1684    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1685  else {
1686    assert(Callee.getOpcode() == ISD::LOAD &&
1687           "Function destination must be loaded into virtual register");
1688    unsigned Opc = is64Bit ? X86::R9 : X86::ECX;
1689
1690    Chain = DAG.getCopyToReg(Chain,
1691                             DAG.getRegister(Opc, getPointerTy()) ,
1692                             Callee,InFlag);
1693    Callee = DAG.getRegister(Opc, getPointerTy());
1694    // Add register as live out.
1695    DAG.getMachineFunction().addLiveOut(Opc);
1696  }
1697
1698  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1699  SmallVector<SDOperand, 8> Ops;
1700
1701  Ops.push_back(Chain);
1702  Ops.push_back(DAG.getConstant(NumBytesToBePushed, getPointerTy()));
1703  Ops.push_back(DAG.getConstant(0, getPointerTy()));
1704  if (InFlag.Val)
1705    Ops.push_back(InFlag);
1706  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1707  InFlag = Chain.getValue(1);
1708
1709  // Returns a chain & a flag for retval copy to use.
1710  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1711  Ops.clear();
1712  Ops.push_back(Chain);
1713  Ops.push_back(Callee);
1714  Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
1715  // Add argument registers to the end of the list so that they are known live
1716  // into the call.
1717  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1718    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1719                                  RegsToPass[i].second.getValueType()));
1720  if (InFlag.Val)
1721    Ops.push_back(InFlag);
1722  assert(InFlag.Val &&
1723         "Flag must be set. Depend on flag being set in LowerRET");
1724  Chain = DAG.getNode(X86ISD::TAILCALL,
1725                      Op.Val->getVTList(), &Ops[0], Ops.size());
1726
1727  return SDOperand(Chain.Val, Op.ResNo);
1728}
1729
1730//===----------------------------------------------------------------------===//
1731//                 X86-64 C Calling Convention implementation
1732//===----------------------------------------------------------------------===//
1733
1734SDOperand
1735X86TargetLowering::LowerX86_64CCCArguments(SDOperand Op, SelectionDAG &DAG) {
1736  MachineFunction &MF = DAG.getMachineFunction();
1737  MachineFrameInfo *MFI = MF.getFrameInfo();
1738  SDOperand Root = Op.getOperand(0);
1739  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1740  unsigned CC= MF.getFunction()->getCallingConv();
1741
1742  static const unsigned GPR64ArgRegs[] = {
1743    X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8,  X86::R9
1744  };
1745  static const unsigned XMMArgRegs[] = {
1746    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1747    X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1748  };
1749
1750
1751  // Assign locations to all of the incoming arguments.
1752  SmallVector<CCValAssign, 16> ArgLocs;
1753  CCState CCInfo(CC, isVarArg,
1754                 getTargetMachine(), ArgLocs);
1755  if (CC == CallingConv::Fast && PerformTailCallOpt)
1756    CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_64_TailCall);
1757  else
1758    CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_64_C);
1759
1760  SmallVector<SDOperand, 8> ArgValues;
1761  unsigned LastVal = ~0U;
1762  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1763    CCValAssign &VA = ArgLocs[i];
1764    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1765    // places.
1766    assert(VA.getValNo() != LastVal &&
1767           "Don't support value assigned to multiple locs yet");
1768    LastVal = VA.getValNo();
1769
1770    if (VA.isRegLoc()) {
1771      MVT::ValueType RegVT = VA.getLocVT();
1772      TargetRegisterClass *RC;
1773      if (RegVT == MVT::i32)
1774        RC = X86::GR32RegisterClass;
1775      else if (RegVT == MVT::i64)
1776        RC = X86::GR64RegisterClass;
1777      else if (RegVT == MVT::f32)
1778        RC = X86::FR32RegisterClass;
1779      else if (RegVT == MVT::f64)
1780        RC = X86::FR64RegisterClass;
1781      else {
1782        assert(MVT::isVector(RegVT));
1783        if (MVT::getSizeInBits(RegVT) == 64) {
1784          RC = X86::GR64RegisterClass;       // MMX values are passed in GPRs.
1785          RegVT = MVT::i64;
1786        } else
1787          RC = X86::VR128RegisterClass;
1788      }
1789
1790      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1791      SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1792
1793      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1794      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1795      // right size.
1796      if (VA.getLocInfo() == CCValAssign::SExt)
1797        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1798                               DAG.getValueType(VA.getValVT()));
1799      else if (VA.getLocInfo() == CCValAssign::ZExt)
1800        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1801                               DAG.getValueType(VA.getValVT()));
1802
1803      if (VA.getLocInfo() != CCValAssign::Full)
1804        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1805
1806      // Handle MMX values passed in GPRs.
1807      if (RegVT != VA.getLocVT() && RC == X86::GR64RegisterClass &&
1808          MVT::getSizeInBits(RegVT) == 64)
1809        ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
1810
1811      ArgValues.push_back(ArgValue);
1812    } else {
1813      assert(VA.isMemLoc());
1814      ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
1815    }
1816  }
1817
1818  unsigned StackSize = CCInfo.getNextStackOffset();
1819  if (CC==CallingConv::Fast)
1820    StackSize =GetAlignedArgumentStackSize(StackSize, DAG);
1821
1822  // If the function takes variable number of arguments, make a frame index for
1823  // the start of the first vararg value... for expansion of llvm.va_start.
1824  if (isVarArg) {
1825    assert(CC!=CallingConv::Fast
1826           && "Var arg not supported with calling convention fastcc");
1827    unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs, 6);
1828    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1829
1830    // For X86-64, if there are vararg parameters that are passed via
1831    // registers, then we must store them to their spots on the stack so they
1832    // may be loaded by deferencing the result of va_next.
1833    VarArgsGPOffset = NumIntRegs * 8;
1834    VarArgsFPOffset = 6 * 8 + NumXMMRegs * 16;
1835    VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1836    RegSaveFrameIndex = MFI->CreateStackObject(6 * 8 + 8 * 16, 16);
1837
1838    // Store the integer parameter registers.
1839    SmallVector<SDOperand, 8> MemOps;
1840    SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1841    SDOperand FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1842                              DAG.getConstant(VarArgsGPOffset, getPointerTy()));
1843    for (; NumIntRegs != 6; ++NumIntRegs) {
1844      unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
1845                                X86::GR64RegisterClass);
1846      SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1847      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1848      MemOps.push_back(Store);
1849      FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1850                        DAG.getConstant(8, getPointerTy()));
1851    }
1852
1853    // Now store the XMM (fp + vector) parameter registers.
1854    FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1855                      DAG.getConstant(VarArgsFPOffset, getPointerTy()));
1856    for (; NumXMMRegs != 8; ++NumXMMRegs) {
1857      unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
1858                                X86::VR128RegisterClass);
1859      SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
1860      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1861      MemOps.push_back(Store);
1862      FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1863                        DAG.getConstant(16, getPointerTy()));
1864    }
1865    if (!MemOps.empty())
1866        Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
1867                           &MemOps[0], MemOps.size());
1868  }
1869
1870  ArgValues.push_back(Root);
1871  // Tail call convention (fastcc) needs callee pop.
1872  if (CC == CallingConv::Fast && PerformTailCallOpt) {
1873    BytesToPopOnReturn = StackSize;  // Callee pops everything.
1874    BytesCallerReserves = 0;
1875  } else {
1876    BytesToPopOnReturn = 0;  // Callee pops nothing.
1877    BytesCallerReserves = StackSize;
1878  }
1879  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1880  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1881
1882  // Return the new list of results.
1883  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1884                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1885}
1886
1887SDOperand
1888X86TargetLowering::LowerX86_64CCCCallTo(SDOperand Op, SelectionDAG &DAG,
1889                                        unsigned CC) {
1890  SDOperand Chain     = Op.getOperand(0);
1891  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1892  SDOperand Callee    = Op.getOperand(4);
1893
1894  // Analyze operands of the call, assigning locations to each operand.
1895  SmallVector<CCValAssign, 16> ArgLocs;
1896  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1897  if (CC==CallingConv::Fast && PerformTailCallOpt)
1898    CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_64_TailCall);
1899  else
1900    CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_64_C);
1901
1902  // Get a count of how many bytes are to be pushed on the stack.
1903  unsigned NumBytes = CCInfo.getNextStackOffset();
1904  if (CC == CallingConv::Fast)
1905    NumBytes = GetAlignedArgumentStackSize(NumBytes,DAG);
1906
1907  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1908
1909  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1910  SmallVector<SDOperand, 8> MemOpChains;
1911
1912  SDOperand StackPtr;
1913
1914  // Walk the register/memloc assignments, inserting copies/loads.
1915  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1916    CCValAssign &VA = ArgLocs[i];
1917    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1918
1919    // Promote the value if needed.
1920    switch (VA.getLocInfo()) {
1921    default: assert(0 && "Unknown loc info!");
1922    case CCValAssign::Full: break;
1923    case CCValAssign::SExt:
1924      Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1925      break;
1926    case CCValAssign::ZExt:
1927      Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1928      break;
1929    case CCValAssign::AExt:
1930      Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1931      break;
1932    }
1933
1934    if (VA.isRegLoc()) {
1935      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1936    } else {
1937      assert(VA.isMemLoc());
1938      if (StackPtr.Val == 0)
1939        StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
1940
1941      MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1942                                             Arg));
1943    }
1944  }
1945
1946  if (!MemOpChains.empty())
1947    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1948                        &MemOpChains[0], MemOpChains.size());
1949
1950  // Build a sequence of copy-to-reg nodes chained together with token chain
1951  // and flag operands which copy the outgoing args into registers.
1952  SDOperand InFlag;
1953  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1954    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1955                             InFlag);
1956    InFlag = Chain.getValue(1);
1957  }
1958
1959  if (isVarArg) {
1960    assert ( CallingConv::Fast != CC &&
1961             "Var args not supported with calling convention fastcc");
1962
1963    // From AMD64 ABI document:
1964    // For calls that may call functions that use varargs or stdargs
1965    // (prototype-less calls or calls to functions containing ellipsis (...) in
1966    // the declaration) %al is used as hidden argument to specify the number
1967    // of SSE registers used. The contents of %al do not need to match exactly
1968    // the number of registers, but must be an ubound on the number of SSE
1969    // registers used and is in the range 0 - 8 inclusive.
1970
1971    // Count the number of XMM registers allocated.
1972    static const unsigned XMMArgRegs[] = {
1973      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1974      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1975    };
1976    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1977
1978    Chain = DAG.getCopyToReg(Chain, X86::AL,
1979                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1980    InFlag = Chain.getValue(1);
1981  }
1982
1983  // If the callee is a GlobalAddress node (quite common, every direct call is)
1984  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1985  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1986    // We should use extra load for direct calls to dllimported functions in
1987    // non-JIT mode.
1988    if (getTargetMachine().getCodeModel() != CodeModel::Large
1989        && !Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1990                                           getTargetMachine(), true))
1991      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1992  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1993    if (getTargetMachine().getCodeModel() != CodeModel::Large)
1994      Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1995
1996  // Returns a chain & a flag for retval copy to use.
1997  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1998  SmallVector<SDOperand, 8> Ops;
1999  Ops.push_back(Chain);
2000  Ops.push_back(Callee);
2001
2002  // Add argument registers to the end of the list so that they are known live
2003  // into the call.
2004  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2005    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2006                                  RegsToPass[i].second.getValueType()));
2007
2008  if (InFlag.Val)
2009    Ops.push_back(InFlag);
2010
2011  Chain = DAG.getNode(X86ISD::CALL,
2012                      NodeTys, &Ops[0], Ops.size());
2013  InFlag = Chain.getValue(1);
2014  int NumBytesForCalleeToPush = 0;
2015   if (CC==CallingConv::Fast && PerformTailCallOpt) {
2016    NumBytesForCalleeToPush = NumBytes;  // Callee pops everything
2017  } else {
2018    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2019  }
2020  // Returns a flag for retval copy to use.
2021  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
2022  Ops.clear();
2023  Ops.push_back(Chain);
2024  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
2025  Ops.push_back(DAG.getConstant(NumBytesForCalleeToPush, getPointerTy()));
2026  Ops.push_back(InFlag);
2027  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
2028  InFlag = Chain.getValue(1);
2029
2030  // Handle result values, copying them out of physregs into vregs that we
2031  // return.
2032  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
2033}
2034
2035
2036//===----------------------------------------------------------------------===//
2037//                           Other Lowering Hooks
2038//===----------------------------------------------------------------------===//
2039
2040
2041SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
2042  MachineFunction &MF = DAG.getMachineFunction();
2043  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2044  int ReturnAddrIndex = FuncInfo->getRAIndex();
2045
2046  if (ReturnAddrIndex == 0) {
2047    // Set up a frame object for the return address.
2048    if (Subtarget->is64Bit())
2049      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(8, -8);
2050    else
2051      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4);
2052
2053    FuncInfo->setRAIndex(ReturnAddrIndex);
2054  }
2055
2056  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2057}
2058
2059
2060
2061/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
2062/// specific condition code. It returns a false if it cannot do a direct
2063/// translation. X86CC is the translated CondCode.  LHS/RHS are modified as
2064/// needed.
2065static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2066                           unsigned &X86CC, SDOperand &LHS, SDOperand &RHS,
2067                           SelectionDAG &DAG) {
2068  X86CC = X86::COND_INVALID;
2069  if (!isFP) {
2070    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2071      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2072        // X > -1   -> X == 0, jump !sign.
2073        RHS = DAG.getConstant(0, RHS.getValueType());
2074        X86CC = X86::COND_NS;
2075        return true;
2076      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2077        // X < 0   -> X == 0, jump on sign.
2078        X86CC = X86::COND_S;
2079        return true;
2080      } else if (SetCCOpcode == ISD::SETLT && RHSC->getValue() == 1) {
2081        // X < 1   -> X <= 0
2082        RHS = DAG.getConstant(0, RHS.getValueType());
2083        X86CC = X86::COND_LE;
2084        return true;
2085      }
2086    }
2087
2088    switch (SetCCOpcode) {
2089    default: break;
2090    case ISD::SETEQ:  X86CC = X86::COND_E;  break;
2091    case ISD::SETGT:  X86CC = X86::COND_G;  break;
2092    case ISD::SETGE:  X86CC = X86::COND_GE; break;
2093    case ISD::SETLT:  X86CC = X86::COND_L;  break;
2094    case ISD::SETLE:  X86CC = X86::COND_LE; break;
2095    case ISD::SETNE:  X86CC = X86::COND_NE; break;
2096    case ISD::SETULT: X86CC = X86::COND_B;  break;
2097    case ISD::SETUGT: X86CC = X86::COND_A;  break;
2098    case ISD::SETULE: X86CC = X86::COND_BE; break;
2099    case ISD::SETUGE: X86CC = X86::COND_AE; break;
2100    }
2101  } else {
2102    // On a floating point condition, the flags are set as follows:
2103    // ZF  PF  CF   op
2104    //  0 | 0 | 0 | X > Y
2105    //  0 | 0 | 1 | X < Y
2106    //  1 | 0 | 0 | X == Y
2107    //  1 | 1 | 1 | unordered
2108    bool Flip = false;
2109    switch (SetCCOpcode) {
2110    default: break;
2111    case ISD::SETUEQ:
2112    case ISD::SETEQ: X86CC = X86::COND_E;  break;
2113    case ISD::SETOLT: Flip = true; // Fallthrough
2114    case ISD::SETOGT:
2115    case ISD::SETGT: X86CC = X86::COND_A;  break;
2116    case ISD::SETOLE: Flip = true; // Fallthrough
2117    case ISD::SETOGE:
2118    case ISD::SETGE: X86CC = X86::COND_AE; break;
2119    case ISD::SETUGT: Flip = true; // Fallthrough
2120    case ISD::SETULT:
2121    case ISD::SETLT: X86CC = X86::COND_B;  break;
2122    case ISD::SETUGE: Flip = true; // Fallthrough
2123    case ISD::SETULE:
2124    case ISD::SETLE: X86CC = X86::COND_BE; break;
2125    case ISD::SETONE:
2126    case ISD::SETNE: X86CC = X86::COND_NE; break;
2127    case ISD::SETUO: X86CC = X86::COND_P;  break;
2128    case ISD::SETO:  X86CC = X86::COND_NP; break;
2129    }
2130    if (Flip)
2131      std::swap(LHS, RHS);
2132  }
2133
2134  return X86CC != X86::COND_INVALID;
2135}
2136
2137/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2138/// code. Current x86 isa includes the following FP cmov instructions:
2139/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2140static bool hasFPCMov(unsigned X86CC) {
2141  switch (X86CC) {
2142  default:
2143    return false;
2144  case X86::COND_B:
2145  case X86::COND_BE:
2146  case X86::COND_E:
2147  case X86::COND_P:
2148  case X86::COND_A:
2149  case X86::COND_AE:
2150  case X86::COND_NE:
2151  case X86::COND_NP:
2152    return true;
2153  }
2154}
2155
2156/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode.  Return
2157/// true if Op is undef or if its value falls within the specified range (L, H].
2158static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) {
2159  if (Op.getOpcode() == ISD::UNDEF)
2160    return true;
2161
2162  unsigned Val = cast<ConstantSDNode>(Op)->getValue();
2163  return (Val >= Low && Val < Hi);
2164}
2165
2166/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode.  Return
2167/// true if Op is undef or if its value equal to the specified value.
2168static bool isUndefOrEqual(SDOperand Op, unsigned Val) {
2169  if (Op.getOpcode() == ISD::UNDEF)
2170    return true;
2171  return cast<ConstantSDNode>(Op)->getValue() == Val;
2172}
2173
2174/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
2175/// specifies a shuffle of elements that is suitable for input to PSHUFD.
2176bool X86::isPSHUFDMask(SDNode *N) {
2177  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2178
2179  if (N->getNumOperands() != 2 && N->getNumOperands() != 4)
2180    return false;
2181
2182  // Check if the value doesn't reference the second vector.
2183  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2184    SDOperand Arg = N->getOperand(i);
2185    if (Arg.getOpcode() == ISD::UNDEF) continue;
2186    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2187    if (cast<ConstantSDNode>(Arg)->getValue() >= e)
2188      return false;
2189  }
2190
2191  return true;
2192}
2193
2194/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
2195/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
2196bool X86::isPSHUFHWMask(SDNode *N) {
2197  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2198
2199  if (N->getNumOperands() != 8)
2200    return false;
2201
2202  // Lower quadword copied in order.
2203  for (unsigned i = 0; i != 4; ++i) {
2204    SDOperand Arg = N->getOperand(i);
2205    if (Arg.getOpcode() == ISD::UNDEF) continue;
2206    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2207    if (cast<ConstantSDNode>(Arg)->getValue() != i)
2208      return false;
2209  }
2210
2211  // Upper quadword shuffled.
2212  for (unsigned i = 4; i != 8; ++i) {
2213    SDOperand Arg = N->getOperand(i);
2214    if (Arg.getOpcode() == ISD::UNDEF) continue;
2215    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2216    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2217    if (Val < 4 || Val > 7)
2218      return false;
2219  }
2220
2221  return true;
2222}
2223
2224/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
2225/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
2226bool X86::isPSHUFLWMask(SDNode *N) {
2227  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2228
2229  if (N->getNumOperands() != 8)
2230    return false;
2231
2232  // Upper quadword copied in order.
2233  for (unsigned i = 4; i != 8; ++i)
2234    if (!isUndefOrEqual(N->getOperand(i), i))
2235      return false;
2236
2237  // Lower quadword shuffled.
2238  for (unsigned i = 0; i != 4; ++i)
2239    if (!isUndefOrInRange(N->getOperand(i), 0, 4))
2240      return false;
2241
2242  return true;
2243}
2244
2245/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2246/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2247static bool isSHUFPMask(const SDOperand *Elems, unsigned NumElems) {
2248  if (NumElems != 2 && NumElems != 4) return false;
2249
2250  unsigned Half = NumElems / 2;
2251  for (unsigned i = 0; i < Half; ++i)
2252    if (!isUndefOrInRange(Elems[i], 0, NumElems))
2253      return false;
2254  for (unsigned i = Half; i < NumElems; ++i)
2255    if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2))
2256      return false;
2257
2258  return true;
2259}
2260
2261bool X86::isSHUFPMask(SDNode *N) {
2262  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2263  return ::isSHUFPMask(N->op_begin(), N->getNumOperands());
2264}
2265
2266/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2267/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2268/// half elements to come from vector 1 (which would equal the dest.) and
2269/// the upper half to come from vector 2.
2270static bool isCommutedSHUFP(const SDOperand *Ops, unsigned NumOps) {
2271  if (NumOps != 2 && NumOps != 4) return false;
2272
2273  unsigned Half = NumOps / 2;
2274  for (unsigned i = 0; i < Half; ++i)
2275    if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2))
2276      return false;
2277  for (unsigned i = Half; i < NumOps; ++i)
2278    if (!isUndefOrInRange(Ops[i], 0, NumOps))
2279      return false;
2280  return true;
2281}
2282
2283static bool isCommutedSHUFP(SDNode *N) {
2284  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2285  return isCommutedSHUFP(N->op_begin(), N->getNumOperands());
2286}
2287
2288/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2289/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2290bool X86::isMOVHLPSMask(SDNode *N) {
2291  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2292
2293  if (N->getNumOperands() != 4)
2294    return false;
2295
2296  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2297  return isUndefOrEqual(N->getOperand(0), 6) &&
2298         isUndefOrEqual(N->getOperand(1), 7) &&
2299         isUndefOrEqual(N->getOperand(2), 2) &&
2300         isUndefOrEqual(N->getOperand(3), 3);
2301}
2302
2303/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2304/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2305/// <2, 3, 2, 3>
2306bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
2307  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2308
2309  if (N->getNumOperands() != 4)
2310    return false;
2311
2312  // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
2313  return isUndefOrEqual(N->getOperand(0), 2) &&
2314         isUndefOrEqual(N->getOperand(1), 3) &&
2315         isUndefOrEqual(N->getOperand(2), 2) &&
2316         isUndefOrEqual(N->getOperand(3), 3);
2317}
2318
2319/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2320/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2321bool X86::isMOVLPMask(SDNode *N) {
2322  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2323
2324  unsigned NumElems = N->getNumOperands();
2325  if (NumElems != 2 && NumElems != 4)
2326    return false;
2327
2328  for (unsigned i = 0; i < NumElems/2; ++i)
2329    if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
2330      return false;
2331
2332  for (unsigned i = NumElems/2; i < NumElems; ++i)
2333    if (!isUndefOrEqual(N->getOperand(i), i))
2334      return false;
2335
2336  return true;
2337}
2338
2339/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
2340/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
2341/// and MOVLHPS.
2342bool X86::isMOVHPMask(SDNode *N) {
2343  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2344
2345  unsigned NumElems = N->getNumOperands();
2346  if (NumElems != 2 && NumElems != 4)
2347    return false;
2348
2349  for (unsigned i = 0; i < NumElems/2; ++i)
2350    if (!isUndefOrEqual(N->getOperand(i), i))
2351      return false;
2352
2353  for (unsigned i = 0; i < NumElems/2; ++i) {
2354    SDOperand Arg = N->getOperand(i + NumElems/2);
2355    if (!isUndefOrEqual(Arg, i + NumElems))
2356      return false;
2357  }
2358
2359  return true;
2360}
2361
2362/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2363/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2364bool static isUNPCKLMask(const SDOperand *Elts, unsigned NumElts,
2365                         bool V2IsSplat = false) {
2366  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2367    return false;
2368
2369  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2370    SDOperand BitI  = Elts[i];
2371    SDOperand BitI1 = Elts[i+1];
2372    if (!isUndefOrEqual(BitI, j))
2373      return false;
2374    if (V2IsSplat) {
2375      if (isUndefOrEqual(BitI1, NumElts))
2376        return false;
2377    } else {
2378      if (!isUndefOrEqual(BitI1, j + NumElts))
2379        return false;
2380    }
2381  }
2382
2383  return true;
2384}
2385
2386bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
2387  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2388  return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2389}
2390
2391/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2392/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2393bool static isUNPCKHMask(const SDOperand *Elts, unsigned NumElts,
2394                         bool V2IsSplat = false) {
2395  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2396    return false;
2397
2398  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2399    SDOperand BitI  = Elts[i];
2400    SDOperand BitI1 = Elts[i+1];
2401    if (!isUndefOrEqual(BitI, j + NumElts/2))
2402      return false;
2403    if (V2IsSplat) {
2404      if (isUndefOrEqual(BitI1, NumElts))
2405        return false;
2406    } else {
2407      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2408        return false;
2409    }
2410  }
2411
2412  return true;
2413}
2414
2415bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
2416  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2417  return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2418}
2419
2420/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2421/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2422/// <0, 0, 1, 1>
2423bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
2424  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2425
2426  unsigned NumElems = N->getNumOperands();
2427  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2428    return false;
2429
2430  for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
2431    SDOperand BitI  = N->getOperand(i);
2432    SDOperand BitI1 = N->getOperand(i+1);
2433
2434    if (!isUndefOrEqual(BitI, j))
2435      return false;
2436    if (!isUndefOrEqual(BitI1, j))
2437      return false;
2438  }
2439
2440  return true;
2441}
2442
2443/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2444/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2445/// <2, 2, 3, 3>
2446bool X86::isUNPCKH_v_undef_Mask(SDNode *N) {
2447  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2448
2449  unsigned NumElems = N->getNumOperands();
2450  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2451    return false;
2452
2453  for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2454    SDOperand BitI  = N->getOperand(i);
2455    SDOperand BitI1 = N->getOperand(i + 1);
2456
2457    if (!isUndefOrEqual(BitI, j))
2458      return false;
2459    if (!isUndefOrEqual(BitI1, j))
2460      return false;
2461  }
2462
2463  return true;
2464}
2465
2466/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2467/// specifies a shuffle of elements that is suitable for input to MOVSS,
2468/// MOVSD, and MOVD, i.e. setting the lowest element.
2469static bool isMOVLMask(const SDOperand *Elts, unsigned NumElts) {
2470  if (NumElts != 2 && NumElts != 4)
2471    return false;
2472
2473  if (!isUndefOrEqual(Elts[0], NumElts))
2474    return false;
2475
2476  for (unsigned i = 1; i < NumElts; ++i) {
2477    if (!isUndefOrEqual(Elts[i], i))
2478      return false;
2479  }
2480
2481  return true;
2482}
2483
2484bool X86::isMOVLMask(SDNode *N) {
2485  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2486  return ::isMOVLMask(N->op_begin(), N->getNumOperands());
2487}
2488
2489/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2490/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
2491/// element of vector 2 and the other elements to come from vector 1 in order.
2492static bool isCommutedMOVL(const SDOperand *Ops, unsigned NumOps,
2493                           bool V2IsSplat = false,
2494                           bool V2IsUndef = false) {
2495  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2496    return false;
2497
2498  if (!isUndefOrEqual(Ops[0], 0))
2499    return false;
2500
2501  for (unsigned i = 1; i < NumOps; ++i) {
2502    SDOperand Arg = Ops[i];
2503    if (!(isUndefOrEqual(Arg, i+NumOps) ||
2504          (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) ||
2505          (V2IsSplat && isUndefOrEqual(Arg, NumOps))))
2506      return false;
2507  }
2508
2509  return true;
2510}
2511
2512static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
2513                           bool V2IsUndef = false) {
2514  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2515  return isCommutedMOVL(N->op_begin(), N->getNumOperands(),
2516                        V2IsSplat, V2IsUndef);
2517}
2518
2519/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2520/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2521bool X86::isMOVSHDUPMask(SDNode *N) {
2522  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2523
2524  if (N->getNumOperands() != 4)
2525    return false;
2526
2527  // Expect 1, 1, 3, 3
2528  for (unsigned i = 0; i < 2; ++i) {
2529    SDOperand Arg = N->getOperand(i);
2530    if (Arg.getOpcode() == ISD::UNDEF) continue;
2531    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2532    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2533    if (Val != 1) return false;
2534  }
2535
2536  bool HasHi = false;
2537  for (unsigned i = 2; i < 4; ++i) {
2538    SDOperand Arg = N->getOperand(i);
2539    if (Arg.getOpcode() == ISD::UNDEF) continue;
2540    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2541    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2542    if (Val != 3) return false;
2543    HasHi = true;
2544  }
2545
2546  // Don't use movshdup if it can be done with a shufps.
2547  return HasHi;
2548}
2549
2550/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2551/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2552bool X86::isMOVSLDUPMask(SDNode *N) {
2553  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2554
2555  if (N->getNumOperands() != 4)
2556    return false;
2557
2558  // Expect 0, 0, 2, 2
2559  for (unsigned i = 0; i < 2; ++i) {
2560    SDOperand Arg = N->getOperand(i);
2561    if (Arg.getOpcode() == ISD::UNDEF) continue;
2562    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2563    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2564    if (Val != 0) return false;
2565  }
2566
2567  bool HasHi = false;
2568  for (unsigned i = 2; i < 4; ++i) {
2569    SDOperand Arg = N->getOperand(i);
2570    if (Arg.getOpcode() == ISD::UNDEF) continue;
2571    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2572    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2573    if (Val != 2) return false;
2574    HasHi = true;
2575  }
2576
2577  // Don't use movshdup if it can be done with a shufps.
2578  return HasHi;
2579}
2580
2581/// isIdentityMask - Return true if the specified VECTOR_SHUFFLE operand
2582/// specifies a identity operation on the LHS or RHS.
2583static bool isIdentityMask(SDNode *N, bool RHS = false) {
2584  unsigned NumElems = N->getNumOperands();
2585  for (unsigned i = 0; i < NumElems; ++i)
2586    if (!isUndefOrEqual(N->getOperand(i), i + (RHS ? NumElems : 0)))
2587      return false;
2588  return true;
2589}
2590
2591/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2592/// a splat of a single element.
2593static bool isSplatMask(SDNode *N) {
2594  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2595
2596  // This is a splat operation if each element of the permute is the same, and
2597  // if the value doesn't reference the second vector.
2598  unsigned NumElems = N->getNumOperands();
2599  SDOperand ElementBase;
2600  unsigned i = 0;
2601  for (; i != NumElems; ++i) {
2602    SDOperand Elt = N->getOperand(i);
2603    if (isa<ConstantSDNode>(Elt)) {
2604      ElementBase = Elt;
2605      break;
2606    }
2607  }
2608
2609  if (!ElementBase.Val)
2610    return false;
2611
2612  for (; i != NumElems; ++i) {
2613    SDOperand Arg = N->getOperand(i);
2614    if (Arg.getOpcode() == ISD::UNDEF) continue;
2615    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2616    if (Arg != ElementBase) return false;
2617  }
2618
2619  // Make sure it is a splat of the first vector operand.
2620  return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems;
2621}
2622
2623/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2624/// a splat of a single element and it's a 2 or 4 element mask.
2625bool X86::isSplatMask(SDNode *N) {
2626  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2627
2628  // We can only splat 64-bit, and 32-bit quantities with a single instruction.
2629  if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
2630    return false;
2631  return ::isSplatMask(N);
2632}
2633
2634/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
2635/// specifies a splat of zero element.
2636bool X86::isSplatLoMask(SDNode *N) {
2637  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2638
2639  for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
2640    if (!isUndefOrEqual(N->getOperand(i), 0))
2641      return false;
2642  return true;
2643}
2644
2645/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2646/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2647/// instructions.
2648unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2649  unsigned NumOperands = N->getNumOperands();
2650  unsigned Shift = (NumOperands == 4) ? 2 : 1;
2651  unsigned Mask = 0;
2652  for (unsigned i = 0; i < NumOperands; ++i) {
2653    unsigned Val = 0;
2654    SDOperand Arg = N->getOperand(NumOperands-i-1);
2655    if (Arg.getOpcode() != ISD::UNDEF)
2656      Val = cast<ConstantSDNode>(Arg)->getValue();
2657    if (Val >= NumOperands) Val -= NumOperands;
2658    Mask |= Val;
2659    if (i != NumOperands - 1)
2660      Mask <<= Shift;
2661  }
2662
2663  return Mask;
2664}
2665
2666/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2667/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2668/// instructions.
2669unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2670  unsigned Mask = 0;
2671  // 8 nodes, but we only care about the last 4.
2672  for (unsigned i = 7; i >= 4; --i) {
2673    unsigned Val = 0;
2674    SDOperand Arg = N->getOperand(i);
2675    if (Arg.getOpcode() != ISD::UNDEF)
2676      Val = cast<ConstantSDNode>(Arg)->getValue();
2677    Mask |= (Val - 4);
2678    if (i != 4)
2679      Mask <<= 2;
2680  }
2681
2682  return Mask;
2683}
2684
2685/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2686/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2687/// instructions.
2688unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2689  unsigned Mask = 0;
2690  // 8 nodes, but we only care about the first 4.
2691  for (int i = 3; i >= 0; --i) {
2692    unsigned Val = 0;
2693    SDOperand Arg = N->getOperand(i);
2694    if (Arg.getOpcode() != ISD::UNDEF)
2695      Val = cast<ConstantSDNode>(Arg)->getValue();
2696    Mask |= Val;
2697    if (i != 0)
2698      Mask <<= 2;
2699  }
2700
2701  return Mask;
2702}
2703
2704/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
2705/// specifies a 8 element shuffle that can be broken into a pair of
2706/// PSHUFHW and PSHUFLW.
2707static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
2708  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2709
2710  if (N->getNumOperands() != 8)
2711    return false;
2712
2713  // Lower quadword shuffled.
2714  for (unsigned i = 0; i != 4; ++i) {
2715    SDOperand Arg = N->getOperand(i);
2716    if (Arg.getOpcode() == ISD::UNDEF) continue;
2717    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2718    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2719    if (Val >= 4)
2720      return false;
2721  }
2722
2723  // Upper quadword shuffled.
2724  for (unsigned i = 4; i != 8; ++i) {
2725    SDOperand Arg = N->getOperand(i);
2726    if (Arg.getOpcode() == ISD::UNDEF) continue;
2727    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2728    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2729    if (Val < 4 || Val > 7)
2730      return false;
2731  }
2732
2733  return true;
2734}
2735
2736/// CommuteVectorShuffle - Swap vector_shuffle operands as well as
2737/// values in ther permute mask.
2738static SDOperand CommuteVectorShuffle(SDOperand Op, SDOperand &V1,
2739                                      SDOperand &V2, SDOperand &Mask,
2740                                      SelectionDAG &DAG) {
2741  MVT::ValueType VT = Op.getValueType();
2742  MVT::ValueType MaskVT = Mask.getValueType();
2743  MVT::ValueType EltVT = MVT::getVectorElementType(MaskVT);
2744  unsigned NumElems = Mask.getNumOperands();
2745  SmallVector<SDOperand, 8> MaskVec;
2746
2747  for (unsigned i = 0; i != NumElems; ++i) {
2748    SDOperand Arg = Mask.getOperand(i);
2749    if (Arg.getOpcode() == ISD::UNDEF) {
2750      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2751      continue;
2752    }
2753    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2754    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2755    if (Val < NumElems)
2756      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2757    else
2758      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2759  }
2760
2761  std::swap(V1, V2);
2762  Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], NumElems);
2763  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2764}
2765
2766/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
2767/// the two vector operands have swapped position.
2768static
2769SDOperand CommuteVectorShuffleMask(SDOperand Mask, SelectionDAG &DAG) {
2770  MVT::ValueType MaskVT = Mask.getValueType();
2771  MVT::ValueType EltVT = MVT::getVectorElementType(MaskVT);
2772  unsigned NumElems = Mask.getNumOperands();
2773  SmallVector<SDOperand, 8> MaskVec;
2774  for (unsigned i = 0; i != NumElems; ++i) {
2775    SDOperand Arg = Mask.getOperand(i);
2776    if (Arg.getOpcode() == ISD::UNDEF) {
2777      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2778      continue;
2779    }
2780    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2781    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2782    if (Val < NumElems)
2783      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2784    else
2785      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2786  }
2787  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], NumElems);
2788}
2789
2790
2791/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2792/// match movhlps. The lower half elements should come from upper half of
2793/// V1 (and in order), and the upper half elements should come from the upper
2794/// half of V2 (and in order).
2795static bool ShouldXformToMOVHLPS(SDNode *Mask) {
2796  unsigned NumElems = Mask->getNumOperands();
2797  if (NumElems != 4)
2798    return false;
2799  for (unsigned i = 0, e = 2; i != e; ++i)
2800    if (!isUndefOrEqual(Mask->getOperand(i), i+2))
2801      return false;
2802  for (unsigned i = 2; i != 4; ++i)
2803    if (!isUndefOrEqual(Mask->getOperand(i), i+4))
2804      return false;
2805  return true;
2806}
2807
2808/// isScalarLoadToVector - Returns true if the node is a scalar load that
2809/// is promoted to a vector.
2810static inline bool isScalarLoadToVector(SDNode *N) {
2811  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) {
2812    N = N->getOperand(0).Val;
2813    return ISD::isNON_EXTLoad(N);
2814  }
2815  return false;
2816}
2817
2818/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2819/// match movlp{s|d}. The lower half elements should come from lower half of
2820/// V1 (and in order), and the upper half elements should come from the upper
2821/// half of V2 (and in order). And since V1 will become the source of the
2822/// MOVLP, it must be either a vector load or a scalar load to vector.
2823static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
2824  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2825    return false;
2826  // Is V2 is a vector load, don't do this transformation. We will try to use
2827  // load folding shufps op.
2828  if (ISD::isNON_EXTLoad(V2))
2829    return false;
2830
2831  unsigned NumElems = Mask->getNumOperands();
2832  if (NumElems != 2 && NumElems != 4)
2833    return false;
2834  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2835    if (!isUndefOrEqual(Mask->getOperand(i), i))
2836      return false;
2837  for (unsigned i = NumElems/2; i != NumElems; ++i)
2838    if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
2839      return false;
2840  return true;
2841}
2842
2843/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2844/// all the same.
2845static bool isSplatVector(SDNode *N) {
2846  if (N->getOpcode() != ISD::BUILD_VECTOR)
2847    return false;
2848
2849  SDOperand SplatValue = N->getOperand(0);
2850  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2851    if (N->getOperand(i) != SplatValue)
2852      return false;
2853  return true;
2854}
2855
2856/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2857/// to an undef.
2858static bool isUndefShuffle(SDNode *N) {
2859  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2860    return false;
2861
2862  SDOperand V1 = N->getOperand(0);
2863  SDOperand V2 = N->getOperand(1);
2864  SDOperand Mask = N->getOperand(2);
2865  unsigned NumElems = Mask.getNumOperands();
2866  for (unsigned i = 0; i != NumElems; ++i) {
2867    SDOperand Arg = Mask.getOperand(i);
2868    if (Arg.getOpcode() != ISD::UNDEF) {
2869      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2870      if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
2871        return false;
2872      else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
2873        return false;
2874    }
2875  }
2876  return true;
2877}
2878
2879/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2880/// constant +0.0.
2881static inline bool isZeroNode(SDOperand Elt) {
2882  return ((isa<ConstantSDNode>(Elt) &&
2883           cast<ConstantSDNode>(Elt)->getValue() == 0) ||
2884          (isa<ConstantFPSDNode>(Elt) &&
2885           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
2886}
2887
2888/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2889/// to an zero vector.
2890static bool isZeroShuffle(SDNode *N) {
2891  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2892    return false;
2893
2894  SDOperand V1 = N->getOperand(0);
2895  SDOperand V2 = N->getOperand(1);
2896  SDOperand Mask = N->getOperand(2);
2897  unsigned NumElems = Mask.getNumOperands();
2898  for (unsigned i = 0; i != NumElems; ++i) {
2899    SDOperand Arg = Mask.getOperand(i);
2900    if (Arg.getOpcode() == ISD::UNDEF)
2901      continue;
2902
2903    unsigned Idx = cast<ConstantSDNode>(Arg)->getValue();
2904    if (Idx < NumElems) {
2905      unsigned Opc = V1.Val->getOpcode();
2906      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.Val))
2907        continue;
2908      if (Opc != ISD::BUILD_VECTOR ||
2909          !isZeroNode(V1.Val->getOperand(Idx)))
2910        return false;
2911    } else if (Idx >= NumElems) {
2912      unsigned Opc = V2.Val->getOpcode();
2913      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.Val))
2914        continue;
2915      if (Opc != ISD::BUILD_VECTOR ||
2916          !isZeroNode(V2.Val->getOperand(Idx - NumElems)))
2917        return false;
2918    }
2919  }
2920  return true;
2921}
2922
2923/// getZeroVector - Returns a vector of specified type with all zero elements.
2924///
2925static SDOperand getZeroVector(MVT::ValueType VT, SelectionDAG &DAG) {
2926  assert(MVT::isVector(VT) && "Expected a vector type");
2927
2928  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2929  // type.  This ensures they get CSE'd.
2930  SDOperand Cst = DAG.getTargetConstant(0, MVT::i32);
2931  SDOperand Vec;
2932  if (MVT::getSizeInBits(VT) == 64)  // MMX
2933    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst);
2934  else                                              // SSE
2935    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst);
2936  return DAG.getNode(ISD::BIT_CONVERT, VT, Vec);
2937}
2938
2939/// getOnesVector - Returns a vector of specified type with all bits set.
2940///
2941static SDOperand getOnesVector(MVT::ValueType VT, SelectionDAG &DAG) {
2942  assert(MVT::isVector(VT) && "Expected a vector type");
2943
2944  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2945  // type.  This ensures they get CSE'd.
2946  SDOperand Cst = DAG.getTargetConstant(~0U, MVT::i32);
2947  SDOperand Vec;
2948  if (MVT::getSizeInBits(VT) == 64)  // MMX
2949    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst);
2950  else                                              // SSE
2951    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst);
2952  return DAG.getNode(ISD::BIT_CONVERT, VT, Vec);
2953}
2954
2955
2956/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2957/// that point to V2 points to its first element.
2958static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) {
2959  assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
2960
2961  bool Changed = false;
2962  SmallVector<SDOperand, 8> MaskVec;
2963  unsigned NumElems = Mask.getNumOperands();
2964  for (unsigned i = 0; i != NumElems; ++i) {
2965    SDOperand Arg = Mask.getOperand(i);
2966    if (Arg.getOpcode() != ISD::UNDEF) {
2967      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2968      if (Val > NumElems) {
2969        Arg = DAG.getConstant(NumElems, Arg.getValueType());
2970        Changed = true;
2971      }
2972    }
2973    MaskVec.push_back(Arg);
2974  }
2975
2976  if (Changed)
2977    Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
2978                       &MaskVec[0], MaskVec.size());
2979  return Mask;
2980}
2981
2982/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2983/// operation of specified width.
2984static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
2985  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2986  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2987
2988  SmallVector<SDOperand, 8> MaskVec;
2989  MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
2990  for (unsigned i = 1; i != NumElems; ++i)
2991    MaskVec.push_back(DAG.getConstant(i, BaseVT));
2992  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2993}
2994
2995/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
2996/// of specified width.
2997static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
2998  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2999  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
3000  SmallVector<SDOperand, 8> MaskVec;
3001  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3002    MaskVec.push_back(DAG.getConstant(i,            BaseVT));
3003    MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
3004  }
3005  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
3006}
3007
3008/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
3009/// of specified width.
3010static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
3011  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3012  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
3013  unsigned Half = NumElems/2;
3014  SmallVector<SDOperand, 8> MaskVec;
3015  for (unsigned i = 0; i != Half; ++i) {
3016    MaskVec.push_back(DAG.getConstant(i + Half,            BaseVT));
3017    MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
3018  }
3019  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
3020}
3021
3022/// PromoteSplat - Promote a splat of v8i16 or v16i8 to v4i32.
3023///
3024static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG) {
3025  SDOperand V1 = Op.getOperand(0);
3026  SDOperand Mask = Op.getOperand(2);
3027  MVT::ValueType VT = Op.getValueType();
3028  unsigned NumElems = Mask.getNumOperands();
3029  Mask = getUnpacklMask(NumElems, DAG);
3030  while (NumElems != 4) {
3031    V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
3032    NumElems >>= 1;
3033  }
3034  V1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, V1);
3035
3036  Mask = getZeroVector(MVT::v4i32, DAG);
3037  SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32, V1,
3038                                  DAG.getNode(ISD::UNDEF, MVT::v4i32), Mask);
3039  return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
3040}
3041
3042/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3043/// vector of zero or undef vector.  This produces a shuffle where the low
3044/// element of V2 is swizzled into the zero/undef vector, landing at element
3045/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
3046static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, MVT::ValueType VT,
3047                                             unsigned NumElems, unsigned Idx,
3048                                             bool isZero, SelectionDAG &DAG) {
3049  SDOperand V1 = isZero ? getZeroVector(VT, DAG) : DAG.getNode(ISD::UNDEF, VT);
3050  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3051  MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
3052  SmallVector<SDOperand, 16> MaskVec;
3053  for (unsigned i = 0; i != NumElems; ++i)
3054    if (i == Idx)  // If this is the insertion idx, put the low elt of V2 here.
3055      MaskVec.push_back(DAG.getConstant(NumElems, EVT));
3056    else
3057      MaskVec.push_back(DAG.getConstant(i, EVT));
3058  SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3059                               &MaskVec[0], MaskVec.size());
3060  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
3061}
3062
3063/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3064///
3065static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros,
3066                                       unsigned NumNonZero, unsigned NumZero,
3067                                       SelectionDAG &DAG, TargetLowering &TLI) {
3068  if (NumNonZero > 8)
3069    return SDOperand();
3070
3071  SDOperand V(0, 0);
3072  bool First = true;
3073  for (unsigned i = 0; i < 16; ++i) {
3074    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3075    if (ThisIsNonZero && First) {
3076      if (NumZero)
3077        V = getZeroVector(MVT::v8i16, DAG);
3078      else
3079        V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
3080      First = false;
3081    }
3082
3083    if ((i & 1) != 0) {
3084      SDOperand ThisElt(0, 0), LastElt(0, 0);
3085      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3086      if (LastIsNonZero) {
3087        LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
3088      }
3089      if (ThisIsNonZero) {
3090        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
3091        ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
3092                              ThisElt, DAG.getConstant(8, MVT::i8));
3093        if (LastIsNonZero)
3094          ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
3095      } else
3096        ThisElt = LastElt;
3097
3098      if (ThisElt.Val)
3099        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
3100                        DAG.getConstant(i/2, TLI.getPointerTy()));
3101    }
3102  }
3103
3104  return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
3105}
3106
3107/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3108///
3109static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros,
3110                                       unsigned NumNonZero, unsigned NumZero,
3111                                       SelectionDAG &DAG, TargetLowering &TLI) {
3112  if (NumNonZero > 4)
3113    return SDOperand();
3114
3115  SDOperand V(0, 0);
3116  bool First = true;
3117  for (unsigned i = 0; i < 8; ++i) {
3118    bool isNonZero = (NonZeros & (1 << i)) != 0;
3119    if (isNonZero) {
3120      if (First) {
3121        if (NumZero)
3122          V = getZeroVector(MVT::v8i16, DAG);
3123        else
3124          V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
3125        First = false;
3126      }
3127      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
3128                      DAG.getConstant(i, TLI.getPointerTy()));
3129    }
3130  }
3131
3132  return V;
3133}
3134
3135/// is4WideVector - Returns true if the specific v8i16 or v16i8 vector is
3136/// actually just a 4 wide vector. e.g. <a, a, y, y, d, d, x, x>
3137SDOperand
3138X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
3139  // All zero's are handled with pxor, all one's are handled with pcmpeqd.
3140  if (ISD::isBuildVectorAllZeros(Op.Val) || ISD::isBuildVectorAllOnes(Op.Val)) {
3141    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3142    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3143    // eliminated on x86-32 hosts.
3144    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
3145      return Op;
3146
3147    if (ISD::isBuildVectorAllOnes(Op.Val))
3148      return getOnesVector(Op.getValueType(), DAG);
3149    return getZeroVector(Op.getValueType(), DAG);
3150  }
3151
3152  MVT::ValueType VT = Op.getValueType();
3153  MVT::ValueType EVT = MVT::getVectorElementType(VT);
3154  unsigned EVTBits = MVT::getSizeInBits(EVT);
3155
3156  unsigned NumElems = Op.getNumOperands();
3157  unsigned NumZero  = 0;
3158  unsigned NumNonZero = 0;
3159  unsigned NonZeros = 0;
3160  unsigned NumNonZeroImms = 0;
3161  SmallSet<SDOperand, 8> Values;
3162  for (unsigned i = 0; i < NumElems; ++i) {
3163    SDOperand Elt = Op.getOperand(i);
3164    if (Elt.getOpcode() != ISD::UNDEF) {
3165      Values.insert(Elt);
3166      if (isZeroNode(Elt))
3167        NumZero++;
3168      else {
3169        NonZeros |= (1 << i);
3170        NumNonZero++;
3171        if (Elt.getOpcode() == ISD::Constant ||
3172            Elt.getOpcode() == ISD::ConstantFP)
3173          NumNonZeroImms++;
3174      }
3175    }
3176  }
3177
3178  if (NumNonZero == 0) {
3179    // All undef vector. Return an UNDEF.  All zero vectors were handled above.
3180    return DAG.getNode(ISD::UNDEF, VT);
3181  }
3182
3183  // Splat is obviously ok. Let legalizer expand it to a shuffle.
3184  if (Values.size() == 1)
3185    return SDOperand();
3186
3187  // Special case for single non-zero element.
3188  if (NumNonZero == 1) {
3189    unsigned Idx = CountTrailingZeros_32(NonZeros);
3190    SDOperand Item = Op.getOperand(Idx);
3191    Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
3192    if (Idx == 0)
3193      // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3194      return getShuffleVectorZeroOrUndef(Item, VT, NumElems, Idx,
3195                                         NumZero > 0, DAG);
3196
3197    if (EVTBits == 32) {
3198      // Turn it into a shuffle of zero and zero-extended scalar to vector.
3199      Item = getShuffleVectorZeroOrUndef(Item, VT, NumElems, 0, NumZero > 0,
3200                                         DAG);
3201      MVT::ValueType MaskVT  = MVT::getIntVectorWithNumElements(NumElems);
3202      MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
3203      SmallVector<SDOperand, 8> MaskVec;
3204      for (unsigned i = 0; i < NumElems; i++)
3205        MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
3206      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3207                                   &MaskVec[0], MaskVec.size());
3208      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
3209                         DAG.getNode(ISD::UNDEF, VT), Mask);
3210    }
3211  }
3212
3213  // A vector full of immediates; various special cases are already
3214  // handled, so this is best done with a single constant-pool load.
3215  if (NumNonZero == NumNonZeroImms)
3216    return SDOperand();
3217
3218  // Let legalizer expand 2-wide build_vectors.
3219  if (EVTBits == 64)
3220    return SDOperand();
3221
3222  // If element VT is < 32 bits, convert it to inserts into a zero vector.
3223  if (EVTBits == 8 && NumElems == 16) {
3224    SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3225                                        *this);
3226    if (V.Val) return V;
3227  }
3228
3229  if (EVTBits == 16 && NumElems == 8) {
3230    SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3231                                        *this);
3232    if (V.Val) return V;
3233  }
3234
3235  // If element VT is == 32 bits, turn it into a number of shuffles.
3236  SmallVector<SDOperand, 8> V;
3237  V.resize(NumElems);
3238  if (NumElems == 4 && NumZero > 0) {
3239    for (unsigned i = 0; i < 4; ++i) {
3240      bool isZero = !(NonZeros & (1 << i));
3241      if (isZero)
3242        V[i] = getZeroVector(VT, DAG);
3243      else
3244        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3245    }
3246
3247    for (unsigned i = 0; i < 2; ++i) {
3248      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3249        default: break;
3250        case 0:
3251          V[i] = V[i*2];  // Must be a zero vector.
3252          break;
3253        case 1:
3254          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
3255                             getMOVLMask(NumElems, DAG));
3256          break;
3257        case 2:
3258          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3259                             getMOVLMask(NumElems, DAG));
3260          break;
3261        case 3:
3262          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3263                             getUnpacklMask(NumElems, DAG));
3264          break;
3265      }
3266    }
3267
3268    // Take advantage of the fact GR32 to VR128 scalar_to_vector (i.e. movd)
3269    // clears the upper bits.
3270    // FIXME: we can do the same for v4f32 case when we know both parts of
3271    // the lower half come from scalar_to_vector (loadf32). We should do
3272    // that in post legalizer dag combiner with target specific hooks.
3273    if (MVT::isInteger(EVT) && (NonZeros & (0x3 << 2)) == 0)
3274      return V[0];
3275    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3276    MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
3277    SmallVector<SDOperand, 8> MaskVec;
3278    bool Reverse = (NonZeros & 0x3) == 2;
3279    for (unsigned i = 0; i < 2; ++i)
3280      if (Reverse)
3281        MaskVec.push_back(DAG.getConstant(1-i, EVT));
3282      else
3283        MaskVec.push_back(DAG.getConstant(i, EVT));
3284    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3285    for (unsigned i = 0; i < 2; ++i)
3286      if (Reverse)
3287        MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
3288      else
3289        MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
3290    SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3291                                     &MaskVec[0], MaskVec.size());
3292    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
3293  }
3294
3295  if (Values.size() > 2) {
3296    // Expand into a number of unpckl*.
3297    // e.g. for v4f32
3298    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3299    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3300    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
3301    SDOperand UnpckMask = getUnpacklMask(NumElems, DAG);
3302    for (unsigned i = 0; i < NumElems; ++i)
3303      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3304    NumElems >>= 1;
3305    while (NumElems != 0) {
3306      for (unsigned i = 0; i < NumElems; ++i)
3307        V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
3308                           UnpckMask);
3309      NumElems >>= 1;
3310    }
3311    return V[0];
3312  }
3313
3314  return SDOperand();
3315}
3316
3317static
3318SDOperand LowerVECTOR_SHUFFLEv8i16(SDOperand V1, SDOperand V2,
3319                                   SDOperand PermMask, SelectionDAG &DAG,
3320                                   TargetLowering &TLI) {
3321  SDOperand NewV;
3322  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(8);
3323  MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
3324  MVT::ValueType PtrVT = TLI.getPointerTy();
3325  SmallVector<SDOperand, 8> MaskElts(PermMask.Val->op_begin(),
3326                                     PermMask.Val->op_end());
3327
3328  // First record which half of which vector the low elements come from.
3329  SmallVector<unsigned, 4> LowQuad(4);
3330  for (unsigned i = 0; i < 4; ++i) {
3331    SDOperand Elt = MaskElts[i];
3332    if (Elt.getOpcode() == ISD::UNDEF)
3333      continue;
3334    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3335    int QuadIdx = EltIdx / 4;
3336    ++LowQuad[QuadIdx];
3337  }
3338  int BestLowQuad = -1;
3339  unsigned MaxQuad = 1;
3340  for (unsigned i = 0; i < 4; ++i) {
3341    if (LowQuad[i] > MaxQuad) {
3342      BestLowQuad = i;
3343      MaxQuad = LowQuad[i];
3344    }
3345  }
3346
3347  // Record which half of which vector the high elements come from.
3348  SmallVector<unsigned, 4> HighQuad(4);
3349  for (unsigned i = 4; i < 8; ++i) {
3350    SDOperand Elt = MaskElts[i];
3351    if (Elt.getOpcode() == ISD::UNDEF)
3352      continue;
3353    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3354    int QuadIdx = EltIdx / 4;
3355    ++HighQuad[QuadIdx];
3356  }
3357  int BestHighQuad = -1;
3358  MaxQuad = 1;
3359  for (unsigned i = 0; i < 4; ++i) {
3360    if (HighQuad[i] > MaxQuad) {
3361      BestHighQuad = i;
3362      MaxQuad = HighQuad[i];
3363    }
3364  }
3365
3366  // If it's possible to sort parts of either half with PSHUF{H|L}W, then do it.
3367  if (BestLowQuad != -1 || BestHighQuad != -1) {
3368    // First sort the 4 chunks in order using shufpd.
3369    SmallVector<SDOperand, 8> MaskVec;
3370    if (BestLowQuad != -1)
3371      MaskVec.push_back(DAG.getConstant(BestLowQuad, MVT::i32));
3372    else
3373      MaskVec.push_back(DAG.getConstant(0, MVT::i32));
3374    if (BestHighQuad != -1)
3375      MaskVec.push_back(DAG.getConstant(BestHighQuad, MVT::i32));
3376    else
3377      MaskVec.push_back(DAG.getConstant(1, MVT::i32));
3378    SDOperand Mask= DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, &MaskVec[0],2);
3379    NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v2i64,
3380                       DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, V1),
3381                       DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, V2), Mask);
3382    NewV = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, NewV);
3383
3384    // Now sort high and low parts separately.
3385    BitVector InOrder(8);
3386    if (BestLowQuad != -1) {
3387      // Sort lower half in order using PSHUFLW.
3388      MaskVec.clear();
3389      bool AnyOutOrder = false;
3390      for (unsigned i = 0; i != 4; ++i) {
3391        SDOperand Elt = MaskElts[i];
3392        if (Elt.getOpcode() == ISD::UNDEF) {
3393          MaskVec.push_back(Elt);
3394          InOrder.set(i);
3395        } else {
3396          unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3397          if (EltIdx != i)
3398            AnyOutOrder = true;
3399          MaskVec.push_back(DAG.getConstant(EltIdx % 4, MaskEVT));
3400          // If this element is in the right place after this shuffle, then
3401          // remember it.
3402          if ((int)(EltIdx / 4) == BestLowQuad)
3403            InOrder.set(i);
3404        }
3405      }
3406      if (AnyOutOrder) {
3407        for (unsigned i = 4; i != 8; ++i)
3408          MaskVec.push_back(DAG.getConstant(i, MaskEVT));
3409        SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3410        NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, NewV, NewV, Mask);
3411      }
3412    }
3413
3414    if (BestHighQuad != -1) {
3415      // Sort high half in order using PSHUFHW if possible.
3416      MaskVec.clear();
3417      for (unsigned i = 0; i != 4; ++i)
3418        MaskVec.push_back(DAG.getConstant(i, MaskEVT));
3419      bool AnyOutOrder = false;
3420      for (unsigned i = 4; i != 8; ++i) {
3421        SDOperand Elt = MaskElts[i];
3422        if (Elt.getOpcode() == ISD::UNDEF) {
3423          MaskVec.push_back(Elt);
3424          InOrder.set(i);
3425        } else {
3426          unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3427          if (EltIdx != i)
3428            AnyOutOrder = true;
3429          MaskVec.push_back(DAG.getConstant((EltIdx % 4) + 4, MaskEVT));
3430          // If this element is in the right place after this shuffle, then
3431          // remember it.
3432          if ((int)(EltIdx / 4) == BestHighQuad)
3433            InOrder.set(i);
3434        }
3435      }
3436      if (AnyOutOrder) {
3437        SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3438        NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, NewV, NewV, Mask);
3439      }
3440    }
3441
3442    // The other elements are put in the right place using pextrw and pinsrw.
3443    for (unsigned i = 0; i != 8; ++i) {
3444      if (InOrder[i])
3445        continue;
3446      SDOperand Elt = MaskElts[i];
3447      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3448      if (EltIdx == i)
3449        continue;
3450      SDOperand ExtOp = (EltIdx < 8)
3451        ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V1,
3452                      DAG.getConstant(EltIdx, PtrVT))
3453        : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V2,
3454                      DAG.getConstant(EltIdx - 8, PtrVT));
3455      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3456                         DAG.getConstant(i, PtrVT));
3457    }
3458    return NewV;
3459  }
3460
3461  // PSHUF{H|L}W are not used. Lower into extracts and inserts but try to use
3462  ///as few as possible.
3463  // First, let's find out how many elements are already in the right order.
3464  unsigned V1InOrder = 0;
3465  unsigned V1FromV1 = 0;
3466  unsigned V2InOrder = 0;
3467  unsigned V2FromV2 = 0;
3468  SmallVector<SDOperand, 8> V1Elts;
3469  SmallVector<SDOperand, 8> V2Elts;
3470  for (unsigned i = 0; i < 8; ++i) {
3471    SDOperand Elt = MaskElts[i];
3472    if (Elt.getOpcode() == ISD::UNDEF) {
3473      V1Elts.push_back(Elt);
3474      V2Elts.push_back(Elt);
3475      ++V1InOrder;
3476      ++V2InOrder;
3477      continue;
3478    }
3479    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3480    if (EltIdx == i) {
3481      V1Elts.push_back(Elt);
3482      V2Elts.push_back(DAG.getConstant(i+8, MaskEVT));
3483      ++V1InOrder;
3484    } else if (EltIdx == i+8) {
3485      V1Elts.push_back(Elt);
3486      V2Elts.push_back(DAG.getConstant(i, MaskEVT));
3487      ++V2InOrder;
3488    } else if (EltIdx < 8) {
3489      V1Elts.push_back(Elt);
3490      ++V1FromV1;
3491    } else {
3492      V2Elts.push_back(DAG.getConstant(EltIdx-8, MaskEVT));
3493      ++V2FromV2;
3494    }
3495  }
3496
3497  if (V2InOrder > V1InOrder) {
3498    PermMask = CommuteVectorShuffleMask(PermMask, DAG);
3499    std::swap(V1, V2);
3500    std::swap(V1Elts, V2Elts);
3501    std::swap(V1FromV1, V2FromV2);
3502  }
3503
3504  if ((V1FromV1 + V1InOrder) != 8) {
3505    // Some elements are from V2.
3506    if (V1FromV1) {
3507      // If there are elements that are from V1 but out of place,
3508      // then first sort them in place
3509      SmallVector<SDOperand, 8> MaskVec;
3510      for (unsigned i = 0; i < 8; ++i) {
3511        SDOperand Elt = V1Elts[i];
3512        if (Elt.getOpcode() == ISD::UNDEF) {
3513          MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3514          continue;
3515        }
3516        unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3517        if (EltIdx >= 8)
3518          MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3519        else
3520          MaskVec.push_back(DAG.getConstant(EltIdx, MaskEVT));
3521      }
3522      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3523      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, V1, V1, Mask);
3524    }
3525
3526    NewV = V1;
3527    for (unsigned i = 0; i < 8; ++i) {
3528      SDOperand Elt = V1Elts[i];
3529      if (Elt.getOpcode() == ISD::UNDEF)
3530        continue;
3531      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3532      if (EltIdx < 8)
3533        continue;
3534      SDOperand ExtOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V2,
3535                                    DAG.getConstant(EltIdx - 8, PtrVT));
3536      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3537                         DAG.getConstant(i, PtrVT));
3538    }
3539    return NewV;
3540  } else {
3541    // All elements are from V1.
3542    NewV = V1;
3543    for (unsigned i = 0; i < 8; ++i) {
3544      SDOperand Elt = V1Elts[i];
3545      if (Elt.getOpcode() == ISD::UNDEF)
3546        continue;
3547      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3548      SDOperand ExtOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V1,
3549                                    DAG.getConstant(EltIdx, PtrVT));
3550      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3551                         DAG.getConstant(i, PtrVT));
3552    }
3553    return NewV;
3554  }
3555}
3556
3557/// RewriteAs4WideShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
3558/// ones if possible. This can be done when every pair / quad of shuffle mask
3559/// elements point to elements in the right sequence. e.g.
3560/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
3561static
3562SDOperand RewriteAs4WideShuffle(SDOperand V1, SDOperand V2,
3563                                SDOperand PermMask, SelectionDAG &DAG,
3564                                TargetLowering &TLI) {
3565  unsigned NumElems = PermMask.getNumOperands();
3566  unsigned Scale = NumElems / 4;
3567  SmallVector<SDOperand, 4> MaskVec;
3568  for (unsigned i = 0; i < NumElems; i += Scale) {
3569    unsigned StartIdx = ~0U;
3570    for (unsigned j = 0; j < Scale; ++j) {
3571      SDOperand Elt = PermMask.getOperand(i+j);
3572      if (Elt.getOpcode() == ISD::UNDEF)
3573        continue;
3574      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3575      if (StartIdx == ~0U)
3576        StartIdx = EltIdx - (EltIdx % Scale);
3577      if (EltIdx != StartIdx + j)
3578        return SDOperand();
3579    }
3580    if (StartIdx == ~0U)
3581      MaskVec.push_back(DAG.getNode(ISD::UNDEF, MVT::i32));
3582    else
3583      MaskVec.push_back(DAG.getConstant(StartIdx / Scale, MVT::i32));
3584  }
3585
3586  V1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, V1);
3587  V2 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, V2);
3588  return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32, V1, V2,
3589                     DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, &MaskVec[0],4));
3590}
3591
3592SDOperand
3593X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
3594  SDOperand V1 = Op.getOperand(0);
3595  SDOperand V2 = Op.getOperand(1);
3596  SDOperand PermMask = Op.getOperand(2);
3597  MVT::ValueType VT = Op.getValueType();
3598  unsigned NumElems = PermMask.getNumOperands();
3599  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
3600  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
3601  bool V1IsSplat = false;
3602  bool V2IsSplat = false;
3603
3604  if (isUndefShuffle(Op.Val))
3605    return DAG.getNode(ISD::UNDEF, VT);
3606
3607  if (isZeroShuffle(Op.Val))
3608    return getZeroVector(VT, DAG);
3609
3610  if (isIdentityMask(PermMask.Val))
3611    return V1;
3612  else if (isIdentityMask(PermMask.Val, true))
3613    return V2;
3614
3615  if (isSplatMask(PermMask.Val)) {
3616    if (NumElems <= 4) return Op;
3617    // Promote it to a v4i32 splat.
3618    return PromoteSplat(Op, DAG);
3619  }
3620
3621  if (X86::isMOVLMask(PermMask.Val))
3622    return (V1IsUndef) ? V2 : Op;
3623
3624  if (X86::isMOVSHDUPMask(PermMask.Val) ||
3625      X86::isMOVSLDUPMask(PermMask.Val) ||
3626      X86::isMOVHLPSMask(PermMask.Val) ||
3627      X86::isMOVHPMask(PermMask.Val) ||
3628      X86::isMOVLPMask(PermMask.Val))
3629    return Op;
3630
3631  if (ShouldXformToMOVHLPS(PermMask.Val) ||
3632      ShouldXformToMOVLP(V1.Val, V2.Val, PermMask.Val))
3633    return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3634
3635  bool Commuted = false;
3636  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
3637  // 1,1,1,1 -> v8i16 though.
3638  V1IsSplat = isSplatVector(V1.Val);
3639  V2IsSplat = isSplatVector(V2.Val);
3640
3641  // Canonicalize the splat or undef, if present, to be on the RHS.
3642  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
3643    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3644    std::swap(V1IsSplat, V2IsSplat);
3645    std::swap(V1IsUndef, V2IsUndef);
3646    Commuted = true;
3647  }
3648
3649  if (isCommutedMOVL(PermMask.Val, V2IsSplat, V2IsUndef)) {
3650    if (V2IsUndef) return V1;
3651    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3652    if (V2IsSplat) {
3653      // V2 is a splat, so the mask may be malformed. That is, it may point
3654      // to any V2 element. The instruction selectior won't like this. Get
3655      // a corrected mask and commute to form a proper MOVS{S|D}.
3656      SDOperand NewMask = getMOVLMask(NumElems, DAG);
3657      if (NewMask.Val != PermMask.Val)
3658        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3659    }
3660    return Op;
3661  }
3662
3663  if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
3664      X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
3665      X86::isUNPCKLMask(PermMask.Val) ||
3666      X86::isUNPCKHMask(PermMask.Val))
3667    return Op;
3668
3669  if (V2IsSplat) {
3670    // Normalize mask so all entries that point to V2 points to its first
3671    // element then try to match unpck{h|l} again. If match, return a
3672    // new vector_shuffle with the corrected mask.
3673    SDOperand NewMask = NormalizeMask(PermMask, DAG);
3674    if (NewMask.Val != PermMask.Val) {
3675      if (X86::isUNPCKLMask(PermMask.Val, true)) {
3676        SDOperand NewMask = getUnpacklMask(NumElems, DAG);
3677        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3678      } else if (X86::isUNPCKHMask(PermMask.Val, true)) {
3679        SDOperand NewMask = getUnpackhMask(NumElems, DAG);
3680        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3681      }
3682    }
3683  }
3684
3685  // Normalize the node to match x86 shuffle ops if needed
3686  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.Val))
3687      Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3688
3689  if (Commuted) {
3690    // Commute is back and try unpck* again.
3691    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3692    if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
3693        X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
3694        X86::isUNPCKLMask(PermMask.Val) ||
3695        X86::isUNPCKHMask(PermMask.Val))
3696      return Op;
3697  }
3698
3699  // If VT is integer, try PSHUF* first, then SHUFP*.
3700  if (MVT::isInteger(VT)) {
3701    // MMX doesn't have PSHUFD; it does have PSHUFW. While it's theoretically
3702    // possible to shuffle a v2i32 using PSHUFW, that's not yet implemented.
3703    if (((MVT::getSizeInBits(VT) != 64 || NumElems == 4) &&
3704         X86::isPSHUFDMask(PermMask.Val)) ||
3705        X86::isPSHUFHWMask(PermMask.Val) ||
3706        X86::isPSHUFLWMask(PermMask.Val)) {
3707      if (V2.getOpcode() != ISD::UNDEF)
3708        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
3709                           DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
3710      return Op;
3711    }
3712
3713    if (X86::isSHUFPMask(PermMask.Val) &&
3714        MVT::getSizeInBits(VT) != 64)    // Don't do this for MMX.
3715      return Op;
3716  } else {
3717    // Floating point cases in the other order.
3718    if (X86::isSHUFPMask(PermMask.Val))
3719      return Op;
3720    if (X86::isPSHUFDMask(PermMask.Val) ||
3721        X86::isPSHUFHWMask(PermMask.Val) ||
3722        X86::isPSHUFLWMask(PermMask.Val)) {
3723      if (V2.getOpcode() != ISD::UNDEF)
3724        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
3725                           DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
3726      return Op;
3727    }
3728  }
3729
3730  // If the shuffle can be rewritten as a 4 wide shuffle, then do it!
3731  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
3732    SDOperand NewOp = RewriteAs4WideShuffle(V1, V2, PermMask, DAG, *this);
3733    if (NewOp.Val)
3734      return DAG.getNode(ISD::BIT_CONVERT, VT, LowerVECTOR_SHUFFLE(NewOp, DAG));
3735  }
3736
3737  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
3738  if (VT == MVT::v8i16) {
3739    SDOperand NewOp = LowerVECTOR_SHUFFLEv8i16(V1, V2, PermMask, DAG, *this);
3740    if (NewOp.Val)
3741      return NewOp;
3742  }
3743
3744  // Handle all 4 wide cases with a number of shuffles.
3745  if (NumElems == 4 && MVT::getSizeInBits(VT) != 64) {
3746    // Don't do this for MMX.
3747    MVT::ValueType MaskVT = PermMask.getValueType();
3748    MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
3749    SmallVector<std::pair<int, int>, 8> Locs;
3750    Locs.reserve(NumElems);
3751    SmallVector<SDOperand, 8> Mask1(NumElems,
3752                                    DAG.getNode(ISD::UNDEF, MaskEVT));
3753    SmallVector<SDOperand, 8> Mask2(NumElems,
3754                                    DAG.getNode(ISD::UNDEF, MaskEVT));
3755    unsigned NumHi = 0;
3756    unsigned NumLo = 0;
3757    // If no more than two elements come from either vector. This can be
3758    // implemented with two shuffles. First shuffle gather the elements.
3759    // The second shuffle, which takes the first shuffle as both of its
3760    // vector operands, put the elements into the right order.
3761    for (unsigned i = 0; i != NumElems; ++i) {
3762      SDOperand Elt = PermMask.getOperand(i);
3763      if (Elt.getOpcode() == ISD::UNDEF) {
3764        Locs[i] = std::make_pair(-1, -1);
3765      } else {
3766        unsigned Val = cast<ConstantSDNode>(Elt)->getValue();
3767        if (Val < NumElems) {
3768          Locs[i] = std::make_pair(0, NumLo);
3769          Mask1[NumLo] = Elt;
3770          NumLo++;
3771        } else {
3772          Locs[i] = std::make_pair(1, NumHi);
3773          if (2+NumHi < NumElems)
3774            Mask1[2+NumHi] = Elt;
3775          NumHi++;
3776        }
3777      }
3778    }
3779    if (NumLo <= 2 && NumHi <= 2) {
3780      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3781                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3782                                   &Mask1[0], Mask1.size()));
3783      for (unsigned i = 0; i != NumElems; ++i) {
3784        if (Locs[i].first == -1)
3785          continue;
3786        else {
3787          unsigned Idx = (i < NumElems/2) ? 0 : NumElems;
3788          Idx += Locs[i].first * (NumElems/2) + Locs[i].second;
3789          Mask2[i] = DAG.getConstant(Idx, MaskEVT);
3790        }
3791      }
3792
3793      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
3794                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3795                                     &Mask2[0], Mask2.size()));
3796    }
3797
3798    // Break it into (shuffle shuffle_hi, shuffle_lo).
3799    Locs.clear();
3800    SmallVector<SDOperand,8> LoMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3801    SmallVector<SDOperand,8> HiMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3802    SmallVector<SDOperand,8> *MaskPtr = &LoMask;
3803    unsigned MaskIdx = 0;
3804    unsigned LoIdx = 0;
3805    unsigned HiIdx = NumElems/2;
3806    for (unsigned i = 0; i != NumElems; ++i) {
3807      if (i == NumElems/2) {
3808        MaskPtr = &HiMask;
3809        MaskIdx = 1;
3810        LoIdx = 0;
3811        HiIdx = NumElems/2;
3812      }
3813      SDOperand Elt = PermMask.getOperand(i);
3814      if (Elt.getOpcode() == ISD::UNDEF) {
3815        Locs[i] = std::make_pair(-1, -1);
3816      } else if (cast<ConstantSDNode>(Elt)->getValue() < NumElems) {
3817        Locs[i] = std::make_pair(MaskIdx, LoIdx);
3818        (*MaskPtr)[LoIdx] = Elt;
3819        LoIdx++;
3820      } else {
3821        Locs[i] = std::make_pair(MaskIdx, HiIdx);
3822        (*MaskPtr)[HiIdx] = Elt;
3823        HiIdx++;
3824      }
3825    }
3826
3827    SDOperand LoShuffle =
3828      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3829                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3830                              &LoMask[0], LoMask.size()));
3831    SDOperand HiShuffle =
3832      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3833                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3834                              &HiMask[0], HiMask.size()));
3835    SmallVector<SDOperand, 8> MaskOps;
3836    for (unsigned i = 0; i != NumElems; ++i) {
3837      if (Locs[i].first == -1) {
3838        MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3839      } else {
3840        unsigned Idx = Locs[i].first * NumElems + Locs[i].second;
3841        MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
3842      }
3843    }
3844    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
3845                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3846                                   &MaskOps[0], MaskOps.size()));
3847  }
3848
3849  return SDOperand();
3850}
3851
3852SDOperand
3853X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3854  if (!isa<ConstantSDNode>(Op.getOperand(1)))
3855    return SDOperand();
3856
3857  MVT::ValueType VT = Op.getValueType();
3858  // TODO: handle v16i8.
3859  if (MVT::getSizeInBits(VT) == 16) {
3860    SDOperand Vec = Op.getOperand(0);
3861    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3862    if (Idx == 0)
3863      return DAG.getNode(ISD::TRUNCATE, MVT::i16,
3864                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32,
3865                                 DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, Vec),
3866                                     Op.getOperand(1)));
3867    // Transform it so it match pextrw which produces a 32-bit result.
3868    MVT::ValueType EVT = (MVT::ValueType)(VT+1);
3869    SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
3870                                    Op.getOperand(0), Op.getOperand(1));
3871    SDOperand Assert  = DAG.getNode(ISD::AssertZext, EVT, Extract,
3872                                    DAG.getValueType(VT));
3873    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
3874  } else if (MVT::getSizeInBits(VT) == 32) {
3875    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3876    if (Idx == 0)
3877      return Op;
3878    // SHUFPS the element to the lowest double word, then movss.
3879    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3880    SmallVector<SDOperand, 8> IdxVec;
3881    IdxVec.
3882      push_back(DAG.getConstant(Idx, MVT::getVectorElementType(MaskVT)));
3883    IdxVec.
3884      push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3885    IdxVec.
3886      push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3887    IdxVec.
3888      push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3889    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3890                                 &IdxVec[0], IdxVec.size());
3891    SDOperand Vec = Op.getOperand(0);
3892    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3893                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3894    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3895                       DAG.getConstant(0, getPointerTy()));
3896  } else if (MVT::getSizeInBits(VT) == 64) {
3897    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3898    if (Idx == 0)
3899      return Op;
3900
3901    // UNPCKHPD the element to the lowest double word, then movsd.
3902    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
3903    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
3904    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3905    SmallVector<SDOperand, 8> IdxVec;
3906    IdxVec.push_back(DAG.getConstant(1, MVT::getVectorElementType(MaskVT)));
3907    IdxVec.
3908      push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3909    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3910                                 &IdxVec[0], IdxVec.size());
3911    SDOperand Vec = Op.getOperand(0);
3912    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3913                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3914    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3915                       DAG.getConstant(0, getPointerTy()));
3916  }
3917
3918  return SDOperand();
3919}
3920
3921SDOperand
3922X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3923  // Transform it so it match pinsrw which expects a 16-bit value in a GR32
3924  // as its second argument.
3925  MVT::ValueType VT = Op.getValueType();
3926  MVT::ValueType BaseVT = MVT::getVectorElementType(VT);
3927  SDOperand N0 = Op.getOperand(0);
3928  SDOperand N1 = Op.getOperand(1);
3929  SDOperand N2 = Op.getOperand(2);
3930  if (MVT::getSizeInBits(BaseVT) == 16) {
3931    if (N1.getValueType() != MVT::i32)
3932      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
3933    if (N2.getValueType() != MVT::i32)
3934      N2 = DAG.getConstant(cast<ConstantSDNode>(N2)->getValue(),getPointerTy());
3935    return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
3936  } else if (MVT::getSizeInBits(BaseVT) == 32) {
3937    unsigned Idx = cast<ConstantSDNode>(N2)->getValue();
3938    if (Idx == 0) {
3939      // Use a movss.
3940      N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, N1);
3941      MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3942      MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
3943      SmallVector<SDOperand, 8> MaskVec;
3944      MaskVec.push_back(DAG.getConstant(4, BaseVT));
3945      for (unsigned i = 1; i <= 3; ++i)
3946        MaskVec.push_back(DAG.getConstant(i, BaseVT));
3947      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, N0, N1,
3948                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3949                                     &MaskVec[0], MaskVec.size()));
3950    } else {
3951      // Use two pinsrw instructions to insert a 32 bit value.
3952      Idx <<= 1;
3953      if (MVT::isFloatingPoint(N1.getValueType())) {
3954        N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4f32, N1);
3955        N1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, N1);
3956        N1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32, N1,
3957                         DAG.getConstant(0, getPointerTy()));
3958      }
3959      N0 = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, N0);
3960      N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3961                       DAG.getConstant(Idx, getPointerTy()));
3962      N1 = DAG.getNode(ISD::SRL, MVT::i32, N1, DAG.getConstant(16, MVT::i8));
3963      N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3964                       DAG.getConstant(Idx+1, getPointerTy()));
3965      return DAG.getNode(ISD::BIT_CONVERT, VT, N0);
3966    }
3967  }
3968
3969  return SDOperand();
3970}
3971
3972SDOperand
3973X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
3974  SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
3975  return DAG.getNode(X86ISD::S2VEC, Op.getValueType(), AnyExt);
3976}
3977
3978// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
3979// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
3980// one of the above mentioned nodes. It has to be wrapped because otherwise
3981// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
3982// be used to form addressing mode. These wrapped nodes will be selected
3983// into MOV32ri.
3984SDOperand
3985X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
3986  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3987  SDOperand Result = DAG.getTargetConstantPool(CP->getConstVal(),
3988                                               getPointerTy(),
3989                                               CP->getAlignment());
3990  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3991  // With PIC, the address is actually $g + Offset.
3992  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3993      !Subtarget->isPICStyleRIPRel()) {
3994    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3995                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3996                         Result);
3997  }
3998
3999  return Result;
4000}
4001
4002SDOperand
4003X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
4004  GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
4005  SDOperand Result = DAG.getTargetGlobalAddress(GV, getPointerTy());
4006  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4007  // With PIC, the address is actually $g + Offset.
4008  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4009      !Subtarget->isPICStyleRIPRel()) {
4010    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4011                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4012                         Result);
4013  }
4014
4015  // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
4016  // load the value at address GV, not the value of GV itself. This means that
4017  // the GlobalAddress must be in the base or index register of the address, not
4018  // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
4019  // The same applies for external symbols during PIC codegen
4020  if (Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false))
4021    Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result, NULL, 0);
4022
4023  return Result;
4024}
4025
4026// Lower ISD::GlobalTLSAddress using the "general dynamic" model
4027static SDOperand
4028LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4029                              const MVT::ValueType PtrVT) {
4030  SDOperand InFlag;
4031  SDOperand Chain = DAG.getCopyToReg(DAG.getEntryNode(), X86::EBX,
4032                                     DAG.getNode(X86ISD::GlobalBaseReg,
4033                                                 PtrVT), InFlag);
4034  InFlag = Chain.getValue(1);
4035
4036  // emit leal symbol@TLSGD(,%ebx,1), %eax
4037  SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
4038  SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4039                                             GA->getValueType(0),
4040                                             GA->getOffset());
4041  SDOperand Ops[] = { Chain,  TGA, InFlag };
4042  SDOperand Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 3);
4043  InFlag = Result.getValue(2);
4044  Chain = Result.getValue(1);
4045
4046  // call ___tls_get_addr. This function receives its argument in
4047  // the register EAX.
4048  Chain = DAG.getCopyToReg(Chain, X86::EAX, Result, InFlag);
4049  InFlag = Chain.getValue(1);
4050
4051  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4052  SDOperand Ops1[] = { Chain,
4053                      DAG.getTargetExternalSymbol("___tls_get_addr",
4054                                                  PtrVT),
4055                      DAG.getRegister(X86::EAX, PtrVT),
4056                      DAG.getRegister(X86::EBX, PtrVT),
4057                      InFlag };
4058  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 5);
4059  InFlag = Chain.getValue(1);
4060
4061  return DAG.getCopyFromReg(Chain, X86::EAX, PtrVT, InFlag);
4062}
4063
4064// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
4065// "local exec" model.
4066static SDOperand
4067LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4068                         const MVT::ValueType PtrVT) {
4069  // Get the Thread Pointer
4070  SDOperand ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER, PtrVT);
4071  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
4072  // exec)
4073  SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4074                                             GA->getValueType(0),
4075                                             GA->getOffset());
4076  SDOperand Offset = DAG.getNode(X86ISD::Wrapper, PtrVT, TGA);
4077
4078  if (GA->getGlobal()->isDeclaration()) // initial exec TLS model
4079    Offset = DAG.getLoad(PtrVT, DAG.getEntryNode(), Offset, NULL, 0);
4080
4081  // The address of the thread local variable is the add of the thread
4082  // pointer with the offset of the variable.
4083  return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset);
4084}
4085
4086SDOperand
4087X86TargetLowering::LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) {
4088  // TODO: implement the "local dynamic" model
4089  // TODO: implement the "initial exec"model for pic executables
4090  assert(!Subtarget->is64Bit() && Subtarget->isTargetELF() &&
4091         "TLS not implemented for non-ELF and 64-bit targets");
4092  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
4093  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
4094  // otherwise use the "Local Exec"TLS Model
4095  if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
4096    return LowerToTLSGeneralDynamicModel(GA, DAG, getPointerTy());
4097  else
4098    return LowerToTLSExecModel(GA, DAG, getPointerTy());
4099}
4100
4101SDOperand
4102X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) {
4103  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
4104  SDOperand Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
4105  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4106  // With PIC, the address is actually $g + Offset.
4107  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4108      !Subtarget->isPICStyleRIPRel()) {
4109    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4110                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4111                         Result);
4112  }
4113
4114  return Result;
4115}
4116
4117SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
4118  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
4119  SDOperand Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
4120  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4121  // With PIC, the address is actually $g + Offset.
4122  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4123      !Subtarget->isPICStyleRIPRel()) {
4124    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4125                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4126                         Result);
4127  }
4128
4129  return Result;
4130}
4131
4132/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
4133/// take a 2 x i32 value to shift plus a shift amount.
4134SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) {
4135  assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
4136         "Not an i64 shift!");
4137  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
4138  SDOperand ShOpLo = Op.getOperand(0);
4139  SDOperand ShOpHi = Op.getOperand(1);
4140  SDOperand ShAmt  = Op.getOperand(2);
4141  SDOperand Tmp1 = isSRA ?
4142    DAG.getNode(ISD::SRA, MVT::i32, ShOpHi, DAG.getConstant(31, MVT::i8)) :
4143    DAG.getConstant(0, MVT::i32);
4144
4145  SDOperand Tmp2, Tmp3;
4146  if (Op.getOpcode() == ISD::SHL_PARTS) {
4147    Tmp2 = DAG.getNode(X86ISD::SHLD, MVT::i32, ShOpHi, ShOpLo, ShAmt);
4148    Tmp3 = DAG.getNode(ISD::SHL, MVT::i32, ShOpLo, ShAmt);
4149  } else {
4150    Tmp2 = DAG.getNode(X86ISD::SHRD, MVT::i32, ShOpLo, ShOpHi, ShAmt);
4151    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, MVT::i32, ShOpHi, ShAmt);
4152  }
4153
4154  const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
4155  SDOperand AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
4156                                  DAG.getConstant(32, MVT::i8));
4157  SDOperand Cond = DAG.getNode(X86ISD::CMP, MVT::i32,
4158                               AndNode, DAG.getConstant(0, MVT::i8));
4159
4160  SDOperand Hi, Lo;
4161  SDOperand CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4162  VTs = DAG.getNodeValueTypes(MVT::i32, MVT::Flag);
4163  SmallVector<SDOperand, 4> Ops;
4164  if (Op.getOpcode() == ISD::SHL_PARTS) {
4165    Ops.push_back(Tmp2);
4166    Ops.push_back(Tmp3);
4167    Ops.push_back(CC);
4168    Ops.push_back(Cond);
4169    Hi = DAG.getNode(X86ISD::CMOV, MVT::i32, &Ops[0], Ops.size());
4170
4171    Ops.clear();
4172    Ops.push_back(Tmp3);
4173    Ops.push_back(Tmp1);
4174    Ops.push_back(CC);
4175    Ops.push_back(Cond);
4176    Lo = DAG.getNode(X86ISD::CMOV, MVT::i32, &Ops[0], Ops.size());
4177  } else {
4178    Ops.push_back(Tmp2);
4179    Ops.push_back(Tmp3);
4180    Ops.push_back(CC);
4181    Ops.push_back(Cond);
4182    Lo = DAG.getNode(X86ISD::CMOV, MVT::i32, &Ops[0], Ops.size());
4183
4184    Ops.clear();
4185    Ops.push_back(Tmp3);
4186    Ops.push_back(Tmp1);
4187    Ops.push_back(CC);
4188    Ops.push_back(Cond);
4189    Hi = DAG.getNode(X86ISD::CMOV, MVT::i32, &Ops[0], Ops.size());
4190  }
4191
4192  VTs = DAG.getNodeValueTypes(MVT::i32, MVT::i32);
4193  Ops.clear();
4194  Ops.push_back(Lo);
4195  Ops.push_back(Hi);
4196  return DAG.getNode(ISD::MERGE_VALUES, VTs, 2, &Ops[0], Ops.size());
4197}
4198
4199SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
4200  assert(Op.getOperand(0).getValueType() <= MVT::i64 &&
4201         Op.getOperand(0).getValueType() >= MVT::i16 &&
4202         "Unknown SINT_TO_FP to lower!");
4203
4204  SDOperand Result;
4205  MVT::ValueType SrcVT = Op.getOperand(0).getValueType();
4206  unsigned Size = MVT::getSizeInBits(SrcVT)/8;
4207  MachineFunction &MF = DAG.getMachineFunction();
4208  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
4209  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4210  SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
4211                                 StackSlot, NULL, 0);
4212
4213  // These are really Legal; caller falls through into that case.
4214  if (SrcVT==MVT::i32 && Op.getValueType() == MVT::f32 && X86ScalarSSEf32)
4215    return Result;
4216  if (SrcVT==MVT::i32 && Op.getValueType() == MVT::f64 && X86ScalarSSEf64)
4217    return Result;
4218  if (SrcVT==MVT::i64 && Op.getValueType() != MVT::f80 &&
4219      Subtarget->is64Bit())
4220    return Result;
4221
4222  // Build the FILD
4223  SDVTList Tys;
4224  bool useSSE = (X86ScalarSSEf32 && Op.getValueType() == MVT::f32) ||
4225                (X86ScalarSSEf64 && Op.getValueType() == MVT::f64);
4226  if (useSSE)
4227    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
4228  else
4229    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
4230  SmallVector<SDOperand, 8> Ops;
4231  Ops.push_back(Chain);
4232  Ops.push_back(StackSlot);
4233  Ops.push_back(DAG.getValueType(SrcVT));
4234  Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG :X86ISD::FILD,
4235                       Tys, &Ops[0], Ops.size());
4236
4237  if (useSSE) {
4238    Chain = Result.getValue(1);
4239    SDOperand InFlag = Result.getValue(2);
4240
4241    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
4242    // shouldn't be necessary except that RFP cannot be live across
4243    // multiple blocks. When stackifier is fixed, they can be uncoupled.
4244    MachineFunction &MF = DAG.getMachineFunction();
4245    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
4246    SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4247    Tys = DAG.getVTList(MVT::Other);
4248    SmallVector<SDOperand, 8> Ops;
4249    Ops.push_back(Chain);
4250    Ops.push_back(Result);
4251    Ops.push_back(StackSlot);
4252    Ops.push_back(DAG.getValueType(Op.getValueType()));
4253    Ops.push_back(InFlag);
4254    Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
4255    Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot, NULL, 0);
4256  }
4257
4258  return Result;
4259}
4260
4261std::pair<SDOperand,SDOperand> X86TargetLowering::
4262FP_TO_SINTHelper(SDOperand Op, SelectionDAG &DAG) {
4263  assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 &&
4264         "Unknown FP_TO_SINT to lower!");
4265
4266  // These are really Legal.
4267  if (Op.getValueType() == MVT::i32 &&
4268      X86ScalarSSEf32 && Op.getOperand(0).getValueType() == MVT::f32)
4269    return std::make_pair(SDOperand(), SDOperand());
4270  if (Op.getValueType() == MVT::i32 &&
4271      X86ScalarSSEf64 && Op.getOperand(0).getValueType() == MVT::f64)
4272    return std::make_pair(SDOperand(), SDOperand());
4273  if (Subtarget->is64Bit() &&
4274      Op.getValueType() == MVT::i64 &&
4275      Op.getOperand(0).getValueType() != MVT::f80)
4276    return std::make_pair(SDOperand(), SDOperand());
4277
4278  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
4279  // stack slot.
4280  MachineFunction &MF = DAG.getMachineFunction();
4281  unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8;
4282  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
4283  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4284  unsigned Opc;
4285  switch (Op.getValueType()) {
4286  default: assert(0 && "Invalid FP_TO_SINT to lower!");
4287  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
4288  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
4289  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
4290  }
4291
4292  SDOperand Chain = DAG.getEntryNode();
4293  SDOperand Value = Op.getOperand(0);
4294  if ((X86ScalarSSEf32 && Op.getOperand(0).getValueType() == MVT::f32) ||
4295      (X86ScalarSSEf64 && Op.getOperand(0).getValueType() == MVT::f64)) {
4296    assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
4297    Chain = DAG.getStore(Chain, Value, StackSlot, NULL, 0);
4298    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
4299    SDOperand Ops[] = {
4300      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
4301    };
4302    Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
4303    Chain = Value.getValue(1);
4304    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
4305    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4306  }
4307
4308  // Build the FP_TO_INT*_IN_MEM
4309  SDOperand Ops[] = { Chain, Value, StackSlot };
4310  SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops, 3);
4311
4312  return std::make_pair(FIST, StackSlot);
4313}
4314
4315SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
4316  std::pair<SDOperand,SDOperand> Vals = FP_TO_SINTHelper(Op, DAG);
4317  SDOperand FIST = Vals.first, StackSlot = Vals.second;
4318  if (FIST.Val == 0) return SDOperand();
4319
4320  // Load the result.
4321  return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
4322}
4323
4324SDNode *X86TargetLowering::ExpandFP_TO_SINT(SDNode *N, SelectionDAG &DAG) {
4325  std::pair<SDOperand,SDOperand> Vals = FP_TO_SINTHelper(SDOperand(N, 0), DAG);
4326  SDOperand FIST = Vals.first, StackSlot = Vals.second;
4327  if (FIST.Val == 0) return 0;
4328
4329  // Return an i64 load from the stack slot.
4330  SDOperand Res = DAG.getLoad(MVT::i64, FIST, StackSlot, NULL, 0);
4331
4332  // Use a MERGE_VALUES node to drop the chain result value.
4333  return DAG.getNode(ISD::MERGE_VALUES, MVT::i64, Res).Val;
4334}
4335
4336SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) {
4337  MVT::ValueType VT = Op.getValueType();
4338  MVT::ValueType EltVT = VT;
4339  if (MVT::isVector(VT))
4340    EltVT = MVT::getVectorElementType(VT);
4341  const Type *OpNTy =  MVT::getTypeForValueType(EltVT);
4342  std::vector<Constant*> CV;
4343  if (EltVT == MVT::f64) {
4344    Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(64, ~(1ULL << 63))));
4345    CV.push_back(C);
4346    CV.push_back(C);
4347  } else {
4348    Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(32, ~(1U << 31))));
4349    CV.push_back(C);
4350    CV.push_back(C);
4351    CV.push_back(C);
4352    CV.push_back(C);
4353  }
4354  Constant *C = ConstantVector::get(CV);
4355  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4356  SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
4357                               false, 16);
4358  return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
4359}
4360
4361SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) {
4362  MVT::ValueType VT = Op.getValueType();
4363  MVT::ValueType EltVT = VT;
4364  unsigned EltNum = 1;
4365  if (MVT::isVector(VT)) {
4366    EltVT = MVT::getVectorElementType(VT);
4367    EltNum = MVT::getVectorNumElements(VT);
4368  }
4369  const Type *OpNTy =  MVT::getTypeForValueType(EltVT);
4370  std::vector<Constant*> CV;
4371  if (EltVT == MVT::f64) {
4372    Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(64, 1ULL << 63)));
4373    CV.push_back(C);
4374    CV.push_back(C);
4375  } else {
4376    Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(32, 1U << 31)));
4377    CV.push_back(C);
4378    CV.push_back(C);
4379    CV.push_back(C);
4380    CV.push_back(C);
4381  }
4382  Constant *C = ConstantVector::get(CV);
4383  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4384  SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
4385                               false, 16);
4386  if (MVT::isVector(VT)) {
4387    return DAG.getNode(ISD::BIT_CONVERT, VT,
4388                       DAG.getNode(ISD::XOR, MVT::v2i64,
4389                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Op.getOperand(0)),
4390                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Mask)));
4391  } else {
4392    return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
4393  }
4394}
4395
4396SDOperand X86TargetLowering::LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) {
4397  SDOperand Op0 = Op.getOperand(0);
4398  SDOperand Op1 = Op.getOperand(1);
4399  MVT::ValueType VT = Op.getValueType();
4400  MVT::ValueType SrcVT = Op1.getValueType();
4401  const Type *SrcTy =  MVT::getTypeForValueType(SrcVT);
4402
4403  // If second operand is smaller, extend it first.
4404  if (MVT::getSizeInBits(SrcVT) < MVT::getSizeInBits(VT)) {
4405    Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1);
4406    SrcVT = VT;
4407    SrcTy = MVT::getTypeForValueType(SrcVT);
4408  }
4409  // And if it is bigger, shrink it first.
4410  if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) {
4411    Op1 = DAG.getNode(ISD::FP_ROUND, VT, Op1);
4412    SrcVT = VT;
4413    SrcTy = MVT::getTypeForValueType(SrcVT);
4414  }
4415
4416  // At this point the operands and the result should have the same
4417  // type, and that won't be f80 since that is not custom lowered.
4418
4419  // First get the sign bit of second operand.
4420  std::vector<Constant*> CV;
4421  if (SrcVT == MVT::f64) {
4422    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 1ULL << 63))));
4423    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 0))));
4424  } else {
4425    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 1U << 31))));
4426    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4427    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4428    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4429  }
4430  Constant *C = ConstantVector::get(CV);
4431  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4432  SDOperand Mask1 = DAG.getLoad(SrcVT, DAG.getEntryNode(), CPIdx, NULL, 0,
4433                                false, 16);
4434  SDOperand SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1);
4435
4436  // Shift sign bit right or left if the two operands have different types.
4437  if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) {
4438    // Op0 is MVT::f32, Op1 is MVT::f64.
4439    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit);
4440    SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit,
4441                          DAG.getConstant(32, MVT::i32));
4442    SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit);
4443    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit,
4444                          DAG.getConstant(0, getPointerTy()));
4445  }
4446
4447  // Clear first operand sign bit.
4448  CV.clear();
4449  if (VT == MVT::f64) {
4450    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, ~(1ULL << 63)))));
4451    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 0))));
4452  } else {
4453    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, ~(1U << 31)))));
4454    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4455    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4456    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4457  }
4458  C = ConstantVector::get(CV);
4459  CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4460  SDOperand Mask2 = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
4461                                false, 16);
4462  SDOperand Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2);
4463
4464  // Or the value with the sign bit.
4465  return DAG.getNode(X86ISD::FOR, VT, Val, SignBit);
4466}
4467
4468SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
4469  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
4470  SDOperand Cond;
4471  SDOperand Op0 = Op.getOperand(0);
4472  SDOperand Op1 = Op.getOperand(1);
4473  SDOperand CC = Op.getOperand(2);
4474  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
4475  bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType());
4476  unsigned X86CC;
4477
4478  if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
4479                     Op0, Op1, DAG)) {
4480    Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
4481    return DAG.getNode(X86ISD::SETCC, MVT::i8,
4482                       DAG.getConstant(X86CC, MVT::i8), Cond);
4483  }
4484
4485  assert(isFP && "Illegal integer SetCC!");
4486
4487  Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
4488  switch (SetCCOpcode) {
4489  default: assert(false && "Illegal floating point SetCC!");
4490  case ISD::SETOEQ: {  // !PF & ZF
4491    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4492                                 DAG.getConstant(X86::COND_NP, MVT::i8), Cond);
4493    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4494                                 DAG.getConstant(X86::COND_E, MVT::i8), Cond);
4495    return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
4496  }
4497  case ISD::SETUNE: {  // PF | !ZF
4498    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4499                                 DAG.getConstant(X86::COND_P, MVT::i8), Cond);
4500    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4501                                 DAG.getConstant(X86::COND_NE, MVT::i8), Cond);
4502    return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
4503  }
4504  }
4505}
4506
4507
4508SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) {
4509  bool addTest = true;
4510  SDOperand Cond  = Op.getOperand(0);
4511  SDOperand CC;
4512
4513  if (Cond.getOpcode() == ISD::SETCC)
4514    Cond = LowerSETCC(Cond, DAG);
4515
4516  // If condition flag is set by a X86ISD::CMP, then use it as the condition
4517  // setting operand in place of the X86ISD::SETCC.
4518  if (Cond.getOpcode() == X86ISD::SETCC) {
4519    CC = Cond.getOperand(0);
4520
4521    SDOperand Cmp = Cond.getOperand(1);
4522    unsigned Opc = Cmp.getOpcode();
4523    MVT::ValueType VT = Op.getValueType();
4524    bool IllegalFPCMov = false;
4525    if (VT == MVT::f32 && !X86ScalarSSEf32)
4526      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
4527    else if (VT == MVT::f64 && !X86ScalarSSEf64)
4528      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
4529    else if (VT == MVT::f80)
4530      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
4531    if ((Opc == X86ISD::CMP ||
4532         Opc == X86ISD::COMI ||
4533         Opc == X86ISD::UCOMI) && !IllegalFPCMov) {
4534      Cond = Cmp;
4535      addTest = false;
4536    }
4537  }
4538
4539  if (addTest) {
4540    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4541    Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
4542  }
4543
4544  const MVT::ValueType *VTs = DAG.getNodeValueTypes(Op.getValueType(),
4545                                                    MVT::Flag);
4546  SmallVector<SDOperand, 4> Ops;
4547  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
4548  // condition is true.
4549  Ops.push_back(Op.getOperand(2));
4550  Ops.push_back(Op.getOperand(1));
4551  Ops.push_back(CC);
4552  Ops.push_back(Cond);
4553  return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
4554}
4555
4556SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) {
4557  bool addTest = true;
4558  SDOperand Chain = Op.getOperand(0);
4559  SDOperand Cond  = Op.getOperand(1);
4560  SDOperand Dest  = Op.getOperand(2);
4561  SDOperand CC;
4562
4563  if (Cond.getOpcode() == ISD::SETCC)
4564    Cond = LowerSETCC(Cond, DAG);
4565
4566  // If condition flag is set by a X86ISD::CMP, then use it as the condition
4567  // setting operand in place of the X86ISD::SETCC.
4568  if (Cond.getOpcode() == X86ISD::SETCC) {
4569    CC = Cond.getOperand(0);
4570
4571    SDOperand Cmp = Cond.getOperand(1);
4572    unsigned Opc = Cmp.getOpcode();
4573    if (Opc == X86ISD::CMP ||
4574        Opc == X86ISD::COMI ||
4575        Opc == X86ISD::UCOMI) {
4576      Cond = Cmp;
4577      addTest = false;
4578    }
4579  }
4580
4581  if (addTest) {
4582    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4583    Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
4584  }
4585  return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
4586                     Chain, Op.getOperand(2), CC, Cond);
4587}
4588
4589SDOperand X86TargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) {
4590  unsigned CallingConv = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
4591  bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
4592
4593   if (Subtarget->is64Bit())
4594     if(CallingConv==CallingConv::Fast && isTailCall && PerformTailCallOpt)
4595       return LowerX86_TailCallTo(Op, DAG, CallingConv);
4596     else
4597       return LowerX86_64CCCCallTo(Op, DAG, CallingConv);
4598  else
4599    switch (CallingConv) {
4600    default:
4601      assert(0 && "Unsupported calling convention");
4602    case CallingConv::Fast:
4603      if (isTailCall && PerformTailCallOpt)
4604        return LowerX86_TailCallTo(Op, DAG, CallingConv);
4605      else
4606        return LowerCCCCallTo(Op,DAG, CallingConv);
4607    case CallingConv::C:
4608    case CallingConv::X86_StdCall:
4609      return LowerCCCCallTo(Op, DAG, CallingConv);
4610    case CallingConv::X86_FastCall:
4611      return LowerFastCCCallTo(Op, DAG, CallingConv);
4612    }
4613}
4614
4615
4616// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
4617// Calls to _alloca is needed to probe the stack when allocating more than 4k
4618// bytes in one go. Touching the stack at 4K increments is necessary to ensure
4619// that the guard pages used by the OS virtual memory manager are allocated in
4620// correct sequence.
4621SDOperand
4622X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDOperand Op,
4623                                           SelectionDAG &DAG) {
4624  assert(Subtarget->isTargetCygMing() &&
4625         "This should be used only on Cygwin/Mingw targets");
4626
4627  // Get the inputs.
4628  SDOperand Chain = Op.getOperand(0);
4629  SDOperand Size  = Op.getOperand(1);
4630  // FIXME: Ensure alignment here
4631
4632  SDOperand Flag;
4633
4634  MVT::ValueType IntPtr = getPointerTy();
4635  MVT::ValueType SPTy = (Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
4636
4637  Chain = DAG.getCopyToReg(Chain, X86::EAX, Size, Flag);
4638  Flag = Chain.getValue(1);
4639
4640  SDVTList  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4641  SDOperand Ops[] = { Chain,
4642                      DAG.getTargetExternalSymbol("_alloca", IntPtr),
4643                      DAG.getRegister(X86::EAX, IntPtr),
4644                      Flag };
4645  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops, 4);
4646  Flag = Chain.getValue(1);
4647
4648  Chain = DAG.getCopyFromReg(Chain, X86StackPtr, SPTy).getValue(1);
4649
4650  std::vector<MVT::ValueType> Tys;
4651  Tys.push_back(SPTy);
4652  Tys.push_back(MVT::Other);
4653  SDOperand Ops1[2] = { Chain.getValue(0), Chain };
4654  return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops1, 2);
4655}
4656
4657SDOperand
4658X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) {
4659  MachineFunction &MF = DAG.getMachineFunction();
4660  const Function* Fn = MF.getFunction();
4661  if (Fn->hasExternalLinkage() &&
4662      Subtarget->isTargetCygMing() &&
4663      Fn->getName() == "main")
4664    MF.getInfo<X86MachineFunctionInfo>()->setForceFramePointer(true);
4665
4666  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
4667  if (Subtarget->is64Bit())
4668    return LowerX86_64CCCArguments(Op, DAG);
4669  else
4670    switch(CC) {
4671    default:
4672      assert(0 && "Unsupported calling convention");
4673    case CallingConv::Fast:
4674      return LowerCCCArguments(Op,DAG, true);
4675      // Falls through
4676    case CallingConv::C:
4677      return LowerCCCArguments(Op, DAG);
4678    case CallingConv::X86_StdCall:
4679      MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(StdCall);
4680      return LowerCCCArguments(Op, DAG, true);
4681    case CallingConv::X86_FastCall:
4682      MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(FastCall);
4683      return LowerFastCCArguments(Op, DAG);
4684    }
4685}
4686
4687SDOperand X86TargetLowering::LowerMEMSET(SDOperand Op, SelectionDAG &DAG) {
4688  SDOperand InFlag(0, 0);
4689  SDOperand Chain = Op.getOperand(0);
4690  unsigned Align =
4691    (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
4692  if (Align == 0) Align = 1;
4693
4694  ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
4695  // If not DWORD aligned or size is more than the threshold, call memset.
4696  // The libc version is likely to be faster for these cases. It can use the
4697  // address value and run time information about the CPU.
4698  if ((Align & 3) != 0 ||
4699      (I && I->getValue() > Subtarget->getMaxInlineSizeThreshold())) {
4700    MVT::ValueType IntPtr = getPointerTy();
4701    const Type *IntPtrTy = getTargetData()->getIntPtrType();
4702    TargetLowering::ArgListTy Args;
4703    TargetLowering::ArgListEntry Entry;
4704    Entry.Node = Op.getOperand(1);
4705    Entry.Ty = IntPtrTy;
4706    Args.push_back(Entry);
4707    // Extend the unsigned i8 argument to be an int value for the call.
4708    Entry.Node = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2));
4709    Entry.Ty = IntPtrTy;
4710    Args.push_back(Entry);
4711    Entry.Node = Op.getOperand(3);
4712    Args.push_back(Entry);
4713    std::pair<SDOperand,SDOperand> CallResult =
4714      LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
4715                  DAG.getExternalSymbol("memset", IntPtr), Args, DAG);
4716    return CallResult.second;
4717  }
4718
4719  MVT::ValueType AVT;
4720  SDOperand Count;
4721  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4722  unsigned BytesLeft = 0;
4723  bool TwoRepStos = false;
4724  if (ValC) {
4725    unsigned ValReg;
4726    uint64_t Val = ValC->getValue() & 255;
4727
4728    // If the value is a constant, then we can potentially use larger sets.
4729    switch (Align & 3) {
4730      case 2:   // WORD aligned
4731        AVT = MVT::i16;
4732        ValReg = X86::AX;
4733        Val = (Val << 8) | Val;
4734        break;
4735      case 0:  // DWORD aligned
4736        AVT = MVT::i32;
4737        ValReg = X86::EAX;
4738        Val = (Val << 8)  | Val;
4739        Val = (Val << 16) | Val;
4740        if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) {  // QWORD aligned
4741          AVT = MVT::i64;
4742          ValReg = X86::RAX;
4743          Val = (Val << 32) | Val;
4744        }
4745        break;
4746      default:  // Byte aligned
4747        AVT = MVT::i8;
4748        ValReg = X86::AL;
4749        Count = Op.getOperand(3);
4750        break;
4751    }
4752
4753    if (AVT > MVT::i8) {
4754      if (I) {
4755        unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
4756        Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
4757        BytesLeft = I->getValue() % UBytes;
4758      } else {
4759        assert(AVT >= MVT::i32 &&
4760               "Do not use rep;stos if not at least DWORD aligned");
4761        Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
4762                            Op.getOperand(3), DAG.getConstant(2, MVT::i8));
4763        TwoRepStos = true;
4764      }
4765    }
4766
4767    Chain  = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
4768                              InFlag);
4769    InFlag = Chain.getValue(1);
4770  } else {
4771    AVT = MVT::i8;
4772    Count  = Op.getOperand(3);
4773    Chain  = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag);
4774    InFlag = Chain.getValue(1);
4775  }
4776
4777  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4778                            Count, InFlag);
4779  InFlag = Chain.getValue(1);
4780  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
4781                            Op.getOperand(1), InFlag);
4782  InFlag = Chain.getValue(1);
4783
4784  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4785  SmallVector<SDOperand, 8> Ops;
4786  Ops.push_back(Chain);
4787  Ops.push_back(DAG.getValueType(AVT));
4788  Ops.push_back(InFlag);
4789  Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
4790
4791  if (TwoRepStos) {
4792    InFlag = Chain.getValue(1);
4793    Count = Op.getOperand(3);
4794    MVT::ValueType CVT = Count.getValueType();
4795    SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
4796                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
4797    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
4798                              Left, InFlag);
4799    InFlag = Chain.getValue(1);
4800    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4801    Ops.clear();
4802    Ops.push_back(Chain);
4803    Ops.push_back(DAG.getValueType(MVT::i8));
4804    Ops.push_back(InFlag);
4805    Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
4806  } else if (BytesLeft) {
4807    // Issue stores for the last 1 - 7 bytes.
4808    SDOperand Value;
4809    unsigned Val = ValC->getValue() & 255;
4810    unsigned Offset = I->getValue() - BytesLeft;
4811    SDOperand DstAddr = Op.getOperand(1);
4812    MVT::ValueType AddrVT = DstAddr.getValueType();
4813    if (BytesLeft >= 4) {
4814      Val = (Val << 8)  | Val;
4815      Val = (Val << 16) | Val;
4816      Value = DAG.getConstant(Val, MVT::i32);
4817      Chain = DAG.getStore(Chain, Value,
4818                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4819                                       DAG.getConstant(Offset, AddrVT)),
4820                           NULL, 0);
4821      BytesLeft -= 4;
4822      Offset += 4;
4823    }
4824    if (BytesLeft >= 2) {
4825      Value = DAG.getConstant((Val << 8) | Val, MVT::i16);
4826      Chain = DAG.getStore(Chain, Value,
4827                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4828                                       DAG.getConstant(Offset, AddrVT)),
4829                           NULL, 0);
4830      BytesLeft -= 2;
4831      Offset += 2;
4832    }
4833    if (BytesLeft == 1) {
4834      Value = DAG.getConstant(Val, MVT::i8);
4835      Chain = DAG.getStore(Chain, Value,
4836                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4837                                       DAG.getConstant(Offset, AddrVT)),
4838                           NULL, 0);
4839    }
4840  }
4841
4842  return Chain;
4843}
4844
4845SDOperand X86TargetLowering::LowerMEMCPYInline(SDOperand Chain,
4846                                               SDOperand Dest,
4847                                               SDOperand Source,
4848                                               unsigned Size,
4849                                               unsigned Align,
4850                                               SelectionDAG &DAG) {
4851  MVT::ValueType AVT;
4852  unsigned BytesLeft = 0;
4853  switch (Align & 3) {
4854    case 2:   // WORD aligned
4855      AVT = MVT::i16;
4856      break;
4857    case 0:  // DWORD aligned
4858      AVT = MVT::i32;
4859      if (Subtarget->is64Bit() && ((Align & 0xF) == 0))  // QWORD aligned
4860        AVT = MVT::i64;
4861      break;
4862    default:  // Byte aligned
4863      AVT = MVT::i8;
4864      break;
4865  }
4866
4867  unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
4868  SDOperand Count = DAG.getConstant(Size / UBytes, getPointerTy());
4869  BytesLeft = Size % UBytes;
4870
4871  SDOperand InFlag(0, 0);
4872  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4873                            Count, InFlag);
4874  InFlag = Chain.getValue(1);
4875  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
4876                            Dest, InFlag);
4877  InFlag = Chain.getValue(1);
4878  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
4879                            Source, InFlag);
4880  InFlag = Chain.getValue(1);
4881
4882  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4883  SmallVector<SDOperand, 8> Ops;
4884  Ops.push_back(Chain);
4885  Ops.push_back(DAG.getValueType(AVT));
4886  Ops.push_back(InFlag);
4887  Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
4888
4889  if (BytesLeft) {
4890    // Issue loads and stores for the last 1 - 7 bytes.
4891    unsigned Offset = Size - BytesLeft;
4892    SDOperand DstAddr = Dest;
4893    MVT::ValueType DstVT = DstAddr.getValueType();
4894    SDOperand SrcAddr = Source;
4895    MVT::ValueType SrcVT = SrcAddr.getValueType();
4896    SDOperand Value;
4897    if (BytesLeft >= 4) {
4898      Value = DAG.getLoad(MVT::i32, Chain,
4899                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4900                                      DAG.getConstant(Offset, SrcVT)),
4901                          NULL, 0);
4902      Chain = Value.getValue(1);
4903      Chain = DAG.getStore(Chain, Value,
4904                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4905                                       DAG.getConstant(Offset, DstVT)),
4906                           NULL, 0);
4907      BytesLeft -= 4;
4908      Offset += 4;
4909    }
4910    if (BytesLeft >= 2) {
4911      Value = DAG.getLoad(MVT::i16, Chain,
4912                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4913                                      DAG.getConstant(Offset, SrcVT)),
4914                          NULL, 0);
4915      Chain = Value.getValue(1);
4916      Chain = DAG.getStore(Chain, Value,
4917                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4918                                       DAG.getConstant(Offset, DstVT)),
4919                           NULL, 0);
4920      BytesLeft -= 2;
4921      Offset += 2;
4922    }
4923
4924    if (BytesLeft == 1) {
4925      Value = DAG.getLoad(MVT::i8, Chain,
4926                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4927                                      DAG.getConstant(Offset, SrcVT)),
4928                          NULL, 0);
4929      Chain = Value.getValue(1);
4930      Chain = DAG.getStore(Chain, Value,
4931                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4932                                       DAG.getConstant(Offset, DstVT)),
4933                           NULL, 0);
4934    }
4935  }
4936
4937  return Chain;
4938}
4939
4940/// Expand the result of: i64,outchain = READCYCLECOUNTER inchain
4941SDNode *X86TargetLowering::ExpandREADCYCLECOUNTER(SDNode *N, SelectionDAG &DAG){
4942  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4943  SDOperand TheChain = N->getOperand(0);
4944  SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheChain, 1);
4945  if (Subtarget->is64Bit()) {
4946    SDOperand rax = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
4947    SDOperand rdx = DAG.getCopyFromReg(rax.getValue(1), X86::RDX,
4948                                       MVT::i64, rax.getValue(2));
4949    SDOperand Tmp = DAG.getNode(ISD::SHL, MVT::i64, rdx,
4950                                DAG.getConstant(32, MVT::i8));
4951    SDOperand Ops[] = {
4952      DAG.getNode(ISD::OR, MVT::i64, rax, Tmp), rdx.getValue(1)
4953    };
4954
4955    Tys = DAG.getVTList(MVT::i64, MVT::Other);
4956    return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2).Val;
4957  }
4958
4959  SDOperand eax = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
4960  SDOperand edx = DAG.getCopyFromReg(eax.getValue(1), X86::EDX,
4961                                       MVT::i32, eax.getValue(2));
4962  // Use a buildpair to merge the two 32-bit values into a 64-bit one.
4963  SDOperand Ops[] = { eax, edx };
4964  Ops[0] = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Ops, 2);
4965
4966  // Use a MERGE_VALUES to return the value and chain.
4967  Ops[1] = edx.getValue(1);
4968  Tys = DAG.getVTList(MVT::i64, MVT::Other);
4969  return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2).Val;
4970}
4971
4972SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) {
4973  SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
4974
4975  if (!Subtarget->is64Bit()) {
4976    // vastart just stores the address of the VarArgsFrameIndex slot into the
4977    // memory location argument.
4978    SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4979    return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV->getValue(),
4980                        SV->getOffset());
4981  }
4982
4983  // __va_list_tag:
4984  //   gp_offset         (0 - 6 * 8)
4985  //   fp_offset         (48 - 48 + 8 * 16)
4986  //   overflow_arg_area (point to parameters coming in memory).
4987  //   reg_save_area
4988  SmallVector<SDOperand, 8> MemOps;
4989  SDOperand FIN = Op.getOperand(1);
4990  // Store gp_offset
4991  SDOperand Store = DAG.getStore(Op.getOperand(0),
4992                                 DAG.getConstant(VarArgsGPOffset, MVT::i32),
4993                                 FIN, SV->getValue(), SV->getOffset());
4994  MemOps.push_back(Store);
4995
4996  // Store fp_offset
4997  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4998                    DAG.getConstant(4, getPointerTy()));
4999  Store = DAG.getStore(Op.getOperand(0),
5000                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
5001                       FIN, SV->getValue(), SV->getOffset());
5002  MemOps.push_back(Store);
5003
5004  // Store ptr to overflow_arg_area
5005  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
5006                    DAG.getConstant(4, getPointerTy()));
5007  SDOperand OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
5008  Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV->getValue(),
5009                       SV->getOffset());
5010  MemOps.push_back(Store);
5011
5012  // Store ptr to reg_save_area.
5013  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
5014                    DAG.getConstant(8, getPointerTy()));
5015  SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
5016  Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV->getValue(),
5017                       SV->getOffset());
5018  MemOps.push_back(Store);
5019  return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
5020}
5021
5022SDOperand X86TargetLowering::LowerVACOPY(SDOperand Op, SelectionDAG &DAG) {
5023  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
5024  SDOperand Chain = Op.getOperand(0);
5025  SDOperand DstPtr = Op.getOperand(1);
5026  SDOperand SrcPtr = Op.getOperand(2);
5027  SrcValueSDNode *DstSV = cast<SrcValueSDNode>(Op.getOperand(3));
5028  SrcValueSDNode *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4));
5029
5030  SrcPtr = DAG.getLoad(getPointerTy(), Chain, SrcPtr,
5031                       SrcSV->getValue(), SrcSV->getOffset());
5032  Chain = SrcPtr.getValue(1);
5033  for (unsigned i = 0; i < 3; ++i) {
5034    SDOperand Val = DAG.getLoad(MVT::i64, Chain, SrcPtr,
5035                                SrcSV->getValue(), SrcSV->getOffset());
5036    Chain = Val.getValue(1);
5037    Chain = DAG.getStore(Chain, Val, DstPtr,
5038                         DstSV->getValue(), DstSV->getOffset());
5039    if (i == 2)
5040      break;
5041    SrcPtr = DAG.getNode(ISD::ADD, getPointerTy(), SrcPtr,
5042                         DAG.getConstant(8, getPointerTy()));
5043    DstPtr = DAG.getNode(ISD::ADD, getPointerTy(), DstPtr,
5044                         DAG.getConstant(8, getPointerTy()));
5045  }
5046  return Chain;
5047}
5048
5049SDOperand
5050X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
5051  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
5052  switch (IntNo) {
5053  default: return SDOperand();    // Don't custom lower most intrinsics.
5054    // Comparison intrinsics.
5055  case Intrinsic::x86_sse_comieq_ss:
5056  case Intrinsic::x86_sse_comilt_ss:
5057  case Intrinsic::x86_sse_comile_ss:
5058  case Intrinsic::x86_sse_comigt_ss:
5059  case Intrinsic::x86_sse_comige_ss:
5060  case Intrinsic::x86_sse_comineq_ss:
5061  case Intrinsic::x86_sse_ucomieq_ss:
5062  case Intrinsic::x86_sse_ucomilt_ss:
5063  case Intrinsic::x86_sse_ucomile_ss:
5064  case Intrinsic::x86_sse_ucomigt_ss:
5065  case Intrinsic::x86_sse_ucomige_ss:
5066  case Intrinsic::x86_sse_ucomineq_ss:
5067  case Intrinsic::x86_sse2_comieq_sd:
5068  case Intrinsic::x86_sse2_comilt_sd:
5069  case Intrinsic::x86_sse2_comile_sd:
5070  case Intrinsic::x86_sse2_comigt_sd:
5071  case Intrinsic::x86_sse2_comige_sd:
5072  case Intrinsic::x86_sse2_comineq_sd:
5073  case Intrinsic::x86_sse2_ucomieq_sd:
5074  case Intrinsic::x86_sse2_ucomilt_sd:
5075  case Intrinsic::x86_sse2_ucomile_sd:
5076  case Intrinsic::x86_sse2_ucomigt_sd:
5077  case Intrinsic::x86_sse2_ucomige_sd:
5078  case Intrinsic::x86_sse2_ucomineq_sd: {
5079    unsigned Opc = 0;
5080    ISD::CondCode CC = ISD::SETCC_INVALID;
5081    switch (IntNo) {
5082    default: break;
5083    case Intrinsic::x86_sse_comieq_ss:
5084    case Intrinsic::x86_sse2_comieq_sd:
5085      Opc = X86ISD::COMI;
5086      CC = ISD::SETEQ;
5087      break;
5088    case Intrinsic::x86_sse_comilt_ss:
5089    case Intrinsic::x86_sse2_comilt_sd:
5090      Opc = X86ISD::COMI;
5091      CC = ISD::SETLT;
5092      break;
5093    case Intrinsic::x86_sse_comile_ss:
5094    case Intrinsic::x86_sse2_comile_sd:
5095      Opc = X86ISD::COMI;
5096      CC = ISD::SETLE;
5097      break;
5098    case Intrinsic::x86_sse_comigt_ss:
5099    case Intrinsic::x86_sse2_comigt_sd:
5100      Opc = X86ISD::COMI;
5101      CC = ISD::SETGT;
5102      break;
5103    case Intrinsic::x86_sse_comige_ss:
5104    case Intrinsic::x86_sse2_comige_sd:
5105      Opc = X86ISD::COMI;
5106      CC = ISD::SETGE;
5107      break;
5108    case Intrinsic::x86_sse_comineq_ss:
5109    case Intrinsic::x86_sse2_comineq_sd:
5110      Opc = X86ISD::COMI;
5111      CC = ISD::SETNE;
5112      break;
5113    case Intrinsic::x86_sse_ucomieq_ss:
5114    case Intrinsic::x86_sse2_ucomieq_sd:
5115      Opc = X86ISD::UCOMI;
5116      CC = ISD::SETEQ;
5117      break;
5118    case Intrinsic::x86_sse_ucomilt_ss:
5119    case Intrinsic::x86_sse2_ucomilt_sd:
5120      Opc = X86ISD::UCOMI;
5121      CC = ISD::SETLT;
5122      break;
5123    case Intrinsic::x86_sse_ucomile_ss:
5124    case Intrinsic::x86_sse2_ucomile_sd:
5125      Opc = X86ISD::UCOMI;
5126      CC = ISD::SETLE;
5127      break;
5128    case Intrinsic::x86_sse_ucomigt_ss:
5129    case Intrinsic::x86_sse2_ucomigt_sd:
5130      Opc = X86ISD::UCOMI;
5131      CC = ISD::SETGT;
5132      break;
5133    case Intrinsic::x86_sse_ucomige_ss:
5134    case Intrinsic::x86_sse2_ucomige_sd:
5135      Opc = X86ISD::UCOMI;
5136      CC = ISD::SETGE;
5137      break;
5138    case Intrinsic::x86_sse_ucomineq_ss:
5139    case Intrinsic::x86_sse2_ucomineq_sd:
5140      Opc = X86ISD::UCOMI;
5141      CC = ISD::SETNE;
5142      break;
5143    }
5144
5145    unsigned X86CC;
5146    SDOperand LHS = Op.getOperand(1);
5147    SDOperand RHS = Op.getOperand(2);
5148    translateX86CC(CC, true, X86CC, LHS, RHS, DAG);
5149
5150    SDOperand Cond = DAG.getNode(Opc, MVT::i32, LHS, RHS);
5151    SDOperand SetCC = DAG.getNode(X86ISD::SETCC, MVT::i8,
5152                                  DAG.getConstant(X86CC, MVT::i8), Cond);
5153    return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC);
5154  }
5155  }
5156}
5157
5158SDOperand X86TargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
5159  // Depths > 0 not supported yet!
5160  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
5161    return SDOperand();
5162
5163  // Just load the return address
5164  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
5165  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
5166}
5167
5168SDOperand X86TargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
5169  // Depths > 0 not supported yet!
5170  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
5171    return SDOperand();
5172
5173  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
5174  return DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI,
5175                     DAG.getConstant(4, getPointerTy()));
5176}
5177
5178SDOperand X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDOperand Op,
5179                                                       SelectionDAG &DAG) {
5180  // Is not yet supported on x86-64
5181  if (Subtarget->is64Bit())
5182    return SDOperand();
5183
5184  return DAG.getConstant(8, getPointerTy());
5185}
5186
5187SDOperand X86TargetLowering::LowerEH_RETURN(SDOperand Op, SelectionDAG &DAG)
5188{
5189  assert(!Subtarget->is64Bit() &&
5190         "Lowering of eh_return builtin is not supported yet on x86-64");
5191
5192  MachineFunction &MF = DAG.getMachineFunction();
5193  SDOperand Chain     = Op.getOperand(0);
5194  SDOperand Offset    = Op.getOperand(1);
5195  SDOperand Handler   = Op.getOperand(2);
5196
5197  SDOperand Frame = DAG.getRegister(RegInfo->getFrameRegister(MF),
5198                                    getPointerTy());
5199
5200  SDOperand StoreAddr = DAG.getNode(ISD::SUB, getPointerTy(), Frame,
5201                                    DAG.getConstant(-4UL, getPointerTy()));
5202  StoreAddr = DAG.getNode(ISD::ADD, getPointerTy(), StoreAddr, Offset);
5203  Chain = DAG.getStore(Chain, Handler, StoreAddr, NULL, 0);
5204  Chain = DAG.getCopyToReg(Chain, X86::ECX, StoreAddr);
5205  MF.addLiveOut(X86::ECX);
5206
5207  return DAG.getNode(X86ISD::EH_RETURN, MVT::Other,
5208                     Chain, DAG.getRegister(X86::ECX, getPointerTy()));
5209}
5210
5211SDOperand X86TargetLowering::LowerTRAMPOLINE(SDOperand Op,
5212                                             SelectionDAG &DAG) {
5213  SDOperand Root = Op.getOperand(0);
5214  SDOperand Trmp = Op.getOperand(1); // trampoline
5215  SDOperand FPtr = Op.getOperand(2); // nested function
5216  SDOperand Nest = Op.getOperand(3); // 'nest' parameter value
5217
5218  SrcValueSDNode *TrmpSV = cast<SrcValueSDNode>(Op.getOperand(4));
5219
5220  if (Subtarget->is64Bit()) {
5221    return SDOperand(); // not yet supported
5222  } else {
5223    Function *Func = (Function *)
5224      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
5225    unsigned CC = Func->getCallingConv();
5226    unsigned NestReg;
5227
5228    switch (CC) {
5229    default:
5230      assert(0 && "Unsupported calling convention");
5231    case CallingConv::C:
5232    case CallingConv::X86_StdCall: {
5233      // Pass 'nest' parameter in ECX.
5234      // Must be kept in sync with X86CallingConv.td
5235      NestReg = X86::ECX;
5236
5237      // Check that ECX wasn't needed by an 'inreg' parameter.
5238      const FunctionType *FTy = Func->getFunctionType();
5239      const ParamAttrsList *Attrs = Func->getParamAttrs();
5240
5241      if (Attrs && !Func->isVarArg()) {
5242        unsigned InRegCount = 0;
5243        unsigned Idx = 1;
5244
5245        for (FunctionType::param_iterator I = FTy->param_begin(),
5246             E = FTy->param_end(); I != E; ++I, ++Idx)
5247          if (Attrs->paramHasAttr(Idx, ParamAttr::InReg))
5248            // FIXME: should only count parameters that are lowered to integers.
5249            InRegCount += (getTargetData()->getTypeSizeInBits(*I) + 31) / 32;
5250
5251        if (InRegCount > 2) {
5252          cerr << "Nest register in use - reduce number of inreg parameters!\n";
5253          abort();
5254        }
5255      }
5256      break;
5257    }
5258    case CallingConv::X86_FastCall:
5259      // Pass 'nest' parameter in EAX.
5260      // Must be kept in sync with X86CallingConv.td
5261      NestReg = X86::EAX;
5262      break;
5263    }
5264
5265    const X86InstrInfo *TII =
5266      ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
5267
5268    SDOperand OutChains[4];
5269    SDOperand Addr, Disp;
5270
5271    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(10, MVT::i32));
5272    Disp = DAG.getNode(ISD::SUB, MVT::i32, FPtr, Addr);
5273
5274    unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
5275    unsigned char N86Reg  = ((X86RegisterInfo&)RegInfo).getX86RegNum(NestReg);
5276    OutChains[0] = DAG.getStore(Root, DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
5277                                Trmp, TrmpSV->getValue(), TrmpSV->getOffset());
5278
5279    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(1, MVT::i32));
5280    OutChains[1] = DAG.getStore(Root, Nest, Addr, TrmpSV->getValue(),
5281                                TrmpSV->getOffset() + 1, false, 1);
5282
5283    unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
5284    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(5, MVT::i32));
5285    OutChains[2] = DAG.getStore(Root, DAG.getConstant(JMP, MVT::i8), Addr,
5286                                TrmpSV->getValue() + 5, TrmpSV->getOffset());
5287
5288    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(6, MVT::i32));
5289    OutChains[3] = DAG.getStore(Root, Disp, Addr, TrmpSV->getValue(),
5290                                TrmpSV->getOffset() + 6, false, 1);
5291
5292    SDOperand Ops[] =
5293      { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 4) };
5294    return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(), Ops, 2);
5295  }
5296}
5297
5298SDOperand X86TargetLowering::LowerFLT_ROUNDS(SDOperand Op, SelectionDAG &DAG) {
5299  /*
5300   The rounding mode is in bits 11:10 of FPSR, and has the following
5301   settings:
5302     00 Round to nearest
5303     01 Round to -inf
5304     10 Round to +inf
5305     11 Round to 0
5306
5307  FLT_ROUNDS, on the other hand, expects the following:
5308    -1 Undefined
5309     0 Round to 0
5310     1 Round to nearest
5311     2 Round to +inf
5312     3 Round to -inf
5313
5314  To perform the conversion, we do:
5315    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
5316  */
5317
5318  MachineFunction &MF = DAG.getMachineFunction();
5319  const TargetMachine &TM = MF.getTarget();
5320  const TargetFrameInfo &TFI = *TM.getFrameInfo();
5321  unsigned StackAlignment = TFI.getStackAlignment();
5322  MVT::ValueType VT = Op.getValueType();
5323
5324  // Save FP Control Word to stack slot
5325  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment);
5326  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5327
5328  SDOperand Chain = DAG.getNode(X86ISD::FNSTCW16m, MVT::Other,
5329                                DAG.getEntryNode(), StackSlot);
5330
5331  // Load FP Control Word from stack slot
5332  SDOperand CWD = DAG.getLoad(MVT::i16, Chain, StackSlot, NULL, 0);
5333
5334  // Transform as necessary
5335  SDOperand CWD1 =
5336    DAG.getNode(ISD::SRL, MVT::i16,
5337                DAG.getNode(ISD::AND, MVT::i16,
5338                            CWD, DAG.getConstant(0x800, MVT::i16)),
5339                DAG.getConstant(11, MVT::i8));
5340  SDOperand CWD2 =
5341    DAG.getNode(ISD::SRL, MVT::i16,
5342                DAG.getNode(ISD::AND, MVT::i16,
5343                            CWD, DAG.getConstant(0x400, MVT::i16)),
5344                DAG.getConstant(9, MVT::i8));
5345
5346  SDOperand RetVal =
5347    DAG.getNode(ISD::AND, MVT::i16,
5348                DAG.getNode(ISD::ADD, MVT::i16,
5349                            DAG.getNode(ISD::OR, MVT::i16, CWD1, CWD2),
5350                            DAG.getConstant(1, MVT::i16)),
5351                DAG.getConstant(3, MVT::i16));
5352
5353
5354  return DAG.getNode((MVT::getSizeInBits(VT) < 16 ?
5355                      ISD::TRUNCATE : ISD::ZERO_EXTEND), VT, RetVal);
5356}
5357
5358/// LowerOperation - Provide custom lowering hooks for some operations.
5359///
5360SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
5361  switch (Op.getOpcode()) {
5362  default: assert(0 && "Should not custom lower this!");
5363  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
5364  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
5365  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
5366  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
5367  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
5368  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
5369  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
5370  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
5371  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
5372  case ISD::SHL_PARTS:
5373  case ISD::SRA_PARTS:
5374  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
5375  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
5376  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
5377  case ISD::FABS:               return LowerFABS(Op, DAG);
5378  case ISD::FNEG:               return LowerFNEG(Op, DAG);
5379  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
5380  case ISD::SETCC:              return LowerSETCC(Op, DAG);
5381  case ISD::SELECT:             return LowerSELECT(Op, DAG);
5382  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
5383  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
5384  case ISD::CALL:               return LowerCALL(Op, DAG);
5385  case ISD::RET:                return LowerRET(Op, DAG);
5386  case ISD::FORMAL_ARGUMENTS:   return LowerFORMAL_ARGUMENTS(Op, DAG);
5387  case ISD::MEMSET:             return LowerMEMSET(Op, DAG);
5388  case ISD::MEMCPY:             return LowerMEMCPY(Op, DAG);
5389  case ISD::VASTART:            return LowerVASTART(Op, DAG);
5390  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
5391  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
5392  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
5393  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
5394  case ISD::FRAME_TO_ARGS_OFFSET:
5395                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
5396  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
5397  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
5398  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
5399  case ISD::FLT_ROUNDS:         return LowerFLT_ROUNDS(Op, DAG);
5400
5401
5402  // FIXME: REMOVE THIS WHEN LegalizeDAGTypes lands.
5403  case ISD::READCYCLECOUNTER:
5404    return SDOperand(ExpandREADCYCLECOUNTER(Op.Val, DAG), 0);
5405  }
5406}
5407
5408/// ExpandOperation - Provide custom lowering hooks for expanding operations.
5409SDNode *X86TargetLowering::ExpandOperationResult(SDNode *N, SelectionDAG &DAG) {
5410  switch (N->getOpcode()) {
5411  default: assert(0 && "Should not custom lower this!");
5412  case ISD::FP_TO_SINT:         return ExpandFP_TO_SINT(N, DAG);
5413  case ISD::READCYCLECOUNTER:   return ExpandREADCYCLECOUNTER(N, DAG);
5414  }
5415}
5416
5417const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
5418  switch (Opcode) {
5419  default: return NULL;
5420  case X86ISD::SHLD:               return "X86ISD::SHLD";
5421  case X86ISD::SHRD:               return "X86ISD::SHRD";
5422  case X86ISD::FAND:               return "X86ISD::FAND";
5423  case X86ISD::FOR:                return "X86ISD::FOR";
5424  case X86ISD::FXOR:               return "X86ISD::FXOR";
5425  case X86ISD::FSRL:               return "X86ISD::FSRL";
5426  case X86ISD::FILD:               return "X86ISD::FILD";
5427  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
5428  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
5429  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
5430  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
5431  case X86ISD::FLD:                return "X86ISD::FLD";
5432  case X86ISD::FST:                return "X86ISD::FST";
5433  case X86ISD::FP_GET_RESULT:      return "X86ISD::FP_GET_RESULT";
5434  case X86ISD::FP_SET_RESULT:      return "X86ISD::FP_SET_RESULT";
5435  case X86ISD::CALL:               return "X86ISD::CALL";
5436  case X86ISD::TAILCALL:           return "X86ISD::TAILCALL";
5437  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
5438  case X86ISD::CMP:                return "X86ISD::CMP";
5439  case X86ISD::COMI:               return "X86ISD::COMI";
5440  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
5441  case X86ISD::SETCC:              return "X86ISD::SETCC";
5442  case X86ISD::CMOV:               return "X86ISD::CMOV";
5443  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
5444  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
5445  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
5446  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
5447  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
5448  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
5449  case X86ISD::S2VEC:              return "X86ISD::S2VEC";
5450  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
5451  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
5452  case X86ISD::FMAX:               return "X86ISD::FMAX";
5453  case X86ISD::FMIN:               return "X86ISD::FMIN";
5454  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
5455  case X86ISD::FRCP:               return "X86ISD::FRCP";
5456  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
5457  case X86ISD::THREAD_POINTER:     return "X86ISD::THREAD_POINTER";
5458  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
5459  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
5460  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
5461  }
5462}
5463
5464// isLegalAddressingMode - Return true if the addressing mode represented
5465// by AM is legal for this target, for a load/store of the specified type.
5466bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
5467                                              const Type *Ty) const {
5468  // X86 supports extremely general addressing modes.
5469
5470  // X86 allows a sign-extended 32-bit immediate field as a displacement.
5471  if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
5472    return false;
5473
5474  if (AM.BaseGV) {
5475    // We can only fold this if we don't need an extra load.
5476    if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
5477      return false;
5478
5479    // X86-64 only supports addr of globals in small code model.
5480    if (Subtarget->is64Bit()) {
5481      if (getTargetMachine().getCodeModel() != CodeModel::Small)
5482        return false;
5483      // If lower 4G is not available, then we must use rip-relative addressing.
5484      if (AM.BaseOffs || AM.Scale > 1)
5485        return false;
5486    }
5487  }
5488
5489  switch (AM.Scale) {
5490  case 0:
5491  case 1:
5492  case 2:
5493  case 4:
5494  case 8:
5495    // These scales always work.
5496    break;
5497  case 3:
5498  case 5:
5499  case 9:
5500    // These scales are formed with basereg+scalereg.  Only accept if there is
5501    // no basereg yet.
5502    if (AM.HasBaseReg)
5503      return false;
5504    break;
5505  default:  // Other stuff never works.
5506    return false;
5507  }
5508
5509  return true;
5510}
5511
5512
5513bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
5514  if (!Ty1->isInteger() || !Ty2->isInteger())
5515    return false;
5516  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
5517  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
5518  if (NumBits1 <= NumBits2)
5519    return false;
5520  return Subtarget->is64Bit() || NumBits1 < 64;
5521}
5522
5523bool X86TargetLowering::isTruncateFree(MVT::ValueType VT1,
5524                                       MVT::ValueType VT2) const {
5525  if (!MVT::isInteger(VT1) || !MVT::isInteger(VT2))
5526    return false;
5527  unsigned NumBits1 = MVT::getSizeInBits(VT1);
5528  unsigned NumBits2 = MVT::getSizeInBits(VT2);
5529  if (NumBits1 <= NumBits2)
5530    return false;
5531  return Subtarget->is64Bit() || NumBits1 < 64;
5532}
5533
5534/// isShuffleMaskLegal - Targets can use this to indicate that they only
5535/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
5536/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
5537/// are assumed to be legal.
5538bool
5539X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
5540  // Only do shuffles on 128-bit vector types for now.
5541  if (MVT::getSizeInBits(VT) == 64) return false;
5542  return (Mask.Val->getNumOperands() <= 4 ||
5543          isIdentityMask(Mask.Val) ||
5544          isIdentityMask(Mask.Val, true) ||
5545          isSplatMask(Mask.Val)  ||
5546          isPSHUFHW_PSHUFLWMask(Mask.Val) ||
5547          X86::isUNPCKLMask(Mask.Val) ||
5548          X86::isUNPCKHMask(Mask.Val) ||
5549          X86::isUNPCKL_v_undef_Mask(Mask.Val) ||
5550          X86::isUNPCKH_v_undef_Mask(Mask.Val));
5551}
5552
5553bool X86TargetLowering::isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
5554                                               MVT::ValueType EVT,
5555                                               SelectionDAG &DAG) const {
5556  unsigned NumElts = BVOps.size();
5557  // Only do shuffles on 128-bit vector types for now.
5558  if (MVT::getSizeInBits(EVT) * NumElts == 64) return false;
5559  if (NumElts == 2) return true;
5560  if (NumElts == 4) {
5561    return (isMOVLMask(&BVOps[0], 4)  ||
5562            isCommutedMOVL(&BVOps[0], 4, true) ||
5563            isSHUFPMask(&BVOps[0], 4) ||
5564            isCommutedSHUFP(&BVOps[0], 4));
5565  }
5566  return false;
5567}
5568
5569//===----------------------------------------------------------------------===//
5570//                           X86 Scheduler Hooks
5571//===----------------------------------------------------------------------===//
5572
5573MachineBasicBlock *
5574X86TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
5575                                           MachineBasicBlock *BB) {
5576  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5577  switch (MI->getOpcode()) {
5578  default: assert(false && "Unexpected instr type to insert");
5579  case X86::CMOV_FR32:
5580  case X86::CMOV_FR64:
5581  case X86::CMOV_V4F32:
5582  case X86::CMOV_V2F64:
5583  case X86::CMOV_V2I64: {
5584    // To "insert" a SELECT_CC instruction, we actually have to insert the
5585    // diamond control-flow pattern.  The incoming instruction knows the
5586    // destination vreg to set, the condition code register to branch on, the
5587    // true/false values to select between, and a branch opcode to use.
5588    const BasicBlock *LLVM_BB = BB->getBasicBlock();
5589    ilist<MachineBasicBlock>::iterator It = BB;
5590    ++It;
5591
5592    //  thisMBB:
5593    //  ...
5594    //   TrueVal = ...
5595    //   cmpTY ccX, r1, r2
5596    //   bCC copy1MBB
5597    //   fallthrough --> copy0MBB
5598    MachineBasicBlock *thisMBB = BB;
5599    MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
5600    MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
5601    unsigned Opc =
5602      X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
5603    BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
5604    MachineFunction *F = BB->getParent();
5605    F->getBasicBlockList().insert(It, copy0MBB);
5606    F->getBasicBlockList().insert(It, sinkMBB);
5607    // Update machine-CFG edges by first adding all successors of the current
5608    // block to the new block which will contain the Phi node for the select.
5609    for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
5610        e = BB->succ_end(); i != e; ++i)
5611      sinkMBB->addSuccessor(*i);
5612    // Next, remove all successors of the current block, and add the true
5613    // and fallthrough blocks as its successors.
5614    while(!BB->succ_empty())
5615      BB->removeSuccessor(BB->succ_begin());
5616    BB->addSuccessor(copy0MBB);
5617    BB->addSuccessor(sinkMBB);
5618
5619    //  copy0MBB:
5620    //   %FalseValue = ...
5621    //   # fallthrough to sinkMBB
5622    BB = copy0MBB;
5623
5624    // Update machine-CFG edges
5625    BB->addSuccessor(sinkMBB);
5626
5627    //  sinkMBB:
5628    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
5629    //  ...
5630    BB = sinkMBB;
5631    BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
5632      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
5633      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
5634
5635    delete MI;   // The pseudo instruction is gone now.
5636    return BB;
5637  }
5638
5639  case X86::FP32_TO_INT16_IN_MEM:
5640  case X86::FP32_TO_INT32_IN_MEM:
5641  case X86::FP32_TO_INT64_IN_MEM:
5642  case X86::FP64_TO_INT16_IN_MEM:
5643  case X86::FP64_TO_INT32_IN_MEM:
5644  case X86::FP64_TO_INT64_IN_MEM:
5645  case X86::FP80_TO_INT16_IN_MEM:
5646  case X86::FP80_TO_INT32_IN_MEM:
5647  case X86::FP80_TO_INT64_IN_MEM: {
5648    // Change the floating point control register to use "round towards zero"
5649    // mode when truncating to an integer value.
5650    MachineFunction *F = BB->getParent();
5651    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
5652    addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
5653
5654    // Load the old value of the high byte of the control word...
5655    unsigned OldCW =
5656      F->getSSARegMap()->createVirtualRegister(X86::GR16RegisterClass);
5657    addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);
5658
5659    // Set the high part to be round to zero...
5660    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
5661      .addImm(0xC7F);
5662
5663    // Reload the modified control word now...
5664    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
5665
5666    // Restore the memory image of control word to original value
5667    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
5668      .addReg(OldCW);
5669
5670    // Get the X86 opcode to use.
5671    unsigned Opc;
5672    switch (MI->getOpcode()) {
5673    default: assert(0 && "illegal opcode!");
5674    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
5675    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
5676    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
5677    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
5678    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
5679    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
5680    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
5681    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
5682    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
5683    }
5684
5685    X86AddressMode AM;
5686    MachineOperand &Op = MI->getOperand(0);
5687    if (Op.isRegister()) {
5688      AM.BaseType = X86AddressMode::RegBase;
5689      AM.Base.Reg = Op.getReg();
5690    } else {
5691      AM.BaseType = X86AddressMode::FrameIndexBase;
5692      AM.Base.FrameIndex = Op.getFrameIndex();
5693    }
5694    Op = MI->getOperand(1);
5695    if (Op.isImmediate())
5696      AM.Scale = Op.getImm();
5697    Op = MI->getOperand(2);
5698    if (Op.isImmediate())
5699      AM.IndexReg = Op.getImm();
5700    Op = MI->getOperand(3);
5701    if (Op.isGlobalAddress()) {
5702      AM.GV = Op.getGlobal();
5703    } else {
5704      AM.Disp = Op.getImm();
5705    }
5706    addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
5707                      .addReg(MI->getOperand(4).getReg());
5708
5709    // Reload the original control word now.
5710    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
5711
5712    delete MI;   // The pseudo instruction is gone now.
5713    return BB;
5714  }
5715  }
5716}
5717
5718//===----------------------------------------------------------------------===//
5719//                           X86 Optimization Hooks
5720//===----------------------------------------------------------------------===//
5721
5722void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
5723                                                       uint64_t Mask,
5724                                                       uint64_t &KnownZero,
5725                                                       uint64_t &KnownOne,
5726                                                       const SelectionDAG &DAG,
5727                                                       unsigned Depth) const {
5728  unsigned Opc = Op.getOpcode();
5729  assert((Opc >= ISD::BUILTIN_OP_END ||
5730          Opc == ISD::INTRINSIC_WO_CHAIN ||
5731          Opc == ISD::INTRINSIC_W_CHAIN ||
5732          Opc == ISD::INTRINSIC_VOID) &&
5733         "Should use MaskedValueIsZero if you don't know whether Op"
5734         " is a target node!");
5735
5736  KnownZero = KnownOne = 0;   // Don't know anything.
5737  switch (Opc) {
5738  default: break;
5739  case X86ISD::SETCC:
5740    KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
5741    break;
5742  }
5743}
5744
5745/// getShuffleScalarElt - Returns the scalar element that will make up the ith
5746/// element of the result of the vector shuffle.
5747static SDOperand getShuffleScalarElt(SDNode *N, unsigned i, SelectionDAG &DAG) {
5748  MVT::ValueType VT = N->getValueType(0);
5749  SDOperand PermMask = N->getOperand(2);
5750  unsigned NumElems = PermMask.getNumOperands();
5751  SDOperand V = (i < NumElems) ? N->getOperand(0) : N->getOperand(1);
5752  i %= NumElems;
5753  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5754    return (i == 0)
5755     ? V.getOperand(0) : DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
5756  } else if (V.getOpcode() == ISD::VECTOR_SHUFFLE) {
5757    SDOperand Idx = PermMask.getOperand(i);
5758    if (Idx.getOpcode() == ISD::UNDEF)
5759      return DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
5760    return getShuffleScalarElt(V.Val,cast<ConstantSDNode>(Idx)->getValue(),DAG);
5761  }
5762  return SDOperand();
5763}
5764
5765/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
5766/// node is a GlobalAddress + an offset.
5767static bool isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) {
5768  unsigned Opc = N->getOpcode();
5769  if (Opc == X86ISD::Wrapper) {
5770    if (dyn_cast<GlobalAddressSDNode>(N->getOperand(0))) {
5771      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
5772      return true;
5773    }
5774  } else if (Opc == ISD::ADD) {
5775    SDOperand N1 = N->getOperand(0);
5776    SDOperand N2 = N->getOperand(1);
5777    if (isGAPlusOffset(N1.Val, GA, Offset)) {
5778      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
5779      if (V) {
5780        Offset += V->getSignExtended();
5781        return true;
5782      }
5783    } else if (isGAPlusOffset(N2.Val, GA, Offset)) {
5784      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
5785      if (V) {
5786        Offset += V->getSignExtended();
5787        return true;
5788      }
5789    }
5790  }
5791  return false;
5792}
5793
5794/// isConsecutiveLoad - Returns true if N is loading from an address of Base
5795/// + Dist * Size.
5796static bool isConsecutiveLoad(SDNode *N, SDNode *Base, int Dist, int Size,
5797                              MachineFrameInfo *MFI) {
5798  if (N->getOperand(0).Val != Base->getOperand(0).Val)
5799    return false;
5800
5801  SDOperand Loc = N->getOperand(1);
5802  SDOperand BaseLoc = Base->getOperand(1);
5803  if (Loc.getOpcode() == ISD::FrameIndex) {
5804    if (BaseLoc.getOpcode() != ISD::FrameIndex)
5805      return false;
5806    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
5807    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
5808    int FS  = MFI->getObjectSize(FI);
5809    int BFS = MFI->getObjectSize(BFI);
5810    if (FS != BFS || FS != Size) return false;
5811    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Size);
5812  } else {
5813    GlobalValue *GV1 = NULL;
5814    GlobalValue *GV2 = NULL;
5815    int64_t Offset1 = 0;
5816    int64_t Offset2 = 0;
5817    bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1);
5818    bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2);
5819    if (isGA1 && isGA2 && GV1 == GV2)
5820      return Offset1 == (Offset2 + Dist*Size);
5821  }
5822
5823  return false;
5824}
5825
5826static bool isBaseAlignment16(SDNode *Base, MachineFrameInfo *MFI,
5827                              const X86Subtarget *Subtarget) {
5828  GlobalValue *GV;
5829  int64_t Offset;
5830  if (isGAPlusOffset(Base, GV, Offset))
5831    return (GV->getAlignment() >= 16 && (Offset % 16) == 0);
5832  else {
5833    assert(Base->getOpcode() == ISD::FrameIndex && "Unexpected base node!");
5834    int BFI = cast<FrameIndexSDNode>(Base)->getIndex();
5835    if (BFI < 0)
5836      // Fixed objects do not specify alignment, however the offsets are known.
5837      return ((Subtarget->getStackAlignment() % 16) == 0 &&
5838              (MFI->getObjectOffset(BFI) % 16) == 0);
5839    else
5840      return MFI->getObjectAlignment(BFI) >= 16;
5841  }
5842  return false;
5843}
5844
5845
5846/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
5847/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
5848/// if the load addresses are consecutive, non-overlapping, and in the right
5849/// order.
5850static SDOperand PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
5851                                       const X86Subtarget *Subtarget) {
5852  MachineFunction &MF = DAG.getMachineFunction();
5853  MachineFrameInfo *MFI = MF.getFrameInfo();
5854  MVT::ValueType VT = N->getValueType(0);
5855  MVT::ValueType EVT = MVT::getVectorElementType(VT);
5856  SDOperand PermMask = N->getOperand(2);
5857  int NumElems = (int)PermMask.getNumOperands();
5858  SDNode *Base = NULL;
5859  for (int i = 0; i < NumElems; ++i) {
5860    SDOperand Idx = PermMask.getOperand(i);
5861    if (Idx.getOpcode() == ISD::UNDEF) {
5862      if (!Base) return SDOperand();
5863    } else {
5864      SDOperand Arg =
5865        getShuffleScalarElt(N, cast<ConstantSDNode>(Idx)->getValue(), DAG);
5866      if (!Arg.Val || !ISD::isNON_EXTLoad(Arg.Val))
5867        return SDOperand();
5868      if (!Base)
5869        Base = Arg.Val;
5870      else if (!isConsecutiveLoad(Arg.Val, Base,
5871                                  i, MVT::getSizeInBits(EVT)/8,MFI))
5872        return SDOperand();
5873    }
5874  }
5875
5876  bool isAlign16 = isBaseAlignment16(Base->getOperand(1).Val, MFI, Subtarget);
5877  LoadSDNode *LD = cast<LoadSDNode>(Base);
5878  if (isAlign16) {
5879    return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
5880                       LD->getSrcValueOffset(), LD->isVolatile());
5881  } else {
5882    return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
5883                       LD->getSrcValueOffset(), LD->isVolatile(),
5884                       LD->getAlignment());
5885  }
5886}
5887
5888/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
5889static SDOperand PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
5890                                      const X86Subtarget *Subtarget) {
5891  SDOperand Cond = N->getOperand(0);
5892
5893  // If we have SSE[12] support, try to form min/max nodes.
5894  if (Subtarget->hasSSE2() &&
5895      (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
5896    if (Cond.getOpcode() == ISD::SETCC) {
5897      // Get the LHS/RHS of the select.
5898      SDOperand LHS = N->getOperand(1);
5899      SDOperand RHS = N->getOperand(2);
5900      ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
5901
5902      unsigned Opcode = 0;
5903      if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
5904        switch (CC) {
5905        default: break;
5906        case ISD::SETOLE: // (X <= Y) ? X : Y -> min
5907        case ISD::SETULE:
5908        case ISD::SETLE:
5909          if (!UnsafeFPMath) break;
5910          // FALL THROUGH.
5911        case ISD::SETOLT:  // (X olt/lt Y) ? X : Y -> min
5912        case ISD::SETLT:
5913          Opcode = X86ISD::FMIN;
5914          break;
5915
5916        case ISD::SETOGT: // (X > Y) ? X : Y -> max
5917        case ISD::SETUGT:
5918        case ISD::SETGT:
5919          if (!UnsafeFPMath) break;
5920          // FALL THROUGH.
5921        case ISD::SETUGE:  // (X uge/ge Y) ? X : Y -> max
5922        case ISD::SETGE:
5923          Opcode = X86ISD::FMAX;
5924          break;
5925        }
5926      } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
5927        switch (CC) {
5928        default: break;
5929        case ISD::SETOGT: // (X > Y) ? Y : X -> min
5930        case ISD::SETUGT:
5931        case ISD::SETGT:
5932          if (!UnsafeFPMath) break;
5933          // FALL THROUGH.
5934        case ISD::SETUGE:  // (X uge/ge Y) ? Y : X -> min
5935        case ISD::SETGE:
5936          Opcode = X86ISD::FMIN;
5937          break;
5938
5939        case ISD::SETOLE:   // (X <= Y) ? Y : X -> max
5940        case ISD::SETULE:
5941        case ISD::SETLE:
5942          if (!UnsafeFPMath) break;
5943          // FALL THROUGH.
5944        case ISD::SETOLT:   // (X olt/lt Y) ? Y : X -> max
5945        case ISD::SETLT:
5946          Opcode = X86ISD::FMAX;
5947          break;
5948        }
5949      }
5950
5951      if (Opcode)
5952        return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS);
5953    }
5954
5955  }
5956
5957  return SDOperand();
5958}
5959
5960
5961SDOperand X86TargetLowering::PerformDAGCombine(SDNode *N,
5962                                               DAGCombinerInfo &DCI) const {
5963  SelectionDAG &DAG = DCI.DAG;
5964  switch (N->getOpcode()) {
5965  default: break;
5966  case ISD::VECTOR_SHUFFLE:
5967    return PerformShuffleCombine(N, DAG, Subtarget);
5968  case ISD::SELECT:
5969    return PerformSELECTCombine(N, DAG, Subtarget);
5970  }
5971
5972  return SDOperand();
5973}
5974
5975//===----------------------------------------------------------------------===//
5976//                           X86 Inline Assembly Support
5977//===----------------------------------------------------------------------===//
5978
5979/// getConstraintType - Given a constraint letter, return the type of
5980/// constraint it is for this target.
5981X86TargetLowering::ConstraintType
5982X86TargetLowering::getConstraintType(const std::string &Constraint) const {
5983  if (Constraint.size() == 1) {
5984    switch (Constraint[0]) {
5985    case 'A':
5986    case 'r':
5987    case 'R':
5988    case 'l':
5989    case 'q':
5990    case 'Q':
5991    case 'x':
5992    case 'Y':
5993      return C_RegisterClass;
5994    default:
5995      break;
5996    }
5997  }
5998  return TargetLowering::getConstraintType(Constraint);
5999}
6000
6001/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
6002/// vector.  If it is invalid, don't add anything to Ops.
6003void X86TargetLowering::LowerAsmOperandForConstraint(SDOperand Op,
6004                                                     char Constraint,
6005                                                     std::vector<SDOperand>&Ops,
6006                                                     SelectionDAG &DAG) {
6007  SDOperand Result(0, 0);
6008
6009  switch (Constraint) {
6010  default: break;
6011  case 'I':
6012    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
6013      if (C->getValue() <= 31) {
6014        Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
6015        break;
6016      }
6017    }
6018    return;
6019  case 'N':
6020    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
6021      if (C->getValue() <= 255) {
6022        Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
6023        break;
6024      }
6025    }
6026    return;
6027  case 'i': {
6028    // Literal immediates are always ok.
6029    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
6030      Result = DAG.getTargetConstant(CST->getValue(), Op.getValueType());
6031      break;
6032    }
6033
6034    // If we are in non-pic codegen mode, we allow the address of a global (with
6035    // an optional displacement) to be used with 'i'.
6036    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
6037    int64_t Offset = 0;
6038
6039    // Match either (GA) or (GA+C)
6040    if (GA) {
6041      Offset = GA->getOffset();
6042    } else if (Op.getOpcode() == ISD::ADD) {
6043      ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6044      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
6045      if (C && GA) {
6046        Offset = GA->getOffset()+C->getValue();
6047      } else {
6048        C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6049        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
6050        if (C && GA)
6051          Offset = GA->getOffset()+C->getValue();
6052        else
6053          C = 0, GA = 0;
6054      }
6055    }
6056
6057    if (GA) {
6058      // If addressing this global requires a load (e.g. in PIC mode), we can't
6059      // match.
6060      if (Subtarget->GVRequiresExtraLoad(GA->getGlobal(), getTargetMachine(),
6061                                         false))
6062        return;
6063
6064      Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
6065                                      Offset);
6066      Result = Op;
6067      break;
6068    }
6069
6070    // Otherwise, not valid for this mode.
6071    return;
6072  }
6073  }
6074
6075  if (Result.Val) {
6076    Ops.push_back(Result);
6077    return;
6078  }
6079  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
6080}
6081
6082std::vector<unsigned> X86TargetLowering::
6083getRegClassForInlineAsmConstraint(const std::string &Constraint,
6084                                  MVT::ValueType VT) const {
6085  if (Constraint.size() == 1) {
6086    // FIXME: not handling fp-stack yet!
6087    switch (Constraint[0]) {      // GCC X86 Constraint Letters
6088    default: break;  // Unknown constraint letter
6089    case 'A':   // EAX/EDX
6090      if (VT == MVT::i32 || VT == MVT::i64)
6091        return make_vector<unsigned>(X86::EAX, X86::EDX, 0);
6092      break;
6093    case 'q':   // Q_REGS (GENERAL_REGS in 64-bit mode)
6094    case 'Q':   // Q_REGS
6095      if (VT == MVT::i32)
6096        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
6097      else if (VT == MVT::i16)
6098        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
6099      else if (VT == MVT::i8)
6100        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
6101      else if (VT == MVT::i64)
6102        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
6103      break;
6104    }
6105  }
6106
6107  return std::vector<unsigned>();
6108}
6109
6110std::pair<unsigned, const TargetRegisterClass*>
6111X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
6112                                                MVT::ValueType VT) const {
6113  // First, see if this is a constraint that directly corresponds to an LLVM
6114  // register class.
6115  if (Constraint.size() == 1) {
6116    // GCC Constraint Letters
6117    switch (Constraint[0]) {
6118    default: break;
6119    case 'r':   // GENERAL_REGS
6120    case 'R':   // LEGACY_REGS
6121    case 'l':   // INDEX_REGS
6122      if (VT == MVT::i64 && Subtarget->is64Bit())
6123        return std::make_pair(0U, X86::GR64RegisterClass);
6124      if (VT == MVT::i32)
6125        return std::make_pair(0U, X86::GR32RegisterClass);
6126      else if (VT == MVT::i16)
6127        return std::make_pair(0U, X86::GR16RegisterClass);
6128      else if (VT == MVT::i8)
6129        return std::make_pair(0U, X86::GR8RegisterClass);
6130      break;
6131    case 'y':   // MMX_REGS if MMX allowed.
6132      if (!Subtarget->hasMMX()) break;
6133      return std::make_pair(0U, X86::VR64RegisterClass);
6134      break;
6135    case 'Y':   // SSE_REGS if SSE2 allowed
6136      if (!Subtarget->hasSSE2()) break;
6137      // FALL THROUGH.
6138    case 'x':   // SSE_REGS if SSE1 allowed
6139      if (!Subtarget->hasSSE1()) break;
6140
6141      switch (VT) {
6142      default: break;
6143      // Scalar SSE types.
6144      case MVT::f32:
6145      case MVT::i32:
6146        return std::make_pair(0U, X86::FR32RegisterClass);
6147      case MVT::f64:
6148      case MVT::i64:
6149        return std::make_pair(0U, X86::FR64RegisterClass);
6150      // Vector types.
6151      case MVT::v16i8:
6152      case MVT::v8i16:
6153      case MVT::v4i32:
6154      case MVT::v2i64:
6155      case MVT::v4f32:
6156      case MVT::v2f64:
6157        return std::make_pair(0U, X86::VR128RegisterClass);
6158      }
6159      break;
6160    }
6161  }
6162
6163  // Use the default implementation in TargetLowering to convert the register
6164  // constraint into a member of a register class.
6165  std::pair<unsigned, const TargetRegisterClass*> Res;
6166  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
6167
6168  // Not found as a standard register?
6169  if (Res.second == 0) {
6170    // GCC calls "st(0)" just plain "st".
6171    if (StringsEqualNoCase("{st}", Constraint)) {
6172      Res.first = X86::ST0;
6173      Res.second = X86::RFP80RegisterClass;
6174    }
6175
6176    return Res;
6177  }
6178
6179  // Otherwise, check to see if this is a register class of the wrong value
6180  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
6181  // turn into {ax},{dx}.
6182  if (Res.second->hasType(VT))
6183    return Res;   // Correct type already, nothing to do.
6184
6185  // All of the single-register GCC register classes map their values onto
6186  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
6187  // really want an 8-bit or 32-bit register, map to the appropriate register
6188  // class and return the appropriate register.
6189  if (Res.second != X86::GR16RegisterClass)
6190    return Res;
6191
6192  if (VT == MVT::i8) {
6193    unsigned DestReg = 0;
6194    switch (Res.first) {
6195    default: break;
6196    case X86::AX: DestReg = X86::AL; break;
6197    case X86::DX: DestReg = X86::DL; break;
6198    case X86::CX: DestReg = X86::CL; break;
6199    case X86::BX: DestReg = X86::BL; break;
6200    }
6201    if (DestReg) {
6202      Res.first = DestReg;
6203      Res.second = Res.second = X86::GR8RegisterClass;
6204    }
6205  } else if (VT == MVT::i32) {
6206    unsigned DestReg = 0;
6207    switch (Res.first) {
6208    default: break;
6209    case X86::AX: DestReg = X86::EAX; break;
6210    case X86::DX: DestReg = X86::EDX; break;
6211    case X86::CX: DestReg = X86::ECX; break;
6212    case X86::BX: DestReg = X86::EBX; break;
6213    case X86::SI: DestReg = X86::ESI; break;
6214    case X86::DI: DestReg = X86::EDI; break;
6215    case X86::BP: DestReg = X86::EBP; break;
6216    case X86::SP: DestReg = X86::ESP; break;
6217    }
6218    if (DestReg) {
6219      Res.first = DestReg;
6220      Res.second = Res.second = X86::GR32RegisterClass;
6221    }
6222  } else if (VT == MVT::i64) {
6223    unsigned DestReg = 0;
6224    switch (Res.first) {
6225    default: break;
6226    case X86::AX: DestReg = X86::RAX; break;
6227    case X86::DX: DestReg = X86::RDX; break;
6228    case X86::CX: DestReg = X86::RCX; break;
6229    case X86::BX: DestReg = X86::RBX; break;
6230    case X86::SI: DestReg = X86::RSI; break;
6231    case X86::DI: DestReg = X86::RDI; break;
6232    case X86::BP: DestReg = X86::RBP; break;
6233    case X86::SP: DestReg = X86::RSP; break;
6234    }
6235    if (DestReg) {
6236      Res.first = DestReg;
6237      Res.second = Res.second = X86::GR64RegisterClass;
6238    }
6239  }
6240
6241  return Res;
6242}
6243