X86ISelLowering.cpp revision 1503aba4a036f5394c7983417bc1e64613b2fc77
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86ISelLowering.h"
17#include "X86.h"
18#include "X86InstrBuilder.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/MC/MCAsmInfo.h"
39#include "llvm/MC/MCContext.h"
40#include "llvm/MC/MCExpr.h"
41#include "llvm/MC/MCSymbol.h"
42#include "llvm/ADT/SmallSet.h"
43#include "llvm/ADT/Statistic.h"
44#include "llvm/ADT/StringExtras.h"
45#include "llvm/ADT/VariadicFunction.h"
46#include "llvm/Support/CallSite.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/Target/TargetOptions.h"
51#include <bitset>
52using namespace llvm;
53
54STATISTIC(NumTailCalls, "Number of tail calls");
55
56// Forward declarations.
57static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
58                       SDValue V2);
59
60/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
61/// sets things up to match to an AVX VEXTRACTF128 instruction or a
62/// simple subregister reference.  Idx is an index in the 128 bits we
63/// want.  It need not be aligned to a 128-bit bounday.  That makes
64/// lowering EXTRACT_VECTOR_ELT operations easier.
65static SDValue Extract128BitVector(SDValue Vec, unsigned IdxVal,
66                                   SelectionDAG &DAG, DebugLoc dl) {
67  EVT VT = Vec.getValueType();
68  assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
69  EVT ElVT = VT.getVectorElementType();
70  unsigned Factor = VT.getSizeInBits()/128;
71  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
72                                  VT.getVectorNumElements()/Factor);
73
74  // Extract from UNDEF is UNDEF.
75  if (Vec.getOpcode() == ISD::UNDEF)
76    return DAG.getUNDEF(ResultVT);
77
78  // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
79  // we can match to VEXTRACTF128.
80  unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
81
82  // This is the index of the first element of the 128-bit chunk
83  // we want.
84  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
85                               * ElemsPerChunk);
86
87  SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
88  SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
89                               VecIdx);
90
91  return Result;
92}
93
94/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
95/// sets things up to match to an AVX VINSERTF128 instruction or a
96/// simple superregister reference.  Idx is an index in the 128 bits
97/// we want.  It need not be aligned to a 128-bit bounday.  That makes
98/// lowering INSERT_VECTOR_ELT operations easier.
99static SDValue Insert128BitVector(SDValue Result, SDValue Vec,
100                                  unsigned IdxVal, SelectionDAG &DAG,
101                                  DebugLoc dl) {
102  // Inserting UNDEF is Result
103  if (Vec.getOpcode() == ISD::UNDEF)
104    return Result;
105
106  EVT VT = Vec.getValueType();
107  assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
108
109  EVT ElVT = VT.getVectorElementType();
110  EVT ResultVT = Result.getValueType();
111
112  // Insert the relevant 128 bits.
113  unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
114
115  // This is the index of the first element of the 128-bit chunk
116  // we want.
117  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
118                               * ElemsPerChunk);
119
120  SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
121  return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
122                     VecIdx);
123}
124
125/// Concat two 128-bit vectors into a 256 bit vector using VINSERTF128
126/// instructions. This is used because creating CONCAT_VECTOR nodes of
127/// BUILD_VECTORS returns a larger BUILD_VECTOR while we're trying to lower
128/// large BUILD_VECTORS.
129static SDValue Concat128BitVectors(SDValue V1, SDValue V2, EVT VT,
130                                   unsigned NumElems, SelectionDAG &DAG,
131                                   DebugLoc dl) {
132  SDValue V = Insert128BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
133  return Insert128BitVector(V, V2, NumElems/2, DAG, dl);
134}
135
136static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
137  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
138  bool is64Bit = Subtarget->is64Bit();
139
140  if (Subtarget->isTargetEnvMacho()) {
141    if (is64Bit)
142      return new X86_64MachoTargetObjectFile();
143    return new TargetLoweringObjectFileMachO();
144  }
145
146  if (Subtarget->isTargetLinux())
147    return new X86LinuxTargetObjectFile();
148  if (Subtarget->isTargetELF())
149    return new TargetLoweringObjectFileELF();
150  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
151    return new TargetLoweringObjectFileCOFF();
152  llvm_unreachable("unknown subtarget type");
153}
154
155X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
156  : TargetLowering(TM, createTLOF(TM)) {
157  Subtarget = &TM.getSubtarget<X86Subtarget>();
158  X86ScalarSSEf64 = Subtarget->hasSSE2();
159  X86ScalarSSEf32 = Subtarget->hasSSE1();
160  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
161
162  RegInfo = TM.getRegisterInfo();
163  TD = getTargetData();
164
165  // Set up the TargetLowering object.
166  static const MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
167
168  // X86 is weird, it always uses i8 for shift amounts and setcc results.
169  setBooleanContents(ZeroOrOneBooleanContent);
170  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
171  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
172
173  // For 64-bit since we have so many registers use the ILP scheduler, for
174  // 32-bit code use the register pressure specific scheduling.
175  // For Atom, always use ILP scheduling.
176  if (Subtarget->isAtom())
177    setSchedulingPreference(Sched::ILP);
178  else if (Subtarget->is64Bit())
179    setSchedulingPreference(Sched::ILP);
180  else
181    setSchedulingPreference(Sched::RegPressure);
182  setStackPointerRegisterToSaveRestore(X86StackPtr);
183
184  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
185    // Setup Windows compiler runtime calls.
186    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
187    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
188    setLibcallName(RTLIB::SREM_I64, "_allrem");
189    setLibcallName(RTLIB::UREM_I64, "_aullrem");
190    setLibcallName(RTLIB::MUL_I64, "_allmul");
191    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
192    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
193    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
194    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
195    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
196
197    // The _ftol2 runtime function has an unusual calling conv, which
198    // is modeled by a special pseudo-instruction.
199    setLibcallName(RTLIB::FPTOUINT_F64_I64, 0);
200    setLibcallName(RTLIB::FPTOUINT_F32_I64, 0);
201    setLibcallName(RTLIB::FPTOUINT_F64_I32, 0);
202    setLibcallName(RTLIB::FPTOUINT_F32_I32, 0);
203  }
204
205  if (Subtarget->isTargetDarwin()) {
206    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
207    setUseUnderscoreSetJmp(false);
208    setUseUnderscoreLongJmp(false);
209  } else if (Subtarget->isTargetMingw()) {
210    // MS runtime is weird: it exports _setjmp, but longjmp!
211    setUseUnderscoreSetJmp(true);
212    setUseUnderscoreLongJmp(false);
213  } else {
214    setUseUnderscoreSetJmp(true);
215    setUseUnderscoreLongJmp(true);
216  }
217
218  // Set up the register classes.
219  addRegisterClass(MVT::i8, &X86::GR8RegClass);
220  addRegisterClass(MVT::i16, &X86::GR16RegClass);
221  addRegisterClass(MVT::i32, &X86::GR32RegClass);
222  if (Subtarget->is64Bit())
223    addRegisterClass(MVT::i64, &X86::GR64RegClass);
224
225  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
226
227  // We don't accept any truncstore of integer registers.
228  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
229  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
230  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
231  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
232  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
233  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
234
235  // SETOEQ and SETUNE require checking two conditions.
236  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
237  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
238  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
239  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
240  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
241  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
242
243  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
244  // operation.
245  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
246  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
247  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
248
249  if (Subtarget->is64Bit()) {
250    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
251    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
252  } else if (!TM.Options.UseSoftFloat) {
253    // We have an algorithm for SSE2->double, and we turn this into a
254    // 64-bit FILD followed by conditional FADD for other targets.
255    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
256    // We have an algorithm for SSE2, and we turn this into a 64-bit
257    // FILD for other targets.
258    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
259  }
260
261  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
262  // this operation.
263  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
264  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
265
266  if (!TM.Options.UseSoftFloat) {
267    // SSE has no i16 to fp conversion, only i32
268    if (X86ScalarSSEf32) {
269      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
270      // f32 and f64 cases are Legal, f80 case is not
271      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
272    } else {
273      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
274      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
275    }
276  } else {
277    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
278    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
279  }
280
281  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
282  // are Legal, f80 is custom lowered.
283  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
284  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
285
286  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
287  // this operation.
288  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
289  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
290
291  if (X86ScalarSSEf32) {
292    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
293    // f32 and f64 cases are Legal, f80 case is not
294    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
295  } else {
296    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
297    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
298  }
299
300  // Handle FP_TO_UINT by promoting the destination to a larger signed
301  // conversion.
302  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
303  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
304  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
305
306  if (Subtarget->is64Bit()) {
307    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
308    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
309  } else if (!TM.Options.UseSoftFloat) {
310    // Since AVX is a superset of SSE3, only check for SSE here.
311    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
312      // Expand FP_TO_UINT into a select.
313      // FIXME: We would like to use a Custom expander here eventually to do
314      // the optimal thing for SSE vs. the default expansion in the legalizer.
315      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
316    else
317      // With SSE3 we can use fisttpll to convert to a signed i64; without
318      // SSE, we're stuck with a fistpll.
319      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
320  }
321
322  if (isTargetFTOL()) {
323    // Use the _ftol2 runtime function, which has a pseudo-instruction
324    // to handle its weird calling convention.
325    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Custom);
326  }
327
328  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
329  if (!X86ScalarSSEf64) {
330    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
331    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
332    if (Subtarget->is64Bit()) {
333      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
334      // Without SSE, i64->f64 goes through memory.
335      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
336    }
337  }
338
339  // Scalar integer divide and remainder are lowered to use operations that
340  // produce two results, to match the available instructions. This exposes
341  // the two-result form to trivial CSE, which is able to combine x/y and x%y
342  // into a single instruction.
343  //
344  // Scalar integer multiply-high is also lowered to use two-result
345  // operations, to match the available instructions. However, plain multiply
346  // (low) operations are left as Legal, as there are single-result
347  // instructions for this in x86. Using the two-result multiply instructions
348  // when both high and low results are needed must be arranged by dagcombine.
349  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
350    MVT VT = IntVTs[i];
351    setOperationAction(ISD::MULHS, VT, Expand);
352    setOperationAction(ISD::MULHU, VT, Expand);
353    setOperationAction(ISD::SDIV, VT, Expand);
354    setOperationAction(ISD::UDIV, VT, Expand);
355    setOperationAction(ISD::SREM, VT, Expand);
356    setOperationAction(ISD::UREM, VT, Expand);
357
358    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
359    setOperationAction(ISD::ADDC, VT, Custom);
360    setOperationAction(ISD::ADDE, VT, Custom);
361    setOperationAction(ISD::SUBC, VT, Custom);
362    setOperationAction(ISD::SUBE, VT, Custom);
363  }
364
365  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
366  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
367  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
368  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
369  if (Subtarget->is64Bit())
370    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
371  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
372  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
373  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
374  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
375  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
376  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
377  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
378  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
379
380  // Promote the i8 variants and force them on up to i32 which has a shorter
381  // encoding.
382  setOperationAction(ISD::CTTZ             , MVT::i8   , Promote);
383  AddPromotedToType (ISD::CTTZ             , MVT::i8   , MVT::i32);
384  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Promote);
385  AddPromotedToType (ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , MVT::i32);
386  if (Subtarget->hasBMI()) {
387    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Expand);
388    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Expand);
389    if (Subtarget->is64Bit())
390      setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
391  } else {
392    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
393    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
394    if (Subtarget->is64Bit())
395      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
396  }
397
398  if (Subtarget->hasLZCNT()) {
399    // When promoting the i8 variants, force them to i32 for a shorter
400    // encoding.
401    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
402    AddPromotedToType (ISD::CTLZ           , MVT::i8   , MVT::i32);
403    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Promote);
404    AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
405    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Expand);
406    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Expand);
407    if (Subtarget->is64Bit())
408      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
409  } else {
410    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
411    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
412    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
413    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom);
414    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom);
415    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom);
416    if (Subtarget->is64Bit()) {
417      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
418      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
419    }
420  }
421
422  if (Subtarget->hasPOPCNT()) {
423    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
424  } else {
425    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
426    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
427    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
428    if (Subtarget->is64Bit())
429      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
430  }
431
432  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
433  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
434
435  // These should be promoted to a larger select which is supported.
436  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
437  // X86 wants to expand cmov itself.
438  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
439  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
440  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
441  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
442  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
443  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
444  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
445  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
446  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
447  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
448  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
449  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
450  if (Subtarget->is64Bit()) {
451    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
452    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
453  }
454  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
455
456  // Darwin ABI issue.
457  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
458  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
459  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
460  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
461  if (Subtarget->is64Bit())
462    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
463  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
464  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
465  if (Subtarget->is64Bit()) {
466    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
467    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
468    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
469    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
470    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
471  }
472  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
473  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
474  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
475  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
476  if (Subtarget->is64Bit()) {
477    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
478    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
479    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
480  }
481
482  if (Subtarget->hasSSE1())
483    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
484
485  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
486  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
487
488  // On X86 and X86-64, atomic operations are lowered to locked instructions.
489  // Locked instructions, in turn, have implicit fence semantics (all memory
490  // operations are flushed before issuing the locked instruction, and they
491  // are not buffered), so we can fold away the common pattern of
492  // fence-atomic-fence.
493  setShouldFoldAtomicFences(true);
494
495  // Expand certain atomics
496  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
497    MVT VT = IntVTs[i];
498    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
499    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
500    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
501  }
502
503  if (!Subtarget->is64Bit()) {
504    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
505    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
506    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
507    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
508    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
509    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
510    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
511    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
512  }
513
514  if (Subtarget->hasCmpxchg16b()) {
515    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
516  }
517
518  // FIXME - use subtarget debug flags
519  if (!Subtarget->isTargetDarwin() &&
520      !Subtarget->isTargetELF() &&
521      !Subtarget->isTargetCygMing()) {
522    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
523  }
524
525  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
526  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
527  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
528  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
529  if (Subtarget->is64Bit()) {
530    setExceptionPointerRegister(X86::RAX);
531    setExceptionSelectorRegister(X86::RDX);
532  } else {
533    setExceptionPointerRegister(X86::EAX);
534    setExceptionSelectorRegister(X86::EDX);
535  }
536  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
537  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
538
539  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
540  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
541
542  setOperationAction(ISD::TRAP, MVT::Other, Legal);
543
544  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
545  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
546  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
547  if (Subtarget->is64Bit()) {
548    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
549    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
550  } else {
551    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
552    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
553  }
554
555  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
556  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
557
558  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
559    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
560                       MVT::i64 : MVT::i32, Custom);
561  else if (TM.Options.EnableSegmentedStacks)
562    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
563                       MVT::i64 : MVT::i32, Custom);
564  else
565    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
566                       MVT::i64 : MVT::i32, Expand);
567
568  if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
569    // f32 and f64 use SSE.
570    // Set up the FP register classes.
571    addRegisterClass(MVT::f32, &X86::FR32RegClass);
572    addRegisterClass(MVT::f64, &X86::FR64RegClass);
573
574    // Use ANDPD to simulate FABS.
575    setOperationAction(ISD::FABS , MVT::f64, Custom);
576    setOperationAction(ISD::FABS , MVT::f32, Custom);
577
578    // Use XORP to simulate FNEG.
579    setOperationAction(ISD::FNEG , MVT::f64, Custom);
580    setOperationAction(ISD::FNEG , MVT::f32, Custom);
581
582    // Use ANDPD and ORPD to simulate FCOPYSIGN.
583    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
584    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
585
586    // Lower this to FGETSIGNx86 plus an AND.
587    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
588    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
589
590    // We don't support sin/cos/fmod
591    setOperationAction(ISD::FSIN , MVT::f64, Expand);
592    setOperationAction(ISD::FCOS , MVT::f64, Expand);
593    setOperationAction(ISD::FSIN , MVT::f32, Expand);
594    setOperationAction(ISD::FCOS , MVT::f32, Expand);
595
596    // Expand FP immediates into loads from the stack, except for the special
597    // cases we handle.
598    addLegalFPImmediate(APFloat(+0.0)); // xorpd
599    addLegalFPImmediate(APFloat(+0.0f)); // xorps
600  } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
601    // Use SSE for f32, x87 for f64.
602    // Set up the FP register classes.
603    addRegisterClass(MVT::f32, &X86::FR32RegClass);
604    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
605
606    // Use ANDPS to simulate FABS.
607    setOperationAction(ISD::FABS , MVT::f32, Custom);
608
609    // Use XORP to simulate FNEG.
610    setOperationAction(ISD::FNEG , MVT::f32, Custom);
611
612    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
613
614    // Use ANDPS and ORPS to simulate FCOPYSIGN.
615    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
616    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
617
618    // We don't support sin/cos/fmod
619    setOperationAction(ISD::FSIN , MVT::f32, Expand);
620    setOperationAction(ISD::FCOS , MVT::f32, Expand);
621
622    // Special cases we handle for FP constants.
623    addLegalFPImmediate(APFloat(+0.0f)); // xorps
624    addLegalFPImmediate(APFloat(+0.0)); // FLD0
625    addLegalFPImmediate(APFloat(+1.0)); // FLD1
626    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
627    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
628
629    if (!TM.Options.UnsafeFPMath) {
630      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
631      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
632    }
633  } else if (!TM.Options.UseSoftFloat) {
634    // f32 and f64 in x87.
635    // Set up the FP register classes.
636    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
637    addRegisterClass(MVT::f32, &X86::RFP32RegClass);
638
639    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
640    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
641    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
642    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
643
644    if (!TM.Options.UnsafeFPMath) {
645      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
646      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
647    }
648    addLegalFPImmediate(APFloat(+0.0)); // FLD0
649    addLegalFPImmediate(APFloat(+1.0)); // FLD1
650    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
651    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
652    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
653    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
654    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
655    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
656  }
657
658  // We don't support FMA.
659  setOperationAction(ISD::FMA, MVT::f64, Expand);
660  setOperationAction(ISD::FMA, MVT::f32, Expand);
661
662  // Long double always uses X87.
663  if (!TM.Options.UseSoftFloat) {
664    addRegisterClass(MVT::f80, &X86::RFP80RegClass);
665    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
666    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
667    {
668      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
669      addLegalFPImmediate(TmpFlt);  // FLD0
670      TmpFlt.changeSign();
671      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
672
673      bool ignored;
674      APFloat TmpFlt2(+1.0);
675      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
676                      &ignored);
677      addLegalFPImmediate(TmpFlt2);  // FLD1
678      TmpFlt2.changeSign();
679      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
680    }
681
682    if (!TM.Options.UnsafeFPMath) {
683      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
684      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
685    }
686
687    setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
688    setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
689    setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
690    setOperationAction(ISD::FRINT,  MVT::f80, Expand);
691    setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
692    setOperationAction(ISD::FMA, MVT::f80, Expand);
693  }
694
695  // Always use a library call for pow.
696  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
697  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
698  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
699
700  setOperationAction(ISD::FLOG, MVT::f80, Expand);
701  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
702  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
703  setOperationAction(ISD::FEXP, MVT::f80, Expand);
704  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
705
706  // First set operation action for all vector types to either promote
707  // (for widening) or expand (for scalarization). Then we will selectively
708  // turn on ones that can be effectively codegen'd.
709  for (int VT = MVT::FIRST_VECTOR_VALUETYPE;
710           VT <= MVT::LAST_VECTOR_VALUETYPE; ++VT) {
711    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
712    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
713    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
714    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
715    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
716    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
717    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
718    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
719    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
720    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
721    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
722    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
723    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
724    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
725    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
726    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
727    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
728    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
729    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
730    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
731    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
732    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
733    setOperationAction(ISD::FMA,  (MVT::SimpleValueType)VT, Expand);
734    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
735    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
736    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
737    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
738    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
739    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
740    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
741    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
742    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
743    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
744    setOperationAction(ISD::CTTZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
745    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
746    setOperationAction(ISD::CTLZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
747    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
748    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
749    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
750    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
751    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
752    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
753    setOperationAction(ISD::SETCC, (MVT::SimpleValueType)VT, Expand);
754    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
755    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
756    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
757    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
758    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
759    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
760    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
761    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
762    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
763    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
764    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
765    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
766    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
767    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
768    setOperationAction(ISD::VSELECT,  (MVT::SimpleValueType)VT, Expand);
769    for (int InnerVT = MVT::FIRST_VECTOR_VALUETYPE;
770             InnerVT <= MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
771      setTruncStoreAction((MVT::SimpleValueType)VT,
772                          (MVT::SimpleValueType)InnerVT, Expand);
773    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
774    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
775    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
776  }
777
778  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
779  // with -msoft-float, disable use of MMX as well.
780  if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
781    addRegisterClass(MVT::x86mmx, &X86::VR64RegClass);
782    // No operations on x86mmx supported, everything uses intrinsics.
783  }
784
785  // MMX-sized vectors (other than x86mmx) are expected to be expanded
786  // into smaller operations.
787  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
788  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
789  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
790  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
791  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
792  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
793  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
794  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
795  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
796  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
797  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
798  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
799  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
800  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
801  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
802  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
803  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
804  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
805  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
806  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
807  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
808  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
809  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
810  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
811  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
812  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
813  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
814  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
815  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
816
817  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
818    addRegisterClass(MVT::v4f32, &X86::VR128RegClass);
819
820    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
821    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
822    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
823    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
824    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
825    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
826    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
827    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
828    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
829    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
830    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
831    setOperationAction(ISD::SETCC,              MVT::v4f32, Custom);
832  }
833
834  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
835    addRegisterClass(MVT::v2f64, &X86::VR128RegClass);
836
837    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
838    // registers cannot be used even for integer operations.
839    addRegisterClass(MVT::v16i8, &X86::VR128RegClass);
840    addRegisterClass(MVT::v8i16, &X86::VR128RegClass);
841    addRegisterClass(MVT::v4i32, &X86::VR128RegClass);
842    addRegisterClass(MVT::v2i64, &X86::VR128RegClass);
843
844    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
845    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
846    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
847    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
848    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
849    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
850    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
851    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
852    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
853    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
854    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
855    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
856    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
857    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
858    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
859    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
860
861    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
862    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
863    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
864    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
865
866    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
867    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
868    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
869    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
870    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
871
872    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
873    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
874    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
875    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
876    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
877
878    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
879    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
880      EVT VT = (MVT::SimpleValueType)i;
881      // Do not attempt to custom lower non-power-of-2 vectors
882      if (!isPowerOf2_32(VT.getVectorNumElements()))
883        continue;
884      // Do not attempt to custom lower non-128-bit vectors
885      if (!VT.is128BitVector())
886        continue;
887      setOperationAction(ISD::BUILD_VECTOR,
888                         VT.getSimpleVT().SimpleTy, Custom);
889      setOperationAction(ISD::VECTOR_SHUFFLE,
890                         VT.getSimpleVT().SimpleTy, Custom);
891      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
892                         VT.getSimpleVT().SimpleTy, Custom);
893    }
894
895    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
896    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
897    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
898    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
899    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
900    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
901
902    if (Subtarget->is64Bit()) {
903      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
904      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
905    }
906
907    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
908    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
909      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
910      EVT VT = SVT;
911
912      // Do not attempt to promote non-128-bit vectors
913      if (!VT.is128BitVector())
914        continue;
915
916      setOperationAction(ISD::AND,    SVT, Promote);
917      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
918      setOperationAction(ISD::OR,     SVT, Promote);
919      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
920      setOperationAction(ISD::XOR,    SVT, Promote);
921      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
922      setOperationAction(ISD::LOAD,   SVT, Promote);
923      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
924      setOperationAction(ISD::SELECT, SVT, Promote);
925      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
926    }
927
928    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
929
930    // Custom lower v2i64 and v2f64 selects.
931    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
932    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
933    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
934    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
935
936    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
937    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
938  }
939
940  if (Subtarget->hasSSE41()) {
941    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
942    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
943    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
944    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
945    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
946    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
947    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
948    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
949    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
950    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
951
952    // FIXME: Do we need to handle scalar-to-vector here?
953    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
954
955    setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
956    setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
957    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
958    setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
959    setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
960
961    // i8 and i16 vectors are custom , because the source register and source
962    // source memory operand types are not the same width.  f32 vectors are
963    // custom since the immediate controlling the insert encodes additional
964    // information.
965    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
966    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
967    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
968    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
969
970    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
971    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
972    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
973    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
974
975    // FIXME: these should be Legal but thats only for the case where
976    // the index is constant.  For now custom expand to deal with that.
977    if (Subtarget->is64Bit()) {
978      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
979      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
980    }
981  }
982
983  if (Subtarget->hasSSE2()) {
984    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
985    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
986
987    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
988    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
989
990    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
991    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
992
993    if (Subtarget->hasAVX2()) {
994      setOperationAction(ISD::SRL,             MVT::v2i64, Legal);
995      setOperationAction(ISD::SRL,             MVT::v4i32, Legal);
996
997      setOperationAction(ISD::SHL,             MVT::v2i64, Legal);
998      setOperationAction(ISD::SHL,             MVT::v4i32, Legal);
999
1000      setOperationAction(ISD::SRA,             MVT::v4i32, Legal);
1001    } else {
1002      setOperationAction(ISD::SRL,             MVT::v2i64, Custom);
1003      setOperationAction(ISD::SRL,             MVT::v4i32, Custom);
1004
1005      setOperationAction(ISD::SHL,             MVT::v2i64, Custom);
1006      setOperationAction(ISD::SHL,             MVT::v4i32, Custom);
1007
1008      setOperationAction(ISD::SRA,             MVT::v4i32, Custom);
1009    }
1010  }
1011
1012  if (Subtarget->hasSSE42())
1013    setOperationAction(ISD::SETCC,             MVT::v2i64, Custom);
1014
1015  if (!TM.Options.UseSoftFloat && Subtarget->hasAVX()) {
1016    addRegisterClass(MVT::v32i8,  &X86::VR256RegClass);
1017    addRegisterClass(MVT::v16i16, &X86::VR256RegClass);
1018    addRegisterClass(MVT::v8i32,  &X86::VR256RegClass);
1019    addRegisterClass(MVT::v8f32,  &X86::VR256RegClass);
1020    addRegisterClass(MVT::v4i64,  &X86::VR256RegClass);
1021    addRegisterClass(MVT::v4f64,  &X86::VR256RegClass);
1022
1023    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
1024    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
1025    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
1026
1027    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
1028    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1029    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1030    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1031    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1032    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1033
1034    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1035    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1036    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1037    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1038    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1039    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1040
1041    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1042    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1043    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1044
1045    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4f64,  Custom);
1046    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i64,  Custom);
1047    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f32,  Custom);
1048    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i32,  Custom);
1049    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v32i8,  Custom);
1050    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i16, Custom);
1051
1052    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1053    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1054
1055    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1056    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1057
1058    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1059    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1060
1061    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1062    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1063    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1064    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1065
1066    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1067    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1068    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1069
1070    setOperationAction(ISD::VSELECT,           MVT::v4f64, Legal);
1071    setOperationAction(ISD::VSELECT,           MVT::v4i64, Legal);
1072    setOperationAction(ISD::VSELECT,           MVT::v8i32, Legal);
1073    setOperationAction(ISD::VSELECT,           MVT::v8f32, Legal);
1074
1075    if (Subtarget->hasFMA()) {
1076      setOperationAction(ISD::FMA,             MVT::v8f32, Custom);
1077      setOperationAction(ISD::FMA,             MVT::v4f64, Custom);
1078      setOperationAction(ISD::FMA,             MVT::v4f32, Custom);
1079      setOperationAction(ISD::FMA,             MVT::v2f64, Custom);
1080      setOperationAction(ISD::FMA,             MVT::f32, Custom);
1081      setOperationAction(ISD::FMA,             MVT::f64, Custom);
1082    }
1083    if (Subtarget->hasAVX2()) {
1084      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1085      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1086      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1087      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1088
1089      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1090      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1091      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1092      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1093
1094      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1095      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1096      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1097      // Don't lower v32i8 because there is no 128-bit byte mul
1098
1099      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1100
1101      setOperationAction(ISD::SRL,             MVT::v4i64, Legal);
1102      setOperationAction(ISD::SRL,             MVT::v8i32, Legal);
1103
1104      setOperationAction(ISD::SHL,             MVT::v4i64, Legal);
1105      setOperationAction(ISD::SHL,             MVT::v8i32, Legal);
1106
1107      setOperationAction(ISD::SRA,             MVT::v8i32, Legal);
1108    } else {
1109      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1110      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1111      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1112      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1113
1114      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1115      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1116      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1117      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1118
1119      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1120      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1121      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1122      // Don't lower v32i8 because there is no 128-bit byte mul
1123
1124      setOperationAction(ISD::SRL,             MVT::v4i64, Custom);
1125      setOperationAction(ISD::SRL,             MVT::v8i32, Custom);
1126
1127      setOperationAction(ISD::SHL,             MVT::v4i64, Custom);
1128      setOperationAction(ISD::SHL,             MVT::v8i32, Custom);
1129
1130      setOperationAction(ISD::SRA,             MVT::v8i32, Custom);
1131    }
1132
1133    // Custom lower several nodes for 256-bit types.
1134    for (int i = MVT::FIRST_VECTOR_VALUETYPE;
1135             i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
1136      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1137      EVT VT = SVT;
1138
1139      // Extract subvector is special because the value type
1140      // (result) is 128-bit but the source is 256-bit wide.
1141      if (VT.is128BitVector())
1142        setOperationAction(ISD::EXTRACT_SUBVECTOR, SVT, Custom);
1143
1144      // Do not attempt to custom lower other non-256-bit vectors
1145      if (!VT.is256BitVector())
1146        continue;
1147
1148      setOperationAction(ISD::BUILD_VECTOR,       SVT, Custom);
1149      setOperationAction(ISD::VECTOR_SHUFFLE,     SVT, Custom);
1150      setOperationAction(ISD::INSERT_VECTOR_ELT,  SVT, Custom);
1151      setOperationAction(ISD::EXTRACT_VECTOR_ELT, SVT, Custom);
1152      setOperationAction(ISD::SCALAR_TO_VECTOR,   SVT, Custom);
1153      setOperationAction(ISD::INSERT_SUBVECTOR,   SVT, Custom);
1154    }
1155
1156    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1157    for (int i = MVT::v32i8; i != MVT::v4i64; ++i) {
1158      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1159      EVT VT = SVT;
1160
1161      // Do not attempt to promote non-256-bit vectors
1162      if (!VT.is256BitVector())
1163        continue;
1164
1165      setOperationAction(ISD::AND,    SVT, Promote);
1166      AddPromotedToType (ISD::AND,    SVT, MVT::v4i64);
1167      setOperationAction(ISD::OR,     SVT, Promote);
1168      AddPromotedToType (ISD::OR,     SVT, MVT::v4i64);
1169      setOperationAction(ISD::XOR,    SVT, Promote);
1170      AddPromotedToType (ISD::XOR,    SVT, MVT::v4i64);
1171      setOperationAction(ISD::LOAD,   SVT, Promote);
1172      AddPromotedToType (ISD::LOAD,   SVT, MVT::v4i64);
1173      setOperationAction(ISD::SELECT, SVT, Promote);
1174      AddPromotedToType (ISD::SELECT, SVT, MVT::v4i64);
1175    }
1176  }
1177
1178  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1179  // of this type with custom code.
1180  for (int VT = MVT::FIRST_VECTOR_VALUETYPE;
1181           VT != MVT::LAST_VECTOR_VALUETYPE; VT++) {
1182    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
1183                       Custom);
1184  }
1185
1186  // We want to custom lower some of our intrinsics.
1187  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1188  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
1189
1190
1191  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1192  // handle type legalization for these operations here.
1193  //
1194  // FIXME: We really should do custom legalization for addition and
1195  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1196  // than generic legalization for 64-bit multiplication-with-overflow, though.
1197  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1198    // Add/Sub/Mul with overflow operations are custom lowered.
1199    MVT VT = IntVTs[i];
1200    setOperationAction(ISD::SADDO, VT, Custom);
1201    setOperationAction(ISD::UADDO, VT, Custom);
1202    setOperationAction(ISD::SSUBO, VT, Custom);
1203    setOperationAction(ISD::USUBO, VT, Custom);
1204    setOperationAction(ISD::SMULO, VT, Custom);
1205    setOperationAction(ISD::UMULO, VT, Custom);
1206  }
1207
1208  // There are no 8-bit 3-address imul/mul instructions
1209  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1210  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1211
1212  if (!Subtarget->is64Bit()) {
1213    // These libcalls are not available in 32-bit.
1214    setLibcallName(RTLIB::SHL_I128, 0);
1215    setLibcallName(RTLIB::SRL_I128, 0);
1216    setLibcallName(RTLIB::SRA_I128, 0);
1217  }
1218
1219  // We have target-specific dag combine patterns for the following nodes:
1220  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1221  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1222  setTargetDAGCombine(ISD::VSELECT);
1223  setTargetDAGCombine(ISD::SELECT);
1224  setTargetDAGCombine(ISD::SHL);
1225  setTargetDAGCombine(ISD::SRA);
1226  setTargetDAGCombine(ISD::SRL);
1227  setTargetDAGCombine(ISD::OR);
1228  setTargetDAGCombine(ISD::AND);
1229  setTargetDAGCombine(ISD::ADD);
1230  setTargetDAGCombine(ISD::FADD);
1231  setTargetDAGCombine(ISD::FSUB);
1232  setTargetDAGCombine(ISD::FMA);
1233  setTargetDAGCombine(ISD::SUB);
1234  setTargetDAGCombine(ISD::LOAD);
1235  setTargetDAGCombine(ISD::STORE);
1236  setTargetDAGCombine(ISD::ZERO_EXTEND);
1237  setTargetDAGCombine(ISD::ANY_EXTEND);
1238  setTargetDAGCombine(ISD::SIGN_EXTEND);
1239  setTargetDAGCombine(ISD::TRUNCATE);
1240  setTargetDAGCombine(ISD::UINT_TO_FP);
1241  setTargetDAGCombine(ISD::SINT_TO_FP);
1242  setTargetDAGCombine(ISD::SETCC);
1243  setTargetDAGCombine(ISD::FP_TO_SINT);
1244  if (Subtarget->is64Bit())
1245    setTargetDAGCombine(ISD::MUL);
1246  setTargetDAGCombine(ISD::XOR);
1247
1248  computeRegisterProperties();
1249
1250  // On Darwin, -Os means optimize for size without hurting performance,
1251  // do not reduce the limit.
1252  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1253  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1254  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1255  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1256  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1257  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1258  setPrefLoopAlignment(4); // 2^4 bytes.
1259  benefitFromCodePlacementOpt = true;
1260
1261  // Predictable cmov don't hurt on atom because it's in-order.
1262  predictableSelectIsExpensive = !Subtarget->isAtom();
1263
1264  setPrefFunctionAlignment(4); // 2^4 bytes.
1265}
1266
1267
1268EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1269  if (!VT.isVector()) return MVT::i8;
1270  return VT.changeVectorElementTypeToInteger();
1271}
1272
1273
1274/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1275/// the desired ByVal argument alignment.
1276static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1277  if (MaxAlign == 16)
1278    return;
1279  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1280    if (VTy->getBitWidth() == 128)
1281      MaxAlign = 16;
1282  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1283    unsigned EltAlign = 0;
1284    getMaxByValAlign(ATy->getElementType(), EltAlign);
1285    if (EltAlign > MaxAlign)
1286      MaxAlign = EltAlign;
1287  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1288    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1289      unsigned EltAlign = 0;
1290      getMaxByValAlign(STy->getElementType(i), EltAlign);
1291      if (EltAlign > MaxAlign)
1292        MaxAlign = EltAlign;
1293      if (MaxAlign == 16)
1294        break;
1295    }
1296  }
1297}
1298
1299/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1300/// function arguments in the caller parameter area. For X86, aggregates
1301/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1302/// are at 4-byte boundaries.
1303unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1304  if (Subtarget->is64Bit()) {
1305    // Max of 8 and alignment of type.
1306    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1307    if (TyAlign > 8)
1308      return TyAlign;
1309    return 8;
1310  }
1311
1312  unsigned Align = 4;
1313  if (Subtarget->hasSSE1())
1314    getMaxByValAlign(Ty, Align);
1315  return Align;
1316}
1317
1318/// getOptimalMemOpType - Returns the target specific optimal type for load
1319/// and store operations as a result of memset, memcpy, and memmove
1320/// lowering. If DstAlign is zero that means it's safe to destination
1321/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1322/// means there isn't a need to check it against alignment requirement,
1323/// probably because the source does not need to be loaded. If
1324/// 'IsZeroVal' is true, that means it's safe to return a
1325/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1326/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1327/// constant so it does not need to be loaded.
1328/// It returns EVT::Other if the type should be determined using generic
1329/// target-independent logic.
1330EVT
1331X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1332                                       unsigned DstAlign, unsigned SrcAlign,
1333                                       bool IsZeroVal,
1334                                       bool MemcpyStrSrc,
1335                                       MachineFunction &MF) const {
1336  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1337  // linux.  This is because the stack realignment code can't handle certain
1338  // cases like PR2962.  This should be removed when PR2962 is fixed.
1339  const Function *F = MF.getFunction();
1340  if (IsZeroVal &&
1341      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1342    if (Size >= 16 &&
1343        (Subtarget->isUnalignedMemAccessFast() ||
1344         ((DstAlign == 0 || DstAlign >= 16) &&
1345          (SrcAlign == 0 || SrcAlign >= 16))) &&
1346        Subtarget->getStackAlignment() >= 16) {
1347      if (Subtarget->getStackAlignment() >= 32) {
1348        if (Subtarget->hasAVX2())
1349          return MVT::v8i32;
1350        if (Subtarget->hasAVX())
1351          return MVT::v8f32;
1352      }
1353      if (Subtarget->hasSSE2())
1354        return MVT::v4i32;
1355      if (Subtarget->hasSSE1())
1356        return MVT::v4f32;
1357    } else if (!MemcpyStrSrc && Size >= 8 &&
1358               !Subtarget->is64Bit() &&
1359               Subtarget->getStackAlignment() >= 8 &&
1360               Subtarget->hasSSE2()) {
1361      // Do not use f64 to lower memcpy if source is string constant. It's
1362      // better to use i32 to avoid the loads.
1363      return MVT::f64;
1364    }
1365  }
1366  if (Subtarget->is64Bit() && Size >= 8)
1367    return MVT::i64;
1368  return MVT::i32;
1369}
1370
1371/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1372/// current function.  The returned value is a member of the
1373/// MachineJumpTableInfo::JTEntryKind enum.
1374unsigned X86TargetLowering::getJumpTableEncoding() const {
1375  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1376  // symbol.
1377  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1378      Subtarget->isPICStyleGOT())
1379    return MachineJumpTableInfo::EK_Custom32;
1380
1381  // Otherwise, use the normal jump table encoding heuristics.
1382  return TargetLowering::getJumpTableEncoding();
1383}
1384
1385const MCExpr *
1386X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1387                                             const MachineBasicBlock *MBB,
1388                                             unsigned uid,MCContext &Ctx) const{
1389  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1390         Subtarget->isPICStyleGOT());
1391  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1392  // entries.
1393  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1394                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1395}
1396
1397/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1398/// jumptable.
1399SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1400                                                    SelectionDAG &DAG) const {
1401  if (!Subtarget->is64Bit())
1402    // This doesn't have DebugLoc associated with it, but is not really the
1403    // same as a Register.
1404    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1405  return Table;
1406}
1407
1408/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1409/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1410/// MCExpr.
1411const MCExpr *X86TargetLowering::
1412getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1413                             MCContext &Ctx) const {
1414  // X86-64 uses RIP relative addressing based on the jump table label.
1415  if (Subtarget->isPICStyleRIPRel())
1416    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1417
1418  // Otherwise, the reference is relative to the PIC base.
1419  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1420}
1421
1422// FIXME: Why this routine is here? Move to RegInfo!
1423std::pair<const TargetRegisterClass*, uint8_t>
1424X86TargetLowering::findRepresentativeClass(EVT VT) const{
1425  const TargetRegisterClass *RRC = 0;
1426  uint8_t Cost = 1;
1427  switch (VT.getSimpleVT().SimpleTy) {
1428  default:
1429    return TargetLowering::findRepresentativeClass(VT);
1430  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1431    RRC = Subtarget->is64Bit() ?
1432      (const TargetRegisterClass*)&X86::GR64RegClass :
1433      (const TargetRegisterClass*)&X86::GR32RegClass;
1434    break;
1435  case MVT::x86mmx:
1436    RRC = &X86::VR64RegClass;
1437    break;
1438  case MVT::f32: case MVT::f64:
1439  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1440  case MVT::v4f32: case MVT::v2f64:
1441  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1442  case MVT::v4f64:
1443    RRC = &X86::VR128RegClass;
1444    break;
1445  }
1446  return std::make_pair(RRC, Cost);
1447}
1448
1449bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1450                                               unsigned &Offset) const {
1451  if (!Subtarget->isTargetLinux())
1452    return false;
1453
1454  if (Subtarget->is64Bit()) {
1455    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1456    Offset = 0x28;
1457    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1458      AddressSpace = 256;
1459    else
1460      AddressSpace = 257;
1461  } else {
1462    // %gs:0x14 on i386
1463    Offset = 0x14;
1464    AddressSpace = 256;
1465  }
1466  return true;
1467}
1468
1469
1470//===----------------------------------------------------------------------===//
1471//               Return Value Calling Convention Implementation
1472//===----------------------------------------------------------------------===//
1473
1474#include "X86GenCallingConv.inc"
1475
1476bool
1477X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1478                                  MachineFunction &MF, bool isVarArg,
1479                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1480                        LLVMContext &Context) const {
1481  SmallVector<CCValAssign, 16> RVLocs;
1482  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1483                 RVLocs, Context);
1484  return CCInfo.CheckReturn(Outs, RetCC_X86);
1485}
1486
1487SDValue
1488X86TargetLowering::LowerReturn(SDValue Chain,
1489                               CallingConv::ID CallConv, bool isVarArg,
1490                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1491                               const SmallVectorImpl<SDValue> &OutVals,
1492                               DebugLoc dl, SelectionDAG &DAG) const {
1493  MachineFunction &MF = DAG.getMachineFunction();
1494  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1495
1496  SmallVector<CCValAssign, 16> RVLocs;
1497  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1498                 RVLocs, *DAG.getContext());
1499  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1500
1501  // Add the regs to the liveout set for the function.
1502  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1503  for (unsigned i = 0; i != RVLocs.size(); ++i)
1504    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1505      MRI.addLiveOut(RVLocs[i].getLocReg());
1506
1507  SDValue Flag;
1508
1509  SmallVector<SDValue, 6> RetOps;
1510  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1511  // Operand #1 = Bytes To Pop
1512  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1513                   MVT::i16));
1514
1515  // Copy the result values into the output registers.
1516  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1517    CCValAssign &VA = RVLocs[i];
1518    assert(VA.isRegLoc() && "Can only return in registers!");
1519    SDValue ValToCopy = OutVals[i];
1520    EVT ValVT = ValToCopy.getValueType();
1521
1522    // Promote values to the appropriate types
1523    if (VA.getLocInfo() == CCValAssign::SExt)
1524      ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy);
1525    else if (VA.getLocInfo() == CCValAssign::ZExt)
1526      ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ValToCopy);
1527    else if (VA.getLocInfo() == CCValAssign::AExt)
1528      ValToCopy = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ValToCopy);
1529    else if (VA.getLocInfo() == CCValAssign::BCvt)
1530      ValToCopy = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), ValToCopy);
1531
1532    // If this is x86-64, and we disabled SSE, we can't return FP values,
1533    // or SSE or MMX vectors.
1534    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1535         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1536          (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1537      report_fatal_error("SSE register return with SSE disabled");
1538    }
1539    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1540    // llvm-gcc has never done it right and no one has noticed, so this
1541    // should be OK for now.
1542    if (ValVT == MVT::f64 &&
1543        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1544      report_fatal_error("SSE2 register return with SSE2 disabled");
1545
1546    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1547    // the RET instruction and handled by the FP Stackifier.
1548    if (VA.getLocReg() == X86::ST0 ||
1549        VA.getLocReg() == X86::ST1) {
1550      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1551      // change the value to the FP stack register class.
1552      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1553        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1554      RetOps.push_back(ValToCopy);
1555      // Don't emit a copytoreg.
1556      continue;
1557    }
1558
1559    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1560    // which is returned in RAX / RDX.
1561    if (Subtarget->is64Bit()) {
1562      if (ValVT == MVT::x86mmx) {
1563        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1564          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1565          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1566                                  ValToCopy);
1567          // If we don't have SSE2 available, convert to v4f32 so the generated
1568          // register is legal.
1569          if (!Subtarget->hasSSE2())
1570            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1571        }
1572      }
1573    }
1574
1575    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1576    Flag = Chain.getValue(1);
1577  }
1578
1579  // The x86-64 ABI for returning structs by value requires that we copy
1580  // the sret argument into %rax for the return. We saved the argument into
1581  // a virtual register in the entry block, so now we copy the value out
1582  // and into %rax.
1583  if (Subtarget->is64Bit() &&
1584      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1585    MachineFunction &MF = DAG.getMachineFunction();
1586    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1587    unsigned Reg = FuncInfo->getSRetReturnReg();
1588    assert(Reg &&
1589           "SRetReturnReg should have been set in LowerFormalArguments().");
1590    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1591
1592    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1593    Flag = Chain.getValue(1);
1594
1595    // RAX now acts like a return value.
1596    MRI.addLiveOut(X86::RAX);
1597  }
1598
1599  RetOps[0] = Chain;  // Update chain.
1600
1601  // Add the flag if we have it.
1602  if (Flag.getNode())
1603    RetOps.push_back(Flag);
1604
1605  return DAG.getNode(X86ISD::RET_FLAG, dl,
1606                     MVT::Other, &RetOps[0], RetOps.size());
1607}
1608
1609bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
1610  if (N->getNumValues() != 1)
1611    return false;
1612  if (!N->hasNUsesOfValue(1, 0))
1613    return false;
1614
1615  SDValue TCChain = Chain;
1616  SDNode *Copy = *N->use_begin();
1617  if (Copy->getOpcode() == ISD::CopyToReg) {
1618    // If the copy has a glue operand, we conservatively assume it isn't safe to
1619    // perform a tail call.
1620    if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
1621      return false;
1622    TCChain = Copy->getOperand(0);
1623  } else if (Copy->getOpcode() != ISD::FP_EXTEND)
1624    return false;
1625
1626  bool HasRet = false;
1627  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1628       UI != UE; ++UI) {
1629    if (UI->getOpcode() != X86ISD::RET_FLAG)
1630      return false;
1631    HasRet = true;
1632  }
1633
1634  if (!HasRet)
1635    return false;
1636
1637  Chain = TCChain;
1638  return true;
1639}
1640
1641EVT
1642X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1643                                            ISD::NodeType ExtendKind) const {
1644  MVT ReturnMVT;
1645  // TODO: Is this also valid on 32-bit?
1646  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1647    ReturnMVT = MVT::i8;
1648  else
1649    ReturnMVT = MVT::i32;
1650
1651  EVT MinVT = getRegisterType(Context, ReturnMVT);
1652  return VT.bitsLT(MinVT) ? MinVT : VT;
1653}
1654
1655/// LowerCallResult - Lower the result values of a call into the
1656/// appropriate copies out of appropriate physical registers.
1657///
1658SDValue
1659X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1660                                   CallingConv::ID CallConv, bool isVarArg,
1661                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1662                                   DebugLoc dl, SelectionDAG &DAG,
1663                                   SmallVectorImpl<SDValue> &InVals) const {
1664
1665  // Assign locations to each value returned by this call.
1666  SmallVector<CCValAssign, 16> RVLocs;
1667  bool Is64Bit = Subtarget->is64Bit();
1668  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1669                 getTargetMachine(), RVLocs, *DAG.getContext());
1670  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1671
1672  // Copy all of the result registers out of their specified physreg.
1673  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1674    CCValAssign &VA = RVLocs[i];
1675    EVT CopyVT = VA.getValVT();
1676
1677    // If this is x86-64, and we disabled SSE, we can't return FP values
1678    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1679        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1680      report_fatal_error("SSE register return with SSE disabled");
1681    }
1682
1683    SDValue Val;
1684
1685    // If this is a call to a function that returns an fp value on the floating
1686    // point stack, we must guarantee the value is popped from the stack, so
1687    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1688    // if the return value is not used. We use the FpPOP_RETVAL instruction
1689    // instead.
1690    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1691      // If we prefer to use the value in xmm registers, copy it out as f80 and
1692      // use a truncate to move it from fp stack reg to xmm reg.
1693      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1694      SDValue Ops[] = { Chain, InFlag };
1695      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1696                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1697      Val = Chain.getValue(0);
1698
1699      // Round the f80 to the right size, which also moves it to the appropriate
1700      // xmm register.
1701      if (CopyVT != VA.getValVT())
1702        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1703                          // This truncation won't change the value.
1704                          DAG.getIntPtrConstant(1));
1705    } else {
1706      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1707                                 CopyVT, InFlag).getValue(1);
1708      Val = Chain.getValue(0);
1709    }
1710    InFlag = Chain.getValue(2);
1711    InVals.push_back(Val);
1712  }
1713
1714  return Chain;
1715}
1716
1717
1718//===----------------------------------------------------------------------===//
1719//                C & StdCall & Fast Calling Convention implementation
1720//===----------------------------------------------------------------------===//
1721//  StdCall calling convention seems to be standard for many Windows' API
1722//  routines and around. It differs from C calling convention just a little:
1723//  callee should clean up the stack, not caller. Symbols should be also
1724//  decorated in some fancy way :) It doesn't support any vector arguments.
1725//  For info on fast calling convention see Fast Calling Convention (tail call)
1726//  implementation LowerX86_32FastCCCallTo.
1727
1728/// CallIsStructReturn - Determines whether a call uses struct return
1729/// semantics.
1730enum StructReturnType {
1731  NotStructReturn,
1732  RegStructReturn,
1733  StackStructReturn
1734};
1735static StructReturnType
1736callIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1737  if (Outs.empty())
1738    return NotStructReturn;
1739
1740  const ISD::ArgFlagsTy &Flags = Outs[0].Flags;
1741  if (!Flags.isSRet())
1742    return NotStructReturn;
1743  if (Flags.isInReg())
1744    return RegStructReturn;
1745  return StackStructReturn;
1746}
1747
1748/// ArgsAreStructReturn - Determines whether a function uses struct
1749/// return semantics.
1750static StructReturnType
1751argsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1752  if (Ins.empty())
1753    return NotStructReturn;
1754
1755  const ISD::ArgFlagsTy &Flags = Ins[0].Flags;
1756  if (!Flags.isSRet())
1757    return NotStructReturn;
1758  if (Flags.isInReg())
1759    return RegStructReturn;
1760  return StackStructReturn;
1761}
1762
1763/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1764/// by "Src" to address "Dst" with size and alignment information specified by
1765/// the specific parameter attribute. The copy will be passed as a byval
1766/// function parameter.
1767static SDValue
1768CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1769                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1770                          DebugLoc dl) {
1771  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1772
1773  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1774                       /*isVolatile*/false, /*AlwaysInline=*/true,
1775                       MachinePointerInfo(), MachinePointerInfo());
1776}
1777
1778/// IsTailCallConvention - Return true if the calling convention is one that
1779/// supports tail call optimization.
1780static bool IsTailCallConvention(CallingConv::ID CC) {
1781  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1782}
1783
1784bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1785  if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
1786    return false;
1787
1788  CallSite CS(CI);
1789  CallingConv::ID CalleeCC = CS.getCallingConv();
1790  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1791    return false;
1792
1793  return true;
1794}
1795
1796/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1797/// a tailcall target by changing its ABI.
1798static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
1799                                   bool GuaranteedTailCallOpt) {
1800  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1801}
1802
1803SDValue
1804X86TargetLowering::LowerMemArgument(SDValue Chain,
1805                                    CallingConv::ID CallConv,
1806                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1807                                    DebugLoc dl, SelectionDAG &DAG,
1808                                    const CCValAssign &VA,
1809                                    MachineFrameInfo *MFI,
1810                                    unsigned i) const {
1811  // Create the nodes corresponding to a load from this parameter slot.
1812  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1813  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
1814                              getTargetMachine().Options.GuaranteedTailCallOpt);
1815  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1816  EVT ValVT;
1817
1818  // If value is passed by pointer we have address passed instead of the value
1819  // itself.
1820  if (VA.getLocInfo() == CCValAssign::Indirect)
1821    ValVT = VA.getLocVT();
1822  else
1823    ValVT = VA.getValVT();
1824
1825  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1826  // changed with more analysis.
1827  // In case of tail call optimization mark all arguments mutable. Since they
1828  // could be overwritten by lowering of arguments in case of a tail call.
1829  if (Flags.isByVal()) {
1830    unsigned Bytes = Flags.getByValSize();
1831    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1832    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1833    return DAG.getFrameIndex(FI, getPointerTy());
1834  } else {
1835    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1836                                    VA.getLocMemOffset(), isImmutable);
1837    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1838    return DAG.getLoad(ValVT, dl, Chain, FIN,
1839                       MachinePointerInfo::getFixedStack(FI),
1840                       false, false, false, 0);
1841  }
1842}
1843
1844SDValue
1845X86TargetLowering::LowerFormalArguments(SDValue Chain,
1846                                        CallingConv::ID CallConv,
1847                                        bool isVarArg,
1848                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1849                                        DebugLoc dl,
1850                                        SelectionDAG &DAG,
1851                                        SmallVectorImpl<SDValue> &InVals)
1852                                          const {
1853  MachineFunction &MF = DAG.getMachineFunction();
1854  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1855
1856  const Function* Fn = MF.getFunction();
1857  if (Fn->hasExternalLinkage() &&
1858      Subtarget->isTargetCygMing() &&
1859      Fn->getName() == "main")
1860    FuncInfo->setForceFramePointer(true);
1861
1862  MachineFrameInfo *MFI = MF.getFrameInfo();
1863  bool Is64Bit = Subtarget->is64Bit();
1864  bool IsWindows = Subtarget->isTargetWindows();
1865  bool IsWin64 = Subtarget->isTargetWin64();
1866
1867  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1868         "Var args not supported with calling convention fastcc or ghc");
1869
1870  // Assign locations to all of the incoming arguments.
1871  SmallVector<CCValAssign, 16> ArgLocs;
1872  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1873                 ArgLocs, *DAG.getContext());
1874
1875  // Allocate shadow area for Win64
1876  if (IsWin64) {
1877    CCInfo.AllocateStack(32, 8);
1878  }
1879
1880  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1881
1882  unsigned LastVal = ~0U;
1883  SDValue ArgValue;
1884  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1885    CCValAssign &VA = ArgLocs[i];
1886    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1887    // places.
1888    assert(VA.getValNo() != LastVal &&
1889           "Don't support value assigned to multiple locs yet");
1890    (void)LastVal;
1891    LastVal = VA.getValNo();
1892
1893    if (VA.isRegLoc()) {
1894      EVT RegVT = VA.getLocVT();
1895      const TargetRegisterClass *RC;
1896      if (RegVT == MVT::i32)
1897        RC = &X86::GR32RegClass;
1898      else if (Is64Bit && RegVT == MVT::i64)
1899        RC = &X86::GR64RegClass;
1900      else if (RegVT == MVT::f32)
1901        RC = &X86::FR32RegClass;
1902      else if (RegVT == MVT::f64)
1903        RC = &X86::FR64RegClass;
1904      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1905        RC = &X86::VR256RegClass;
1906      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1907        RC = &X86::VR128RegClass;
1908      else if (RegVT == MVT::x86mmx)
1909        RC = &X86::VR64RegClass;
1910      else
1911        llvm_unreachable("Unknown argument type!");
1912
1913      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1914      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1915
1916      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1917      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1918      // right size.
1919      if (VA.getLocInfo() == CCValAssign::SExt)
1920        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1921                               DAG.getValueType(VA.getValVT()));
1922      else if (VA.getLocInfo() == CCValAssign::ZExt)
1923        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1924                               DAG.getValueType(VA.getValVT()));
1925      else if (VA.getLocInfo() == CCValAssign::BCvt)
1926        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1927
1928      if (VA.isExtInLoc()) {
1929        // Handle MMX values passed in XMM regs.
1930        if (RegVT.isVector()) {
1931          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1932                                 ArgValue);
1933        } else
1934          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1935      }
1936    } else {
1937      assert(VA.isMemLoc());
1938      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1939    }
1940
1941    // If value is passed via pointer - do a load.
1942    if (VA.getLocInfo() == CCValAssign::Indirect)
1943      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1944                             MachinePointerInfo(), false, false, false, 0);
1945
1946    InVals.push_back(ArgValue);
1947  }
1948
1949  // The x86-64 ABI for returning structs by value requires that we copy
1950  // the sret argument into %rax for the return. Save the argument into
1951  // a virtual register so that we can access it from the return points.
1952  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1953    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1954    unsigned Reg = FuncInfo->getSRetReturnReg();
1955    if (!Reg) {
1956      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1957      FuncInfo->setSRetReturnReg(Reg);
1958    }
1959    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1960    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1961  }
1962
1963  unsigned StackSize = CCInfo.getNextStackOffset();
1964  // Align stack specially for tail calls.
1965  if (FuncIsMadeTailCallSafe(CallConv,
1966                             MF.getTarget().Options.GuaranteedTailCallOpt))
1967    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1968
1969  // If the function takes variable number of arguments, make a frame index for
1970  // the start of the first vararg value... for expansion of llvm.va_start.
1971  if (isVarArg) {
1972    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1973                    CallConv != CallingConv::X86_ThisCall)) {
1974      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1975    }
1976    if (Is64Bit) {
1977      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1978
1979      // FIXME: We should really autogenerate these arrays
1980      static const uint16_t GPR64ArgRegsWin64[] = {
1981        X86::RCX, X86::RDX, X86::R8,  X86::R9
1982      };
1983      static const uint16_t GPR64ArgRegs64Bit[] = {
1984        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1985      };
1986      static const uint16_t XMMArgRegs64Bit[] = {
1987        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1988        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1989      };
1990      const uint16_t *GPR64ArgRegs;
1991      unsigned NumXMMRegs = 0;
1992
1993      if (IsWin64) {
1994        // The XMM registers which might contain var arg parameters are shadowed
1995        // in their paired GPR.  So we only need to save the GPR to their home
1996        // slots.
1997        TotalNumIntRegs = 4;
1998        GPR64ArgRegs = GPR64ArgRegsWin64;
1999      } else {
2000        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
2001        GPR64ArgRegs = GPR64ArgRegs64Bit;
2002
2003        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
2004                                                TotalNumXMMRegs);
2005      }
2006      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
2007                                                       TotalNumIntRegs);
2008
2009      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
2010      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
2011             "SSE register cannot be used when SSE is disabled!");
2012      assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
2013               NoImplicitFloatOps) &&
2014             "SSE register cannot be used when SSE is disabled!");
2015      if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
2016          !Subtarget->hasSSE1())
2017        // Kernel mode asks for SSE to be disabled, so don't push them
2018        // on the stack.
2019        TotalNumXMMRegs = 0;
2020
2021      if (IsWin64) {
2022        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
2023        // Get to the caller-allocated home save location.  Add 8 to account
2024        // for the return address.
2025        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
2026        FuncInfo->setRegSaveFrameIndex(
2027          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
2028        // Fixup to set vararg frame on shadow area (4 x i64).
2029        if (NumIntRegs < 4)
2030          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
2031      } else {
2032        // For X86-64, if there are vararg parameters that are passed via
2033        // registers, then we must store them to their spots on the stack so
2034        // they may be loaded by deferencing the result of va_next.
2035        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
2036        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
2037        FuncInfo->setRegSaveFrameIndex(
2038          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
2039                               false));
2040      }
2041
2042      // Store the integer parameter registers.
2043      SmallVector<SDValue, 8> MemOps;
2044      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
2045                                        getPointerTy());
2046      unsigned Offset = FuncInfo->getVarArgsGPOffset();
2047      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
2048        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
2049                                  DAG.getIntPtrConstant(Offset));
2050        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
2051                                     &X86::GR64RegClass);
2052        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2053        SDValue Store =
2054          DAG.getStore(Val.getValue(1), dl, Val, FIN,
2055                       MachinePointerInfo::getFixedStack(
2056                         FuncInfo->getRegSaveFrameIndex(), Offset),
2057                       false, false, 0);
2058        MemOps.push_back(Store);
2059        Offset += 8;
2060      }
2061
2062      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
2063        // Now store the XMM (fp + vector) parameter registers.
2064        SmallVector<SDValue, 11> SaveXMMOps;
2065        SaveXMMOps.push_back(Chain);
2066
2067        unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
2068        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
2069        SaveXMMOps.push_back(ALVal);
2070
2071        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2072                               FuncInfo->getRegSaveFrameIndex()));
2073        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2074                               FuncInfo->getVarArgsFPOffset()));
2075
2076        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
2077          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
2078                                       &X86::VR128RegClass);
2079          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
2080          SaveXMMOps.push_back(Val);
2081        }
2082        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2083                                     MVT::Other,
2084                                     &SaveXMMOps[0], SaveXMMOps.size()));
2085      }
2086
2087      if (!MemOps.empty())
2088        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2089                            &MemOps[0], MemOps.size());
2090    }
2091  }
2092
2093  // Some CCs need callee pop.
2094  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2095                       MF.getTarget().Options.GuaranteedTailCallOpt)) {
2096    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2097  } else {
2098    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2099    // If this is an sret function, the return should pop the hidden pointer.
2100    if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2101        argsAreStructReturn(Ins) == StackStructReturn)
2102      FuncInfo->setBytesToPopOnReturn(4);
2103  }
2104
2105  if (!Is64Bit) {
2106    // RegSaveFrameIndex is X86-64 only.
2107    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2108    if (CallConv == CallingConv::X86_FastCall ||
2109        CallConv == CallingConv::X86_ThisCall)
2110      // fastcc functions can't have varargs.
2111      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2112  }
2113
2114  FuncInfo->setArgumentStackSize(StackSize);
2115
2116  return Chain;
2117}
2118
2119SDValue
2120X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2121                                    SDValue StackPtr, SDValue Arg,
2122                                    DebugLoc dl, SelectionDAG &DAG,
2123                                    const CCValAssign &VA,
2124                                    ISD::ArgFlagsTy Flags) const {
2125  unsigned LocMemOffset = VA.getLocMemOffset();
2126  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2127  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2128  if (Flags.isByVal())
2129    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2130
2131  return DAG.getStore(Chain, dl, Arg, PtrOff,
2132                      MachinePointerInfo::getStack(LocMemOffset),
2133                      false, false, 0);
2134}
2135
2136/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2137/// optimization is performed and it is required.
2138SDValue
2139X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2140                                           SDValue &OutRetAddr, SDValue Chain,
2141                                           bool IsTailCall, bool Is64Bit,
2142                                           int FPDiff, DebugLoc dl) const {
2143  // Adjust the Return address stack slot.
2144  EVT VT = getPointerTy();
2145  OutRetAddr = getReturnAddressFrameIndex(DAG);
2146
2147  // Load the "old" Return address.
2148  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2149                           false, false, false, 0);
2150  return SDValue(OutRetAddr.getNode(), 1);
2151}
2152
2153/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2154/// optimization is performed and it is required (FPDiff!=0).
2155static SDValue
2156EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2157                         SDValue Chain, SDValue RetAddrFrIdx,
2158                         bool Is64Bit, int FPDiff, DebugLoc dl) {
2159  // Store the return address to the appropriate stack slot.
2160  if (!FPDiff) return Chain;
2161  // Calculate the new stack slot for the return address.
2162  int SlotSize = Is64Bit ? 8 : 4;
2163  int NewReturnAddrFI =
2164    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2165  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2166  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
2167  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2168                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2169                       false, false, 0);
2170  return Chain;
2171}
2172
2173SDValue
2174X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2175                             SmallVectorImpl<SDValue> &InVals) const {
2176  SelectionDAG &DAG                     = CLI.DAG;
2177  DebugLoc &dl                          = CLI.DL;
2178  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2179  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
2180  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
2181  SDValue Chain                         = CLI.Chain;
2182  SDValue Callee                        = CLI.Callee;
2183  CallingConv::ID CallConv              = CLI.CallConv;
2184  bool &isTailCall                      = CLI.IsTailCall;
2185  bool isVarArg                         = CLI.IsVarArg;
2186
2187  MachineFunction &MF = DAG.getMachineFunction();
2188  bool Is64Bit        = Subtarget->is64Bit();
2189  bool IsWin64        = Subtarget->isTargetWin64();
2190  bool IsWindows      = Subtarget->isTargetWindows();
2191  StructReturnType SR = callIsStructReturn(Outs);
2192  bool IsSibcall      = false;
2193
2194  if (MF.getTarget().Options.DisableTailCalls)
2195    isTailCall = false;
2196
2197  if (isTailCall) {
2198    // Check if it's really possible to do a tail call.
2199    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2200                    isVarArg, SR != NotStructReturn,
2201                    MF.getFunction()->hasStructRetAttr(),
2202                    Outs, OutVals, Ins, DAG);
2203
2204    // Sibcalls are automatically detected tailcalls which do not require
2205    // ABI changes.
2206    if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2207      IsSibcall = true;
2208
2209    if (isTailCall)
2210      ++NumTailCalls;
2211  }
2212
2213  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2214         "Var args not supported with calling convention fastcc or ghc");
2215
2216  // Analyze operands of the call, assigning locations to each operand.
2217  SmallVector<CCValAssign, 16> ArgLocs;
2218  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2219                 ArgLocs, *DAG.getContext());
2220
2221  // Allocate shadow area for Win64
2222  if (IsWin64) {
2223    CCInfo.AllocateStack(32, 8);
2224  }
2225
2226  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2227
2228  // Get a count of how many bytes are to be pushed on the stack.
2229  unsigned NumBytes = CCInfo.getNextStackOffset();
2230  if (IsSibcall)
2231    // This is a sibcall. The memory operands are available in caller's
2232    // own caller's stack.
2233    NumBytes = 0;
2234  else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
2235           IsTailCallConvention(CallConv))
2236    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2237
2238  int FPDiff = 0;
2239  if (isTailCall && !IsSibcall) {
2240    // Lower arguments at fp - stackoffset + fpdiff.
2241    unsigned NumBytesCallerPushed =
2242      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2243    FPDiff = NumBytesCallerPushed - NumBytes;
2244
2245    // Set the delta of movement of the returnaddr stackslot.
2246    // But only set if delta is greater than previous delta.
2247    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2248      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2249  }
2250
2251  if (!IsSibcall)
2252    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2253
2254  SDValue RetAddrFrIdx;
2255  // Load return address for tail calls.
2256  if (isTailCall && FPDiff)
2257    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2258                                    Is64Bit, FPDiff, dl);
2259
2260  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2261  SmallVector<SDValue, 8> MemOpChains;
2262  SDValue StackPtr;
2263
2264  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2265  // of tail call optimization arguments are handle later.
2266  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2267    CCValAssign &VA = ArgLocs[i];
2268    EVT RegVT = VA.getLocVT();
2269    SDValue Arg = OutVals[i];
2270    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2271    bool isByVal = Flags.isByVal();
2272
2273    // Promote the value if needed.
2274    switch (VA.getLocInfo()) {
2275    default: llvm_unreachable("Unknown loc info!");
2276    case CCValAssign::Full: break;
2277    case CCValAssign::SExt:
2278      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2279      break;
2280    case CCValAssign::ZExt:
2281      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2282      break;
2283    case CCValAssign::AExt:
2284      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2285        // Special case: passing MMX values in XMM registers.
2286        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2287        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2288        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2289      } else
2290        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2291      break;
2292    case CCValAssign::BCvt:
2293      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2294      break;
2295    case CCValAssign::Indirect: {
2296      // Store the argument.
2297      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2298      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2299      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2300                           MachinePointerInfo::getFixedStack(FI),
2301                           false, false, 0);
2302      Arg = SpillSlot;
2303      break;
2304    }
2305    }
2306
2307    if (VA.isRegLoc()) {
2308      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2309      if (isVarArg && IsWin64) {
2310        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2311        // shadow reg if callee is a varargs function.
2312        unsigned ShadowReg = 0;
2313        switch (VA.getLocReg()) {
2314        case X86::XMM0: ShadowReg = X86::RCX; break;
2315        case X86::XMM1: ShadowReg = X86::RDX; break;
2316        case X86::XMM2: ShadowReg = X86::R8; break;
2317        case X86::XMM3: ShadowReg = X86::R9; break;
2318        }
2319        if (ShadowReg)
2320          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2321      }
2322    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2323      assert(VA.isMemLoc());
2324      if (StackPtr.getNode() == 0)
2325        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2326      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2327                                             dl, DAG, VA, Flags));
2328    }
2329  }
2330
2331  if (!MemOpChains.empty())
2332    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2333                        &MemOpChains[0], MemOpChains.size());
2334
2335  if (Subtarget->isPICStyleGOT()) {
2336    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2337    // GOT pointer.
2338    if (!isTailCall) {
2339      RegsToPass.push_back(std::make_pair(unsigned(X86::EBX),
2340               DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy())));
2341    } else {
2342      // If we are tail calling and generating PIC/GOT style code load the
2343      // address of the callee into ECX. The value in ecx is used as target of
2344      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2345      // for tail calls on PIC/GOT architectures. Normally we would just put the
2346      // address of GOT into ebx and then call target@PLT. But for tail calls
2347      // ebx would be restored (since ebx is callee saved) before jumping to the
2348      // target@PLT.
2349
2350      // Note: The actual moving to ECX is done further down.
2351      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2352      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2353          !G->getGlobal()->hasProtectedVisibility())
2354        Callee = LowerGlobalAddress(Callee, DAG);
2355      else if (isa<ExternalSymbolSDNode>(Callee))
2356        Callee = LowerExternalSymbol(Callee, DAG);
2357    }
2358  }
2359
2360  if (Is64Bit && isVarArg && !IsWin64) {
2361    // From AMD64 ABI document:
2362    // For calls that may call functions that use varargs or stdargs
2363    // (prototype-less calls or calls to functions containing ellipsis (...) in
2364    // the declaration) %al is used as hidden argument to specify the number
2365    // of SSE registers used. The contents of %al do not need to match exactly
2366    // the number of registers, but must be an ubound on the number of SSE
2367    // registers used and is in the range 0 - 8 inclusive.
2368
2369    // Count the number of XMM registers allocated.
2370    static const uint16_t XMMArgRegs[] = {
2371      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2372      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2373    };
2374    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2375    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2376           && "SSE registers cannot be used when SSE is disabled");
2377
2378    RegsToPass.push_back(std::make_pair(unsigned(X86::AL),
2379                                        DAG.getConstant(NumXMMRegs, MVT::i8)));
2380  }
2381
2382  // For tail calls lower the arguments to the 'real' stack slot.
2383  if (isTailCall) {
2384    // Force all the incoming stack arguments to be loaded from the stack
2385    // before any new outgoing arguments are stored to the stack, because the
2386    // outgoing stack slots may alias the incoming argument stack slots, and
2387    // the alias isn't otherwise explicit. This is slightly more conservative
2388    // than necessary, because it means that each store effectively depends
2389    // on every argument instead of just those arguments it would clobber.
2390    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2391
2392    SmallVector<SDValue, 8> MemOpChains2;
2393    SDValue FIN;
2394    int FI = 0;
2395    if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2396      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2397        CCValAssign &VA = ArgLocs[i];
2398        if (VA.isRegLoc())
2399          continue;
2400        assert(VA.isMemLoc());
2401        SDValue Arg = OutVals[i];
2402        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2403        // Create frame index.
2404        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2405        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2406        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2407        FIN = DAG.getFrameIndex(FI, getPointerTy());
2408
2409        if (Flags.isByVal()) {
2410          // Copy relative to framepointer.
2411          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2412          if (StackPtr.getNode() == 0)
2413            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2414                                          getPointerTy());
2415          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2416
2417          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2418                                                           ArgChain,
2419                                                           Flags, DAG, dl));
2420        } else {
2421          // Store relative to framepointer.
2422          MemOpChains2.push_back(
2423            DAG.getStore(ArgChain, dl, Arg, FIN,
2424                         MachinePointerInfo::getFixedStack(FI),
2425                         false, false, 0));
2426        }
2427      }
2428    }
2429
2430    if (!MemOpChains2.empty())
2431      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2432                          &MemOpChains2[0], MemOpChains2.size());
2433
2434    // Store the return address to the appropriate stack slot.
2435    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2436                                     FPDiff, dl);
2437  }
2438
2439  // Build a sequence of copy-to-reg nodes chained together with token chain
2440  // and flag operands which copy the outgoing args into registers.
2441  SDValue InFlag;
2442  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2443    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2444                             RegsToPass[i].second, InFlag);
2445    InFlag = Chain.getValue(1);
2446  }
2447
2448  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2449    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2450    // In the 64-bit large code model, we have to make all calls
2451    // through a register, since the call instruction's 32-bit
2452    // pc-relative offset may not be large enough to hold the whole
2453    // address.
2454  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2455    // If the callee is a GlobalAddress node (quite common, every direct call
2456    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2457    // it.
2458
2459    // We should use extra load for direct calls to dllimported functions in
2460    // non-JIT mode.
2461    const GlobalValue *GV = G->getGlobal();
2462    if (!GV->hasDLLImportLinkage()) {
2463      unsigned char OpFlags = 0;
2464      bool ExtraLoad = false;
2465      unsigned WrapperKind = ISD::DELETED_NODE;
2466
2467      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2468      // external symbols most go through the PLT in PIC mode.  If the symbol
2469      // has hidden or protected visibility, or if it is static or local, then
2470      // we don't need to use the PLT - we can directly call it.
2471      if (Subtarget->isTargetELF() &&
2472          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2473          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2474        OpFlags = X86II::MO_PLT;
2475      } else if (Subtarget->isPICStyleStubAny() &&
2476                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2477                 (!Subtarget->getTargetTriple().isMacOSX() ||
2478                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2479        // PC-relative references to external symbols should go through $stub,
2480        // unless we're building with the leopard linker or later, which
2481        // automatically synthesizes these stubs.
2482        OpFlags = X86II::MO_DARWIN_STUB;
2483      } else if (Subtarget->isPICStyleRIPRel() &&
2484                 isa<Function>(GV) &&
2485                 cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
2486        // If the function is marked as non-lazy, generate an indirect call
2487        // which loads from the GOT directly. This avoids runtime overhead
2488        // at the cost of eager binding (and one extra byte of encoding).
2489        OpFlags = X86II::MO_GOTPCREL;
2490        WrapperKind = X86ISD::WrapperRIP;
2491        ExtraLoad = true;
2492      }
2493
2494      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2495                                          G->getOffset(), OpFlags);
2496
2497      // Add a wrapper if needed.
2498      if (WrapperKind != ISD::DELETED_NODE)
2499        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2500      // Add extra indirection if needed.
2501      if (ExtraLoad)
2502        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2503                             MachinePointerInfo::getGOT(),
2504                             false, false, false, 0);
2505    }
2506  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2507    unsigned char OpFlags = 0;
2508
2509    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2510    // external symbols should go through the PLT.
2511    if (Subtarget->isTargetELF() &&
2512        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2513      OpFlags = X86II::MO_PLT;
2514    } else if (Subtarget->isPICStyleStubAny() &&
2515               (!Subtarget->getTargetTriple().isMacOSX() ||
2516                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2517      // PC-relative references to external symbols should go through $stub,
2518      // unless we're building with the leopard linker or later, which
2519      // automatically synthesizes these stubs.
2520      OpFlags = X86II::MO_DARWIN_STUB;
2521    }
2522
2523    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2524                                         OpFlags);
2525  }
2526
2527  // Returns a chain & a flag for retval copy to use.
2528  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2529  SmallVector<SDValue, 8> Ops;
2530
2531  if (!IsSibcall && isTailCall) {
2532    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2533                           DAG.getIntPtrConstant(0, true), InFlag);
2534    InFlag = Chain.getValue(1);
2535  }
2536
2537  Ops.push_back(Chain);
2538  Ops.push_back(Callee);
2539
2540  if (isTailCall)
2541    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2542
2543  // Add argument registers to the end of the list so that they are known live
2544  // into the call.
2545  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2546    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2547                                  RegsToPass[i].second.getValueType()));
2548
2549  // Add a register mask operand representing the call-preserved registers.
2550  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2551  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2552  assert(Mask && "Missing call preserved mask for calling convention");
2553  Ops.push_back(DAG.getRegisterMask(Mask));
2554
2555  if (InFlag.getNode())
2556    Ops.push_back(InFlag);
2557
2558  if (isTailCall) {
2559    // We used to do:
2560    //// If this is the first return lowered for this function, add the regs
2561    //// to the liveout set for the function.
2562    // This isn't right, although it's probably harmless on x86; liveouts
2563    // should be computed from returns not tail calls.  Consider a void
2564    // function making a tail call to a function returning int.
2565    return DAG.getNode(X86ISD::TC_RETURN, dl,
2566                       NodeTys, &Ops[0], Ops.size());
2567  }
2568
2569  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2570  InFlag = Chain.getValue(1);
2571
2572  // Create the CALLSEQ_END node.
2573  unsigned NumBytesForCalleeToPush;
2574  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2575                       getTargetMachine().Options.GuaranteedTailCallOpt))
2576    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2577  else if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2578           SR == StackStructReturn)
2579    // If this is a call to a struct-return function, the callee
2580    // pops the hidden struct pointer, so we have to push it back.
2581    // This is common for Darwin/X86, Linux & Mingw32 targets.
2582    // For MSVC Win32 targets, the caller pops the hidden struct pointer.
2583    NumBytesForCalleeToPush = 4;
2584  else
2585    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2586
2587  // Returns a flag for retval copy to use.
2588  if (!IsSibcall) {
2589    Chain = DAG.getCALLSEQ_END(Chain,
2590                               DAG.getIntPtrConstant(NumBytes, true),
2591                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2592                                                     true),
2593                               InFlag);
2594    InFlag = Chain.getValue(1);
2595  }
2596
2597  // Handle result values, copying them out of physregs into vregs that we
2598  // return.
2599  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2600                         Ins, dl, DAG, InVals);
2601}
2602
2603
2604//===----------------------------------------------------------------------===//
2605//                Fast Calling Convention (tail call) implementation
2606//===----------------------------------------------------------------------===//
2607
2608//  Like std call, callee cleans arguments, convention except that ECX is
2609//  reserved for storing the tail called function address. Only 2 registers are
2610//  free for argument passing (inreg). Tail call optimization is performed
2611//  provided:
2612//                * tailcallopt is enabled
2613//                * caller/callee are fastcc
2614//  On X86_64 architecture with GOT-style position independent code only local
2615//  (within module) calls are supported at the moment.
2616//  To keep the stack aligned according to platform abi the function
2617//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2618//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2619//  If a tail called function callee has more arguments than the caller the
2620//  caller needs to make sure that there is room to move the RETADDR to. This is
2621//  achieved by reserving an area the size of the argument delta right after the
2622//  original REtADDR, but before the saved framepointer or the spilled registers
2623//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2624//  stack layout:
2625//    arg1
2626//    arg2
2627//    RETADDR
2628//    [ new RETADDR
2629//      move area ]
2630//    (possible EBP)
2631//    ESI
2632//    EDI
2633//    local1 ..
2634
2635/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2636/// for a 16 byte align requirement.
2637unsigned
2638X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2639                                               SelectionDAG& DAG) const {
2640  MachineFunction &MF = DAG.getMachineFunction();
2641  const TargetMachine &TM = MF.getTarget();
2642  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2643  unsigned StackAlignment = TFI.getStackAlignment();
2644  uint64_t AlignMask = StackAlignment - 1;
2645  int64_t Offset = StackSize;
2646  uint64_t SlotSize = TD->getPointerSize();
2647  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2648    // Number smaller than 12 so just add the difference.
2649    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2650  } else {
2651    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2652    Offset = ((~AlignMask) & Offset) + StackAlignment +
2653      (StackAlignment-SlotSize);
2654  }
2655  return Offset;
2656}
2657
2658/// MatchingStackOffset - Return true if the given stack call argument is
2659/// already available in the same position (relatively) of the caller's
2660/// incoming argument stack.
2661static
2662bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2663                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2664                         const X86InstrInfo *TII) {
2665  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2666  int FI = INT_MAX;
2667  if (Arg.getOpcode() == ISD::CopyFromReg) {
2668    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2669    if (!TargetRegisterInfo::isVirtualRegister(VR))
2670      return false;
2671    MachineInstr *Def = MRI->getVRegDef(VR);
2672    if (!Def)
2673      return false;
2674    if (!Flags.isByVal()) {
2675      if (!TII->isLoadFromStackSlot(Def, FI))
2676        return false;
2677    } else {
2678      unsigned Opcode = Def->getOpcode();
2679      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2680          Def->getOperand(1).isFI()) {
2681        FI = Def->getOperand(1).getIndex();
2682        Bytes = Flags.getByValSize();
2683      } else
2684        return false;
2685    }
2686  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2687    if (Flags.isByVal())
2688      // ByVal argument is passed in as a pointer but it's now being
2689      // dereferenced. e.g.
2690      // define @foo(%struct.X* %A) {
2691      //   tail call @bar(%struct.X* byval %A)
2692      // }
2693      return false;
2694    SDValue Ptr = Ld->getBasePtr();
2695    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2696    if (!FINode)
2697      return false;
2698    FI = FINode->getIndex();
2699  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2700    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2701    FI = FINode->getIndex();
2702    Bytes = Flags.getByValSize();
2703  } else
2704    return false;
2705
2706  assert(FI != INT_MAX);
2707  if (!MFI->isFixedObjectIndex(FI))
2708    return false;
2709  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2710}
2711
2712/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2713/// for tail call optimization. Targets which want to do tail call
2714/// optimization should implement this function.
2715bool
2716X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2717                                                     CallingConv::ID CalleeCC,
2718                                                     bool isVarArg,
2719                                                     bool isCalleeStructRet,
2720                                                     bool isCallerStructRet,
2721                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2722                                    const SmallVectorImpl<SDValue> &OutVals,
2723                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2724                                                     SelectionDAG& DAG) const {
2725  if (!IsTailCallConvention(CalleeCC) &&
2726      CalleeCC != CallingConv::C)
2727    return false;
2728
2729  // If -tailcallopt is specified, make fastcc functions tail-callable.
2730  const MachineFunction &MF = DAG.getMachineFunction();
2731  const Function *CallerF = DAG.getMachineFunction().getFunction();
2732  CallingConv::ID CallerCC = CallerF->getCallingConv();
2733  bool CCMatch = CallerCC == CalleeCC;
2734
2735  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2736    if (IsTailCallConvention(CalleeCC) && CCMatch)
2737      return true;
2738    return false;
2739  }
2740
2741  // Look for obvious safe cases to perform tail call optimization that do not
2742  // require ABI changes. This is what gcc calls sibcall.
2743
2744  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2745  // emit a special epilogue.
2746  if (RegInfo->needsStackRealignment(MF))
2747    return false;
2748
2749  // Also avoid sibcall optimization if either caller or callee uses struct
2750  // return semantics.
2751  if (isCalleeStructRet || isCallerStructRet)
2752    return false;
2753
2754  // An stdcall caller is expected to clean up its arguments; the callee
2755  // isn't going to do that.
2756  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2757    return false;
2758
2759  // Do not sibcall optimize vararg calls unless all arguments are passed via
2760  // registers.
2761  if (isVarArg && !Outs.empty()) {
2762
2763    // Optimizing for varargs on Win64 is unlikely to be safe without
2764    // additional testing.
2765    if (Subtarget->isTargetWin64())
2766      return false;
2767
2768    SmallVector<CCValAssign, 16> ArgLocs;
2769    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2770                   getTargetMachine(), ArgLocs, *DAG.getContext());
2771
2772    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2773    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2774      if (!ArgLocs[i].isRegLoc())
2775        return false;
2776  }
2777
2778  // If the call result is in ST0 / ST1, it needs to be popped off the x87
2779  // stack.  Therefore, if it's not used by the call it is not safe to optimize
2780  // this into a sibcall.
2781  bool Unused = false;
2782  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2783    if (!Ins[i].Used) {
2784      Unused = true;
2785      break;
2786    }
2787  }
2788  if (Unused) {
2789    SmallVector<CCValAssign, 16> RVLocs;
2790    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2791                   getTargetMachine(), RVLocs, *DAG.getContext());
2792    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2793    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2794      CCValAssign &VA = RVLocs[i];
2795      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2796        return false;
2797    }
2798  }
2799
2800  // If the calling conventions do not match, then we'd better make sure the
2801  // results are returned in the same way as what the caller expects.
2802  if (!CCMatch) {
2803    SmallVector<CCValAssign, 16> RVLocs1;
2804    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2805                    getTargetMachine(), RVLocs1, *DAG.getContext());
2806    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2807
2808    SmallVector<CCValAssign, 16> RVLocs2;
2809    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2810                    getTargetMachine(), RVLocs2, *DAG.getContext());
2811    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2812
2813    if (RVLocs1.size() != RVLocs2.size())
2814      return false;
2815    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2816      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2817        return false;
2818      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2819        return false;
2820      if (RVLocs1[i].isRegLoc()) {
2821        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2822          return false;
2823      } else {
2824        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2825          return false;
2826      }
2827    }
2828  }
2829
2830  // If the callee takes no arguments then go on to check the results of the
2831  // call.
2832  if (!Outs.empty()) {
2833    // Check if stack adjustment is needed. For now, do not do this if any
2834    // argument is passed on the stack.
2835    SmallVector<CCValAssign, 16> ArgLocs;
2836    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2837                   getTargetMachine(), ArgLocs, *DAG.getContext());
2838
2839    // Allocate shadow area for Win64
2840    if (Subtarget->isTargetWin64()) {
2841      CCInfo.AllocateStack(32, 8);
2842    }
2843
2844    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2845    if (CCInfo.getNextStackOffset()) {
2846      MachineFunction &MF = DAG.getMachineFunction();
2847      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2848        return false;
2849
2850      // Check if the arguments are already laid out in the right way as
2851      // the caller's fixed stack objects.
2852      MachineFrameInfo *MFI = MF.getFrameInfo();
2853      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2854      const X86InstrInfo *TII =
2855        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2856      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2857        CCValAssign &VA = ArgLocs[i];
2858        SDValue Arg = OutVals[i];
2859        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2860        if (VA.getLocInfo() == CCValAssign::Indirect)
2861          return false;
2862        if (!VA.isRegLoc()) {
2863          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2864                                   MFI, MRI, TII))
2865            return false;
2866        }
2867      }
2868    }
2869
2870    // If the tailcall address may be in a register, then make sure it's
2871    // possible to register allocate for it. In 32-bit, the call address can
2872    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2873    // callee-saved registers are restored. These happen to be the same
2874    // registers used to pass 'inreg' arguments so watch out for those.
2875    if (!Subtarget->is64Bit() &&
2876        !isa<GlobalAddressSDNode>(Callee) &&
2877        !isa<ExternalSymbolSDNode>(Callee)) {
2878      unsigned NumInRegs = 0;
2879      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2880        CCValAssign &VA = ArgLocs[i];
2881        if (!VA.isRegLoc())
2882          continue;
2883        unsigned Reg = VA.getLocReg();
2884        switch (Reg) {
2885        default: break;
2886        case X86::EAX: case X86::EDX: case X86::ECX:
2887          if (++NumInRegs == 3)
2888            return false;
2889          break;
2890        }
2891      }
2892    }
2893  }
2894
2895  return true;
2896}
2897
2898FastISel *
2899X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2900  return X86::createFastISel(funcInfo);
2901}
2902
2903
2904//===----------------------------------------------------------------------===//
2905//                           Other Lowering Hooks
2906//===----------------------------------------------------------------------===//
2907
2908static bool MayFoldLoad(SDValue Op) {
2909  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2910}
2911
2912static bool MayFoldIntoStore(SDValue Op) {
2913  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2914}
2915
2916static bool isTargetShuffle(unsigned Opcode) {
2917  switch(Opcode) {
2918  default: return false;
2919  case X86ISD::PSHUFD:
2920  case X86ISD::PSHUFHW:
2921  case X86ISD::PSHUFLW:
2922  case X86ISD::SHUFP:
2923  case X86ISD::PALIGN:
2924  case X86ISD::MOVLHPS:
2925  case X86ISD::MOVLHPD:
2926  case X86ISD::MOVHLPS:
2927  case X86ISD::MOVLPS:
2928  case X86ISD::MOVLPD:
2929  case X86ISD::MOVSHDUP:
2930  case X86ISD::MOVSLDUP:
2931  case X86ISD::MOVDDUP:
2932  case X86ISD::MOVSS:
2933  case X86ISD::MOVSD:
2934  case X86ISD::UNPCKL:
2935  case X86ISD::UNPCKH:
2936  case X86ISD::VPERMILP:
2937  case X86ISD::VPERM2X128:
2938  case X86ISD::VPERMI:
2939    return true;
2940  }
2941}
2942
2943static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2944                                    SDValue V1, SelectionDAG &DAG) {
2945  switch(Opc) {
2946  default: llvm_unreachable("Unknown x86 shuffle node");
2947  case X86ISD::MOVSHDUP:
2948  case X86ISD::MOVSLDUP:
2949  case X86ISD::MOVDDUP:
2950    return DAG.getNode(Opc, dl, VT, V1);
2951  }
2952}
2953
2954static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2955                                    SDValue V1, unsigned TargetMask,
2956                                    SelectionDAG &DAG) {
2957  switch(Opc) {
2958  default: llvm_unreachable("Unknown x86 shuffle node");
2959  case X86ISD::PSHUFD:
2960  case X86ISD::PSHUFHW:
2961  case X86ISD::PSHUFLW:
2962  case X86ISD::VPERMILP:
2963  case X86ISD::VPERMI:
2964    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2965  }
2966}
2967
2968static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2969                                    SDValue V1, SDValue V2, unsigned TargetMask,
2970                                    SelectionDAG &DAG) {
2971  switch(Opc) {
2972  default: llvm_unreachable("Unknown x86 shuffle node");
2973  case X86ISD::PALIGN:
2974  case X86ISD::SHUFP:
2975  case X86ISD::VPERM2X128:
2976    return DAG.getNode(Opc, dl, VT, V1, V2,
2977                       DAG.getConstant(TargetMask, MVT::i8));
2978  }
2979}
2980
2981static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2982                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2983  switch(Opc) {
2984  default: llvm_unreachable("Unknown x86 shuffle node");
2985  case X86ISD::MOVLHPS:
2986  case X86ISD::MOVLHPD:
2987  case X86ISD::MOVHLPS:
2988  case X86ISD::MOVLPS:
2989  case X86ISD::MOVLPD:
2990  case X86ISD::MOVSS:
2991  case X86ISD::MOVSD:
2992  case X86ISD::UNPCKL:
2993  case X86ISD::UNPCKH:
2994    return DAG.getNode(Opc, dl, VT, V1, V2);
2995  }
2996}
2997
2998SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2999  MachineFunction &MF = DAG.getMachineFunction();
3000  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
3001  int ReturnAddrIndex = FuncInfo->getRAIndex();
3002
3003  if (ReturnAddrIndex == 0) {
3004    // Set up a frame object for the return address.
3005    uint64_t SlotSize = TD->getPointerSize();
3006    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
3007                                                           false);
3008    FuncInfo->setRAIndex(ReturnAddrIndex);
3009  }
3010
3011  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
3012}
3013
3014
3015bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
3016                                       bool hasSymbolicDisplacement) {
3017  // Offset should fit into 32 bit immediate field.
3018  if (!isInt<32>(Offset))
3019    return false;
3020
3021  // If we don't have a symbolic displacement - we don't have any extra
3022  // restrictions.
3023  if (!hasSymbolicDisplacement)
3024    return true;
3025
3026  // FIXME: Some tweaks might be needed for medium code model.
3027  if (M != CodeModel::Small && M != CodeModel::Kernel)
3028    return false;
3029
3030  // For small code model we assume that latest object is 16MB before end of 31
3031  // bits boundary. We may also accept pretty large negative constants knowing
3032  // that all objects are in the positive half of address space.
3033  if (M == CodeModel::Small && Offset < 16*1024*1024)
3034    return true;
3035
3036  // For kernel code model we know that all object resist in the negative half
3037  // of 32bits address space. We may not accept negative offsets, since they may
3038  // be just off and we may accept pretty large positive ones.
3039  if (M == CodeModel::Kernel && Offset > 0)
3040    return true;
3041
3042  return false;
3043}
3044
3045/// isCalleePop - Determines whether the callee is required to pop its
3046/// own arguments. Callee pop is necessary to support tail calls.
3047bool X86::isCalleePop(CallingConv::ID CallingConv,
3048                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3049  if (IsVarArg)
3050    return false;
3051
3052  switch (CallingConv) {
3053  default:
3054    return false;
3055  case CallingConv::X86_StdCall:
3056    return !is64Bit;
3057  case CallingConv::X86_FastCall:
3058    return !is64Bit;
3059  case CallingConv::X86_ThisCall:
3060    return !is64Bit;
3061  case CallingConv::Fast:
3062    return TailCallOpt;
3063  case CallingConv::GHC:
3064    return TailCallOpt;
3065  }
3066}
3067
3068/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3069/// specific condition code, returning the condition code and the LHS/RHS of the
3070/// comparison to make.
3071static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3072                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3073  if (!isFP) {
3074    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3075      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3076        // X > -1   -> X == 0, jump !sign.
3077        RHS = DAG.getConstant(0, RHS.getValueType());
3078        return X86::COND_NS;
3079      }
3080      if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3081        // X < 0   -> X == 0, jump on sign.
3082        return X86::COND_S;
3083      }
3084      if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3085        // X < 1   -> X <= 0
3086        RHS = DAG.getConstant(0, RHS.getValueType());
3087        return X86::COND_LE;
3088      }
3089    }
3090
3091    switch (SetCCOpcode) {
3092    default: llvm_unreachable("Invalid integer condition!");
3093    case ISD::SETEQ:  return X86::COND_E;
3094    case ISD::SETGT:  return X86::COND_G;
3095    case ISD::SETGE:  return X86::COND_GE;
3096    case ISD::SETLT:  return X86::COND_L;
3097    case ISD::SETLE:  return X86::COND_LE;
3098    case ISD::SETNE:  return X86::COND_NE;
3099    case ISD::SETULT: return X86::COND_B;
3100    case ISD::SETUGT: return X86::COND_A;
3101    case ISD::SETULE: return X86::COND_BE;
3102    case ISD::SETUGE: return X86::COND_AE;
3103    }
3104  }
3105
3106  // First determine if it is required or is profitable to flip the operands.
3107
3108  // If LHS is a foldable load, but RHS is not, flip the condition.
3109  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3110      !ISD::isNON_EXTLoad(RHS.getNode())) {
3111    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3112    std::swap(LHS, RHS);
3113  }
3114
3115  switch (SetCCOpcode) {
3116  default: break;
3117  case ISD::SETOLT:
3118  case ISD::SETOLE:
3119  case ISD::SETUGT:
3120  case ISD::SETUGE:
3121    std::swap(LHS, RHS);
3122    break;
3123  }
3124
3125  // On a floating point condition, the flags are set as follows:
3126  // ZF  PF  CF   op
3127  //  0 | 0 | 0 | X > Y
3128  //  0 | 0 | 1 | X < Y
3129  //  1 | 0 | 0 | X == Y
3130  //  1 | 1 | 1 | unordered
3131  switch (SetCCOpcode) {
3132  default: llvm_unreachable("Condcode should be pre-legalized away");
3133  case ISD::SETUEQ:
3134  case ISD::SETEQ:   return X86::COND_E;
3135  case ISD::SETOLT:              // flipped
3136  case ISD::SETOGT:
3137  case ISD::SETGT:   return X86::COND_A;
3138  case ISD::SETOLE:              // flipped
3139  case ISD::SETOGE:
3140  case ISD::SETGE:   return X86::COND_AE;
3141  case ISD::SETUGT:              // flipped
3142  case ISD::SETULT:
3143  case ISD::SETLT:   return X86::COND_B;
3144  case ISD::SETUGE:              // flipped
3145  case ISD::SETULE:
3146  case ISD::SETLE:   return X86::COND_BE;
3147  case ISD::SETONE:
3148  case ISD::SETNE:   return X86::COND_NE;
3149  case ISD::SETUO:   return X86::COND_P;
3150  case ISD::SETO:    return X86::COND_NP;
3151  case ISD::SETOEQ:
3152  case ISD::SETUNE:  return X86::COND_INVALID;
3153  }
3154}
3155
3156/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3157/// code. Current x86 isa includes the following FP cmov instructions:
3158/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3159static bool hasFPCMov(unsigned X86CC) {
3160  switch (X86CC) {
3161  default:
3162    return false;
3163  case X86::COND_B:
3164  case X86::COND_BE:
3165  case X86::COND_E:
3166  case X86::COND_P:
3167  case X86::COND_A:
3168  case X86::COND_AE:
3169  case X86::COND_NE:
3170  case X86::COND_NP:
3171    return true;
3172  }
3173}
3174
3175/// isFPImmLegal - Returns true if the target can instruction select the
3176/// specified FP immediate natively. If false, the legalizer will
3177/// materialize the FP immediate as a load from a constant pool.
3178bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3179  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3180    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3181      return true;
3182  }
3183  return false;
3184}
3185
3186/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3187/// the specified range (L, H].
3188static bool isUndefOrInRange(int Val, int Low, int Hi) {
3189  return (Val < 0) || (Val >= Low && Val < Hi);
3190}
3191
3192/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3193/// specified value.
3194static bool isUndefOrEqual(int Val, int CmpVal) {
3195  if (Val < 0 || Val == CmpVal)
3196    return true;
3197  return false;
3198}
3199
3200/// isSequentialOrUndefInRange - Return true if every element in Mask, beginning
3201/// from position Pos and ending in Pos+Size, falls within the specified
3202/// sequential range (L, L+Pos]. or is undef.
3203static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
3204                                       unsigned Pos, unsigned Size, int Low) {
3205  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3206    if (!isUndefOrEqual(Mask[i], Low))
3207      return false;
3208  return true;
3209}
3210
3211/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3212/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3213/// the second operand.
3214static bool isPSHUFDMask(ArrayRef<int> Mask, EVT VT) {
3215  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3216    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3217  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3218    return (Mask[0] < 2 && Mask[1] < 2);
3219  return false;
3220}
3221
3222/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3223/// is suitable for input to PSHUFHW.
3224static bool isPSHUFHWMask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3225  if (VT != MVT::v8i16 && (!HasAVX2 || VT != MVT::v16i16))
3226    return false;
3227
3228  // Lower quadword copied in order or undef.
3229  if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
3230    return false;
3231
3232  // Upper quadword shuffled.
3233  for (unsigned i = 4; i != 8; ++i)
3234    if (!isUndefOrInRange(Mask[i], 4, 8))
3235      return false;
3236
3237  if (VT == MVT::v16i16) {
3238    // Lower quadword copied in order or undef.
3239    if (!isSequentialOrUndefInRange(Mask, 8, 4, 8))
3240      return false;
3241
3242    // Upper quadword shuffled.
3243    for (unsigned i = 12; i != 16; ++i)
3244      if (!isUndefOrInRange(Mask[i], 12, 16))
3245        return false;
3246  }
3247
3248  return true;
3249}
3250
3251/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3252/// is suitable for input to PSHUFLW.
3253static bool isPSHUFLWMask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3254  if (VT != MVT::v8i16 && (!HasAVX2 || VT != MVT::v16i16))
3255    return false;
3256
3257  // Upper quadword copied in order.
3258  if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
3259    return false;
3260
3261  // Lower quadword shuffled.
3262  for (unsigned i = 0; i != 4; ++i)
3263    if (!isUndefOrInRange(Mask[i], 0, 4))
3264      return false;
3265
3266  if (VT == MVT::v16i16) {
3267    // Upper quadword copied in order.
3268    if (!isSequentialOrUndefInRange(Mask, 12, 4, 12))
3269      return false;
3270
3271    // Lower quadword shuffled.
3272    for (unsigned i = 8; i != 12; ++i)
3273      if (!isUndefOrInRange(Mask[i], 8, 12))
3274        return false;
3275  }
3276
3277  return true;
3278}
3279
3280/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3281/// is suitable for input to PALIGNR.
3282static bool isPALIGNRMask(ArrayRef<int> Mask, EVT VT,
3283                          const X86Subtarget *Subtarget) {
3284  if ((VT.getSizeInBits() == 128 && !Subtarget->hasSSSE3()) ||
3285      (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2()))
3286    return false;
3287
3288  unsigned NumElts = VT.getVectorNumElements();
3289  unsigned NumLanes = VT.getSizeInBits()/128;
3290  unsigned NumLaneElts = NumElts/NumLanes;
3291
3292  // Do not handle 64-bit element shuffles with palignr.
3293  if (NumLaneElts == 2)
3294    return false;
3295
3296  for (unsigned l = 0; l != NumElts; l+=NumLaneElts) {
3297    unsigned i;
3298    for (i = 0; i != NumLaneElts; ++i) {
3299      if (Mask[i+l] >= 0)
3300        break;
3301    }
3302
3303    // Lane is all undef, go to next lane
3304    if (i == NumLaneElts)
3305      continue;
3306
3307    int Start = Mask[i+l];
3308
3309    // Make sure its in this lane in one of the sources
3310    if (!isUndefOrInRange(Start, l, l+NumLaneElts) &&
3311        !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts))
3312      return false;
3313
3314    // If not lane 0, then we must match lane 0
3315    if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l))
3316      return false;
3317
3318    // Correct second source to be contiguous with first source
3319    if (Start >= (int)NumElts)
3320      Start -= NumElts - NumLaneElts;
3321
3322    // Make sure we're shifting in the right direction.
3323    if (Start <= (int)(i+l))
3324      return false;
3325
3326    Start -= i;
3327
3328    // Check the rest of the elements to see if they are consecutive.
3329    for (++i; i != NumLaneElts; ++i) {
3330      int Idx = Mask[i+l];
3331
3332      // Make sure its in this lane
3333      if (!isUndefOrInRange(Idx, l, l+NumLaneElts) &&
3334          !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts))
3335        return false;
3336
3337      // If not lane 0, then we must match lane 0
3338      if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l))
3339        return false;
3340
3341      if (Idx >= (int)NumElts)
3342        Idx -= NumElts - NumLaneElts;
3343
3344      if (!isUndefOrEqual(Idx, Start+i))
3345        return false;
3346
3347    }
3348  }
3349
3350  return true;
3351}
3352
3353/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3354/// the two vector operands have swapped position.
3355static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
3356                                     unsigned NumElems) {
3357  for (unsigned i = 0; i != NumElems; ++i) {
3358    int idx = Mask[i];
3359    if (idx < 0)
3360      continue;
3361    else if (idx < (int)NumElems)
3362      Mask[i] = idx + NumElems;
3363    else
3364      Mask[i] = idx - NumElems;
3365  }
3366}
3367
3368/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3369/// specifies a shuffle of elements that is suitable for input to 128/256-bit
3370/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
3371/// reverse of what x86 shuffles want.
3372static bool isSHUFPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX,
3373                        bool Commuted = false) {
3374  if (!HasAVX && VT.getSizeInBits() == 256)
3375    return false;
3376
3377  unsigned NumElems = VT.getVectorNumElements();
3378  unsigned NumLanes = VT.getSizeInBits()/128;
3379  unsigned NumLaneElems = NumElems/NumLanes;
3380
3381  if (NumLaneElems != 2 && NumLaneElems != 4)
3382    return false;
3383
3384  // VSHUFPSY divides the resulting vector into 4 chunks.
3385  // The sources are also splitted into 4 chunks, and each destination
3386  // chunk must come from a different source chunk.
3387  //
3388  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3389  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3390  //
3391  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3392  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3393  //
3394  // VSHUFPDY divides the resulting vector into 4 chunks.
3395  // The sources are also splitted into 4 chunks, and each destination
3396  // chunk must come from a different source chunk.
3397  //
3398  //  SRC1 =>      X3       X2       X1       X0
3399  //  SRC2 =>      Y3       Y2       Y1       Y0
3400  //
3401  //  DST  =>  Y3..Y2,  X3..X2,  Y1..Y0,  X1..X0
3402  //
3403  unsigned HalfLaneElems = NumLaneElems/2;
3404  for (unsigned l = 0; l != NumElems; l += NumLaneElems) {
3405    for (unsigned i = 0; i != NumLaneElems; ++i) {
3406      int Idx = Mask[i+l];
3407      unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0);
3408      if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems))
3409        return false;
3410      // For VSHUFPSY, the mask of the second half must be the same as the
3411      // first but with the appropriate offsets. This works in the same way as
3412      // VPERMILPS works with masks.
3413      if (NumElems != 8 || l == 0 || Mask[i] < 0)
3414        continue;
3415      if (!isUndefOrEqual(Idx, Mask[i]+l))
3416        return false;
3417    }
3418  }
3419
3420  return true;
3421}
3422
3423/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3424/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3425static bool isMOVHLPSMask(ArrayRef<int> Mask, EVT VT) {
3426  unsigned NumElems = VT.getVectorNumElements();
3427
3428  if (VT.getSizeInBits() != 128)
3429    return false;
3430
3431  if (NumElems != 4)
3432    return false;
3433
3434  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3435  return isUndefOrEqual(Mask[0], 6) &&
3436         isUndefOrEqual(Mask[1], 7) &&
3437         isUndefOrEqual(Mask[2], 2) &&
3438         isUndefOrEqual(Mask[3], 3);
3439}
3440
3441/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3442/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3443/// <2, 3, 2, 3>
3444static bool isMOVHLPS_v_undef_Mask(ArrayRef<int> Mask, EVT VT) {
3445  unsigned NumElems = VT.getVectorNumElements();
3446
3447  if (VT.getSizeInBits() != 128)
3448    return false;
3449
3450  if (NumElems != 4)
3451    return false;
3452
3453  return isUndefOrEqual(Mask[0], 2) &&
3454         isUndefOrEqual(Mask[1], 3) &&
3455         isUndefOrEqual(Mask[2], 2) &&
3456         isUndefOrEqual(Mask[3], 3);
3457}
3458
3459/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3460/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3461static bool isMOVLPMask(ArrayRef<int> Mask, EVT VT) {
3462  if (VT.getSizeInBits() != 128)
3463    return false;
3464
3465  unsigned NumElems = VT.getVectorNumElements();
3466
3467  if (NumElems != 2 && NumElems != 4)
3468    return false;
3469
3470  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3471    if (!isUndefOrEqual(Mask[i], i + NumElems))
3472      return false;
3473
3474  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
3475    if (!isUndefOrEqual(Mask[i], i))
3476      return false;
3477
3478  return true;
3479}
3480
3481/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3482/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3483static bool isMOVLHPSMask(ArrayRef<int> Mask, EVT VT) {
3484  unsigned NumElems = VT.getVectorNumElements();
3485
3486  if ((NumElems != 2 && NumElems != 4)
3487      || VT.getSizeInBits() > 128)
3488    return false;
3489
3490  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3491    if (!isUndefOrEqual(Mask[i], i))
3492      return false;
3493
3494  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3495    if (!isUndefOrEqual(Mask[i + e], i + NumElems))
3496      return false;
3497
3498  return true;
3499}
3500
3501//
3502// Some special combinations that can be optimized.
3503//
3504static
3505SDValue Compact8x32ShuffleNode(ShuffleVectorSDNode *SVOp,
3506                               SelectionDAG &DAG) {
3507  EVT VT = SVOp->getValueType(0);
3508  DebugLoc dl = SVOp->getDebugLoc();
3509
3510  if (VT != MVT::v8i32 && VT != MVT::v8f32)
3511    return SDValue();
3512
3513  ArrayRef<int> Mask = SVOp->getMask();
3514
3515  // These are the special masks that may be optimized.
3516  static const int MaskToOptimizeEven[] = {0, 8, 2, 10, 4, 12, 6, 14};
3517  static const int MaskToOptimizeOdd[]  = {1, 9, 3, 11, 5, 13, 7, 15};
3518  bool MatchEvenMask = true;
3519  bool MatchOddMask  = true;
3520  for (int i=0; i<8; ++i) {
3521    if (!isUndefOrEqual(Mask[i], MaskToOptimizeEven[i]))
3522      MatchEvenMask = false;
3523    if (!isUndefOrEqual(Mask[i], MaskToOptimizeOdd[i]))
3524      MatchOddMask = false;
3525  }
3526  static const int CompactionMaskEven[] = {0, 2, -1, -1, 4, 6, -1, -1};
3527  static const int CompactionMaskOdd [] = {1, 3, -1, -1, 5, 7, -1, -1};
3528
3529  const int *CompactionMask;
3530  if (MatchEvenMask)
3531    CompactionMask = CompactionMaskEven;
3532  else if (MatchOddMask)
3533    CompactionMask = CompactionMaskOdd;
3534  else
3535    return SDValue();
3536
3537  SDValue UndefNode = DAG.getNode(ISD::UNDEF, dl, VT);
3538
3539  SDValue Op0 = DAG.getVectorShuffle(VT, dl, SVOp->getOperand(0),
3540                                     UndefNode, CompactionMask);
3541  SDValue Op1 = DAG.getVectorShuffle(VT, dl, SVOp->getOperand(1),
3542                                     UndefNode, CompactionMask);
3543  static const int UnpackMask[] = {0, 8, 1, 9, 4, 12, 5, 13};
3544  return DAG.getVectorShuffle(VT, dl, Op0, Op1, UnpackMask);
3545}
3546
3547/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3548/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3549static bool isUNPCKLMask(ArrayRef<int> Mask, EVT VT,
3550                         bool HasAVX2, bool V2IsSplat = false) {
3551  unsigned NumElts = VT.getVectorNumElements();
3552
3553  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3554         "Unsupported vector type for unpckh");
3555
3556  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3557      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3558    return false;
3559
3560  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3561  // independently on 128-bit lanes.
3562  unsigned NumLanes = VT.getSizeInBits()/128;
3563  unsigned NumLaneElts = NumElts/NumLanes;
3564
3565  for (unsigned l = 0; l != NumLanes; ++l) {
3566    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3567         i != (l+1)*NumLaneElts;
3568         i += 2, ++j) {
3569      int BitI  = Mask[i];
3570      int BitI1 = Mask[i+1];
3571      if (!isUndefOrEqual(BitI, j))
3572        return false;
3573      if (V2IsSplat) {
3574        if (!isUndefOrEqual(BitI1, NumElts))
3575          return false;
3576      } else {
3577        if (!isUndefOrEqual(BitI1, j + NumElts))
3578          return false;
3579      }
3580    }
3581  }
3582
3583  return true;
3584}
3585
3586/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3587/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3588static bool isUNPCKHMask(ArrayRef<int> Mask, EVT VT,
3589                         bool HasAVX2, bool V2IsSplat = false) {
3590  unsigned NumElts = VT.getVectorNumElements();
3591
3592  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3593         "Unsupported vector type for unpckh");
3594
3595  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3596      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3597    return false;
3598
3599  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3600  // independently on 128-bit lanes.
3601  unsigned NumLanes = VT.getSizeInBits()/128;
3602  unsigned NumLaneElts = NumElts/NumLanes;
3603
3604  for (unsigned l = 0; l != NumLanes; ++l) {
3605    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3606         i != (l+1)*NumLaneElts; i += 2, ++j) {
3607      int BitI  = Mask[i];
3608      int BitI1 = Mask[i+1];
3609      if (!isUndefOrEqual(BitI, j))
3610        return false;
3611      if (V2IsSplat) {
3612        if (isUndefOrEqual(BitI1, NumElts))
3613          return false;
3614      } else {
3615        if (!isUndefOrEqual(BitI1, j+NumElts))
3616          return false;
3617      }
3618    }
3619  }
3620  return true;
3621}
3622
3623/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3624/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3625/// <0, 0, 1, 1>
3626static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, EVT VT,
3627                                  bool HasAVX2) {
3628  unsigned NumElts = VT.getVectorNumElements();
3629
3630  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3631         "Unsupported vector type for unpckh");
3632
3633  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3634      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3635    return false;
3636
3637  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3638  // FIXME: Need a better way to get rid of this, there's no latency difference
3639  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3640  // the former later. We should also remove the "_undef" special mask.
3641  if (NumElts == 4 && VT.getSizeInBits() == 256)
3642    return false;
3643
3644  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3645  // independently on 128-bit lanes.
3646  unsigned NumLanes = VT.getSizeInBits()/128;
3647  unsigned NumLaneElts = NumElts/NumLanes;
3648
3649  for (unsigned l = 0; l != NumLanes; ++l) {
3650    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3651         i != (l+1)*NumLaneElts;
3652         i += 2, ++j) {
3653      int BitI  = Mask[i];
3654      int BitI1 = Mask[i+1];
3655
3656      if (!isUndefOrEqual(BitI, j))
3657        return false;
3658      if (!isUndefOrEqual(BitI1, j))
3659        return false;
3660    }
3661  }
3662
3663  return true;
3664}
3665
3666/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3667/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3668/// <2, 2, 3, 3>
3669static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3670  unsigned NumElts = VT.getVectorNumElements();
3671
3672  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3673         "Unsupported vector type for unpckh");
3674
3675  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3676      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3677    return false;
3678
3679  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3680  // independently on 128-bit lanes.
3681  unsigned NumLanes = VT.getSizeInBits()/128;
3682  unsigned NumLaneElts = NumElts/NumLanes;
3683
3684  for (unsigned l = 0; l != NumLanes; ++l) {
3685    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3686         i != (l+1)*NumLaneElts; i += 2, ++j) {
3687      int BitI  = Mask[i];
3688      int BitI1 = Mask[i+1];
3689      if (!isUndefOrEqual(BitI, j))
3690        return false;
3691      if (!isUndefOrEqual(BitI1, j))
3692        return false;
3693    }
3694  }
3695  return true;
3696}
3697
3698/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3699/// specifies a shuffle of elements that is suitable for input to MOVSS,
3700/// MOVSD, and MOVD, i.e. setting the lowest element.
3701static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) {
3702  if (VT.getVectorElementType().getSizeInBits() < 32)
3703    return false;
3704  if (VT.getSizeInBits() == 256)
3705    return false;
3706
3707  unsigned NumElts = VT.getVectorNumElements();
3708
3709  if (!isUndefOrEqual(Mask[0], NumElts))
3710    return false;
3711
3712  for (unsigned i = 1; i != NumElts; ++i)
3713    if (!isUndefOrEqual(Mask[i], i))
3714      return false;
3715
3716  return true;
3717}
3718
3719/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
3720/// as permutations between 128-bit chunks or halves. As an example: this
3721/// shuffle bellow:
3722///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3723/// The first half comes from the second half of V1 and the second half from the
3724/// the second half of V2.
3725static bool isVPERM2X128Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3726  if (!HasAVX || VT.getSizeInBits() != 256)
3727    return false;
3728
3729  // The shuffle result is divided into half A and half B. In total the two
3730  // sources have 4 halves, namely: C, D, E, F. The final values of A and
3731  // B must come from C, D, E or F.
3732  unsigned HalfSize = VT.getVectorNumElements()/2;
3733  bool MatchA = false, MatchB = false;
3734
3735  // Check if A comes from one of C, D, E, F.
3736  for (unsigned Half = 0; Half != 4; ++Half) {
3737    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3738      MatchA = true;
3739      break;
3740    }
3741  }
3742
3743  // Check if B comes from one of C, D, E, F.
3744  for (unsigned Half = 0; Half != 4; ++Half) {
3745    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3746      MatchB = true;
3747      break;
3748    }
3749  }
3750
3751  return MatchA && MatchB;
3752}
3753
3754/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
3755/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
3756static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
3757  EVT VT = SVOp->getValueType(0);
3758
3759  unsigned HalfSize = VT.getVectorNumElements()/2;
3760
3761  unsigned FstHalf = 0, SndHalf = 0;
3762  for (unsigned i = 0; i < HalfSize; ++i) {
3763    if (SVOp->getMaskElt(i) > 0) {
3764      FstHalf = SVOp->getMaskElt(i)/HalfSize;
3765      break;
3766    }
3767  }
3768  for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
3769    if (SVOp->getMaskElt(i) > 0) {
3770      SndHalf = SVOp->getMaskElt(i)/HalfSize;
3771      break;
3772    }
3773  }
3774
3775  return (FstHalf | (SndHalf << 4));
3776}
3777
3778/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
3779/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3780/// Note that VPERMIL mask matching is different depending whether theunderlying
3781/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3782/// to the same elements of the low, but to the higher half of the source.
3783/// In VPERMILPD the two lanes could be shuffled independently of each other
3784/// with the same restriction that lanes can't be crossed. Also handles PSHUFDY.
3785static bool isVPERMILPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3786  if (!HasAVX)
3787    return false;
3788
3789  unsigned NumElts = VT.getVectorNumElements();
3790  // Only match 256-bit with 32/64-bit types
3791  if (VT.getSizeInBits() != 256 || (NumElts != 4 && NumElts != 8))
3792    return false;
3793
3794  unsigned NumLanes = VT.getSizeInBits()/128;
3795  unsigned LaneSize = NumElts/NumLanes;
3796  for (unsigned l = 0; l != NumElts; l += LaneSize) {
3797    for (unsigned i = 0; i != LaneSize; ++i) {
3798      if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
3799        return false;
3800      if (NumElts != 8 || l == 0)
3801        continue;
3802      // VPERMILPS handling
3803      if (Mask[i] < 0)
3804        continue;
3805      if (!isUndefOrEqual(Mask[i+l], Mask[i]+l))
3806        return false;
3807    }
3808  }
3809
3810  return true;
3811}
3812
3813/// isCommutedMOVLMask - Returns true if the shuffle mask is except the reverse
3814/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3815/// element of vector 2 and the other elements to come from vector 1 in order.
3816static bool isCommutedMOVLMask(ArrayRef<int> Mask, EVT VT,
3817                               bool V2IsSplat = false, bool V2IsUndef = false) {
3818  unsigned NumOps = VT.getVectorNumElements();
3819  if (VT.getSizeInBits() == 256)
3820    return false;
3821  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3822    return false;
3823
3824  if (!isUndefOrEqual(Mask[0], 0))
3825    return false;
3826
3827  for (unsigned i = 1; i != NumOps; ++i)
3828    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3829          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3830          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3831      return false;
3832
3833  return true;
3834}
3835
3836/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3837/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3838/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3839static bool isMOVSHDUPMask(ArrayRef<int> Mask, EVT VT,
3840                           const X86Subtarget *Subtarget) {
3841  if (!Subtarget->hasSSE3())
3842    return false;
3843
3844  unsigned NumElems = VT.getVectorNumElements();
3845
3846  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3847      (VT.getSizeInBits() == 256 && NumElems != 8))
3848    return false;
3849
3850  // "i+1" is the value the indexed mask element must have
3851  for (unsigned i = 0; i != NumElems; i += 2)
3852    if (!isUndefOrEqual(Mask[i], i+1) ||
3853        !isUndefOrEqual(Mask[i+1], i+1))
3854      return false;
3855
3856  return true;
3857}
3858
3859/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3860/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3861/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3862static bool isMOVSLDUPMask(ArrayRef<int> Mask, EVT VT,
3863                           const X86Subtarget *Subtarget) {
3864  if (!Subtarget->hasSSE3())
3865    return false;
3866
3867  unsigned NumElems = VT.getVectorNumElements();
3868
3869  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3870      (VT.getSizeInBits() == 256 && NumElems != 8))
3871    return false;
3872
3873  // "i" is the value the indexed mask element must have
3874  for (unsigned i = 0; i != NumElems; i += 2)
3875    if (!isUndefOrEqual(Mask[i], i) ||
3876        !isUndefOrEqual(Mask[i+1], i))
3877      return false;
3878
3879  return true;
3880}
3881
3882/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
3883/// specifies a shuffle of elements that is suitable for input to 256-bit
3884/// version of MOVDDUP.
3885static bool isMOVDDUPYMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3886  unsigned NumElts = VT.getVectorNumElements();
3887
3888  if (!HasAVX || VT.getSizeInBits() != 256 || NumElts != 4)
3889    return false;
3890
3891  for (unsigned i = 0; i != NumElts/2; ++i)
3892    if (!isUndefOrEqual(Mask[i], 0))
3893      return false;
3894  for (unsigned i = NumElts/2; i != NumElts; ++i)
3895    if (!isUndefOrEqual(Mask[i], NumElts/2))
3896      return false;
3897  return true;
3898}
3899
3900/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3901/// specifies a shuffle of elements that is suitable for input to 128-bit
3902/// version of MOVDDUP.
3903static bool isMOVDDUPMask(ArrayRef<int> Mask, EVT VT) {
3904  if (VT.getSizeInBits() != 128)
3905    return false;
3906
3907  unsigned e = VT.getVectorNumElements() / 2;
3908  for (unsigned i = 0; i != e; ++i)
3909    if (!isUndefOrEqual(Mask[i], i))
3910      return false;
3911  for (unsigned i = 0; i != e; ++i)
3912    if (!isUndefOrEqual(Mask[e+i], i))
3913      return false;
3914  return true;
3915}
3916
3917/// isVEXTRACTF128Index - Return true if the specified
3918/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3919/// suitable for input to VEXTRACTF128.
3920bool X86::isVEXTRACTF128Index(SDNode *N) {
3921  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3922    return false;
3923
3924  // The index should be aligned on a 128-bit boundary.
3925  uint64_t Index =
3926    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3927
3928  unsigned VL = N->getValueType(0).getVectorNumElements();
3929  unsigned VBits = N->getValueType(0).getSizeInBits();
3930  unsigned ElSize = VBits / VL;
3931  bool Result = (Index * ElSize) % 128 == 0;
3932
3933  return Result;
3934}
3935
3936/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
3937/// operand specifies a subvector insert that is suitable for input to
3938/// VINSERTF128.
3939bool X86::isVINSERTF128Index(SDNode *N) {
3940  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3941    return false;
3942
3943  // The index should be aligned on a 128-bit boundary.
3944  uint64_t Index =
3945    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3946
3947  unsigned VL = N->getValueType(0).getVectorNumElements();
3948  unsigned VBits = N->getValueType(0).getSizeInBits();
3949  unsigned ElSize = VBits / VL;
3950  bool Result = (Index * ElSize) % 128 == 0;
3951
3952  return Result;
3953}
3954
3955/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3956/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3957/// Handles 128-bit and 256-bit.
3958static unsigned getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
3959  EVT VT = N->getValueType(0);
3960
3961  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3962         "Unsupported vector type for PSHUF/SHUFP");
3963
3964  // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate
3965  // independently on 128-bit lanes.
3966  unsigned NumElts = VT.getVectorNumElements();
3967  unsigned NumLanes = VT.getSizeInBits()/128;
3968  unsigned NumLaneElts = NumElts/NumLanes;
3969
3970  assert((NumLaneElts == 2 || NumLaneElts == 4) &&
3971         "Only supports 2 or 4 elements per lane");
3972
3973  unsigned Shift = (NumLaneElts == 4) ? 1 : 0;
3974  unsigned Mask = 0;
3975  for (unsigned i = 0; i != NumElts; ++i) {
3976    int Elt = N->getMaskElt(i);
3977    if (Elt < 0) continue;
3978    Elt &= NumLaneElts - 1;
3979    unsigned ShAmt = (i << Shift) % 8;
3980    Mask |= Elt << ShAmt;
3981  }
3982
3983  return Mask;
3984}
3985
3986/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3987/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3988static unsigned getShufflePSHUFHWImmediate(ShuffleVectorSDNode *N) {
3989  EVT VT = N->getValueType(0);
3990
3991  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
3992         "Unsupported vector type for PSHUFHW");
3993
3994  unsigned NumElts = VT.getVectorNumElements();
3995
3996  unsigned Mask = 0;
3997  for (unsigned l = 0; l != NumElts; l += 8) {
3998    // 8 nodes per lane, but we only care about the last 4.
3999    for (unsigned i = 0; i < 4; ++i) {
4000      int Elt = N->getMaskElt(l+i+4);
4001      if (Elt < 0) continue;
4002      Elt &= 0x3; // only 2-bits.
4003      Mask |= Elt << (i * 2);
4004    }
4005  }
4006
4007  return Mask;
4008}
4009
4010/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
4011/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
4012static unsigned getShufflePSHUFLWImmediate(ShuffleVectorSDNode *N) {
4013  EVT VT = N->getValueType(0);
4014
4015  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
4016         "Unsupported vector type for PSHUFHW");
4017
4018  unsigned NumElts = VT.getVectorNumElements();
4019
4020  unsigned Mask = 0;
4021  for (unsigned l = 0; l != NumElts; l += 8) {
4022    // 8 nodes per lane, but we only care about the first 4.
4023    for (unsigned i = 0; i < 4; ++i) {
4024      int Elt = N->getMaskElt(l+i);
4025      if (Elt < 0) continue;
4026      Elt &= 0x3; // only 2-bits
4027      Mask |= Elt << (i * 2);
4028    }
4029  }
4030
4031  return Mask;
4032}
4033
4034/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
4035/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
4036static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
4037  EVT VT = SVOp->getValueType(0);
4038  unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3;
4039
4040  unsigned NumElts = VT.getVectorNumElements();
4041  unsigned NumLanes = VT.getSizeInBits()/128;
4042  unsigned NumLaneElts = NumElts/NumLanes;
4043
4044  int Val = 0;
4045  unsigned i;
4046  for (i = 0; i != NumElts; ++i) {
4047    Val = SVOp->getMaskElt(i);
4048    if (Val >= 0)
4049      break;
4050  }
4051  if (Val >= (int)NumElts)
4052    Val -= NumElts - NumLaneElts;
4053
4054  assert(Val - i > 0 && "PALIGNR imm should be positive");
4055  return (Val - i) * EltSize;
4056}
4057
4058/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
4059/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
4060/// instructions.
4061unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
4062  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4063    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
4064
4065  uint64_t Index =
4066    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4067
4068  EVT VecVT = N->getOperand(0).getValueType();
4069  EVT ElVT = VecVT.getVectorElementType();
4070
4071  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4072  return Index / NumElemsPerChunk;
4073}
4074
4075/// getInsertVINSERTF128Immediate - Return the appropriate immediate
4076/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4077/// instructions.
4078unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
4079  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4080    llvm_unreachable("Illegal insert subvector for VINSERTF128");
4081
4082  uint64_t Index =
4083    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4084
4085  EVT VecVT = N->getValueType(0);
4086  EVT ElVT = VecVT.getVectorElementType();
4087
4088  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4089  return Index / NumElemsPerChunk;
4090}
4091
4092/// getShuffleCLImmediate - Return the appropriate immediate to shuffle
4093/// the specified VECTOR_SHUFFLE mask with VPERMQ and VPERMPD instructions.
4094/// Handles 256-bit.
4095static unsigned getShuffleCLImmediate(ShuffleVectorSDNode *N) {
4096  EVT VT = N->getValueType(0);
4097
4098  unsigned NumElts = VT.getVectorNumElements();
4099
4100  assert((VT.is256BitVector() && NumElts == 4) &&
4101         "Unsupported vector type for VPERMQ/VPERMPD");
4102
4103  unsigned Mask = 0;
4104  for (unsigned i = 0; i != NumElts; ++i) {
4105    int Elt = N->getMaskElt(i);
4106    if (Elt < 0)
4107      continue;
4108    Mask |= Elt << (i*2);
4109  }
4110
4111  return Mask;
4112}
4113/// isZeroNode - Returns true if Elt is a constant zero or a floating point
4114/// constant +0.0.
4115bool X86::isZeroNode(SDValue Elt) {
4116  return ((isa<ConstantSDNode>(Elt) &&
4117           cast<ConstantSDNode>(Elt)->isNullValue()) ||
4118          (isa<ConstantFPSDNode>(Elt) &&
4119           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
4120}
4121
4122/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4123/// their permute mask.
4124static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4125                                    SelectionDAG &DAG) {
4126  EVT VT = SVOp->getValueType(0);
4127  unsigned NumElems = VT.getVectorNumElements();
4128  SmallVector<int, 8> MaskVec;
4129
4130  for (unsigned i = 0; i != NumElems; ++i) {
4131    int Idx = SVOp->getMaskElt(i);
4132    if (Idx >= 0) {
4133      if (Idx < (int)NumElems)
4134        Idx += NumElems;
4135      else
4136        Idx -= NumElems;
4137    }
4138    MaskVec.push_back(Idx);
4139  }
4140  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4141                              SVOp->getOperand(0), &MaskVec[0]);
4142}
4143
4144/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4145/// match movhlps. The lower half elements should come from upper half of
4146/// V1 (and in order), and the upper half elements should come from the upper
4147/// half of V2 (and in order).
4148static bool ShouldXformToMOVHLPS(ArrayRef<int> Mask, EVT VT) {
4149  if (VT.getSizeInBits() != 128)
4150    return false;
4151  if (VT.getVectorNumElements() != 4)
4152    return false;
4153  for (unsigned i = 0, e = 2; i != e; ++i)
4154    if (!isUndefOrEqual(Mask[i], i+2))
4155      return false;
4156  for (unsigned i = 2; i != 4; ++i)
4157    if (!isUndefOrEqual(Mask[i], i+4))
4158      return false;
4159  return true;
4160}
4161
4162/// isScalarLoadToVector - Returns true if the node is a scalar load that
4163/// is promoted to a vector. It also returns the LoadSDNode by reference if
4164/// required.
4165static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4166  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4167    return false;
4168  N = N->getOperand(0).getNode();
4169  if (!ISD::isNON_EXTLoad(N))
4170    return false;
4171  if (LD)
4172    *LD = cast<LoadSDNode>(N);
4173  return true;
4174}
4175
4176// Test whether the given value is a vector value which will be legalized
4177// into a load.
4178static bool WillBeConstantPoolLoad(SDNode *N) {
4179  if (N->getOpcode() != ISD::BUILD_VECTOR)
4180    return false;
4181
4182  // Check for any non-constant elements.
4183  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4184    switch (N->getOperand(i).getNode()->getOpcode()) {
4185    case ISD::UNDEF:
4186    case ISD::ConstantFP:
4187    case ISD::Constant:
4188      break;
4189    default:
4190      return false;
4191    }
4192
4193  // Vectors of all-zeros and all-ones are materialized with special
4194  // instructions rather than being loaded.
4195  return !ISD::isBuildVectorAllZeros(N) &&
4196         !ISD::isBuildVectorAllOnes(N);
4197}
4198
4199/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4200/// match movlp{s|d}. The lower half elements should come from lower half of
4201/// V1 (and in order), and the upper half elements should come from the upper
4202/// half of V2 (and in order). And since V1 will become the source of the
4203/// MOVLP, it must be either a vector load or a scalar load to vector.
4204static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4205                               ArrayRef<int> Mask, EVT VT) {
4206  if (VT.getSizeInBits() != 128)
4207    return false;
4208
4209  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4210    return false;
4211  // Is V2 is a vector load, don't do this transformation. We will try to use
4212  // load folding shufps op.
4213  if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4214    return false;
4215
4216  unsigned NumElems = VT.getVectorNumElements();
4217
4218  if (NumElems != 2 && NumElems != 4)
4219    return false;
4220  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4221    if (!isUndefOrEqual(Mask[i], i))
4222      return false;
4223  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
4224    if (!isUndefOrEqual(Mask[i], i+NumElems))
4225      return false;
4226  return true;
4227}
4228
4229/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4230/// all the same.
4231static bool isSplatVector(SDNode *N) {
4232  if (N->getOpcode() != ISD::BUILD_VECTOR)
4233    return false;
4234
4235  SDValue SplatValue = N->getOperand(0);
4236  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4237    if (N->getOperand(i) != SplatValue)
4238      return false;
4239  return true;
4240}
4241
4242/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4243/// to an zero vector.
4244/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4245static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4246  SDValue V1 = N->getOperand(0);
4247  SDValue V2 = N->getOperand(1);
4248  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4249  for (unsigned i = 0; i != NumElems; ++i) {
4250    int Idx = N->getMaskElt(i);
4251    if (Idx >= (int)NumElems) {
4252      unsigned Opc = V2.getOpcode();
4253      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4254        continue;
4255      if (Opc != ISD::BUILD_VECTOR ||
4256          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4257        return false;
4258    } else if (Idx >= 0) {
4259      unsigned Opc = V1.getOpcode();
4260      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4261        continue;
4262      if (Opc != ISD::BUILD_VECTOR ||
4263          !X86::isZeroNode(V1.getOperand(Idx)))
4264        return false;
4265    }
4266  }
4267  return true;
4268}
4269
4270/// getZeroVector - Returns a vector of specified type with all zero elements.
4271///
4272static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget,
4273                             SelectionDAG &DAG, DebugLoc dl) {
4274  assert(VT.isVector() && "Expected a vector type");
4275  unsigned Size = VT.getSizeInBits();
4276
4277  // Always build SSE zero vectors as <4 x i32> bitcasted
4278  // to their dest type. This ensures they get CSE'd.
4279  SDValue Vec;
4280  if (Size == 128) {  // SSE
4281    if (Subtarget->hasSSE2()) {  // SSE2
4282      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4283      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4284    } else { // SSE1
4285      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4286      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4287    }
4288  } else if (Size == 256) { // AVX
4289    if (Subtarget->hasAVX2()) { // AVX2
4290      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4291      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4292      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4293    } else {
4294      // 256-bit logic and arithmetic instructions in AVX are all
4295      // floating-point, no support for integer ops. Emit fp zeroed vectors.
4296      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4297      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4298      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4299    }
4300  } else
4301    llvm_unreachable("Unexpected vector type");
4302
4303  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4304}
4305
4306/// getOnesVector - Returns a vector of specified type with all bits set.
4307/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4308/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4309/// Then bitcast to their original type, ensuring they get CSE'd.
4310static SDValue getOnesVector(EVT VT, bool HasAVX2, SelectionDAG &DAG,
4311                             DebugLoc dl) {
4312  assert(VT.isVector() && "Expected a vector type");
4313  unsigned Size = VT.getSizeInBits();
4314
4315  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4316  SDValue Vec;
4317  if (Size == 256) {
4318    if (HasAVX2) { // AVX2
4319      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4320      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4321    } else { // AVX
4322      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4323      Vec = Concat128BitVectors(Vec, Vec, MVT::v8i32, 8, DAG, dl);
4324    }
4325  } else if (Size == 128) {
4326    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4327  } else
4328    llvm_unreachable("Unexpected vector type");
4329
4330  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4331}
4332
4333/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4334/// that point to V2 points to its first element.
4335static void NormalizeMask(SmallVectorImpl<int> &Mask, unsigned NumElems) {
4336  for (unsigned i = 0; i != NumElems; ++i) {
4337    if (Mask[i] > (int)NumElems) {
4338      Mask[i] = NumElems;
4339    }
4340  }
4341}
4342
4343/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4344/// operation of specified width.
4345static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4346                       SDValue V2) {
4347  unsigned NumElems = VT.getVectorNumElements();
4348  SmallVector<int, 8> Mask;
4349  Mask.push_back(NumElems);
4350  for (unsigned i = 1; i != NumElems; ++i)
4351    Mask.push_back(i);
4352  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4353}
4354
4355/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4356static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4357                          SDValue V2) {
4358  unsigned NumElems = VT.getVectorNumElements();
4359  SmallVector<int, 8> Mask;
4360  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4361    Mask.push_back(i);
4362    Mask.push_back(i + NumElems);
4363  }
4364  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4365}
4366
4367/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4368static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4369                          SDValue V2) {
4370  unsigned NumElems = VT.getVectorNumElements();
4371  SmallVector<int, 8> Mask;
4372  for (unsigned i = 0, Half = NumElems/2; i != Half; ++i) {
4373    Mask.push_back(i + Half);
4374    Mask.push_back(i + NumElems + Half);
4375  }
4376  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4377}
4378
4379// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4380// a generic shuffle instruction because the target has no such instructions.
4381// Generate shuffles which repeat i16 and i8 several times until they can be
4382// represented by v4f32 and then be manipulated by target suported shuffles.
4383static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4384  EVT VT = V.getValueType();
4385  int NumElems = VT.getVectorNumElements();
4386  DebugLoc dl = V.getDebugLoc();
4387
4388  while (NumElems > 4) {
4389    if (EltNo < NumElems/2) {
4390      V = getUnpackl(DAG, dl, VT, V, V);
4391    } else {
4392      V = getUnpackh(DAG, dl, VT, V, V);
4393      EltNo -= NumElems/2;
4394    }
4395    NumElems >>= 1;
4396  }
4397  return V;
4398}
4399
4400/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4401static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4402  EVT VT = V.getValueType();
4403  DebugLoc dl = V.getDebugLoc();
4404  unsigned Size = VT.getSizeInBits();
4405
4406  if (Size == 128) {
4407    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4408    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4409    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4410                             &SplatMask[0]);
4411  } else if (Size == 256) {
4412    // To use VPERMILPS to splat scalars, the second half of indicies must
4413    // refer to the higher part, which is a duplication of the lower one,
4414    // because VPERMILPS can only handle in-lane permutations.
4415    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4416                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4417
4418    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4419    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4420                             &SplatMask[0]);
4421  } else
4422    llvm_unreachable("Vector size not supported");
4423
4424  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4425}
4426
4427/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4428static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4429  EVT SrcVT = SV->getValueType(0);
4430  SDValue V1 = SV->getOperand(0);
4431  DebugLoc dl = SV->getDebugLoc();
4432
4433  int EltNo = SV->getSplatIndex();
4434  int NumElems = SrcVT.getVectorNumElements();
4435  unsigned Size = SrcVT.getSizeInBits();
4436
4437  assert(((Size == 128 && NumElems > 4) || Size == 256) &&
4438          "Unknown how to promote splat for type");
4439
4440  // Extract the 128-bit part containing the splat element and update
4441  // the splat element index when it refers to the higher register.
4442  if (Size == 256) {
4443    V1 = Extract128BitVector(V1, EltNo, DAG, dl);
4444    if (EltNo >= NumElems/2)
4445      EltNo -= NumElems/2;
4446  }
4447
4448  // All i16 and i8 vector types can't be used directly by a generic shuffle
4449  // instruction because the target has no such instruction. Generate shuffles
4450  // which repeat i16 and i8 several times until they fit in i32, and then can
4451  // be manipulated by target suported shuffles.
4452  EVT EltVT = SrcVT.getVectorElementType();
4453  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4454    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4455
4456  // Recreate the 256-bit vector and place the same 128-bit vector
4457  // into the low and high part. This is necessary because we want
4458  // to use VPERM* to shuffle the vectors
4459  if (Size == 256) {
4460    V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, SrcVT, V1, V1);
4461  }
4462
4463  return getLegalSplat(DAG, V1, EltNo);
4464}
4465
4466/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4467/// vector of zero or undef vector.  This produces a shuffle where the low
4468/// element of V2 is swizzled into the zero/undef vector, landing at element
4469/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4470static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4471                                           bool IsZero,
4472                                           const X86Subtarget *Subtarget,
4473                                           SelectionDAG &DAG) {
4474  EVT VT = V2.getValueType();
4475  SDValue V1 = IsZero
4476    ? getZeroVector(VT, Subtarget, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4477  unsigned NumElems = VT.getVectorNumElements();
4478  SmallVector<int, 16> MaskVec;
4479  for (unsigned i = 0; i != NumElems; ++i)
4480    // If this is the insertion idx, put the low elt of V2 here.
4481    MaskVec.push_back(i == Idx ? NumElems : i);
4482  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4483}
4484
4485/// getTargetShuffleMask - Calculates the shuffle mask corresponding to the
4486/// target specific opcode. Returns true if the Mask could be calculated.
4487/// Sets IsUnary to true if only uses one source.
4488static bool getTargetShuffleMask(SDNode *N, MVT VT,
4489                                 SmallVectorImpl<int> &Mask, bool &IsUnary) {
4490  unsigned NumElems = VT.getVectorNumElements();
4491  SDValue ImmN;
4492
4493  IsUnary = false;
4494  switch(N->getOpcode()) {
4495  case X86ISD::SHUFP:
4496    ImmN = N->getOperand(N->getNumOperands()-1);
4497    DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4498    break;
4499  case X86ISD::UNPCKH:
4500    DecodeUNPCKHMask(VT, Mask);
4501    break;
4502  case X86ISD::UNPCKL:
4503    DecodeUNPCKLMask(VT, Mask);
4504    break;
4505  case X86ISD::MOVHLPS:
4506    DecodeMOVHLPSMask(NumElems, Mask);
4507    break;
4508  case X86ISD::MOVLHPS:
4509    DecodeMOVLHPSMask(NumElems, Mask);
4510    break;
4511  case X86ISD::PSHUFD:
4512  case X86ISD::VPERMILP:
4513    ImmN = N->getOperand(N->getNumOperands()-1);
4514    DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4515    IsUnary = true;
4516    break;
4517  case X86ISD::PSHUFHW:
4518    ImmN = N->getOperand(N->getNumOperands()-1);
4519    DecodePSHUFHWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4520    IsUnary = true;
4521    break;
4522  case X86ISD::PSHUFLW:
4523    ImmN = N->getOperand(N->getNumOperands()-1);
4524    DecodePSHUFLWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4525    IsUnary = true;
4526    break;
4527  case X86ISD::VPERMI:
4528    ImmN = N->getOperand(N->getNumOperands()-1);
4529    DecodeVPERMMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4530    IsUnary = true;
4531    break;
4532  case X86ISD::MOVSS:
4533  case X86ISD::MOVSD: {
4534    // The index 0 always comes from the first element of the second source,
4535    // this is why MOVSS and MOVSD are used in the first place. The other
4536    // elements come from the other positions of the first source vector
4537    Mask.push_back(NumElems);
4538    for (unsigned i = 1; i != NumElems; ++i) {
4539      Mask.push_back(i);
4540    }
4541    break;
4542  }
4543  case X86ISD::VPERM2X128:
4544    ImmN = N->getOperand(N->getNumOperands()-1);
4545    DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4546    if (Mask.empty()) return false;
4547    break;
4548  case X86ISD::MOVDDUP:
4549  case X86ISD::MOVLHPD:
4550  case X86ISD::MOVLPD:
4551  case X86ISD::MOVLPS:
4552  case X86ISD::MOVSHDUP:
4553  case X86ISD::MOVSLDUP:
4554  case X86ISD::PALIGN:
4555    // Not yet implemented
4556    return false;
4557  default: llvm_unreachable("unknown target shuffle node");
4558  }
4559
4560  return true;
4561}
4562
4563/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4564/// element of the result of the vector shuffle.
4565static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
4566                                   unsigned Depth) {
4567  if (Depth == 6)
4568    return SDValue();  // Limit search depth.
4569
4570  SDValue V = SDValue(N, 0);
4571  EVT VT = V.getValueType();
4572  unsigned Opcode = V.getOpcode();
4573
4574  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4575  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4576    int Elt = SV->getMaskElt(Index);
4577
4578    if (Elt < 0)
4579      return DAG.getUNDEF(VT.getVectorElementType());
4580
4581    unsigned NumElems = VT.getVectorNumElements();
4582    SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0)
4583                                         : SV->getOperand(1);
4584    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1);
4585  }
4586
4587  // Recurse into target specific vector shuffles to find scalars.
4588  if (isTargetShuffle(Opcode)) {
4589    MVT ShufVT = V.getValueType().getSimpleVT();
4590    unsigned NumElems = ShufVT.getVectorNumElements();
4591    SmallVector<int, 16> ShuffleMask;
4592    SDValue ImmN;
4593    bool IsUnary;
4594
4595    if (!getTargetShuffleMask(N, ShufVT, ShuffleMask, IsUnary))
4596      return SDValue();
4597
4598    int Elt = ShuffleMask[Index];
4599    if (Elt < 0)
4600      return DAG.getUNDEF(ShufVT.getVectorElementType());
4601
4602    SDValue NewV = (Elt < (int)NumElems) ? N->getOperand(0)
4603                                         : N->getOperand(1);
4604    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG,
4605                               Depth+1);
4606  }
4607
4608  // Actual nodes that may contain scalar elements
4609  if (Opcode == ISD::BITCAST) {
4610    V = V.getOperand(0);
4611    EVT SrcVT = V.getValueType();
4612    unsigned NumElems = VT.getVectorNumElements();
4613
4614    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4615      return SDValue();
4616  }
4617
4618  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4619    return (Index == 0) ? V.getOperand(0)
4620                        : DAG.getUNDEF(VT.getVectorElementType());
4621
4622  if (V.getOpcode() == ISD::BUILD_VECTOR)
4623    return V.getOperand(Index);
4624
4625  return SDValue();
4626}
4627
4628/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4629/// shuffle operation which come from a consecutively from a zero. The
4630/// search can start in two different directions, from left or right.
4631static
4632unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, unsigned NumElems,
4633                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4634  unsigned i;
4635  for (i = 0; i != NumElems; ++i) {
4636    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4637    SDValue Elt = getShuffleScalarElt(SVOp, Index, DAG, 0);
4638    if (!(Elt.getNode() &&
4639         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4640      break;
4641  }
4642
4643  return i;
4644}
4645
4646/// isShuffleMaskConsecutive - Check if the shuffle mask indicies [MaskI, MaskE)
4647/// correspond consecutively to elements from one of the vector operands,
4648/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4649static
4650bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp,
4651                              unsigned MaskI, unsigned MaskE, unsigned OpIdx,
4652                              unsigned NumElems, unsigned &OpNum) {
4653  bool SeenV1 = false;
4654  bool SeenV2 = false;
4655
4656  for (unsigned i = MaskI; i != MaskE; ++i, ++OpIdx) {
4657    int Idx = SVOp->getMaskElt(i);
4658    // Ignore undef indicies
4659    if (Idx < 0)
4660      continue;
4661
4662    if (Idx < (int)NumElems)
4663      SeenV1 = true;
4664    else
4665      SeenV2 = true;
4666
4667    // Only accept consecutive elements from the same vector
4668    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4669      return false;
4670  }
4671
4672  OpNum = SeenV1 ? 0 : 1;
4673  return true;
4674}
4675
4676/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4677/// logical left shift of a vector.
4678static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4679                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4680  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4681  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4682              false /* check zeros from right */, DAG);
4683  unsigned OpSrc;
4684
4685  if (!NumZeros)
4686    return false;
4687
4688  // Considering the elements in the mask that are not consecutive zeros,
4689  // check if they consecutively come from only one of the source vectors.
4690  //
4691  //               V1 = {X, A, B, C}     0
4692  //                         \  \  \    /
4693  //   vector_shuffle V1, V2 <1, 2, 3, X>
4694  //
4695  if (!isShuffleMaskConsecutive(SVOp,
4696            0,                   // Mask Start Index
4697            NumElems-NumZeros,   // Mask End Index(exclusive)
4698            NumZeros,            // Where to start looking in the src vector
4699            NumElems,            // Number of elements in vector
4700            OpSrc))              // Which source operand ?
4701    return false;
4702
4703  isLeft = false;
4704  ShAmt = NumZeros;
4705  ShVal = SVOp->getOperand(OpSrc);
4706  return true;
4707}
4708
4709/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4710/// logical left shift of a vector.
4711static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4712                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4713  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4714  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4715              true /* check zeros from left */, DAG);
4716  unsigned OpSrc;
4717
4718  if (!NumZeros)
4719    return false;
4720
4721  // Considering the elements in the mask that are not consecutive zeros,
4722  // check if they consecutively come from only one of the source vectors.
4723  //
4724  //                           0    { A, B, X, X } = V2
4725  //                          / \    /  /
4726  //   vector_shuffle V1, V2 <X, X, 4, 5>
4727  //
4728  if (!isShuffleMaskConsecutive(SVOp,
4729            NumZeros,     // Mask Start Index
4730            NumElems,     // Mask End Index(exclusive)
4731            0,            // Where to start looking in the src vector
4732            NumElems,     // Number of elements in vector
4733            OpSrc))       // Which source operand ?
4734    return false;
4735
4736  isLeft = true;
4737  ShAmt = NumZeros;
4738  ShVal = SVOp->getOperand(OpSrc);
4739  return true;
4740}
4741
4742/// isVectorShift - Returns true if the shuffle can be implemented as a
4743/// logical left or right shift of a vector.
4744static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4745                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4746  // Although the logic below support any bitwidth size, there are no
4747  // shift instructions which handle more than 128-bit vectors.
4748  if (SVOp->getValueType(0).getSizeInBits() > 128)
4749    return false;
4750
4751  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4752      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4753    return true;
4754
4755  return false;
4756}
4757
4758/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4759///
4760static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4761                                       unsigned NumNonZero, unsigned NumZero,
4762                                       SelectionDAG &DAG,
4763                                       const X86Subtarget* Subtarget,
4764                                       const TargetLowering &TLI) {
4765  if (NumNonZero > 8)
4766    return SDValue();
4767
4768  DebugLoc dl = Op.getDebugLoc();
4769  SDValue V(0, 0);
4770  bool First = true;
4771  for (unsigned i = 0; i < 16; ++i) {
4772    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4773    if (ThisIsNonZero && First) {
4774      if (NumZero)
4775        V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4776      else
4777        V = DAG.getUNDEF(MVT::v8i16);
4778      First = false;
4779    }
4780
4781    if ((i & 1) != 0) {
4782      SDValue ThisElt(0, 0), LastElt(0, 0);
4783      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4784      if (LastIsNonZero) {
4785        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4786                              MVT::i16, Op.getOperand(i-1));
4787      }
4788      if (ThisIsNonZero) {
4789        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4790        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4791                              ThisElt, DAG.getConstant(8, MVT::i8));
4792        if (LastIsNonZero)
4793          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4794      } else
4795        ThisElt = LastElt;
4796
4797      if (ThisElt.getNode())
4798        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4799                        DAG.getIntPtrConstant(i/2));
4800    }
4801  }
4802
4803  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4804}
4805
4806/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4807///
4808static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4809                                     unsigned NumNonZero, unsigned NumZero,
4810                                     SelectionDAG &DAG,
4811                                     const X86Subtarget* Subtarget,
4812                                     const TargetLowering &TLI) {
4813  if (NumNonZero > 4)
4814    return SDValue();
4815
4816  DebugLoc dl = Op.getDebugLoc();
4817  SDValue V(0, 0);
4818  bool First = true;
4819  for (unsigned i = 0; i < 8; ++i) {
4820    bool isNonZero = (NonZeros & (1 << i)) != 0;
4821    if (isNonZero) {
4822      if (First) {
4823        if (NumZero)
4824          V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4825        else
4826          V = DAG.getUNDEF(MVT::v8i16);
4827        First = false;
4828      }
4829      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4830                      MVT::v8i16, V, Op.getOperand(i),
4831                      DAG.getIntPtrConstant(i));
4832    }
4833  }
4834
4835  return V;
4836}
4837
4838/// getVShift - Return a vector logical shift node.
4839///
4840static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4841                         unsigned NumBits, SelectionDAG &DAG,
4842                         const TargetLowering &TLI, DebugLoc dl) {
4843  assert(VT.getSizeInBits() == 128 && "Unknown type for VShift");
4844  EVT ShVT = MVT::v2i64;
4845  unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
4846  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4847  return DAG.getNode(ISD::BITCAST, dl, VT,
4848                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4849                             DAG.getConstant(NumBits,
4850                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4851}
4852
4853SDValue
4854X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4855                                          SelectionDAG &DAG) const {
4856
4857  // Check if the scalar load can be widened into a vector load. And if
4858  // the address is "base + cst" see if the cst can be "absorbed" into
4859  // the shuffle mask.
4860  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4861    SDValue Ptr = LD->getBasePtr();
4862    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4863      return SDValue();
4864    EVT PVT = LD->getValueType(0);
4865    if (PVT != MVT::i32 && PVT != MVT::f32)
4866      return SDValue();
4867
4868    int FI = -1;
4869    int64_t Offset = 0;
4870    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4871      FI = FINode->getIndex();
4872      Offset = 0;
4873    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4874               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4875      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4876      Offset = Ptr.getConstantOperandVal(1);
4877      Ptr = Ptr.getOperand(0);
4878    } else {
4879      return SDValue();
4880    }
4881
4882    // FIXME: 256-bit vector instructions don't require a strict alignment,
4883    // improve this code to support it better.
4884    unsigned RequiredAlign = VT.getSizeInBits()/8;
4885    SDValue Chain = LD->getChain();
4886    // Make sure the stack object alignment is at least 16 or 32.
4887    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4888    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4889      if (MFI->isFixedObjectIndex(FI)) {
4890        // Can't change the alignment. FIXME: It's possible to compute
4891        // the exact stack offset and reference FI + adjust offset instead.
4892        // If someone *really* cares about this. That's the way to implement it.
4893        return SDValue();
4894      } else {
4895        MFI->setObjectAlignment(FI, RequiredAlign);
4896      }
4897    }
4898
4899    // (Offset % 16 or 32) must be multiple of 4. Then address is then
4900    // Ptr + (Offset & ~15).
4901    if (Offset < 0)
4902      return SDValue();
4903    if ((Offset % RequiredAlign) & 3)
4904      return SDValue();
4905    int64_t StartOffset = Offset & ~(RequiredAlign-1);
4906    if (StartOffset)
4907      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4908                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4909
4910    int EltNo = (Offset - StartOffset) >> 2;
4911    unsigned NumElems = VT.getVectorNumElements();
4912
4913    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4914    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4915                             LD->getPointerInfo().getWithOffset(StartOffset),
4916                             false, false, false, 0);
4917
4918    SmallVector<int, 8> Mask;
4919    for (unsigned i = 0; i != NumElems; ++i)
4920      Mask.push_back(EltNo);
4921
4922    return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]);
4923  }
4924
4925  return SDValue();
4926}
4927
4928/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4929/// vector of type 'VT', see if the elements can be replaced by a single large
4930/// load which has the same value as a build_vector whose operands are 'elts'.
4931///
4932/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4933///
4934/// FIXME: we'd also like to handle the case where the last elements are zero
4935/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4936/// There's even a handy isZeroNode for that purpose.
4937static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4938                                        DebugLoc &DL, SelectionDAG &DAG) {
4939  EVT EltVT = VT.getVectorElementType();
4940  unsigned NumElems = Elts.size();
4941
4942  LoadSDNode *LDBase = NULL;
4943  unsigned LastLoadedElt = -1U;
4944
4945  // For each element in the initializer, see if we've found a load or an undef.
4946  // If we don't find an initial load element, or later load elements are
4947  // non-consecutive, bail out.
4948  for (unsigned i = 0; i < NumElems; ++i) {
4949    SDValue Elt = Elts[i];
4950
4951    if (!Elt.getNode() ||
4952        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4953      return SDValue();
4954    if (!LDBase) {
4955      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4956        return SDValue();
4957      LDBase = cast<LoadSDNode>(Elt.getNode());
4958      LastLoadedElt = i;
4959      continue;
4960    }
4961    if (Elt.getOpcode() == ISD::UNDEF)
4962      continue;
4963
4964    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4965    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4966      return SDValue();
4967    LastLoadedElt = i;
4968  }
4969
4970  // If we have found an entire vector of loads and undefs, then return a large
4971  // load of the entire vector width starting at the base pointer.  If we found
4972  // consecutive loads for the low half, generate a vzext_load node.
4973  if (LastLoadedElt == NumElems - 1) {
4974    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4975      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4976                         LDBase->getPointerInfo(),
4977                         LDBase->isVolatile(), LDBase->isNonTemporal(),
4978                         LDBase->isInvariant(), 0);
4979    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4980                       LDBase->getPointerInfo(),
4981                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4982                       LDBase->isInvariant(), LDBase->getAlignment());
4983  }
4984  if (NumElems == 4 && LastLoadedElt == 1 &&
4985      DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
4986    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4987    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4988    SDValue ResNode =
4989        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
4990                                LDBase->getPointerInfo(),
4991                                LDBase->getAlignment(),
4992                                false/*isVolatile*/, true/*ReadMem*/,
4993                                false/*WriteMem*/);
4994    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
4995  }
4996  return SDValue();
4997}
4998
4999/// LowerVectorBroadcast - Attempt to use the vbroadcast instruction
5000/// to generate a splat value for the following cases:
5001/// 1. A splat BUILD_VECTOR which uses a single scalar load, or a constant.
5002/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
5003/// a scalar load, or a constant.
5004/// The VBROADCAST node is returned when a pattern is found,
5005/// or SDValue() otherwise.
5006SDValue
5007X86TargetLowering::LowerVectorBroadcast(SDValue &Op, SelectionDAG &DAG) const {
5008  if (!Subtarget->hasAVX())
5009    return SDValue();
5010
5011  EVT VT = Op.getValueType();
5012  DebugLoc dl = Op.getDebugLoc();
5013
5014  assert((VT.is128BitVector() || VT.is256BitVector()) &&
5015         "Unsupported vector type for broadcast.");
5016
5017  SDValue Ld;
5018  bool ConstSplatVal;
5019
5020  switch (Op.getOpcode()) {
5021    default:
5022      // Unknown pattern found.
5023      return SDValue();
5024
5025    case ISD::BUILD_VECTOR: {
5026      // The BUILD_VECTOR node must be a splat.
5027      if (!isSplatVector(Op.getNode()))
5028        return SDValue();
5029
5030      Ld = Op.getOperand(0);
5031      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5032                     Ld.getOpcode() == ISD::ConstantFP);
5033
5034      // The suspected load node has several users. Make sure that all
5035      // of its users are from the BUILD_VECTOR node.
5036      // Constants may have multiple users.
5037      if (!ConstSplatVal && !Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
5038        return SDValue();
5039      break;
5040    }
5041
5042    case ISD::VECTOR_SHUFFLE: {
5043      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5044
5045      // Shuffles must have a splat mask where the first element is
5046      // broadcasted.
5047      if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
5048        return SDValue();
5049
5050      SDValue Sc = Op.getOperand(0);
5051      if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR &&
5052          Sc.getOpcode() != ISD::BUILD_VECTOR) {
5053
5054        if (!Subtarget->hasAVX2())
5055          return SDValue();
5056
5057        // Use the register form of the broadcast instruction available on AVX2.
5058        if (VT.is256BitVector())
5059          Sc = Extract128BitVector(Sc, 0, DAG, dl);
5060        return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Sc);
5061      }
5062
5063      Ld = Sc.getOperand(0);
5064      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5065                       Ld.getOpcode() == ISD::ConstantFP);
5066
5067      // The scalar_to_vector node and the suspected
5068      // load node must have exactly one user.
5069      // Constants may have multiple users.
5070      if (!ConstSplatVal && (!Sc.hasOneUse() || !Ld.hasOneUse()))
5071        return SDValue();
5072      break;
5073    }
5074  }
5075
5076  bool Is256 = VT.getSizeInBits() == 256;
5077
5078  // Handle the broadcasting a single constant scalar from the constant pool
5079  // into a vector. On Sandybridge it is still better to load a constant vector
5080  // from the constant pool and not to broadcast it from a scalar.
5081  if (ConstSplatVal && Subtarget->hasAVX2()) {
5082    EVT CVT = Ld.getValueType();
5083    assert(!CVT.isVector() && "Must not broadcast a vector type");
5084    unsigned ScalarSize = CVT.getSizeInBits();
5085
5086    if (ScalarSize == 32 || (Is256 && ScalarSize == 64)) {
5087      const Constant *C = 0;
5088      if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld))
5089        C = CI->getConstantIntValue();
5090      else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld))
5091        C = CF->getConstantFPValue();
5092
5093      assert(C && "Invalid constant type");
5094
5095      SDValue CP = DAG.getConstantPool(C, getPointerTy());
5096      unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
5097      Ld = DAG.getLoad(CVT, dl, DAG.getEntryNode(), CP,
5098                       MachinePointerInfo::getConstantPool(),
5099                       false, false, false, Alignment);
5100
5101      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5102    }
5103  }
5104
5105  bool IsLoad = ISD::isNormalLoad(Ld.getNode());
5106  unsigned ScalarSize = Ld.getValueType().getSizeInBits();
5107
5108  // Handle AVX2 in-register broadcasts.
5109  if (!IsLoad && Subtarget->hasAVX2() &&
5110      (ScalarSize == 32 || (Is256 && ScalarSize == 64)))
5111    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5112
5113  // The scalar source must be a normal load.
5114  if (!IsLoad)
5115    return SDValue();
5116
5117  if (ScalarSize == 32 || (Is256 && ScalarSize == 64))
5118    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5119
5120  // The integer check is needed for the 64-bit into 128-bit so it doesn't match
5121  // double since there is no vbroadcastsd xmm
5122  if (Subtarget->hasAVX2() && Ld.getValueType().isInteger()) {
5123    if (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64)
5124      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5125  }
5126
5127  // Unsupported broadcast.
5128  return SDValue();
5129}
5130
5131SDValue
5132X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5133  DebugLoc dl = Op.getDebugLoc();
5134
5135  EVT VT = Op.getValueType();
5136  EVT ExtVT = VT.getVectorElementType();
5137  unsigned NumElems = Op.getNumOperands();
5138
5139  // Vectors containing all zeros can be matched by pxor and xorps later
5140  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5141    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5142    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5143    if (VT == MVT::v4i32 || VT == MVT::v8i32)
5144      return Op;
5145
5146    return getZeroVector(VT, Subtarget, DAG, dl);
5147  }
5148
5149  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5150  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
5151  // vpcmpeqd on 256-bit vectors.
5152  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5153    if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasAVX2()))
5154      return Op;
5155
5156    return getOnesVector(VT, Subtarget->hasAVX2(), DAG, dl);
5157  }
5158
5159  SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
5160  if (Broadcast.getNode())
5161    return Broadcast;
5162
5163  unsigned EVTBits = ExtVT.getSizeInBits();
5164
5165  unsigned NumZero  = 0;
5166  unsigned NumNonZero = 0;
5167  unsigned NonZeros = 0;
5168  bool IsAllConstants = true;
5169  SmallSet<SDValue, 8> Values;
5170  for (unsigned i = 0; i < NumElems; ++i) {
5171    SDValue Elt = Op.getOperand(i);
5172    if (Elt.getOpcode() == ISD::UNDEF)
5173      continue;
5174    Values.insert(Elt);
5175    if (Elt.getOpcode() != ISD::Constant &&
5176        Elt.getOpcode() != ISD::ConstantFP)
5177      IsAllConstants = false;
5178    if (X86::isZeroNode(Elt))
5179      NumZero++;
5180    else {
5181      NonZeros |= (1 << i);
5182      NumNonZero++;
5183    }
5184  }
5185
5186  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5187  if (NumNonZero == 0)
5188    return DAG.getUNDEF(VT);
5189
5190  // Special case for single non-zero, non-undef, element.
5191  if (NumNonZero == 1) {
5192    unsigned Idx = CountTrailingZeros_32(NonZeros);
5193    SDValue Item = Op.getOperand(Idx);
5194
5195    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5196    // the value are obviously zero, truncate the value to i32 and do the
5197    // insertion that way.  Only do this if the value is non-constant or if the
5198    // value is a constant being inserted into element 0.  It is cheaper to do
5199    // a constant pool load than it is to do a movd + shuffle.
5200    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5201        (!IsAllConstants || Idx == 0)) {
5202      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5203        // Handle SSE only.
5204        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5205        EVT VecVT = MVT::v4i32;
5206        unsigned VecElts = 4;
5207
5208        // Truncate the value (which may itself be a constant) to i32, and
5209        // convert it to a vector with movd (S2V+shuffle to zero extend).
5210        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5211        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5212        Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5213
5214        // Now we have our 32-bit value zero extended in the low element of
5215        // a vector.  If Idx != 0, swizzle it into place.
5216        if (Idx != 0) {
5217          SmallVector<int, 4> Mask;
5218          Mask.push_back(Idx);
5219          for (unsigned i = 1; i != VecElts; ++i)
5220            Mask.push_back(i);
5221          Item = DAG.getVectorShuffle(VecVT, dl, Item, DAG.getUNDEF(VecVT),
5222                                      &Mask[0]);
5223        }
5224        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5225      }
5226    }
5227
5228    // If we have a constant or non-constant insertion into the low element of
5229    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5230    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5231    // depending on what the source datatype is.
5232    if (Idx == 0) {
5233      if (NumZero == 0)
5234        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5235
5236      if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5237          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5238        if (VT.getSizeInBits() == 256) {
5239          SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl);
5240          return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
5241                             Item, DAG.getIntPtrConstant(0));
5242        }
5243        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5244        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5245        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5246        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5247      }
5248
5249      if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5250        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5251        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
5252        if (VT.getSizeInBits() == 256) {
5253          SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl);
5254          Item = Insert128BitVector(ZeroVec, Item, 0, DAG, dl);
5255        } else {
5256          assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5257          Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5258        }
5259        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5260      }
5261    }
5262
5263    // Is it a vector logical left shift?
5264    if (NumElems == 2 && Idx == 1 &&
5265        X86::isZeroNode(Op.getOperand(0)) &&
5266        !X86::isZeroNode(Op.getOperand(1))) {
5267      unsigned NumBits = VT.getSizeInBits();
5268      return getVShift(true, VT,
5269                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5270                                   VT, Op.getOperand(1)),
5271                       NumBits/2, DAG, *this, dl);
5272    }
5273
5274    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5275      return SDValue();
5276
5277    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5278    // is a non-constant being inserted into an element other than the low one,
5279    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5280    // movd/movss) to move this into the low element, then shuffle it into
5281    // place.
5282    if (EVTBits == 32) {
5283      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5284
5285      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5286      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG);
5287      SmallVector<int, 8> MaskVec;
5288      for (unsigned i = 0; i != NumElems; ++i)
5289        MaskVec.push_back(i == Idx ? 0 : 1);
5290      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5291    }
5292  }
5293
5294  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5295  if (Values.size() == 1) {
5296    if (EVTBits == 32) {
5297      // Instead of a shuffle like this:
5298      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5299      // Check if it's possible to issue this instead.
5300      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5301      unsigned Idx = CountTrailingZeros_32(NonZeros);
5302      SDValue Item = Op.getOperand(Idx);
5303      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5304        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5305    }
5306    return SDValue();
5307  }
5308
5309  // A vector full of immediates; various special cases are already
5310  // handled, so this is best done with a single constant-pool load.
5311  if (IsAllConstants)
5312    return SDValue();
5313
5314  // For AVX-length vectors, build the individual 128-bit pieces and use
5315  // shuffles to put them in place.
5316  if (VT.getSizeInBits() == 256) {
5317    SmallVector<SDValue, 32> V;
5318    for (unsigned i = 0; i != NumElems; ++i)
5319      V.push_back(Op.getOperand(i));
5320
5321    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5322
5323    // Build both the lower and upper subvector.
5324    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5325    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5326                                NumElems/2);
5327
5328    // Recreate the wider vector with the lower and upper part.
5329    return Concat128BitVectors(Lower, Upper, VT, NumElems, DAG, dl);
5330  }
5331
5332  // Let legalizer expand 2-wide build_vectors.
5333  if (EVTBits == 64) {
5334    if (NumNonZero == 1) {
5335      // One half is zero or undef.
5336      unsigned Idx = CountTrailingZeros_32(NonZeros);
5337      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5338                                 Op.getOperand(Idx));
5339      return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
5340    }
5341    return SDValue();
5342  }
5343
5344  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5345  if (EVTBits == 8 && NumElems == 16) {
5346    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5347                                        Subtarget, *this);
5348    if (V.getNode()) return V;
5349  }
5350
5351  if (EVTBits == 16 && NumElems == 8) {
5352    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5353                                      Subtarget, *this);
5354    if (V.getNode()) return V;
5355  }
5356
5357  // If element VT is == 32 bits, turn it into a number of shuffles.
5358  SmallVector<SDValue, 8> V(NumElems);
5359  if (NumElems == 4 && NumZero > 0) {
5360    for (unsigned i = 0; i < 4; ++i) {
5361      bool isZero = !(NonZeros & (1 << i));
5362      if (isZero)
5363        V[i] = getZeroVector(VT, Subtarget, DAG, dl);
5364      else
5365        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5366    }
5367
5368    for (unsigned i = 0; i < 2; ++i) {
5369      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5370        default: break;
5371        case 0:
5372          V[i] = V[i*2];  // Must be a zero vector.
5373          break;
5374        case 1:
5375          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5376          break;
5377        case 2:
5378          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5379          break;
5380        case 3:
5381          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5382          break;
5383      }
5384    }
5385
5386    bool Reverse1 = (NonZeros & 0x3) == 2;
5387    bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5388    int MaskVec[] = {
5389      Reverse1 ? 1 : 0,
5390      Reverse1 ? 0 : 1,
5391      static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
5392      static_cast<int>(Reverse2 ? NumElems   : NumElems+1)
5393    };
5394    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5395  }
5396
5397  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
5398    // Check for a build vector of consecutive loads.
5399    for (unsigned i = 0; i < NumElems; ++i)
5400      V[i] = Op.getOperand(i);
5401
5402    // Check for elements which are consecutive loads.
5403    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5404    if (LD.getNode())
5405      return LD;
5406
5407    // For SSE 4.1, use insertps to put the high elements into the low element.
5408    if (getSubtarget()->hasSSE41()) {
5409      SDValue Result;
5410      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5411        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5412      else
5413        Result = DAG.getUNDEF(VT);
5414
5415      for (unsigned i = 1; i < NumElems; ++i) {
5416        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5417        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5418                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5419      }
5420      return Result;
5421    }
5422
5423    // Otherwise, expand into a number of unpckl*, start by extending each of
5424    // our (non-undef) elements to the full vector width with the element in the
5425    // bottom slot of the vector (which generates no code for SSE).
5426    for (unsigned i = 0; i < NumElems; ++i) {
5427      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5428        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5429      else
5430        V[i] = DAG.getUNDEF(VT);
5431    }
5432
5433    // Next, we iteratively mix elements, e.g. for v4f32:
5434    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5435    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5436    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5437    unsigned EltStride = NumElems >> 1;
5438    while (EltStride != 0) {
5439      for (unsigned i = 0; i < EltStride; ++i) {
5440        // If V[i+EltStride] is undef and this is the first round of mixing,
5441        // then it is safe to just drop this shuffle: V[i] is already in the
5442        // right place, the one element (since it's the first round) being
5443        // inserted as undef can be dropped.  This isn't safe for successive
5444        // rounds because they will permute elements within both vectors.
5445        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5446            EltStride == NumElems/2)
5447          continue;
5448
5449        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5450      }
5451      EltStride >>= 1;
5452    }
5453    return V[0];
5454  }
5455  return SDValue();
5456}
5457
5458// LowerMMXCONCAT_VECTORS - We support concatenate two MMX registers and place
5459// them in a MMX register.  This is better than doing a stack convert.
5460static SDValue LowerMMXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5461  DebugLoc dl = Op.getDebugLoc();
5462  EVT ResVT = Op.getValueType();
5463
5464  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
5465         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
5466  int Mask[2];
5467  SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
5468  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5469  InVec = Op.getOperand(1);
5470  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5471    unsigned NumElts = ResVT.getVectorNumElements();
5472    VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5473    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
5474                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
5475  } else {
5476    InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
5477    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5478    Mask[0] = 0; Mask[1] = 2;
5479    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
5480  }
5481  return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5482}
5483
5484// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5485// to create 256-bit vectors from two other 128-bit ones.
5486static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5487  DebugLoc dl = Op.getDebugLoc();
5488  EVT ResVT = Op.getValueType();
5489
5490  assert(ResVT.getSizeInBits() == 256 && "Value type must be 256-bit wide");
5491
5492  SDValue V1 = Op.getOperand(0);
5493  SDValue V2 = Op.getOperand(1);
5494  unsigned NumElems = ResVT.getVectorNumElements();
5495
5496  return Concat128BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
5497}
5498
5499SDValue
5500X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
5501  EVT ResVT = Op.getValueType();
5502
5503  assert(Op.getNumOperands() == 2);
5504  assert((ResVT.getSizeInBits() == 128 || ResVT.getSizeInBits() == 256) &&
5505         "Unsupported CONCAT_VECTORS for value type");
5506
5507  // We support concatenate two MMX registers and place them in a MMX register.
5508  // This is better than doing a stack convert.
5509  if (ResVT.is128BitVector())
5510    return LowerMMXCONCAT_VECTORS(Op, DAG);
5511
5512  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5513  // from two other 128-bit ones.
5514  return LowerAVXCONCAT_VECTORS(Op, DAG);
5515}
5516
5517// Try to lower a shuffle node into a simple blend instruction.
5518static SDValue LowerVECTOR_SHUFFLEtoBlend(ShuffleVectorSDNode *SVOp,
5519                                          const X86Subtarget *Subtarget,
5520                                          SelectionDAG &DAG) {
5521  SDValue V1 = SVOp->getOperand(0);
5522  SDValue V2 = SVOp->getOperand(1);
5523  DebugLoc dl = SVOp->getDebugLoc();
5524  MVT VT = SVOp->getValueType(0).getSimpleVT();
5525  unsigned NumElems = VT.getVectorNumElements();
5526
5527  if (!Subtarget->hasSSE41())
5528    return SDValue();
5529
5530  unsigned ISDNo = 0;
5531  MVT OpTy;
5532
5533  switch (VT.SimpleTy) {
5534  default: return SDValue();
5535  case MVT::v8i16:
5536    ISDNo = X86ISD::BLENDPW;
5537    OpTy = MVT::v8i16;
5538    break;
5539  case MVT::v4i32:
5540  case MVT::v4f32:
5541    ISDNo = X86ISD::BLENDPS;
5542    OpTy = MVT::v4f32;
5543    break;
5544  case MVT::v2i64:
5545  case MVT::v2f64:
5546    ISDNo = X86ISD::BLENDPD;
5547    OpTy = MVT::v2f64;
5548    break;
5549  case MVT::v8i32:
5550  case MVT::v8f32:
5551    if (!Subtarget->hasAVX())
5552      return SDValue();
5553    ISDNo = X86ISD::BLENDPS;
5554    OpTy = MVT::v8f32;
5555    break;
5556  case MVT::v4i64:
5557  case MVT::v4f64:
5558    if (!Subtarget->hasAVX())
5559      return SDValue();
5560    ISDNo = X86ISD::BLENDPD;
5561    OpTy = MVT::v4f64;
5562    break;
5563  }
5564  assert(ISDNo && "Invalid Op Number");
5565
5566  unsigned MaskVals = 0;
5567
5568  for (unsigned i = 0; i != NumElems; ++i) {
5569    int EltIdx = SVOp->getMaskElt(i);
5570    if (EltIdx == (int)i || EltIdx < 0)
5571      MaskVals |= (1<<i);
5572    else if (EltIdx == (int)(i + NumElems))
5573      continue; // Bit is set to zero;
5574    else
5575      return SDValue();
5576  }
5577
5578  V1 = DAG.getNode(ISD::BITCAST, dl, OpTy, V1);
5579  V2 = DAG.getNode(ISD::BITCAST, dl, OpTy, V2);
5580  SDValue Ret =  DAG.getNode(ISDNo, dl, OpTy, V1, V2,
5581                             DAG.getConstant(MaskVals, MVT::i32));
5582  return DAG.getNode(ISD::BITCAST, dl, VT, Ret);
5583}
5584
5585// v8i16 shuffles - Prefer shuffles in the following order:
5586// 1. [all]   pshuflw, pshufhw, optional move
5587// 2. [ssse3] 1 x pshufb
5588// 3. [ssse3] 2 x pshufb + 1 x por
5589// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5590SDValue
5591X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
5592                                            SelectionDAG &DAG) const {
5593  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5594  SDValue V1 = SVOp->getOperand(0);
5595  SDValue V2 = SVOp->getOperand(1);
5596  DebugLoc dl = SVOp->getDebugLoc();
5597  SmallVector<int, 8> MaskVals;
5598
5599  // Determine if more than 1 of the words in each of the low and high quadwords
5600  // of the result come from the same quadword of one of the two inputs.  Undef
5601  // mask values count as coming from any quadword, for better codegen.
5602  unsigned LoQuad[] = { 0, 0, 0, 0 };
5603  unsigned HiQuad[] = { 0, 0, 0, 0 };
5604  std::bitset<4> InputQuads;
5605  for (unsigned i = 0; i < 8; ++i) {
5606    unsigned *Quad = i < 4 ? LoQuad : HiQuad;
5607    int EltIdx = SVOp->getMaskElt(i);
5608    MaskVals.push_back(EltIdx);
5609    if (EltIdx < 0) {
5610      ++Quad[0];
5611      ++Quad[1];
5612      ++Quad[2];
5613      ++Quad[3];
5614      continue;
5615    }
5616    ++Quad[EltIdx / 4];
5617    InputQuads.set(EltIdx / 4);
5618  }
5619
5620  int BestLoQuad = -1;
5621  unsigned MaxQuad = 1;
5622  for (unsigned i = 0; i < 4; ++i) {
5623    if (LoQuad[i] > MaxQuad) {
5624      BestLoQuad = i;
5625      MaxQuad = LoQuad[i];
5626    }
5627  }
5628
5629  int BestHiQuad = -1;
5630  MaxQuad = 1;
5631  for (unsigned i = 0; i < 4; ++i) {
5632    if (HiQuad[i] > MaxQuad) {
5633      BestHiQuad = i;
5634      MaxQuad = HiQuad[i];
5635    }
5636  }
5637
5638  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5639  // of the two input vectors, shuffle them into one input vector so only a
5640  // single pshufb instruction is necessary. If There are more than 2 input
5641  // quads, disable the next transformation since it does not help SSSE3.
5642  bool V1Used = InputQuads[0] || InputQuads[1];
5643  bool V2Used = InputQuads[2] || InputQuads[3];
5644  if (Subtarget->hasSSSE3()) {
5645    if (InputQuads.count() == 2 && V1Used && V2Used) {
5646      BestLoQuad = InputQuads[0] ? 0 : 1;
5647      BestHiQuad = InputQuads[2] ? 2 : 3;
5648    }
5649    if (InputQuads.count() > 2) {
5650      BestLoQuad = -1;
5651      BestHiQuad = -1;
5652    }
5653  }
5654
5655  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5656  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5657  // words from all 4 input quadwords.
5658  SDValue NewV;
5659  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5660    int MaskV[] = {
5661      BestLoQuad < 0 ? 0 : BestLoQuad,
5662      BestHiQuad < 0 ? 1 : BestHiQuad
5663    };
5664    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5665                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5666                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5667    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5668
5669    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5670    // source words for the shuffle, to aid later transformations.
5671    bool AllWordsInNewV = true;
5672    bool InOrder[2] = { true, true };
5673    for (unsigned i = 0; i != 8; ++i) {
5674      int idx = MaskVals[i];
5675      if (idx != (int)i)
5676        InOrder[i/4] = false;
5677      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5678        continue;
5679      AllWordsInNewV = false;
5680      break;
5681    }
5682
5683    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5684    if (AllWordsInNewV) {
5685      for (int i = 0; i != 8; ++i) {
5686        int idx = MaskVals[i];
5687        if (idx < 0)
5688          continue;
5689        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5690        if ((idx != i) && idx < 4)
5691          pshufhw = false;
5692        if ((idx != i) && idx > 3)
5693          pshuflw = false;
5694      }
5695      V1 = NewV;
5696      V2Used = false;
5697      BestLoQuad = 0;
5698      BestHiQuad = 1;
5699    }
5700
5701    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5702    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5703    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5704      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5705      unsigned TargetMask = 0;
5706      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5707                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5708      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5709      TargetMask = pshufhw ? getShufflePSHUFHWImmediate(SVOp):
5710                             getShufflePSHUFLWImmediate(SVOp);
5711      V1 = NewV.getOperand(0);
5712      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5713    }
5714  }
5715
5716  // If we have SSSE3, and all words of the result are from 1 input vector,
5717  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5718  // is present, fall back to case 4.
5719  if (Subtarget->hasSSSE3()) {
5720    SmallVector<SDValue,16> pshufbMask;
5721
5722    // If we have elements from both input vectors, set the high bit of the
5723    // shuffle mask element to zero out elements that come from V2 in the V1
5724    // mask, and elements that come from V1 in the V2 mask, so that the two
5725    // results can be OR'd together.
5726    bool TwoInputs = V1Used && V2Used;
5727    for (unsigned i = 0; i != 8; ++i) {
5728      int EltIdx = MaskVals[i] * 2;
5729      int Idx0 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx;
5730      int Idx1 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx+1;
5731      pshufbMask.push_back(DAG.getConstant(Idx0,   MVT::i8));
5732      pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8));
5733    }
5734    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5735    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5736                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5737                                 MVT::v16i8, &pshufbMask[0], 16));
5738    if (!TwoInputs)
5739      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5740
5741    // Calculate the shuffle mask for the second input, shuffle it, and
5742    // OR it with the first shuffled input.
5743    pshufbMask.clear();
5744    for (unsigned i = 0; i != 8; ++i) {
5745      int EltIdx = MaskVals[i] * 2;
5746      int Idx0 = (EltIdx < 16) ? 0x80 : EltIdx - 16;
5747      int Idx1 = (EltIdx < 16) ? 0x80 : EltIdx - 15;
5748      pshufbMask.push_back(DAG.getConstant(Idx0, MVT::i8));
5749      pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8));
5750    }
5751    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5752    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5753                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5754                                 MVT::v16i8, &pshufbMask[0], 16));
5755    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5756    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5757  }
5758
5759  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5760  // and update MaskVals with new element order.
5761  std::bitset<8> InOrder;
5762  if (BestLoQuad >= 0) {
5763    int MaskV[] = { -1, -1, -1, -1, 4, 5, 6, 7 };
5764    for (int i = 0; i != 4; ++i) {
5765      int idx = MaskVals[i];
5766      if (idx < 0) {
5767        InOrder.set(i);
5768      } else if ((idx / 4) == BestLoQuad) {
5769        MaskV[i] = idx & 3;
5770        InOrder.set(i);
5771      }
5772    }
5773    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5774                                &MaskV[0]);
5775
5776    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5777      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5778      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5779                                  NewV.getOperand(0),
5780                                  getShufflePSHUFLWImmediate(SVOp), DAG);
5781    }
5782  }
5783
5784  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5785  // and update MaskVals with the new element order.
5786  if (BestHiQuad >= 0) {
5787    int MaskV[] = { 0, 1, 2, 3, -1, -1, -1, -1 };
5788    for (unsigned i = 4; i != 8; ++i) {
5789      int idx = MaskVals[i];
5790      if (idx < 0) {
5791        InOrder.set(i);
5792      } else if ((idx / 4) == BestHiQuad) {
5793        MaskV[i] = (idx & 3) + 4;
5794        InOrder.set(i);
5795      }
5796    }
5797    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5798                                &MaskV[0]);
5799
5800    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5801      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5802      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5803                                  NewV.getOperand(0),
5804                                  getShufflePSHUFHWImmediate(SVOp), DAG);
5805    }
5806  }
5807
5808  // In case BestHi & BestLo were both -1, which means each quadword has a word
5809  // from each of the four input quadwords, calculate the InOrder bitvector now
5810  // before falling through to the insert/extract cleanup.
5811  if (BestLoQuad == -1 && BestHiQuad == -1) {
5812    NewV = V1;
5813    for (int i = 0; i != 8; ++i)
5814      if (MaskVals[i] < 0 || MaskVals[i] == i)
5815        InOrder.set(i);
5816  }
5817
5818  // The other elements are put in the right place using pextrw and pinsrw.
5819  for (unsigned i = 0; i != 8; ++i) {
5820    if (InOrder[i])
5821      continue;
5822    int EltIdx = MaskVals[i];
5823    if (EltIdx < 0)
5824      continue;
5825    SDValue ExtOp = (EltIdx < 8) ?
5826      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5827                  DAG.getIntPtrConstant(EltIdx)) :
5828      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5829                  DAG.getIntPtrConstant(EltIdx - 8));
5830    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5831                       DAG.getIntPtrConstant(i));
5832  }
5833  return NewV;
5834}
5835
5836// v16i8 shuffles - Prefer shuffles in the following order:
5837// 1. [ssse3] 1 x pshufb
5838// 2. [ssse3] 2 x pshufb + 1 x por
5839// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5840static
5841SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5842                                 SelectionDAG &DAG,
5843                                 const X86TargetLowering &TLI) {
5844  SDValue V1 = SVOp->getOperand(0);
5845  SDValue V2 = SVOp->getOperand(1);
5846  DebugLoc dl = SVOp->getDebugLoc();
5847  ArrayRef<int> MaskVals = SVOp->getMask();
5848
5849  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
5850
5851  // If we have SSSE3, case 1 is generated when all result bytes come from
5852  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5853  // present, fall back to case 3.
5854
5855  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5856  if (TLI.getSubtarget()->hasSSSE3()) {
5857    SmallVector<SDValue,16> pshufbMask;
5858
5859    // If all result elements are from one input vector, then only translate
5860    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5861    //
5862    // Otherwise, we have elements from both input vectors, and must zero out
5863    // elements that come from V2 in the first mask, and V1 in the second mask
5864    // so that we can OR them together.
5865    for (unsigned i = 0; i != 16; ++i) {
5866      int EltIdx = MaskVals[i];
5867      if (EltIdx < 0 || EltIdx >= 16)
5868        EltIdx = 0x80;
5869      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5870    }
5871    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5872                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5873                                 MVT::v16i8, &pshufbMask[0], 16));
5874    if (V2IsUndef)
5875      return V1;
5876
5877    // Calculate the shuffle mask for the second input, shuffle it, and
5878    // OR it with the first shuffled input.
5879    pshufbMask.clear();
5880    for (unsigned i = 0; i != 16; ++i) {
5881      int EltIdx = MaskVals[i];
5882      EltIdx = (EltIdx < 16) ? 0x80 : EltIdx - 16;
5883      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5884    }
5885    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5886                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5887                                 MVT::v16i8, &pshufbMask[0], 16));
5888    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5889  }
5890
5891  // No SSSE3 - Calculate in place words and then fix all out of place words
5892  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5893  // the 16 different words that comprise the two doublequadword input vectors.
5894  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5895  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5896  SDValue NewV = V1;
5897  for (int i = 0; i != 8; ++i) {
5898    int Elt0 = MaskVals[i*2];
5899    int Elt1 = MaskVals[i*2+1];
5900
5901    // This word of the result is all undef, skip it.
5902    if (Elt0 < 0 && Elt1 < 0)
5903      continue;
5904
5905    // This word of the result is already in the correct place, skip it.
5906    if ((Elt0 == i*2) && (Elt1 == i*2+1))
5907      continue;
5908
5909    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5910    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5911    SDValue InsElt;
5912
5913    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5914    // using a single extract together, load it and store it.
5915    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5916      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5917                           DAG.getIntPtrConstant(Elt1 / 2));
5918      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5919                        DAG.getIntPtrConstant(i));
5920      continue;
5921    }
5922
5923    // If Elt1 is defined, extract it from the appropriate source.  If the
5924    // source byte is not also odd, shift the extracted word left 8 bits
5925    // otherwise clear the bottom 8 bits if we need to do an or.
5926    if (Elt1 >= 0) {
5927      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5928                           DAG.getIntPtrConstant(Elt1 / 2));
5929      if ((Elt1 & 1) == 0)
5930        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5931                             DAG.getConstant(8,
5932                                  TLI.getShiftAmountTy(InsElt.getValueType())));
5933      else if (Elt0 >= 0)
5934        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5935                             DAG.getConstant(0xFF00, MVT::i16));
5936    }
5937    // If Elt0 is defined, extract it from the appropriate source.  If the
5938    // source byte is not also even, shift the extracted word right 8 bits. If
5939    // Elt1 was also defined, OR the extracted values together before
5940    // inserting them in the result.
5941    if (Elt0 >= 0) {
5942      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5943                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5944      if ((Elt0 & 1) != 0)
5945        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5946                              DAG.getConstant(8,
5947                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
5948      else if (Elt1 >= 0)
5949        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5950                             DAG.getConstant(0x00FF, MVT::i16));
5951      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5952                         : InsElt0;
5953    }
5954    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5955                       DAG.getIntPtrConstant(i));
5956  }
5957  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5958}
5959
5960/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5961/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5962/// done when every pair / quad of shuffle mask elements point to elements in
5963/// the right sequence. e.g.
5964/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5965static
5966SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5967                                 SelectionDAG &DAG, DebugLoc dl) {
5968  MVT VT = SVOp->getValueType(0).getSimpleVT();
5969  unsigned NumElems = VT.getVectorNumElements();
5970  MVT NewVT;
5971  unsigned Scale;
5972  switch (VT.SimpleTy) {
5973  default: llvm_unreachable("Unexpected!");
5974  case MVT::v4f32:  NewVT = MVT::v2f64; Scale = 2; break;
5975  case MVT::v4i32:  NewVT = MVT::v2i64; Scale = 2; break;
5976  case MVT::v8i16:  NewVT = MVT::v4i32; Scale = 2; break;
5977  case MVT::v16i8:  NewVT = MVT::v4i32; Scale = 4; break;
5978  case MVT::v16i16: NewVT = MVT::v8i32; Scale = 2; break;
5979  case MVT::v32i8:  NewVT = MVT::v8i32; Scale = 4; break;
5980  }
5981
5982  SmallVector<int, 8> MaskVec;
5983  for (unsigned i = 0; i != NumElems; i += Scale) {
5984    int StartIdx = -1;
5985    for (unsigned j = 0; j != Scale; ++j) {
5986      int EltIdx = SVOp->getMaskElt(i+j);
5987      if (EltIdx < 0)
5988        continue;
5989      if (StartIdx < 0)
5990        StartIdx = (EltIdx / Scale);
5991      if (EltIdx != (int)(StartIdx*Scale + j))
5992        return SDValue();
5993    }
5994    MaskVec.push_back(StartIdx);
5995  }
5996
5997  SDValue V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(0));
5998  SDValue V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(1));
5999  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
6000}
6001
6002/// getVZextMovL - Return a zero-extending vector move low node.
6003///
6004static SDValue getVZextMovL(EVT VT, EVT OpVT,
6005                            SDValue SrcOp, SelectionDAG &DAG,
6006                            const X86Subtarget *Subtarget, DebugLoc dl) {
6007  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
6008    LoadSDNode *LD = NULL;
6009    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
6010      LD = dyn_cast<LoadSDNode>(SrcOp);
6011    if (!LD) {
6012      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
6013      // instead.
6014      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
6015      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
6016          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
6017          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
6018          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
6019        // PR2108
6020        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
6021        return DAG.getNode(ISD::BITCAST, dl, VT,
6022                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
6023                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6024                                                   OpVT,
6025                                                   SrcOp.getOperand(0)
6026                                                          .getOperand(0))));
6027      }
6028    }
6029  }
6030
6031  return DAG.getNode(ISD::BITCAST, dl, VT,
6032                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
6033                                 DAG.getNode(ISD::BITCAST, dl,
6034                                             OpVT, SrcOp)));
6035}
6036
6037/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
6038/// which could not be matched by any known target speficic shuffle
6039static SDValue
6040LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6041
6042  SDValue NewOp = Compact8x32ShuffleNode(SVOp, DAG);
6043  if (NewOp.getNode())
6044    return NewOp;
6045
6046  EVT VT = SVOp->getValueType(0);
6047
6048  unsigned NumElems = VT.getVectorNumElements();
6049  unsigned NumLaneElems = NumElems / 2;
6050
6051  DebugLoc dl = SVOp->getDebugLoc();
6052  MVT EltVT = VT.getVectorElementType().getSimpleVT();
6053  EVT NVT = MVT::getVectorVT(EltVT, NumLaneElems);
6054  SDValue Output[2];
6055
6056  SmallVector<int, 16> Mask;
6057  for (unsigned l = 0; l < 2; ++l) {
6058    // Build a shuffle mask for the output, discovering on the fly which
6059    // input vectors to use as shuffle operands (recorded in InputUsed).
6060    // If building a suitable shuffle vector proves too hard, then bail
6061    // out with UseBuildVector set.
6062    bool UseBuildVector = false;
6063    int InputUsed[2] = { -1, -1 }; // Not yet discovered.
6064    unsigned LaneStart = l * NumLaneElems;
6065    for (unsigned i = 0; i != NumLaneElems; ++i) {
6066      // The mask element.  This indexes into the input.
6067      int Idx = SVOp->getMaskElt(i+LaneStart);
6068      if (Idx < 0) {
6069        // the mask element does not index into any input vector.
6070        Mask.push_back(-1);
6071        continue;
6072      }
6073
6074      // The input vector this mask element indexes into.
6075      int Input = Idx / NumLaneElems;
6076
6077      // Turn the index into an offset from the start of the input vector.
6078      Idx -= Input * NumLaneElems;
6079
6080      // Find or create a shuffle vector operand to hold this input.
6081      unsigned OpNo;
6082      for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
6083        if (InputUsed[OpNo] == Input)
6084          // This input vector is already an operand.
6085          break;
6086        if (InputUsed[OpNo] < 0) {
6087          // Create a new operand for this input vector.
6088          InputUsed[OpNo] = Input;
6089          break;
6090        }
6091      }
6092
6093      if (OpNo >= array_lengthof(InputUsed)) {
6094        // More than two input vectors used!  Give up on trying to create a
6095        // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
6096        UseBuildVector = true;
6097        break;
6098      }
6099
6100      // Add the mask index for the new shuffle vector.
6101      Mask.push_back(Idx + OpNo * NumLaneElems);
6102    }
6103
6104    if (UseBuildVector) {
6105      SmallVector<SDValue, 16> SVOps;
6106      for (unsigned i = 0; i != NumLaneElems; ++i) {
6107        // The mask element.  This indexes into the input.
6108        int Idx = SVOp->getMaskElt(i+LaneStart);
6109        if (Idx < 0) {
6110          SVOps.push_back(DAG.getUNDEF(EltVT));
6111          continue;
6112        }
6113
6114        // The input vector this mask element indexes into.
6115        int Input = Idx / NumElems;
6116
6117        // Turn the index into an offset from the start of the input vector.
6118        Idx -= Input * NumElems;
6119
6120        // Extract the vector element by hand.
6121        SVOps.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
6122                                    SVOp->getOperand(Input),
6123                                    DAG.getIntPtrConstant(Idx)));
6124      }
6125
6126      // Construct the output using a BUILD_VECTOR.
6127      Output[l] = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, &SVOps[0],
6128                              SVOps.size());
6129    } else if (InputUsed[0] < 0) {
6130      // No input vectors were used! The result is undefined.
6131      Output[l] = DAG.getUNDEF(NVT);
6132    } else {
6133      SDValue Op0 = Extract128BitVector(SVOp->getOperand(InputUsed[0] / 2),
6134                                        (InputUsed[0] % 2) * NumLaneElems,
6135                                        DAG, dl);
6136      // If only one input was used, use an undefined vector for the other.
6137      SDValue Op1 = (InputUsed[1] < 0) ? DAG.getUNDEF(NVT) :
6138        Extract128BitVector(SVOp->getOperand(InputUsed[1] / 2),
6139                            (InputUsed[1] % 2) * NumLaneElems, DAG, dl);
6140      // At least one input vector was used. Create a new shuffle vector.
6141      Output[l] = DAG.getVectorShuffle(NVT, dl, Op0, Op1, &Mask[0]);
6142    }
6143
6144    Mask.clear();
6145  }
6146
6147  // Concatenate the result back
6148  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Output[0], Output[1]);
6149}
6150
6151/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6152/// 4 elements, and match them with several different shuffle types.
6153static SDValue
6154LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6155  SDValue V1 = SVOp->getOperand(0);
6156  SDValue V2 = SVOp->getOperand(1);
6157  DebugLoc dl = SVOp->getDebugLoc();
6158  EVT VT = SVOp->getValueType(0);
6159
6160  assert(VT.getSizeInBits() == 128 && "Unsupported vector size");
6161
6162  std::pair<int, int> Locs[4];
6163  int Mask1[] = { -1, -1, -1, -1 };
6164  SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end());
6165
6166  unsigned NumHi = 0;
6167  unsigned NumLo = 0;
6168  for (unsigned i = 0; i != 4; ++i) {
6169    int Idx = PermMask[i];
6170    if (Idx < 0) {
6171      Locs[i] = std::make_pair(-1, -1);
6172    } else {
6173      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6174      if (Idx < 4) {
6175        Locs[i] = std::make_pair(0, NumLo);
6176        Mask1[NumLo] = Idx;
6177        NumLo++;
6178      } else {
6179        Locs[i] = std::make_pair(1, NumHi);
6180        if (2+NumHi < 4)
6181          Mask1[2+NumHi] = Idx;
6182        NumHi++;
6183      }
6184    }
6185  }
6186
6187  if (NumLo <= 2 && NumHi <= 2) {
6188    // If no more than two elements come from either vector. This can be
6189    // implemented with two shuffles. First shuffle gather the elements.
6190    // The second shuffle, which takes the first shuffle as both of its
6191    // vector operands, put the elements into the right order.
6192    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6193
6194    int Mask2[] = { -1, -1, -1, -1 };
6195
6196    for (unsigned i = 0; i != 4; ++i)
6197      if (Locs[i].first != -1) {
6198        unsigned Idx = (i < 2) ? 0 : 4;
6199        Idx += Locs[i].first * 2 + Locs[i].second;
6200        Mask2[i] = Idx;
6201      }
6202
6203    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6204  }
6205
6206  if (NumLo == 3 || NumHi == 3) {
6207    // Otherwise, we must have three elements from one vector, call it X, and
6208    // one element from the other, call it Y.  First, use a shufps to build an
6209    // intermediate vector with the one element from Y and the element from X
6210    // that will be in the same half in the final destination (the indexes don't
6211    // matter). Then, use a shufps to build the final vector, taking the half
6212    // containing the element from Y from the intermediate, and the other half
6213    // from X.
6214    if (NumHi == 3) {
6215      // Normalize it so the 3 elements come from V1.
6216      CommuteVectorShuffleMask(PermMask, 4);
6217      std::swap(V1, V2);
6218    }
6219
6220    // Find the element from V2.
6221    unsigned HiIndex;
6222    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6223      int Val = PermMask[HiIndex];
6224      if (Val < 0)
6225        continue;
6226      if (Val >= 4)
6227        break;
6228    }
6229
6230    Mask1[0] = PermMask[HiIndex];
6231    Mask1[1] = -1;
6232    Mask1[2] = PermMask[HiIndex^1];
6233    Mask1[3] = -1;
6234    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6235
6236    if (HiIndex >= 2) {
6237      Mask1[0] = PermMask[0];
6238      Mask1[1] = PermMask[1];
6239      Mask1[2] = HiIndex & 1 ? 6 : 4;
6240      Mask1[3] = HiIndex & 1 ? 4 : 6;
6241      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6242    }
6243
6244    Mask1[0] = HiIndex & 1 ? 2 : 0;
6245    Mask1[1] = HiIndex & 1 ? 0 : 2;
6246    Mask1[2] = PermMask[2];
6247    Mask1[3] = PermMask[3];
6248    if (Mask1[2] >= 0)
6249      Mask1[2] += 4;
6250    if (Mask1[3] >= 0)
6251      Mask1[3] += 4;
6252    return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6253  }
6254
6255  // Break it into (shuffle shuffle_hi, shuffle_lo).
6256  int LoMask[] = { -1, -1, -1, -1 };
6257  int HiMask[] = { -1, -1, -1, -1 };
6258
6259  int *MaskPtr = LoMask;
6260  unsigned MaskIdx = 0;
6261  unsigned LoIdx = 0;
6262  unsigned HiIdx = 2;
6263  for (unsigned i = 0; i != 4; ++i) {
6264    if (i == 2) {
6265      MaskPtr = HiMask;
6266      MaskIdx = 1;
6267      LoIdx = 0;
6268      HiIdx = 2;
6269    }
6270    int Idx = PermMask[i];
6271    if (Idx < 0) {
6272      Locs[i] = std::make_pair(-1, -1);
6273    } else if (Idx < 4) {
6274      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6275      MaskPtr[LoIdx] = Idx;
6276      LoIdx++;
6277    } else {
6278      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6279      MaskPtr[HiIdx] = Idx;
6280      HiIdx++;
6281    }
6282  }
6283
6284  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6285  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6286  int MaskOps[] = { -1, -1, -1, -1 };
6287  for (unsigned i = 0; i != 4; ++i)
6288    if (Locs[i].first != -1)
6289      MaskOps[i] = Locs[i].first * 4 + Locs[i].second;
6290  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6291}
6292
6293static bool MayFoldVectorLoad(SDValue V) {
6294  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6295    V = V.getOperand(0);
6296  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6297    V = V.getOperand(0);
6298  if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
6299      V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
6300    // BUILD_VECTOR (load), undef
6301    V = V.getOperand(0);
6302  if (MayFoldLoad(V))
6303    return true;
6304  return false;
6305}
6306
6307// FIXME: the version above should always be used. Since there's
6308// a bug where several vector shuffles can't be folded because the
6309// DAG is not updated during lowering and a node claims to have two
6310// uses while it only has one, use this version, and let isel match
6311// another instruction if the load really happens to have more than
6312// one use. Remove this version after this bug get fixed.
6313// rdar://8434668, PR8156
6314static bool RelaxedMayFoldVectorLoad(SDValue V) {
6315  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6316    V = V.getOperand(0);
6317  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6318    V = V.getOperand(0);
6319  if (ISD::isNormalLoad(V.getNode()))
6320    return true;
6321  return false;
6322}
6323
6324static
6325SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6326  EVT VT = Op.getValueType();
6327
6328  // Canonizalize to v2f64.
6329  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6330  return DAG.getNode(ISD::BITCAST, dl, VT,
6331                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6332                                          V1, DAG));
6333}
6334
6335static
6336SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6337                        bool HasSSE2) {
6338  SDValue V1 = Op.getOperand(0);
6339  SDValue V2 = Op.getOperand(1);
6340  EVT VT = Op.getValueType();
6341
6342  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6343
6344  if (HasSSE2 && VT == MVT::v2f64)
6345    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6346
6347  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6348  return DAG.getNode(ISD::BITCAST, dl, VT,
6349                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6350                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6351                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6352}
6353
6354static
6355SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6356  SDValue V1 = Op.getOperand(0);
6357  SDValue V2 = Op.getOperand(1);
6358  EVT VT = Op.getValueType();
6359
6360  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6361         "unsupported shuffle type");
6362
6363  if (V2.getOpcode() == ISD::UNDEF)
6364    V2 = V1;
6365
6366  // v4i32 or v4f32
6367  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6368}
6369
6370static
6371SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
6372  SDValue V1 = Op.getOperand(0);
6373  SDValue V2 = Op.getOperand(1);
6374  EVT VT = Op.getValueType();
6375  unsigned NumElems = VT.getVectorNumElements();
6376
6377  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6378  // operand of these instructions is only memory, so check if there's a
6379  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6380  // same masks.
6381  bool CanFoldLoad = false;
6382
6383  // Trivial case, when V2 comes from a load.
6384  if (MayFoldVectorLoad(V2))
6385    CanFoldLoad = true;
6386
6387  // When V1 is a load, it can be folded later into a store in isel, example:
6388  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6389  //    turns into:
6390  //  (MOVLPSmr addr:$src1, VR128:$src2)
6391  // So, recognize this potential and also use MOVLPS or MOVLPD
6392  else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6393    CanFoldLoad = true;
6394
6395  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6396  if (CanFoldLoad) {
6397    if (HasSSE2 && NumElems == 2)
6398      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6399
6400    if (NumElems == 4)
6401      // If we don't care about the second element, proceed to use movss.
6402      if (SVOp->getMaskElt(1) != -1)
6403        return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6404  }
6405
6406  // movl and movlp will both match v2i64, but v2i64 is never matched by
6407  // movl earlier because we make it strict to avoid messing with the movlp load
6408  // folding logic (see the code above getMOVLP call). Match it here then,
6409  // this is horrible, but will stay like this until we move all shuffle
6410  // matching to x86 specific nodes. Note that for the 1st condition all
6411  // types are matched with movsd.
6412  if (HasSSE2) {
6413    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6414    // as to remove this logic from here, as much as possible
6415    if (NumElems == 2 || !isMOVLMask(SVOp->getMask(), VT))
6416      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6417    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6418  }
6419
6420  assert(VT != MVT::v4i32 && "unsupported shuffle type");
6421
6422  // Invert the operand order and use SHUFPS to match it.
6423  return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
6424                              getShuffleSHUFImmediate(SVOp), DAG);
6425}
6426
6427SDValue
6428X86TargetLowering::NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG) const {
6429  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6430  EVT VT = Op.getValueType();
6431  DebugLoc dl = Op.getDebugLoc();
6432  SDValue V1 = Op.getOperand(0);
6433  SDValue V2 = Op.getOperand(1);
6434
6435  if (isZeroShuffle(SVOp))
6436    return getZeroVector(VT, Subtarget, DAG, dl);
6437
6438  // Handle splat operations
6439  if (SVOp->isSplat()) {
6440    unsigned NumElem = VT.getVectorNumElements();
6441    int Size = VT.getSizeInBits();
6442
6443    // Use vbroadcast whenever the splat comes from a foldable load
6444    SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
6445    if (Broadcast.getNode())
6446      return Broadcast;
6447
6448    // Handle splats by matching through known shuffle masks
6449    if ((Size == 128 && NumElem <= 4) ||
6450        (Size == 256 && NumElem < 8))
6451      return SDValue();
6452
6453    // All remaning splats are promoted to target supported vector shuffles.
6454    return PromoteSplat(SVOp, DAG);
6455  }
6456
6457  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6458  // do it!
6459  if (VT == MVT::v8i16  || VT == MVT::v16i8 ||
6460      VT == MVT::v16i16 || VT == MVT::v32i8) {
6461    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6462    if (NewOp.getNode())
6463      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6464  } else if ((VT == MVT::v4i32 ||
6465             (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
6466    // FIXME: Figure out a cleaner way to do this.
6467    // Try to make use of movq to zero out the top part.
6468    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6469      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6470      if (NewOp.getNode()) {
6471        EVT NewVT = NewOp.getValueType();
6472        if (isCommutedMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(),
6473                               NewVT, true, false))
6474          return getVZextMovL(VT, NewVT, NewOp.getOperand(0),
6475                              DAG, Subtarget, dl);
6476      }
6477    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6478      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6479      if (NewOp.getNode()) {
6480        EVT NewVT = NewOp.getValueType();
6481        if (isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(), NewVT))
6482          return getVZextMovL(VT, NewVT, NewOp.getOperand(1),
6483                              DAG, Subtarget, dl);
6484      }
6485    }
6486  }
6487  return SDValue();
6488}
6489
6490SDValue
6491X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6492  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6493  SDValue V1 = Op.getOperand(0);
6494  SDValue V2 = Op.getOperand(1);
6495  EVT VT = Op.getValueType();
6496  DebugLoc dl = Op.getDebugLoc();
6497  unsigned NumElems = VT.getVectorNumElements();
6498  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6499  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6500  bool V1IsSplat = false;
6501  bool V2IsSplat = false;
6502  bool HasSSE2 = Subtarget->hasSSE2();
6503  bool HasAVX    = Subtarget->hasAVX();
6504  bool HasAVX2   = Subtarget->hasAVX2();
6505  MachineFunction &MF = DAG.getMachineFunction();
6506  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
6507
6508  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
6509
6510  if (V1IsUndef && V2IsUndef)
6511    return DAG.getUNDEF(VT);
6512
6513  assert(!V1IsUndef && "Op 1 of shuffle should not be undef");
6514
6515  // Vector shuffle lowering takes 3 steps:
6516  //
6517  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6518  //    narrowing and commutation of operands should be handled.
6519  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6520  //    shuffle nodes.
6521  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6522  //    so the shuffle can be broken into other shuffles and the legalizer can
6523  //    try the lowering again.
6524  //
6525  // The general idea is that no vector_shuffle operation should be left to
6526  // be matched during isel, all of them must be converted to a target specific
6527  // node here.
6528
6529  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6530  // narrowing and commutation of operands should be handled. The actual code
6531  // doesn't include all of those, work in progress...
6532  SDValue NewOp = NormalizeVectorShuffle(Op, DAG);
6533  if (NewOp.getNode())
6534    return NewOp;
6535
6536  SmallVector<int, 8> M(SVOp->getMask().begin(), SVOp->getMask().end());
6537
6538  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6539  // unpckh_undef). Only use pshufd if speed is more important than size.
6540  if (OptForSize && isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6541    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6542  if (OptForSize && isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6543    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6544
6545  if (isMOVDDUPMask(M, VT) && Subtarget->hasSSE3() &&
6546      V2IsUndef && RelaxedMayFoldVectorLoad(V1))
6547    return getMOVDDup(Op, dl, V1, DAG);
6548
6549  if (isMOVHLPS_v_undef_Mask(M, VT))
6550    return getMOVHighToLow(Op, dl, DAG);
6551
6552  // Use to match splats
6553  if (HasSSE2 && isUNPCKHMask(M, VT, HasAVX2) && V2IsUndef &&
6554      (VT == MVT::v2f64 || VT == MVT::v2i64))
6555    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6556
6557  if (isPSHUFDMask(M, VT)) {
6558    // The actual implementation will match the mask in the if above and then
6559    // during isel it can match several different instructions, not only pshufd
6560    // as its name says, sad but true, emulate the behavior for now...
6561    if (isMOVDDUPMask(M, VT) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6562      return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6563
6564    unsigned TargetMask = getShuffleSHUFImmediate(SVOp);
6565
6566    if (HasAVX && (VT == MVT::v4f32 || VT == MVT::v2f64))
6567      return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1, TargetMask, DAG);
6568
6569    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
6570      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6571
6572    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
6573                                TargetMask, DAG);
6574  }
6575
6576  // Check if this can be converted into a logical shift.
6577  bool isLeft = false;
6578  unsigned ShAmt = 0;
6579  SDValue ShVal;
6580  bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6581  if (isShift && ShVal.hasOneUse()) {
6582    // If the shifted value has multiple uses, it may be cheaper to use
6583    // v_set0 + movlhps or movhlps, etc.
6584    EVT EltVT = VT.getVectorElementType();
6585    ShAmt *= EltVT.getSizeInBits();
6586    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6587  }
6588
6589  if (isMOVLMask(M, VT)) {
6590    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6591      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6592    if (!isMOVLPMask(M, VT)) {
6593      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6594        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6595
6596      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6597        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6598    }
6599  }
6600
6601  // FIXME: fold these into legal mask.
6602  if (isMOVLHPSMask(M, VT) && !isUNPCKLMask(M, VT, HasAVX2))
6603    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
6604
6605  if (isMOVHLPSMask(M, VT))
6606    return getMOVHighToLow(Op, dl, DAG);
6607
6608  if (V2IsUndef && isMOVSHDUPMask(M, VT, Subtarget))
6609    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6610
6611  if (V2IsUndef && isMOVSLDUPMask(M, VT, Subtarget))
6612    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6613
6614  if (isMOVLPMask(M, VT))
6615    return getMOVLP(Op, dl, DAG, HasSSE2);
6616
6617  if (ShouldXformToMOVHLPS(M, VT) ||
6618      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), M, VT))
6619    return CommuteVectorShuffle(SVOp, DAG);
6620
6621  if (isShift) {
6622    // No better options. Use a vshldq / vsrldq.
6623    EVT EltVT = VT.getVectorElementType();
6624    ShAmt *= EltVT.getSizeInBits();
6625    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6626  }
6627
6628  bool Commuted = false;
6629  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6630  // 1,1,1,1 -> v8i16 though.
6631  V1IsSplat = isSplatVector(V1.getNode());
6632  V2IsSplat = isSplatVector(V2.getNode());
6633
6634  // Canonicalize the splat or undef, if present, to be on the RHS.
6635  if (!V2IsUndef && V1IsSplat && !V2IsSplat) {
6636    CommuteVectorShuffleMask(M, NumElems);
6637    std::swap(V1, V2);
6638    std::swap(V1IsSplat, V2IsSplat);
6639    Commuted = true;
6640  }
6641
6642  if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
6643    // Shuffling low element of v1 into undef, just return v1.
6644    if (V2IsUndef)
6645      return V1;
6646    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6647    // the instruction selector will not match, so get a canonical MOVL with
6648    // swapped operands to undo the commute.
6649    return getMOVL(DAG, dl, VT, V2, V1);
6650  }
6651
6652  if (isUNPCKLMask(M, VT, HasAVX2))
6653    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6654
6655  if (isUNPCKHMask(M, VT, HasAVX2))
6656    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6657
6658  if (V2IsSplat) {
6659    // Normalize mask so all entries that point to V2 points to its first
6660    // element then try to match unpck{h|l} again. If match, return a
6661    // new vector_shuffle with the corrected mask.p
6662    SmallVector<int, 8> NewMask(M.begin(), M.end());
6663    NormalizeMask(NewMask, NumElems);
6664    if (isUNPCKLMask(NewMask, VT, HasAVX2, true))
6665      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6666    if (isUNPCKHMask(NewMask, VT, HasAVX2, true))
6667      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6668  }
6669
6670  if (Commuted) {
6671    // Commute is back and try unpck* again.
6672    // FIXME: this seems wrong.
6673    CommuteVectorShuffleMask(M, NumElems);
6674    std::swap(V1, V2);
6675    std::swap(V1IsSplat, V2IsSplat);
6676    Commuted = false;
6677
6678    if (isUNPCKLMask(M, VT, HasAVX2))
6679      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6680
6681    if (isUNPCKHMask(M, VT, HasAVX2))
6682      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6683  }
6684
6685  // Normalize the node to match x86 shuffle ops if needed
6686  if (!V2IsUndef && (isSHUFPMask(M, VT, HasAVX, /* Commuted */ true)))
6687    return CommuteVectorShuffle(SVOp, DAG);
6688
6689  // The checks below are all present in isShuffleMaskLegal, but they are
6690  // inlined here right now to enable us to directly emit target specific
6691  // nodes, and remove one by one until they don't return Op anymore.
6692
6693  if (isPALIGNRMask(M, VT, Subtarget))
6694    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6695                                getShufflePALIGNRImmediate(SVOp),
6696                                DAG);
6697
6698  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6699      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6700    if (VT == MVT::v2f64 || VT == MVT::v2i64)
6701      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6702  }
6703
6704  if (isPSHUFHWMask(M, VT, HasAVX2))
6705    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6706                                getShufflePSHUFHWImmediate(SVOp),
6707                                DAG);
6708
6709  if (isPSHUFLWMask(M, VT, HasAVX2))
6710    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6711                                getShufflePSHUFLWImmediate(SVOp),
6712                                DAG);
6713
6714  if (isSHUFPMask(M, VT, HasAVX))
6715    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
6716                                getShuffleSHUFImmediate(SVOp), DAG);
6717
6718  if (isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6719    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6720  if (isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6721    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6722
6723  //===--------------------------------------------------------------------===//
6724  // Generate target specific nodes for 128 or 256-bit shuffles only
6725  // supported in the AVX instruction set.
6726  //
6727
6728  // Handle VMOVDDUPY permutations
6729  if (V2IsUndef && isMOVDDUPYMask(M, VT, HasAVX))
6730    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
6731
6732  // Handle VPERMILPS/D* permutations
6733  if (isVPERMILPMask(M, VT, HasAVX)) {
6734    if (HasAVX2 && VT == MVT::v8i32)
6735      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1,
6736                                  getShuffleSHUFImmediate(SVOp), DAG);
6737    return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
6738                                getShuffleSHUFImmediate(SVOp), DAG);
6739  }
6740
6741  // Handle VPERM2F128/VPERM2I128 permutations
6742  if (isVPERM2X128Mask(M, VT, HasAVX))
6743    return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
6744                                V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
6745
6746  SDValue BlendOp = LowerVECTOR_SHUFFLEtoBlend(SVOp, Subtarget, DAG);
6747  if (BlendOp.getNode())
6748    return BlendOp;
6749
6750  if (V2IsUndef && HasAVX2 && (VT == MVT::v8i32 || VT == MVT::v8f32)) {
6751    SmallVector<SDValue, 8> permclMask;
6752    for (unsigned i = 0; i != 8; ++i) {
6753      permclMask.push_back(DAG.getConstant((M[i]>=0) ? M[i] : 0, MVT::i32));
6754    }
6755    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32,
6756                               &permclMask[0], 8);
6757    // Bitcast is for VPERMPS since mask is v8i32 but node takes v8f32
6758    return DAG.getNode(X86ISD::VPERMV, dl, VT,
6759                       DAG.getNode(ISD::BITCAST, dl, VT, Mask), V1);
6760  }
6761
6762  if (V2IsUndef && HasAVX2 && (VT == MVT::v4i64 || VT == MVT::v4f64))
6763    return getTargetShuffleNode(X86ISD::VPERMI, dl, VT, V1,
6764                                getShuffleCLImmediate(SVOp), DAG);
6765
6766
6767  //===--------------------------------------------------------------------===//
6768  // Since no target specific shuffle was selected for this generic one,
6769  // lower it into other known shuffles. FIXME: this isn't true yet, but
6770  // this is the plan.
6771  //
6772
6773  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6774  if (VT == MVT::v8i16) {
6775    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
6776    if (NewOp.getNode())
6777      return NewOp;
6778  }
6779
6780  if (VT == MVT::v16i8) {
6781    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6782    if (NewOp.getNode())
6783      return NewOp;
6784  }
6785
6786  // Handle all 128-bit wide vectors with 4 elements, and match them with
6787  // several different shuffle types.
6788  if (NumElems == 4 && VT.getSizeInBits() == 128)
6789    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6790
6791  // Handle general 256-bit shuffles
6792  if (VT.is256BitVector())
6793    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6794
6795  return SDValue();
6796}
6797
6798SDValue
6799X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6800                                                SelectionDAG &DAG) const {
6801  EVT VT = Op.getValueType();
6802  DebugLoc dl = Op.getDebugLoc();
6803
6804  if (Op.getOperand(0).getValueType().getSizeInBits() != 128)
6805    return SDValue();
6806
6807  if (VT.getSizeInBits() == 8) {
6808    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6809                                    Op.getOperand(0), Op.getOperand(1));
6810    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6811                                    DAG.getValueType(VT));
6812    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6813  }
6814
6815  if (VT.getSizeInBits() == 16) {
6816    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6817    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6818    if (Idx == 0)
6819      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6820                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6821                                     DAG.getNode(ISD::BITCAST, dl,
6822                                                 MVT::v4i32,
6823                                                 Op.getOperand(0)),
6824                                     Op.getOperand(1)));
6825    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6826                                    Op.getOperand(0), Op.getOperand(1));
6827    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6828                                    DAG.getValueType(VT));
6829    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6830  }
6831
6832  if (VT == MVT::f32) {
6833    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6834    // the result back to FR32 register. It's only worth matching if the
6835    // result has a single use which is a store or a bitcast to i32.  And in
6836    // the case of a store, it's not worth it if the index is a constant 0,
6837    // because a MOVSSmr can be used instead, which is smaller and faster.
6838    if (!Op.hasOneUse())
6839      return SDValue();
6840    SDNode *User = *Op.getNode()->use_begin();
6841    if ((User->getOpcode() != ISD::STORE ||
6842         (isa<ConstantSDNode>(Op.getOperand(1)) &&
6843          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6844        (User->getOpcode() != ISD::BITCAST ||
6845         User->getValueType(0) != MVT::i32))
6846      return SDValue();
6847    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6848                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
6849                                              Op.getOperand(0)),
6850                                              Op.getOperand(1));
6851    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
6852  }
6853
6854  if (VT == MVT::i32 || VT == MVT::i64) {
6855    // ExtractPS/pextrq works with constant index.
6856    if (isa<ConstantSDNode>(Op.getOperand(1)))
6857      return Op;
6858  }
6859  return SDValue();
6860}
6861
6862
6863SDValue
6864X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6865                                           SelectionDAG &DAG) const {
6866  if (!isa<ConstantSDNode>(Op.getOperand(1)))
6867    return SDValue();
6868
6869  SDValue Vec = Op.getOperand(0);
6870  EVT VecVT = Vec.getValueType();
6871
6872  // If this is a 256-bit vector result, first extract the 128-bit vector and
6873  // then extract the element from the 128-bit vector.
6874  if (VecVT.getSizeInBits() == 256) {
6875    DebugLoc dl = Op.getNode()->getDebugLoc();
6876    unsigned NumElems = VecVT.getVectorNumElements();
6877    SDValue Idx = Op.getOperand(1);
6878    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6879
6880    // Get the 128-bit vector.
6881    Vec = Extract128BitVector(Vec, IdxVal, DAG, dl);
6882
6883    if (IdxVal >= NumElems/2)
6884      IdxVal -= NumElems/2;
6885    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6886                       DAG.getConstant(IdxVal, MVT::i32));
6887  }
6888
6889  assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
6890
6891  if (Subtarget->hasSSE41()) {
6892    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6893    if (Res.getNode())
6894      return Res;
6895  }
6896
6897  EVT VT = Op.getValueType();
6898  DebugLoc dl = Op.getDebugLoc();
6899  // TODO: handle v16i8.
6900  if (VT.getSizeInBits() == 16) {
6901    SDValue Vec = Op.getOperand(0);
6902    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6903    if (Idx == 0)
6904      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6905                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6906                                     DAG.getNode(ISD::BITCAST, dl,
6907                                                 MVT::v4i32, Vec),
6908                                     Op.getOperand(1)));
6909    // Transform it so it match pextrw which produces a 32-bit result.
6910    EVT EltVT = MVT::i32;
6911    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6912                                    Op.getOperand(0), Op.getOperand(1));
6913    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6914                                    DAG.getValueType(VT));
6915    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6916  }
6917
6918  if (VT.getSizeInBits() == 32) {
6919    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6920    if (Idx == 0)
6921      return Op;
6922
6923    // SHUFPS the element to the lowest double word, then movss.
6924    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
6925    EVT VVT = Op.getOperand(0).getValueType();
6926    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6927                                       DAG.getUNDEF(VVT), Mask);
6928    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6929                       DAG.getIntPtrConstant(0));
6930  }
6931
6932  if (VT.getSizeInBits() == 64) {
6933    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6934    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6935    //        to match extract_elt for f64.
6936    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6937    if (Idx == 0)
6938      return Op;
6939
6940    // UNPCKHPD the element to the lowest double word, then movsd.
6941    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6942    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6943    int Mask[2] = { 1, -1 };
6944    EVT VVT = Op.getOperand(0).getValueType();
6945    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6946                                       DAG.getUNDEF(VVT), Mask);
6947    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6948                       DAG.getIntPtrConstant(0));
6949  }
6950
6951  return SDValue();
6952}
6953
6954SDValue
6955X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
6956                                               SelectionDAG &DAG) const {
6957  EVT VT = Op.getValueType();
6958  EVT EltVT = VT.getVectorElementType();
6959  DebugLoc dl = Op.getDebugLoc();
6960
6961  SDValue N0 = Op.getOperand(0);
6962  SDValue N1 = Op.getOperand(1);
6963  SDValue N2 = Op.getOperand(2);
6964
6965  if (VT.getSizeInBits() == 256)
6966    return SDValue();
6967
6968  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
6969      isa<ConstantSDNode>(N2)) {
6970    unsigned Opc;
6971    if (VT == MVT::v8i16)
6972      Opc = X86ISD::PINSRW;
6973    else if (VT == MVT::v16i8)
6974      Opc = X86ISD::PINSRB;
6975    else
6976      Opc = X86ISD::PINSRB;
6977
6978    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
6979    // argument.
6980    if (N1.getValueType() != MVT::i32)
6981      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6982    if (N2.getValueType() != MVT::i32)
6983      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6984    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
6985  }
6986
6987  if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
6988    // Bits [7:6] of the constant are the source select.  This will always be
6989    //  zero here.  The DAG Combiner may combine an extract_elt index into these
6990    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
6991    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
6992    // Bits [5:4] of the constant are the destination select.  This is the
6993    //  value of the incoming immediate.
6994    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
6995    //   combine either bitwise AND or insert of float 0.0 to set these bits.
6996    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
6997    // Create this as a scalar to vector..
6998    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
6999    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
7000  }
7001
7002  if ((EltVT == MVT::i32 || EltVT == MVT::i64) && isa<ConstantSDNode>(N2)) {
7003    // PINSR* works with constant index.
7004    return Op;
7005  }
7006  return SDValue();
7007}
7008
7009SDValue
7010X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
7011  EVT VT = Op.getValueType();
7012  EVT EltVT = VT.getVectorElementType();
7013
7014  DebugLoc dl = Op.getDebugLoc();
7015  SDValue N0 = Op.getOperand(0);
7016  SDValue N1 = Op.getOperand(1);
7017  SDValue N2 = Op.getOperand(2);
7018
7019  // If this is a 256-bit vector result, first extract the 128-bit vector,
7020  // insert the element into the extracted half and then place it back.
7021  if (VT.getSizeInBits() == 256) {
7022    if (!isa<ConstantSDNode>(N2))
7023      return SDValue();
7024
7025    // Get the desired 128-bit vector half.
7026    unsigned NumElems = VT.getVectorNumElements();
7027    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
7028    SDValue V = Extract128BitVector(N0, IdxVal, DAG, dl);
7029
7030    // Insert the element into the desired half.
7031    bool Upper = IdxVal >= NumElems/2;
7032    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1,
7033                 DAG.getConstant(Upper ? IdxVal-NumElems/2 : IdxVal, MVT::i32));
7034
7035    // Insert the changed part back to the 256-bit vector
7036    return Insert128BitVector(N0, V, IdxVal, DAG, dl);
7037  }
7038
7039  if (Subtarget->hasSSE41())
7040    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
7041
7042  if (EltVT == MVT::i8)
7043    return SDValue();
7044
7045  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
7046    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
7047    // as its second argument.
7048    if (N1.getValueType() != MVT::i32)
7049      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7050    if (N2.getValueType() != MVT::i32)
7051      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7052    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
7053  }
7054  return SDValue();
7055}
7056
7057SDValue
7058X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
7059  LLVMContext *Context = DAG.getContext();
7060  DebugLoc dl = Op.getDebugLoc();
7061  EVT OpVT = Op.getValueType();
7062
7063  // If this is a 256-bit vector result, first insert into a 128-bit
7064  // vector and then insert into the 256-bit vector.
7065  if (OpVT.getSizeInBits() > 128) {
7066    // Insert into a 128-bit vector.
7067    EVT VT128 = EVT::getVectorVT(*Context,
7068                                 OpVT.getVectorElementType(),
7069                                 OpVT.getVectorNumElements() / 2);
7070
7071    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
7072
7073    // Insert the 128-bit vector.
7074    return Insert128BitVector(DAG.getUNDEF(OpVT), Op, 0, DAG, dl);
7075  }
7076
7077  if (OpVT == MVT::v1i64 &&
7078      Op.getOperand(0).getValueType() == MVT::i64)
7079    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
7080
7081  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
7082  assert(OpVT.getSizeInBits() == 128 && "Expected an SSE type!");
7083  return DAG.getNode(ISD::BITCAST, dl, OpVT,
7084                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
7085}
7086
7087// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
7088// a simple subregister reference or explicit instructions to grab
7089// upper bits of a vector.
7090SDValue
7091X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7092  if (Subtarget->hasAVX()) {
7093    DebugLoc dl = Op.getNode()->getDebugLoc();
7094    SDValue Vec = Op.getNode()->getOperand(0);
7095    SDValue Idx = Op.getNode()->getOperand(1);
7096
7097    if (Op.getNode()->getValueType(0).getSizeInBits() == 128 &&
7098        Vec.getNode()->getValueType(0).getSizeInBits() == 256 &&
7099        isa<ConstantSDNode>(Idx)) {
7100      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7101      return Extract128BitVector(Vec, IdxVal, DAG, dl);
7102    }
7103  }
7104  return SDValue();
7105}
7106
7107// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
7108// simple superregister reference or explicit instructions to insert
7109// the upper bits of a vector.
7110SDValue
7111X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7112  if (Subtarget->hasAVX()) {
7113    DebugLoc dl = Op.getNode()->getDebugLoc();
7114    SDValue Vec = Op.getNode()->getOperand(0);
7115    SDValue SubVec = Op.getNode()->getOperand(1);
7116    SDValue Idx = Op.getNode()->getOperand(2);
7117
7118    if (Op.getNode()->getValueType(0).getSizeInBits() == 256 &&
7119        SubVec.getNode()->getValueType(0).getSizeInBits() == 128 &&
7120        isa<ConstantSDNode>(Idx)) {
7121      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7122      return Insert128BitVector(Vec, SubVec, IdxVal, DAG, dl);
7123    }
7124  }
7125  return SDValue();
7126}
7127
7128// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7129// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7130// one of the above mentioned nodes. It has to be wrapped because otherwise
7131// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7132// be used to form addressing mode. These wrapped nodes will be selected
7133// into MOV32ri.
7134SDValue
7135X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7136  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7137
7138  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7139  // global base reg.
7140  unsigned char OpFlag = 0;
7141  unsigned WrapperKind = X86ISD::Wrapper;
7142  CodeModel::Model M = getTargetMachine().getCodeModel();
7143
7144  if (Subtarget->isPICStyleRIPRel() &&
7145      (M == CodeModel::Small || M == CodeModel::Kernel))
7146    WrapperKind = X86ISD::WrapperRIP;
7147  else if (Subtarget->isPICStyleGOT())
7148    OpFlag = X86II::MO_GOTOFF;
7149  else if (Subtarget->isPICStyleStubPIC())
7150    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7151
7152  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7153                                             CP->getAlignment(),
7154                                             CP->getOffset(), OpFlag);
7155  DebugLoc DL = CP->getDebugLoc();
7156  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7157  // With PIC, the address is actually $g + Offset.
7158  if (OpFlag) {
7159    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7160                         DAG.getNode(X86ISD::GlobalBaseReg,
7161                                     DebugLoc(), getPointerTy()),
7162                         Result);
7163  }
7164
7165  return Result;
7166}
7167
7168SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7169  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7170
7171  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7172  // global base reg.
7173  unsigned char OpFlag = 0;
7174  unsigned WrapperKind = X86ISD::Wrapper;
7175  CodeModel::Model M = getTargetMachine().getCodeModel();
7176
7177  if (Subtarget->isPICStyleRIPRel() &&
7178      (M == CodeModel::Small || M == CodeModel::Kernel))
7179    WrapperKind = X86ISD::WrapperRIP;
7180  else if (Subtarget->isPICStyleGOT())
7181    OpFlag = X86II::MO_GOTOFF;
7182  else if (Subtarget->isPICStyleStubPIC())
7183    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7184
7185  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7186                                          OpFlag);
7187  DebugLoc DL = JT->getDebugLoc();
7188  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7189
7190  // With PIC, the address is actually $g + Offset.
7191  if (OpFlag)
7192    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7193                         DAG.getNode(X86ISD::GlobalBaseReg,
7194                                     DebugLoc(), getPointerTy()),
7195                         Result);
7196
7197  return Result;
7198}
7199
7200SDValue
7201X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7202  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7203
7204  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7205  // global base reg.
7206  unsigned char OpFlag = 0;
7207  unsigned WrapperKind = X86ISD::Wrapper;
7208  CodeModel::Model M = getTargetMachine().getCodeModel();
7209
7210  if (Subtarget->isPICStyleRIPRel() &&
7211      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7212    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7213      OpFlag = X86II::MO_GOTPCREL;
7214    WrapperKind = X86ISD::WrapperRIP;
7215  } else if (Subtarget->isPICStyleGOT()) {
7216    OpFlag = X86II::MO_GOT;
7217  } else if (Subtarget->isPICStyleStubPIC()) {
7218    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7219  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7220    OpFlag = X86II::MO_DARWIN_NONLAZY;
7221  }
7222
7223  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7224
7225  DebugLoc DL = Op.getDebugLoc();
7226  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7227
7228
7229  // With PIC, the address is actually $g + Offset.
7230  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7231      !Subtarget->is64Bit()) {
7232    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7233                         DAG.getNode(X86ISD::GlobalBaseReg,
7234                                     DebugLoc(), getPointerTy()),
7235                         Result);
7236  }
7237
7238  // For symbols that require a load from a stub to get the address, emit the
7239  // load.
7240  if (isGlobalStubReference(OpFlag))
7241    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7242                         MachinePointerInfo::getGOT(), false, false, false, 0);
7243
7244  return Result;
7245}
7246
7247SDValue
7248X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7249  // Create the TargetBlockAddressAddress node.
7250  unsigned char OpFlags =
7251    Subtarget->ClassifyBlockAddressReference();
7252  CodeModel::Model M = getTargetMachine().getCodeModel();
7253  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7254  DebugLoc dl = Op.getDebugLoc();
7255  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
7256                                       /*isTarget=*/true, OpFlags);
7257
7258  if (Subtarget->isPICStyleRIPRel() &&
7259      (M == CodeModel::Small || M == CodeModel::Kernel))
7260    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7261  else
7262    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7263
7264  // With PIC, the address is actually $g + Offset.
7265  if (isGlobalRelativeToPICBase(OpFlags)) {
7266    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7267                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7268                         Result);
7269  }
7270
7271  return Result;
7272}
7273
7274SDValue
7275X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7276                                      int64_t Offset,
7277                                      SelectionDAG &DAG) const {
7278  // Create the TargetGlobalAddress node, folding in the constant
7279  // offset if it is legal.
7280  unsigned char OpFlags =
7281    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7282  CodeModel::Model M = getTargetMachine().getCodeModel();
7283  SDValue Result;
7284  if (OpFlags == X86II::MO_NO_FLAG &&
7285      X86::isOffsetSuitableForCodeModel(Offset, M)) {
7286    // A direct static reference to a global.
7287    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7288    Offset = 0;
7289  } else {
7290    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7291  }
7292
7293  if (Subtarget->isPICStyleRIPRel() &&
7294      (M == CodeModel::Small || M == CodeModel::Kernel))
7295    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7296  else
7297    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7298
7299  // With PIC, the address is actually $g + Offset.
7300  if (isGlobalRelativeToPICBase(OpFlags)) {
7301    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7302                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7303                         Result);
7304  }
7305
7306  // For globals that require a load from a stub to get the address, emit the
7307  // load.
7308  if (isGlobalStubReference(OpFlags))
7309    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7310                         MachinePointerInfo::getGOT(), false, false, false, 0);
7311
7312  // If there was a non-zero offset that we didn't fold, create an explicit
7313  // addition for it.
7314  if (Offset != 0)
7315    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7316                         DAG.getConstant(Offset, getPointerTy()));
7317
7318  return Result;
7319}
7320
7321SDValue
7322X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7323  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7324  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7325  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7326}
7327
7328static SDValue
7329GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7330           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7331           unsigned char OperandFlags, bool LocalDynamic = false) {
7332  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7333  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7334  DebugLoc dl = GA->getDebugLoc();
7335  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7336                                           GA->getValueType(0),
7337                                           GA->getOffset(),
7338                                           OperandFlags);
7339
7340  X86ISD::NodeType CallType = LocalDynamic ? X86ISD::TLSBASEADDR
7341                                           : X86ISD::TLSADDR;
7342
7343  if (InFlag) {
7344    SDValue Ops[] = { Chain,  TGA, *InFlag };
7345    Chain = DAG.getNode(CallType, dl, NodeTys, Ops, 3);
7346  } else {
7347    SDValue Ops[]  = { Chain, TGA };
7348    Chain = DAG.getNode(CallType, dl, NodeTys, Ops, 2);
7349  }
7350
7351  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7352  MFI->setAdjustsStack(true);
7353
7354  SDValue Flag = Chain.getValue(1);
7355  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7356}
7357
7358// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7359static SDValue
7360LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7361                                const EVT PtrVT) {
7362  SDValue InFlag;
7363  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
7364  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7365                                     DAG.getNode(X86ISD::GlobalBaseReg,
7366                                                 DebugLoc(), PtrVT), InFlag);
7367  InFlag = Chain.getValue(1);
7368
7369  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7370}
7371
7372// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7373static SDValue
7374LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7375                                const EVT PtrVT) {
7376  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7377                    X86::RAX, X86II::MO_TLSGD);
7378}
7379
7380static SDValue LowerToTLSLocalDynamicModel(GlobalAddressSDNode *GA,
7381                                           SelectionDAG &DAG,
7382                                           const EVT PtrVT,
7383                                           bool is64Bit) {
7384  DebugLoc dl = GA->getDebugLoc();
7385
7386  // Get the start address of the TLS block for this module.
7387  X86MachineFunctionInfo* MFI = DAG.getMachineFunction()
7388      .getInfo<X86MachineFunctionInfo>();
7389  MFI->incNumLocalDynamicTLSAccesses();
7390
7391  SDValue Base;
7392  if (is64Bit) {
7393    Base = GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT, X86::RAX,
7394                      X86II::MO_TLSLD, /*LocalDynamic=*/true);
7395  } else {
7396    SDValue InFlag;
7397    SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7398        DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), PtrVT), InFlag);
7399    InFlag = Chain.getValue(1);
7400    Base = GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX,
7401                      X86II::MO_TLSLDM, /*LocalDynamic=*/true);
7402  }
7403
7404  // Note: the CleanupLocalDynamicTLSPass will remove redundant computations
7405  // of Base.
7406
7407  // Build x@dtpoff.
7408  unsigned char OperandFlags = X86II::MO_DTPOFF;
7409  unsigned WrapperKind = X86ISD::Wrapper;
7410  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7411                                           GA->getValueType(0),
7412                                           GA->getOffset(), OperandFlags);
7413  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7414
7415  // Add x@dtpoff with the base.
7416  return DAG.getNode(ISD::ADD, dl, PtrVT, Offset, Base);
7417}
7418
7419// Lower ISD::GlobalTLSAddress using the "initial exec" or "local exec" model.
7420static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7421                                   const EVT PtrVT, TLSModel::Model model,
7422                                   bool is64Bit, bool isPIC) {
7423  DebugLoc dl = GA->getDebugLoc();
7424
7425  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7426  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7427                                                         is64Bit ? 257 : 256));
7428
7429  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7430                                      DAG.getIntPtrConstant(0),
7431                                      MachinePointerInfo(Ptr),
7432                                      false, false, false, 0);
7433
7434  unsigned char OperandFlags = 0;
7435  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7436  // initialexec.
7437  unsigned WrapperKind = X86ISD::Wrapper;
7438  if (model == TLSModel::LocalExec) {
7439    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7440  } else if (model == TLSModel::InitialExec) {
7441    if (is64Bit) {
7442      OperandFlags = X86II::MO_GOTTPOFF;
7443      WrapperKind = X86ISD::WrapperRIP;
7444    } else {
7445      OperandFlags = isPIC ? X86II::MO_GOTNTPOFF : X86II::MO_INDNTPOFF;
7446    }
7447  } else {
7448    llvm_unreachable("Unexpected model");
7449  }
7450
7451  // emit "addl x@ntpoff,%eax" (local exec)
7452  // or "addl x@indntpoff,%eax" (initial exec)
7453  // or "addl x@gotntpoff(%ebx) ,%eax" (initial exec, 32-bit pic)
7454  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7455                                           GA->getValueType(0),
7456                                           GA->getOffset(), OperandFlags);
7457  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7458
7459  if (model == TLSModel::InitialExec) {
7460    if (isPIC && !is64Bit) {
7461      Offset = DAG.getNode(ISD::ADD, dl, PtrVT,
7462                          DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), PtrVT),
7463                           Offset);
7464    }
7465
7466    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7467                         MachinePointerInfo::getGOT(), false, false, false,
7468                         0);
7469  }
7470
7471  // The address of the thread local variable is the add of the thread
7472  // pointer with the offset of the variable.
7473  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7474}
7475
7476SDValue
7477X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7478
7479  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7480  const GlobalValue *GV = GA->getGlobal();
7481
7482  if (Subtarget->isTargetELF()) {
7483    TLSModel::Model model = getTargetMachine().getTLSModel(GV);
7484
7485    switch (model) {
7486      case TLSModel::GeneralDynamic:
7487        if (Subtarget->is64Bit())
7488          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7489        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7490      case TLSModel::LocalDynamic:
7491        return LowerToTLSLocalDynamicModel(GA, DAG, getPointerTy(),
7492                                           Subtarget->is64Bit());
7493      case TLSModel::InitialExec:
7494      case TLSModel::LocalExec:
7495        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7496                                   Subtarget->is64Bit(),
7497                         getTargetMachine().getRelocationModel() == Reloc::PIC_);
7498    }
7499    llvm_unreachable("Unknown TLS model.");
7500  }
7501
7502  if (Subtarget->isTargetDarwin()) {
7503    // Darwin only has one model of TLS.  Lower to that.
7504    unsigned char OpFlag = 0;
7505    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7506                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7507
7508    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7509    // global base reg.
7510    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7511                  !Subtarget->is64Bit();
7512    if (PIC32)
7513      OpFlag = X86II::MO_TLVP_PIC_BASE;
7514    else
7515      OpFlag = X86II::MO_TLVP;
7516    DebugLoc DL = Op.getDebugLoc();
7517    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7518                                                GA->getValueType(0),
7519                                                GA->getOffset(), OpFlag);
7520    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7521
7522    // With PIC32, the address is actually $g + Offset.
7523    if (PIC32)
7524      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7525                           DAG.getNode(X86ISD::GlobalBaseReg,
7526                                       DebugLoc(), getPointerTy()),
7527                           Offset);
7528
7529    // Lowering the machine isd will make sure everything is in the right
7530    // location.
7531    SDValue Chain = DAG.getEntryNode();
7532    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7533    SDValue Args[] = { Chain, Offset };
7534    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7535
7536    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7537    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7538    MFI->setAdjustsStack(true);
7539
7540    // And our return value (tls address) is in the standard call return value
7541    // location.
7542    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7543    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
7544                              Chain.getValue(1));
7545  }
7546
7547  if (Subtarget->isTargetWindows()) {
7548    // Just use the implicit TLS architecture
7549    // Need to generate someting similar to:
7550    //   mov     rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage
7551    //                                  ; from TEB
7552    //   mov     ecx, dword [rel _tls_index]: Load index (from C runtime)
7553    //   mov     rcx, qword [rdx+rcx*8]
7554    //   mov     eax, .tls$:tlsvar
7555    //   [rax+rcx] contains the address
7556    // Windows 64bit: gs:0x58
7557    // Windows 32bit: fs:__tls_array
7558
7559    // If GV is an alias then use the aliasee for determining
7560    // thread-localness.
7561    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7562      GV = GA->resolveAliasedGlobal(false);
7563    DebugLoc dl = GA->getDebugLoc();
7564    SDValue Chain = DAG.getEntryNode();
7565
7566    // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
7567    // %gs:0x58 (64-bit).
7568    Value *Ptr = Constant::getNullValue(Subtarget->is64Bit()
7569                                        ? Type::getInt8PtrTy(*DAG.getContext(),
7570                                                             256)
7571                                        : Type::getInt32PtrTy(*DAG.getContext(),
7572                                                              257));
7573
7574    SDValue ThreadPointer = DAG.getLoad(getPointerTy(), dl, Chain,
7575                                        Subtarget->is64Bit()
7576                                        ? DAG.getIntPtrConstant(0x58)
7577                                        : DAG.getExternalSymbol("_tls_array",
7578                                                                getPointerTy()),
7579                                        MachinePointerInfo(Ptr),
7580                                        false, false, false, 0);
7581
7582    // Load the _tls_index variable
7583    SDValue IDX = DAG.getExternalSymbol("_tls_index", getPointerTy());
7584    if (Subtarget->is64Bit())
7585      IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, getPointerTy(), Chain,
7586                           IDX, MachinePointerInfo(), MVT::i32,
7587                           false, false, 0);
7588    else
7589      IDX = DAG.getLoad(getPointerTy(), dl, Chain, IDX, MachinePointerInfo(),
7590                        false, false, false, 0);
7591
7592    SDValue Scale = DAG.getConstant(Log2_64_Ceil(TD->getPointerSize()),
7593                                    getPointerTy());
7594    IDX = DAG.getNode(ISD::SHL, dl, getPointerTy(), IDX, Scale);
7595
7596    SDValue res = DAG.getNode(ISD::ADD, dl, getPointerTy(), ThreadPointer, IDX);
7597    res = DAG.getLoad(getPointerTy(), dl, Chain, res, MachinePointerInfo(),
7598                      false, false, false, 0);
7599
7600    // Get the offset of start of .tls section
7601    SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7602                                             GA->getValueType(0),
7603                                             GA->getOffset(), X86II::MO_SECREL);
7604    SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), TGA);
7605
7606    // The address of the thread local variable is the add of the thread
7607    // pointer with the offset of the variable.
7608    return DAG.getNode(ISD::ADD, dl, getPointerTy(), res, Offset);
7609  }
7610
7611  llvm_unreachable("TLS not implemented for this target.");
7612}
7613
7614
7615/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
7616/// and take a 2 x i32 value to shift plus a shift amount.
7617SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{
7618  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7619  EVT VT = Op.getValueType();
7620  unsigned VTBits = VT.getSizeInBits();
7621  DebugLoc dl = Op.getDebugLoc();
7622  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7623  SDValue ShOpLo = Op.getOperand(0);
7624  SDValue ShOpHi = Op.getOperand(1);
7625  SDValue ShAmt  = Op.getOperand(2);
7626  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7627                                     DAG.getConstant(VTBits - 1, MVT::i8))
7628                       : DAG.getConstant(0, VT);
7629
7630  SDValue Tmp2, Tmp3;
7631  if (Op.getOpcode() == ISD::SHL_PARTS) {
7632    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7633    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7634  } else {
7635    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7636    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7637  }
7638
7639  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7640                                DAG.getConstant(VTBits, MVT::i8));
7641  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7642                             AndNode, DAG.getConstant(0, MVT::i8));
7643
7644  SDValue Hi, Lo;
7645  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7646  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7647  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7648
7649  if (Op.getOpcode() == ISD::SHL_PARTS) {
7650    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7651    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7652  } else {
7653    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7654    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7655  }
7656
7657  SDValue Ops[2] = { Lo, Hi };
7658  return DAG.getMergeValues(Ops, 2, dl);
7659}
7660
7661SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7662                                           SelectionDAG &DAG) const {
7663  EVT SrcVT = Op.getOperand(0).getValueType();
7664
7665  if (SrcVT.isVector())
7666    return SDValue();
7667
7668  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7669         "Unknown SINT_TO_FP to lower!");
7670
7671  // These are really Legal; return the operand so the caller accepts it as
7672  // Legal.
7673  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7674    return Op;
7675  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7676      Subtarget->is64Bit()) {
7677    return Op;
7678  }
7679
7680  DebugLoc dl = Op.getDebugLoc();
7681  unsigned Size = SrcVT.getSizeInBits()/8;
7682  MachineFunction &MF = DAG.getMachineFunction();
7683  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7684  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7685  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7686                               StackSlot,
7687                               MachinePointerInfo::getFixedStack(SSFI),
7688                               false, false, 0);
7689  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7690}
7691
7692SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7693                                     SDValue StackSlot,
7694                                     SelectionDAG &DAG) const {
7695  // Build the FILD
7696  DebugLoc DL = Op.getDebugLoc();
7697  SDVTList Tys;
7698  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7699  if (useSSE)
7700    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7701  else
7702    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7703
7704  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7705
7706  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7707  MachineMemOperand *MMO;
7708  if (FI) {
7709    int SSFI = FI->getIndex();
7710    MMO =
7711      DAG.getMachineFunction()
7712      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7713                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7714  } else {
7715    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7716    StackSlot = StackSlot.getOperand(1);
7717  }
7718  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7719  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7720                                           X86ISD::FILD, DL,
7721                                           Tys, Ops, array_lengthof(Ops),
7722                                           SrcVT, MMO);
7723
7724  if (useSSE) {
7725    Chain = Result.getValue(1);
7726    SDValue InFlag = Result.getValue(2);
7727
7728    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7729    // shouldn't be necessary except that RFP cannot be live across
7730    // multiple blocks. When stackifier is fixed, they can be uncoupled.
7731    MachineFunction &MF = DAG.getMachineFunction();
7732    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7733    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7734    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7735    Tys = DAG.getVTList(MVT::Other);
7736    SDValue Ops[] = {
7737      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7738    };
7739    MachineMemOperand *MMO =
7740      DAG.getMachineFunction()
7741      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7742                            MachineMemOperand::MOStore, SSFISize, SSFISize);
7743
7744    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7745                                    Ops, array_lengthof(Ops),
7746                                    Op.getValueType(), MMO);
7747    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7748                         MachinePointerInfo::getFixedStack(SSFI),
7749                         false, false, false, 0);
7750  }
7751
7752  return Result;
7753}
7754
7755// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7756SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7757                                               SelectionDAG &DAG) const {
7758  // This algorithm is not obvious. Here it is what we're trying to output:
7759  /*
7760     movq       %rax,  %xmm0
7761     punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
7762     subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
7763     #ifdef __SSE3__
7764       haddpd   %xmm0, %xmm0
7765     #else
7766       pshufd   $0x4e, %xmm0, %xmm1
7767       addpd    %xmm1, %xmm0
7768     #endif
7769  */
7770
7771  DebugLoc dl = Op.getDebugLoc();
7772  LLVMContext *Context = DAG.getContext();
7773
7774  // Build some magic constants.
7775  const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
7776  Constant *C0 = ConstantDataVector::get(*Context, CV0);
7777  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7778
7779  SmallVector<Constant*,2> CV1;
7780  CV1.push_back(
7781        ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7782  CV1.push_back(
7783        ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7784  Constant *C1 = ConstantVector::get(CV1);
7785  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7786
7787  // Load the 64-bit value into an XMM register.
7788  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
7789                            Op.getOperand(0));
7790  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7791                              MachinePointerInfo::getConstantPool(),
7792                              false, false, false, 16);
7793  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
7794                              DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
7795                              CLod0);
7796
7797  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7798                              MachinePointerInfo::getConstantPool(),
7799                              false, false, false, 16);
7800  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
7801  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7802  SDValue Result;
7803
7804  if (Subtarget->hasSSE3()) {
7805    // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
7806    Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
7807  } else {
7808    SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
7809    SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
7810                                           S2F, 0x4E, DAG);
7811    Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
7812                         DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
7813                         Sub);
7814  }
7815
7816  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
7817                     DAG.getIntPtrConstant(0));
7818}
7819
7820// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
7821SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7822                                               SelectionDAG &DAG) const {
7823  DebugLoc dl = Op.getDebugLoc();
7824  // FP constant to bias correct the final result.
7825  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7826                                   MVT::f64);
7827
7828  // Load the 32-bit value into an XMM register.
7829  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7830                             Op.getOperand(0));
7831
7832  // Zero out the upper parts of the register.
7833  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
7834
7835  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7836                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7837                     DAG.getIntPtrConstant(0));
7838
7839  // Or the load with the bias.
7840  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7841                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7842                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7843                                                   MVT::v2f64, Load)),
7844                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7845                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7846                                                   MVT::v2f64, Bias)));
7847  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7848                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7849                   DAG.getIntPtrConstant(0));
7850
7851  // Subtract the bias.
7852  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7853
7854  // Handle final rounding.
7855  EVT DestVT = Op.getValueType();
7856
7857  if (DestVT.bitsLT(MVT::f64))
7858    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7859                       DAG.getIntPtrConstant(0));
7860  if (DestVT.bitsGT(MVT::f64))
7861    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7862
7863  // Handle final rounding.
7864  return Sub;
7865}
7866
7867SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
7868                                           SelectionDAG &DAG) const {
7869  SDValue N0 = Op.getOperand(0);
7870  DebugLoc dl = Op.getDebugLoc();
7871
7872  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
7873  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
7874  // the optimization here.
7875  if (DAG.SignBitIsZero(N0))
7876    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
7877
7878  EVT SrcVT = N0.getValueType();
7879  EVT DstVT = Op.getValueType();
7880  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
7881    return LowerUINT_TO_FP_i64(Op, DAG);
7882  if (SrcVT == MVT::i32 && X86ScalarSSEf64)
7883    return LowerUINT_TO_FP_i32(Op, DAG);
7884  if (Subtarget->is64Bit() && SrcVT == MVT::i64 && DstVT == MVT::f32)
7885    return SDValue();
7886
7887  // Make a 64-bit buffer, and use it to build an FILD.
7888  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
7889  if (SrcVT == MVT::i32) {
7890    SDValue WordOff = DAG.getConstant(4, getPointerTy());
7891    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
7892                                     getPointerTy(), StackSlot, WordOff);
7893    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7894                                  StackSlot, MachinePointerInfo(),
7895                                  false, false, 0);
7896    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
7897                                  OffsetSlot, MachinePointerInfo(),
7898                                  false, false, 0);
7899    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
7900    return Fild;
7901  }
7902
7903  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
7904  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7905                               StackSlot, MachinePointerInfo(),
7906                               false, false, 0);
7907  // For i64 source, we need to add the appropriate power of 2 if the input
7908  // was negative.  This is the same as the optimization in
7909  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
7910  // we must be careful to do the computation in x87 extended precision, not
7911  // in SSE. (The generic code can't know it's OK to do this, or how to.)
7912  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
7913  MachineMemOperand *MMO =
7914    DAG.getMachineFunction()
7915    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7916                          MachineMemOperand::MOLoad, 8, 8);
7917
7918  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
7919  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
7920  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
7921                                         MVT::i64, MMO);
7922
7923  APInt FF(32, 0x5F800000ULL);
7924
7925  // Check whether the sign bit is set.
7926  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
7927                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
7928                                 ISD::SETLT);
7929
7930  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
7931  SDValue FudgePtr = DAG.getConstantPool(
7932                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
7933                                         getPointerTy());
7934
7935  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
7936  SDValue Zero = DAG.getIntPtrConstant(0);
7937  SDValue Four = DAG.getIntPtrConstant(4);
7938  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
7939                               Zero, Four);
7940  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
7941
7942  // Load the value out, extending it from f32 to f80.
7943  // FIXME: Avoid the extend by constructing the right constant pool?
7944  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
7945                                 FudgePtr, MachinePointerInfo::getConstantPool(),
7946                                 MVT::f32, false, false, 4);
7947  // Extend everything to 80 bits to force it to be done on x87.
7948  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
7949  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
7950}
7951
7952std::pair<SDValue,SDValue> X86TargetLowering::
7953FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned, bool IsReplace) const {
7954  DebugLoc DL = Op.getDebugLoc();
7955
7956  EVT DstTy = Op.getValueType();
7957
7958  if (!IsSigned && !isIntegerTypeFTOL(DstTy)) {
7959    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
7960    DstTy = MVT::i64;
7961  }
7962
7963  assert(DstTy.getSimpleVT() <= MVT::i64 &&
7964         DstTy.getSimpleVT() >= MVT::i16 &&
7965         "Unknown FP_TO_INT to lower!");
7966
7967  // These are really Legal.
7968  if (DstTy == MVT::i32 &&
7969      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7970    return std::make_pair(SDValue(), SDValue());
7971  if (Subtarget->is64Bit() &&
7972      DstTy == MVT::i64 &&
7973      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7974    return std::make_pair(SDValue(), SDValue());
7975
7976  // We lower FP->int64 either into FISTP64 followed by a load from a temporary
7977  // stack slot, or into the FTOL runtime function.
7978  MachineFunction &MF = DAG.getMachineFunction();
7979  unsigned MemSize = DstTy.getSizeInBits()/8;
7980  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7981  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7982
7983  unsigned Opc;
7984  if (!IsSigned && isIntegerTypeFTOL(DstTy))
7985    Opc = X86ISD::WIN_FTOL;
7986  else
7987    switch (DstTy.getSimpleVT().SimpleTy) {
7988    default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
7989    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
7990    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
7991    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
7992    }
7993
7994  SDValue Chain = DAG.getEntryNode();
7995  SDValue Value = Op.getOperand(0);
7996  EVT TheVT = Op.getOperand(0).getValueType();
7997  // FIXME This causes a redundant load/store if the SSE-class value is already
7998  // in memory, such as if it is on the callstack.
7999  if (isScalarFPTypeInSSEReg(TheVT)) {
8000    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
8001    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
8002                         MachinePointerInfo::getFixedStack(SSFI),
8003                         false, false, 0);
8004    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
8005    SDValue Ops[] = {
8006      Chain, StackSlot, DAG.getValueType(TheVT)
8007    };
8008
8009    MachineMemOperand *MMO =
8010      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8011                              MachineMemOperand::MOLoad, MemSize, MemSize);
8012    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
8013                                    DstTy, MMO);
8014    Chain = Value.getValue(1);
8015    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
8016    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8017  }
8018
8019  MachineMemOperand *MMO =
8020    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8021                            MachineMemOperand::MOStore, MemSize, MemSize);
8022
8023  if (Opc != X86ISD::WIN_FTOL) {
8024    // Build the FP_TO_INT*_IN_MEM
8025    SDValue Ops[] = { Chain, Value, StackSlot };
8026    SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
8027                                           Ops, 3, DstTy, MMO);
8028    return std::make_pair(FIST, StackSlot);
8029  } else {
8030    SDValue ftol = DAG.getNode(X86ISD::WIN_FTOL, DL,
8031      DAG.getVTList(MVT::Other, MVT::Glue),
8032      Chain, Value);
8033    SDValue eax = DAG.getCopyFromReg(ftol, DL, X86::EAX,
8034      MVT::i32, ftol.getValue(1));
8035    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), DL, X86::EDX,
8036      MVT::i32, eax.getValue(2));
8037    SDValue Ops[] = { eax, edx };
8038    SDValue pair = IsReplace
8039      ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops, 2)
8040      : DAG.getMergeValues(Ops, 2, DL);
8041    return std::make_pair(pair, SDValue());
8042  }
8043}
8044
8045SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
8046                                           SelectionDAG &DAG) const {
8047  if (Op.getValueType().isVector())
8048    return SDValue();
8049
8050  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
8051    /*IsSigned=*/ true, /*IsReplace=*/ false);
8052  SDValue FIST = Vals.first, StackSlot = Vals.second;
8053  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
8054  if (FIST.getNode() == 0) return Op;
8055
8056  if (StackSlot.getNode())
8057    // Load the result.
8058    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
8059                       FIST, StackSlot, MachinePointerInfo(),
8060                       false, false, false, 0);
8061
8062  // The node is the result.
8063  return FIST;
8064}
8065
8066SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
8067                                           SelectionDAG &DAG) const {
8068  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
8069    /*IsSigned=*/ false, /*IsReplace=*/ false);
8070  SDValue FIST = Vals.first, StackSlot = Vals.second;
8071  assert(FIST.getNode() && "Unexpected failure");
8072
8073  if (StackSlot.getNode())
8074    // Load the result.
8075    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
8076                       FIST, StackSlot, MachinePointerInfo(),
8077                       false, false, false, 0);
8078
8079  // The node is the result.
8080  return FIST;
8081}
8082
8083SDValue X86TargetLowering::LowerFABS(SDValue Op,
8084                                     SelectionDAG &DAG) const {
8085  LLVMContext *Context = DAG.getContext();
8086  DebugLoc dl = Op.getDebugLoc();
8087  EVT VT = Op.getValueType();
8088  EVT EltVT = VT;
8089  if (VT.isVector())
8090    EltVT = VT.getVectorElementType();
8091  Constant *C;
8092  if (EltVT == MVT::f64) {
8093    C = ConstantVector::getSplat(2,
8094                ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
8095  } else {
8096    C = ConstantVector::getSplat(4,
8097               ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
8098  }
8099  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8100  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8101                             MachinePointerInfo::getConstantPool(),
8102                             false, false, false, 16);
8103  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
8104}
8105
8106SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
8107  LLVMContext *Context = DAG.getContext();
8108  DebugLoc dl = Op.getDebugLoc();
8109  EVT VT = Op.getValueType();
8110  EVT EltVT = VT;
8111  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
8112  if (VT.isVector()) {
8113    EltVT = VT.getVectorElementType();
8114    NumElts = VT.getVectorNumElements();
8115  }
8116  Constant *C;
8117  if (EltVT == MVT::f64)
8118    C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
8119  else
8120    C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
8121  C = ConstantVector::getSplat(NumElts, C);
8122  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8123  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8124                             MachinePointerInfo::getConstantPool(),
8125                             false, false, false, 16);
8126  if (VT.isVector()) {
8127    MVT XORVT = VT.getSizeInBits() == 128 ? MVT::v2i64 : MVT::v4i64;
8128    return DAG.getNode(ISD::BITCAST, dl, VT,
8129                       DAG.getNode(ISD::XOR, dl, XORVT,
8130                                   DAG.getNode(ISD::BITCAST, dl, XORVT,
8131                                               Op.getOperand(0)),
8132                                   DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
8133  }
8134
8135  return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
8136}
8137
8138SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
8139  LLVMContext *Context = DAG.getContext();
8140  SDValue Op0 = Op.getOperand(0);
8141  SDValue Op1 = Op.getOperand(1);
8142  DebugLoc dl = Op.getDebugLoc();
8143  EVT VT = Op.getValueType();
8144  EVT SrcVT = Op1.getValueType();
8145
8146  // If second operand is smaller, extend it first.
8147  if (SrcVT.bitsLT(VT)) {
8148    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
8149    SrcVT = VT;
8150  }
8151  // And if it is bigger, shrink it first.
8152  if (SrcVT.bitsGT(VT)) {
8153    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
8154    SrcVT = VT;
8155  }
8156
8157  // At this point the operands and the result should have the same
8158  // type, and that won't be f80 since that is not custom lowered.
8159
8160  // First get the sign bit of second operand.
8161  SmallVector<Constant*,4> CV;
8162  if (SrcVT == MVT::f64) {
8163    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
8164    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8165  } else {
8166    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
8167    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8168    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8169    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8170  }
8171  Constant *C = ConstantVector::get(CV);
8172  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8173  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
8174                              MachinePointerInfo::getConstantPool(),
8175                              false, false, false, 16);
8176  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
8177
8178  // Shift sign bit right or left if the two operands have different types.
8179  if (SrcVT.bitsGT(VT)) {
8180    // Op0 is MVT::f32, Op1 is MVT::f64.
8181    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
8182    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
8183                          DAG.getConstant(32, MVT::i32));
8184    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
8185    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
8186                          DAG.getIntPtrConstant(0));
8187  }
8188
8189  // Clear first operand sign bit.
8190  CV.clear();
8191  if (VT == MVT::f64) {
8192    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
8193    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8194  } else {
8195    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
8196    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8197    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8198    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8199  }
8200  C = ConstantVector::get(CV);
8201  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8202  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8203                              MachinePointerInfo::getConstantPool(),
8204                              false, false, false, 16);
8205  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
8206
8207  // Or the value with the sign bit.
8208  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
8209}
8210
8211SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
8212  SDValue N0 = Op.getOperand(0);
8213  DebugLoc dl = Op.getDebugLoc();
8214  EVT VT = Op.getValueType();
8215
8216  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
8217  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
8218                                  DAG.getConstant(1, VT));
8219  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
8220}
8221
8222/// Emit nodes that will be selected as "test Op0,Op0", or something
8223/// equivalent.
8224SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
8225                                    SelectionDAG &DAG) const {
8226  DebugLoc dl = Op.getDebugLoc();
8227
8228  // CF and OF aren't always set the way we want. Determine which
8229  // of these we need.
8230  bool NeedCF = false;
8231  bool NeedOF = false;
8232  switch (X86CC) {
8233  default: break;
8234  case X86::COND_A: case X86::COND_AE:
8235  case X86::COND_B: case X86::COND_BE:
8236    NeedCF = true;
8237    break;
8238  case X86::COND_G: case X86::COND_GE:
8239  case X86::COND_L: case X86::COND_LE:
8240  case X86::COND_O: case X86::COND_NO:
8241    NeedOF = true;
8242    break;
8243  }
8244
8245  // See if we can use the EFLAGS value from the operand instead of
8246  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8247  // we prove that the arithmetic won't overflow, we can't use OF or CF.
8248  if (Op.getResNo() != 0 || NeedOF || NeedCF)
8249    // Emit a CMP with 0, which is the TEST pattern.
8250    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8251                       DAG.getConstant(0, Op.getValueType()));
8252
8253  unsigned Opcode = 0;
8254  unsigned NumOperands = 0;
8255  switch (Op.getNode()->getOpcode()) {
8256  case ISD::ADD:
8257    // Due to an isel shortcoming, be conservative if this add is likely to be
8258    // selected as part of a load-modify-store instruction. When the root node
8259    // in a match is a store, isel doesn't know how to remap non-chain non-flag
8260    // uses of other nodes in the match, such as the ADD in this case. This
8261    // leads to the ADD being left around and reselected, with the result being
8262    // two adds in the output.  Alas, even if none our users are stores, that
8263    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
8264    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
8265    // climbing the DAG back to the root, and it doesn't seem to be worth the
8266    // effort.
8267    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8268         UE = Op.getNode()->use_end(); UI != UE; ++UI)
8269      if (UI->getOpcode() != ISD::CopyToReg &&
8270          UI->getOpcode() != ISD::SETCC &&
8271          UI->getOpcode() != ISD::STORE)
8272        goto default_case;
8273
8274    if (ConstantSDNode *C =
8275        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
8276      // An add of one will be selected as an INC.
8277      if (C->getAPIntValue() == 1) {
8278        Opcode = X86ISD::INC;
8279        NumOperands = 1;
8280        break;
8281      }
8282
8283      // An add of negative one (subtract of one) will be selected as a DEC.
8284      if (C->getAPIntValue().isAllOnesValue()) {
8285        Opcode = X86ISD::DEC;
8286        NumOperands = 1;
8287        break;
8288      }
8289    }
8290
8291    // Otherwise use a regular EFLAGS-setting add.
8292    Opcode = X86ISD::ADD;
8293    NumOperands = 2;
8294    break;
8295  case ISD::AND: {
8296    // If the primary and result isn't used, don't bother using X86ISD::AND,
8297    // because a TEST instruction will be better.
8298    bool NonFlagUse = false;
8299    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8300           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8301      SDNode *User = *UI;
8302      unsigned UOpNo = UI.getOperandNo();
8303      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8304        // Look pass truncate.
8305        UOpNo = User->use_begin().getOperandNo();
8306        User = *User->use_begin();
8307      }
8308
8309      if (User->getOpcode() != ISD::BRCOND &&
8310          User->getOpcode() != ISD::SETCC &&
8311          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
8312        NonFlagUse = true;
8313        break;
8314      }
8315    }
8316
8317    if (!NonFlagUse)
8318      break;
8319  }
8320    // FALL THROUGH
8321  case ISD::SUB:
8322  case ISD::OR:
8323  case ISD::XOR:
8324    // Due to the ISEL shortcoming noted above, be conservative if this op is
8325    // likely to be selected as part of a load-modify-store instruction.
8326    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8327           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8328      if (UI->getOpcode() == ISD::STORE)
8329        goto default_case;
8330
8331    // Otherwise use a regular EFLAGS-setting instruction.
8332    switch (Op.getNode()->getOpcode()) {
8333    default: llvm_unreachable("unexpected operator!");
8334    case ISD::SUB:
8335      // If the only use of SUB is EFLAGS, use CMP instead.
8336      if (Op.hasOneUse())
8337        Opcode = X86ISD::CMP;
8338      else
8339        Opcode = X86ISD::SUB;
8340      break;
8341    case ISD::OR:  Opcode = X86ISD::OR;  break;
8342    case ISD::XOR: Opcode = X86ISD::XOR; break;
8343    case ISD::AND: Opcode = X86ISD::AND; break;
8344    }
8345
8346    NumOperands = 2;
8347    break;
8348  case X86ISD::ADD:
8349  case X86ISD::SUB:
8350  case X86ISD::INC:
8351  case X86ISD::DEC:
8352  case X86ISD::OR:
8353  case X86ISD::XOR:
8354  case X86ISD::AND:
8355    return SDValue(Op.getNode(), 1);
8356  default:
8357  default_case:
8358    break;
8359  }
8360
8361  if (Opcode == 0)
8362    // Emit a CMP with 0, which is the TEST pattern.
8363    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8364                       DAG.getConstant(0, Op.getValueType()));
8365
8366  if (Opcode == X86ISD::CMP) {
8367    SDValue New = DAG.getNode(Opcode, dl, MVT::i32, Op.getOperand(0),
8368                              Op.getOperand(1));
8369    // We can't replace usage of SUB with CMP.
8370    // The SUB node will be removed later because there is no use of it.
8371    return SDValue(New.getNode(), 0);
8372  }
8373
8374  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
8375  SmallVector<SDValue, 4> Ops;
8376  for (unsigned i = 0; i != NumOperands; ++i)
8377    Ops.push_back(Op.getOperand(i));
8378
8379  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
8380  DAG.ReplaceAllUsesWith(Op, New);
8381  return SDValue(New.getNode(), 1);
8382}
8383
8384/// Emit nodes that will be selected as "cmp Op0,Op1", or something
8385/// equivalent.
8386SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
8387                                   SelectionDAG &DAG) const {
8388  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
8389    if (C->getAPIntValue() == 0)
8390      return EmitTest(Op0, X86CC, DAG);
8391
8392  DebugLoc dl = Op0.getDebugLoc();
8393  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
8394}
8395
8396/// Convert a comparison if required by the subtarget.
8397SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp,
8398                                                 SelectionDAG &DAG) const {
8399  // If the subtarget does not support the FUCOMI instruction, floating-point
8400  // comparisons have to be converted.
8401  if (Subtarget->hasCMov() ||
8402      Cmp.getOpcode() != X86ISD::CMP ||
8403      !Cmp.getOperand(0).getValueType().isFloatingPoint() ||
8404      !Cmp.getOperand(1).getValueType().isFloatingPoint())
8405    return Cmp;
8406
8407  // The instruction selector will select an FUCOM instruction instead of
8408  // FUCOMI, which writes the comparison result to FPSW instead of EFLAGS. Hence
8409  // build an SDNode sequence that transfers the result from FPSW into EFLAGS:
8410  // (X86sahf (trunc (srl (X86fp_stsw (trunc (X86cmp ...)), 8))))
8411  DebugLoc dl = Cmp.getDebugLoc();
8412  SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp);
8413  SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW);
8414  SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW,
8415                            DAG.getConstant(8, MVT::i8));
8416  SDValue TruncSrl = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Srl);
8417  return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl);
8418}
8419
8420/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
8421/// if it's possible.
8422SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
8423                                     DebugLoc dl, SelectionDAG &DAG) const {
8424  SDValue Op0 = And.getOperand(0);
8425  SDValue Op1 = And.getOperand(1);
8426  if (Op0.getOpcode() == ISD::TRUNCATE)
8427    Op0 = Op0.getOperand(0);
8428  if (Op1.getOpcode() == ISD::TRUNCATE)
8429    Op1 = Op1.getOperand(0);
8430
8431  SDValue LHS, RHS;
8432  if (Op1.getOpcode() == ISD::SHL)
8433    std::swap(Op0, Op1);
8434  if (Op0.getOpcode() == ISD::SHL) {
8435    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
8436      if (And00C->getZExtValue() == 1) {
8437        // If we looked past a truncate, check that it's only truncating away
8438        // known zeros.
8439        unsigned BitWidth = Op0.getValueSizeInBits();
8440        unsigned AndBitWidth = And.getValueSizeInBits();
8441        if (BitWidth > AndBitWidth) {
8442          APInt Zeros, Ones;
8443          DAG.ComputeMaskedBits(Op0, Zeros, Ones);
8444          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
8445            return SDValue();
8446        }
8447        LHS = Op1;
8448        RHS = Op0.getOperand(1);
8449      }
8450  } else if (Op1.getOpcode() == ISD::Constant) {
8451    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
8452    uint64_t AndRHSVal = AndRHS->getZExtValue();
8453    SDValue AndLHS = Op0;
8454
8455    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
8456      LHS = AndLHS.getOperand(0);
8457      RHS = AndLHS.getOperand(1);
8458    }
8459
8460    // Use BT if the immediate can't be encoded in a TEST instruction.
8461    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
8462      LHS = AndLHS;
8463      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
8464    }
8465  }
8466
8467  if (LHS.getNode()) {
8468    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
8469    // instruction.  Since the shift amount is in-range-or-undefined, we know
8470    // that doing a bittest on the i32 value is ok.  We extend to i32 because
8471    // the encoding for the i16 version is larger than the i32 version.
8472    // Also promote i16 to i32 for performance / code size reason.
8473    if (LHS.getValueType() == MVT::i8 ||
8474        LHS.getValueType() == MVT::i16)
8475      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
8476
8477    // If the operand types disagree, extend the shift amount to match.  Since
8478    // BT ignores high bits (like shifts) we can use anyextend.
8479    if (LHS.getValueType() != RHS.getValueType())
8480      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
8481
8482    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
8483    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
8484    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8485                       DAG.getConstant(Cond, MVT::i8), BT);
8486  }
8487
8488  return SDValue();
8489}
8490
8491SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
8492
8493  if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
8494
8495  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
8496  SDValue Op0 = Op.getOperand(0);
8497  SDValue Op1 = Op.getOperand(1);
8498  DebugLoc dl = Op.getDebugLoc();
8499  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8500
8501  // Optimize to BT if possible.
8502  // Lower (X & (1 << N)) == 0 to BT(X, N).
8503  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
8504  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
8505  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
8506      Op1.getOpcode() == ISD::Constant &&
8507      cast<ConstantSDNode>(Op1)->isNullValue() &&
8508      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8509    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
8510    if (NewSetCC.getNode())
8511      return NewSetCC;
8512  }
8513
8514  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
8515  // these.
8516  if (Op1.getOpcode() == ISD::Constant &&
8517      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
8518       cast<ConstantSDNode>(Op1)->isNullValue()) &&
8519      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8520
8521    // If the input is a setcc, then reuse the input setcc or use a new one with
8522    // the inverted condition.
8523    if (Op0.getOpcode() == X86ISD::SETCC) {
8524      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
8525      bool Invert = (CC == ISD::SETNE) ^
8526        cast<ConstantSDNode>(Op1)->isNullValue();
8527      if (!Invert) return Op0;
8528
8529      CCode = X86::GetOppositeBranchCondition(CCode);
8530      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8531                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
8532    }
8533  }
8534
8535  bool isFP = Op1.getValueType().isFloatingPoint();
8536  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
8537  if (X86CC == X86::COND_INVALID)
8538    return SDValue();
8539
8540  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
8541  EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG);
8542  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8543                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
8544}
8545
8546// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
8547// ones, and then concatenate the result back.
8548static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
8549  EVT VT = Op.getValueType();
8550
8551  assert(VT.getSizeInBits() == 256 && Op.getOpcode() == ISD::SETCC &&
8552         "Unsupported value type for operation");
8553
8554  unsigned NumElems = VT.getVectorNumElements();
8555  DebugLoc dl = Op.getDebugLoc();
8556  SDValue CC = Op.getOperand(2);
8557
8558  // Extract the LHS vectors
8559  SDValue LHS = Op.getOperand(0);
8560  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
8561  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
8562
8563  // Extract the RHS vectors
8564  SDValue RHS = Op.getOperand(1);
8565  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
8566  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
8567
8568  // Issue the operation on the smaller types and concatenate the result back
8569  MVT EltVT = VT.getVectorElementType().getSimpleVT();
8570  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
8571  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8572                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
8573                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
8574}
8575
8576
8577SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
8578  SDValue Cond;
8579  SDValue Op0 = Op.getOperand(0);
8580  SDValue Op1 = Op.getOperand(1);
8581  SDValue CC = Op.getOperand(2);
8582  EVT VT = Op.getValueType();
8583  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
8584  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
8585  DebugLoc dl = Op.getDebugLoc();
8586
8587  if (isFP) {
8588    unsigned SSECC = 8;
8589    EVT EltVT = Op0.getValueType().getVectorElementType();
8590    assert(EltVT == MVT::f32 || EltVT == MVT::f64); (void)EltVT;
8591
8592    bool Swap = false;
8593
8594    // SSE Condition code mapping:
8595    //  0 - EQ
8596    //  1 - LT
8597    //  2 - LE
8598    //  3 - UNORD
8599    //  4 - NEQ
8600    //  5 - NLT
8601    //  6 - NLE
8602    //  7 - ORD
8603    switch (SetCCOpcode) {
8604    default: break;
8605    case ISD::SETOEQ:
8606    case ISD::SETEQ:  SSECC = 0; break;
8607    case ISD::SETOGT:
8608    case ISD::SETGT: Swap = true; // Fallthrough
8609    case ISD::SETLT:
8610    case ISD::SETOLT: SSECC = 1; break;
8611    case ISD::SETOGE:
8612    case ISD::SETGE: Swap = true; // Fallthrough
8613    case ISD::SETLE:
8614    case ISD::SETOLE: SSECC = 2; break;
8615    case ISD::SETUO:  SSECC = 3; break;
8616    case ISD::SETUNE:
8617    case ISD::SETNE:  SSECC = 4; break;
8618    case ISD::SETULE: Swap = true;
8619    case ISD::SETUGE: SSECC = 5; break;
8620    case ISD::SETULT: Swap = true;
8621    case ISD::SETUGT: SSECC = 6; break;
8622    case ISD::SETO:   SSECC = 7; break;
8623    }
8624    if (Swap)
8625      std::swap(Op0, Op1);
8626
8627    // In the two special cases we can't handle, emit two comparisons.
8628    if (SSECC == 8) {
8629      if (SetCCOpcode == ISD::SETUEQ) {
8630        SDValue UNORD, EQ;
8631        UNORD = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8632                            DAG.getConstant(3, MVT::i8));
8633        EQ = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8634                         DAG.getConstant(0, MVT::i8));
8635        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
8636      }
8637      if (SetCCOpcode == ISD::SETONE) {
8638        SDValue ORD, NEQ;
8639        ORD = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8640                          DAG.getConstant(7, MVT::i8));
8641        NEQ = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8642                          DAG.getConstant(4, MVT::i8));
8643        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
8644      }
8645      llvm_unreachable("Illegal FP comparison");
8646    }
8647    // Handle all other FP comparisons here.
8648    return DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8649                       DAG.getConstant(SSECC, MVT::i8));
8650  }
8651
8652  // Break 256-bit integer vector compare into smaller ones.
8653  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
8654    return Lower256IntVSETCC(Op, DAG);
8655
8656  // We are handling one of the integer comparisons here.  Since SSE only has
8657  // GT and EQ comparisons for integer, swapping operands and multiple
8658  // operations may be required for some comparisons.
8659  unsigned Opc = 0;
8660  bool Swap = false, Invert = false, FlipSigns = false;
8661
8662  switch (SetCCOpcode) {
8663  default: break;
8664  case ISD::SETNE:  Invert = true;
8665  case ISD::SETEQ:  Opc = X86ISD::PCMPEQ; break;
8666  case ISD::SETLT:  Swap = true;
8667  case ISD::SETGT:  Opc = X86ISD::PCMPGT; break;
8668  case ISD::SETGE:  Swap = true;
8669  case ISD::SETLE:  Opc = X86ISD::PCMPGT; Invert = true; break;
8670  case ISD::SETULT: Swap = true;
8671  case ISD::SETUGT: Opc = X86ISD::PCMPGT; FlipSigns = true; break;
8672  case ISD::SETUGE: Swap = true;
8673  case ISD::SETULE: Opc = X86ISD::PCMPGT; FlipSigns = true; Invert = true; break;
8674  }
8675  if (Swap)
8676    std::swap(Op0, Op1);
8677
8678  // Check that the operation in question is available (most are plain SSE2,
8679  // but PCMPGTQ and PCMPEQQ have different requirements).
8680  if (Opc == X86ISD::PCMPGT && VT == MVT::v2i64 && !Subtarget->hasSSE42())
8681    return SDValue();
8682  if (Opc == X86ISD::PCMPEQ && VT == MVT::v2i64 && !Subtarget->hasSSE41())
8683    return SDValue();
8684
8685  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
8686  // bits of the inputs before performing those operations.
8687  if (FlipSigns) {
8688    EVT EltVT = VT.getVectorElementType();
8689    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
8690                                      EltVT);
8691    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
8692    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
8693                                    SignBits.size());
8694    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
8695    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
8696  }
8697
8698  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
8699
8700  // If the logical-not of the result is required, perform that now.
8701  if (Invert)
8702    Result = DAG.getNOT(dl, Result, VT);
8703
8704  return Result;
8705}
8706
8707// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
8708static bool isX86LogicalCmp(SDValue Op) {
8709  unsigned Opc = Op.getNode()->getOpcode();
8710  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI ||
8711      Opc == X86ISD::SAHF)
8712    return true;
8713  if (Op.getResNo() == 1 &&
8714      (Opc == X86ISD::ADD ||
8715       Opc == X86ISD::SUB ||
8716       Opc == X86ISD::ADC ||
8717       Opc == X86ISD::SBB ||
8718       Opc == X86ISD::SMUL ||
8719       Opc == X86ISD::UMUL ||
8720       Opc == X86ISD::INC ||
8721       Opc == X86ISD::DEC ||
8722       Opc == X86ISD::OR ||
8723       Opc == X86ISD::XOR ||
8724       Opc == X86ISD::AND))
8725    return true;
8726
8727  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
8728    return true;
8729
8730  return false;
8731}
8732
8733static bool isZero(SDValue V) {
8734  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8735  return C && C->isNullValue();
8736}
8737
8738static bool isAllOnes(SDValue V) {
8739  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8740  return C && C->isAllOnesValue();
8741}
8742
8743SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8744  bool addTest = true;
8745  SDValue Cond  = Op.getOperand(0);
8746  SDValue Op1 = Op.getOperand(1);
8747  SDValue Op2 = Op.getOperand(2);
8748  DebugLoc DL = Op.getDebugLoc();
8749  SDValue CC;
8750
8751  if (Cond.getOpcode() == ISD::SETCC) {
8752    SDValue NewCond = LowerSETCC(Cond, DAG);
8753    if (NewCond.getNode())
8754      Cond = NewCond;
8755  }
8756
8757  // Handle the following cases related to max and min:
8758  // (a > b) ? (a-b) : 0
8759  // (a >= b) ? (a-b) : 0
8760  // (b < a) ? (a-b) : 0
8761  // (b <= a) ? (a-b) : 0
8762  // Comparison is removed to use EFLAGS from SUB.
8763  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op2))
8764    if (Cond.getOpcode() == X86ISD::SETCC &&
8765        Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
8766        (Op1.getOpcode() == ISD::SUB || Op1.getOpcode() == X86ISD::SUB) &&
8767        C->getAPIntValue() == 0) {
8768      SDValue Cmp = Cond.getOperand(1);
8769      unsigned CC = cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
8770      if ((DAG.isEqualTo(Op1.getOperand(0), Cmp.getOperand(0)) &&
8771           DAG.isEqualTo(Op1.getOperand(1), Cmp.getOperand(1)) &&
8772           (CC == X86::COND_G || CC == X86::COND_GE ||
8773            CC == X86::COND_A || CC == X86::COND_AE)) ||
8774          (DAG.isEqualTo(Op1.getOperand(0), Cmp.getOperand(1)) &&
8775           DAG.isEqualTo(Op1.getOperand(1), Cmp.getOperand(0)) &&
8776           (CC == X86::COND_L || CC == X86::COND_LE ||
8777            CC == X86::COND_B || CC == X86::COND_BE))) {
8778
8779        if (Op1.getOpcode() == ISD::SUB) {
8780          SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i32);
8781          SDValue New = DAG.getNode(X86ISD::SUB, DL, VTs,
8782                                    Op1.getOperand(0), Op1.getOperand(1));
8783          DAG.ReplaceAllUsesWith(Op1, New);
8784          Op1 = New;
8785        }
8786
8787        SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
8788        unsigned NewCC = (CC == X86::COND_G || CC == X86::COND_GE ||
8789                          CC == X86::COND_L ||
8790                          CC == X86::COND_LE) ? X86::COND_GE : X86::COND_AE;
8791        SDValue Ops[] = { Op2, Op1, DAG.getConstant(NewCC, MVT::i8),
8792                          SDValue(Op1.getNode(), 1) };
8793        return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
8794      }
8795    }
8796
8797  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
8798  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
8799  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
8800  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
8801  if (Cond.getOpcode() == X86ISD::SETCC &&
8802      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
8803      isZero(Cond.getOperand(1).getOperand(1))) {
8804    SDValue Cmp = Cond.getOperand(1);
8805
8806    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
8807
8808    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
8809        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
8810      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
8811
8812      SDValue CmpOp0 = Cmp.getOperand(0);
8813      // Apply further optimizations for special cases
8814      // (select (x != 0), -1, 0) -> neg & sbb
8815      // (select (x == 0), 0, -1) -> neg & sbb
8816      if (ConstantSDNode *YC = dyn_cast<ConstantSDNode>(Y))
8817        if (YC->isNullValue() &&
8818            (isAllOnes(Op1) == (CondCode == X86::COND_NE))) {
8819          SDVTList VTs = DAG.getVTList(CmpOp0.getValueType(), MVT::i32);
8820          SDValue Neg = DAG.getNode(X86ISD::SUB, DL, VTs,
8821                                    DAG.getConstant(0, CmpOp0.getValueType()),
8822                                    CmpOp0);
8823          SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8824                                    DAG.getConstant(X86::COND_B, MVT::i8),
8825                                    SDValue(Neg.getNode(), 1));
8826          return Res;
8827        }
8828
8829      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
8830                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
8831      Cmp = ConvertCmpIfNecessary(Cmp, DAG);
8832
8833      SDValue Res =   // Res = 0 or -1.
8834        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8835                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
8836
8837      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
8838        Res = DAG.getNOT(DL, Res, Res.getValueType());
8839
8840      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
8841      if (N2C == 0 || !N2C->isNullValue())
8842        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
8843      return Res;
8844    }
8845  }
8846
8847  // Look past (and (setcc_carry (cmp ...)), 1).
8848  if (Cond.getOpcode() == ISD::AND &&
8849      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8850    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8851    if (C && C->getAPIntValue() == 1)
8852      Cond = Cond.getOperand(0);
8853  }
8854
8855  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8856  // setting operand in place of the X86ISD::SETCC.
8857  unsigned CondOpcode = Cond.getOpcode();
8858  if (CondOpcode == X86ISD::SETCC ||
8859      CondOpcode == X86ISD::SETCC_CARRY) {
8860    CC = Cond.getOperand(0);
8861
8862    SDValue Cmp = Cond.getOperand(1);
8863    unsigned Opc = Cmp.getOpcode();
8864    EVT VT = Op.getValueType();
8865
8866    bool IllegalFPCMov = false;
8867    if (VT.isFloatingPoint() && !VT.isVector() &&
8868        !isScalarFPTypeInSSEReg(VT))  // FPStack?
8869      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
8870
8871    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
8872        Opc == X86ISD::BT) { // FIXME
8873      Cond = Cmp;
8874      addTest = false;
8875    }
8876  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8877             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8878             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8879              Cond.getOperand(0).getValueType() != MVT::i8)) {
8880    SDValue LHS = Cond.getOperand(0);
8881    SDValue RHS = Cond.getOperand(1);
8882    unsigned X86Opcode;
8883    unsigned X86Cond;
8884    SDVTList VTs;
8885    switch (CondOpcode) {
8886    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8887    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8888    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8889    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8890    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8891    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8892    default: llvm_unreachable("unexpected overflowing operator");
8893    }
8894    if (CondOpcode == ISD::UMULO)
8895      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8896                          MVT::i32);
8897    else
8898      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8899
8900    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
8901
8902    if (CondOpcode == ISD::UMULO)
8903      Cond = X86Op.getValue(2);
8904    else
8905      Cond = X86Op.getValue(1);
8906
8907    CC = DAG.getConstant(X86Cond, MVT::i8);
8908    addTest = false;
8909  }
8910
8911  if (addTest) {
8912    // Look pass the truncate.
8913    if (Cond.getOpcode() == ISD::TRUNCATE)
8914      Cond = Cond.getOperand(0);
8915
8916    // We know the result of AND is compared against zero. Try to match
8917    // it to BT.
8918    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8919      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
8920      if (NewSetCC.getNode()) {
8921        CC = NewSetCC.getOperand(0);
8922        Cond = NewSetCC.getOperand(1);
8923        addTest = false;
8924      }
8925    }
8926  }
8927
8928  if (addTest) {
8929    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8930    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8931  }
8932
8933  // a <  b ? -1 :  0 -> RES = ~setcc_carry
8934  // a <  b ?  0 : -1 -> RES = setcc_carry
8935  // a >= b ? -1 :  0 -> RES = setcc_carry
8936  // a >= b ?  0 : -1 -> RES = ~setcc_carry
8937  if (Cond.getOpcode() == X86ISD::CMP) {
8938    Cond = ConvertCmpIfNecessary(Cond, DAG);
8939    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
8940
8941    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
8942        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
8943      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8944                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
8945      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
8946        return DAG.getNOT(DL, Res, Res.getValueType());
8947      return Res;
8948    }
8949  }
8950
8951  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
8952  // condition is true.
8953  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
8954  SDValue Ops[] = { Op2, Op1, CC, Cond };
8955  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
8956}
8957
8958// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
8959// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
8960// from the AND / OR.
8961static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
8962  Opc = Op.getOpcode();
8963  if (Opc != ISD::OR && Opc != ISD::AND)
8964    return false;
8965  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8966          Op.getOperand(0).hasOneUse() &&
8967          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
8968          Op.getOperand(1).hasOneUse());
8969}
8970
8971// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
8972// 1 and that the SETCC node has a single use.
8973static bool isXor1OfSetCC(SDValue Op) {
8974  if (Op.getOpcode() != ISD::XOR)
8975    return false;
8976  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8977  if (N1C && N1C->getAPIntValue() == 1) {
8978    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8979      Op.getOperand(0).hasOneUse();
8980  }
8981  return false;
8982}
8983
8984SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
8985  bool addTest = true;
8986  SDValue Chain = Op.getOperand(0);
8987  SDValue Cond  = Op.getOperand(1);
8988  SDValue Dest  = Op.getOperand(2);
8989  DebugLoc dl = Op.getDebugLoc();
8990  SDValue CC;
8991  bool Inverted = false;
8992
8993  if (Cond.getOpcode() == ISD::SETCC) {
8994    // Check for setcc([su]{add,sub,mul}o == 0).
8995    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
8996        isa<ConstantSDNode>(Cond.getOperand(1)) &&
8997        cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
8998        Cond.getOperand(0).getResNo() == 1 &&
8999        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
9000         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
9001         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
9002         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
9003         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
9004         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
9005      Inverted = true;
9006      Cond = Cond.getOperand(0);
9007    } else {
9008      SDValue NewCond = LowerSETCC(Cond, DAG);
9009      if (NewCond.getNode())
9010        Cond = NewCond;
9011    }
9012  }
9013#if 0
9014  // FIXME: LowerXALUO doesn't handle these!!
9015  else if (Cond.getOpcode() == X86ISD::ADD  ||
9016           Cond.getOpcode() == X86ISD::SUB  ||
9017           Cond.getOpcode() == X86ISD::SMUL ||
9018           Cond.getOpcode() == X86ISD::UMUL)
9019    Cond = LowerXALUO(Cond, DAG);
9020#endif
9021
9022  // Look pass (and (setcc_carry (cmp ...)), 1).
9023  if (Cond.getOpcode() == ISD::AND &&
9024      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
9025    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
9026    if (C && C->getAPIntValue() == 1)
9027      Cond = Cond.getOperand(0);
9028  }
9029
9030  // If condition flag is set by a X86ISD::CMP, then use it as the condition
9031  // setting operand in place of the X86ISD::SETCC.
9032  unsigned CondOpcode = Cond.getOpcode();
9033  if (CondOpcode == X86ISD::SETCC ||
9034      CondOpcode == X86ISD::SETCC_CARRY) {
9035    CC = Cond.getOperand(0);
9036
9037    SDValue Cmp = Cond.getOperand(1);
9038    unsigned Opc = Cmp.getOpcode();
9039    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
9040    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
9041      Cond = Cmp;
9042      addTest = false;
9043    } else {
9044      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
9045      default: break;
9046      case X86::COND_O:
9047      case X86::COND_B:
9048        // These can only come from an arithmetic instruction with overflow,
9049        // e.g. SADDO, UADDO.
9050        Cond = Cond.getNode()->getOperand(1);
9051        addTest = false;
9052        break;
9053      }
9054    }
9055  }
9056  CondOpcode = Cond.getOpcode();
9057  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
9058      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
9059      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
9060       Cond.getOperand(0).getValueType() != MVT::i8)) {
9061    SDValue LHS = Cond.getOperand(0);
9062    SDValue RHS = Cond.getOperand(1);
9063    unsigned X86Opcode;
9064    unsigned X86Cond;
9065    SDVTList VTs;
9066    switch (CondOpcode) {
9067    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
9068    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
9069    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
9070    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
9071    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
9072    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
9073    default: llvm_unreachable("unexpected overflowing operator");
9074    }
9075    if (Inverted)
9076      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
9077    if (CondOpcode == ISD::UMULO)
9078      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
9079                          MVT::i32);
9080    else
9081      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
9082
9083    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
9084
9085    if (CondOpcode == ISD::UMULO)
9086      Cond = X86Op.getValue(2);
9087    else
9088      Cond = X86Op.getValue(1);
9089
9090    CC = DAG.getConstant(X86Cond, MVT::i8);
9091    addTest = false;
9092  } else {
9093    unsigned CondOpc;
9094    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
9095      SDValue Cmp = Cond.getOperand(0).getOperand(1);
9096      if (CondOpc == ISD::OR) {
9097        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
9098        // two branches instead of an explicit OR instruction with a
9099        // separate test.
9100        if (Cmp == Cond.getOperand(1).getOperand(1) &&
9101            isX86LogicalCmp(Cmp)) {
9102          CC = Cond.getOperand(0).getOperand(0);
9103          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9104                              Chain, Dest, CC, Cmp);
9105          CC = Cond.getOperand(1).getOperand(0);
9106          Cond = Cmp;
9107          addTest = false;
9108        }
9109      } else { // ISD::AND
9110        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
9111        // two branches instead of an explicit AND instruction with a
9112        // separate test. However, we only do this if this block doesn't
9113        // have a fall-through edge, because this requires an explicit
9114        // jmp when the condition is false.
9115        if (Cmp == Cond.getOperand(1).getOperand(1) &&
9116            isX86LogicalCmp(Cmp) &&
9117            Op.getNode()->hasOneUse()) {
9118          X86::CondCode CCode =
9119            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
9120          CCode = X86::GetOppositeBranchCondition(CCode);
9121          CC = DAG.getConstant(CCode, MVT::i8);
9122          SDNode *User = *Op.getNode()->use_begin();
9123          // Look for an unconditional branch following this conditional branch.
9124          // We need this because we need to reverse the successors in order
9125          // to implement FCMP_OEQ.
9126          if (User->getOpcode() == ISD::BR) {
9127            SDValue FalseBB = User->getOperand(1);
9128            SDNode *NewBR =
9129              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9130            assert(NewBR == User);
9131            (void)NewBR;
9132            Dest = FalseBB;
9133
9134            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9135                                Chain, Dest, CC, Cmp);
9136            X86::CondCode CCode =
9137              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
9138            CCode = X86::GetOppositeBranchCondition(CCode);
9139            CC = DAG.getConstant(CCode, MVT::i8);
9140            Cond = Cmp;
9141            addTest = false;
9142          }
9143        }
9144      }
9145    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
9146      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
9147      // It should be transformed during dag combiner except when the condition
9148      // is set by a arithmetics with overflow node.
9149      X86::CondCode CCode =
9150        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
9151      CCode = X86::GetOppositeBranchCondition(CCode);
9152      CC = DAG.getConstant(CCode, MVT::i8);
9153      Cond = Cond.getOperand(0).getOperand(1);
9154      addTest = false;
9155    } else if (Cond.getOpcode() == ISD::SETCC &&
9156               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
9157      // For FCMP_OEQ, we can emit
9158      // two branches instead of an explicit AND instruction with a
9159      // separate test. However, we only do this if this block doesn't
9160      // have a fall-through edge, because this requires an explicit
9161      // jmp when the condition is false.
9162      if (Op.getNode()->hasOneUse()) {
9163        SDNode *User = *Op.getNode()->use_begin();
9164        // Look for an unconditional branch following this conditional branch.
9165        // We need this because we need to reverse the successors in order
9166        // to implement FCMP_OEQ.
9167        if (User->getOpcode() == ISD::BR) {
9168          SDValue FalseBB = User->getOperand(1);
9169          SDNode *NewBR =
9170            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9171          assert(NewBR == User);
9172          (void)NewBR;
9173          Dest = FalseBB;
9174
9175          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
9176                                    Cond.getOperand(0), Cond.getOperand(1));
9177          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9178          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9179          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9180                              Chain, Dest, CC, Cmp);
9181          CC = DAG.getConstant(X86::COND_P, MVT::i8);
9182          Cond = Cmp;
9183          addTest = false;
9184        }
9185      }
9186    } else if (Cond.getOpcode() == ISD::SETCC &&
9187               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
9188      // For FCMP_UNE, we can emit
9189      // two branches instead of an explicit AND instruction with a
9190      // separate test. However, we only do this if this block doesn't
9191      // have a fall-through edge, because this requires an explicit
9192      // jmp when the condition is false.
9193      if (Op.getNode()->hasOneUse()) {
9194        SDNode *User = *Op.getNode()->use_begin();
9195        // Look for an unconditional branch following this conditional branch.
9196        // We need this because we need to reverse the successors in order
9197        // to implement FCMP_UNE.
9198        if (User->getOpcode() == ISD::BR) {
9199          SDValue FalseBB = User->getOperand(1);
9200          SDNode *NewBR =
9201            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9202          assert(NewBR == User);
9203          (void)NewBR;
9204
9205          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
9206                                    Cond.getOperand(0), Cond.getOperand(1));
9207          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9208          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9209          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9210                              Chain, Dest, CC, Cmp);
9211          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
9212          Cond = Cmp;
9213          addTest = false;
9214          Dest = FalseBB;
9215        }
9216      }
9217    }
9218  }
9219
9220  if (addTest) {
9221    // Look pass the truncate.
9222    if (Cond.getOpcode() == ISD::TRUNCATE)
9223      Cond = Cond.getOperand(0);
9224
9225    // We know the result of AND is compared against zero. Try to match
9226    // it to BT.
9227    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
9228      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
9229      if (NewSetCC.getNode()) {
9230        CC = NewSetCC.getOperand(0);
9231        Cond = NewSetCC.getOperand(1);
9232        addTest = false;
9233      }
9234    }
9235  }
9236
9237  if (addTest) {
9238    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9239    Cond = EmitTest(Cond, X86::COND_NE, DAG);
9240  }
9241  Cond = ConvertCmpIfNecessary(Cond, DAG);
9242  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9243                     Chain, Dest, CC, Cond);
9244}
9245
9246
9247// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
9248// Calls to _alloca is needed to probe the stack when allocating more than 4k
9249// bytes in one go. Touching the stack at 4K increments is necessary to ensure
9250// that the guard pages used by the OS virtual memory manager are allocated in
9251// correct sequence.
9252SDValue
9253X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
9254                                           SelectionDAG &DAG) const {
9255  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
9256          getTargetMachine().Options.EnableSegmentedStacks) &&
9257         "This should be used only on Windows targets or when segmented stacks "
9258         "are being used");
9259  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
9260  DebugLoc dl = Op.getDebugLoc();
9261
9262  // Get the inputs.
9263  SDValue Chain = Op.getOperand(0);
9264  SDValue Size  = Op.getOperand(1);
9265  // FIXME: Ensure alignment here
9266
9267  bool Is64Bit = Subtarget->is64Bit();
9268  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
9269
9270  if (getTargetMachine().Options.EnableSegmentedStacks) {
9271    MachineFunction &MF = DAG.getMachineFunction();
9272    MachineRegisterInfo &MRI = MF.getRegInfo();
9273
9274    if (Is64Bit) {
9275      // The 64 bit implementation of segmented stacks needs to clobber both r10
9276      // r11. This makes it impossible to use it along with nested parameters.
9277      const Function *F = MF.getFunction();
9278
9279      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
9280           I != E; ++I)
9281        if (I->hasNestAttr())
9282          report_fatal_error("Cannot use segmented stacks with functions that "
9283                             "have nested arguments.");
9284    }
9285
9286    const TargetRegisterClass *AddrRegClass =
9287      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
9288    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
9289    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
9290    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
9291                                DAG.getRegister(Vreg, SPTy));
9292    SDValue Ops1[2] = { Value, Chain };
9293    return DAG.getMergeValues(Ops1, 2, dl);
9294  } else {
9295    SDValue Flag;
9296    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
9297
9298    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
9299    Flag = Chain.getValue(1);
9300    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9301
9302    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
9303    Flag = Chain.getValue(1);
9304
9305    Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
9306
9307    SDValue Ops1[2] = { Chain.getValue(0), Chain };
9308    return DAG.getMergeValues(Ops1, 2, dl);
9309  }
9310}
9311
9312SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
9313  MachineFunction &MF = DAG.getMachineFunction();
9314  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
9315
9316  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9317  DebugLoc DL = Op.getDebugLoc();
9318
9319  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
9320    // vastart just stores the address of the VarArgsFrameIndex slot into the
9321    // memory location argument.
9322    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9323                                   getPointerTy());
9324    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
9325                        MachinePointerInfo(SV), false, false, 0);
9326  }
9327
9328  // __va_list_tag:
9329  //   gp_offset         (0 - 6 * 8)
9330  //   fp_offset         (48 - 48 + 8 * 16)
9331  //   overflow_arg_area (point to parameters coming in memory).
9332  //   reg_save_area
9333  SmallVector<SDValue, 8> MemOps;
9334  SDValue FIN = Op.getOperand(1);
9335  // Store gp_offset
9336  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
9337                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
9338                                               MVT::i32),
9339                               FIN, MachinePointerInfo(SV), false, false, 0);
9340  MemOps.push_back(Store);
9341
9342  // Store fp_offset
9343  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9344                    FIN, DAG.getIntPtrConstant(4));
9345  Store = DAG.getStore(Op.getOperand(0), DL,
9346                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
9347                                       MVT::i32),
9348                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
9349  MemOps.push_back(Store);
9350
9351  // Store ptr to overflow_arg_area
9352  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9353                    FIN, DAG.getIntPtrConstant(4));
9354  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9355                                    getPointerTy());
9356  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
9357                       MachinePointerInfo(SV, 8),
9358                       false, false, 0);
9359  MemOps.push_back(Store);
9360
9361  // Store ptr to reg_save_area.
9362  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9363                    FIN, DAG.getIntPtrConstant(8));
9364  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
9365                                    getPointerTy());
9366  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
9367                       MachinePointerInfo(SV, 16), false, false, 0);
9368  MemOps.push_back(Store);
9369  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
9370                     &MemOps[0], MemOps.size());
9371}
9372
9373SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
9374  assert(Subtarget->is64Bit() &&
9375         "LowerVAARG only handles 64-bit va_arg!");
9376  assert((Subtarget->isTargetLinux() ||
9377          Subtarget->isTargetDarwin()) &&
9378          "Unhandled target in LowerVAARG");
9379  assert(Op.getNode()->getNumOperands() == 4);
9380  SDValue Chain = Op.getOperand(0);
9381  SDValue SrcPtr = Op.getOperand(1);
9382  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9383  unsigned Align = Op.getConstantOperandVal(3);
9384  DebugLoc dl = Op.getDebugLoc();
9385
9386  EVT ArgVT = Op.getNode()->getValueType(0);
9387  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9388  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
9389  uint8_t ArgMode;
9390
9391  // Decide which area this value should be read from.
9392  // TODO: Implement the AMD64 ABI in its entirety. This simple
9393  // selection mechanism works only for the basic types.
9394  if (ArgVT == MVT::f80) {
9395    llvm_unreachable("va_arg for f80 not yet implemented");
9396  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
9397    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
9398  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
9399    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
9400  } else {
9401    llvm_unreachable("Unhandled argument type in LowerVAARG");
9402  }
9403
9404  if (ArgMode == 2) {
9405    // Sanity Check: Make sure using fp_offset makes sense.
9406    assert(!getTargetMachine().Options.UseSoftFloat &&
9407           !(DAG.getMachineFunction()
9408                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
9409           Subtarget->hasSSE1());
9410  }
9411
9412  // Insert VAARG_64 node into the DAG
9413  // VAARG_64 returns two values: Variable Argument Address, Chain
9414  SmallVector<SDValue, 11> InstOps;
9415  InstOps.push_back(Chain);
9416  InstOps.push_back(SrcPtr);
9417  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
9418  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
9419  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
9420  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
9421  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
9422                                          VTs, &InstOps[0], InstOps.size(),
9423                                          MVT::i64,
9424                                          MachinePointerInfo(SV),
9425                                          /*Align=*/0,
9426                                          /*Volatile=*/false,
9427                                          /*ReadMem=*/true,
9428                                          /*WriteMem=*/true);
9429  Chain = VAARG.getValue(1);
9430
9431  // Load the next argument and return it
9432  return DAG.getLoad(ArgVT, dl,
9433                     Chain,
9434                     VAARG,
9435                     MachinePointerInfo(),
9436                     false, false, false, 0);
9437}
9438
9439SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
9440  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
9441  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
9442  SDValue Chain = Op.getOperand(0);
9443  SDValue DstPtr = Op.getOperand(1);
9444  SDValue SrcPtr = Op.getOperand(2);
9445  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
9446  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9447  DebugLoc DL = Op.getDebugLoc();
9448
9449  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
9450                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
9451                       false,
9452                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
9453}
9454
9455// getTargetVShiftNOde - Handle vector element shifts where the shift amount
9456// may or may not be a constant. Takes immediate version of shift as input.
9457static SDValue getTargetVShiftNode(unsigned Opc, DebugLoc dl, EVT VT,
9458                                   SDValue SrcOp, SDValue ShAmt,
9459                                   SelectionDAG &DAG) {
9460  assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32");
9461
9462  if (isa<ConstantSDNode>(ShAmt)) {
9463    // Constant may be a TargetConstant. Use a regular constant.
9464    uint32_t ShiftAmt = cast<ConstantSDNode>(ShAmt)->getZExtValue();
9465    switch (Opc) {
9466      default: llvm_unreachable("Unknown target vector shift node");
9467      case X86ISD::VSHLI:
9468      case X86ISD::VSRLI:
9469      case X86ISD::VSRAI:
9470        return DAG.getNode(Opc, dl, VT, SrcOp,
9471                           DAG.getConstant(ShiftAmt, MVT::i32));
9472    }
9473  }
9474
9475  // Change opcode to non-immediate version
9476  switch (Opc) {
9477    default: llvm_unreachable("Unknown target vector shift node");
9478    case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
9479    case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
9480    case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
9481  }
9482
9483  // Need to build a vector containing shift amount
9484  // Shift amount is 32-bits, but SSE instructions read 64-bit, so fill with 0
9485  SDValue ShOps[4];
9486  ShOps[0] = ShAmt;
9487  ShOps[1] = DAG.getConstant(0, MVT::i32);
9488  ShOps[2] = DAG.getUNDEF(MVT::i32);
9489  ShOps[3] = DAG.getUNDEF(MVT::i32);
9490  ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &ShOps[0], 4);
9491
9492  // The return type has to be a 128-bit type with the same element
9493  // type as the input type.
9494  MVT EltVT = VT.getVectorElementType().getSimpleVT();
9495  EVT ShVT = MVT::getVectorVT(EltVT, 128/EltVT.getSizeInBits());
9496
9497  ShAmt = DAG.getNode(ISD::BITCAST, dl, ShVT, ShAmt);
9498  return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
9499}
9500
9501SDValue
9502X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
9503  DebugLoc dl = Op.getDebugLoc();
9504  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9505  switch (IntNo) {
9506  default: return SDValue();    // Don't custom lower most intrinsics.
9507  // Comparison intrinsics.
9508  case Intrinsic::x86_sse_comieq_ss:
9509  case Intrinsic::x86_sse_comilt_ss:
9510  case Intrinsic::x86_sse_comile_ss:
9511  case Intrinsic::x86_sse_comigt_ss:
9512  case Intrinsic::x86_sse_comige_ss:
9513  case Intrinsic::x86_sse_comineq_ss:
9514  case Intrinsic::x86_sse_ucomieq_ss:
9515  case Intrinsic::x86_sse_ucomilt_ss:
9516  case Intrinsic::x86_sse_ucomile_ss:
9517  case Intrinsic::x86_sse_ucomigt_ss:
9518  case Intrinsic::x86_sse_ucomige_ss:
9519  case Intrinsic::x86_sse_ucomineq_ss:
9520  case Intrinsic::x86_sse2_comieq_sd:
9521  case Intrinsic::x86_sse2_comilt_sd:
9522  case Intrinsic::x86_sse2_comile_sd:
9523  case Intrinsic::x86_sse2_comigt_sd:
9524  case Intrinsic::x86_sse2_comige_sd:
9525  case Intrinsic::x86_sse2_comineq_sd:
9526  case Intrinsic::x86_sse2_ucomieq_sd:
9527  case Intrinsic::x86_sse2_ucomilt_sd:
9528  case Intrinsic::x86_sse2_ucomile_sd:
9529  case Intrinsic::x86_sse2_ucomigt_sd:
9530  case Intrinsic::x86_sse2_ucomige_sd:
9531  case Intrinsic::x86_sse2_ucomineq_sd: {
9532    unsigned Opc = 0;
9533    ISD::CondCode CC = ISD::SETCC_INVALID;
9534    switch (IntNo) {
9535    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9536    case Intrinsic::x86_sse_comieq_ss:
9537    case Intrinsic::x86_sse2_comieq_sd:
9538      Opc = X86ISD::COMI;
9539      CC = ISD::SETEQ;
9540      break;
9541    case Intrinsic::x86_sse_comilt_ss:
9542    case Intrinsic::x86_sse2_comilt_sd:
9543      Opc = X86ISD::COMI;
9544      CC = ISD::SETLT;
9545      break;
9546    case Intrinsic::x86_sse_comile_ss:
9547    case Intrinsic::x86_sse2_comile_sd:
9548      Opc = X86ISD::COMI;
9549      CC = ISD::SETLE;
9550      break;
9551    case Intrinsic::x86_sse_comigt_ss:
9552    case Intrinsic::x86_sse2_comigt_sd:
9553      Opc = X86ISD::COMI;
9554      CC = ISD::SETGT;
9555      break;
9556    case Intrinsic::x86_sse_comige_ss:
9557    case Intrinsic::x86_sse2_comige_sd:
9558      Opc = X86ISD::COMI;
9559      CC = ISD::SETGE;
9560      break;
9561    case Intrinsic::x86_sse_comineq_ss:
9562    case Intrinsic::x86_sse2_comineq_sd:
9563      Opc = X86ISD::COMI;
9564      CC = ISD::SETNE;
9565      break;
9566    case Intrinsic::x86_sse_ucomieq_ss:
9567    case Intrinsic::x86_sse2_ucomieq_sd:
9568      Opc = X86ISD::UCOMI;
9569      CC = ISD::SETEQ;
9570      break;
9571    case Intrinsic::x86_sse_ucomilt_ss:
9572    case Intrinsic::x86_sse2_ucomilt_sd:
9573      Opc = X86ISD::UCOMI;
9574      CC = ISD::SETLT;
9575      break;
9576    case Intrinsic::x86_sse_ucomile_ss:
9577    case Intrinsic::x86_sse2_ucomile_sd:
9578      Opc = X86ISD::UCOMI;
9579      CC = ISD::SETLE;
9580      break;
9581    case Intrinsic::x86_sse_ucomigt_ss:
9582    case Intrinsic::x86_sse2_ucomigt_sd:
9583      Opc = X86ISD::UCOMI;
9584      CC = ISD::SETGT;
9585      break;
9586    case Intrinsic::x86_sse_ucomige_ss:
9587    case Intrinsic::x86_sse2_ucomige_sd:
9588      Opc = X86ISD::UCOMI;
9589      CC = ISD::SETGE;
9590      break;
9591    case Intrinsic::x86_sse_ucomineq_ss:
9592    case Intrinsic::x86_sse2_ucomineq_sd:
9593      Opc = X86ISD::UCOMI;
9594      CC = ISD::SETNE;
9595      break;
9596    }
9597
9598    SDValue LHS = Op.getOperand(1);
9599    SDValue RHS = Op.getOperand(2);
9600    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
9601    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
9602    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
9603    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9604                                DAG.getConstant(X86CC, MVT::i8), Cond);
9605    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9606  }
9607  // Arithmetic intrinsics.
9608  case Intrinsic::x86_sse2_pmulu_dq:
9609  case Intrinsic::x86_avx2_pmulu_dq:
9610    return DAG.getNode(X86ISD::PMULUDQ, dl, Op.getValueType(),
9611                       Op.getOperand(1), Op.getOperand(2));
9612  case Intrinsic::x86_sse3_hadd_ps:
9613  case Intrinsic::x86_sse3_hadd_pd:
9614  case Intrinsic::x86_avx_hadd_ps_256:
9615  case Intrinsic::x86_avx_hadd_pd_256:
9616    return DAG.getNode(X86ISD::FHADD, dl, Op.getValueType(),
9617                       Op.getOperand(1), Op.getOperand(2));
9618  case Intrinsic::x86_sse3_hsub_ps:
9619  case Intrinsic::x86_sse3_hsub_pd:
9620  case Intrinsic::x86_avx_hsub_ps_256:
9621  case Intrinsic::x86_avx_hsub_pd_256:
9622    return DAG.getNode(X86ISD::FHSUB, dl, Op.getValueType(),
9623                       Op.getOperand(1), Op.getOperand(2));
9624  case Intrinsic::x86_ssse3_phadd_w_128:
9625  case Intrinsic::x86_ssse3_phadd_d_128:
9626  case Intrinsic::x86_avx2_phadd_w:
9627  case Intrinsic::x86_avx2_phadd_d:
9628    return DAG.getNode(X86ISD::HADD, dl, Op.getValueType(),
9629                       Op.getOperand(1), Op.getOperand(2));
9630  case Intrinsic::x86_ssse3_phsub_w_128:
9631  case Intrinsic::x86_ssse3_phsub_d_128:
9632  case Intrinsic::x86_avx2_phsub_w:
9633  case Intrinsic::x86_avx2_phsub_d:
9634    return DAG.getNode(X86ISD::HSUB, dl, Op.getValueType(),
9635                       Op.getOperand(1), Op.getOperand(2));
9636  case Intrinsic::x86_avx2_psllv_d:
9637  case Intrinsic::x86_avx2_psllv_q:
9638  case Intrinsic::x86_avx2_psllv_d_256:
9639  case Intrinsic::x86_avx2_psllv_q_256:
9640    return DAG.getNode(ISD::SHL, dl, Op.getValueType(),
9641                      Op.getOperand(1), Op.getOperand(2));
9642  case Intrinsic::x86_avx2_psrlv_d:
9643  case Intrinsic::x86_avx2_psrlv_q:
9644  case Intrinsic::x86_avx2_psrlv_d_256:
9645  case Intrinsic::x86_avx2_psrlv_q_256:
9646    return DAG.getNode(ISD::SRL, dl, Op.getValueType(),
9647                      Op.getOperand(1), Op.getOperand(2));
9648  case Intrinsic::x86_avx2_psrav_d:
9649  case Intrinsic::x86_avx2_psrav_d_256:
9650    return DAG.getNode(ISD::SRA, dl, Op.getValueType(),
9651                      Op.getOperand(1), Op.getOperand(2));
9652  case Intrinsic::x86_ssse3_pshuf_b_128:
9653  case Intrinsic::x86_avx2_pshuf_b:
9654    return DAG.getNode(X86ISD::PSHUFB, dl, Op.getValueType(),
9655                       Op.getOperand(1), Op.getOperand(2));
9656  case Intrinsic::x86_ssse3_psign_b_128:
9657  case Intrinsic::x86_ssse3_psign_w_128:
9658  case Intrinsic::x86_ssse3_psign_d_128:
9659  case Intrinsic::x86_avx2_psign_b:
9660  case Intrinsic::x86_avx2_psign_w:
9661  case Intrinsic::x86_avx2_psign_d:
9662    return DAG.getNode(X86ISD::PSIGN, dl, Op.getValueType(),
9663                       Op.getOperand(1), Op.getOperand(2));
9664  case Intrinsic::x86_sse41_insertps:
9665    return DAG.getNode(X86ISD::INSERTPS, dl, Op.getValueType(),
9666                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
9667  case Intrinsic::x86_avx_vperm2f128_ps_256:
9668  case Intrinsic::x86_avx_vperm2f128_pd_256:
9669  case Intrinsic::x86_avx_vperm2f128_si_256:
9670  case Intrinsic::x86_avx2_vperm2i128:
9671    return DAG.getNode(X86ISD::VPERM2X128, dl, Op.getValueType(),
9672                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
9673  case Intrinsic::x86_avx2_permd:
9674  case Intrinsic::x86_avx2_permps:
9675    // Operands intentionally swapped. Mask is last operand to intrinsic,
9676    // but second operand for node/intruction.
9677    return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(),
9678                       Op.getOperand(2), Op.getOperand(1));
9679
9680  // ptest and testp intrinsics. The intrinsic these come from are designed to
9681  // return an integer value, not just an instruction so lower it to the ptest
9682  // or testp pattern and a setcc for the result.
9683  case Intrinsic::x86_sse41_ptestz:
9684  case Intrinsic::x86_sse41_ptestc:
9685  case Intrinsic::x86_sse41_ptestnzc:
9686  case Intrinsic::x86_avx_ptestz_256:
9687  case Intrinsic::x86_avx_ptestc_256:
9688  case Intrinsic::x86_avx_ptestnzc_256:
9689  case Intrinsic::x86_avx_vtestz_ps:
9690  case Intrinsic::x86_avx_vtestc_ps:
9691  case Intrinsic::x86_avx_vtestnzc_ps:
9692  case Intrinsic::x86_avx_vtestz_pd:
9693  case Intrinsic::x86_avx_vtestc_pd:
9694  case Intrinsic::x86_avx_vtestnzc_pd:
9695  case Intrinsic::x86_avx_vtestz_ps_256:
9696  case Intrinsic::x86_avx_vtestc_ps_256:
9697  case Intrinsic::x86_avx_vtestnzc_ps_256:
9698  case Intrinsic::x86_avx_vtestz_pd_256:
9699  case Intrinsic::x86_avx_vtestc_pd_256:
9700  case Intrinsic::x86_avx_vtestnzc_pd_256: {
9701    bool IsTestPacked = false;
9702    unsigned X86CC = 0;
9703    switch (IntNo) {
9704    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
9705    case Intrinsic::x86_avx_vtestz_ps:
9706    case Intrinsic::x86_avx_vtestz_pd:
9707    case Intrinsic::x86_avx_vtestz_ps_256:
9708    case Intrinsic::x86_avx_vtestz_pd_256:
9709      IsTestPacked = true; // Fallthrough
9710    case Intrinsic::x86_sse41_ptestz:
9711    case Intrinsic::x86_avx_ptestz_256:
9712      // ZF = 1
9713      X86CC = X86::COND_E;
9714      break;
9715    case Intrinsic::x86_avx_vtestc_ps:
9716    case Intrinsic::x86_avx_vtestc_pd:
9717    case Intrinsic::x86_avx_vtestc_ps_256:
9718    case Intrinsic::x86_avx_vtestc_pd_256:
9719      IsTestPacked = true; // Fallthrough
9720    case Intrinsic::x86_sse41_ptestc:
9721    case Intrinsic::x86_avx_ptestc_256:
9722      // CF = 1
9723      X86CC = X86::COND_B;
9724      break;
9725    case Intrinsic::x86_avx_vtestnzc_ps:
9726    case Intrinsic::x86_avx_vtestnzc_pd:
9727    case Intrinsic::x86_avx_vtestnzc_ps_256:
9728    case Intrinsic::x86_avx_vtestnzc_pd_256:
9729      IsTestPacked = true; // Fallthrough
9730    case Intrinsic::x86_sse41_ptestnzc:
9731    case Intrinsic::x86_avx_ptestnzc_256:
9732      // ZF and CF = 0
9733      X86CC = X86::COND_A;
9734      break;
9735    }
9736
9737    SDValue LHS = Op.getOperand(1);
9738    SDValue RHS = Op.getOperand(2);
9739    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
9740    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
9741    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
9742    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
9743    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9744  }
9745
9746  // SSE/AVX shift intrinsics
9747  case Intrinsic::x86_sse2_psll_w:
9748  case Intrinsic::x86_sse2_psll_d:
9749  case Intrinsic::x86_sse2_psll_q:
9750  case Intrinsic::x86_avx2_psll_w:
9751  case Intrinsic::x86_avx2_psll_d:
9752  case Intrinsic::x86_avx2_psll_q:
9753    return DAG.getNode(X86ISD::VSHL, dl, Op.getValueType(),
9754                       Op.getOperand(1), Op.getOperand(2));
9755  case Intrinsic::x86_sse2_psrl_w:
9756  case Intrinsic::x86_sse2_psrl_d:
9757  case Intrinsic::x86_sse2_psrl_q:
9758  case Intrinsic::x86_avx2_psrl_w:
9759  case Intrinsic::x86_avx2_psrl_d:
9760  case Intrinsic::x86_avx2_psrl_q:
9761    return DAG.getNode(X86ISD::VSRL, dl, Op.getValueType(),
9762                       Op.getOperand(1), Op.getOperand(2));
9763  case Intrinsic::x86_sse2_psra_w:
9764  case Intrinsic::x86_sse2_psra_d:
9765  case Intrinsic::x86_avx2_psra_w:
9766  case Intrinsic::x86_avx2_psra_d:
9767    return DAG.getNode(X86ISD::VSRA, dl, Op.getValueType(),
9768                       Op.getOperand(1), Op.getOperand(2));
9769  case Intrinsic::x86_sse2_pslli_w:
9770  case Intrinsic::x86_sse2_pslli_d:
9771  case Intrinsic::x86_sse2_pslli_q:
9772  case Intrinsic::x86_avx2_pslli_w:
9773  case Intrinsic::x86_avx2_pslli_d:
9774  case Intrinsic::x86_avx2_pslli_q:
9775    return getTargetVShiftNode(X86ISD::VSHLI, dl, Op.getValueType(),
9776                               Op.getOperand(1), Op.getOperand(2), DAG);
9777  case Intrinsic::x86_sse2_psrli_w:
9778  case Intrinsic::x86_sse2_psrli_d:
9779  case Intrinsic::x86_sse2_psrli_q:
9780  case Intrinsic::x86_avx2_psrli_w:
9781  case Intrinsic::x86_avx2_psrli_d:
9782  case Intrinsic::x86_avx2_psrli_q:
9783    return getTargetVShiftNode(X86ISD::VSRLI, dl, Op.getValueType(),
9784                               Op.getOperand(1), Op.getOperand(2), DAG);
9785  case Intrinsic::x86_sse2_psrai_w:
9786  case Intrinsic::x86_sse2_psrai_d:
9787  case Intrinsic::x86_avx2_psrai_w:
9788  case Intrinsic::x86_avx2_psrai_d:
9789    return getTargetVShiftNode(X86ISD::VSRAI, dl, Op.getValueType(),
9790                               Op.getOperand(1), Op.getOperand(2), DAG);
9791  // Fix vector shift instructions where the last operand is a non-immediate
9792  // i32 value.
9793  case Intrinsic::x86_mmx_pslli_w:
9794  case Intrinsic::x86_mmx_pslli_d:
9795  case Intrinsic::x86_mmx_pslli_q:
9796  case Intrinsic::x86_mmx_psrli_w:
9797  case Intrinsic::x86_mmx_psrli_d:
9798  case Intrinsic::x86_mmx_psrli_q:
9799  case Intrinsic::x86_mmx_psrai_w:
9800  case Intrinsic::x86_mmx_psrai_d: {
9801    SDValue ShAmt = Op.getOperand(2);
9802    if (isa<ConstantSDNode>(ShAmt))
9803      return SDValue();
9804
9805    unsigned NewIntNo = 0;
9806    switch (IntNo) {
9807    case Intrinsic::x86_mmx_pslli_w:
9808      NewIntNo = Intrinsic::x86_mmx_psll_w;
9809      break;
9810    case Intrinsic::x86_mmx_pslli_d:
9811      NewIntNo = Intrinsic::x86_mmx_psll_d;
9812      break;
9813    case Intrinsic::x86_mmx_pslli_q:
9814      NewIntNo = Intrinsic::x86_mmx_psll_q;
9815      break;
9816    case Intrinsic::x86_mmx_psrli_w:
9817      NewIntNo = Intrinsic::x86_mmx_psrl_w;
9818      break;
9819    case Intrinsic::x86_mmx_psrli_d:
9820      NewIntNo = Intrinsic::x86_mmx_psrl_d;
9821      break;
9822    case Intrinsic::x86_mmx_psrli_q:
9823      NewIntNo = Intrinsic::x86_mmx_psrl_q;
9824      break;
9825    case Intrinsic::x86_mmx_psrai_w:
9826      NewIntNo = Intrinsic::x86_mmx_psra_w;
9827      break;
9828    case Intrinsic::x86_mmx_psrai_d:
9829      NewIntNo = Intrinsic::x86_mmx_psra_d;
9830      break;
9831    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9832    }
9833
9834    // The vector shift intrinsics with scalars uses 32b shift amounts but
9835    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
9836    // to be zero.
9837    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, ShAmt,
9838                         DAG.getConstant(0, MVT::i32));
9839// FIXME this must be lowered to get rid of the invalid type.
9840
9841    EVT VT = Op.getValueType();
9842    ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9843    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9844                       DAG.getConstant(NewIntNo, MVT::i32),
9845                       Op.getOperand(1), ShAmt);
9846  }
9847  }
9848}
9849
9850SDValue
9851X86TargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) const {
9852  DebugLoc dl = Op.getDebugLoc();
9853  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
9854  switch (IntNo) {
9855  default: return SDValue();    // Don't custom lower most intrinsics.
9856
9857  // RDRAND intrinsics.
9858  case Intrinsic::x86_rdrand_16:
9859  case Intrinsic::x86_rdrand_32:
9860  case Intrinsic::x86_rdrand_64: {
9861    // Emit the node with the right value type.
9862    SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Glue, MVT::Other);
9863    SDValue Result = DAG.getNode(X86ISD::RDRAND, dl, VTs, Op.getOperand(0));
9864
9865    // If the value returned by RDRAND was valid (CF=1), return 1. Otherwise
9866    // return the value from Rand, which is always 0, casted to i32.
9867    SDValue Ops[] = { DAG.getZExtOrTrunc(Result, dl, Op->getValueType(1)),
9868                      DAG.getConstant(1, Op->getValueType(1)),
9869                      DAG.getConstant(X86::COND_B, MVT::i32),
9870                      SDValue(Result.getNode(), 1) };
9871    SDValue isValid = DAG.getNode(X86ISD::CMOV, dl,
9872                                  DAG.getVTList(Op->getValueType(1), MVT::Glue),
9873                                  Ops, 4);
9874
9875    // Return { result, isValid, chain }.
9876    return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result, isValid,
9877                       SDValue(Result.getNode(), 2));
9878  }
9879  }
9880}
9881
9882SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
9883                                           SelectionDAG &DAG) const {
9884  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9885  MFI->setReturnAddressIsTaken(true);
9886
9887  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9888  DebugLoc dl = Op.getDebugLoc();
9889
9890  if (Depth > 0) {
9891    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
9892    SDValue Offset =
9893      DAG.getConstant(TD->getPointerSize(),
9894                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
9895    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9896                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
9897                                   FrameAddr, Offset),
9898                       MachinePointerInfo(), false, false, false, 0);
9899  }
9900
9901  // Just load the return address.
9902  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
9903  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9904                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
9905}
9906
9907SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
9908  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9909  MFI->setFrameAddressIsTaken(true);
9910
9911  EVT VT = Op.getValueType();
9912  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
9913  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9914  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
9915  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
9916  while (Depth--)
9917    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
9918                            MachinePointerInfo(),
9919                            false, false, false, 0);
9920  return FrameAddr;
9921}
9922
9923SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
9924                                                     SelectionDAG &DAG) const {
9925  return DAG.getIntPtrConstant(2*TD->getPointerSize());
9926}
9927
9928SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
9929  SDValue Chain     = Op.getOperand(0);
9930  SDValue Offset    = Op.getOperand(1);
9931  SDValue Handler   = Op.getOperand(2);
9932  DebugLoc dl       = Op.getDebugLoc();
9933
9934  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
9935                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
9936                                     getPointerTy());
9937  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
9938
9939  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
9940                                  DAG.getIntPtrConstant(TD->getPointerSize()));
9941  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
9942  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
9943                       false, false, 0);
9944  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
9945
9946  return DAG.getNode(X86ISD::EH_RETURN, dl,
9947                     MVT::Other,
9948                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
9949}
9950
9951SDValue X86TargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
9952                                                  SelectionDAG &DAG) const {
9953  return Op.getOperand(0);
9954}
9955
9956SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
9957                                                SelectionDAG &DAG) const {
9958  SDValue Root = Op.getOperand(0);
9959  SDValue Trmp = Op.getOperand(1); // trampoline
9960  SDValue FPtr = Op.getOperand(2); // nested function
9961  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
9962  DebugLoc dl  = Op.getDebugLoc();
9963
9964  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9965
9966  if (Subtarget->is64Bit()) {
9967    SDValue OutChains[6];
9968
9969    // Large code-model.
9970    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
9971    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
9972
9973    const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
9974    const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
9975
9976    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
9977
9978    // Load the pointer to the nested function into R11.
9979    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
9980    SDValue Addr = Trmp;
9981    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9982                                Addr, MachinePointerInfo(TrmpAddr),
9983                                false, false, 0);
9984
9985    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9986                       DAG.getConstant(2, MVT::i64));
9987    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
9988                                MachinePointerInfo(TrmpAddr, 2),
9989                                false, false, 2);
9990
9991    // Load the 'nest' parameter value into R10.
9992    // R10 is specified in X86CallingConv.td
9993    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
9994    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9995                       DAG.getConstant(10, MVT::i64));
9996    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9997                                Addr, MachinePointerInfo(TrmpAddr, 10),
9998                                false, false, 0);
9999
10000    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10001                       DAG.getConstant(12, MVT::i64));
10002    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
10003                                MachinePointerInfo(TrmpAddr, 12),
10004                                false, false, 2);
10005
10006    // Jump to the nested function.
10007    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
10008    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10009                       DAG.getConstant(20, MVT::i64));
10010    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
10011                                Addr, MachinePointerInfo(TrmpAddr, 20),
10012                                false, false, 0);
10013
10014    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
10015    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10016                       DAG.getConstant(22, MVT::i64));
10017    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
10018                                MachinePointerInfo(TrmpAddr, 22),
10019                                false, false, 0);
10020
10021    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
10022  } else {
10023    const Function *Func =
10024      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
10025    CallingConv::ID CC = Func->getCallingConv();
10026    unsigned NestReg;
10027
10028    switch (CC) {
10029    default:
10030      llvm_unreachable("Unsupported calling convention");
10031    case CallingConv::C:
10032    case CallingConv::X86_StdCall: {
10033      // Pass 'nest' parameter in ECX.
10034      // Must be kept in sync with X86CallingConv.td
10035      NestReg = X86::ECX;
10036
10037      // Check that ECX wasn't needed by an 'inreg' parameter.
10038      FunctionType *FTy = Func->getFunctionType();
10039      const AttrListPtr &Attrs = Func->getAttributes();
10040
10041      if (!Attrs.isEmpty() && !Func->isVarArg()) {
10042        unsigned InRegCount = 0;
10043        unsigned Idx = 1;
10044
10045        for (FunctionType::param_iterator I = FTy->param_begin(),
10046             E = FTy->param_end(); I != E; ++I, ++Idx)
10047          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
10048            // FIXME: should only count parameters that are lowered to integers.
10049            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
10050
10051        if (InRegCount > 2) {
10052          report_fatal_error("Nest register in use - reduce number of inreg"
10053                             " parameters!");
10054        }
10055      }
10056      break;
10057    }
10058    case CallingConv::X86_FastCall:
10059    case CallingConv::X86_ThisCall:
10060    case CallingConv::Fast:
10061      // Pass 'nest' parameter in EAX.
10062      // Must be kept in sync with X86CallingConv.td
10063      NestReg = X86::EAX;
10064      break;
10065    }
10066
10067    SDValue OutChains[4];
10068    SDValue Addr, Disp;
10069
10070    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10071                       DAG.getConstant(10, MVT::i32));
10072    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
10073
10074    // This is storing the opcode for MOV32ri.
10075    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
10076    const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
10077    OutChains[0] = DAG.getStore(Root, dl,
10078                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
10079                                Trmp, MachinePointerInfo(TrmpAddr),
10080                                false, false, 0);
10081
10082    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10083                       DAG.getConstant(1, MVT::i32));
10084    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
10085                                MachinePointerInfo(TrmpAddr, 1),
10086                                false, false, 1);
10087
10088    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
10089    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10090                       DAG.getConstant(5, MVT::i32));
10091    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
10092                                MachinePointerInfo(TrmpAddr, 5),
10093                                false, false, 1);
10094
10095    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10096                       DAG.getConstant(6, MVT::i32));
10097    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
10098                                MachinePointerInfo(TrmpAddr, 6),
10099                                false, false, 1);
10100
10101    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
10102  }
10103}
10104
10105SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
10106                                            SelectionDAG &DAG) const {
10107  /*
10108   The rounding mode is in bits 11:10 of FPSR, and has the following
10109   settings:
10110     00 Round to nearest
10111     01 Round to -inf
10112     10 Round to +inf
10113     11 Round to 0
10114
10115  FLT_ROUNDS, on the other hand, expects the following:
10116    -1 Undefined
10117     0 Round to 0
10118     1 Round to nearest
10119     2 Round to +inf
10120     3 Round to -inf
10121
10122  To perform the conversion, we do:
10123    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
10124  */
10125
10126  MachineFunction &MF = DAG.getMachineFunction();
10127  const TargetMachine &TM = MF.getTarget();
10128  const TargetFrameLowering &TFI = *TM.getFrameLowering();
10129  unsigned StackAlignment = TFI.getStackAlignment();
10130  EVT VT = Op.getValueType();
10131  DebugLoc DL = Op.getDebugLoc();
10132
10133  // Save FP Control Word to stack slot
10134  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
10135  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
10136
10137
10138  MachineMemOperand *MMO =
10139   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
10140                           MachineMemOperand::MOStore, 2, 2);
10141
10142  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
10143  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
10144                                          DAG.getVTList(MVT::Other),
10145                                          Ops, 2, MVT::i16, MMO);
10146
10147  // Load FP Control Word from stack slot
10148  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
10149                            MachinePointerInfo(), false, false, false, 0);
10150
10151  // Transform as necessary
10152  SDValue CWD1 =
10153    DAG.getNode(ISD::SRL, DL, MVT::i16,
10154                DAG.getNode(ISD::AND, DL, MVT::i16,
10155                            CWD, DAG.getConstant(0x800, MVT::i16)),
10156                DAG.getConstant(11, MVT::i8));
10157  SDValue CWD2 =
10158    DAG.getNode(ISD::SRL, DL, MVT::i16,
10159                DAG.getNode(ISD::AND, DL, MVT::i16,
10160                            CWD, DAG.getConstant(0x400, MVT::i16)),
10161                DAG.getConstant(9, MVT::i8));
10162
10163  SDValue RetVal =
10164    DAG.getNode(ISD::AND, DL, MVT::i16,
10165                DAG.getNode(ISD::ADD, DL, MVT::i16,
10166                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
10167                            DAG.getConstant(1, MVT::i16)),
10168                DAG.getConstant(3, MVT::i16));
10169
10170
10171  return DAG.getNode((VT.getSizeInBits() < 16 ?
10172                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
10173}
10174
10175SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
10176  EVT VT = Op.getValueType();
10177  EVT OpVT = VT;
10178  unsigned NumBits = VT.getSizeInBits();
10179  DebugLoc dl = Op.getDebugLoc();
10180
10181  Op = Op.getOperand(0);
10182  if (VT == MVT::i8) {
10183    // Zero extend to i32 since there is not an i8 bsr.
10184    OpVT = MVT::i32;
10185    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
10186  }
10187
10188  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
10189  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10190  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
10191
10192  // If src is zero (i.e. bsr sets ZF), returns NumBits.
10193  SDValue Ops[] = {
10194    Op,
10195    DAG.getConstant(NumBits+NumBits-1, OpVT),
10196    DAG.getConstant(X86::COND_E, MVT::i8),
10197    Op.getValue(1)
10198  };
10199  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
10200
10201  // Finally xor with NumBits-1.
10202  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
10203
10204  if (VT == MVT::i8)
10205    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10206  return Op;
10207}
10208
10209SDValue X86TargetLowering::LowerCTLZ_ZERO_UNDEF(SDValue Op,
10210                                                SelectionDAG &DAG) const {
10211  EVT VT = Op.getValueType();
10212  EVT OpVT = VT;
10213  unsigned NumBits = VT.getSizeInBits();
10214  DebugLoc dl = Op.getDebugLoc();
10215
10216  Op = Op.getOperand(0);
10217  if (VT == MVT::i8) {
10218    // Zero extend to i32 since there is not an i8 bsr.
10219    OpVT = MVT::i32;
10220    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
10221  }
10222
10223  // Issue a bsr (scan bits in reverse).
10224  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10225  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
10226
10227  // And xor with NumBits-1.
10228  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
10229
10230  if (VT == MVT::i8)
10231    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10232  return Op;
10233}
10234
10235SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
10236  EVT VT = Op.getValueType();
10237  unsigned NumBits = VT.getSizeInBits();
10238  DebugLoc dl = Op.getDebugLoc();
10239  Op = Op.getOperand(0);
10240
10241  // Issue a bsf (scan bits forward) which also sets EFLAGS.
10242  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10243  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
10244
10245  // If src is zero (i.e. bsf sets ZF), returns NumBits.
10246  SDValue Ops[] = {
10247    Op,
10248    DAG.getConstant(NumBits, VT),
10249    DAG.getConstant(X86::COND_E, MVT::i8),
10250    Op.getValue(1)
10251  };
10252  return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops));
10253}
10254
10255// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
10256// ones, and then concatenate the result back.
10257static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
10258  EVT VT = Op.getValueType();
10259
10260  assert(VT.getSizeInBits() == 256 && VT.isInteger() &&
10261         "Unsupported value type for operation");
10262
10263  unsigned NumElems = VT.getVectorNumElements();
10264  DebugLoc dl = Op.getDebugLoc();
10265
10266  // Extract the LHS vectors
10267  SDValue LHS = Op.getOperand(0);
10268  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
10269  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
10270
10271  // Extract the RHS vectors
10272  SDValue RHS = Op.getOperand(1);
10273  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
10274  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
10275
10276  MVT EltVT = VT.getVectorElementType().getSimpleVT();
10277  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10278
10279  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
10280                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
10281                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
10282}
10283
10284SDValue X86TargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
10285  assert(Op.getValueType().getSizeInBits() == 256 &&
10286         Op.getValueType().isInteger() &&
10287         "Only handle AVX 256-bit vector integer operation");
10288  return Lower256IntArith(Op, DAG);
10289}
10290
10291SDValue X86TargetLowering::LowerSUB(SDValue Op, SelectionDAG &DAG) const {
10292  assert(Op.getValueType().getSizeInBits() == 256 &&
10293         Op.getValueType().isInteger() &&
10294         "Only handle AVX 256-bit vector integer operation");
10295  return Lower256IntArith(Op, DAG);
10296}
10297
10298SDValue X86TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10299  EVT VT = Op.getValueType();
10300
10301  // Decompose 256-bit ops into smaller 128-bit ops.
10302  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
10303    return Lower256IntArith(Op, DAG);
10304
10305  assert((VT == MVT::v2i64 || VT == MVT::v4i64) &&
10306         "Only know how to lower V2I64/V4I64 multiply");
10307
10308  DebugLoc dl = Op.getDebugLoc();
10309
10310  //  Ahi = psrlqi(a, 32);
10311  //  Bhi = psrlqi(b, 32);
10312  //
10313  //  AloBlo = pmuludq(a, b);
10314  //  AloBhi = pmuludq(a, Bhi);
10315  //  AhiBlo = pmuludq(Ahi, b);
10316
10317  //  AloBhi = psllqi(AloBhi, 32);
10318  //  AhiBlo = psllqi(AhiBlo, 32);
10319  //  return AloBlo + AloBhi + AhiBlo;
10320
10321  SDValue A = Op.getOperand(0);
10322  SDValue B = Op.getOperand(1);
10323
10324  SDValue ShAmt = DAG.getConstant(32, MVT::i32);
10325
10326  SDValue Ahi = DAG.getNode(X86ISD::VSRLI, dl, VT, A, ShAmt);
10327  SDValue Bhi = DAG.getNode(X86ISD::VSRLI, dl, VT, B, ShAmt);
10328
10329  // Bit cast to 32-bit vectors for MULUDQ
10330  EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 : MVT::v8i32;
10331  A = DAG.getNode(ISD::BITCAST, dl, MulVT, A);
10332  B = DAG.getNode(ISD::BITCAST, dl, MulVT, B);
10333  Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi);
10334  Bhi = DAG.getNode(ISD::BITCAST, dl, MulVT, Bhi);
10335
10336  SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
10337  SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
10338  SDValue AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
10339
10340  AloBhi = DAG.getNode(X86ISD::VSHLI, dl, VT, AloBhi, ShAmt);
10341  AhiBlo = DAG.getNode(X86ISD::VSHLI, dl, VT, AhiBlo, ShAmt);
10342
10343  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
10344  return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
10345}
10346
10347SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
10348
10349  EVT VT = Op.getValueType();
10350  DebugLoc dl = Op.getDebugLoc();
10351  SDValue R = Op.getOperand(0);
10352  SDValue Amt = Op.getOperand(1);
10353  LLVMContext *Context = DAG.getContext();
10354
10355  if (!Subtarget->hasSSE2())
10356    return SDValue();
10357
10358  // Optimize shl/srl/sra with constant shift amount.
10359  if (isSplatVector(Amt.getNode())) {
10360    SDValue SclrAmt = Amt->getOperand(0);
10361    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
10362      uint64_t ShiftAmt = C->getZExtValue();
10363
10364      if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
10365          (Subtarget->hasAVX2() &&
10366           (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16))) {
10367        if (Op.getOpcode() == ISD::SHL)
10368          return DAG.getNode(X86ISD::VSHLI, dl, VT, R,
10369                             DAG.getConstant(ShiftAmt, MVT::i32));
10370        if (Op.getOpcode() == ISD::SRL)
10371          return DAG.getNode(X86ISD::VSRLI, dl, VT, R,
10372                             DAG.getConstant(ShiftAmt, MVT::i32));
10373        if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64)
10374          return DAG.getNode(X86ISD::VSRAI, dl, VT, R,
10375                             DAG.getConstant(ShiftAmt, MVT::i32));
10376      }
10377
10378      if (VT == MVT::v16i8) {
10379        if (Op.getOpcode() == ISD::SHL) {
10380          // Make a large shift.
10381          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, R,
10382                                    DAG.getConstant(ShiftAmt, MVT::i32));
10383          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
10384          // Zero out the rightmost bits.
10385          SmallVector<SDValue, 16> V(16,
10386                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
10387                                                     MVT::i8));
10388          return DAG.getNode(ISD::AND, dl, VT, SHL,
10389                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10390        }
10391        if (Op.getOpcode() == ISD::SRL) {
10392          // Make a large shift.
10393          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v8i16, R,
10394                                    DAG.getConstant(ShiftAmt, MVT::i32));
10395          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
10396          // Zero out the leftmost bits.
10397          SmallVector<SDValue, 16> V(16,
10398                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10399                                                     MVT::i8));
10400          return DAG.getNode(ISD::AND, dl, VT, SRL,
10401                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10402        }
10403        if (Op.getOpcode() == ISD::SRA) {
10404          if (ShiftAmt == 7) {
10405            // R s>> 7  ===  R s< 0
10406            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
10407            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
10408          }
10409
10410          // R s>> a === ((R u>> a) ^ m) - m
10411          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10412          SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
10413                                                         MVT::i8));
10414          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
10415          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10416          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10417          return Res;
10418        }
10419        llvm_unreachable("Unknown shift opcode.");
10420      }
10421
10422      if (Subtarget->hasAVX2() && VT == MVT::v32i8) {
10423        if (Op.getOpcode() == ISD::SHL) {
10424          // Make a large shift.
10425          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v16i16, R,
10426                                    DAG.getConstant(ShiftAmt, MVT::i32));
10427          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
10428          // Zero out the rightmost bits.
10429          SmallVector<SDValue, 32> V(32,
10430                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
10431                                                     MVT::i8));
10432          return DAG.getNode(ISD::AND, dl, VT, SHL,
10433                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10434        }
10435        if (Op.getOpcode() == ISD::SRL) {
10436          // Make a large shift.
10437          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v16i16, R,
10438                                    DAG.getConstant(ShiftAmt, MVT::i32));
10439          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
10440          // Zero out the leftmost bits.
10441          SmallVector<SDValue, 32> V(32,
10442                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10443                                                     MVT::i8));
10444          return DAG.getNode(ISD::AND, dl, VT, SRL,
10445                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10446        }
10447        if (Op.getOpcode() == ISD::SRA) {
10448          if (ShiftAmt == 7) {
10449            // R s>> 7  ===  R s< 0
10450            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
10451            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
10452          }
10453
10454          // R s>> a === ((R u>> a) ^ m) - m
10455          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10456          SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
10457                                                         MVT::i8));
10458          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
10459          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10460          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10461          return Res;
10462        }
10463        llvm_unreachable("Unknown shift opcode.");
10464      }
10465    }
10466  }
10467
10468  // Lower SHL with variable shift amount.
10469  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
10470    Op = DAG.getNode(X86ISD::VSHLI, dl, VT, Op.getOperand(1),
10471                     DAG.getConstant(23, MVT::i32));
10472
10473    const uint32_t CV[] = { 0x3f800000U, 0x3f800000U, 0x3f800000U, 0x3f800000U};
10474    Constant *C = ConstantDataVector::get(*Context, CV);
10475    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10476    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10477                                 MachinePointerInfo::getConstantPool(),
10478                                 false, false, false, 16);
10479
10480    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
10481    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
10482    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
10483    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
10484  }
10485  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
10486    assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
10487
10488    // a = a << 5;
10489    Op = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, Op.getOperand(1),
10490                     DAG.getConstant(5, MVT::i32));
10491    Op = DAG.getNode(ISD::BITCAST, dl, VT, Op);
10492
10493    // Turn 'a' into a mask suitable for VSELECT
10494    SDValue VSelM = DAG.getConstant(0x80, VT);
10495    SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10496    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10497
10498    SDValue CM1 = DAG.getConstant(0x0f, VT);
10499    SDValue CM2 = DAG.getConstant(0x3f, VT);
10500
10501    // r = VSELECT(r, psllw(r & (char16)15, 4), a);
10502    SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
10503    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
10504                            DAG.getConstant(4, MVT::i32), DAG);
10505    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
10506    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10507
10508    // a += a
10509    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10510    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10511    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10512
10513    // r = VSELECT(r, psllw(r & (char16)63, 2), a);
10514    M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
10515    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
10516                            DAG.getConstant(2, MVT::i32), DAG);
10517    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
10518    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10519
10520    // a += a
10521    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10522    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10523    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10524
10525    // return VSELECT(r, r+r, a);
10526    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
10527                    DAG.getNode(ISD::ADD, dl, VT, R, R), R);
10528    return R;
10529  }
10530
10531  // Decompose 256-bit shifts into smaller 128-bit shifts.
10532  if (VT.getSizeInBits() == 256) {
10533    unsigned NumElems = VT.getVectorNumElements();
10534    MVT EltVT = VT.getVectorElementType().getSimpleVT();
10535    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10536
10537    // Extract the two vectors
10538    SDValue V1 = Extract128BitVector(R, 0, DAG, dl);
10539    SDValue V2 = Extract128BitVector(R, NumElems/2, DAG, dl);
10540
10541    // Recreate the shift amount vectors
10542    SDValue Amt1, Amt2;
10543    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
10544      // Constant shift amount
10545      SmallVector<SDValue, 4> Amt1Csts;
10546      SmallVector<SDValue, 4> Amt2Csts;
10547      for (unsigned i = 0; i != NumElems/2; ++i)
10548        Amt1Csts.push_back(Amt->getOperand(i));
10549      for (unsigned i = NumElems/2; i != NumElems; ++i)
10550        Amt2Csts.push_back(Amt->getOperand(i));
10551
10552      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10553                                 &Amt1Csts[0], NumElems/2);
10554      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10555                                 &Amt2Csts[0], NumElems/2);
10556    } else {
10557      // Variable shift amount
10558      Amt1 = Extract128BitVector(Amt, 0, DAG, dl);
10559      Amt2 = Extract128BitVector(Amt, NumElems/2, DAG, dl);
10560    }
10561
10562    // Issue new vector shifts for the smaller types
10563    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
10564    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
10565
10566    // Concatenate the result back
10567    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
10568  }
10569
10570  return SDValue();
10571}
10572
10573SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
10574  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
10575  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
10576  // looks for this combo and may remove the "setcc" instruction if the "setcc"
10577  // has only one use.
10578  SDNode *N = Op.getNode();
10579  SDValue LHS = N->getOperand(0);
10580  SDValue RHS = N->getOperand(1);
10581  unsigned BaseOp = 0;
10582  unsigned Cond = 0;
10583  DebugLoc DL = Op.getDebugLoc();
10584  switch (Op.getOpcode()) {
10585  default: llvm_unreachable("Unknown ovf instruction!");
10586  case ISD::SADDO:
10587    // A subtract of one will be selected as a INC. Note that INC doesn't
10588    // set CF, so we can't do this for UADDO.
10589    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10590      if (C->isOne()) {
10591        BaseOp = X86ISD::INC;
10592        Cond = X86::COND_O;
10593        break;
10594      }
10595    BaseOp = X86ISD::ADD;
10596    Cond = X86::COND_O;
10597    break;
10598  case ISD::UADDO:
10599    BaseOp = X86ISD::ADD;
10600    Cond = X86::COND_B;
10601    break;
10602  case ISD::SSUBO:
10603    // A subtract of one will be selected as a DEC. Note that DEC doesn't
10604    // set CF, so we can't do this for USUBO.
10605    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10606      if (C->isOne()) {
10607        BaseOp = X86ISD::DEC;
10608        Cond = X86::COND_O;
10609        break;
10610      }
10611    BaseOp = X86ISD::SUB;
10612    Cond = X86::COND_O;
10613    break;
10614  case ISD::USUBO:
10615    BaseOp = X86ISD::SUB;
10616    Cond = X86::COND_B;
10617    break;
10618  case ISD::SMULO:
10619    BaseOp = X86ISD::SMUL;
10620    Cond = X86::COND_O;
10621    break;
10622  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
10623    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
10624                                 MVT::i32);
10625    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
10626
10627    SDValue SetCC =
10628      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10629                  DAG.getConstant(X86::COND_O, MVT::i32),
10630                  SDValue(Sum.getNode(), 2));
10631
10632    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10633  }
10634  }
10635
10636  // Also sets EFLAGS.
10637  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
10638  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
10639
10640  SDValue SetCC =
10641    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
10642                DAG.getConstant(Cond, MVT::i32),
10643                SDValue(Sum.getNode(), 1));
10644
10645  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10646}
10647
10648SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
10649                                                  SelectionDAG &DAG) const {
10650  DebugLoc dl = Op.getDebugLoc();
10651  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
10652  EVT VT = Op.getValueType();
10653
10654  if (!Subtarget->hasSSE2() || !VT.isVector())
10655    return SDValue();
10656
10657  unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
10658                      ExtraVT.getScalarType().getSizeInBits();
10659  SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
10660
10661  switch (VT.getSimpleVT().SimpleTy) {
10662    default: return SDValue();
10663    case MVT::v8i32:
10664    case MVT::v16i16:
10665      if (!Subtarget->hasAVX())
10666        return SDValue();
10667      if (!Subtarget->hasAVX2()) {
10668        // needs to be split
10669        unsigned NumElems = VT.getVectorNumElements();
10670
10671        // Extract the LHS vectors
10672        SDValue LHS = Op.getOperand(0);
10673        SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
10674        SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
10675
10676        MVT EltVT = VT.getVectorElementType().getSimpleVT();
10677        EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10678
10679        EVT ExtraEltVT = ExtraVT.getVectorElementType();
10680        unsigned ExtraNumElems = ExtraVT.getVectorNumElements();
10681        ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
10682                                   ExtraNumElems/2);
10683        SDValue Extra = DAG.getValueType(ExtraVT);
10684
10685        LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
10686        LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
10687
10688        return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);;
10689      }
10690      // fall through
10691    case MVT::v4i32:
10692    case MVT::v8i16: {
10693      SDValue Tmp1 = getTargetVShiftNode(X86ISD::VSHLI, dl, VT,
10694                                         Op.getOperand(0), ShAmt, DAG);
10695      return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, Tmp1, ShAmt, DAG);
10696    }
10697  }
10698}
10699
10700
10701SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
10702  DebugLoc dl = Op.getDebugLoc();
10703
10704  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
10705  // There isn't any reason to disable it if the target processor supports it.
10706  if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) {
10707    SDValue Chain = Op.getOperand(0);
10708    SDValue Zero = DAG.getConstant(0, MVT::i32);
10709    SDValue Ops[] = {
10710      DAG.getRegister(X86::ESP, MVT::i32), // Base
10711      DAG.getTargetConstant(1, MVT::i8),   // Scale
10712      DAG.getRegister(0, MVT::i32),        // Index
10713      DAG.getTargetConstant(0, MVT::i32),  // Disp
10714      DAG.getRegister(0, MVT::i32),        // Segment.
10715      Zero,
10716      Chain
10717    };
10718    SDNode *Res =
10719      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10720                          array_lengthof(Ops));
10721    return SDValue(Res, 0);
10722  }
10723
10724  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
10725  if (!isDev)
10726    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10727
10728  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10729  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
10730  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
10731  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
10732
10733  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
10734  if (!Op1 && !Op2 && !Op3 && Op4)
10735    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
10736
10737  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
10738  if (Op1 && !Op2 && !Op3 && !Op4)
10739    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
10740
10741  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
10742  //           (MFENCE)>;
10743  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10744}
10745
10746SDValue X86TargetLowering::LowerATOMIC_FENCE(SDValue Op,
10747                                             SelectionDAG &DAG) const {
10748  DebugLoc dl = Op.getDebugLoc();
10749  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
10750    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
10751  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
10752    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
10753
10754  // The only fence that needs an instruction is a sequentially-consistent
10755  // cross-thread fence.
10756  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
10757    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
10758    // no-sse2). There isn't any reason to disable it if the target processor
10759    // supports it.
10760    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
10761      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10762
10763    SDValue Chain = Op.getOperand(0);
10764    SDValue Zero = DAG.getConstant(0, MVT::i32);
10765    SDValue Ops[] = {
10766      DAG.getRegister(X86::ESP, MVT::i32), // Base
10767      DAG.getTargetConstant(1, MVT::i8),   // Scale
10768      DAG.getRegister(0, MVT::i32),        // Index
10769      DAG.getTargetConstant(0, MVT::i32),  // Disp
10770      DAG.getRegister(0, MVT::i32),        // Segment.
10771      Zero,
10772      Chain
10773    };
10774    SDNode *Res =
10775      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10776                         array_lengthof(Ops));
10777    return SDValue(Res, 0);
10778  }
10779
10780  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
10781  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10782}
10783
10784
10785SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
10786  EVT T = Op.getValueType();
10787  DebugLoc DL = Op.getDebugLoc();
10788  unsigned Reg = 0;
10789  unsigned size = 0;
10790  switch(T.getSimpleVT().SimpleTy) {
10791  default: llvm_unreachable("Invalid value type!");
10792  case MVT::i8:  Reg = X86::AL;  size = 1; break;
10793  case MVT::i16: Reg = X86::AX;  size = 2; break;
10794  case MVT::i32: Reg = X86::EAX; size = 4; break;
10795  case MVT::i64:
10796    assert(Subtarget->is64Bit() && "Node not type legal!");
10797    Reg = X86::RAX; size = 8;
10798    break;
10799  }
10800  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
10801                                    Op.getOperand(2), SDValue());
10802  SDValue Ops[] = { cpIn.getValue(0),
10803                    Op.getOperand(1),
10804                    Op.getOperand(3),
10805                    DAG.getTargetConstant(size, MVT::i8),
10806                    cpIn.getValue(1) };
10807  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10808  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
10809  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
10810                                           Ops, 5, T, MMO);
10811  SDValue cpOut =
10812    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
10813  return cpOut;
10814}
10815
10816SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
10817                                                 SelectionDAG &DAG) const {
10818  assert(Subtarget->is64Bit() && "Result not type legalized?");
10819  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10820  SDValue TheChain = Op.getOperand(0);
10821  DebugLoc dl = Op.getDebugLoc();
10822  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10823  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
10824  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
10825                                   rax.getValue(2));
10826  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
10827                            DAG.getConstant(32, MVT::i8));
10828  SDValue Ops[] = {
10829    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
10830    rdx.getValue(1)
10831  };
10832  return DAG.getMergeValues(Ops, 2, dl);
10833}
10834
10835SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
10836                                            SelectionDAG &DAG) const {
10837  EVT SrcVT = Op.getOperand(0).getValueType();
10838  EVT DstVT = Op.getValueType();
10839  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
10840         Subtarget->hasMMX() && "Unexpected custom BITCAST");
10841  assert((DstVT == MVT::i64 ||
10842          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
10843         "Unexpected custom BITCAST");
10844  // i64 <=> MMX conversions are Legal.
10845  if (SrcVT==MVT::i64 && DstVT.isVector())
10846    return Op;
10847  if (DstVT==MVT::i64 && SrcVT.isVector())
10848    return Op;
10849  // MMX <=> MMX conversions are Legal.
10850  if (SrcVT.isVector() && DstVT.isVector())
10851    return Op;
10852  // All other conversions need to be expanded.
10853  return SDValue();
10854}
10855
10856SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
10857  SDNode *Node = Op.getNode();
10858  DebugLoc dl = Node->getDebugLoc();
10859  EVT T = Node->getValueType(0);
10860  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
10861                              DAG.getConstant(0, T), Node->getOperand(2));
10862  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
10863                       cast<AtomicSDNode>(Node)->getMemoryVT(),
10864                       Node->getOperand(0),
10865                       Node->getOperand(1), negOp,
10866                       cast<AtomicSDNode>(Node)->getSrcValue(),
10867                       cast<AtomicSDNode>(Node)->getAlignment(),
10868                       cast<AtomicSDNode>(Node)->getOrdering(),
10869                       cast<AtomicSDNode>(Node)->getSynchScope());
10870}
10871
10872static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
10873  SDNode *Node = Op.getNode();
10874  DebugLoc dl = Node->getDebugLoc();
10875  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10876
10877  // Convert seq_cst store -> xchg
10878  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
10879  // FIXME: On 32-bit, store -> fist or movq would be more efficient
10880  //        (The only way to get a 16-byte store is cmpxchg16b)
10881  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
10882  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
10883      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
10884    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
10885                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
10886                                 Node->getOperand(0),
10887                                 Node->getOperand(1), Node->getOperand(2),
10888                                 cast<AtomicSDNode>(Node)->getMemOperand(),
10889                                 cast<AtomicSDNode>(Node)->getOrdering(),
10890                                 cast<AtomicSDNode>(Node)->getSynchScope());
10891    return Swap.getValue(1);
10892  }
10893  // Other atomic stores have a simple pattern.
10894  return Op;
10895}
10896
10897static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
10898  EVT VT = Op.getNode()->getValueType(0);
10899
10900  // Let legalize expand this if it isn't a legal type yet.
10901  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
10902    return SDValue();
10903
10904  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10905
10906  unsigned Opc;
10907  bool ExtraOp = false;
10908  switch (Op.getOpcode()) {
10909  default: llvm_unreachable("Invalid code");
10910  case ISD::ADDC: Opc = X86ISD::ADD; break;
10911  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
10912  case ISD::SUBC: Opc = X86ISD::SUB; break;
10913  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
10914  }
10915
10916  if (!ExtraOp)
10917    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10918                       Op.getOperand(1));
10919  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10920                     Op.getOperand(1), Op.getOperand(2));
10921}
10922
10923/// LowerOperation - Provide custom lowering hooks for some operations.
10924///
10925SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10926  switch (Op.getOpcode()) {
10927  default: llvm_unreachable("Should not custom lower this!");
10928  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
10929  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
10930  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op,DAG);
10931  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
10932  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
10933  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
10934  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10935  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
10936  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10937  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
10938  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10939  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
10940  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
10941  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10942  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10943  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10944  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10945  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
10946  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10947  case ISD::SHL_PARTS:
10948  case ISD::SRA_PARTS:
10949  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
10950  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
10951  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
10952  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
10953  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
10954  case ISD::FABS:               return LowerFABS(Op, DAG);
10955  case ISD::FNEG:               return LowerFNEG(Op, DAG);
10956  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
10957  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
10958  case ISD::SETCC:              return LowerSETCC(Op, DAG);
10959  case ISD::SELECT:             return LowerSELECT(Op, DAG);
10960  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
10961  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10962  case ISD::VASTART:            return LowerVASTART(Op, DAG);
10963  case ISD::VAARG:              return LowerVAARG(Op, DAG);
10964  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10965  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10966  case ISD::INTRINSIC_W_CHAIN:  return LowerINTRINSIC_W_CHAIN(Op, DAG);
10967  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10968  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10969  case ISD::FRAME_TO_ARGS_OFFSET:
10970                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
10971  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10972  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
10973  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10974  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10975  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10976  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
10977  case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ_ZERO_UNDEF(Op, DAG);
10978  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
10979  case ISD::MUL:                return LowerMUL(Op, DAG);
10980  case ISD::SRA:
10981  case ISD::SRL:
10982  case ISD::SHL:                return LowerShift(Op, DAG);
10983  case ISD::SADDO:
10984  case ISD::UADDO:
10985  case ISD::SSUBO:
10986  case ISD::USUBO:
10987  case ISD::SMULO:
10988  case ISD::UMULO:              return LowerXALUO(Op, DAG);
10989  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
10990  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10991  case ISD::ADDC:
10992  case ISD::ADDE:
10993  case ISD::SUBC:
10994  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
10995  case ISD::ADD:                return LowerADD(Op, DAG);
10996  case ISD::SUB:                return LowerSUB(Op, DAG);
10997  }
10998}
10999
11000static void ReplaceATOMIC_LOAD(SDNode *Node,
11001                                  SmallVectorImpl<SDValue> &Results,
11002                                  SelectionDAG &DAG) {
11003  DebugLoc dl = Node->getDebugLoc();
11004  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
11005
11006  // Convert wide load -> cmpxchg8b/cmpxchg16b
11007  // FIXME: On 32-bit, load -> fild or movq would be more efficient
11008  //        (The only way to get a 16-byte load is cmpxchg16b)
11009  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
11010  SDValue Zero = DAG.getConstant(0, VT);
11011  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
11012                               Node->getOperand(0),
11013                               Node->getOperand(1), Zero, Zero,
11014                               cast<AtomicSDNode>(Node)->getMemOperand(),
11015                               cast<AtomicSDNode>(Node)->getOrdering(),
11016                               cast<AtomicSDNode>(Node)->getSynchScope());
11017  Results.push_back(Swap.getValue(0));
11018  Results.push_back(Swap.getValue(1));
11019}
11020
11021void X86TargetLowering::
11022ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
11023                        SelectionDAG &DAG, unsigned NewOp) const {
11024  DebugLoc dl = Node->getDebugLoc();
11025  assert (Node->getValueType(0) == MVT::i64 &&
11026          "Only know how to expand i64 atomics");
11027
11028  SDValue Chain = Node->getOperand(0);
11029  SDValue In1 = Node->getOperand(1);
11030  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
11031                             Node->getOperand(2), DAG.getIntPtrConstant(0));
11032  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
11033                             Node->getOperand(2), DAG.getIntPtrConstant(1));
11034  SDValue Ops[] = { Chain, In1, In2L, In2H };
11035  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
11036  SDValue Result =
11037    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
11038                            cast<MemSDNode>(Node)->getMemOperand());
11039  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
11040  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
11041  Results.push_back(Result.getValue(2));
11042}
11043
11044/// ReplaceNodeResults - Replace a node with an illegal result type
11045/// with a new node built out of custom code.
11046void X86TargetLowering::ReplaceNodeResults(SDNode *N,
11047                                           SmallVectorImpl<SDValue>&Results,
11048                                           SelectionDAG &DAG) const {
11049  DebugLoc dl = N->getDebugLoc();
11050  switch (N->getOpcode()) {
11051  default:
11052    llvm_unreachable("Do not know how to custom type legalize this operation!");
11053  case ISD::SIGN_EXTEND_INREG:
11054  case ISD::ADDC:
11055  case ISD::ADDE:
11056  case ISD::SUBC:
11057  case ISD::SUBE:
11058    // We don't want to expand or promote these.
11059    return;
11060  case ISD::FP_TO_SINT:
11061  case ISD::FP_TO_UINT: {
11062    bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
11063
11064    if (!IsSigned && !isIntegerTypeFTOL(SDValue(N, 0).getValueType()))
11065      return;
11066
11067    std::pair<SDValue,SDValue> Vals =
11068        FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true);
11069    SDValue FIST = Vals.first, StackSlot = Vals.second;
11070    if (FIST.getNode() != 0) {
11071      EVT VT = N->getValueType(0);
11072      // Return a load from the stack slot.
11073      if (StackSlot.getNode() != 0)
11074        Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
11075                                      MachinePointerInfo(),
11076                                      false, false, false, 0));
11077      else
11078        Results.push_back(FIST);
11079    }
11080    return;
11081  }
11082  case ISD::READCYCLECOUNTER: {
11083    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11084    SDValue TheChain = N->getOperand(0);
11085    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
11086    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
11087                                     rd.getValue(1));
11088    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
11089                                     eax.getValue(2));
11090    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
11091    SDValue Ops[] = { eax, edx };
11092    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
11093    Results.push_back(edx.getValue(1));
11094    return;
11095  }
11096  case ISD::ATOMIC_CMP_SWAP: {
11097    EVT T = N->getValueType(0);
11098    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
11099    bool Regs64bit = T == MVT::i128;
11100    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
11101    SDValue cpInL, cpInH;
11102    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
11103                        DAG.getConstant(0, HalfT));
11104    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
11105                        DAG.getConstant(1, HalfT));
11106    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
11107                             Regs64bit ? X86::RAX : X86::EAX,
11108                             cpInL, SDValue());
11109    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
11110                             Regs64bit ? X86::RDX : X86::EDX,
11111                             cpInH, cpInL.getValue(1));
11112    SDValue swapInL, swapInH;
11113    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
11114                          DAG.getConstant(0, HalfT));
11115    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
11116                          DAG.getConstant(1, HalfT));
11117    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
11118                               Regs64bit ? X86::RBX : X86::EBX,
11119                               swapInL, cpInH.getValue(1));
11120    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
11121                               Regs64bit ? X86::RCX : X86::ECX,
11122                               swapInH, swapInL.getValue(1));
11123    SDValue Ops[] = { swapInH.getValue(0),
11124                      N->getOperand(1),
11125                      swapInH.getValue(1) };
11126    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11127    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
11128    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
11129                                  X86ISD::LCMPXCHG8_DAG;
11130    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
11131                                             Ops, 3, T, MMO);
11132    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
11133                                        Regs64bit ? X86::RAX : X86::EAX,
11134                                        HalfT, Result.getValue(1));
11135    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
11136                                        Regs64bit ? X86::RDX : X86::EDX,
11137                                        HalfT, cpOutL.getValue(2));
11138    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
11139    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
11140    Results.push_back(cpOutH.getValue(1));
11141    return;
11142  }
11143  case ISD::ATOMIC_LOAD_ADD:
11144    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
11145    return;
11146  case ISD::ATOMIC_LOAD_AND:
11147    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
11148    return;
11149  case ISD::ATOMIC_LOAD_NAND:
11150    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
11151    return;
11152  case ISD::ATOMIC_LOAD_OR:
11153    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
11154    return;
11155  case ISD::ATOMIC_LOAD_SUB:
11156    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
11157    return;
11158  case ISD::ATOMIC_LOAD_XOR:
11159    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
11160    return;
11161  case ISD::ATOMIC_SWAP:
11162    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
11163    return;
11164  case ISD::ATOMIC_LOAD:
11165    ReplaceATOMIC_LOAD(N, Results, DAG);
11166  }
11167}
11168
11169const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
11170  switch (Opcode) {
11171  default: return NULL;
11172  case X86ISD::BSF:                return "X86ISD::BSF";
11173  case X86ISD::BSR:                return "X86ISD::BSR";
11174  case X86ISD::SHLD:               return "X86ISD::SHLD";
11175  case X86ISD::SHRD:               return "X86ISD::SHRD";
11176  case X86ISD::FAND:               return "X86ISD::FAND";
11177  case X86ISD::FOR:                return "X86ISD::FOR";
11178  case X86ISD::FXOR:               return "X86ISD::FXOR";
11179  case X86ISD::FSRL:               return "X86ISD::FSRL";
11180  case X86ISD::FILD:               return "X86ISD::FILD";
11181  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
11182  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
11183  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
11184  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
11185  case X86ISD::FLD:                return "X86ISD::FLD";
11186  case X86ISD::FST:                return "X86ISD::FST";
11187  case X86ISD::CALL:               return "X86ISD::CALL";
11188  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
11189  case X86ISD::BT:                 return "X86ISD::BT";
11190  case X86ISD::CMP:                return "X86ISD::CMP";
11191  case X86ISD::COMI:               return "X86ISD::COMI";
11192  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
11193  case X86ISD::SETCC:              return "X86ISD::SETCC";
11194  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
11195  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
11196  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
11197  case X86ISD::CMOV:               return "X86ISD::CMOV";
11198  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
11199  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
11200  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
11201  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
11202  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
11203  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
11204  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
11205  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
11206  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
11207  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
11208  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
11209  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
11210  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
11211  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
11212  case X86ISD::PSIGN:              return "X86ISD::PSIGN";
11213  case X86ISD::BLENDV:             return "X86ISD::BLENDV";
11214  case X86ISD::BLENDPW:            return "X86ISD::BLENDPW";
11215  case X86ISD::BLENDPS:            return "X86ISD::BLENDPS";
11216  case X86ISD::BLENDPD:            return "X86ISD::BLENDPD";
11217  case X86ISD::HADD:               return "X86ISD::HADD";
11218  case X86ISD::HSUB:               return "X86ISD::HSUB";
11219  case X86ISD::FHADD:              return "X86ISD::FHADD";
11220  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
11221  case X86ISD::FMAX:               return "X86ISD::FMAX";
11222  case X86ISD::FMIN:               return "X86ISD::FMIN";
11223  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
11224  case X86ISD::FRCP:               return "X86ISD::FRCP";
11225  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
11226  case X86ISD::TLSBASEADDR:        return "X86ISD::TLSBASEADDR";
11227  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
11228  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
11229  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
11230  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
11231  case X86ISD::FNSTSW16r:          return "X86ISD::FNSTSW16r";
11232  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
11233  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
11234  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
11235  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
11236  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
11237  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
11238  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
11239  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
11240  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
11241  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
11242  case X86ISD::VSHLDQ:             return "X86ISD::VSHLDQ";
11243  case X86ISD::VSRLDQ:             return "X86ISD::VSRLDQ";
11244  case X86ISD::VSHL:               return "X86ISD::VSHL";
11245  case X86ISD::VSRL:               return "X86ISD::VSRL";
11246  case X86ISD::VSRA:               return "X86ISD::VSRA";
11247  case X86ISD::VSHLI:              return "X86ISD::VSHLI";
11248  case X86ISD::VSRLI:              return "X86ISD::VSRLI";
11249  case X86ISD::VSRAI:              return "X86ISD::VSRAI";
11250  case X86ISD::CMPP:               return "X86ISD::CMPP";
11251  case X86ISD::PCMPEQ:             return "X86ISD::PCMPEQ";
11252  case X86ISD::PCMPGT:             return "X86ISD::PCMPGT";
11253  case X86ISD::ADD:                return "X86ISD::ADD";
11254  case X86ISD::SUB:                return "X86ISD::SUB";
11255  case X86ISD::ADC:                return "X86ISD::ADC";
11256  case X86ISD::SBB:                return "X86ISD::SBB";
11257  case X86ISD::SMUL:               return "X86ISD::SMUL";
11258  case X86ISD::UMUL:               return "X86ISD::UMUL";
11259  case X86ISD::INC:                return "X86ISD::INC";
11260  case X86ISD::DEC:                return "X86ISD::DEC";
11261  case X86ISD::OR:                 return "X86ISD::OR";
11262  case X86ISD::XOR:                return "X86ISD::XOR";
11263  case X86ISD::AND:                return "X86ISD::AND";
11264  case X86ISD::ANDN:               return "X86ISD::ANDN";
11265  case X86ISD::BLSI:               return "X86ISD::BLSI";
11266  case X86ISD::BLSMSK:             return "X86ISD::BLSMSK";
11267  case X86ISD::BLSR:               return "X86ISD::BLSR";
11268  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
11269  case X86ISD::PTEST:              return "X86ISD::PTEST";
11270  case X86ISD::TESTP:              return "X86ISD::TESTP";
11271  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
11272  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
11273  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
11274  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
11275  case X86ISD::SHUFP:              return "X86ISD::SHUFP";
11276  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
11277  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
11278  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
11279  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
11280  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
11281  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
11282  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
11283  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
11284  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
11285  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
11286  case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
11287  case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
11288  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
11289  case X86ISD::VPERMILP:           return "X86ISD::VPERMILP";
11290  case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
11291  case X86ISD::VPERMV:             return "X86ISD::VPERMV";
11292  case X86ISD::VPERMI:             return "X86ISD::VPERMI";
11293  case X86ISD::PMULUDQ:            return "X86ISD::PMULUDQ";
11294  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
11295  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
11296  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
11297  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
11298  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
11299  case X86ISD::WIN_FTOL:           return "X86ISD::WIN_FTOL";
11300  case X86ISD::SAHF:               return "X86ISD::SAHF";
11301  case X86ISD::RDRAND:             return "X86ISD::RDRAND";
11302  case X86ISD::FMADD:              return "X86ISD::FMADD";
11303  case X86ISD::FMSUB:              return "X86ISD::FMSUB";
11304  case X86ISD::FNMADD:             return "X86ISD::FNMADD";
11305  case X86ISD::FNMSUB:             return "X86ISD::FNMSUB";
11306  case X86ISD::FMADDSUB:           return "X86ISD::FMADDSUB";
11307  case X86ISD::FMSUBADD:           return "X86ISD::FMSUBADD";
11308  }
11309}
11310
11311// isLegalAddressingMode - Return true if the addressing mode represented
11312// by AM is legal for this target, for a load/store of the specified type.
11313bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
11314                                              Type *Ty) const {
11315  // X86 supports extremely general addressing modes.
11316  CodeModel::Model M = getTargetMachine().getCodeModel();
11317  Reloc::Model R = getTargetMachine().getRelocationModel();
11318
11319  // X86 allows a sign-extended 32-bit immediate field as a displacement.
11320  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
11321    return false;
11322
11323  if (AM.BaseGV) {
11324    unsigned GVFlags =
11325      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
11326
11327    // If a reference to this global requires an extra load, we can't fold it.
11328    if (isGlobalStubReference(GVFlags))
11329      return false;
11330
11331    // If BaseGV requires a register for the PIC base, we cannot also have a
11332    // BaseReg specified.
11333    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
11334      return false;
11335
11336    // If lower 4G is not available, then we must use rip-relative addressing.
11337    if ((M != CodeModel::Small || R != Reloc::Static) &&
11338        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
11339      return false;
11340  }
11341
11342  switch (AM.Scale) {
11343  case 0:
11344  case 1:
11345  case 2:
11346  case 4:
11347  case 8:
11348    // These scales always work.
11349    break;
11350  case 3:
11351  case 5:
11352  case 9:
11353    // These scales are formed with basereg+scalereg.  Only accept if there is
11354    // no basereg yet.
11355    if (AM.HasBaseReg)
11356      return false;
11357    break;
11358  default:  // Other stuff never works.
11359    return false;
11360  }
11361
11362  return true;
11363}
11364
11365
11366bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
11367  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
11368    return false;
11369  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
11370  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
11371  if (NumBits1 <= NumBits2)
11372    return false;
11373  return true;
11374}
11375
11376bool X86TargetLowering::isLegalICmpImmediate(int64_t Imm) const {
11377  return Imm == (int32_t)Imm;
11378}
11379
11380bool X86TargetLowering::isLegalAddImmediate(int64_t Imm) const {
11381  // Can also use sub to handle negated immediates.
11382  return Imm == (int32_t)Imm;
11383}
11384
11385bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
11386  if (!VT1.isInteger() || !VT2.isInteger())
11387    return false;
11388  unsigned NumBits1 = VT1.getSizeInBits();
11389  unsigned NumBits2 = VT2.getSizeInBits();
11390  if (NumBits1 <= NumBits2)
11391    return false;
11392  return true;
11393}
11394
11395bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
11396  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11397  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
11398}
11399
11400bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
11401  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11402  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
11403}
11404
11405bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
11406  // i16 instructions are longer (0x66 prefix) and potentially slower.
11407  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
11408}
11409
11410/// isShuffleMaskLegal - Targets can use this to indicate that they only
11411/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
11412/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
11413/// are assumed to be legal.
11414bool
11415X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
11416                                      EVT VT) const {
11417  // Very little shuffling can be done for 64-bit vectors right now.
11418  if (VT.getSizeInBits() == 64)
11419    return false;
11420
11421  // FIXME: pshufb, blends, shifts.
11422  return (VT.getVectorNumElements() == 2 ||
11423          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
11424          isMOVLMask(M, VT) ||
11425          isSHUFPMask(M, VT, Subtarget->hasAVX()) ||
11426          isPSHUFDMask(M, VT) ||
11427          isPSHUFHWMask(M, VT, Subtarget->hasAVX2()) ||
11428          isPSHUFLWMask(M, VT, Subtarget->hasAVX2()) ||
11429          isPALIGNRMask(M, VT, Subtarget) ||
11430          isUNPCKLMask(M, VT, Subtarget->hasAVX2()) ||
11431          isUNPCKHMask(M, VT, Subtarget->hasAVX2()) ||
11432          isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasAVX2()) ||
11433          isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasAVX2()));
11434}
11435
11436bool
11437X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
11438                                          EVT VT) const {
11439  unsigned NumElts = VT.getVectorNumElements();
11440  // FIXME: This collection of masks seems suspect.
11441  if (NumElts == 2)
11442    return true;
11443  if (NumElts == 4 && VT.getSizeInBits() == 128) {
11444    return (isMOVLMask(Mask, VT)  ||
11445            isCommutedMOVLMask(Mask, VT, true) ||
11446            isSHUFPMask(Mask, VT, Subtarget->hasAVX()) ||
11447            isSHUFPMask(Mask, VT, Subtarget->hasAVX(), /* Commuted */ true));
11448  }
11449  return false;
11450}
11451
11452//===----------------------------------------------------------------------===//
11453//                           X86 Scheduler Hooks
11454//===----------------------------------------------------------------------===//
11455
11456// private utility function
11457MachineBasicBlock *
11458X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
11459                                                       MachineBasicBlock *MBB,
11460                                                       unsigned regOpc,
11461                                                       unsigned immOpc,
11462                                                       unsigned LoadOpc,
11463                                                       unsigned CXchgOpc,
11464                                                       unsigned notOpc,
11465                                                       unsigned EAXreg,
11466                                                 const TargetRegisterClass *RC,
11467                                                       bool Invert) const {
11468  // For the atomic bitwise operator, we generate
11469  //   thisMBB:
11470  //   newMBB:
11471  //     ld  t1 = [bitinstr.addr]
11472  //     op  t2 = t1, [bitinstr.val]
11473  //     not t3 = t2  (if Invert)
11474  //     mov EAX = t1
11475  //     lcs dest = [bitinstr.addr], t3  [EAX is implicit]
11476  //     bz  newMBB
11477  //     fallthrough -->nextMBB
11478  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11479  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11480  MachineFunction::iterator MBBIter = MBB;
11481  ++MBBIter;
11482
11483  /// First build the CFG
11484  MachineFunction *F = MBB->getParent();
11485  MachineBasicBlock *thisMBB = MBB;
11486  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11487  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11488  F->insert(MBBIter, newMBB);
11489  F->insert(MBBIter, nextMBB);
11490
11491  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11492  nextMBB->splice(nextMBB->begin(), thisMBB,
11493                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11494                  thisMBB->end());
11495  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11496
11497  // Update thisMBB to fall through to newMBB
11498  thisMBB->addSuccessor(newMBB);
11499
11500  // newMBB jumps to itself and fall through to nextMBB
11501  newMBB->addSuccessor(nextMBB);
11502  newMBB->addSuccessor(newMBB);
11503
11504  // Insert instructions into newMBB based on incoming instruction
11505  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11506         "unexpected number of operands");
11507  DebugLoc dl = bInstr->getDebugLoc();
11508  MachineOperand& destOper = bInstr->getOperand(0);
11509  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11510  int numArgs = bInstr->getNumOperands() - 1;
11511  for (int i=0; i < numArgs; ++i)
11512    argOpers[i] = &bInstr->getOperand(i+1);
11513
11514  // x86 address has 4 operands: base, index, scale, and displacement
11515  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11516  int valArgIndx = lastAddrIndx + 1;
11517
11518  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11519  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
11520  for (int i=0; i <= lastAddrIndx; ++i)
11521    (*MIB).addOperand(*argOpers[i]);
11522
11523  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11524  assert((argOpers[valArgIndx]->isReg() ||
11525          argOpers[valArgIndx]->isImm()) &&
11526         "invalid operand");
11527  if (argOpers[valArgIndx]->isReg())
11528    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
11529  else
11530    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
11531  MIB.addReg(t1);
11532  (*MIB).addOperand(*argOpers[valArgIndx]);
11533
11534  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
11535  if (Invert) {
11536    MIB = BuildMI(newMBB, dl, TII->get(notOpc), t3).addReg(t2);
11537  }
11538  else
11539    t3 = t2;
11540
11541  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
11542  MIB.addReg(t1);
11543
11544  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
11545  for (int i=0; i <= lastAddrIndx; ++i)
11546    (*MIB).addOperand(*argOpers[i]);
11547  MIB.addReg(t3);
11548  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11549  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11550                    bInstr->memoperands_end());
11551
11552  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11553  MIB.addReg(EAXreg);
11554
11555  // insert branch
11556  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11557
11558  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11559  return nextMBB;
11560}
11561
11562// private utility function:  64 bit atomics on 32 bit host.
11563MachineBasicBlock *
11564X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
11565                                                       MachineBasicBlock *MBB,
11566                                                       unsigned regOpcL,
11567                                                       unsigned regOpcH,
11568                                                       unsigned immOpcL,
11569                                                       unsigned immOpcH,
11570                                                       bool Invert) const {
11571  // For the atomic bitwise operator, we generate
11572  //   thisMBB (instructions are in pairs, except cmpxchg8b)
11573  //     ld t1,t2 = [bitinstr.addr]
11574  //   newMBB:
11575  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
11576  //     op  t5, t6 <- out1, out2, [bitinstr.val]
11577  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
11578  //     neg t7, t8 < t5, t6  (if Invert)
11579  //     mov ECX, EBX <- t5, t6
11580  //     mov EAX, EDX <- t1, t2
11581  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
11582  //     mov t3, t4 <- EAX, EDX
11583  //     bz  newMBB
11584  //     result in out1, out2
11585  //     fallthrough -->nextMBB
11586
11587  const TargetRegisterClass *RC = &X86::GR32RegClass;
11588  const unsigned LoadOpc = X86::MOV32rm;
11589  const unsigned NotOpc = X86::NOT32r;
11590  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11591  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11592  MachineFunction::iterator MBBIter = MBB;
11593  ++MBBIter;
11594
11595  /// First build the CFG
11596  MachineFunction *F = MBB->getParent();
11597  MachineBasicBlock *thisMBB = MBB;
11598  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11599  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11600  F->insert(MBBIter, newMBB);
11601  F->insert(MBBIter, nextMBB);
11602
11603  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11604  nextMBB->splice(nextMBB->begin(), thisMBB,
11605                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11606                  thisMBB->end());
11607  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11608
11609  // Update thisMBB to fall through to newMBB
11610  thisMBB->addSuccessor(newMBB);
11611
11612  // newMBB jumps to itself and fall through to nextMBB
11613  newMBB->addSuccessor(nextMBB);
11614  newMBB->addSuccessor(newMBB);
11615
11616  DebugLoc dl = bInstr->getDebugLoc();
11617  // Insert instructions into newMBB based on incoming instruction
11618  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
11619  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
11620         "unexpected number of operands");
11621  MachineOperand& dest1Oper = bInstr->getOperand(0);
11622  MachineOperand& dest2Oper = bInstr->getOperand(1);
11623  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11624  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
11625    argOpers[i] = &bInstr->getOperand(i+2);
11626
11627    // We use some of the operands multiple times, so conservatively just
11628    // clear any kill flags that might be present.
11629    if (argOpers[i]->isReg() && argOpers[i]->isUse())
11630      argOpers[i]->setIsKill(false);
11631  }
11632
11633  // x86 address has 5 operands: base, index, scale, displacement, and segment.
11634  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11635
11636  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11637  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
11638  for (int i=0; i <= lastAddrIndx; ++i)
11639    (*MIB).addOperand(*argOpers[i]);
11640  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11641  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
11642  // add 4 to displacement.
11643  for (int i=0; i <= lastAddrIndx-2; ++i)
11644    (*MIB).addOperand(*argOpers[i]);
11645  MachineOperand newOp3 = *(argOpers[3]);
11646  if (newOp3.isImm())
11647    newOp3.setImm(newOp3.getImm()+4);
11648  else
11649    newOp3.setOffset(newOp3.getOffset()+4);
11650  (*MIB).addOperand(newOp3);
11651  (*MIB).addOperand(*argOpers[lastAddrIndx]);
11652
11653  // t3/4 are defined later, at the bottom of the loop
11654  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
11655  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
11656  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
11657    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
11658  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
11659    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
11660
11661  // The subsequent operations should be using the destination registers of
11662  // the PHI instructions.
11663  t1 = dest1Oper.getReg();
11664  t2 = dest2Oper.getReg();
11665
11666  int valArgIndx = lastAddrIndx + 1;
11667  assert((argOpers[valArgIndx]->isReg() ||
11668          argOpers[valArgIndx]->isImm()) &&
11669         "invalid operand");
11670  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
11671  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
11672  if (argOpers[valArgIndx]->isReg())
11673    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
11674  else
11675    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
11676  if (regOpcL != X86::MOV32rr)
11677    MIB.addReg(t1);
11678  (*MIB).addOperand(*argOpers[valArgIndx]);
11679  assert(argOpers[valArgIndx + 1]->isReg() ==
11680         argOpers[valArgIndx]->isReg());
11681  assert(argOpers[valArgIndx + 1]->isImm() ==
11682         argOpers[valArgIndx]->isImm());
11683  if (argOpers[valArgIndx + 1]->isReg())
11684    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
11685  else
11686    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
11687  if (regOpcH != X86::MOV32rr)
11688    MIB.addReg(t2);
11689  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
11690
11691  unsigned t7, t8;
11692  if (Invert) {
11693    t7 = F->getRegInfo().createVirtualRegister(RC);
11694    t8 = F->getRegInfo().createVirtualRegister(RC);
11695    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t7).addReg(t5);
11696    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t8).addReg(t6);
11697  } else {
11698    t7 = t5;
11699    t8 = t6;
11700  }
11701
11702  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11703  MIB.addReg(t1);
11704  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
11705  MIB.addReg(t2);
11706
11707  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
11708  MIB.addReg(t7);
11709  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
11710  MIB.addReg(t8);
11711
11712  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
11713  for (int i=0; i <= lastAddrIndx; ++i)
11714    (*MIB).addOperand(*argOpers[i]);
11715
11716  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11717  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11718                    bInstr->memoperands_end());
11719
11720  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
11721  MIB.addReg(X86::EAX);
11722  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
11723  MIB.addReg(X86::EDX);
11724
11725  // insert branch
11726  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11727
11728  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11729  return nextMBB;
11730}
11731
11732// private utility function
11733MachineBasicBlock *
11734X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
11735                                                      MachineBasicBlock *MBB,
11736                                                      unsigned cmovOpc) const {
11737  // For the atomic min/max operator, we generate
11738  //   thisMBB:
11739  //   newMBB:
11740  //     ld t1 = [min/max.addr]
11741  //     mov t2 = [min/max.val]
11742  //     cmp  t1, t2
11743  //     cmov[cond] t2 = t1
11744  //     mov EAX = t1
11745  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11746  //     bz   newMBB
11747  //     fallthrough -->nextMBB
11748  //
11749  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11750  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11751  MachineFunction::iterator MBBIter = MBB;
11752  ++MBBIter;
11753
11754  /// First build the CFG
11755  MachineFunction *F = MBB->getParent();
11756  MachineBasicBlock *thisMBB = MBB;
11757  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11758  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11759  F->insert(MBBIter, newMBB);
11760  F->insert(MBBIter, nextMBB);
11761
11762  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11763  nextMBB->splice(nextMBB->begin(), thisMBB,
11764                  llvm::next(MachineBasicBlock::iterator(mInstr)),
11765                  thisMBB->end());
11766  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11767
11768  // Update thisMBB to fall through to newMBB
11769  thisMBB->addSuccessor(newMBB);
11770
11771  // newMBB jumps to newMBB and fall through to nextMBB
11772  newMBB->addSuccessor(nextMBB);
11773  newMBB->addSuccessor(newMBB);
11774
11775  DebugLoc dl = mInstr->getDebugLoc();
11776  // Insert instructions into newMBB based on incoming instruction
11777  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11778         "unexpected number of operands");
11779  MachineOperand& destOper = mInstr->getOperand(0);
11780  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11781  int numArgs = mInstr->getNumOperands() - 1;
11782  for (int i=0; i < numArgs; ++i)
11783    argOpers[i] = &mInstr->getOperand(i+1);
11784
11785  // x86 address has 4 operands: base, index, scale, and displacement
11786  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11787  int valArgIndx = lastAddrIndx + 1;
11788
11789  unsigned t1 = F->getRegInfo().createVirtualRegister(&X86::GR32RegClass);
11790  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
11791  for (int i=0; i <= lastAddrIndx; ++i)
11792    (*MIB).addOperand(*argOpers[i]);
11793
11794  // We only support register and immediate values
11795  assert((argOpers[valArgIndx]->isReg() ||
11796          argOpers[valArgIndx]->isImm()) &&
11797         "invalid operand");
11798
11799  unsigned t2 = F->getRegInfo().createVirtualRegister(&X86::GR32RegClass);
11800  if (argOpers[valArgIndx]->isReg())
11801    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
11802  else
11803    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
11804  (*MIB).addOperand(*argOpers[valArgIndx]);
11805
11806  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11807  MIB.addReg(t1);
11808
11809  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
11810  MIB.addReg(t1);
11811  MIB.addReg(t2);
11812
11813  // Generate movc
11814  unsigned t3 = F->getRegInfo().createVirtualRegister(&X86::GR32RegClass);
11815  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
11816  MIB.addReg(t2);
11817  MIB.addReg(t1);
11818
11819  // Cmp and exchange if none has modified the memory location
11820  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
11821  for (int i=0; i <= lastAddrIndx; ++i)
11822    (*MIB).addOperand(*argOpers[i]);
11823  MIB.addReg(t3);
11824  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11825  (*MIB).setMemRefs(mInstr->memoperands_begin(),
11826                    mInstr->memoperands_end());
11827
11828  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11829  MIB.addReg(X86::EAX);
11830
11831  // insert branch
11832  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11833
11834  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
11835  return nextMBB;
11836}
11837
11838// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
11839// or XMM0_V32I8 in AVX all of this code can be replaced with that
11840// in the .td file.
11841MachineBasicBlock *
11842X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
11843                            unsigned numArgs, bool memArg) const {
11844  assert(Subtarget->hasSSE42() &&
11845         "Target must have SSE4.2 or AVX features enabled");
11846
11847  DebugLoc dl = MI->getDebugLoc();
11848  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11849  unsigned Opc;
11850  if (!Subtarget->hasAVX()) {
11851    if (memArg)
11852      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
11853    else
11854      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
11855  } else {
11856    if (memArg)
11857      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
11858    else
11859      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
11860  }
11861
11862  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
11863  for (unsigned i = 0; i < numArgs; ++i) {
11864    MachineOperand &Op = MI->getOperand(i+1);
11865    if (!(Op.isReg() && Op.isImplicit()))
11866      MIB.addOperand(Op);
11867  }
11868  BuildMI(*BB, MI, dl,
11869    TII->get(Subtarget->hasAVX() ? X86::VMOVAPSrr : X86::MOVAPSrr),
11870             MI->getOperand(0).getReg())
11871    .addReg(X86::XMM0);
11872
11873  MI->eraseFromParent();
11874  return BB;
11875}
11876
11877MachineBasicBlock *
11878X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
11879  DebugLoc dl = MI->getDebugLoc();
11880  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11881
11882  // Address into RAX/EAX, other two args into ECX, EDX.
11883  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
11884  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
11885  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
11886  for (int i = 0; i < X86::AddrNumOperands; ++i)
11887    MIB.addOperand(MI->getOperand(i));
11888
11889  unsigned ValOps = X86::AddrNumOperands;
11890  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11891    .addReg(MI->getOperand(ValOps).getReg());
11892  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
11893    .addReg(MI->getOperand(ValOps+1).getReg());
11894
11895  // The instruction doesn't actually take any operands though.
11896  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
11897
11898  MI->eraseFromParent(); // The pseudo is gone now.
11899  return BB;
11900}
11901
11902MachineBasicBlock *
11903X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
11904  DebugLoc dl = MI->getDebugLoc();
11905  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11906
11907  // First arg in ECX, the second in EAX.
11908  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11909    .addReg(MI->getOperand(0).getReg());
11910  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
11911    .addReg(MI->getOperand(1).getReg());
11912
11913  // The instruction doesn't actually take any operands though.
11914  BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
11915
11916  MI->eraseFromParent(); // The pseudo is gone now.
11917  return BB;
11918}
11919
11920MachineBasicBlock *
11921X86TargetLowering::EmitVAARG64WithCustomInserter(
11922                   MachineInstr *MI,
11923                   MachineBasicBlock *MBB) const {
11924  // Emit va_arg instruction on X86-64.
11925
11926  // Operands to this pseudo-instruction:
11927  // 0  ) Output        : destination address (reg)
11928  // 1-5) Input         : va_list address (addr, i64mem)
11929  // 6  ) ArgSize       : Size (in bytes) of vararg type
11930  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
11931  // 8  ) Align         : Alignment of type
11932  // 9  ) EFLAGS (implicit-def)
11933
11934  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
11935  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
11936
11937  unsigned DestReg = MI->getOperand(0).getReg();
11938  MachineOperand &Base = MI->getOperand(1);
11939  MachineOperand &Scale = MI->getOperand(2);
11940  MachineOperand &Index = MI->getOperand(3);
11941  MachineOperand &Disp = MI->getOperand(4);
11942  MachineOperand &Segment = MI->getOperand(5);
11943  unsigned ArgSize = MI->getOperand(6).getImm();
11944  unsigned ArgMode = MI->getOperand(7).getImm();
11945  unsigned Align = MI->getOperand(8).getImm();
11946
11947  // Memory Reference
11948  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
11949  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
11950  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
11951
11952  // Machine Information
11953  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11954  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
11955  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
11956  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
11957  DebugLoc DL = MI->getDebugLoc();
11958
11959  // struct va_list {
11960  //   i32   gp_offset
11961  //   i32   fp_offset
11962  //   i64   overflow_area (address)
11963  //   i64   reg_save_area (address)
11964  // }
11965  // sizeof(va_list) = 24
11966  // alignment(va_list) = 8
11967
11968  unsigned TotalNumIntRegs = 6;
11969  unsigned TotalNumXMMRegs = 8;
11970  bool UseGPOffset = (ArgMode == 1);
11971  bool UseFPOffset = (ArgMode == 2);
11972  unsigned MaxOffset = TotalNumIntRegs * 8 +
11973                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
11974
11975  /* Align ArgSize to a multiple of 8 */
11976  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
11977  bool NeedsAlign = (Align > 8);
11978
11979  MachineBasicBlock *thisMBB = MBB;
11980  MachineBasicBlock *overflowMBB;
11981  MachineBasicBlock *offsetMBB;
11982  MachineBasicBlock *endMBB;
11983
11984  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
11985  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
11986  unsigned OffsetReg = 0;
11987
11988  if (!UseGPOffset && !UseFPOffset) {
11989    // If we only pull from the overflow region, we don't create a branch.
11990    // We don't need to alter control flow.
11991    OffsetDestReg = 0; // unused
11992    OverflowDestReg = DestReg;
11993
11994    offsetMBB = NULL;
11995    overflowMBB = thisMBB;
11996    endMBB = thisMBB;
11997  } else {
11998    // First emit code to check if gp_offset (or fp_offset) is below the bound.
11999    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
12000    // If not, pull from overflow_area. (branch to overflowMBB)
12001    //
12002    //       thisMBB
12003    //         |     .
12004    //         |        .
12005    //     offsetMBB   overflowMBB
12006    //         |        .
12007    //         |     .
12008    //        endMBB
12009
12010    // Registers for the PHI in endMBB
12011    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
12012    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
12013
12014    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
12015    MachineFunction *MF = MBB->getParent();
12016    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12017    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12018    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12019
12020    MachineFunction::iterator MBBIter = MBB;
12021    ++MBBIter;
12022
12023    // Insert the new basic blocks
12024    MF->insert(MBBIter, offsetMBB);
12025    MF->insert(MBBIter, overflowMBB);
12026    MF->insert(MBBIter, endMBB);
12027
12028    // Transfer the remainder of MBB and its successor edges to endMBB.
12029    endMBB->splice(endMBB->begin(), thisMBB,
12030                    llvm::next(MachineBasicBlock::iterator(MI)),
12031                    thisMBB->end());
12032    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
12033
12034    // Make offsetMBB and overflowMBB successors of thisMBB
12035    thisMBB->addSuccessor(offsetMBB);
12036    thisMBB->addSuccessor(overflowMBB);
12037
12038    // endMBB is a successor of both offsetMBB and overflowMBB
12039    offsetMBB->addSuccessor(endMBB);
12040    overflowMBB->addSuccessor(endMBB);
12041
12042    // Load the offset value into a register
12043    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
12044    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
12045      .addOperand(Base)
12046      .addOperand(Scale)
12047      .addOperand(Index)
12048      .addDisp(Disp, UseFPOffset ? 4 : 0)
12049      .addOperand(Segment)
12050      .setMemRefs(MMOBegin, MMOEnd);
12051
12052    // Check if there is enough room left to pull this argument.
12053    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
12054      .addReg(OffsetReg)
12055      .addImm(MaxOffset + 8 - ArgSizeA8);
12056
12057    // Branch to "overflowMBB" if offset >= max
12058    // Fall through to "offsetMBB" otherwise
12059    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
12060      .addMBB(overflowMBB);
12061  }
12062
12063  // In offsetMBB, emit code to use the reg_save_area.
12064  if (offsetMBB) {
12065    assert(OffsetReg != 0);
12066
12067    // Read the reg_save_area address.
12068    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
12069    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
12070      .addOperand(Base)
12071      .addOperand(Scale)
12072      .addOperand(Index)
12073      .addDisp(Disp, 16)
12074      .addOperand(Segment)
12075      .setMemRefs(MMOBegin, MMOEnd);
12076
12077    // Zero-extend the offset
12078    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
12079      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
12080        .addImm(0)
12081        .addReg(OffsetReg)
12082        .addImm(X86::sub_32bit);
12083
12084    // Add the offset to the reg_save_area to get the final address.
12085    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
12086      .addReg(OffsetReg64)
12087      .addReg(RegSaveReg);
12088
12089    // Compute the offset for the next argument
12090    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
12091    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
12092      .addReg(OffsetReg)
12093      .addImm(UseFPOffset ? 16 : 8);
12094
12095    // Store it back into the va_list.
12096    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
12097      .addOperand(Base)
12098      .addOperand(Scale)
12099      .addOperand(Index)
12100      .addDisp(Disp, UseFPOffset ? 4 : 0)
12101      .addOperand(Segment)
12102      .addReg(NextOffsetReg)
12103      .setMemRefs(MMOBegin, MMOEnd);
12104
12105    // Jump to endMBB
12106    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
12107      .addMBB(endMBB);
12108  }
12109
12110  //
12111  // Emit code to use overflow area
12112  //
12113
12114  // Load the overflow_area address into a register.
12115  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
12116  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
12117    .addOperand(Base)
12118    .addOperand(Scale)
12119    .addOperand(Index)
12120    .addDisp(Disp, 8)
12121    .addOperand(Segment)
12122    .setMemRefs(MMOBegin, MMOEnd);
12123
12124  // If we need to align it, do so. Otherwise, just copy the address
12125  // to OverflowDestReg.
12126  if (NeedsAlign) {
12127    // Align the overflow address
12128    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
12129    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
12130
12131    // aligned_addr = (addr + (align-1)) & ~(align-1)
12132    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
12133      .addReg(OverflowAddrReg)
12134      .addImm(Align-1);
12135
12136    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
12137      .addReg(TmpReg)
12138      .addImm(~(uint64_t)(Align-1));
12139  } else {
12140    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
12141      .addReg(OverflowAddrReg);
12142  }
12143
12144  // Compute the next overflow address after this argument.
12145  // (the overflow address should be kept 8-byte aligned)
12146  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
12147  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
12148    .addReg(OverflowDestReg)
12149    .addImm(ArgSizeA8);
12150
12151  // Store the new overflow address.
12152  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
12153    .addOperand(Base)
12154    .addOperand(Scale)
12155    .addOperand(Index)
12156    .addDisp(Disp, 8)
12157    .addOperand(Segment)
12158    .addReg(NextAddrReg)
12159    .setMemRefs(MMOBegin, MMOEnd);
12160
12161  // If we branched, emit the PHI to the front of endMBB.
12162  if (offsetMBB) {
12163    BuildMI(*endMBB, endMBB->begin(), DL,
12164            TII->get(X86::PHI), DestReg)
12165      .addReg(OffsetDestReg).addMBB(offsetMBB)
12166      .addReg(OverflowDestReg).addMBB(overflowMBB);
12167  }
12168
12169  // Erase the pseudo instruction
12170  MI->eraseFromParent();
12171
12172  return endMBB;
12173}
12174
12175MachineBasicBlock *
12176X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
12177                                                 MachineInstr *MI,
12178                                                 MachineBasicBlock *MBB) const {
12179  // Emit code to save XMM registers to the stack. The ABI says that the
12180  // number of registers to save is given in %al, so it's theoretically
12181  // possible to do an indirect jump trick to avoid saving all of them,
12182  // however this code takes a simpler approach and just executes all
12183  // of the stores if %al is non-zero. It's less code, and it's probably
12184  // easier on the hardware branch predictor, and stores aren't all that
12185  // expensive anyway.
12186
12187  // Create the new basic blocks. One block contains all the XMM stores,
12188  // and one block is the final destination regardless of whether any
12189  // stores were performed.
12190  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
12191  MachineFunction *F = MBB->getParent();
12192  MachineFunction::iterator MBBIter = MBB;
12193  ++MBBIter;
12194  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
12195  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
12196  F->insert(MBBIter, XMMSaveMBB);
12197  F->insert(MBBIter, EndMBB);
12198
12199  // Transfer the remainder of MBB and its successor edges to EndMBB.
12200  EndMBB->splice(EndMBB->begin(), MBB,
12201                 llvm::next(MachineBasicBlock::iterator(MI)),
12202                 MBB->end());
12203  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
12204
12205  // The original block will now fall through to the XMM save block.
12206  MBB->addSuccessor(XMMSaveMBB);
12207  // The XMMSaveMBB will fall through to the end block.
12208  XMMSaveMBB->addSuccessor(EndMBB);
12209
12210  // Now add the instructions.
12211  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12212  DebugLoc DL = MI->getDebugLoc();
12213
12214  unsigned CountReg = MI->getOperand(0).getReg();
12215  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
12216  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
12217
12218  if (!Subtarget->isTargetWin64()) {
12219    // If %al is 0, branch around the XMM save block.
12220    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
12221    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
12222    MBB->addSuccessor(EndMBB);
12223  }
12224
12225  unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
12226  // In the XMM save block, save all the XMM argument registers.
12227  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
12228    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
12229    MachineMemOperand *MMO =
12230      F->getMachineMemOperand(
12231          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
12232        MachineMemOperand::MOStore,
12233        /*Size=*/16, /*Align=*/16);
12234    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
12235      .addFrameIndex(RegSaveFrameIndex)
12236      .addImm(/*Scale=*/1)
12237      .addReg(/*IndexReg=*/0)
12238      .addImm(/*Disp=*/Offset)
12239      .addReg(/*Segment=*/0)
12240      .addReg(MI->getOperand(i).getReg())
12241      .addMemOperand(MMO);
12242  }
12243
12244  MI->eraseFromParent();   // The pseudo instruction is gone now.
12245
12246  return EndMBB;
12247}
12248
12249// The EFLAGS operand of SelectItr might be missing a kill marker
12250// because there were multiple uses of EFLAGS, and ISel didn't know
12251// which to mark. Figure out whether SelectItr should have had a
12252// kill marker, and set it if it should. Returns the correct kill
12253// marker value.
12254static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
12255                                     MachineBasicBlock* BB,
12256                                     const TargetRegisterInfo* TRI) {
12257  // Scan forward through BB for a use/def of EFLAGS.
12258  MachineBasicBlock::iterator miI(llvm::next(SelectItr));
12259  for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
12260    const MachineInstr& mi = *miI;
12261    if (mi.readsRegister(X86::EFLAGS))
12262      return false;
12263    if (mi.definesRegister(X86::EFLAGS))
12264      break; // Should have kill-flag - update below.
12265  }
12266
12267  // If we hit the end of the block, check whether EFLAGS is live into a
12268  // successor.
12269  if (miI == BB->end()) {
12270    for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
12271                                          sEnd = BB->succ_end();
12272         sItr != sEnd; ++sItr) {
12273      MachineBasicBlock* succ = *sItr;
12274      if (succ->isLiveIn(X86::EFLAGS))
12275        return false;
12276    }
12277  }
12278
12279  // We found a def, or hit the end of the basic block and EFLAGS wasn't live
12280  // out. SelectMI should have a kill flag on EFLAGS.
12281  SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
12282  return true;
12283}
12284
12285MachineBasicBlock *
12286X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
12287                                     MachineBasicBlock *BB) const {
12288  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12289  DebugLoc DL = MI->getDebugLoc();
12290
12291  // To "insert" a SELECT_CC instruction, we actually have to insert the
12292  // diamond control-flow pattern.  The incoming instruction knows the
12293  // destination vreg to set, the condition code register to branch on, the
12294  // true/false values to select between, and a branch opcode to use.
12295  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12296  MachineFunction::iterator It = BB;
12297  ++It;
12298
12299  //  thisMBB:
12300  //  ...
12301  //   TrueVal = ...
12302  //   cmpTY ccX, r1, r2
12303  //   bCC copy1MBB
12304  //   fallthrough --> copy0MBB
12305  MachineBasicBlock *thisMBB = BB;
12306  MachineFunction *F = BB->getParent();
12307  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
12308  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
12309  F->insert(It, copy0MBB);
12310  F->insert(It, sinkMBB);
12311
12312  // If the EFLAGS register isn't dead in the terminator, then claim that it's
12313  // live into the sink and copy blocks.
12314  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
12315  if (!MI->killsRegister(X86::EFLAGS) &&
12316      !checkAndUpdateEFLAGSKill(MI, BB, TRI)) {
12317    copy0MBB->addLiveIn(X86::EFLAGS);
12318    sinkMBB->addLiveIn(X86::EFLAGS);
12319  }
12320
12321  // Transfer the remainder of BB and its successor edges to sinkMBB.
12322  sinkMBB->splice(sinkMBB->begin(), BB,
12323                  llvm::next(MachineBasicBlock::iterator(MI)),
12324                  BB->end());
12325  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12326
12327  // Add the true and fallthrough blocks as its successors.
12328  BB->addSuccessor(copy0MBB);
12329  BB->addSuccessor(sinkMBB);
12330
12331  // Create the conditional branch instruction.
12332  unsigned Opc =
12333    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
12334  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
12335
12336  //  copy0MBB:
12337  //   %FalseValue = ...
12338  //   # fallthrough to sinkMBB
12339  copy0MBB->addSuccessor(sinkMBB);
12340
12341  //  sinkMBB:
12342  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
12343  //  ...
12344  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12345          TII->get(X86::PHI), MI->getOperand(0).getReg())
12346    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
12347    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
12348
12349  MI->eraseFromParent();   // The pseudo instruction is gone now.
12350  return sinkMBB;
12351}
12352
12353MachineBasicBlock *
12354X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
12355                                        bool Is64Bit) const {
12356  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12357  DebugLoc DL = MI->getDebugLoc();
12358  MachineFunction *MF = BB->getParent();
12359  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12360
12361  assert(getTargetMachine().Options.EnableSegmentedStacks);
12362
12363  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
12364  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
12365
12366  // BB:
12367  //  ... [Till the alloca]
12368  // If stacklet is not large enough, jump to mallocMBB
12369  //
12370  // bumpMBB:
12371  //  Allocate by subtracting from RSP
12372  //  Jump to continueMBB
12373  //
12374  // mallocMBB:
12375  //  Allocate by call to runtime
12376  //
12377  // continueMBB:
12378  //  ...
12379  //  [rest of original BB]
12380  //
12381
12382  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12383  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12384  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12385
12386  MachineRegisterInfo &MRI = MF->getRegInfo();
12387  const TargetRegisterClass *AddrRegClass =
12388    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
12389
12390  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12391    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12392    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
12393    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
12394    sizeVReg = MI->getOperand(1).getReg(),
12395    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
12396
12397  MachineFunction::iterator MBBIter = BB;
12398  ++MBBIter;
12399
12400  MF->insert(MBBIter, bumpMBB);
12401  MF->insert(MBBIter, mallocMBB);
12402  MF->insert(MBBIter, continueMBB);
12403
12404  continueMBB->splice(continueMBB->begin(), BB, llvm::next
12405                      (MachineBasicBlock::iterator(MI)), BB->end());
12406  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
12407
12408  // Add code to the main basic block to check if the stack limit has been hit,
12409  // and if so, jump to mallocMBB otherwise to bumpMBB.
12410  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
12411  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
12412    .addReg(tmpSPVReg).addReg(sizeVReg);
12413  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
12414    .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
12415    .addReg(SPLimitVReg);
12416  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
12417
12418  // bumpMBB simply decreases the stack pointer, since we know the current
12419  // stacklet has enough space.
12420  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
12421    .addReg(SPLimitVReg);
12422  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
12423    .addReg(SPLimitVReg);
12424  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12425
12426  // Calls into a routine in libgcc to allocate more space from the heap.
12427  const uint32_t *RegMask =
12428    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
12429  if (Is64Bit) {
12430    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
12431      .addReg(sizeVReg);
12432    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
12433      .addExternalSymbol("__morestack_allocate_stack_space")
12434      .addRegMask(RegMask)
12435      .addReg(X86::RDI, RegState::Implicit)
12436      .addReg(X86::RAX, RegState::ImplicitDefine);
12437  } else {
12438    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
12439      .addImm(12);
12440    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
12441    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
12442      .addExternalSymbol("__morestack_allocate_stack_space")
12443      .addRegMask(RegMask)
12444      .addReg(X86::EAX, RegState::ImplicitDefine);
12445  }
12446
12447  if (!Is64Bit)
12448    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
12449      .addImm(16);
12450
12451  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
12452    .addReg(Is64Bit ? X86::RAX : X86::EAX);
12453  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12454
12455  // Set up the CFG correctly.
12456  BB->addSuccessor(bumpMBB);
12457  BB->addSuccessor(mallocMBB);
12458  mallocMBB->addSuccessor(continueMBB);
12459  bumpMBB->addSuccessor(continueMBB);
12460
12461  // Take care of the PHI nodes.
12462  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
12463          MI->getOperand(0).getReg())
12464    .addReg(mallocPtrVReg).addMBB(mallocMBB)
12465    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
12466
12467  // Delete the original pseudo instruction.
12468  MI->eraseFromParent();
12469
12470  // And we're done.
12471  return continueMBB;
12472}
12473
12474MachineBasicBlock *
12475X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
12476                                          MachineBasicBlock *BB) const {
12477  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12478  DebugLoc DL = MI->getDebugLoc();
12479
12480  assert(!Subtarget->isTargetEnvMacho());
12481
12482  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
12483  // non-trivial part is impdef of ESP.
12484
12485  if (Subtarget->isTargetWin64()) {
12486    if (Subtarget->isTargetCygMing()) {
12487      // ___chkstk(Mingw64):
12488      // Clobbers R10, R11, RAX and EFLAGS.
12489      // Updates RSP.
12490      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12491        .addExternalSymbol("___chkstk")
12492        .addReg(X86::RAX, RegState::Implicit)
12493        .addReg(X86::RSP, RegState::Implicit)
12494        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
12495        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
12496        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12497    } else {
12498      // __chkstk(MSVCRT): does not update stack pointer.
12499      // Clobbers R10, R11 and EFLAGS.
12500      // FIXME: RAX(allocated size) might be reused and not killed.
12501      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12502        .addExternalSymbol("__chkstk")
12503        .addReg(X86::RAX, RegState::Implicit)
12504        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12505      // RAX has the offset to subtracted from RSP.
12506      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
12507        .addReg(X86::RSP)
12508        .addReg(X86::RAX);
12509    }
12510  } else {
12511    const char *StackProbeSymbol =
12512      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
12513
12514    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
12515      .addExternalSymbol(StackProbeSymbol)
12516      .addReg(X86::EAX, RegState::Implicit)
12517      .addReg(X86::ESP, RegState::Implicit)
12518      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
12519      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
12520      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12521  }
12522
12523  MI->eraseFromParent();   // The pseudo instruction is gone now.
12524  return BB;
12525}
12526
12527MachineBasicBlock *
12528X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
12529                                      MachineBasicBlock *BB) const {
12530  // This is pretty easy.  We're taking the value that we received from
12531  // our load from the relocation, sticking it in either RDI (x86-64)
12532  // or EAX and doing an indirect call.  The return value will then
12533  // be in the normal return register.
12534  const X86InstrInfo *TII
12535    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
12536  DebugLoc DL = MI->getDebugLoc();
12537  MachineFunction *F = BB->getParent();
12538
12539  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
12540  assert(MI->getOperand(3).isGlobal() && "This should be a global");
12541
12542  // Get a register mask for the lowered call.
12543  // FIXME: The 32-bit calls have non-standard calling conventions. Use a
12544  // proper register mask.
12545  const uint32_t *RegMask =
12546    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
12547  if (Subtarget->is64Bit()) {
12548    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12549                                      TII->get(X86::MOV64rm), X86::RDI)
12550    .addReg(X86::RIP)
12551    .addImm(0).addReg(0)
12552    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12553                      MI->getOperand(3).getTargetFlags())
12554    .addReg(0);
12555    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
12556    addDirectMem(MIB, X86::RDI);
12557    MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask);
12558  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
12559    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12560                                      TII->get(X86::MOV32rm), X86::EAX)
12561    .addReg(0)
12562    .addImm(0).addReg(0)
12563    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12564                      MI->getOperand(3).getTargetFlags())
12565    .addReg(0);
12566    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12567    addDirectMem(MIB, X86::EAX);
12568    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
12569  } else {
12570    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12571                                      TII->get(X86::MOV32rm), X86::EAX)
12572    .addReg(TII->getGlobalBaseReg(F))
12573    .addImm(0).addReg(0)
12574    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12575                      MI->getOperand(3).getTargetFlags())
12576    .addReg(0);
12577    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12578    addDirectMem(MIB, X86::EAX);
12579    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
12580  }
12581
12582  MI->eraseFromParent(); // The pseudo instruction is gone now.
12583  return BB;
12584}
12585
12586MachineBasicBlock *
12587X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
12588                                               MachineBasicBlock *BB) const {
12589  switch (MI->getOpcode()) {
12590  default: llvm_unreachable("Unexpected instr type to insert");
12591  case X86::TAILJMPd64:
12592  case X86::TAILJMPr64:
12593  case X86::TAILJMPm64:
12594    llvm_unreachable("TAILJMP64 would not be touched here.");
12595  case X86::TCRETURNdi64:
12596  case X86::TCRETURNri64:
12597  case X86::TCRETURNmi64:
12598    return BB;
12599  case X86::WIN_ALLOCA:
12600    return EmitLoweredWinAlloca(MI, BB);
12601  case X86::SEG_ALLOCA_32:
12602    return EmitLoweredSegAlloca(MI, BB, false);
12603  case X86::SEG_ALLOCA_64:
12604    return EmitLoweredSegAlloca(MI, BB, true);
12605  case X86::TLSCall_32:
12606  case X86::TLSCall_64:
12607    return EmitLoweredTLSCall(MI, BB);
12608  case X86::CMOV_GR8:
12609  case X86::CMOV_FR32:
12610  case X86::CMOV_FR64:
12611  case X86::CMOV_V4F32:
12612  case X86::CMOV_V2F64:
12613  case X86::CMOV_V2I64:
12614  case X86::CMOV_V8F32:
12615  case X86::CMOV_V4F64:
12616  case X86::CMOV_V4I64:
12617  case X86::CMOV_GR16:
12618  case X86::CMOV_GR32:
12619  case X86::CMOV_RFP32:
12620  case X86::CMOV_RFP64:
12621  case X86::CMOV_RFP80:
12622    return EmitLoweredSelect(MI, BB);
12623
12624  case X86::FP32_TO_INT16_IN_MEM:
12625  case X86::FP32_TO_INT32_IN_MEM:
12626  case X86::FP32_TO_INT64_IN_MEM:
12627  case X86::FP64_TO_INT16_IN_MEM:
12628  case X86::FP64_TO_INT32_IN_MEM:
12629  case X86::FP64_TO_INT64_IN_MEM:
12630  case X86::FP80_TO_INT16_IN_MEM:
12631  case X86::FP80_TO_INT32_IN_MEM:
12632  case X86::FP80_TO_INT64_IN_MEM: {
12633    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12634    DebugLoc DL = MI->getDebugLoc();
12635
12636    // Change the floating point control register to use "round towards zero"
12637    // mode when truncating to an integer value.
12638    MachineFunction *F = BB->getParent();
12639    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
12640    addFrameReference(BuildMI(*BB, MI, DL,
12641                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
12642
12643    // Load the old value of the high byte of the control word...
12644    unsigned OldCW =
12645      F->getRegInfo().createVirtualRegister(&X86::GR16RegClass);
12646    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
12647                      CWFrameIdx);
12648
12649    // Set the high part to be round to zero...
12650    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
12651      .addImm(0xC7F);
12652
12653    // Reload the modified control word now...
12654    addFrameReference(BuildMI(*BB, MI, DL,
12655                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12656
12657    // Restore the memory image of control word to original value
12658    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
12659      .addReg(OldCW);
12660
12661    // Get the X86 opcode to use.
12662    unsigned Opc;
12663    switch (MI->getOpcode()) {
12664    default: llvm_unreachable("illegal opcode!");
12665    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
12666    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
12667    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
12668    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
12669    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
12670    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
12671    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
12672    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
12673    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
12674    }
12675
12676    X86AddressMode AM;
12677    MachineOperand &Op = MI->getOperand(0);
12678    if (Op.isReg()) {
12679      AM.BaseType = X86AddressMode::RegBase;
12680      AM.Base.Reg = Op.getReg();
12681    } else {
12682      AM.BaseType = X86AddressMode::FrameIndexBase;
12683      AM.Base.FrameIndex = Op.getIndex();
12684    }
12685    Op = MI->getOperand(1);
12686    if (Op.isImm())
12687      AM.Scale = Op.getImm();
12688    Op = MI->getOperand(2);
12689    if (Op.isImm())
12690      AM.IndexReg = Op.getImm();
12691    Op = MI->getOperand(3);
12692    if (Op.isGlobal()) {
12693      AM.GV = Op.getGlobal();
12694    } else {
12695      AM.Disp = Op.getImm();
12696    }
12697    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
12698                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
12699
12700    // Reload the original control word now.
12701    addFrameReference(BuildMI(*BB, MI, DL,
12702                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12703
12704    MI->eraseFromParent();   // The pseudo instruction is gone now.
12705    return BB;
12706  }
12707    // String/text processing lowering.
12708  case X86::PCMPISTRM128REG:
12709  case X86::VPCMPISTRM128REG:
12710    return EmitPCMP(MI, BB, 3, false /* in-mem */);
12711  case X86::PCMPISTRM128MEM:
12712  case X86::VPCMPISTRM128MEM:
12713    return EmitPCMP(MI, BB, 3, true /* in-mem */);
12714  case X86::PCMPESTRM128REG:
12715  case X86::VPCMPESTRM128REG:
12716    return EmitPCMP(MI, BB, 5, false /* in mem */);
12717  case X86::PCMPESTRM128MEM:
12718  case X86::VPCMPESTRM128MEM:
12719    return EmitPCMP(MI, BB, 5, true /* in mem */);
12720
12721    // Thread synchronization.
12722  case X86::MONITOR:
12723    return EmitMonitor(MI, BB);
12724  case X86::MWAIT:
12725    return EmitMwait(MI, BB);
12726
12727    // Atomic Lowering.
12728  case X86::ATOMAND32:
12729    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12730                                               X86::AND32ri, X86::MOV32rm,
12731                                               X86::LCMPXCHG32,
12732                                               X86::NOT32r, X86::EAX,
12733                                               &X86::GR32RegClass);
12734  case X86::ATOMOR32:
12735    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
12736                                               X86::OR32ri, X86::MOV32rm,
12737                                               X86::LCMPXCHG32,
12738                                               X86::NOT32r, X86::EAX,
12739                                               &X86::GR32RegClass);
12740  case X86::ATOMXOR32:
12741    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
12742                                               X86::XOR32ri, X86::MOV32rm,
12743                                               X86::LCMPXCHG32,
12744                                               X86::NOT32r, X86::EAX,
12745                                               &X86::GR32RegClass);
12746  case X86::ATOMNAND32:
12747    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12748                                               X86::AND32ri, X86::MOV32rm,
12749                                               X86::LCMPXCHG32,
12750                                               X86::NOT32r, X86::EAX,
12751                                               &X86::GR32RegClass, true);
12752  case X86::ATOMMIN32:
12753    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
12754  case X86::ATOMMAX32:
12755    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
12756  case X86::ATOMUMIN32:
12757    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
12758  case X86::ATOMUMAX32:
12759    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
12760
12761  case X86::ATOMAND16:
12762    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12763                                               X86::AND16ri, X86::MOV16rm,
12764                                               X86::LCMPXCHG16,
12765                                               X86::NOT16r, X86::AX,
12766                                               &X86::GR16RegClass);
12767  case X86::ATOMOR16:
12768    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
12769                                               X86::OR16ri, X86::MOV16rm,
12770                                               X86::LCMPXCHG16,
12771                                               X86::NOT16r, X86::AX,
12772                                               &X86::GR16RegClass);
12773  case X86::ATOMXOR16:
12774    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
12775                                               X86::XOR16ri, X86::MOV16rm,
12776                                               X86::LCMPXCHG16,
12777                                               X86::NOT16r, X86::AX,
12778                                               &X86::GR16RegClass);
12779  case X86::ATOMNAND16:
12780    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12781                                               X86::AND16ri, X86::MOV16rm,
12782                                               X86::LCMPXCHG16,
12783                                               X86::NOT16r, X86::AX,
12784                                               &X86::GR16RegClass, true);
12785  case X86::ATOMMIN16:
12786    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
12787  case X86::ATOMMAX16:
12788    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
12789  case X86::ATOMUMIN16:
12790    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
12791  case X86::ATOMUMAX16:
12792    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
12793
12794  case X86::ATOMAND8:
12795    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12796                                               X86::AND8ri, X86::MOV8rm,
12797                                               X86::LCMPXCHG8,
12798                                               X86::NOT8r, X86::AL,
12799                                               &X86::GR8RegClass);
12800  case X86::ATOMOR8:
12801    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
12802                                               X86::OR8ri, X86::MOV8rm,
12803                                               X86::LCMPXCHG8,
12804                                               X86::NOT8r, X86::AL,
12805                                               &X86::GR8RegClass);
12806  case X86::ATOMXOR8:
12807    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
12808                                               X86::XOR8ri, X86::MOV8rm,
12809                                               X86::LCMPXCHG8,
12810                                               X86::NOT8r, X86::AL,
12811                                               &X86::GR8RegClass);
12812  case X86::ATOMNAND8:
12813    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12814                                               X86::AND8ri, X86::MOV8rm,
12815                                               X86::LCMPXCHG8,
12816                                               X86::NOT8r, X86::AL,
12817                                               &X86::GR8RegClass, true);
12818  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
12819  // This group is for 64-bit host.
12820  case X86::ATOMAND64:
12821    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12822                                               X86::AND64ri32, X86::MOV64rm,
12823                                               X86::LCMPXCHG64,
12824                                               X86::NOT64r, X86::RAX,
12825                                               &X86::GR64RegClass);
12826  case X86::ATOMOR64:
12827    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
12828                                               X86::OR64ri32, X86::MOV64rm,
12829                                               X86::LCMPXCHG64,
12830                                               X86::NOT64r, X86::RAX,
12831                                               &X86::GR64RegClass);
12832  case X86::ATOMXOR64:
12833    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
12834                                               X86::XOR64ri32, X86::MOV64rm,
12835                                               X86::LCMPXCHG64,
12836                                               X86::NOT64r, X86::RAX,
12837                                               &X86::GR64RegClass);
12838  case X86::ATOMNAND64:
12839    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12840                                               X86::AND64ri32, X86::MOV64rm,
12841                                               X86::LCMPXCHG64,
12842                                               X86::NOT64r, X86::RAX,
12843                                               &X86::GR64RegClass, true);
12844  case X86::ATOMMIN64:
12845    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
12846  case X86::ATOMMAX64:
12847    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
12848  case X86::ATOMUMIN64:
12849    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
12850  case X86::ATOMUMAX64:
12851    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
12852
12853  // This group does 64-bit operations on a 32-bit host.
12854  case X86::ATOMAND6432:
12855    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12856                                               X86::AND32rr, X86::AND32rr,
12857                                               X86::AND32ri, X86::AND32ri,
12858                                               false);
12859  case X86::ATOMOR6432:
12860    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12861                                               X86::OR32rr, X86::OR32rr,
12862                                               X86::OR32ri, X86::OR32ri,
12863                                               false);
12864  case X86::ATOMXOR6432:
12865    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12866                                               X86::XOR32rr, X86::XOR32rr,
12867                                               X86::XOR32ri, X86::XOR32ri,
12868                                               false);
12869  case X86::ATOMNAND6432:
12870    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12871                                               X86::AND32rr, X86::AND32rr,
12872                                               X86::AND32ri, X86::AND32ri,
12873                                               true);
12874  case X86::ATOMADD6432:
12875    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12876                                               X86::ADD32rr, X86::ADC32rr,
12877                                               X86::ADD32ri, X86::ADC32ri,
12878                                               false);
12879  case X86::ATOMSUB6432:
12880    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12881                                               X86::SUB32rr, X86::SBB32rr,
12882                                               X86::SUB32ri, X86::SBB32ri,
12883                                               false);
12884  case X86::ATOMSWAP6432:
12885    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12886                                               X86::MOV32rr, X86::MOV32rr,
12887                                               X86::MOV32ri, X86::MOV32ri,
12888                                               false);
12889  case X86::VASTART_SAVE_XMM_REGS:
12890    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
12891
12892  case X86::VAARG_64:
12893    return EmitVAARG64WithCustomInserter(MI, BB);
12894  }
12895}
12896
12897//===----------------------------------------------------------------------===//
12898//                           X86 Optimization Hooks
12899//===----------------------------------------------------------------------===//
12900
12901void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
12902                                                       APInt &KnownZero,
12903                                                       APInt &KnownOne,
12904                                                       const SelectionDAG &DAG,
12905                                                       unsigned Depth) const {
12906  unsigned BitWidth = KnownZero.getBitWidth();
12907  unsigned Opc = Op.getOpcode();
12908  assert((Opc >= ISD::BUILTIN_OP_END ||
12909          Opc == ISD::INTRINSIC_WO_CHAIN ||
12910          Opc == ISD::INTRINSIC_W_CHAIN ||
12911          Opc == ISD::INTRINSIC_VOID) &&
12912         "Should use MaskedValueIsZero if you don't know whether Op"
12913         " is a target node!");
12914
12915  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
12916  switch (Opc) {
12917  default: break;
12918  case X86ISD::ADD:
12919  case X86ISD::SUB:
12920  case X86ISD::ADC:
12921  case X86ISD::SBB:
12922  case X86ISD::SMUL:
12923  case X86ISD::UMUL:
12924  case X86ISD::INC:
12925  case X86ISD::DEC:
12926  case X86ISD::OR:
12927  case X86ISD::XOR:
12928  case X86ISD::AND:
12929    // These nodes' second result is a boolean.
12930    if (Op.getResNo() == 0)
12931      break;
12932    // Fallthrough
12933  case X86ISD::SETCC:
12934    KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
12935    break;
12936  case ISD::INTRINSIC_WO_CHAIN: {
12937    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
12938    unsigned NumLoBits = 0;
12939    switch (IntId) {
12940    default: break;
12941    case Intrinsic::x86_sse_movmsk_ps:
12942    case Intrinsic::x86_avx_movmsk_ps_256:
12943    case Intrinsic::x86_sse2_movmsk_pd:
12944    case Intrinsic::x86_avx_movmsk_pd_256:
12945    case Intrinsic::x86_mmx_pmovmskb:
12946    case Intrinsic::x86_sse2_pmovmskb_128:
12947    case Intrinsic::x86_avx2_pmovmskb: {
12948      // High bits of movmskp{s|d}, pmovmskb are known zero.
12949      switch (IntId) {
12950        default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
12951        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
12952        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
12953        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
12954        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
12955        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
12956        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
12957        case Intrinsic::x86_avx2_pmovmskb:      NumLoBits = 32; break;
12958      }
12959      KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits);
12960      break;
12961    }
12962    }
12963    break;
12964  }
12965  }
12966}
12967
12968unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
12969                                                         unsigned Depth) const {
12970  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
12971  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
12972    return Op.getValueType().getScalarType().getSizeInBits();
12973
12974  // Fallback case.
12975  return 1;
12976}
12977
12978/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
12979/// node is a GlobalAddress + offset.
12980bool X86TargetLowering::isGAPlusOffset(SDNode *N,
12981                                       const GlobalValue* &GA,
12982                                       int64_t &Offset) const {
12983  if (N->getOpcode() == X86ISD::Wrapper) {
12984    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
12985      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
12986      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
12987      return true;
12988    }
12989  }
12990  return TargetLowering::isGAPlusOffset(N, GA, Offset);
12991}
12992
12993/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
12994/// same as extracting the high 128-bit part of 256-bit vector and then
12995/// inserting the result into the low part of a new 256-bit vector
12996static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
12997  EVT VT = SVOp->getValueType(0);
12998  unsigned NumElems = VT.getVectorNumElements();
12999
13000  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
13001  for (unsigned i = 0, j = NumElems/2; i != NumElems/2; ++i, ++j)
13002    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
13003        SVOp->getMaskElt(j) >= 0)
13004      return false;
13005
13006  return true;
13007}
13008
13009/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
13010/// same as extracting the low 128-bit part of 256-bit vector and then
13011/// inserting the result into the high part of a new 256-bit vector
13012static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
13013  EVT VT = SVOp->getValueType(0);
13014  unsigned NumElems = VT.getVectorNumElements();
13015
13016  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
13017  for (unsigned i = NumElems/2, j = 0; i != NumElems; ++i, ++j)
13018    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
13019        SVOp->getMaskElt(j) >= 0)
13020      return false;
13021
13022  return true;
13023}
13024
13025/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
13026static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
13027                                        TargetLowering::DAGCombinerInfo &DCI,
13028                                        const X86Subtarget* Subtarget) {
13029  DebugLoc dl = N->getDebugLoc();
13030  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
13031  SDValue V1 = SVOp->getOperand(0);
13032  SDValue V2 = SVOp->getOperand(1);
13033  EVT VT = SVOp->getValueType(0);
13034  unsigned NumElems = VT.getVectorNumElements();
13035
13036  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
13037      V2.getOpcode() == ISD::CONCAT_VECTORS) {
13038    //
13039    //                   0,0,0,...
13040    //                      |
13041    //    V      UNDEF    BUILD_VECTOR    UNDEF
13042    //     \      /           \           /
13043    //  CONCAT_VECTOR         CONCAT_VECTOR
13044    //         \                  /
13045    //          \                /
13046    //          RESULT: V + zero extended
13047    //
13048    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
13049        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
13050        V1.getOperand(1).getOpcode() != ISD::UNDEF)
13051      return SDValue();
13052
13053    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
13054      return SDValue();
13055
13056    // To match the shuffle mask, the first half of the mask should
13057    // be exactly the first vector, and all the rest a splat with the
13058    // first element of the second one.
13059    for (unsigned i = 0; i != NumElems/2; ++i)
13060      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
13061          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
13062        return SDValue();
13063
13064    // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
13065    if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
13066      if (Ld->hasNUsesOfValue(1, 0)) {
13067        SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
13068        SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
13069        SDValue ResNode =
13070          DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2,
13071                                  Ld->getMemoryVT(),
13072                                  Ld->getPointerInfo(),
13073                                  Ld->getAlignment(),
13074                                  false/*isVolatile*/, true/*ReadMem*/,
13075                                  false/*WriteMem*/);
13076        return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
13077      }
13078    }
13079
13080    // Emit a zeroed vector and insert the desired subvector on its
13081    // first half.
13082    SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
13083    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0), 0, DAG, dl);
13084    return DCI.CombineTo(N, InsV);
13085  }
13086
13087  //===--------------------------------------------------------------------===//
13088  // Combine some shuffles into subvector extracts and inserts:
13089  //
13090
13091  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
13092  if (isShuffleHigh128VectorInsertLow(SVOp)) {
13093    SDValue V = Extract128BitVector(V1, NumElems/2, DAG, dl);
13094    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, 0, DAG, dl);
13095    return DCI.CombineTo(N, InsV);
13096  }
13097
13098  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
13099  if (isShuffleLow128VectorInsertHigh(SVOp)) {
13100    SDValue V = Extract128BitVector(V1, 0, DAG, dl);
13101    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, NumElems/2, DAG, dl);
13102    return DCI.CombineTo(N, InsV);
13103  }
13104
13105  return SDValue();
13106}
13107
13108/// PerformShuffleCombine - Performs several different shuffle combines.
13109static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
13110                                     TargetLowering::DAGCombinerInfo &DCI,
13111                                     const X86Subtarget *Subtarget) {
13112  DebugLoc dl = N->getDebugLoc();
13113  EVT VT = N->getValueType(0);
13114
13115  // Don't create instructions with illegal types after legalize types has run.
13116  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13117  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
13118    return SDValue();
13119
13120  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
13121  if (Subtarget->hasAVX() && VT.getSizeInBits() == 256 &&
13122      N->getOpcode() == ISD::VECTOR_SHUFFLE)
13123    return PerformShuffleCombine256(N, DAG, DCI, Subtarget);
13124
13125  // Only handle 128 wide vector from here on.
13126  if (VT.getSizeInBits() != 128)
13127    return SDValue();
13128
13129  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
13130  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
13131  // consecutive, non-overlapping, and in the right order.
13132  SmallVector<SDValue, 16> Elts;
13133  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
13134    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
13135
13136  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
13137}
13138
13139
13140/// DCI, PerformTruncateCombine - Converts truncate operation to
13141/// a sequence of vector shuffle operations.
13142/// It is possible when we truncate 256-bit vector to 128-bit vector
13143
13144SDValue X86TargetLowering::PerformTruncateCombine(SDNode *N, SelectionDAG &DAG,
13145                                                  DAGCombinerInfo &DCI) const {
13146  if (!DCI.isBeforeLegalizeOps())
13147    return SDValue();
13148
13149  if (!Subtarget->hasAVX())
13150    return SDValue();
13151
13152  EVT VT = N->getValueType(0);
13153  SDValue Op = N->getOperand(0);
13154  EVT OpVT = Op.getValueType();
13155  DebugLoc dl = N->getDebugLoc();
13156
13157  if ((VT == MVT::v4i32) && (OpVT == MVT::v4i64)) {
13158
13159    if (Subtarget->hasAVX2()) {
13160      // AVX2: v4i64 -> v4i32
13161
13162      // VPERMD
13163      static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1};
13164
13165      Op = DAG.getNode(ISD::BITCAST, dl, MVT::v8i32, Op);
13166      Op = DAG.getVectorShuffle(MVT::v8i32, dl, Op, DAG.getUNDEF(MVT::v8i32),
13167                                ShufMask);
13168
13169      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Op,
13170                         DAG.getIntPtrConstant(0));
13171    }
13172
13173    // AVX: v4i64 -> v4i32
13174    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
13175                               DAG.getIntPtrConstant(0));
13176
13177    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
13178                               DAG.getIntPtrConstant(2));
13179
13180    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
13181    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
13182
13183    // PSHUFD
13184    static const int ShufMask1[] = {0, 2, 0, 0};
13185
13186    OpLo = DAG.getVectorShuffle(VT, dl, OpLo, DAG.getUNDEF(VT), ShufMask1);
13187    OpHi = DAG.getVectorShuffle(VT, dl, OpHi, DAG.getUNDEF(VT), ShufMask1);
13188
13189    // MOVLHPS
13190    static const int ShufMask2[] = {0, 1, 4, 5};
13191
13192    return DAG.getVectorShuffle(VT, dl, OpLo, OpHi, ShufMask2);
13193  }
13194
13195  if ((VT == MVT::v8i16) && (OpVT == MVT::v8i32)) {
13196
13197    if (Subtarget->hasAVX2()) {
13198      // AVX2: v8i32 -> v8i16
13199
13200      Op = DAG.getNode(ISD::BITCAST, dl, MVT::v32i8, Op);
13201
13202      // PSHUFB
13203      SmallVector<SDValue,32> pshufbMask;
13204      for (unsigned i = 0; i < 2; ++i) {
13205        pshufbMask.push_back(DAG.getConstant(0x0, MVT::i8));
13206        pshufbMask.push_back(DAG.getConstant(0x1, MVT::i8));
13207        pshufbMask.push_back(DAG.getConstant(0x4, MVT::i8));
13208        pshufbMask.push_back(DAG.getConstant(0x5, MVT::i8));
13209        pshufbMask.push_back(DAG.getConstant(0x8, MVT::i8));
13210        pshufbMask.push_back(DAG.getConstant(0x9, MVT::i8));
13211        pshufbMask.push_back(DAG.getConstant(0xc, MVT::i8));
13212        pshufbMask.push_back(DAG.getConstant(0xd, MVT::i8));
13213        for (unsigned j = 0; j < 8; ++j)
13214          pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
13215      }
13216      SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v32i8,
13217                               &pshufbMask[0], 32);
13218      Op = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v32i8, Op, BV);
13219
13220      Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i64, Op);
13221
13222      static const int ShufMask[] = {0,  2,  -1,  -1};
13223      Op = DAG.getVectorShuffle(MVT::v4i64, dl,  Op, DAG.getUNDEF(MVT::v4i64),
13224                                &ShufMask[0]);
13225
13226      Op = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
13227                       DAG.getIntPtrConstant(0));
13228
13229      return DAG.getNode(ISD::BITCAST, dl, VT, Op);
13230    }
13231
13232    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
13233                               DAG.getIntPtrConstant(0));
13234
13235    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
13236                               DAG.getIntPtrConstant(4));
13237
13238    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLo);
13239    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpHi);
13240
13241    // PSHUFB
13242    static const int ShufMask1[] = {0,  1,  4,  5,  8,  9, 12, 13,
13243                                   -1, -1, -1, -1, -1, -1, -1, -1};
13244
13245    OpLo = DAG.getVectorShuffle(MVT::v16i8, dl, OpLo, DAG.getUNDEF(MVT::v16i8),
13246                                ShufMask1);
13247    OpHi = DAG.getVectorShuffle(MVT::v16i8, dl, OpHi, DAG.getUNDEF(MVT::v16i8),
13248                                ShufMask1);
13249
13250    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
13251    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
13252
13253    // MOVLHPS
13254    static const int ShufMask2[] = {0, 1, 4, 5};
13255
13256    SDValue res = DAG.getVectorShuffle(MVT::v4i32, dl, OpLo, OpHi, ShufMask2);
13257    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, res);
13258  }
13259
13260  return SDValue();
13261}
13262
13263/// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target
13264/// specific shuffle of a load can be folded into a single element load.
13265/// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but
13266/// shuffles have been customed lowered so we need to handle those here.
13267static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
13268                                         TargetLowering::DAGCombinerInfo &DCI) {
13269  if (DCI.isBeforeLegalizeOps())
13270    return SDValue();
13271
13272  SDValue InVec = N->getOperand(0);
13273  SDValue EltNo = N->getOperand(1);
13274
13275  if (!isa<ConstantSDNode>(EltNo))
13276    return SDValue();
13277
13278  EVT VT = InVec.getValueType();
13279
13280  bool HasShuffleIntoBitcast = false;
13281  if (InVec.getOpcode() == ISD::BITCAST) {
13282    // Don't duplicate a load with other uses.
13283    if (!InVec.hasOneUse())
13284      return SDValue();
13285    EVT BCVT = InVec.getOperand(0).getValueType();
13286    if (BCVT.getVectorNumElements() != VT.getVectorNumElements())
13287      return SDValue();
13288    InVec = InVec.getOperand(0);
13289    HasShuffleIntoBitcast = true;
13290  }
13291
13292  if (!isTargetShuffle(InVec.getOpcode()))
13293    return SDValue();
13294
13295  // Don't duplicate a load with other uses.
13296  if (!InVec.hasOneUse())
13297    return SDValue();
13298
13299  SmallVector<int, 16> ShuffleMask;
13300  bool UnaryShuffle;
13301  if (!getTargetShuffleMask(InVec.getNode(), VT.getSimpleVT(), ShuffleMask,
13302                            UnaryShuffle))
13303    return SDValue();
13304
13305  // Select the input vector, guarding against out of range extract vector.
13306  unsigned NumElems = VT.getVectorNumElements();
13307  int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
13308  int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt];
13309  SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0)
13310                                         : InVec.getOperand(1);
13311
13312  // If inputs to shuffle are the same for both ops, then allow 2 uses
13313  unsigned AllowedUses = InVec.getOperand(0) == InVec.getOperand(1) ? 2 : 1;
13314
13315  if (LdNode.getOpcode() == ISD::BITCAST) {
13316    // Don't duplicate a load with other uses.
13317    if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0))
13318      return SDValue();
13319
13320    AllowedUses = 1; // only allow 1 load use if we have a bitcast
13321    LdNode = LdNode.getOperand(0);
13322  }
13323
13324  if (!ISD::isNormalLoad(LdNode.getNode()))
13325    return SDValue();
13326
13327  LoadSDNode *LN0 = cast<LoadSDNode>(LdNode);
13328
13329  if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile())
13330    return SDValue();
13331
13332  if (HasShuffleIntoBitcast) {
13333    // If there's a bitcast before the shuffle, check if the load type and
13334    // alignment is valid.
13335    unsigned Align = LN0->getAlignment();
13336    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13337    unsigned NewAlign = TLI.getTargetData()->
13338      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
13339
13340    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
13341      return SDValue();
13342  }
13343
13344  // All checks match so transform back to vector_shuffle so that DAG combiner
13345  // can finish the job
13346  DebugLoc dl = N->getDebugLoc();
13347
13348  // Create shuffle node taking into account the case that its a unary shuffle
13349  SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(VT) : InVec.getOperand(1);
13350  Shuffle = DAG.getVectorShuffle(InVec.getValueType(), dl,
13351                                 InVec.getOperand(0), Shuffle,
13352                                 &ShuffleMask[0]);
13353  Shuffle = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
13354  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle,
13355                     EltNo);
13356}
13357
13358/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
13359/// generation and convert it from being a bunch of shuffles and extracts
13360/// to a simple store and scalar loads to extract the elements.
13361static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
13362                                         TargetLowering::DAGCombinerInfo &DCI) {
13363  SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI);
13364  if (NewOp.getNode())
13365    return NewOp;
13366
13367  SDValue InputVector = N->getOperand(0);
13368
13369  // Only operate on vectors of 4 elements, where the alternative shuffling
13370  // gets to be more expensive.
13371  if (InputVector.getValueType() != MVT::v4i32)
13372    return SDValue();
13373
13374  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
13375  // single use which is a sign-extend or zero-extend, and all elements are
13376  // used.
13377  SmallVector<SDNode *, 4> Uses;
13378  unsigned ExtractedElements = 0;
13379  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
13380       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
13381    if (UI.getUse().getResNo() != InputVector.getResNo())
13382      return SDValue();
13383
13384    SDNode *Extract = *UI;
13385    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13386      return SDValue();
13387
13388    if (Extract->getValueType(0) != MVT::i32)
13389      return SDValue();
13390    if (!Extract->hasOneUse())
13391      return SDValue();
13392    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
13393        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
13394      return SDValue();
13395    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
13396      return SDValue();
13397
13398    // Record which element was extracted.
13399    ExtractedElements |=
13400      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
13401
13402    Uses.push_back(Extract);
13403  }
13404
13405  // If not all the elements were used, this may not be worthwhile.
13406  if (ExtractedElements != 15)
13407    return SDValue();
13408
13409  // Ok, we've now decided to do the transformation.
13410  DebugLoc dl = InputVector.getDebugLoc();
13411
13412  // Store the value to a temporary stack slot.
13413  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
13414  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
13415                            MachinePointerInfo(), false, false, 0);
13416
13417  // Replace each use (extract) with a load of the appropriate element.
13418  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
13419       UE = Uses.end(); UI != UE; ++UI) {
13420    SDNode *Extract = *UI;
13421
13422    // cOMpute the element's address.
13423    SDValue Idx = Extract->getOperand(1);
13424    unsigned EltSize =
13425        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
13426    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
13427    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13428    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
13429
13430    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
13431                                     StackPtr, OffsetVal);
13432
13433    // Load the scalar.
13434    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
13435                                     ScalarAddr, MachinePointerInfo(),
13436                                     false, false, false, 0);
13437
13438    // Replace the exact with the load.
13439    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
13440  }
13441
13442  // The replacement was made in place; don't return anything.
13443  return SDValue();
13444}
13445
13446/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
13447/// nodes.
13448static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
13449                                    TargetLowering::DAGCombinerInfo &DCI,
13450                                    const X86Subtarget *Subtarget) {
13451  DebugLoc DL = N->getDebugLoc();
13452  SDValue Cond = N->getOperand(0);
13453  // Get the LHS/RHS of the select.
13454  SDValue LHS = N->getOperand(1);
13455  SDValue RHS = N->getOperand(2);
13456  EVT VT = LHS.getValueType();
13457
13458  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
13459  // instructions match the semantics of the common C idiom x<y?x:y but not
13460  // x<=y?x:y, because of how they handle negative zero (which can be
13461  // ignored in unsafe-math mode).
13462  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
13463      VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
13464      (Subtarget->hasSSE2() ||
13465       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
13466    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13467
13468    unsigned Opcode = 0;
13469    // Check for x CC y ? x : y.
13470    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
13471        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
13472      switch (CC) {
13473      default: break;
13474      case ISD::SETULT:
13475        // Converting this to a min would handle NaNs incorrectly, and swapping
13476        // the operands would cause it to handle comparisons between positive
13477        // and negative zero incorrectly.
13478        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
13479          if (!DAG.getTarget().Options.UnsafeFPMath &&
13480              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
13481            break;
13482          std::swap(LHS, RHS);
13483        }
13484        Opcode = X86ISD::FMIN;
13485        break;
13486      case ISD::SETOLE:
13487        // Converting this to a min would handle comparisons between positive
13488        // and negative zero incorrectly.
13489        if (!DAG.getTarget().Options.UnsafeFPMath &&
13490            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
13491          break;
13492        Opcode = X86ISD::FMIN;
13493        break;
13494      case ISD::SETULE:
13495        // Converting this to a min would handle both negative zeros and NaNs
13496        // incorrectly, but we can swap the operands to fix both.
13497        std::swap(LHS, RHS);
13498      case ISD::SETOLT:
13499      case ISD::SETLT:
13500      case ISD::SETLE:
13501        Opcode = X86ISD::FMIN;
13502        break;
13503
13504      case ISD::SETOGE:
13505        // Converting this to a max would handle comparisons between positive
13506        // and negative zero incorrectly.
13507        if (!DAG.getTarget().Options.UnsafeFPMath &&
13508            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
13509          break;
13510        Opcode = X86ISD::FMAX;
13511        break;
13512      case ISD::SETUGT:
13513        // Converting this to a max would handle NaNs incorrectly, and swapping
13514        // the operands would cause it to handle comparisons between positive
13515        // and negative zero incorrectly.
13516        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
13517          if (!DAG.getTarget().Options.UnsafeFPMath &&
13518              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
13519            break;
13520          std::swap(LHS, RHS);
13521        }
13522        Opcode = X86ISD::FMAX;
13523        break;
13524      case ISD::SETUGE:
13525        // Converting this to a max would handle both negative zeros and NaNs
13526        // incorrectly, but we can swap the operands to fix both.
13527        std::swap(LHS, RHS);
13528      case ISD::SETOGT:
13529      case ISD::SETGT:
13530      case ISD::SETGE:
13531        Opcode = X86ISD::FMAX;
13532        break;
13533      }
13534    // Check for x CC y ? y : x -- a min/max with reversed arms.
13535    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
13536               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
13537      switch (CC) {
13538      default: break;
13539      case ISD::SETOGE:
13540        // Converting this to a min would handle comparisons between positive
13541        // and negative zero incorrectly, and swapping the operands would
13542        // cause it to handle NaNs incorrectly.
13543        if (!DAG.getTarget().Options.UnsafeFPMath &&
13544            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
13545          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13546            break;
13547          std::swap(LHS, RHS);
13548        }
13549        Opcode = X86ISD::FMIN;
13550        break;
13551      case ISD::SETUGT:
13552        // Converting this to a min would handle NaNs incorrectly.
13553        if (!DAG.getTarget().Options.UnsafeFPMath &&
13554            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
13555          break;
13556        Opcode = X86ISD::FMIN;
13557        break;
13558      case ISD::SETUGE:
13559        // Converting this to a min would handle both negative zeros and NaNs
13560        // incorrectly, but we can swap the operands to fix both.
13561        std::swap(LHS, RHS);
13562      case ISD::SETOGT:
13563      case ISD::SETGT:
13564      case ISD::SETGE:
13565        Opcode = X86ISD::FMIN;
13566        break;
13567
13568      case ISD::SETULT:
13569        // Converting this to a max would handle NaNs incorrectly.
13570        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13571          break;
13572        Opcode = X86ISD::FMAX;
13573        break;
13574      case ISD::SETOLE:
13575        // Converting this to a max would handle comparisons between positive
13576        // and negative zero incorrectly, and swapping the operands would
13577        // cause it to handle NaNs incorrectly.
13578        if (!DAG.getTarget().Options.UnsafeFPMath &&
13579            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
13580          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13581            break;
13582          std::swap(LHS, RHS);
13583        }
13584        Opcode = X86ISD::FMAX;
13585        break;
13586      case ISD::SETULE:
13587        // Converting this to a max would handle both negative zeros and NaNs
13588        // incorrectly, but we can swap the operands to fix both.
13589        std::swap(LHS, RHS);
13590      case ISD::SETOLT:
13591      case ISD::SETLT:
13592      case ISD::SETLE:
13593        Opcode = X86ISD::FMAX;
13594        break;
13595      }
13596    }
13597
13598    if (Opcode)
13599      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
13600  }
13601
13602  // If this is a select between two integer constants, try to do some
13603  // optimizations.
13604  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
13605    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
13606      // Don't do this for crazy integer types.
13607      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
13608        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
13609        // so that TrueC (the true value) is larger than FalseC.
13610        bool NeedsCondInvert = false;
13611
13612        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
13613            // Efficiently invertible.
13614            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
13615             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
13616              isa<ConstantSDNode>(Cond.getOperand(1))))) {
13617          NeedsCondInvert = true;
13618          std::swap(TrueC, FalseC);
13619        }
13620
13621        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
13622        if (FalseC->getAPIntValue() == 0 &&
13623            TrueC->getAPIntValue().isPowerOf2()) {
13624          if (NeedsCondInvert) // Invert the condition if needed.
13625            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13626                               DAG.getConstant(1, Cond.getValueType()));
13627
13628          // Zero extend the condition if needed.
13629          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
13630
13631          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13632          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
13633                             DAG.getConstant(ShAmt, MVT::i8));
13634        }
13635
13636        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
13637        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13638          if (NeedsCondInvert) // Invert the condition if needed.
13639            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13640                               DAG.getConstant(1, Cond.getValueType()));
13641
13642          // Zero extend the condition if needed.
13643          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13644                             FalseC->getValueType(0), Cond);
13645          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13646                             SDValue(FalseC, 0));
13647        }
13648
13649        // Optimize cases that will turn into an LEA instruction.  This requires
13650        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13651        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13652          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13653          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13654
13655          bool isFastMultiplier = false;
13656          if (Diff < 10) {
13657            switch ((unsigned char)Diff) {
13658              default: break;
13659              case 1:  // result = add base, cond
13660              case 2:  // result = lea base(    , cond*2)
13661              case 3:  // result = lea base(cond, cond*2)
13662              case 4:  // result = lea base(    , cond*4)
13663              case 5:  // result = lea base(cond, cond*4)
13664              case 8:  // result = lea base(    , cond*8)
13665              case 9:  // result = lea base(cond, cond*8)
13666                isFastMultiplier = true;
13667                break;
13668            }
13669          }
13670
13671          if (isFastMultiplier) {
13672            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13673            if (NeedsCondInvert) // Invert the condition if needed.
13674              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13675                                 DAG.getConstant(1, Cond.getValueType()));
13676
13677            // Zero extend the condition if needed.
13678            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13679                               Cond);
13680            // Scale the condition by the difference.
13681            if (Diff != 1)
13682              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13683                                 DAG.getConstant(Diff, Cond.getValueType()));
13684
13685            // Add the base if non-zero.
13686            if (FalseC->getAPIntValue() != 0)
13687              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13688                                 SDValue(FalseC, 0));
13689            return Cond;
13690          }
13691        }
13692      }
13693  }
13694
13695  // Canonicalize max and min:
13696  // (x > y) ? x : y -> (x >= y) ? x : y
13697  // (x < y) ? x : y -> (x <= y) ? x : y
13698  // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
13699  // the need for an extra compare
13700  // against zero. e.g.
13701  // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
13702  // subl   %esi, %edi
13703  // testl  %edi, %edi
13704  // movl   $0, %eax
13705  // cmovgl %edi, %eax
13706  // =>
13707  // xorl   %eax, %eax
13708  // subl   %esi, $edi
13709  // cmovsl %eax, %edi
13710  if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
13711      DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
13712      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
13713    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13714    switch (CC) {
13715    default: break;
13716    case ISD::SETLT:
13717    case ISD::SETGT: {
13718      ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
13719      Cond = DAG.getSetCC(Cond.getDebugLoc(), Cond.getValueType(),
13720                          Cond.getOperand(0), Cond.getOperand(1), NewCC);
13721      return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
13722    }
13723    }
13724  }
13725
13726  // If we know that this node is legal then we know that it is going to be
13727  // matched by one of the SSE/AVX BLEND instructions. These instructions only
13728  // depend on the highest bit in each word. Try to use SimplifyDemandedBits
13729  // to simplify previous instructions.
13730  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13731  if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
13732      !DCI.isBeforeLegalize() && TLI.isOperationLegal(ISD::VSELECT, VT)) {
13733    unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
13734
13735    // Don't optimize vector selects that map to mask-registers.
13736    if (BitWidth == 1)
13737      return SDValue();
13738
13739    assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
13740    APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
13741
13742    APInt KnownZero, KnownOne;
13743    TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
13744                                          DCI.isBeforeLegalizeOps());
13745    if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
13746        TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO))
13747      DCI.CommitTargetLoweringOpt(TLO);
13748  }
13749
13750  return SDValue();
13751}
13752
13753/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
13754static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
13755                                  TargetLowering::DAGCombinerInfo &DCI) {
13756  DebugLoc DL = N->getDebugLoc();
13757
13758  // If the flag operand isn't dead, don't touch this CMOV.
13759  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
13760    return SDValue();
13761
13762  SDValue FalseOp = N->getOperand(0);
13763  SDValue TrueOp = N->getOperand(1);
13764  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
13765  SDValue Cond = N->getOperand(3);
13766  if (CC == X86::COND_E || CC == X86::COND_NE) {
13767    switch (Cond.getOpcode()) {
13768    default: break;
13769    case X86ISD::BSR:
13770    case X86ISD::BSF:
13771      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
13772      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
13773        return (CC == X86::COND_E) ? FalseOp : TrueOp;
13774    }
13775  }
13776
13777  // If this is a select between two integer constants, try to do some
13778  // optimizations.  Note that the operands are ordered the opposite of SELECT
13779  // operands.
13780  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
13781    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
13782      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
13783      // larger than FalseC (the false value).
13784      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
13785        CC = X86::GetOppositeBranchCondition(CC);
13786        std::swap(TrueC, FalseC);
13787      }
13788
13789      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
13790      // This is efficient for any integer data type (including i8/i16) and
13791      // shift amount.
13792      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
13793        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13794                           DAG.getConstant(CC, MVT::i8), Cond);
13795
13796        // Zero extend the condition if needed.
13797        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
13798
13799        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13800        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
13801                           DAG.getConstant(ShAmt, MVT::i8));
13802        if (N->getNumValues() == 2)  // Dead flag value?
13803          return DCI.CombineTo(N, Cond, SDValue());
13804        return Cond;
13805      }
13806
13807      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
13808      // for any integer data type, including i8/i16.
13809      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13810        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13811                           DAG.getConstant(CC, MVT::i8), Cond);
13812
13813        // Zero extend the condition if needed.
13814        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13815                           FalseC->getValueType(0), Cond);
13816        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13817                           SDValue(FalseC, 0));
13818
13819        if (N->getNumValues() == 2)  // Dead flag value?
13820          return DCI.CombineTo(N, Cond, SDValue());
13821        return Cond;
13822      }
13823
13824      // Optimize cases that will turn into an LEA instruction.  This requires
13825      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13826      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13827        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13828        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13829
13830        bool isFastMultiplier = false;
13831        if (Diff < 10) {
13832          switch ((unsigned char)Diff) {
13833          default: break;
13834          case 1:  // result = add base, cond
13835          case 2:  // result = lea base(    , cond*2)
13836          case 3:  // result = lea base(cond, cond*2)
13837          case 4:  // result = lea base(    , cond*4)
13838          case 5:  // result = lea base(cond, cond*4)
13839          case 8:  // result = lea base(    , cond*8)
13840          case 9:  // result = lea base(cond, cond*8)
13841            isFastMultiplier = true;
13842            break;
13843          }
13844        }
13845
13846        if (isFastMultiplier) {
13847          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13848          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13849                             DAG.getConstant(CC, MVT::i8), Cond);
13850          // Zero extend the condition if needed.
13851          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13852                             Cond);
13853          // Scale the condition by the difference.
13854          if (Diff != 1)
13855            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13856                               DAG.getConstant(Diff, Cond.getValueType()));
13857
13858          // Add the base if non-zero.
13859          if (FalseC->getAPIntValue() != 0)
13860            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13861                               SDValue(FalseC, 0));
13862          if (N->getNumValues() == 2)  // Dead flag value?
13863            return DCI.CombineTo(N, Cond, SDValue());
13864          return Cond;
13865        }
13866      }
13867    }
13868  }
13869  return SDValue();
13870}
13871
13872
13873/// PerformMulCombine - Optimize a single multiply with constant into two
13874/// in order to implement it with two cheaper instructions, e.g.
13875/// LEA + SHL, LEA + LEA.
13876static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
13877                                 TargetLowering::DAGCombinerInfo &DCI) {
13878  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
13879    return SDValue();
13880
13881  EVT VT = N->getValueType(0);
13882  if (VT != MVT::i64)
13883    return SDValue();
13884
13885  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
13886  if (!C)
13887    return SDValue();
13888  uint64_t MulAmt = C->getZExtValue();
13889  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
13890    return SDValue();
13891
13892  uint64_t MulAmt1 = 0;
13893  uint64_t MulAmt2 = 0;
13894  if ((MulAmt % 9) == 0) {
13895    MulAmt1 = 9;
13896    MulAmt2 = MulAmt / 9;
13897  } else if ((MulAmt % 5) == 0) {
13898    MulAmt1 = 5;
13899    MulAmt2 = MulAmt / 5;
13900  } else if ((MulAmt % 3) == 0) {
13901    MulAmt1 = 3;
13902    MulAmt2 = MulAmt / 3;
13903  }
13904  if (MulAmt2 &&
13905      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
13906    DebugLoc DL = N->getDebugLoc();
13907
13908    if (isPowerOf2_64(MulAmt2) &&
13909        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
13910      // If second multiplifer is pow2, issue it first. We want the multiply by
13911      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
13912      // is an add.
13913      std::swap(MulAmt1, MulAmt2);
13914
13915    SDValue NewMul;
13916    if (isPowerOf2_64(MulAmt1))
13917      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
13918                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
13919    else
13920      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
13921                           DAG.getConstant(MulAmt1, VT));
13922
13923    if (isPowerOf2_64(MulAmt2))
13924      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
13925                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
13926    else
13927      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
13928                           DAG.getConstant(MulAmt2, VT));
13929
13930    // Do not add new nodes to DAG combiner worklist.
13931    DCI.CombineTo(N, NewMul, false);
13932  }
13933  return SDValue();
13934}
13935
13936static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
13937  SDValue N0 = N->getOperand(0);
13938  SDValue N1 = N->getOperand(1);
13939  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
13940  EVT VT = N0.getValueType();
13941
13942  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
13943  // since the result of setcc_c is all zero's or all ones.
13944  if (VT.isInteger() && !VT.isVector() &&
13945      N1C && N0.getOpcode() == ISD::AND &&
13946      N0.getOperand(1).getOpcode() == ISD::Constant) {
13947    SDValue N00 = N0.getOperand(0);
13948    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
13949        ((N00.getOpcode() == ISD::ANY_EXTEND ||
13950          N00.getOpcode() == ISD::ZERO_EXTEND) &&
13951         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
13952      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
13953      APInt ShAmt = N1C->getAPIntValue();
13954      Mask = Mask.shl(ShAmt);
13955      if (Mask != 0)
13956        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
13957                           N00, DAG.getConstant(Mask, VT));
13958    }
13959  }
13960
13961
13962  // Hardware support for vector shifts is sparse which makes us scalarize the
13963  // vector operations in many cases. Also, on sandybridge ADD is faster than
13964  // shl.
13965  // (shl V, 1) -> add V,V
13966  if (isSplatVector(N1.getNode())) {
13967    assert(N0.getValueType().isVector() && "Invalid vector shift type");
13968    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
13969    // We shift all of the values by one. In many cases we do not have
13970    // hardware support for this operation. This is better expressed as an ADD
13971    // of two values.
13972    if (N1C && (1 == N1C->getZExtValue())) {
13973      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0);
13974    }
13975  }
13976
13977  return SDValue();
13978}
13979
13980/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
13981///                       when possible.
13982static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
13983                                   TargetLowering::DAGCombinerInfo &DCI,
13984                                   const X86Subtarget *Subtarget) {
13985  EVT VT = N->getValueType(0);
13986  if (N->getOpcode() == ISD::SHL) {
13987    SDValue V = PerformSHLCombine(N, DAG);
13988    if (V.getNode()) return V;
13989  }
13990
13991  // On X86 with SSE2 support, we can transform this to a vector shift if
13992  // all elements are shifted by the same amount.  We can't do this in legalize
13993  // because the a constant vector is typically transformed to a constant pool
13994  // so we have no knowledge of the shift amount.
13995  if (!Subtarget->hasSSE2())
13996    return SDValue();
13997
13998  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
13999      (!Subtarget->hasAVX2() ||
14000       (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
14001    return SDValue();
14002
14003  SDValue ShAmtOp = N->getOperand(1);
14004  EVT EltVT = VT.getVectorElementType();
14005  DebugLoc DL = N->getDebugLoc();
14006  SDValue BaseShAmt = SDValue();
14007  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
14008    unsigned NumElts = VT.getVectorNumElements();
14009    unsigned i = 0;
14010    for (; i != NumElts; ++i) {
14011      SDValue Arg = ShAmtOp.getOperand(i);
14012      if (Arg.getOpcode() == ISD::UNDEF) continue;
14013      BaseShAmt = Arg;
14014      break;
14015    }
14016    // Handle the case where the build_vector is all undef
14017    // FIXME: Should DAG allow this?
14018    if (i == NumElts)
14019      return SDValue();
14020
14021    for (; i != NumElts; ++i) {
14022      SDValue Arg = ShAmtOp.getOperand(i);
14023      if (Arg.getOpcode() == ISD::UNDEF) continue;
14024      if (Arg != BaseShAmt) {
14025        return SDValue();
14026      }
14027    }
14028  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
14029             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
14030    SDValue InVec = ShAmtOp.getOperand(0);
14031    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
14032      unsigned NumElts = InVec.getValueType().getVectorNumElements();
14033      unsigned i = 0;
14034      for (; i != NumElts; ++i) {
14035        SDValue Arg = InVec.getOperand(i);
14036        if (Arg.getOpcode() == ISD::UNDEF) continue;
14037        BaseShAmt = Arg;
14038        break;
14039      }
14040    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
14041       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
14042         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
14043         if (C->getZExtValue() == SplatIdx)
14044           BaseShAmt = InVec.getOperand(1);
14045       }
14046    }
14047    if (BaseShAmt.getNode() == 0) {
14048      // Don't create instructions with illegal types after legalize
14049      // types has run.
14050      if (!DAG.getTargetLoweringInfo().isTypeLegal(EltVT) &&
14051          !DCI.isBeforeLegalize())
14052        return SDValue();
14053
14054      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
14055                              DAG.getIntPtrConstant(0));
14056    }
14057  } else
14058    return SDValue();
14059
14060  // The shift amount is an i32.
14061  if (EltVT.bitsGT(MVT::i32))
14062    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
14063  else if (EltVT.bitsLT(MVT::i32))
14064    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
14065
14066  // The shift amount is identical so we can do a vector shift.
14067  SDValue  ValOp = N->getOperand(0);
14068  switch (N->getOpcode()) {
14069  default:
14070    llvm_unreachable("Unknown shift opcode!");
14071  case ISD::SHL:
14072    switch (VT.getSimpleVT().SimpleTy) {
14073    default: return SDValue();
14074    case MVT::v2i64:
14075    case MVT::v4i32:
14076    case MVT::v8i16:
14077    case MVT::v4i64:
14078    case MVT::v8i32:
14079    case MVT::v16i16:
14080      return getTargetVShiftNode(X86ISD::VSHLI, DL, VT, ValOp, BaseShAmt, DAG);
14081    }
14082  case ISD::SRA:
14083    switch (VT.getSimpleVT().SimpleTy) {
14084    default: return SDValue();
14085    case MVT::v4i32:
14086    case MVT::v8i16:
14087    case MVT::v8i32:
14088    case MVT::v16i16:
14089      return getTargetVShiftNode(X86ISD::VSRAI, DL, VT, ValOp, BaseShAmt, DAG);
14090    }
14091  case ISD::SRL:
14092    switch (VT.getSimpleVT().SimpleTy) {
14093    default: return SDValue();
14094    case MVT::v2i64:
14095    case MVT::v4i32:
14096    case MVT::v8i16:
14097    case MVT::v4i64:
14098    case MVT::v8i32:
14099    case MVT::v16i16:
14100      return getTargetVShiftNode(X86ISD::VSRLI, DL, VT, ValOp, BaseShAmt, DAG);
14101    }
14102  }
14103}
14104
14105
14106// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
14107// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
14108// and friends.  Likewise for OR -> CMPNEQSS.
14109static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
14110                            TargetLowering::DAGCombinerInfo &DCI,
14111                            const X86Subtarget *Subtarget) {
14112  unsigned opcode;
14113
14114  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
14115  // we're requiring SSE2 for both.
14116  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
14117    SDValue N0 = N->getOperand(0);
14118    SDValue N1 = N->getOperand(1);
14119    SDValue CMP0 = N0->getOperand(1);
14120    SDValue CMP1 = N1->getOperand(1);
14121    DebugLoc DL = N->getDebugLoc();
14122
14123    // The SETCCs should both refer to the same CMP.
14124    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
14125      return SDValue();
14126
14127    SDValue CMP00 = CMP0->getOperand(0);
14128    SDValue CMP01 = CMP0->getOperand(1);
14129    EVT     VT    = CMP00.getValueType();
14130
14131    if (VT == MVT::f32 || VT == MVT::f64) {
14132      bool ExpectingFlags = false;
14133      // Check for any users that want flags:
14134      for (SDNode::use_iterator UI = N->use_begin(),
14135             UE = N->use_end();
14136           !ExpectingFlags && UI != UE; ++UI)
14137        switch (UI->getOpcode()) {
14138        default:
14139        case ISD::BR_CC:
14140        case ISD::BRCOND:
14141        case ISD::SELECT:
14142          ExpectingFlags = true;
14143          break;
14144        case ISD::CopyToReg:
14145        case ISD::SIGN_EXTEND:
14146        case ISD::ZERO_EXTEND:
14147        case ISD::ANY_EXTEND:
14148          break;
14149        }
14150
14151      if (!ExpectingFlags) {
14152        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
14153        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
14154
14155        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
14156          X86::CondCode tmp = cc0;
14157          cc0 = cc1;
14158          cc1 = tmp;
14159        }
14160
14161        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
14162            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
14163          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
14164          X86ISD::NodeType NTOperator = is64BitFP ?
14165            X86ISD::FSETCCsd : X86ISD::FSETCCss;
14166          // FIXME: need symbolic constants for these magic numbers.
14167          // See X86ATTInstPrinter.cpp:printSSECC().
14168          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
14169          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
14170                                              DAG.getConstant(x86cc, MVT::i8));
14171          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
14172                                              OnesOrZeroesF);
14173          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
14174                                      DAG.getConstant(1, MVT::i32));
14175          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
14176          return OneBitOfTruth;
14177        }
14178      }
14179    }
14180  }
14181  return SDValue();
14182}
14183
14184/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
14185/// so it can be folded inside ANDNP.
14186static bool CanFoldXORWithAllOnes(const SDNode *N) {
14187  EVT VT = N->getValueType(0);
14188
14189  // Match direct AllOnes for 128 and 256-bit vectors
14190  if (ISD::isBuildVectorAllOnes(N))
14191    return true;
14192
14193  // Look through a bit convert.
14194  if (N->getOpcode() == ISD::BITCAST)
14195    N = N->getOperand(0).getNode();
14196
14197  // Sometimes the operand may come from a insert_subvector building a 256-bit
14198  // allones vector
14199  if (VT.getSizeInBits() == 256 &&
14200      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
14201    SDValue V1 = N->getOperand(0);
14202    SDValue V2 = N->getOperand(1);
14203
14204    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
14205        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
14206        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
14207        ISD::isBuildVectorAllOnes(V2.getNode()))
14208      return true;
14209  }
14210
14211  return false;
14212}
14213
14214static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
14215                                 TargetLowering::DAGCombinerInfo &DCI,
14216                                 const X86Subtarget *Subtarget) {
14217  if (DCI.isBeforeLegalizeOps())
14218    return SDValue();
14219
14220  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
14221  if (R.getNode())
14222    return R;
14223
14224  EVT VT = N->getValueType(0);
14225
14226  // Create ANDN, BLSI, and BLSR instructions
14227  // BLSI is X & (-X)
14228  // BLSR is X & (X-1)
14229  if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
14230    SDValue N0 = N->getOperand(0);
14231    SDValue N1 = N->getOperand(1);
14232    DebugLoc DL = N->getDebugLoc();
14233
14234    // Check LHS for not
14235    if (N0.getOpcode() == ISD::XOR && isAllOnes(N0.getOperand(1)))
14236      return DAG.getNode(X86ISD::ANDN, DL, VT, N0.getOperand(0), N1);
14237    // Check RHS for not
14238    if (N1.getOpcode() == ISD::XOR && isAllOnes(N1.getOperand(1)))
14239      return DAG.getNode(X86ISD::ANDN, DL, VT, N1.getOperand(0), N0);
14240
14241    // Check LHS for neg
14242    if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
14243        isZero(N0.getOperand(0)))
14244      return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
14245
14246    // Check RHS for neg
14247    if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
14248        isZero(N1.getOperand(0)))
14249      return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
14250
14251    // Check LHS for X-1
14252    if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
14253        isAllOnes(N0.getOperand(1)))
14254      return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
14255
14256    // Check RHS for X-1
14257    if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
14258        isAllOnes(N1.getOperand(1)))
14259      return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
14260
14261    return SDValue();
14262  }
14263
14264  // Want to form ANDNP nodes:
14265  // 1) In the hopes of then easily combining them with OR and AND nodes
14266  //    to form PBLEND/PSIGN.
14267  // 2) To match ANDN packed intrinsics
14268  if (VT != MVT::v2i64 && VT != MVT::v4i64)
14269    return SDValue();
14270
14271  SDValue N0 = N->getOperand(0);
14272  SDValue N1 = N->getOperand(1);
14273  DebugLoc DL = N->getDebugLoc();
14274
14275  // Check LHS for vnot
14276  if (N0.getOpcode() == ISD::XOR &&
14277      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
14278      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
14279    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
14280
14281  // Check RHS for vnot
14282  if (N1.getOpcode() == ISD::XOR &&
14283      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
14284      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
14285    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
14286
14287  return SDValue();
14288}
14289
14290static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
14291                                TargetLowering::DAGCombinerInfo &DCI,
14292                                const X86Subtarget *Subtarget) {
14293  if (DCI.isBeforeLegalizeOps())
14294    return SDValue();
14295
14296  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
14297  if (R.getNode())
14298    return R;
14299
14300  EVT VT = N->getValueType(0);
14301
14302  SDValue N0 = N->getOperand(0);
14303  SDValue N1 = N->getOperand(1);
14304
14305  // look for psign/blend
14306  if (VT == MVT::v2i64 || VT == MVT::v4i64) {
14307    if (!Subtarget->hasSSSE3() ||
14308        (VT == MVT::v4i64 && !Subtarget->hasAVX2()))
14309      return SDValue();
14310
14311    // Canonicalize pandn to RHS
14312    if (N0.getOpcode() == X86ISD::ANDNP)
14313      std::swap(N0, N1);
14314    // or (and (m, y), (pandn m, x))
14315    if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
14316      SDValue Mask = N1.getOperand(0);
14317      SDValue X    = N1.getOperand(1);
14318      SDValue Y;
14319      if (N0.getOperand(0) == Mask)
14320        Y = N0.getOperand(1);
14321      if (N0.getOperand(1) == Mask)
14322        Y = N0.getOperand(0);
14323
14324      // Check to see if the mask appeared in both the AND and ANDNP and
14325      if (!Y.getNode())
14326        return SDValue();
14327
14328      // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
14329      // Look through mask bitcast.
14330      if (Mask.getOpcode() == ISD::BITCAST)
14331        Mask = Mask.getOperand(0);
14332      if (X.getOpcode() == ISD::BITCAST)
14333        X = X.getOperand(0);
14334      if (Y.getOpcode() == ISD::BITCAST)
14335        Y = Y.getOperand(0);
14336
14337      EVT MaskVT = Mask.getValueType();
14338
14339      // Validate that the Mask operand is a vector sra node.
14340      // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
14341      // there is no psrai.b
14342      if (Mask.getOpcode() != X86ISD::VSRAI)
14343        return SDValue();
14344
14345      // Check that the SRA is all signbits.
14346      SDValue SraC = Mask.getOperand(1);
14347      unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
14348      unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
14349      if ((SraAmt + 1) != EltBits)
14350        return SDValue();
14351
14352      DebugLoc DL = N->getDebugLoc();
14353
14354      // Now we know we at least have a plendvb with the mask val.  See if
14355      // we can form a psignb/w/d.
14356      // psign = x.type == y.type == mask.type && y = sub(0, x);
14357      if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
14358          ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
14359          X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
14360        assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
14361               "Unsupported VT for PSIGN");
14362        Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0));
14363        return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
14364      }
14365      // PBLENDVB only available on SSE 4.1
14366      if (!Subtarget->hasSSE41())
14367        return SDValue();
14368
14369      EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
14370
14371      X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
14372      Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
14373      Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
14374      Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
14375      return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
14376    }
14377  }
14378
14379  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
14380    return SDValue();
14381
14382  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
14383  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
14384    std::swap(N0, N1);
14385  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
14386    return SDValue();
14387  if (!N0.hasOneUse() || !N1.hasOneUse())
14388    return SDValue();
14389
14390  SDValue ShAmt0 = N0.getOperand(1);
14391  if (ShAmt0.getValueType() != MVT::i8)
14392    return SDValue();
14393  SDValue ShAmt1 = N1.getOperand(1);
14394  if (ShAmt1.getValueType() != MVT::i8)
14395    return SDValue();
14396  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
14397    ShAmt0 = ShAmt0.getOperand(0);
14398  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
14399    ShAmt1 = ShAmt1.getOperand(0);
14400
14401  DebugLoc DL = N->getDebugLoc();
14402  unsigned Opc = X86ISD::SHLD;
14403  SDValue Op0 = N0.getOperand(0);
14404  SDValue Op1 = N1.getOperand(0);
14405  if (ShAmt0.getOpcode() == ISD::SUB) {
14406    Opc = X86ISD::SHRD;
14407    std::swap(Op0, Op1);
14408    std::swap(ShAmt0, ShAmt1);
14409  }
14410
14411  unsigned Bits = VT.getSizeInBits();
14412  if (ShAmt1.getOpcode() == ISD::SUB) {
14413    SDValue Sum = ShAmt1.getOperand(0);
14414    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
14415      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
14416      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
14417        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
14418      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
14419        return DAG.getNode(Opc, DL, VT,
14420                           Op0, Op1,
14421                           DAG.getNode(ISD::TRUNCATE, DL,
14422                                       MVT::i8, ShAmt0));
14423    }
14424  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
14425    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
14426    if (ShAmt0C &&
14427        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
14428      return DAG.getNode(Opc, DL, VT,
14429                         N0.getOperand(0), N1.getOperand(0),
14430                         DAG.getNode(ISD::TRUNCATE, DL,
14431                                       MVT::i8, ShAmt0));
14432  }
14433
14434  return SDValue();
14435}
14436
14437// Generate NEG and CMOV for integer abs.
14438static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
14439  EVT VT = N->getValueType(0);
14440
14441  // Since X86 does not have CMOV for 8-bit integer, we don't convert
14442  // 8-bit integer abs to NEG and CMOV.
14443  if (VT.isInteger() && VT.getSizeInBits() == 8)
14444    return SDValue();
14445
14446  SDValue N0 = N->getOperand(0);
14447  SDValue N1 = N->getOperand(1);
14448  DebugLoc DL = N->getDebugLoc();
14449
14450  // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
14451  // and change it to SUB and CMOV.
14452  if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
14453      N0.getOpcode() == ISD::ADD &&
14454      N0.getOperand(1) == N1 &&
14455      N1.getOpcode() == ISD::SRA &&
14456      N1.getOperand(0) == N0.getOperand(0))
14457    if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
14458      if (Y1C->getAPIntValue() == VT.getSizeInBits()-1) {
14459        // Generate SUB & CMOV.
14460        SDValue Neg = DAG.getNode(X86ISD::SUB, DL, DAG.getVTList(VT, MVT::i32),
14461                                  DAG.getConstant(0, VT), N0.getOperand(0));
14462
14463        SDValue Ops[] = { N0.getOperand(0), Neg,
14464                          DAG.getConstant(X86::COND_GE, MVT::i8),
14465                          SDValue(Neg.getNode(), 1) };
14466        return DAG.getNode(X86ISD::CMOV, DL, DAG.getVTList(VT, MVT::Glue),
14467                           Ops, array_lengthof(Ops));
14468      }
14469  return SDValue();
14470}
14471
14472// PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
14473static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
14474                                 TargetLowering::DAGCombinerInfo &DCI,
14475                                 const X86Subtarget *Subtarget) {
14476  if (DCI.isBeforeLegalizeOps())
14477    return SDValue();
14478
14479  if (Subtarget->hasCMov()) {
14480    SDValue RV = performIntegerAbsCombine(N, DAG);
14481    if (RV.getNode())
14482      return RV;
14483  }
14484
14485  // Try forming BMI if it is available.
14486  if (!Subtarget->hasBMI())
14487    return SDValue();
14488
14489  EVT VT = N->getValueType(0);
14490
14491  if (VT != MVT::i32 && VT != MVT::i64)
14492    return SDValue();
14493
14494  assert(Subtarget->hasBMI() && "Creating BLSMSK requires BMI instructions");
14495
14496  // Create BLSMSK instructions by finding X ^ (X-1)
14497  SDValue N0 = N->getOperand(0);
14498  SDValue N1 = N->getOperand(1);
14499  DebugLoc DL = N->getDebugLoc();
14500
14501  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
14502      isAllOnes(N0.getOperand(1)))
14503    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
14504
14505  if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
14506      isAllOnes(N1.getOperand(1)))
14507    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
14508
14509  return SDValue();
14510}
14511
14512/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
14513static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
14514                                  TargetLowering::DAGCombinerInfo &DCI,
14515                                  const X86Subtarget *Subtarget) {
14516  LoadSDNode *Ld = cast<LoadSDNode>(N);
14517  EVT RegVT = Ld->getValueType(0);
14518  EVT MemVT = Ld->getMemoryVT();
14519  DebugLoc dl = Ld->getDebugLoc();
14520  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14521
14522  ISD::LoadExtType Ext = Ld->getExtensionType();
14523
14524  // If this is a vector EXT Load then attempt to optimize it using a
14525  // shuffle. We need SSE4 for the shuffles.
14526  // TODO: It is possible to support ZExt by zeroing the undef values
14527  // during the shuffle phase or after the shuffle.
14528  if (RegVT.isVector() && RegVT.isInteger() &&
14529      Ext == ISD::EXTLOAD && Subtarget->hasSSE41()) {
14530    assert(MemVT != RegVT && "Cannot extend to the same type");
14531    assert(MemVT.isVector() && "Must load a vector from memory");
14532
14533    unsigned NumElems = RegVT.getVectorNumElements();
14534    unsigned RegSz = RegVT.getSizeInBits();
14535    unsigned MemSz = MemVT.getSizeInBits();
14536    assert(RegSz > MemSz && "Register size must be greater than the mem size");
14537
14538    // All sizes must be a power of two.
14539    if (!isPowerOf2_32(RegSz * MemSz * NumElems))
14540      return SDValue();
14541
14542    // Attempt to load the original value using scalar loads.
14543    // Find the largest scalar type that divides the total loaded size.
14544    MVT SclrLoadTy = MVT::i8;
14545    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14546         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14547      MVT Tp = (MVT::SimpleValueType)tp;
14548      if (TLI.isTypeLegal(Tp) && ((MemSz % Tp.getSizeInBits()) == 0)) {
14549        SclrLoadTy = Tp;
14550      }
14551    }
14552
14553    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
14554    if (TLI.isTypeLegal(MVT::f64) && SclrLoadTy.getSizeInBits() < 64 &&
14555        (64 <= MemSz))
14556      SclrLoadTy = MVT::f64;
14557
14558    // Calculate the number of scalar loads that we need to perform
14559    // in order to load our vector from memory.
14560    unsigned NumLoads = MemSz / SclrLoadTy.getSizeInBits();
14561
14562    // Represent our vector as a sequence of elements which are the
14563    // largest scalar that we can load.
14564    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
14565      RegSz/SclrLoadTy.getSizeInBits());
14566
14567    // Represent the data using the same element type that is stored in
14568    // memory. In practice, we ''widen'' MemVT.
14569    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
14570                                  RegSz/MemVT.getScalarType().getSizeInBits());
14571
14572    assert(WideVecVT.getSizeInBits() == LoadUnitVecVT.getSizeInBits() &&
14573      "Invalid vector type");
14574
14575    // We can't shuffle using an illegal type.
14576    if (!TLI.isTypeLegal(WideVecVT))
14577      return SDValue();
14578
14579    SmallVector<SDValue, 8> Chains;
14580    SDValue Ptr = Ld->getBasePtr();
14581    SDValue Increment = DAG.getConstant(SclrLoadTy.getSizeInBits()/8,
14582                                        TLI.getPointerTy());
14583    SDValue Res = DAG.getUNDEF(LoadUnitVecVT);
14584
14585    for (unsigned i = 0; i < NumLoads; ++i) {
14586      // Perform a single load.
14587      SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
14588                                       Ptr, Ld->getPointerInfo(),
14589                                       Ld->isVolatile(), Ld->isNonTemporal(),
14590                                       Ld->isInvariant(), Ld->getAlignment());
14591      Chains.push_back(ScalarLoad.getValue(1));
14592      // Create the first element type using SCALAR_TO_VECTOR in order to avoid
14593      // another round of DAGCombining.
14594      if (i == 0)
14595        Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoadUnitVecVT, ScalarLoad);
14596      else
14597        Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, LoadUnitVecVT, Res,
14598                          ScalarLoad, DAG.getIntPtrConstant(i));
14599
14600      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14601    }
14602
14603    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
14604                               Chains.size());
14605
14606    // Bitcast the loaded value to a vector of the original element type, in
14607    // the size of the target vector type.
14608    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Res);
14609    unsigned SizeRatio = RegSz/MemSz;
14610
14611    // Redistribute the loaded elements into the different locations.
14612    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14613    for (unsigned i = 0; i != NumElems; ++i)
14614      ShuffleVec[i*SizeRatio] = i;
14615
14616    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
14617                                         DAG.getUNDEF(WideVecVT),
14618                                         &ShuffleVec[0]);
14619
14620    // Bitcast to the requested type.
14621    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
14622    // Replace the original load with the new sequence
14623    // and return the new chain.
14624    return DCI.CombineTo(N, Shuff, TF, true);
14625  }
14626
14627  return SDValue();
14628}
14629
14630/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
14631static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
14632                                   const X86Subtarget *Subtarget) {
14633  StoreSDNode *St = cast<StoreSDNode>(N);
14634  EVT VT = St->getValue().getValueType();
14635  EVT StVT = St->getMemoryVT();
14636  DebugLoc dl = St->getDebugLoc();
14637  SDValue StoredVal = St->getOperand(1);
14638  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14639
14640  // If we are saving a concatenation of two XMM registers, perform two stores.
14641  // On Sandy Bridge, 256-bit memory operations are executed by two
14642  // 128-bit ports. However, on Haswell it is better to issue a single 256-bit
14643  // memory  operation.
14644  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2() &&
14645      StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
14646      StoredVal.getNumOperands() == 2) {
14647    SDValue Value0 = StoredVal.getOperand(0);
14648    SDValue Value1 = StoredVal.getOperand(1);
14649
14650    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
14651    SDValue Ptr0 = St->getBasePtr();
14652    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
14653
14654    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
14655                                St->getPointerInfo(), St->isVolatile(),
14656                                St->isNonTemporal(), St->getAlignment());
14657    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
14658                                St->getPointerInfo(), St->isVolatile(),
14659                                St->isNonTemporal(), St->getAlignment());
14660    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
14661  }
14662
14663  // Optimize trunc store (of multiple scalars) to shuffle and store.
14664  // First, pack all of the elements in one place. Next, store to memory
14665  // in fewer chunks.
14666  if (St->isTruncatingStore() && VT.isVector()) {
14667    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14668    unsigned NumElems = VT.getVectorNumElements();
14669    assert(StVT != VT && "Cannot truncate to the same type");
14670    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
14671    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
14672
14673    // From, To sizes and ElemCount must be pow of two
14674    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
14675    // We are going to use the original vector elt for storing.
14676    // Accumulated smaller vector elements must be a multiple of the store size.
14677    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
14678
14679    unsigned SizeRatio  = FromSz / ToSz;
14680
14681    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
14682
14683    // Create a type on which we perform the shuffle
14684    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
14685            StVT.getScalarType(), NumElems*SizeRatio);
14686
14687    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
14688
14689    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
14690    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14691    for (unsigned i = 0; i != NumElems; ++i)
14692      ShuffleVec[i] = i * SizeRatio;
14693
14694    // Can't shuffle using an illegal type.
14695    if (!TLI.isTypeLegal(WideVecVT))
14696      return SDValue();
14697
14698    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
14699                                         DAG.getUNDEF(WideVecVT),
14700                                         &ShuffleVec[0]);
14701    // At this point all of the data is stored at the bottom of the
14702    // register. We now need to save it to mem.
14703
14704    // Find the largest store unit
14705    MVT StoreType = MVT::i8;
14706    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14707         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14708      MVT Tp = (MVT::SimpleValueType)tp;
14709      if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToSz)
14710        StoreType = Tp;
14711    }
14712
14713    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
14714    if (TLI.isTypeLegal(MVT::f64) && StoreType.getSizeInBits() < 64 &&
14715        (64 <= NumElems * ToSz))
14716      StoreType = MVT::f64;
14717
14718    // Bitcast the original vector into a vector of store-size units
14719    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
14720            StoreType, VT.getSizeInBits()/StoreType.getSizeInBits());
14721    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
14722    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
14723    SmallVector<SDValue, 8> Chains;
14724    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
14725                                        TLI.getPointerTy());
14726    SDValue Ptr = St->getBasePtr();
14727
14728    // Perform one or more big stores into memory.
14729    for (unsigned i=0, e=(ToSz*NumElems)/StoreType.getSizeInBits(); i!=e; ++i) {
14730      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
14731                                   StoreType, ShuffWide,
14732                                   DAG.getIntPtrConstant(i));
14733      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
14734                                St->getPointerInfo(), St->isVolatile(),
14735                                St->isNonTemporal(), St->getAlignment());
14736      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14737      Chains.push_back(Ch);
14738    }
14739
14740    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
14741                               Chains.size());
14742  }
14743
14744
14745  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
14746  // the FP state in cases where an emms may be missing.
14747  // A preferable solution to the general problem is to figure out the right
14748  // places to insert EMMS.  This qualifies as a quick hack.
14749
14750  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
14751  if (VT.getSizeInBits() != 64)
14752    return SDValue();
14753
14754  const Function *F = DAG.getMachineFunction().getFunction();
14755  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
14756  bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
14757                     && Subtarget->hasSSE2();
14758  if ((VT.isVector() ||
14759       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
14760      isa<LoadSDNode>(St->getValue()) &&
14761      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
14762      St->getChain().hasOneUse() && !St->isVolatile()) {
14763    SDNode* LdVal = St->getValue().getNode();
14764    LoadSDNode *Ld = 0;
14765    int TokenFactorIndex = -1;
14766    SmallVector<SDValue, 8> Ops;
14767    SDNode* ChainVal = St->getChain().getNode();
14768    // Must be a store of a load.  We currently handle two cases:  the load
14769    // is a direct child, and it's under an intervening TokenFactor.  It is
14770    // possible to dig deeper under nested TokenFactors.
14771    if (ChainVal == LdVal)
14772      Ld = cast<LoadSDNode>(St->getChain());
14773    else if (St->getValue().hasOneUse() &&
14774             ChainVal->getOpcode() == ISD::TokenFactor) {
14775      for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) {
14776        if (ChainVal->getOperand(i).getNode() == LdVal) {
14777          TokenFactorIndex = i;
14778          Ld = cast<LoadSDNode>(St->getValue());
14779        } else
14780          Ops.push_back(ChainVal->getOperand(i));
14781      }
14782    }
14783
14784    if (!Ld || !ISD::isNormalLoad(Ld))
14785      return SDValue();
14786
14787    // If this is not the MMX case, i.e. we are just turning i64 load/store
14788    // into f64 load/store, avoid the transformation if there are multiple
14789    // uses of the loaded value.
14790    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
14791      return SDValue();
14792
14793    DebugLoc LdDL = Ld->getDebugLoc();
14794    DebugLoc StDL = N->getDebugLoc();
14795    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
14796    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
14797    // pair instead.
14798    if (Subtarget->is64Bit() || F64IsLegal) {
14799      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
14800      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
14801                                  Ld->getPointerInfo(), Ld->isVolatile(),
14802                                  Ld->isNonTemporal(), Ld->isInvariant(),
14803                                  Ld->getAlignment());
14804      SDValue NewChain = NewLd.getValue(1);
14805      if (TokenFactorIndex != -1) {
14806        Ops.push_back(NewChain);
14807        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14808                               Ops.size());
14809      }
14810      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
14811                          St->getPointerInfo(),
14812                          St->isVolatile(), St->isNonTemporal(),
14813                          St->getAlignment());
14814    }
14815
14816    // Otherwise, lower to two pairs of 32-bit loads / stores.
14817    SDValue LoAddr = Ld->getBasePtr();
14818    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
14819                                 DAG.getConstant(4, MVT::i32));
14820
14821    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
14822                               Ld->getPointerInfo(),
14823                               Ld->isVolatile(), Ld->isNonTemporal(),
14824                               Ld->isInvariant(), Ld->getAlignment());
14825    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
14826                               Ld->getPointerInfo().getWithOffset(4),
14827                               Ld->isVolatile(), Ld->isNonTemporal(),
14828                               Ld->isInvariant(),
14829                               MinAlign(Ld->getAlignment(), 4));
14830
14831    SDValue NewChain = LoLd.getValue(1);
14832    if (TokenFactorIndex != -1) {
14833      Ops.push_back(LoLd);
14834      Ops.push_back(HiLd);
14835      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14836                             Ops.size());
14837    }
14838
14839    LoAddr = St->getBasePtr();
14840    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
14841                         DAG.getConstant(4, MVT::i32));
14842
14843    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
14844                                St->getPointerInfo(),
14845                                St->isVolatile(), St->isNonTemporal(),
14846                                St->getAlignment());
14847    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
14848                                St->getPointerInfo().getWithOffset(4),
14849                                St->isVolatile(),
14850                                St->isNonTemporal(),
14851                                MinAlign(St->getAlignment(), 4));
14852    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
14853  }
14854  return SDValue();
14855}
14856
14857/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
14858/// and return the operands for the horizontal operation in LHS and RHS.  A
14859/// horizontal operation performs the binary operation on successive elements
14860/// of its first operand, then on successive elements of its second operand,
14861/// returning the resulting values in a vector.  For example, if
14862///   A = < float a0, float a1, float a2, float a3 >
14863/// and
14864///   B = < float b0, float b1, float b2, float b3 >
14865/// then the result of doing a horizontal operation on A and B is
14866///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
14867/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
14868/// A horizontal-op B, for some already available A and B, and if so then LHS is
14869/// set to A, RHS to B, and the routine returns 'true'.
14870/// Note that the binary operation should have the property that if one of the
14871/// operands is UNDEF then the result is UNDEF.
14872static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
14873  // Look for the following pattern: if
14874  //   A = < float a0, float a1, float a2, float a3 >
14875  //   B = < float b0, float b1, float b2, float b3 >
14876  // and
14877  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
14878  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
14879  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
14880  // which is A horizontal-op B.
14881
14882  // At least one of the operands should be a vector shuffle.
14883  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
14884      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
14885    return false;
14886
14887  EVT VT = LHS.getValueType();
14888
14889  assert((VT.is128BitVector() || VT.is256BitVector()) &&
14890         "Unsupported vector type for horizontal add/sub");
14891
14892  // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
14893  // operate independently on 128-bit lanes.
14894  unsigned NumElts = VT.getVectorNumElements();
14895  unsigned NumLanes = VT.getSizeInBits()/128;
14896  unsigned NumLaneElts = NumElts / NumLanes;
14897  assert((NumLaneElts % 2 == 0) &&
14898         "Vector type should have an even number of elements in each lane");
14899  unsigned HalfLaneElts = NumLaneElts/2;
14900
14901  // View LHS in the form
14902  //   LHS = VECTOR_SHUFFLE A, B, LMask
14903  // If LHS is not a shuffle then pretend it is the shuffle
14904  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
14905  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
14906  // type VT.
14907  SDValue A, B;
14908  SmallVector<int, 16> LMask(NumElts);
14909  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14910    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
14911      A = LHS.getOperand(0);
14912    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
14913      B = LHS.getOperand(1);
14914    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
14915    std::copy(Mask.begin(), Mask.end(), LMask.begin());
14916  } else {
14917    if (LHS.getOpcode() != ISD::UNDEF)
14918      A = LHS;
14919    for (unsigned i = 0; i != NumElts; ++i)
14920      LMask[i] = i;
14921  }
14922
14923  // Likewise, view RHS in the form
14924  //   RHS = VECTOR_SHUFFLE C, D, RMask
14925  SDValue C, D;
14926  SmallVector<int, 16> RMask(NumElts);
14927  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14928    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
14929      C = RHS.getOperand(0);
14930    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
14931      D = RHS.getOperand(1);
14932    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
14933    std::copy(Mask.begin(), Mask.end(), RMask.begin());
14934  } else {
14935    if (RHS.getOpcode() != ISD::UNDEF)
14936      C = RHS;
14937    for (unsigned i = 0; i != NumElts; ++i)
14938      RMask[i] = i;
14939  }
14940
14941  // Check that the shuffles are both shuffling the same vectors.
14942  if (!(A == C && B == D) && !(A == D && B == C))
14943    return false;
14944
14945  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
14946  if (!A.getNode() && !B.getNode())
14947    return false;
14948
14949  // If A and B occur in reverse order in RHS, then "swap" them (which means
14950  // rewriting the mask).
14951  if (A != C)
14952    CommuteVectorShuffleMask(RMask, NumElts);
14953
14954  // At this point LHS and RHS are equivalent to
14955  //   LHS = VECTOR_SHUFFLE A, B, LMask
14956  //   RHS = VECTOR_SHUFFLE A, B, RMask
14957  // Check that the masks correspond to performing a horizontal operation.
14958  for (unsigned i = 0; i != NumElts; ++i) {
14959    int LIdx = LMask[i], RIdx = RMask[i];
14960
14961    // Ignore any UNDEF components.
14962    if (LIdx < 0 || RIdx < 0 ||
14963        (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
14964        (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
14965      continue;
14966
14967    // Check that successive elements are being operated on.  If not, this is
14968    // not a horizontal operation.
14969    unsigned Src = (i/HalfLaneElts) % 2; // each lane is split between srcs
14970    unsigned LaneStart = (i/NumLaneElts) * NumLaneElts;
14971    int Index = 2*(i%HalfLaneElts) + NumElts*Src + LaneStart;
14972    if (!(LIdx == Index && RIdx == Index + 1) &&
14973        !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
14974      return false;
14975  }
14976
14977  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
14978  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
14979  return true;
14980}
14981
14982/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
14983static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
14984                                  const X86Subtarget *Subtarget) {
14985  EVT VT = N->getValueType(0);
14986  SDValue LHS = N->getOperand(0);
14987  SDValue RHS = N->getOperand(1);
14988
14989  // Try to synthesize horizontal adds from adds of shuffles.
14990  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14991       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14992      isHorizontalBinOp(LHS, RHS, true))
14993    return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
14994  return SDValue();
14995}
14996
14997/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
14998static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
14999                                  const X86Subtarget *Subtarget) {
15000  EVT VT = N->getValueType(0);
15001  SDValue LHS = N->getOperand(0);
15002  SDValue RHS = N->getOperand(1);
15003
15004  // Try to synthesize horizontal subs from subs of shuffles.
15005  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
15006       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
15007      isHorizontalBinOp(LHS, RHS, false))
15008    return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
15009  return SDValue();
15010}
15011
15012/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
15013/// X86ISD::FXOR nodes.
15014static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
15015  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
15016  // F[X]OR(0.0, x) -> x
15017  // F[X]OR(x, 0.0) -> x
15018  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
15019    if (C->getValueAPF().isPosZero())
15020      return N->getOperand(1);
15021  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
15022    if (C->getValueAPF().isPosZero())
15023      return N->getOperand(0);
15024  return SDValue();
15025}
15026
15027/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
15028static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
15029  // FAND(0.0, x) -> 0.0
15030  // FAND(x, 0.0) -> 0.0
15031  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
15032    if (C->getValueAPF().isPosZero())
15033      return N->getOperand(0);
15034  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
15035    if (C->getValueAPF().isPosZero())
15036      return N->getOperand(1);
15037  return SDValue();
15038}
15039
15040static SDValue PerformBTCombine(SDNode *N,
15041                                SelectionDAG &DAG,
15042                                TargetLowering::DAGCombinerInfo &DCI) {
15043  // BT ignores high bits in the bit index operand.
15044  SDValue Op1 = N->getOperand(1);
15045  if (Op1.hasOneUse()) {
15046    unsigned BitWidth = Op1.getValueSizeInBits();
15047    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
15048    APInt KnownZero, KnownOne;
15049    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
15050                                          !DCI.isBeforeLegalizeOps());
15051    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15052    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
15053        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
15054      DCI.CommitTargetLoweringOpt(TLO);
15055  }
15056  return SDValue();
15057}
15058
15059static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
15060  SDValue Op = N->getOperand(0);
15061  if (Op.getOpcode() == ISD::BITCAST)
15062    Op = Op.getOperand(0);
15063  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
15064  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
15065      VT.getVectorElementType().getSizeInBits() ==
15066      OpVT.getVectorElementType().getSizeInBits()) {
15067    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
15068  }
15069  return SDValue();
15070}
15071
15072static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG,
15073                                  TargetLowering::DAGCombinerInfo &DCI,
15074                                  const X86Subtarget *Subtarget) {
15075  if (!DCI.isBeforeLegalizeOps())
15076    return SDValue();
15077
15078  if (!Subtarget->hasAVX())
15079    return SDValue();
15080
15081  EVT VT = N->getValueType(0);
15082  SDValue Op = N->getOperand(0);
15083  EVT OpVT = Op.getValueType();
15084  DebugLoc dl = N->getDebugLoc();
15085
15086  if ((VT == MVT::v4i64 && OpVT == MVT::v4i32) ||
15087      (VT == MVT::v8i32 && OpVT == MVT::v8i16)) {
15088
15089    if (Subtarget->hasAVX2())
15090      return DAG.getNode(X86ISD::VSEXT_MOVL, dl, VT, Op);
15091
15092    // Optimize vectors in AVX mode
15093    // Sign extend  v8i16 to v8i32 and
15094    //              v4i32 to v4i64
15095    //
15096    // Divide input vector into two parts
15097    // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1}
15098    // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
15099    // concat the vectors to original VT
15100
15101    unsigned NumElems = OpVT.getVectorNumElements();
15102    SmallVector<int,8> ShufMask1(NumElems, -1);
15103    for (unsigned i = 0; i != NumElems/2; ++i)
15104      ShufMask1[i] = i;
15105
15106    SDValue OpLo = DAG.getVectorShuffle(OpVT, dl, Op, DAG.getUNDEF(OpVT),
15107                                        &ShufMask1[0]);
15108
15109    SmallVector<int,8> ShufMask2(NumElems, -1);
15110    for (unsigned i = 0; i != NumElems/2; ++i)
15111      ShufMask2[i] = i + NumElems/2;
15112
15113    SDValue OpHi = DAG.getVectorShuffle(OpVT, dl, Op, DAG.getUNDEF(OpVT),
15114                                        &ShufMask2[0]);
15115
15116    EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
15117                                  VT.getVectorNumElements()/2);
15118
15119    OpLo = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpLo);
15120    OpHi = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpHi);
15121
15122    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
15123  }
15124  return SDValue();
15125}
15126
15127static SDValue PerformFMACombine(SDNode *N, SelectionDAG &DAG,
15128                                 const X86Subtarget* Subtarget) {
15129  DebugLoc dl = N->getDebugLoc();
15130  EVT VT = N->getValueType(0);
15131
15132  EVT ScalarVT = VT.getScalarType();
15133  if ((ScalarVT != MVT::f32 && ScalarVT != MVT::f64) || !Subtarget->hasFMA())
15134    return SDValue();
15135
15136  SDValue A = N->getOperand(0);
15137  SDValue B = N->getOperand(1);
15138  SDValue C = N->getOperand(2);
15139
15140  bool NegA = (A.getOpcode() == ISD::FNEG);
15141  bool NegB = (B.getOpcode() == ISD::FNEG);
15142  bool NegC = (C.getOpcode() == ISD::FNEG);
15143
15144  // Negative multiplication when NegA xor NegB
15145  bool NegMul = (NegA != NegB);
15146  if (NegA)
15147    A = A.getOperand(0);
15148  if (NegB)
15149    B = B.getOperand(0);
15150  if (NegC)
15151    C = C.getOperand(0);
15152
15153  unsigned Opcode;
15154  if (!NegMul)
15155    Opcode = (!NegC)? X86ISD::FMADD : X86ISD::FMSUB;
15156  else
15157    Opcode = (!NegC)? X86ISD::FNMADD : X86ISD::FNMSUB;
15158  return DAG.getNode(Opcode, dl, VT, A, B, C);
15159}
15160
15161static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
15162                                  TargetLowering::DAGCombinerInfo &DCI,
15163                                  const X86Subtarget *Subtarget) {
15164  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
15165  //           (and (i32 x86isd::setcc_carry), 1)
15166  // This eliminates the zext. This transformation is necessary because
15167  // ISD::SETCC is always legalized to i8.
15168  DebugLoc dl = N->getDebugLoc();
15169  SDValue N0 = N->getOperand(0);
15170  EVT VT = N->getValueType(0);
15171  EVT OpVT = N0.getValueType();
15172
15173  if (N0.getOpcode() == ISD::AND &&
15174      N0.hasOneUse() &&
15175      N0.getOperand(0).hasOneUse()) {
15176    SDValue N00 = N0.getOperand(0);
15177    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
15178      return SDValue();
15179    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
15180    if (!C || C->getZExtValue() != 1)
15181      return SDValue();
15182    return DAG.getNode(ISD::AND, dl, VT,
15183                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
15184                                   N00.getOperand(0), N00.getOperand(1)),
15185                       DAG.getConstant(1, VT));
15186  }
15187
15188  // Optimize vectors in AVX mode:
15189  //
15190  //   v8i16 -> v8i32
15191  //   Use vpunpcklwd for 4 lower elements  v8i16 -> v4i32.
15192  //   Use vpunpckhwd for 4 upper elements  v8i16 -> v4i32.
15193  //   Concat upper and lower parts.
15194  //
15195  //   v4i32 -> v4i64
15196  //   Use vpunpckldq for 4 lower elements  v4i32 -> v2i64.
15197  //   Use vpunpckhdq for 4 upper elements  v4i32 -> v2i64.
15198  //   Concat upper and lower parts.
15199  //
15200  if (!DCI.isBeforeLegalizeOps())
15201    return SDValue();
15202
15203  if (!Subtarget->hasAVX())
15204    return SDValue();
15205
15206  if (((VT == MVT::v8i32) && (OpVT == MVT::v8i16)) ||
15207      ((VT == MVT::v4i64) && (OpVT == MVT::v4i32)))  {
15208
15209    if (Subtarget->hasAVX2())
15210      return DAG.getNode(X86ISD::VZEXT_MOVL, dl, VT, N0);
15211
15212    SDValue ZeroVec = getZeroVector(OpVT, Subtarget, DAG, dl);
15213    SDValue OpLo = getUnpackl(DAG, dl, OpVT, N0, ZeroVec);
15214    SDValue OpHi = getUnpackh(DAG, dl, OpVT, N0, ZeroVec);
15215
15216    EVT HVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
15217                               VT.getVectorNumElements()/2);
15218
15219    OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo);
15220    OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi);
15221
15222    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
15223  }
15224
15225  return SDValue();
15226}
15227
15228// Optimize x == -y --> x+y == 0
15229//          x != -y --> x+y != 0
15230static SDValue PerformISDSETCCCombine(SDNode *N, SelectionDAG &DAG) {
15231  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
15232  SDValue LHS = N->getOperand(0);
15233  SDValue RHS = N->getOperand(1);
15234
15235  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && LHS.getOpcode() == ISD::SUB)
15236    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(LHS.getOperand(0)))
15237      if (C->getAPIntValue() == 0 && LHS.hasOneUse()) {
15238        SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(),
15239                                   LHS.getValueType(), RHS, LHS.getOperand(1));
15240        return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0),
15241                            addV, DAG.getConstant(0, addV.getValueType()), CC);
15242      }
15243  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && RHS.getOpcode() == ISD::SUB)
15244    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS.getOperand(0)))
15245      if (C->getAPIntValue() == 0 && RHS.hasOneUse()) {
15246        SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(),
15247                                   RHS.getValueType(), LHS, RHS.getOperand(1));
15248        return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0),
15249                            addV, DAG.getConstant(0, addV.getValueType()), CC);
15250      }
15251  return SDValue();
15252}
15253
15254// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
15255static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
15256  unsigned X86CC = N->getConstantOperandVal(0);
15257  SDValue EFLAG = N->getOperand(1);
15258  DebugLoc DL = N->getDebugLoc();
15259
15260  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
15261  // a zext and produces an all-ones bit which is more useful than 0/1 in some
15262  // cases.
15263  if (X86CC == X86::COND_B)
15264    return DAG.getNode(ISD::AND, DL, MVT::i8,
15265                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
15266                                   DAG.getConstant(X86CC, MVT::i8), EFLAG),
15267                       DAG.getConstant(1, MVT::i8));
15268
15269  return SDValue();
15270}
15271
15272static SDValue PerformUINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG) {
15273  SDValue Op0 = N->getOperand(0);
15274  EVT InVT = Op0->getValueType(0);
15275
15276  // UINT_TO_FP(v4i8) -> SINT_TO_FP(ZEXT(v4i8 to v4i32))
15277  if (InVT == MVT::v8i8 || InVT == MVT::v4i8) {
15278    DebugLoc dl = N->getDebugLoc();
15279    MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
15280    SDValue P = DAG.getNode(ISD::ZERO_EXTEND, dl, DstVT, Op0);
15281    // Notice that we use SINT_TO_FP because we know that the high bits
15282    // are zero and SINT_TO_FP is better supported by the hardware.
15283    return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P);
15284  }
15285
15286  return SDValue();
15287}
15288
15289static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
15290                                        const X86TargetLowering *XTLI) {
15291  SDValue Op0 = N->getOperand(0);
15292  EVT InVT = Op0->getValueType(0);
15293
15294  // SINT_TO_FP(v4i8) -> SINT_TO_FP(SEXT(v4i8 to v4i32))
15295  if (InVT == MVT::v8i8 || InVT == MVT::v4i8) {
15296    DebugLoc dl = N->getDebugLoc();
15297    MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
15298    SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0);
15299    return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P);
15300  }
15301
15302  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
15303  // a 32-bit target where SSE doesn't support i64->FP operations.
15304  if (Op0.getOpcode() == ISD::LOAD) {
15305    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
15306    EVT VT = Ld->getValueType(0);
15307    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
15308        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
15309        !XTLI->getSubtarget()->is64Bit() &&
15310        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
15311      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
15312                                          Ld->getChain(), Op0, DAG);
15313      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
15314      return FILDChain;
15315    }
15316  }
15317  return SDValue();
15318}
15319
15320static SDValue PerformFP_TO_SINTCombine(SDNode *N, SelectionDAG &DAG) {
15321  EVT VT = N->getValueType(0);
15322
15323  // v4i8 = FP_TO_SINT() -> v4i8 = TRUNCATE (V4i32 = FP_TO_SINT()
15324  if (VT == MVT::v8i8 || VT == MVT::v4i8) {
15325    DebugLoc dl = N->getDebugLoc();
15326    MVT DstVT = VT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
15327    SDValue I = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, N->getOperand(0));
15328    return DAG.getNode(ISD::TRUNCATE, dl, VT, I);
15329  }
15330
15331  return SDValue();
15332}
15333
15334// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
15335static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
15336                                 X86TargetLowering::DAGCombinerInfo &DCI) {
15337  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
15338  // the result is either zero or one (depending on the input carry bit).
15339  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
15340  if (X86::isZeroNode(N->getOperand(0)) &&
15341      X86::isZeroNode(N->getOperand(1)) &&
15342      // We don't have a good way to replace an EFLAGS use, so only do this when
15343      // dead right now.
15344      SDValue(N, 1).use_empty()) {
15345    DebugLoc DL = N->getDebugLoc();
15346    EVT VT = N->getValueType(0);
15347    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
15348    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
15349                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
15350                                           DAG.getConstant(X86::COND_B,MVT::i8),
15351                                           N->getOperand(2)),
15352                               DAG.getConstant(1, VT));
15353    return DCI.CombineTo(N, Res1, CarryOut);
15354  }
15355
15356  return SDValue();
15357}
15358
15359// fold (add Y, (sete  X, 0)) -> adc  0, Y
15360//      (add Y, (setne X, 0)) -> sbb -1, Y
15361//      (sub (sete  X, 0), Y) -> sbb  0, Y
15362//      (sub (setne X, 0), Y) -> adc -1, Y
15363static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
15364  DebugLoc DL = N->getDebugLoc();
15365
15366  // Look through ZExts.
15367  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
15368  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
15369    return SDValue();
15370
15371  SDValue SetCC = Ext.getOperand(0);
15372  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
15373    return SDValue();
15374
15375  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
15376  if (CC != X86::COND_E && CC != X86::COND_NE)
15377    return SDValue();
15378
15379  SDValue Cmp = SetCC.getOperand(1);
15380  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
15381      !X86::isZeroNode(Cmp.getOperand(1)) ||
15382      !Cmp.getOperand(0).getValueType().isInteger())
15383    return SDValue();
15384
15385  SDValue CmpOp0 = Cmp.getOperand(0);
15386  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
15387                               DAG.getConstant(1, CmpOp0.getValueType()));
15388
15389  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
15390  if (CC == X86::COND_NE)
15391    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
15392                       DL, OtherVal.getValueType(), OtherVal,
15393                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
15394  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
15395                     DL, OtherVal.getValueType(), OtherVal,
15396                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
15397}
15398
15399/// PerformADDCombine - Do target-specific dag combines on integer adds.
15400static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
15401                                 const X86Subtarget *Subtarget) {
15402  EVT VT = N->getValueType(0);
15403  SDValue Op0 = N->getOperand(0);
15404  SDValue Op1 = N->getOperand(1);
15405
15406  // Try to synthesize horizontal adds from adds of shuffles.
15407  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
15408       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
15409      isHorizontalBinOp(Op0, Op1, true))
15410    return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1);
15411
15412  return OptimizeConditionalInDecrement(N, DAG);
15413}
15414
15415static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
15416                                 const X86Subtarget *Subtarget) {
15417  SDValue Op0 = N->getOperand(0);
15418  SDValue Op1 = N->getOperand(1);
15419
15420  // X86 can't encode an immediate LHS of a sub. See if we can push the
15421  // negation into a preceding instruction.
15422  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
15423    // If the RHS of the sub is a XOR with one use and a constant, invert the
15424    // immediate. Then add one to the LHS of the sub so we can turn
15425    // X-Y -> X+~Y+1, saving one register.
15426    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
15427        isa<ConstantSDNode>(Op1.getOperand(1))) {
15428      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
15429      EVT VT = Op0.getValueType();
15430      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
15431                                   Op1.getOperand(0),
15432                                   DAG.getConstant(~XorC, VT));
15433      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
15434                         DAG.getConstant(C->getAPIntValue()+1, VT));
15435    }
15436  }
15437
15438  // Try to synthesize horizontal adds from adds of shuffles.
15439  EVT VT = N->getValueType(0);
15440  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
15441       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
15442      isHorizontalBinOp(Op0, Op1, true))
15443    return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1);
15444
15445  return OptimizeConditionalInDecrement(N, DAG);
15446}
15447
15448SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
15449                                             DAGCombinerInfo &DCI) const {
15450  SelectionDAG &DAG = DCI.DAG;
15451  switch (N->getOpcode()) {
15452  default: break;
15453  case ISD::EXTRACT_VECTOR_ELT:
15454    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI);
15455  case ISD::VSELECT:
15456  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, DCI, Subtarget);
15457  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
15458  case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
15459  case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
15460  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
15461  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
15462  case ISD::SHL:
15463  case ISD::SRA:
15464  case ISD::SRL:            return PerformShiftCombine(N, DAG, DCI, Subtarget);
15465  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
15466  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
15467  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
15468  case ISD::LOAD:           return PerformLOADCombine(N, DAG, DCI, Subtarget);
15469  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
15470  case ISD::UINT_TO_FP:     return PerformUINT_TO_FPCombine(N, DAG);
15471  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
15472  case ISD::FP_TO_SINT:     return PerformFP_TO_SINTCombine(N, DAG);
15473  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
15474  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
15475  case X86ISD::FXOR:
15476  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
15477  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
15478  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
15479  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
15480  case ISD::ANY_EXTEND:
15481  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG, DCI, Subtarget);
15482  case ISD::SIGN_EXTEND:    return PerformSExtCombine(N, DAG, DCI, Subtarget);
15483  case ISD::TRUNCATE:       return PerformTruncateCombine(N, DAG, DCI);
15484  case ISD::SETCC:          return PerformISDSETCCCombine(N, DAG);
15485  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
15486  case X86ISD::SHUFP:       // Handle all target specific shuffles
15487  case X86ISD::PALIGN:
15488  case X86ISD::UNPCKH:
15489  case X86ISD::UNPCKL:
15490  case X86ISD::MOVHLPS:
15491  case X86ISD::MOVLHPS:
15492  case X86ISD::PSHUFD:
15493  case X86ISD::PSHUFHW:
15494  case X86ISD::PSHUFLW:
15495  case X86ISD::MOVSS:
15496  case X86ISD::MOVSD:
15497  case X86ISD::VPERMILP:
15498  case X86ISD::VPERM2X128:
15499  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
15500  case ISD::FMA:            return PerformFMACombine(N, DAG, Subtarget);
15501  }
15502
15503  return SDValue();
15504}
15505
15506/// isTypeDesirableForOp - Return true if the target has native support for
15507/// the specified value type and it is 'desirable' to use the type for the
15508/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
15509/// instruction encodings are longer and some i16 instructions are slow.
15510bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
15511  if (!isTypeLegal(VT))
15512    return false;
15513  if (VT != MVT::i16)
15514    return true;
15515
15516  switch (Opc) {
15517  default:
15518    return true;
15519  case ISD::LOAD:
15520  case ISD::SIGN_EXTEND:
15521  case ISD::ZERO_EXTEND:
15522  case ISD::ANY_EXTEND:
15523  case ISD::SHL:
15524  case ISD::SRL:
15525  case ISD::SUB:
15526  case ISD::ADD:
15527  case ISD::MUL:
15528  case ISD::AND:
15529  case ISD::OR:
15530  case ISD::XOR:
15531    return false;
15532  }
15533}
15534
15535/// IsDesirableToPromoteOp - This method query the target whether it is
15536/// beneficial for dag combiner to promote the specified node. If true, it
15537/// should return the desired promotion type by reference.
15538bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
15539  EVT VT = Op.getValueType();
15540  if (VT != MVT::i16)
15541    return false;
15542
15543  bool Promote = false;
15544  bool Commute = false;
15545  switch (Op.getOpcode()) {
15546  default: break;
15547  case ISD::LOAD: {
15548    LoadSDNode *LD = cast<LoadSDNode>(Op);
15549    // If the non-extending load has a single use and it's not live out, then it
15550    // might be folded.
15551    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
15552                                                     Op.hasOneUse()*/) {
15553      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
15554             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
15555        // The only case where we'd want to promote LOAD (rather then it being
15556        // promoted as an operand is when it's only use is liveout.
15557        if (UI->getOpcode() != ISD::CopyToReg)
15558          return false;
15559      }
15560    }
15561    Promote = true;
15562    break;
15563  }
15564  case ISD::SIGN_EXTEND:
15565  case ISD::ZERO_EXTEND:
15566  case ISD::ANY_EXTEND:
15567    Promote = true;
15568    break;
15569  case ISD::SHL:
15570  case ISD::SRL: {
15571    SDValue N0 = Op.getOperand(0);
15572    // Look out for (store (shl (load), x)).
15573    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
15574      return false;
15575    Promote = true;
15576    break;
15577  }
15578  case ISD::ADD:
15579  case ISD::MUL:
15580  case ISD::AND:
15581  case ISD::OR:
15582  case ISD::XOR:
15583    Commute = true;
15584    // fallthrough
15585  case ISD::SUB: {
15586    SDValue N0 = Op.getOperand(0);
15587    SDValue N1 = Op.getOperand(1);
15588    if (!Commute && MayFoldLoad(N1))
15589      return false;
15590    // Avoid disabling potential load folding opportunities.
15591    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
15592      return false;
15593    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
15594      return false;
15595    Promote = true;
15596  }
15597  }
15598
15599  PVT = MVT::i32;
15600  return Promote;
15601}
15602
15603//===----------------------------------------------------------------------===//
15604//                           X86 Inline Assembly Support
15605//===----------------------------------------------------------------------===//
15606
15607namespace {
15608  // Helper to match a string separated by whitespace.
15609  bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
15610    s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
15611
15612    for (unsigned i = 0, e = args.size(); i != e; ++i) {
15613      StringRef piece(*args[i]);
15614      if (!s.startswith(piece)) // Check if the piece matches.
15615        return false;
15616
15617      s = s.substr(piece.size());
15618      StringRef::size_type pos = s.find_first_not_of(" \t");
15619      if (pos == 0) // We matched a prefix.
15620        return false;
15621
15622      s = s.substr(pos);
15623    }
15624
15625    return s.empty();
15626  }
15627  const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
15628}
15629
15630bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
15631  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
15632
15633  std::string AsmStr = IA->getAsmString();
15634
15635  IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
15636  if (!Ty || Ty->getBitWidth() % 16 != 0)
15637    return false;
15638
15639  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
15640  SmallVector<StringRef, 4> AsmPieces;
15641  SplitString(AsmStr, AsmPieces, ";\n");
15642
15643  switch (AsmPieces.size()) {
15644  default: return false;
15645  case 1:
15646    // FIXME: this should verify that we are targeting a 486 or better.  If not,
15647    // we will turn this bswap into something that will be lowered to logical
15648    // ops instead of emitting the bswap asm.  For now, we don't support 486 or
15649    // lower so don't worry about this.
15650    // bswap $0
15651    if (matchAsm(AsmPieces[0], "bswap", "$0") ||
15652        matchAsm(AsmPieces[0], "bswapl", "$0") ||
15653        matchAsm(AsmPieces[0], "bswapq", "$0") ||
15654        matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
15655        matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
15656        matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
15657      // No need to check constraints, nothing other than the equivalent of
15658      // "=r,0" would be valid here.
15659      return IntrinsicLowering::LowerToByteSwap(CI);
15660    }
15661
15662    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
15663    if (CI->getType()->isIntegerTy(16) &&
15664        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
15665        (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
15666         matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
15667      AsmPieces.clear();
15668      const std::string &ConstraintsStr = IA->getConstraintString();
15669      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
15670      std::sort(AsmPieces.begin(), AsmPieces.end());
15671      if (AsmPieces.size() == 4 &&
15672          AsmPieces[0] == "~{cc}" &&
15673          AsmPieces[1] == "~{dirflag}" &&
15674          AsmPieces[2] == "~{flags}" &&
15675          AsmPieces[3] == "~{fpsr}")
15676      return IntrinsicLowering::LowerToByteSwap(CI);
15677    }
15678    break;
15679  case 3:
15680    if (CI->getType()->isIntegerTy(32) &&
15681        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
15682        matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
15683        matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
15684        matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
15685      AsmPieces.clear();
15686      const std::string &ConstraintsStr = IA->getConstraintString();
15687      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
15688      std::sort(AsmPieces.begin(), AsmPieces.end());
15689      if (AsmPieces.size() == 4 &&
15690          AsmPieces[0] == "~{cc}" &&
15691          AsmPieces[1] == "~{dirflag}" &&
15692          AsmPieces[2] == "~{flags}" &&
15693          AsmPieces[3] == "~{fpsr}")
15694        return IntrinsicLowering::LowerToByteSwap(CI);
15695    }
15696
15697    if (CI->getType()->isIntegerTy(64)) {
15698      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
15699      if (Constraints.size() >= 2 &&
15700          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
15701          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
15702        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
15703        if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
15704            matchAsm(AsmPieces[1], "bswap", "%edx") &&
15705            matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
15706          return IntrinsicLowering::LowerToByteSwap(CI);
15707      }
15708    }
15709    break;
15710  }
15711  return false;
15712}
15713
15714
15715
15716/// getConstraintType - Given a constraint letter, return the type of
15717/// constraint it is for this target.
15718X86TargetLowering::ConstraintType
15719X86TargetLowering::getConstraintType(const std::string &Constraint) const {
15720  if (Constraint.size() == 1) {
15721    switch (Constraint[0]) {
15722    case 'R':
15723    case 'q':
15724    case 'Q':
15725    case 'f':
15726    case 't':
15727    case 'u':
15728    case 'y':
15729    case 'x':
15730    case 'Y':
15731    case 'l':
15732      return C_RegisterClass;
15733    case 'a':
15734    case 'b':
15735    case 'c':
15736    case 'd':
15737    case 'S':
15738    case 'D':
15739    case 'A':
15740      return C_Register;
15741    case 'I':
15742    case 'J':
15743    case 'K':
15744    case 'L':
15745    case 'M':
15746    case 'N':
15747    case 'G':
15748    case 'C':
15749    case 'e':
15750    case 'Z':
15751      return C_Other;
15752    default:
15753      break;
15754    }
15755  }
15756  return TargetLowering::getConstraintType(Constraint);
15757}
15758
15759/// Examine constraint type and operand type and determine a weight value.
15760/// This object must already have been set up with the operand type
15761/// and the current alternative constraint selected.
15762TargetLowering::ConstraintWeight
15763  X86TargetLowering::getSingleConstraintMatchWeight(
15764    AsmOperandInfo &info, const char *constraint) const {
15765  ConstraintWeight weight = CW_Invalid;
15766  Value *CallOperandVal = info.CallOperandVal;
15767    // If we don't have a value, we can't do a match,
15768    // but allow it at the lowest weight.
15769  if (CallOperandVal == NULL)
15770    return CW_Default;
15771  Type *type = CallOperandVal->getType();
15772  // Look at the constraint type.
15773  switch (*constraint) {
15774  default:
15775    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
15776  case 'R':
15777  case 'q':
15778  case 'Q':
15779  case 'a':
15780  case 'b':
15781  case 'c':
15782  case 'd':
15783  case 'S':
15784  case 'D':
15785  case 'A':
15786    if (CallOperandVal->getType()->isIntegerTy())
15787      weight = CW_SpecificReg;
15788    break;
15789  case 'f':
15790  case 't':
15791  case 'u':
15792      if (type->isFloatingPointTy())
15793        weight = CW_SpecificReg;
15794      break;
15795  case 'y':
15796      if (type->isX86_MMXTy() && Subtarget->hasMMX())
15797        weight = CW_SpecificReg;
15798      break;
15799  case 'x':
15800  case 'Y':
15801    if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
15802        ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasAVX()))
15803      weight = CW_Register;
15804    break;
15805  case 'I':
15806    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
15807      if (C->getZExtValue() <= 31)
15808        weight = CW_Constant;
15809    }
15810    break;
15811  case 'J':
15812    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15813      if (C->getZExtValue() <= 63)
15814        weight = CW_Constant;
15815    }
15816    break;
15817  case 'K':
15818    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15819      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
15820        weight = CW_Constant;
15821    }
15822    break;
15823  case 'L':
15824    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15825      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
15826        weight = CW_Constant;
15827    }
15828    break;
15829  case 'M':
15830    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15831      if (C->getZExtValue() <= 3)
15832        weight = CW_Constant;
15833    }
15834    break;
15835  case 'N':
15836    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15837      if (C->getZExtValue() <= 0xff)
15838        weight = CW_Constant;
15839    }
15840    break;
15841  case 'G':
15842  case 'C':
15843    if (dyn_cast<ConstantFP>(CallOperandVal)) {
15844      weight = CW_Constant;
15845    }
15846    break;
15847  case 'e':
15848    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15849      if ((C->getSExtValue() >= -0x80000000LL) &&
15850          (C->getSExtValue() <= 0x7fffffffLL))
15851        weight = CW_Constant;
15852    }
15853    break;
15854  case 'Z':
15855    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15856      if (C->getZExtValue() <= 0xffffffff)
15857        weight = CW_Constant;
15858    }
15859    break;
15860  }
15861  return weight;
15862}
15863
15864/// LowerXConstraint - try to replace an X constraint, which matches anything,
15865/// with another that has more specific requirements based on the type of the
15866/// corresponding operand.
15867const char *X86TargetLowering::
15868LowerXConstraint(EVT ConstraintVT) const {
15869  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
15870  // 'f' like normal targets.
15871  if (ConstraintVT.isFloatingPoint()) {
15872    if (Subtarget->hasSSE2())
15873      return "Y";
15874    if (Subtarget->hasSSE1())
15875      return "x";
15876  }
15877
15878  return TargetLowering::LowerXConstraint(ConstraintVT);
15879}
15880
15881/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15882/// vector.  If it is invalid, don't add anything to Ops.
15883void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
15884                                                     std::string &Constraint,
15885                                                     std::vector<SDValue>&Ops,
15886                                                     SelectionDAG &DAG) const {
15887  SDValue Result(0, 0);
15888
15889  // Only support length 1 constraints for now.
15890  if (Constraint.length() > 1) return;
15891
15892  char ConstraintLetter = Constraint[0];
15893  switch (ConstraintLetter) {
15894  default: break;
15895  case 'I':
15896    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15897      if (C->getZExtValue() <= 31) {
15898        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15899        break;
15900      }
15901    }
15902    return;
15903  case 'J':
15904    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15905      if (C->getZExtValue() <= 63) {
15906        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15907        break;
15908      }
15909    }
15910    return;
15911  case 'K':
15912    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15913      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
15914        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15915        break;
15916      }
15917    }
15918    return;
15919  case 'N':
15920    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15921      if (C->getZExtValue() <= 255) {
15922        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15923        break;
15924      }
15925    }
15926    return;
15927  case 'e': {
15928    // 32-bit signed value
15929    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15930      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15931                                           C->getSExtValue())) {
15932        // Widen to 64 bits here to get it sign extended.
15933        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
15934        break;
15935      }
15936    // FIXME gcc accepts some relocatable values here too, but only in certain
15937    // memory models; it's complicated.
15938    }
15939    return;
15940  }
15941  case 'Z': {
15942    // 32-bit unsigned value
15943    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15944      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15945                                           C->getZExtValue())) {
15946        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15947        break;
15948      }
15949    }
15950    // FIXME gcc accepts some relocatable values here too, but only in certain
15951    // memory models; it's complicated.
15952    return;
15953  }
15954  case 'i': {
15955    // Literal immediates are always ok.
15956    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
15957      // Widen to 64 bits here to get it sign extended.
15958      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
15959      break;
15960    }
15961
15962    // In any sort of PIC mode addresses need to be computed at runtime by
15963    // adding in a register or some sort of table lookup.  These can't
15964    // be used as immediates.
15965    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
15966      return;
15967
15968    // If we are in non-pic codegen mode, we allow the address of a global (with
15969    // an optional displacement) to be used with 'i'.
15970    GlobalAddressSDNode *GA = 0;
15971    int64_t Offset = 0;
15972
15973    // Match either (GA), (GA+C), (GA+C1+C2), etc.
15974    while (1) {
15975      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
15976        Offset += GA->getOffset();
15977        break;
15978      } else if (Op.getOpcode() == ISD::ADD) {
15979        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15980          Offset += C->getZExtValue();
15981          Op = Op.getOperand(0);
15982          continue;
15983        }
15984      } else if (Op.getOpcode() == ISD::SUB) {
15985        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15986          Offset += -C->getZExtValue();
15987          Op = Op.getOperand(0);
15988          continue;
15989        }
15990      }
15991
15992      // Otherwise, this isn't something we can handle, reject it.
15993      return;
15994    }
15995
15996    const GlobalValue *GV = GA->getGlobal();
15997    // If we require an extra load to get this address, as in PIC mode, we
15998    // can't accept it.
15999    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
16000                                                        getTargetMachine())))
16001      return;
16002
16003    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
16004                                        GA->getValueType(0), Offset);
16005    break;
16006  }
16007  }
16008
16009  if (Result.getNode()) {
16010    Ops.push_back(Result);
16011    return;
16012  }
16013  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
16014}
16015
16016std::pair<unsigned, const TargetRegisterClass*>
16017X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
16018                                                EVT VT) const {
16019  // First, see if this is a constraint that directly corresponds to an LLVM
16020  // register class.
16021  if (Constraint.size() == 1) {
16022    // GCC Constraint Letters
16023    switch (Constraint[0]) {
16024    default: break;
16025      // TODO: Slight differences here in allocation order and leaving
16026      // RIP in the class. Do they matter any more here than they do
16027      // in the normal allocation?
16028    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
16029      if (Subtarget->is64Bit()) {
16030        if (VT == MVT::i32 || VT == MVT::f32)
16031          return std::make_pair(0U, &X86::GR32RegClass);
16032        if (VT == MVT::i16)
16033          return std::make_pair(0U, &X86::GR16RegClass);
16034        if (VT == MVT::i8 || VT == MVT::i1)
16035          return std::make_pair(0U, &X86::GR8RegClass);
16036        if (VT == MVT::i64 || VT == MVT::f64)
16037          return std::make_pair(0U, &X86::GR64RegClass);
16038        break;
16039      }
16040      // 32-bit fallthrough
16041    case 'Q':   // Q_REGS
16042      if (VT == MVT::i32 || VT == MVT::f32)
16043        return std::make_pair(0U, &X86::GR32_ABCDRegClass);
16044      if (VT == MVT::i16)
16045        return std::make_pair(0U, &X86::GR16_ABCDRegClass);
16046      if (VT == MVT::i8 || VT == MVT::i1)
16047        return std::make_pair(0U, &X86::GR8_ABCD_LRegClass);
16048      if (VT == MVT::i64)
16049        return std::make_pair(0U, &X86::GR64_ABCDRegClass);
16050      break;
16051    case 'r':   // GENERAL_REGS
16052    case 'l':   // INDEX_REGS
16053      if (VT == MVT::i8 || VT == MVT::i1)
16054        return std::make_pair(0U, &X86::GR8RegClass);
16055      if (VT == MVT::i16)
16056        return std::make_pair(0U, &X86::GR16RegClass);
16057      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
16058        return std::make_pair(0U, &X86::GR32RegClass);
16059      return std::make_pair(0U, &X86::GR64RegClass);
16060    case 'R':   // LEGACY_REGS
16061      if (VT == MVT::i8 || VT == MVT::i1)
16062        return std::make_pair(0U, &X86::GR8_NOREXRegClass);
16063      if (VT == MVT::i16)
16064        return std::make_pair(0U, &X86::GR16_NOREXRegClass);
16065      if (VT == MVT::i32 || !Subtarget->is64Bit())
16066        return std::make_pair(0U, &X86::GR32_NOREXRegClass);
16067      return std::make_pair(0U, &X86::GR64_NOREXRegClass);
16068    case 'f':  // FP Stack registers.
16069      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
16070      // value to the correct fpstack register class.
16071      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
16072        return std::make_pair(0U, &X86::RFP32RegClass);
16073      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
16074        return std::make_pair(0U, &X86::RFP64RegClass);
16075      return std::make_pair(0U, &X86::RFP80RegClass);
16076    case 'y':   // MMX_REGS if MMX allowed.
16077      if (!Subtarget->hasMMX()) break;
16078      return std::make_pair(0U, &X86::VR64RegClass);
16079    case 'Y':   // SSE_REGS if SSE2 allowed
16080      if (!Subtarget->hasSSE2()) break;
16081      // FALL THROUGH.
16082    case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
16083      if (!Subtarget->hasSSE1()) break;
16084
16085      switch (VT.getSimpleVT().SimpleTy) {
16086      default: break;
16087      // Scalar SSE types.
16088      case MVT::f32:
16089      case MVT::i32:
16090        return std::make_pair(0U, &X86::FR32RegClass);
16091      case MVT::f64:
16092      case MVT::i64:
16093        return std::make_pair(0U, &X86::FR64RegClass);
16094      // Vector types.
16095      case MVT::v16i8:
16096      case MVT::v8i16:
16097      case MVT::v4i32:
16098      case MVT::v2i64:
16099      case MVT::v4f32:
16100      case MVT::v2f64:
16101        return std::make_pair(0U, &X86::VR128RegClass);
16102      // AVX types.
16103      case MVT::v32i8:
16104      case MVT::v16i16:
16105      case MVT::v8i32:
16106      case MVT::v4i64:
16107      case MVT::v8f32:
16108      case MVT::v4f64:
16109        return std::make_pair(0U, &X86::VR256RegClass);
16110      }
16111      break;
16112    }
16113  }
16114
16115  // Use the default implementation in TargetLowering to convert the register
16116  // constraint into a member of a register class.
16117  std::pair<unsigned, const TargetRegisterClass*> Res;
16118  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
16119
16120  // Not found as a standard register?
16121  if (Res.second == 0) {
16122    // Map st(0) -> st(7) -> ST0
16123    if (Constraint.size() == 7 && Constraint[0] == '{' &&
16124        tolower(Constraint[1]) == 's' &&
16125        tolower(Constraint[2]) == 't' &&
16126        Constraint[3] == '(' &&
16127        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
16128        Constraint[5] == ')' &&
16129        Constraint[6] == '}') {
16130
16131      Res.first = X86::ST0+Constraint[4]-'0';
16132      Res.second = &X86::RFP80RegClass;
16133      return Res;
16134    }
16135
16136    // GCC allows "st(0)" to be called just plain "st".
16137    if (StringRef("{st}").equals_lower(Constraint)) {
16138      Res.first = X86::ST0;
16139      Res.second = &X86::RFP80RegClass;
16140      return Res;
16141    }
16142
16143    // flags -> EFLAGS
16144    if (StringRef("{flags}").equals_lower(Constraint)) {
16145      Res.first = X86::EFLAGS;
16146      Res.second = &X86::CCRRegClass;
16147      return Res;
16148    }
16149
16150    // 'A' means EAX + EDX.
16151    if (Constraint == "A") {
16152      Res.first = X86::EAX;
16153      Res.second = &X86::GR32_ADRegClass;
16154      return Res;
16155    }
16156    return Res;
16157  }
16158
16159  // Otherwise, check to see if this is a register class of the wrong value
16160  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
16161  // turn into {ax},{dx}.
16162  if (Res.second->hasType(VT))
16163    return Res;   // Correct type already, nothing to do.
16164
16165  // All of the single-register GCC register classes map their values onto
16166  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
16167  // really want an 8-bit or 32-bit register, map to the appropriate register
16168  // class and return the appropriate register.
16169  if (Res.second == &X86::GR16RegClass) {
16170    if (VT == MVT::i8) {
16171      unsigned DestReg = 0;
16172      switch (Res.first) {
16173      default: break;
16174      case X86::AX: DestReg = X86::AL; break;
16175      case X86::DX: DestReg = X86::DL; break;
16176      case X86::CX: DestReg = X86::CL; break;
16177      case X86::BX: DestReg = X86::BL; break;
16178      }
16179      if (DestReg) {
16180        Res.first = DestReg;
16181        Res.second = &X86::GR8RegClass;
16182      }
16183    } else if (VT == MVT::i32) {
16184      unsigned DestReg = 0;
16185      switch (Res.first) {
16186      default: break;
16187      case X86::AX: DestReg = X86::EAX; break;
16188      case X86::DX: DestReg = X86::EDX; break;
16189      case X86::CX: DestReg = X86::ECX; break;
16190      case X86::BX: DestReg = X86::EBX; break;
16191      case X86::SI: DestReg = X86::ESI; break;
16192      case X86::DI: DestReg = X86::EDI; break;
16193      case X86::BP: DestReg = X86::EBP; break;
16194      case X86::SP: DestReg = X86::ESP; break;
16195      }
16196      if (DestReg) {
16197        Res.first = DestReg;
16198        Res.second = &X86::GR32RegClass;
16199      }
16200    } else if (VT == MVT::i64) {
16201      unsigned DestReg = 0;
16202      switch (Res.first) {
16203      default: break;
16204      case X86::AX: DestReg = X86::RAX; break;
16205      case X86::DX: DestReg = X86::RDX; break;
16206      case X86::CX: DestReg = X86::RCX; break;
16207      case X86::BX: DestReg = X86::RBX; break;
16208      case X86::SI: DestReg = X86::RSI; break;
16209      case X86::DI: DestReg = X86::RDI; break;
16210      case X86::BP: DestReg = X86::RBP; break;
16211      case X86::SP: DestReg = X86::RSP; break;
16212      }
16213      if (DestReg) {
16214        Res.first = DestReg;
16215        Res.second = &X86::GR64RegClass;
16216      }
16217    }
16218  } else if (Res.second == &X86::FR32RegClass ||
16219             Res.second == &X86::FR64RegClass ||
16220             Res.second == &X86::VR128RegClass) {
16221    // Handle references to XMM physical registers that got mapped into the
16222    // wrong class.  This can happen with constraints like {xmm0} where the
16223    // target independent register mapper will just pick the first match it can
16224    // find, ignoring the required type.
16225
16226    if (VT == MVT::f32 || VT == MVT::i32)
16227      Res.second = &X86::FR32RegClass;
16228    else if (VT == MVT::f64 || VT == MVT::i64)
16229      Res.second = &X86::FR64RegClass;
16230    else if (X86::VR128RegClass.hasType(VT))
16231      Res.second = &X86::VR128RegClass;
16232    else if (X86::VR256RegClass.hasType(VT))
16233      Res.second = &X86::VR256RegClass;
16234  }
16235
16236  return Res;
16237}
16238