X86ISelLowering.cpp revision 1596373671e4df54e53e79dc613545d5cf9d83bb
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86ISelLowering.h"
17#include "X86.h"
18#include "X86InstrBuilder.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/MC/MCAsmInfo.h"
39#include "llvm/MC/MCContext.h"
40#include "llvm/MC/MCExpr.h"
41#include "llvm/MC/MCSymbol.h"
42#include "llvm/ADT/SmallSet.h"
43#include "llvm/ADT/Statistic.h"
44#include "llvm/ADT/StringExtras.h"
45#include "llvm/ADT/VariadicFunction.h"
46#include "llvm/Support/CallSite.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/Target/TargetOptions.h"
51#include <bitset>
52using namespace llvm;
53
54STATISTIC(NumTailCalls, "Number of tail calls");
55
56// Forward declarations.
57static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
58                       SDValue V2);
59
60/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
61/// sets things up to match to an AVX VEXTRACTF128 instruction or a
62/// simple subregister reference.  Idx is an index in the 128 bits we
63/// want.  It need not be aligned to a 128-bit bounday.  That makes
64/// lowering EXTRACT_VECTOR_ELT operations easier.
65static SDValue Extract128BitVector(SDValue Vec, unsigned IdxVal,
66                                   SelectionDAG &DAG, DebugLoc dl) {
67  EVT VT = Vec.getValueType();
68  assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
69  EVT ElVT = VT.getVectorElementType();
70  unsigned Factor = VT.getSizeInBits()/128;
71  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
72                                  VT.getVectorNumElements()/Factor);
73
74  // Extract from UNDEF is UNDEF.
75  if (Vec.getOpcode() == ISD::UNDEF)
76    return DAG.getUNDEF(ResultVT);
77
78  // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
79  // we can match to VEXTRACTF128.
80  unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
81
82  // This is the index of the first element of the 128-bit chunk
83  // we want.
84  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
85                               * ElemsPerChunk);
86
87  SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
88  SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
89                               VecIdx);
90
91  return Result;
92}
93
94/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
95/// sets things up to match to an AVX VINSERTF128 instruction or a
96/// simple superregister reference.  Idx is an index in the 128 bits
97/// we want.  It need not be aligned to a 128-bit bounday.  That makes
98/// lowering INSERT_VECTOR_ELT operations easier.
99static SDValue Insert128BitVector(SDValue Result, SDValue Vec,
100                                  unsigned IdxVal, SelectionDAG &DAG,
101                                  DebugLoc dl) {
102  // Inserting UNDEF is Result
103  if (Vec.getOpcode() == ISD::UNDEF)
104    return Result;
105
106  EVT VT = Vec.getValueType();
107  assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
108
109  EVT ElVT = VT.getVectorElementType();
110  EVT ResultVT = Result.getValueType();
111
112  // Insert the relevant 128 bits.
113  unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
114
115  // This is the index of the first element of the 128-bit chunk
116  // we want.
117  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
118                               * ElemsPerChunk);
119
120  SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
121  return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
122                     VecIdx);
123}
124
125/// Concat two 128-bit vectors into a 256 bit vector using VINSERTF128
126/// instructions. This is used because creating CONCAT_VECTOR nodes of
127/// BUILD_VECTORS returns a larger BUILD_VECTOR while we're trying to lower
128/// large BUILD_VECTORS.
129static SDValue Concat128BitVectors(SDValue V1, SDValue V2, EVT VT,
130                                   unsigned NumElems, SelectionDAG &DAG,
131                                   DebugLoc dl) {
132  SDValue V = Insert128BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
133  return Insert128BitVector(V, V2, NumElems/2, DAG, dl);
134}
135
136static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
137  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
138  bool is64Bit = Subtarget->is64Bit();
139
140  if (Subtarget->isTargetEnvMacho()) {
141    if (is64Bit)
142      return new X8664_MachoTargetObjectFile();
143    return new TargetLoweringObjectFileMachO();
144  }
145
146  if (Subtarget->isTargetLinux())
147    return new X86LinuxTargetObjectFile();
148  if (Subtarget->isTargetELF())
149    return new TargetLoweringObjectFileELF();
150  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
151    return new TargetLoweringObjectFileCOFF();
152  llvm_unreachable("unknown subtarget type");
153}
154
155X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
156  : TargetLowering(TM, createTLOF(TM)) {
157  Subtarget = &TM.getSubtarget<X86Subtarget>();
158  X86ScalarSSEf64 = Subtarget->hasSSE2();
159  X86ScalarSSEf32 = Subtarget->hasSSE1();
160  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
161
162  RegInfo = TM.getRegisterInfo();
163  TD = getTargetData();
164
165  // Set up the TargetLowering object.
166  static const MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
167
168  // X86 is weird, it always uses i8 for shift amounts and setcc results.
169  setBooleanContents(ZeroOrOneBooleanContent);
170  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
171  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
172
173  // For 64-bit since we have so many registers use the ILP scheduler, for
174  // 32-bit code use the register pressure specific scheduling.
175  // For Atom, always use ILP scheduling.
176  if (Subtarget->isAtom())
177    setSchedulingPreference(Sched::ILP);
178  else if (Subtarget->is64Bit())
179    setSchedulingPreference(Sched::ILP);
180  else
181    setSchedulingPreference(Sched::RegPressure);
182  setStackPointerRegisterToSaveRestore(X86StackPtr);
183
184  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
185    // Setup Windows compiler runtime calls.
186    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
187    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
188    setLibcallName(RTLIB::SREM_I64, "_allrem");
189    setLibcallName(RTLIB::UREM_I64, "_aullrem");
190    setLibcallName(RTLIB::MUL_I64, "_allmul");
191    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
192    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
193    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
194    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
195    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
196
197    // The _ftol2 runtime function has an unusual calling conv, which
198    // is modeled by a special pseudo-instruction.
199    setLibcallName(RTLIB::FPTOUINT_F64_I64, 0);
200    setLibcallName(RTLIB::FPTOUINT_F32_I64, 0);
201    setLibcallName(RTLIB::FPTOUINT_F64_I32, 0);
202    setLibcallName(RTLIB::FPTOUINT_F32_I32, 0);
203  }
204
205  if (Subtarget->isTargetDarwin()) {
206    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
207    setUseUnderscoreSetJmp(false);
208    setUseUnderscoreLongJmp(false);
209  } else if (Subtarget->isTargetMingw()) {
210    // MS runtime is weird: it exports _setjmp, but longjmp!
211    setUseUnderscoreSetJmp(true);
212    setUseUnderscoreLongJmp(false);
213  } else {
214    setUseUnderscoreSetJmp(true);
215    setUseUnderscoreLongJmp(true);
216  }
217
218  // Set up the register classes.
219  addRegisterClass(MVT::i8, &X86::GR8RegClass);
220  addRegisterClass(MVT::i16, &X86::GR16RegClass);
221  addRegisterClass(MVT::i32, &X86::GR32RegClass);
222  if (Subtarget->is64Bit())
223    addRegisterClass(MVT::i64, &X86::GR64RegClass);
224
225  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
226
227  // We don't accept any truncstore of integer registers.
228  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
229  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
230  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
231  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
232  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
233  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
234
235  // SETOEQ and SETUNE require checking two conditions.
236  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
237  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
238  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
239  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
240  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
241  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
242
243  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
244  // operation.
245  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
246  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
247  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
248
249  if (Subtarget->is64Bit()) {
250    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
251    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
252  } else if (!TM.Options.UseSoftFloat) {
253    // We have an algorithm for SSE2->double, and we turn this into a
254    // 64-bit FILD followed by conditional FADD for other targets.
255    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
256    // We have an algorithm for SSE2, and we turn this into a 64-bit
257    // FILD for other targets.
258    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
259  }
260
261  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
262  // this operation.
263  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
264  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
265
266  if (!TM.Options.UseSoftFloat) {
267    // SSE has no i16 to fp conversion, only i32
268    if (X86ScalarSSEf32) {
269      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
270      // f32 and f64 cases are Legal, f80 case is not
271      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
272    } else {
273      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
274      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
275    }
276  } else {
277    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
278    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
279  }
280
281  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
282  // are Legal, f80 is custom lowered.
283  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
284  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
285
286  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
287  // this operation.
288  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
289  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
290
291  if (X86ScalarSSEf32) {
292    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
293    // f32 and f64 cases are Legal, f80 case is not
294    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
295  } else {
296    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
297    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
298  }
299
300  // Handle FP_TO_UINT by promoting the destination to a larger signed
301  // conversion.
302  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
303  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
304  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
305
306  if (Subtarget->is64Bit()) {
307    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
308    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
309  } else if (!TM.Options.UseSoftFloat) {
310    // Since AVX is a superset of SSE3, only check for SSE here.
311    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
312      // Expand FP_TO_UINT into a select.
313      // FIXME: We would like to use a Custom expander here eventually to do
314      // the optimal thing for SSE vs. the default expansion in the legalizer.
315      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
316    else
317      // With SSE3 we can use fisttpll to convert to a signed i64; without
318      // SSE, we're stuck with a fistpll.
319      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
320  }
321
322  if (isTargetFTOL()) {
323    // Use the _ftol2 runtime function, which has a pseudo-instruction
324    // to handle its weird calling convention.
325    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Custom);
326  }
327
328  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
329  if (!X86ScalarSSEf64) {
330    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
331    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
332    if (Subtarget->is64Bit()) {
333      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
334      // Without SSE, i64->f64 goes through memory.
335      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
336    }
337  }
338
339  // Scalar integer divide and remainder are lowered to use operations that
340  // produce two results, to match the available instructions. This exposes
341  // the two-result form to trivial CSE, which is able to combine x/y and x%y
342  // into a single instruction.
343  //
344  // Scalar integer multiply-high is also lowered to use two-result
345  // operations, to match the available instructions. However, plain multiply
346  // (low) operations are left as Legal, as there are single-result
347  // instructions for this in x86. Using the two-result multiply instructions
348  // when both high and low results are needed must be arranged by dagcombine.
349  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
350    MVT VT = IntVTs[i];
351    setOperationAction(ISD::MULHS, VT, Expand);
352    setOperationAction(ISD::MULHU, VT, Expand);
353    setOperationAction(ISD::SDIV, VT, Expand);
354    setOperationAction(ISD::UDIV, VT, Expand);
355    setOperationAction(ISD::SREM, VT, Expand);
356    setOperationAction(ISD::UREM, VT, Expand);
357
358    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
359    setOperationAction(ISD::ADDC, VT, Custom);
360    setOperationAction(ISD::ADDE, VT, Custom);
361    setOperationAction(ISD::SUBC, VT, Custom);
362    setOperationAction(ISD::SUBE, VT, Custom);
363  }
364
365  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
366  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
367  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
368  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
369  if (Subtarget->is64Bit())
370    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
371  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
372  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
373  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
374  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
375  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
376  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
377  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
378  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
379
380  // Promote the i8 variants and force them on up to i32 which has a shorter
381  // encoding.
382  setOperationAction(ISD::CTTZ             , MVT::i8   , Promote);
383  AddPromotedToType (ISD::CTTZ             , MVT::i8   , MVT::i32);
384  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Promote);
385  AddPromotedToType (ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , MVT::i32);
386  if (Subtarget->hasBMI()) {
387    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Expand);
388    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Expand);
389    if (Subtarget->is64Bit())
390      setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
391  } else {
392    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
393    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
394    if (Subtarget->is64Bit())
395      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
396  }
397
398  if (Subtarget->hasLZCNT()) {
399    // When promoting the i8 variants, force them to i32 for a shorter
400    // encoding.
401    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
402    AddPromotedToType (ISD::CTLZ           , MVT::i8   , MVT::i32);
403    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Promote);
404    AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
405    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Expand);
406    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Expand);
407    if (Subtarget->is64Bit())
408      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
409  } else {
410    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
411    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
412    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
413    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom);
414    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom);
415    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom);
416    if (Subtarget->is64Bit()) {
417      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
418      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
419    }
420  }
421
422  if (Subtarget->hasPOPCNT()) {
423    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
424  } else {
425    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
426    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
427    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
428    if (Subtarget->is64Bit())
429      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
430  }
431
432  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
433  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
434
435  // These should be promoted to a larger select which is supported.
436  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
437  // X86 wants to expand cmov itself.
438  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
439  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
440  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
441  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
442  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
443  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
444  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
445  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
446  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
447  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
448  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
449  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
450  if (Subtarget->is64Bit()) {
451    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
452    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
453  }
454  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
455
456  // Darwin ABI issue.
457  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
458  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
459  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
460  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
461  if (Subtarget->is64Bit())
462    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
463  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
464  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
465  if (Subtarget->is64Bit()) {
466    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
467    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
468    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
469    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
470    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
471  }
472  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
473  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
474  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
475  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
476  if (Subtarget->is64Bit()) {
477    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
478    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
479    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
480  }
481
482  if (Subtarget->hasSSE1())
483    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
484
485  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
486  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
487
488  // On X86 and X86-64, atomic operations are lowered to locked instructions.
489  // Locked instructions, in turn, have implicit fence semantics (all memory
490  // operations are flushed before issuing the locked instruction, and they
491  // are not buffered), so we can fold away the common pattern of
492  // fence-atomic-fence.
493  setShouldFoldAtomicFences(true);
494
495  // Expand certain atomics
496  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
497    MVT VT = IntVTs[i];
498    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
499    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
500    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
501  }
502
503  if (!Subtarget->is64Bit()) {
504    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
505    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
506    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
507    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
508    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
509    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
510    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
511    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
512  }
513
514  if (Subtarget->hasCmpxchg16b()) {
515    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
516  }
517
518  // FIXME - use subtarget debug flags
519  if (!Subtarget->isTargetDarwin() &&
520      !Subtarget->isTargetELF() &&
521      !Subtarget->isTargetCygMing()) {
522    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
523  }
524
525  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
526  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
527  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
528  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
529  if (Subtarget->is64Bit()) {
530    setExceptionPointerRegister(X86::RAX);
531    setExceptionSelectorRegister(X86::RDX);
532  } else {
533    setExceptionPointerRegister(X86::EAX);
534    setExceptionSelectorRegister(X86::EDX);
535  }
536  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
537  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
538
539  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
540  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
541
542  setOperationAction(ISD::TRAP, MVT::Other, Legal);
543
544  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
545  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
546  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
547  if (Subtarget->is64Bit()) {
548    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
549    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
550  } else {
551    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
552    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
553  }
554
555  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
556  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
557
558  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
559    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
560                       MVT::i64 : MVT::i32, Custom);
561  else if (TM.Options.EnableSegmentedStacks)
562    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
563                       MVT::i64 : MVT::i32, Custom);
564  else
565    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
566                       MVT::i64 : MVT::i32, Expand);
567
568  if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
569    // f32 and f64 use SSE.
570    // Set up the FP register classes.
571    addRegisterClass(MVT::f32, &X86::FR32RegClass);
572    addRegisterClass(MVT::f64, &X86::FR64RegClass);
573
574    // Use ANDPD to simulate FABS.
575    setOperationAction(ISD::FABS , MVT::f64, Custom);
576    setOperationAction(ISD::FABS , MVT::f32, Custom);
577
578    // Use XORP to simulate FNEG.
579    setOperationAction(ISD::FNEG , MVT::f64, Custom);
580    setOperationAction(ISD::FNEG , MVT::f32, Custom);
581
582    // Use ANDPD and ORPD to simulate FCOPYSIGN.
583    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
584    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
585
586    // Lower this to FGETSIGNx86 plus an AND.
587    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
588    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
589
590    // We don't support sin/cos/fmod
591    setOperationAction(ISD::FSIN , MVT::f64, Expand);
592    setOperationAction(ISD::FCOS , MVT::f64, Expand);
593    setOperationAction(ISD::FSIN , MVT::f32, Expand);
594    setOperationAction(ISD::FCOS , MVT::f32, Expand);
595
596    // Expand FP immediates into loads from the stack, except for the special
597    // cases we handle.
598    addLegalFPImmediate(APFloat(+0.0)); // xorpd
599    addLegalFPImmediate(APFloat(+0.0f)); // xorps
600  } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
601    // Use SSE for f32, x87 for f64.
602    // Set up the FP register classes.
603    addRegisterClass(MVT::f32, &X86::FR32RegClass);
604    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
605
606    // Use ANDPS to simulate FABS.
607    setOperationAction(ISD::FABS , MVT::f32, Custom);
608
609    // Use XORP to simulate FNEG.
610    setOperationAction(ISD::FNEG , MVT::f32, Custom);
611
612    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
613
614    // Use ANDPS and ORPS to simulate FCOPYSIGN.
615    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
616    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
617
618    // We don't support sin/cos/fmod
619    setOperationAction(ISD::FSIN , MVT::f32, Expand);
620    setOperationAction(ISD::FCOS , MVT::f32, Expand);
621
622    // Special cases we handle for FP constants.
623    addLegalFPImmediate(APFloat(+0.0f)); // xorps
624    addLegalFPImmediate(APFloat(+0.0)); // FLD0
625    addLegalFPImmediate(APFloat(+1.0)); // FLD1
626    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
627    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
628
629    if (!TM.Options.UnsafeFPMath) {
630      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
631      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
632    }
633  } else if (!TM.Options.UseSoftFloat) {
634    // f32 and f64 in x87.
635    // Set up the FP register classes.
636    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
637    addRegisterClass(MVT::f32, &X86::RFP32RegClass);
638
639    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
640    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
641    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
642    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
643
644    if (!TM.Options.UnsafeFPMath) {
645      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
646      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
647    }
648    addLegalFPImmediate(APFloat(+0.0)); // FLD0
649    addLegalFPImmediate(APFloat(+1.0)); // FLD1
650    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
651    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
652    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
653    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
654    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
655    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
656  }
657
658  // We don't support FMA.
659  setOperationAction(ISD::FMA, MVT::f64, Expand);
660  setOperationAction(ISD::FMA, MVT::f32, Expand);
661
662  // Long double always uses X87.
663  if (!TM.Options.UseSoftFloat) {
664    addRegisterClass(MVT::f80, &X86::RFP80RegClass);
665    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
666    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
667    {
668      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
669      addLegalFPImmediate(TmpFlt);  // FLD0
670      TmpFlt.changeSign();
671      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
672
673      bool ignored;
674      APFloat TmpFlt2(+1.0);
675      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
676                      &ignored);
677      addLegalFPImmediate(TmpFlt2);  // FLD1
678      TmpFlt2.changeSign();
679      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
680    }
681
682    if (!TM.Options.UnsafeFPMath) {
683      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
684      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
685    }
686
687    setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
688    setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
689    setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
690    setOperationAction(ISD::FRINT,  MVT::f80, Expand);
691    setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
692    setOperationAction(ISD::FMA, MVT::f80, Expand);
693  }
694
695  // Always use a library call for pow.
696  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
697  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
698  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
699
700  setOperationAction(ISD::FLOG, MVT::f80, Expand);
701  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
702  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
703  setOperationAction(ISD::FEXP, MVT::f80, Expand);
704  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
705
706  // First set operation action for all vector types to either promote
707  // (for widening) or expand (for scalarization). Then we will selectively
708  // turn on ones that can be effectively codegen'd.
709  for (int VT = MVT::FIRST_VECTOR_VALUETYPE;
710           VT <= MVT::LAST_VECTOR_VALUETYPE; ++VT) {
711    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
712    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
713    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
714    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
715    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
716    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
717    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
718    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
719    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
720    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
721    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
722    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
723    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
724    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
725    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
726    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
727    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
728    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
729    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
730    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
731    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
732    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
733    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
734    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
735    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
736    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
737    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
738    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
739    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
740    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
741    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
742    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
743    setOperationAction(ISD::CTTZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
744    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
745    setOperationAction(ISD::CTLZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
746    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
747    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
748    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
749    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
750    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
751    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
752    setOperationAction(ISD::SETCC, (MVT::SimpleValueType)VT, Expand);
753    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
754    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
755    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
756    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
757    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
758    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
759    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
760    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
761    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
762    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
763    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
764    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
765    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
766    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
767    setOperationAction(ISD::VSELECT,  (MVT::SimpleValueType)VT, Expand);
768    for (int InnerVT = MVT::FIRST_VECTOR_VALUETYPE;
769             InnerVT <= MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
770      setTruncStoreAction((MVT::SimpleValueType)VT,
771                          (MVT::SimpleValueType)InnerVT, Expand);
772    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
773    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
774    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
775  }
776
777  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
778  // with -msoft-float, disable use of MMX as well.
779  if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
780    addRegisterClass(MVT::x86mmx, &X86::VR64RegClass);
781    // No operations on x86mmx supported, everything uses intrinsics.
782  }
783
784  // MMX-sized vectors (other than x86mmx) are expected to be expanded
785  // into smaller operations.
786  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
787  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
788  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
789  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
790  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
791  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
792  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
793  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
794  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
795  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
796  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
797  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
798  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
799  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
800  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
801  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
802  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
803  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
804  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
805  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
806  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
807  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
808  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
809  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
810  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
811  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
812  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
813  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
814  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
815
816  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
817    addRegisterClass(MVT::v4f32, &X86::VR128RegClass);
818
819    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
820    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
821    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
822    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
823    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
824    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
825    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
826    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
827    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
828    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
829    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
830    setOperationAction(ISD::SETCC,              MVT::v4f32, Custom);
831  }
832
833  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
834    addRegisterClass(MVT::v2f64, &X86::VR128RegClass);
835
836    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
837    // registers cannot be used even for integer operations.
838    addRegisterClass(MVT::v16i8, &X86::VR128RegClass);
839    addRegisterClass(MVT::v8i16, &X86::VR128RegClass);
840    addRegisterClass(MVT::v4i32, &X86::VR128RegClass);
841    addRegisterClass(MVT::v2i64, &X86::VR128RegClass);
842
843    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
844    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
845    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
846    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
847    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
848    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
849    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
850    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
851    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
852    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
853    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
854    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
855    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
856    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
857    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
858    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
859
860    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
861    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
862    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
863    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
864
865    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
866    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
867    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
868    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
869    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
870
871    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
872    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
873    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
874    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
875    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
876
877    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
878    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
879      EVT VT = (MVT::SimpleValueType)i;
880      // Do not attempt to custom lower non-power-of-2 vectors
881      if (!isPowerOf2_32(VT.getVectorNumElements()))
882        continue;
883      // Do not attempt to custom lower non-128-bit vectors
884      if (!VT.is128BitVector())
885        continue;
886      setOperationAction(ISD::BUILD_VECTOR,
887                         VT.getSimpleVT().SimpleTy, Custom);
888      setOperationAction(ISD::VECTOR_SHUFFLE,
889                         VT.getSimpleVT().SimpleTy, Custom);
890      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
891                         VT.getSimpleVT().SimpleTy, Custom);
892    }
893
894    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
895    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
896    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
897    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
898    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
899    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
900
901    if (Subtarget->is64Bit()) {
902      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
903      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
904    }
905
906    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
907    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
908      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
909      EVT VT = SVT;
910
911      // Do not attempt to promote non-128-bit vectors
912      if (!VT.is128BitVector())
913        continue;
914
915      setOperationAction(ISD::AND,    SVT, Promote);
916      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
917      setOperationAction(ISD::OR,     SVT, Promote);
918      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
919      setOperationAction(ISD::XOR,    SVT, Promote);
920      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
921      setOperationAction(ISD::LOAD,   SVT, Promote);
922      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
923      setOperationAction(ISD::SELECT, SVT, Promote);
924      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
925    }
926
927    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
928
929    // Custom lower v2i64 and v2f64 selects.
930    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
931    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
932    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
933    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
934
935    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
936    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
937  }
938
939  if (Subtarget->hasSSE41()) {
940    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
941    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
942    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
943    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
944    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
945    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
946    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
947    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
948    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
949    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
950
951    // FIXME: Do we need to handle scalar-to-vector here?
952    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
953
954    setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
955    setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
956    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
957    setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
958    setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
959
960    // i8 and i16 vectors are custom , because the source register and source
961    // source memory operand types are not the same width.  f32 vectors are
962    // custom since the immediate controlling the insert encodes additional
963    // information.
964    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
965    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
966    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
967    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
968
969    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
970    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
971    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
972    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
973
974    // FIXME: these should be Legal but thats only for the case where
975    // the index is constant.  For now custom expand to deal with that.
976    if (Subtarget->is64Bit()) {
977      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
978      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
979    }
980  }
981
982  if (Subtarget->hasSSE2()) {
983    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
984    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
985
986    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
987    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
988
989    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
990    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
991
992    if (Subtarget->hasAVX2()) {
993      setOperationAction(ISD::SRL,             MVT::v2i64, Legal);
994      setOperationAction(ISD::SRL,             MVT::v4i32, Legal);
995
996      setOperationAction(ISD::SHL,             MVT::v2i64, Legal);
997      setOperationAction(ISD::SHL,             MVT::v4i32, Legal);
998
999      setOperationAction(ISD::SRA,             MVT::v4i32, Legal);
1000    } else {
1001      setOperationAction(ISD::SRL,             MVT::v2i64, Custom);
1002      setOperationAction(ISD::SRL,             MVT::v4i32, Custom);
1003
1004      setOperationAction(ISD::SHL,             MVT::v2i64, Custom);
1005      setOperationAction(ISD::SHL,             MVT::v4i32, Custom);
1006
1007      setOperationAction(ISD::SRA,             MVT::v4i32, Custom);
1008    }
1009  }
1010
1011  if (Subtarget->hasSSE42())
1012    setOperationAction(ISD::SETCC,             MVT::v2i64, Custom);
1013
1014  if (!TM.Options.UseSoftFloat && Subtarget->hasAVX()) {
1015    addRegisterClass(MVT::v32i8,  &X86::VR256RegClass);
1016    addRegisterClass(MVT::v16i16, &X86::VR256RegClass);
1017    addRegisterClass(MVT::v8i32,  &X86::VR256RegClass);
1018    addRegisterClass(MVT::v8f32,  &X86::VR256RegClass);
1019    addRegisterClass(MVT::v4i64,  &X86::VR256RegClass);
1020    addRegisterClass(MVT::v4f64,  &X86::VR256RegClass);
1021
1022    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
1023    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
1024    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
1025
1026    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
1027    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1028    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1029    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1030    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1031    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1032
1033    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1034    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1035    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1036    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1037    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1038    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1039
1040    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1041    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1042    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1043
1044    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4f64,  Custom);
1045    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i64,  Custom);
1046    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f32,  Custom);
1047    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i32,  Custom);
1048    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v32i8,  Custom);
1049    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i16, Custom);
1050
1051    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1052    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1053
1054    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1055    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1056
1057    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1058    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1059
1060    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1061    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1062    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1063    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1064
1065    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1066    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1067    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1068
1069    setOperationAction(ISD::VSELECT,           MVT::v4f64, Legal);
1070    setOperationAction(ISD::VSELECT,           MVT::v4i64, Legal);
1071    setOperationAction(ISD::VSELECT,           MVT::v8i32, Legal);
1072    setOperationAction(ISD::VSELECT,           MVT::v8f32, Legal);
1073
1074    if (Subtarget->hasAVX2()) {
1075      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1076      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1077      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1078      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1079
1080      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1081      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1082      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1083      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1084
1085      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1086      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1087      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1088      // Don't lower v32i8 because there is no 128-bit byte mul
1089
1090      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1091
1092      setOperationAction(ISD::SRL,             MVT::v4i64, Legal);
1093      setOperationAction(ISD::SRL,             MVT::v8i32, Legal);
1094
1095      setOperationAction(ISD::SHL,             MVT::v4i64, Legal);
1096      setOperationAction(ISD::SHL,             MVT::v8i32, Legal);
1097
1098      setOperationAction(ISD::SRA,             MVT::v8i32, Legal);
1099    } else {
1100      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1101      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1102      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1103      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1104
1105      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1106      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1107      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1108      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1109
1110      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1111      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1112      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1113      // Don't lower v32i8 because there is no 128-bit byte mul
1114
1115      setOperationAction(ISD::SRL,             MVT::v4i64, Custom);
1116      setOperationAction(ISD::SRL,             MVT::v8i32, Custom);
1117
1118      setOperationAction(ISD::SHL,             MVT::v4i64, Custom);
1119      setOperationAction(ISD::SHL,             MVT::v8i32, Custom);
1120
1121      setOperationAction(ISD::SRA,             MVT::v8i32, Custom);
1122    }
1123
1124    // Custom lower several nodes for 256-bit types.
1125    for (int i = MVT::FIRST_VECTOR_VALUETYPE;
1126             i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
1127      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1128      EVT VT = SVT;
1129
1130      // Extract subvector is special because the value type
1131      // (result) is 128-bit but the source is 256-bit wide.
1132      if (VT.is128BitVector())
1133        setOperationAction(ISD::EXTRACT_SUBVECTOR, SVT, Custom);
1134
1135      // Do not attempt to custom lower other non-256-bit vectors
1136      if (!VT.is256BitVector())
1137        continue;
1138
1139      setOperationAction(ISD::BUILD_VECTOR,       SVT, Custom);
1140      setOperationAction(ISD::VECTOR_SHUFFLE,     SVT, Custom);
1141      setOperationAction(ISD::INSERT_VECTOR_ELT,  SVT, Custom);
1142      setOperationAction(ISD::EXTRACT_VECTOR_ELT, SVT, Custom);
1143      setOperationAction(ISD::SCALAR_TO_VECTOR,   SVT, Custom);
1144      setOperationAction(ISD::INSERT_SUBVECTOR,   SVT, Custom);
1145    }
1146
1147    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1148    for (int i = MVT::v32i8; i != MVT::v4i64; ++i) {
1149      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1150      EVT VT = SVT;
1151
1152      // Do not attempt to promote non-256-bit vectors
1153      if (!VT.is256BitVector())
1154        continue;
1155
1156      setOperationAction(ISD::AND,    SVT, Promote);
1157      AddPromotedToType (ISD::AND,    SVT, MVT::v4i64);
1158      setOperationAction(ISD::OR,     SVT, Promote);
1159      AddPromotedToType (ISD::OR,     SVT, MVT::v4i64);
1160      setOperationAction(ISD::XOR,    SVT, Promote);
1161      AddPromotedToType (ISD::XOR,    SVT, MVT::v4i64);
1162      setOperationAction(ISD::LOAD,   SVT, Promote);
1163      AddPromotedToType (ISD::LOAD,   SVT, MVT::v4i64);
1164      setOperationAction(ISD::SELECT, SVT, Promote);
1165      AddPromotedToType (ISD::SELECT, SVT, MVT::v4i64);
1166    }
1167  }
1168
1169  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1170  // of this type with custom code.
1171  for (int VT = MVT::FIRST_VECTOR_VALUETYPE;
1172           VT != MVT::LAST_VECTOR_VALUETYPE; VT++) {
1173    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
1174                       Custom);
1175  }
1176
1177  // We want to custom lower some of our intrinsics.
1178  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1179
1180
1181  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1182  // handle type legalization for these operations here.
1183  //
1184  // FIXME: We really should do custom legalization for addition and
1185  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1186  // than generic legalization for 64-bit multiplication-with-overflow, though.
1187  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1188    // Add/Sub/Mul with overflow operations are custom lowered.
1189    MVT VT = IntVTs[i];
1190    setOperationAction(ISD::SADDO, VT, Custom);
1191    setOperationAction(ISD::UADDO, VT, Custom);
1192    setOperationAction(ISD::SSUBO, VT, Custom);
1193    setOperationAction(ISD::USUBO, VT, Custom);
1194    setOperationAction(ISD::SMULO, VT, Custom);
1195    setOperationAction(ISD::UMULO, VT, Custom);
1196  }
1197
1198  // There are no 8-bit 3-address imul/mul instructions
1199  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1200  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1201
1202  if (!Subtarget->is64Bit()) {
1203    // These libcalls are not available in 32-bit.
1204    setLibcallName(RTLIB::SHL_I128, 0);
1205    setLibcallName(RTLIB::SRL_I128, 0);
1206    setLibcallName(RTLIB::SRA_I128, 0);
1207  }
1208
1209  // We have target-specific dag combine patterns for the following nodes:
1210  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1211  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1212  setTargetDAGCombine(ISD::VSELECT);
1213  setTargetDAGCombine(ISD::SELECT);
1214  setTargetDAGCombine(ISD::SHL);
1215  setTargetDAGCombine(ISD::SRA);
1216  setTargetDAGCombine(ISD::SRL);
1217  setTargetDAGCombine(ISD::OR);
1218  setTargetDAGCombine(ISD::AND);
1219  setTargetDAGCombine(ISD::ADD);
1220  setTargetDAGCombine(ISD::FADD);
1221  setTargetDAGCombine(ISD::FSUB);
1222  setTargetDAGCombine(ISD::SUB);
1223  setTargetDAGCombine(ISD::LOAD);
1224  setTargetDAGCombine(ISD::STORE);
1225  setTargetDAGCombine(ISD::ZERO_EXTEND);
1226  setTargetDAGCombine(ISD::ANY_EXTEND);
1227  setTargetDAGCombine(ISD::SIGN_EXTEND);
1228  setTargetDAGCombine(ISD::TRUNCATE);
1229  setTargetDAGCombine(ISD::UINT_TO_FP);
1230  setTargetDAGCombine(ISD::SINT_TO_FP);
1231  setTargetDAGCombine(ISD::SETCC);
1232  setTargetDAGCombine(ISD::FP_TO_SINT);
1233  if (Subtarget->is64Bit())
1234    setTargetDAGCombine(ISD::MUL);
1235  setTargetDAGCombine(ISD::XOR);
1236
1237  computeRegisterProperties();
1238
1239  // On Darwin, -Os means optimize for size without hurting performance,
1240  // do not reduce the limit.
1241  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1242  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1243  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1244  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1245  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1246  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1247  setPrefLoopAlignment(4); // 2^4 bytes.
1248  benefitFromCodePlacementOpt = true;
1249
1250  // Predictable cmov don't hurt on atom because it's in-order.
1251  predictableSelectIsExpensive = !Subtarget->isAtom();
1252
1253  setPrefFunctionAlignment(4); // 2^4 bytes.
1254}
1255
1256
1257EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1258  if (!VT.isVector()) return MVT::i8;
1259  return VT.changeVectorElementTypeToInteger();
1260}
1261
1262
1263/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1264/// the desired ByVal argument alignment.
1265static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1266  if (MaxAlign == 16)
1267    return;
1268  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1269    if (VTy->getBitWidth() == 128)
1270      MaxAlign = 16;
1271  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1272    unsigned EltAlign = 0;
1273    getMaxByValAlign(ATy->getElementType(), EltAlign);
1274    if (EltAlign > MaxAlign)
1275      MaxAlign = EltAlign;
1276  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1277    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1278      unsigned EltAlign = 0;
1279      getMaxByValAlign(STy->getElementType(i), EltAlign);
1280      if (EltAlign > MaxAlign)
1281        MaxAlign = EltAlign;
1282      if (MaxAlign == 16)
1283        break;
1284    }
1285  }
1286}
1287
1288/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1289/// function arguments in the caller parameter area. For X86, aggregates
1290/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1291/// are at 4-byte boundaries.
1292unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1293  if (Subtarget->is64Bit()) {
1294    // Max of 8 and alignment of type.
1295    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1296    if (TyAlign > 8)
1297      return TyAlign;
1298    return 8;
1299  }
1300
1301  unsigned Align = 4;
1302  if (Subtarget->hasSSE1())
1303    getMaxByValAlign(Ty, Align);
1304  return Align;
1305}
1306
1307/// getOptimalMemOpType - Returns the target specific optimal type for load
1308/// and store operations as a result of memset, memcpy, and memmove
1309/// lowering. If DstAlign is zero that means it's safe to destination
1310/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1311/// means there isn't a need to check it against alignment requirement,
1312/// probably because the source does not need to be loaded. If
1313/// 'IsZeroVal' is true, that means it's safe to return a
1314/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1315/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1316/// constant so it does not need to be loaded.
1317/// It returns EVT::Other if the type should be determined using generic
1318/// target-independent logic.
1319EVT
1320X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1321                                       unsigned DstAlign, unsigned SrcAlign,
1322                                       bool IsZeroVal,
1323                                       bool MemcpyStrSrc,
1324                                       MachineFunction &MF) const {
1325  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1326  // linux.  This is because the stack realignment code can't handle certain
1327  // cases like PR2962.  This should be removed when PR2962 is fixed.
1328  const Function *F = MF.getFunction();
1329  if (IsZeroVal &&
1330      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1331    if (Size >= 16 &&
1332        (Subtarget->isUnalignedMemAccessFast() ||
1333         ((DstAlign == 0 || DstAlign >= 16) &&
1334          (SrcAlign == 0 || SrcAlign >= 16))) &&
1335        Subtarget->getStackAlignment() >= 16) {
1336      if (Subtarget->getStackAlignment() >= 32) {
1337        if (Subtarget->hasAVX2())
1338          return MVT::v8i32;
1339        if (Subtarget->hasAVX())
1340          return MVT::v8f32;
1341      }
1342      if (Subtarget->hasSSE2())
1343        return MVT::v4i32;
1344      if (Subtarget->hasSSE1())
1345        return MVT::v4f32;
1346    } else if (!MemcpyStrSrc && Size >= 8 &&
1347               !Subtarget->is64Bit() &&
1348               Subtarget->getStackAlignment() >= 8 &&
1349               Subtarget->hasSSE2()) {
1350      // Do not use f64 to lower memcpy if source is string constant. It's
1351      // better to use i32 to avoid the loads.
1352      return MVT::f64;
1353    }
1354  }
1355  if (Subtarget->is64Bit() && Size >= 8)
1356    return MVT::i64;
1357  return MVT::i32;
1358}
1359
1360/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1361/// current function.  The returned value is a member of the
1362/// MachineJumpTableInfo::JTEntryKind enum.
1363unsigned X86TargetLowering::getJumpTableEncoding() const {
1364  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1365  // symbol.
1366  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1367      Subtarget->isPICStyleGOT())
1368    return MachineJumpTableInfo::EK_Custom32;
1369
1370  // Otherwise, use the normal jump table encoding heuristics.
1371  return TargetLowering::getJumpTableEncoding();
1372}
1373
1374const MCExpr *
1375X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1376                                             const MachineBasicBlock *MBB,
1377                                             unsigned uid,MCContext &Ctx) const{
1378  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1379         Subtarget->isPICStyleGOT());
1380  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1381  // entries.
1382  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1383                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1384}
1385
1386/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1387/// jumptable.
1388SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1389                                                    SelectionDAG &DAG) const {
1390  if (!Subtarget->is64Bit())
1391    // This doesn't have DebugLoc associated with it, but is not really the
1392    // same as a Register.
1393    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1394  return Table;
1395}
1396
1397/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1398/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1399/// MCExpr.
1400const MCExpr *X86TargetLowering::
1401getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1402                             MCContext &Ctx) const {
1403  // X86-64 uses RIP relative addressing based on the jump table label.
1404  if (Subtarget->isPICStyleRIPRel())
1405    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1406
1407  // Otherwise, the reference is relative to the PIC base.
1408  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1409}
1410
1411// FIXME: Why this routine is here? Move to RegInfo!
1412std::pair<const TargetRegisterClass*, uint8_t>
1413X86TargetLowering::findRepresentativeClass(EVT VT) const{
1414  const TargetRegisterClass *RRC = 0;
1415  uint8_t Cost = 1;
1416  switch (VT.getSimpleVT().SimpleTy) {
1417  default:
1418    return TargetLowering::findRepresentativeClass(VT);
1419  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1420    RRC = Subtarget->is64Bit() ?
1421      (const TargetRegisterClass*)&X86::GR64RegClass :
1422      (const TargetRegisterClass*)&X86::GR32RegClass;
1423    break;
1424  case MVT::x86mmx:
1425    RRC = &X86::VR64RegClass;
1426    break;
1427  case MVT::f32: case MVT::f64:
1428  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1429  case MVT::v4f32: case MVT::v2f64:
1430  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1431  case MVT::v4f64:
1432    RRC = &X86::VR128RegClass;
1433    break;
1434  }
1435  return std::make_pair(RRC, Cost);
1436}
1437
1438bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1439                                               unsigned &Offset) const {
1440  if (!Subtarget->isTargetLinux())
1441    return false;
1442
1443  if (Subtarget->is64Bit()) {
1444    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1445    Offset = 0x28;
1446    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1447      AddressSpace = 256;
1448    else
1449      AddressSpace = 257;
1450  } else {
1451    // %gs:0x14 on i386
1452    Offset = 0x14;
1453    AddressSpace = 256;
1454  }
1455  return true;
1456}
1457
1458
1459//===----------------------------------------------------------------------===//
1460//               Return Value Calling Convention Implementation
1461//===----------------------------------------------------------------------===//
1462
1463#include "X86GenCallingConv.inc"
1464
1465bool
1466X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1467                                  MachineFunction &MF, bool isVarArg,
1468                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1469                        LLVMContext &Context) const {
1470  SmallVector<CCValAssign, 16> RVLocs;
1471  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1472                 RVLocs, Context);
1473  return CCInfo.CheckReturn(Outs, RetCC_X86);
1474}
1475
1476SDValue
1477X86TargetLowering::LowerReturn(SDValue Chain,
1478                               CallingConv::ID CallConv, bool isVarArg,
1479                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1480                               const SmallVectorImpl<SDValue> &OutVals,
1481                               DebugLoc dl, SelectionDAG &DAG) const {
1482  MachineFunction &MF = DAG.getMachineFunction();
1483  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1484
1485  SmallVector<CCValAssign, 16> RVLocs;
1486  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1487                 RVLocs, *DAG.getContext());
1488  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1489
1490  // Add the regs to the liveout set for the function.
1491  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1492  for (unsigned i = 0; i != RVLocs.size(); ++i)
1493    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1494      MRI.addLiveOut(RVLocs[i].getLocReg());
1495
1496  SDValue Flag;
1497
1498  SmallVector<SDValue, 6> RetOps;
1499  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1500  // Operand #1 = Bytes To Pop
1501  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1502                   MVT::i16));
1503
1504  // Copy the result values into the output registers.
1505  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1506    CCValAssign &VA = RVLocs[i];
1507    assert(VA.isRegLoc() && "Can only return in registers!");
1508    SDValue ValToCopy = OutVals[i];
1509    EVT ValVT = ValToCopy.getValueType();
1510
1511    // Promote values to the appropriate types
1512    if (VA.getLocInfo() == CCValAssign::SExt)
1513      ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy);
1514    else if (VA.getLocInfo() == CCValAssign::ZExt)
1515      ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ValToCopy);
1516    else if (VA.getLocInfo() == CCValAssign::AExt)
1517      ValToCopy = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ValToCopy);
1518    else if (VA.getLocInfo() == CCValAssign::BCvt)
1519      ValToCopy = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), ValToCopy);
1520
1521    // If this is x86-64, and we disabled SSE, we can't return FP values,
1522    // or SSE or MMX vectors.
1523    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1524         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1525          (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1526      report_fatal_error("SSE register return with SSE disabled");
1527    }
1528    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1529    // llvm-gcc has never done it right and no one has noticed, so this
1530    // should be OK for now.
1531    if (ValVT == MVT::f64 &&
1532        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1533      report_fatal_error("SSE2 register return with SSE2 disabled");
1534
1535    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1536    // the RET instruction and handled by the FP Stackifier.
1537    if (VA.getLocReg() == X86::ST0 ||
1538        VA.getLocReg() == X86::ST1) {
1539      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1540      // change the value to the FP stack register class.
1541      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1542        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1543      RetOps.push_back(ValToCopy);
1544      // Don't emit a copytoreg.
1545      continue;
1546    }
1547
1548    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1549    // which is returned in RAX / RDX.
1550    if (Subtarget->is64Bit()) {
1551      if (ValVT == MVT::x86mmx) {
1552        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1553          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1554          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1555                                  ValToCopy);
1556          // If we don't have SSE2 available, convert to v4f32 so the generated
1557          // register is legal.
1558          if (!Subtarget->hasSSE2())
1559            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1560        }
1561      }
1562    }
1563
1564    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1565    Flag = Chain.getValue(1);
1566  }
1567
1568  // The x86-64 ABI for returning structs by value requires that we copy
1569  // the sret argument into %rax for the return. We saved the argument into
1570  // a virtual register in the entry block, so now we copy the value out
1571  // and into %rax.
1572  if (Subtarget->is64Bit() &&
1573      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1574    MachineFunction &MF = DAG.getMachineFunction();
1575    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1576    unsigned Reg = FuncInfo->getSRetReturnReg();
1577    assert(Reg &&
1578           "SRetReturnReg should have been set in LowerFormalArguments().");
1579    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1580
1581    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1582    Flag = Chain.getValue(1);
1583
1584    // RAX now acts like a return value.
1585    MRI.addLiveOut(X86::RAX);
1586  }
1587
1588  RetOps[0] = Chain;  // Update chain.
1589
1590  // Add the flag if we have it.
1591  if (Flag.getNode())
1592    RetOps.push_back(Flag);
1593
1594  return DAG.getNode(X86ISD::RET_FLAG, dl,
1595                     MVT::Other, &RetOps[0], RetOps.size());
1596}
1597
1598bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
1599  if (N->getNumValues() != 1)
1600    return false;
1601  if (!N->hasNUsesOfValue(1, 0))
1602    return false;
1603
1604  SDValue TCChain = Chain;
1605  SDNode *Copy = *N->use_begin();
1606  if (Copy->getOpcode() == ISD::CopyToReg) {
1607    // If the copy has a glue operand, we conservatively assume it isn't safe to
1608    // perform a tail call.
1609    if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
1610      return false;
1611    TCChain = Copy->getOperand(0);
1612  } else if (Copy->getOpcode() != ISD::FP_EXTEND)
1613    return false;
1614
1615  bool HasRet = false;
1616  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1617       UI != UE; ++UI) {
1618    if (UI->getOpcode() != X86ISD::RET_FLAG)
1619      return false;
1620    HasRet = true;
1621  }
1622
1623  if (!HasRet)
1624    return false;
1625
1626  Chain = TCChain;
1627  return true;
1628}
1629
1630EVT
1631X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1632                                            ISD::NodeType ExtendKind) const {
1633  MVT ReturnMVT;
1634  // TODO: Is this also valid on 32-bit?
1635  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1636    ReturnMVT = MVT::i8;
1637  else
1638    ReturnMVT = MVT::i32;
1639
1640  EVT MinVT = getRegisterType(Context, ReturnMVT);
1641  return VT.bitsLT(MinVT) ? MinVT : VT;
1642}
1643
1644/// LowerCallResult - Lower the result values of a call into the
1645/// appropriate copies out of appropriate physical registers.
1646///
1647SDValue
1648X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1649                                   CallingConv::ID CallConv, bool isVarArg,
1650                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1651                                   DebugLoc dl, SelectionDAG &DAG,
1652                                   SmallVectorImpl<SDValue> &InVals) const {
1653
1654  // Assign locations to each value returned by this call.
1655  SmallVector<CCValAssign, 16> RVLocs;
1656  bool Is64Bit = Subtarget->is64Bit();
1657  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1658                 getTargetMachine(), RVLocs, *DAG.getContext());
1659  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1660
1661  // Copy all of the result registers out of their specified physreg.
1662  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1663    CCValAssign &VA = RVLocs[i];
1664    EVT CopyVT = VA.getValVT();
1665
1666    // If this is x86-64, and we disabled SSE, we can't return FP values
1667    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1668        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1669      report_fatal_error("SSE register return with SSE disabled");
1670    }
1671
1672    SDValue Val;
1673
1674    // If this is a call to a function that returns an fp value on the floating
1675    // point stack, we must guarantee the the value is popped from the stack, so
1676    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1677    // if the return value is not used. We use the FpPOP_RETVAL instruction
1678    // instead.
1679    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1680      // If we prefer to use the value in xmm registers, copy it out as f80 and
1681      // use a truncate to move it from fp stack reg to xmm reg.
1682      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1683      SDValue Ops[] = { Chain, InFlag };
1684      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1685                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1686      Val = Chain.getValue(0);
1687
1688      // Round the f80 to the right size, which also moves it to the appropriate
1689      // xmm register.
1690      if (CopyVT != VA.getValVT())
1691        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1692                          // This truncation won't change the value.
1693                          DAG.getIntPtrConstant(1));
1694    } else {
1695      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1696                                 CopyVT, InFlag).getValue(1);
1697      Val = Chain.getValue(0);
1698    }
1699    InFlag = Chain.getValue(2);
1700    InVals.push_back(Val);
1701  }
1702
1703  return Chain;
1704}
1705
1706
1707//===----------------------------------------------------------------------===//
1708//                C & StdCall & Fast Calling Convention implementation
1709//===----------------------------------------------------------------------===//
1710//  StdCall calling convention seems to be standard for many Windows' API
1711//  routines and around. It differs from C calling convention just a little:
1712//  callee should clean up the stack, not caller. Symbols should be also
1713//  decorated in some fancy way :) It doesn't support any vector arguments.
1714//  For info on fast calling convention see Fast Calling Convention (tail call)
1715//  implementation LowerX86_32FastCCCallTo.
1716
1717/// CallIsStructReturn - Determines whether a call uses struct return
1718/// semantics.
1719static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1720  if (Outs.empty())
1721    return false;
1722
1723  return Outs[0].Flags.isSRet();
1724}
1725
1726/// ArgsAreStructReturn - Determines whether a function uses struct
1727/// return semantics.
1728static bool
1729ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1730  if (Ins.empty())
1731    return false;
1732
1733  return Ins[0].Flags.isSRet();
1734}
1735
1736/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1737/// by "Src" to address "Dst" with size and alignment information specified by
1738/// the specific parameter attribute. The copy will be passed as a byval
1739/// function parameter.
1740static SDValue
1741CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1742                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1743                          DebugLoc dl) {
1744  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1745
1746  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1747                       /*isVolatile*/false, /*AlwaysInline=*/true,
1748                       MachinePointerInfo(), MachinePointerInfo());
1749}
1750
1751/// IsTailCallConvention - Return true if the calling convention is one that
1752/// supports tail call optimization.
1753static bool IsTailCallConvention(CallingConv::ID CC) {
1754  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1755}
1756
1757bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1758  if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
1759    return false;
1760
1761  CallSite CS(CI);
1762  CallingConv::ID CalleeCC = CS.getCallingConv();
1763  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1764    return false;
1765
1766  return true;
1767}
1768
1769/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1770/// a tailcall target by changing its ABI.
1771static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
1772                                   bool GuaranteedTailCallOpt) {
1773  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1774}
1775
1776SDValue
1777X86TargetLowering::LowerMemArgument(SDValue Chain,
1778                                    CallingConv::ID CallConv,
1779                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1780                                    DebugLoc dl, SelectionDAG &DAG,
1781                                    const CCValAssign &VA,
1782                                    MachineFrameInfo *MFI,
1783                                    unsigned i) const {
1784  // Create the nodes corresponding to a load from this parameter slot.
1785  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1786  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
1787                              getTargetMachine().Options.GuaranteedTailCallOpt);
1788  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1789  EVT ValVT;
1790
1791  // If value is passed by pointer we have address passed instead of the value
1792  // itself.
1793  if (VA.getLocInfo() == CCValAssign::Indirect)
1794    ValVT = VA.getLocVT();
1795  else
1796    ValVT = VA.getValVT();
1797
1798  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1799  // changed with more analysis.
1800  // In case of tail call optimization mark all arguments mutable. Since they
1801  // could be overwritten by lowering of arguments in case of a tail call.
1802  if (Flags.isByVal()) {
1803    unsigned Bytes = Flags.getByValSize();
1804    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1805    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1806    return DAG.getFrameIndex(FI, getPointerTy());
1807  } else {
1808    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1809                                    VA.getLocMemOffset(), isImmutable);
1810    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1811    return DAG.getLoad(ValVT, dl, Chain, FIN,
1812                       MachinePointerInfo::getFixedStack(FI),
1813                       false, false, false, 0);
1814  }
1815}
1816
1817SDValue
1818X86TargetLowering::LowerFormalArguments(SDValue Chain,
1819                                        CallingConv::ID CallConv,
1820                                        bool isVarArg,
1821                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1822                                        DebugLoc dl,
1823                                        SelectionDAG &DAG,
1824                                        SmallVectorImpl<SDValue> &InVals)
1825                                          const {
1826  MachineFunction &MF = DAG.getMachineFunction();
1827  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1828
1829  const Function* Fn = MF.getFunction();
1830  if (Fn->hasExternalLinkage() &&
1831      Subtarget->isTargetCygMing() &&
1832      Fn->getName() == "main")
1833    FuncInfo->setForceFramePointer(true);
1834
1835  MachineFrameInfo *MFI = MF.getFrameInfo();
1836  bool Is64Bit = Subtarget->is64Bit();
1837  bool IsWindows = Subtarget->isTargetWindows();
1838  bool IsWin64 = Subtarget->isTargetWin64();
1839
1840  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1841         "Var args not supported with calling convention fastcc or ghc");
1842
1843  // Assign locations to all of the incoming arguments.
1844  SmallVector<CCValAssign, 16> ArgLocs;
1845  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1846                 ArgLocs, *DAG.getContext());
1847
1848  // Allocate shadow area for Win64
1849  if (IsWin64) {
1850    CCInfo.AllocateStack(32, 8);
1851  }
1852
1853  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1854
1855  unsigned LastVal = ~0U;
1856  SDValue ArgValue;
1857  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1858    CCValAssign &VA = ArgLocs[i];
1859    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1860    // places.
1861    assert(VA.getValNo() != LastVal &&
1862           "Don't support value assigned to multiple locs yet");
1863    (void)LastVal;
1864    LastVal = VA.getValNo();
1865
1866    if (VA.isRegLoc()) {
1867      EVT RegVT = VA.getLocVT();
1868      const TargetRegisterClass *RC;
1869      if (RegVT == MVT::i32)
1870        RC = &X86::GR32RegClass;
1871      else if (Is64Bit && RegVT == MVT::i64)
1872        RC = &X86::GR64RegClass;
1873      else if (RegVT == MVT::f32)
1874        RC = &X86::FR32RegClass;
1875      else if (RegVT == MVT::f64)
1876        RC = &X86::FR64RegClass;
1877      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1878        RC = &X86::VR256RegClass;
1879      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1880        RC = &X86::VR128RegClass;
1881      else if (RegVT == MVT::x86mmx)
1882        RC = &X86::VR64RegClass;
1883      else
1884        llvm_unreachable("Unknown argument type!");
1885
1886      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1887      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1888
1889      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1890      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1891      // right size.
1892      if (VA.getLocInfo() == CCValAssign::SExt)
1893        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1894                               DAG.getValueType(VA.getValVT()));
1895      else if (VA.getLocInfo() == CCValAssign::ZExt)
1896        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1897                               DAG.getValueType(VA.getValVT()));
1898      else if (VA.getLocInfo() == CCValAssign::BCvt)
1899        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1900
1901      if (VA.isExtInLoc()) {
1902        // Handle MMX values passed in XMM regs.
1903        if (RegVT.isVector()) {
1904          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1905                                 ArgValue);
1906        } else
1907          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1908      }
1909    } else {
1910      assert(VA.isMemLoc());
1911      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1912    }
1913
1914    // If value is passed via pointer - do a load.
1915    if (VA.getLocInfo() == CCValAssign::Indirect)
1916      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1917                             MachinePointerInfo(), false, false, false, 0);
1918
1919    InVals.push_back(ArgValue);
1920  }
1921
1922  // The x86-64 ABI for returning structs by value requires that we copy
1923  // the sret argument into %rax for the return. Save the argument into
1924  // a virtual register so that we can access it from the return points.
1925  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1926    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1927    unsigned Reg = FuncInfo->getSRetReturnReg();
1928    if (!Reg) {
1929      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1930      FuncInfo->setSRetReturnReg(Reg);
1931    }
1932    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1933    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1934  }
1935
1936  unsigned StackSize = CCInfo.getNextStackOffset();
1937  // Align stack specially for tail calls.
1938  if (FuncIsMadeTailCallSafe(CallConv,
1939                             MF.getTarget().Options.GuaranteedTailCallOpt))
1940    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1941
1942  // If the function takes variable number of arguments, make a frame index for
1943  // the start of the first vararg value... for expansion of llvm.va_start.
1944  if (isVarArg) {
1945    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1946                    CallConv != CallingConv::X86_ThisCall)) {
1947      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1948    }
1949    if (Is64Bit) {
1950      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1951
1952      // FIXME: We should really autogenerate these arrays
1953      static const uint16_t GPR64ArgRegsWin64[] = {
1954        X86::RCX, X86::RDX, X86::R8,  X86::R9
1955      };
1956      static const uint16_t GPR64ArgRegs64Bit[] = {
1957        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1958      };
1959      static const uint16_t XMMArgRegs64Bit[] = {
1960        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1961        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1962      };
1963      const uint16_t *GPR64ArgRegs;
1964      unsigned NumXMMRegs = 0;
1965
1966      if (IsWin64) {
1967        // The XMM registers which might contain var arg parameters are shadowed
1968        // in their paired GPR.  So we only need to save the GPR to their home
1969        // slots.
1970        TotalNumIntRegs = 4;
1971        GPR64ArgRegs = GPR64ArgRegsWin64;
1972      } else {
1973        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1974        GPR64ArgRegs = GPR64ArgRegs64Bit;
1975
1976        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
1977                                                TotalNumXMMRegs);
1978      }
1979      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1980                                                       TotalNumIntRegs);
1981
1982      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1983      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1984             "SSE register cannot be used when SSE is disabled!");
1985      assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
1986               NoImplicitFloatOps) &&
1987             "SSE register cannot be used when SSE is disabled!");
1988      if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
1989          !Subtarget->hasSSE1())
1990        // Kernel mode asks for SSE to be disabled, so don't push them
1991        // on the stack.
1992        TotalNumXMMRegs = 0;
1993
1994      if (IsWin64) {
1995        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1996        // Get to the caller-allocated home save location.  Add 8 to account
1997        // for the return address.
1998        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1999        FuncInfo->setRegSaveFrameIndex(
2000          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
2001        // Fixup to set vararg frame on shadow area (4 x i64).
2002        if (NumIntRegs < 4)
2003          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
2004      } else {
2005        // For X86-64, if there are vararg parameters that are passed via
2006        // registers, then we must store them to their spots on the stack so
2007        // they may be loaded by deferencing the result of va_next.
2008        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
2009        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
2010        FuncInfo->setRegSaveFrameIndex(
2011          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
2012                               false));
2013      }
2014
2015      // Store the integer parameter registers.
2016      SmallVector<SDValue, 8> MemOps;
2017      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
2018                                        getPointerTy());
2019      unsigned Offset = FuncInfo->getVarArgsGPOffset();
2020      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
2021        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
2022                                  DAG.getIntPtrConstant(Offset));
2023        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
2024                                     &X86::GR64RegClass);
2025        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2026        SDValue Store =
2027          DAG.getStore(Val.getValue(1), dl, Val, FIN,
2028                       MachinePointerInfo::getFixedStack(
2029                         FuncInfo->getRegSaveFrameIndex(), Offset),
2030                       false, false, 0);
2031        MemOps.push_back(Store);
2032        Offset += 8;
2033      }
2034
2035      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
2036        // Now store the XMM (fp + vector) parameter registers.
2037        SmallVector<SDValue, 11> SaveXMMOps;
2038        SaveXMMOps.push_back(Chain);
2039
2040        unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
2041        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
2042        SaveXMMOps.push_back(ALVal);
2043
2044        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2045                               FuncInfo->getRegSaveFrameIndex()));
2046        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2047                               FuncInfo->getVarArgsFPOffset()));
2048
2049        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
2050          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
2051                                       &X86::VR128RegClass);
2052          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
2053          SaveXMMOps.push_back(Val);
2054        }
2055        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2056                                     MVT::Other,
2057                                     &SaveXMMOps[0], SaveXMMOps.size()));
2058      }
2059
2060      if (!MemOps.empty())
2061        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2062                            &MemOps[0], MemOps.size());
2063    }
2064  }
2065
2066  // Some CCs need callee pop.
2067  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2068                       MF.getTarget().Options.GuaranteedTailCallOpt)) {
2069    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2070  } else {
2071    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2072    // If this is an sret function, the return should pop the hidden pointer.
2073    if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2074        ArgsAreStructReturn(Ins))
2075      FuncInfo->setBytesToPopOnReturn(4);
2076  }
2077
2078  if (!Is64Bit) {
2079    // RegSaveFrameIndex is X86-64 only.
2080    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2081    if (CallConv == CallingConv::X86_FastCall ||
2082        CallConv == CallingConv::X86_ThisCall)
2083      // fastcc functions can't have varargs.
2084      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2085  }
2086
2087  FuncInfo->setArgumentStackSize(StackSize);
2088
2089  return Chain;
2090}
2091
2092SDValue
2093X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2094                                    SDValue StackPtr, SDValue Arg,
2095                                    DebugLoc dl, SelectionDAG &DAG,
2096                                    const CCValAssign &VA,
2097                                    ISD::ArgFlagsTy Flags) const {
2098  unsigned LocMemOffset = VA.getLocMemOffset();
2099  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2100  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2101  if (Flags.isByVal())
2102    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2103
2104  return DAG.getStore(Chain, dl, Arg, PtrOff,
2105                      MachinePointerInfo::getStack(LocMemOffset),
2106                      false, false, 0);
2107}
2108
2109/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2110/// optimization is performed and it is required.
2111SDValue
2112X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2113                                           SDValue &OutRetAddr, SDValue Chain,
2114                                           bool IsTailCall, bool Is64Bit,
2115                                           int FPDiff, DebugLoc dl) const {
2116  // Adjust the Return address stack slot.
2117  EVT VT = getPointerTy();
2118  OutRetAddr = getReturnAddressFrameIndex(DAG);
2119
2120  // Load the "old" Return address.
2121  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2122                           false, false, false, 0);
2123  return SDValue(OutRetAddr.getNode(), 1);
2124}
2125
2126/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2127/// optimization is performed and it is required (FPDiff!=0).
2128static SDValue
2129EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2130                         SDValue Chain, SDValue RetAddrFrIdx,
2131                         bool Is64Bit, int FPDiff, DebugLoc dl) {
2132  // Store the return address to the appropriate stack slot.
2133  if (!FPDiff) return Chain;
2134  // Calculate the new stack slot for the return address.
2135  int SlotSize = Is64Bit ? 8 : 4;
2136  int NewReturnAddrFI =
2137    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2138  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2139  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
2140  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2141                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2142                       false, false, 0);
2143  return Chain;
2144}
2145
2146SDValue
2147X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2148                             SmallVectorImpl<SDValue> &InVals) const {
2149  SelectionDAG &DAG                     = CLI.DAG;
2150  DebugLoc &dl                          = CLI.DL;
2151  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2152  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
2153  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
2154  SDValue Chain                         = CLI.Chain;
2155  SDValue Callee                        = CLI.Callee;
2156  CallingConv::ID CallConv              = CLI.CallConv;
2157  bool &isTailCall                      = CLI.IsTailCall;
2158  bool isVarArg                         = CLI.IsVarArg;
2159
2160  MachineFunction &MF = DAG.getMachineFunction();
2161  bool Is64Bit        = Subtarget->is64Bit();
2162  bool IsWin64        = Subtarget->isTargetWin64();
2163  bool IsWindows      = Subtarget->isTargetWindows();
2164  bool IsStructRet    = CallIsStructReturn(Outs);
2165  bool IsSibcall      = false;
2166
2167  if (MF.getTarget().Options.DisableTailCalls)
2168    isTailCall = false;
2169
2170  if (isTailCall) {
2171    // Check if it's really possible to do a tail call.
2172    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2173                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
2174                                                   Outs, OutVals, Ins, DAG);
2175
2176    // Sibcalls are automatically detected tailcalls which do not require
2177    // ABI changes.
2178    if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2179      IsSibcall = true;
2180
2181    if (isTailCall)
2182      ++NumTailCalls;
2183  }
2184
2185  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2186         "Var args not supported with calling convention fastcc or ghc");
2187
2188  // Analyze operands of the call, assigning locations to each operand.
2189  SmallVector<CCValAssign, 16> ArgLocs;
2190  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2191                 ArgLocs, *DAG.getContext());
2192
2193  // Allocate shadow area for Win64
2194  if (IsWin64) {
2195    CCInfo.AllocateStack(32, 8);
2196  }
2197
2198  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2199
2200  // Get a count of how many bytes are to be pushed on the stack.
2201  unsigned NumBytes = CCInfo.getNextStackOffset();
2202  if (IsSibcall)
2203    // This is a sibcall. The memory operands are available in caller's
2204    // own caller's stack.
2205    NumBytes = 0;
2206  else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
2207           IsTailCallConvention(CallConv))
2208    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2209
2210  int FPDiff = 0;
2211  if (isTailCall && !IsSibcall) {
2212    // Lower arguments at fp - stackoffset + fpdiff.
2213    unsigned NumBytesCallerPushed =
2214      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2215    FPDiff = NumBytesCallerPushed - NumBytes;
2216
2217    // Set the delta of movement of the returnaddr stackslot.
2218    // But only set if delta is greater than previous delta.
2219    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2220      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2221  }
2222
2223  if (!IsSibcall)
2224    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2225
2226  SDValue RetAddrFrIdx;
2227  // Load return address for tail calls.
2228  if (isTailCall && FPDiff)
2229    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2230                                    Is64Bit, FPDiff, dl);
2231
2232  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2233  SmallVector<SDValue, 8> MemOpChains;
2234  SDValue StackPtr;
2235
2236  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2237  // of tail call optimization arguments are handle later.
2238  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2239    CCValAssign &VA = ArgLocs[i];
2240    EVT RegVT = VA.getLocVT();
2241    SDValue Arg = OutVals[i];
2242    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2243    bool isByVal = Flags.isByVal();
2244
2245    // Promote the value if needed.
2246    switch (VA.getLocInfo()) {
2247    default: llvm_unreachable("Unknown loc info!");
2248    case CCValAssign::Full: break;
2249    case CCValAssign::SExt:
2250      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2251      break;
2252    case CCValAssign::ZExt:
2253      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2254      break;
2255    case CCValAssign::AExt:
2256      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2257        // Special case: passing MMX values in XMM registers.
2258        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2259        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2260        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2261      } else
2262        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2263      break;
2264    case CCValAssign::BCvt:
2265      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2266      break;
2267    case CCValAssign::Indirect: {
2268      // Store the argument.
2269      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2270      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2271      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2272                           MachinePointerInfo::getFixedStack(FI),
2273                           false, false, 0);
2274      Arg = SpillSlot;
2275      break;
2276    }
2277    }
2278
2279    if (VA.isRegLoc()) {
2280      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2281      if (isVarArg && IsWin64) {
2282        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2283        // shadow reg if callee is a varargs function.
2284        unsigned ShadowReg = 0;
2285        switch (VA.getLocReg()) {
2286        case X86::XMM0: ShadowReg = X86::RCX; break;
2287        case X86::XMM1: ShadowReg = X86::RDX; break;
2288        case X86::XMM2: ShadowReg = X86::R8; break;
2289        case X86::XMM3: ShadowReg = X86::R9; break;
2290        }
2291        if (ShadowReg)
2292          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2293      }
2294    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2295      assert(VA.isMemLoc());
2296      if (StackPtr.getNode() == 0)
2297        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2298      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2299                                             dl, DAG, VA, Flags));
2300    }
2301  }
2302
2303  if (!MemOpChains.empty())
2304    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2305                        &MemOpChains[0], MemOpChains.size());
2306
2307  // Build a sequence of copy-to-reg nodes chained together with token chain
2308  // and flag operands which copy the outgoing args into registers.
2309  SDValue InFlag;
2310  // Tail call byval lowering might overwrite argument registers so in case of
2311  // tail call optimization the copies to registers are lowered later.
2312  if (!isTailCall)
2313    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2314      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2315                               RegsToPass[i].second, InFlag);
2316      InFlag = Chain.getValue(1);
2317    }
2318
2319  if (Subtarget->isPICStyleGOT()) {
2320    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2321    // GOT pointer.
2322    if (!isTailCall) {
2323      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2324                               DAG.getNode(X86ISD::GlobalBaseReg,
2325                                           DebugLoc(), getPointerTy()),
2326                               InFlag);
2327      InFlag = Chain.getValue(1);
2328    } else {
2329      // If we are tail calling and generating PIC/GOT style code load the
2330      // address of the callee into ECX. The value in ecx is used as target of
2331      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2332      // for tail calls on PIC/GOT architectures. Normally we would just put the
2333      // address of GOT into ebx and then call target@PLT. But for tail calls
2334      // ebx would be restored (since ebx is callee saved) before jumping to the
2335      // target@PLT.
2336
2337      // Note: The actual moving to ECX is done further down.
2338      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2339      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2340          !G->getGlobal()->hasProtectedVisibility())
2341        Callee = LowerGlobalAddress(Callee, DAG);
2342      else if (isa<ExternalSymbolSDNode>(Callee))
2343        Callee = LowerExternalSymbol(Callee, DAG);
2344    }
2345  }
2346
2347  if (Is64Bit && isVarArg && !IsWin64) {
2348    // From AMD64 ABI document:
2349    // For calls that may call functions that use varargs or stdargs
2350    // (prototype-less calls or calls to functions containing ellipsis (...) in
2351    // the declaration) %al is used as hidden argument to specify the number
2352    // of SSE registers used. The contents of %al do not need to match exactly
2353    // the number of registers, but must be an ubound on the number of SSE
2354    // registers used and is in the range 0 - 8 inclusive.
2355
2356    // Count the number of XMM registers allocated.
2357    static const uint16_t XMMArgRegs[] = {
2358      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2359      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2360    };
2361    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2362    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2363           && "SSE registers cannot be used when SSE is disabled");
2364
2365    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2366                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2367    InFlag = Chain.getValue(1);
2368  }
2369
2370
2371  // For tail calls lower the arguments to the 'real' stack slot.
2372  if (isTailCall) {
2373    // Force all the incoming stack arguments to be loaded from the stack
2374    // before any new outgoing arguments are stored to the stack, because the
2375    // outgoing stack slots may alias the incoming argument stack slots, and
2376    // the alias isn't otherwise explicit. This is slightly more conservative
2377    // than necessary, because it means that each store effectively depends
2378    // on every argument instead of just those arguments it would clobber.
2379    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2380
2381    SmallVector<SDValue, 8> MemOpChains2;
2382    SDValue FIN;
2383    int FI = 0;
2384    // Do not flag preceding copytoreg stuff together with the following stuff.
2385    InFlag = SDValue();
2386    if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2387      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2388        CCValAssign &VA = ArgLocs[i];
2389        if (VA.isRegLoc())
2390          continue;
2391        assert(VA.isMemLoc());
2392        SDValue Arg = OutVals[i];
2393        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2394        // Create frame index.
2395        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2396        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2397        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2398        FIN = DAG.getFrameIndex(FI, getPointerTy());
2399
2400        if (Flags.isByVal()) {
2401          // Copy relative to framepointer.
2402          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2403          if (StackPtr.getNode() == 0)
2404            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2405                                          getPointerTy());
2406          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2407
2408          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2409                                                           ArgChain,
2410                                                           Flags, DAG, dl));
2411        } else {
2412          // Store relative to framepointer.
2413          MemOpChains2.push_back(
2414            DAG.getStore(ArgChain, dl, Arg, FIN,
2415                         MachinePointerInfo::getFixedStack(FI),
2416                         false, false, 0));
2417        }
2418      }
2419    }
2420
2421    if (!MemOpChains2.empty())
2422      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2423                          &MemOpChains2[0], MemOpChains2.size());
2424
2425    // Copy arguments to their registers.
2426    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2427      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2428                               RegsToPass[i].second, InFlag);
2429      InFlag = Chain.getValue(1);
2430    }
2431    InFlag =SDValue();
2432
2433    // Store the return address to the appropriate stack slot.
2434    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2435                                     FPDiff, dl);
2436  }
2437
2438  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2439    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2440    // In the 64-bit large code model, we have to make all calls
2441    // through a register, since the call instruction's 32-bit
2442    // pc-relative offset may not be large enough to hold the whole
2443    // address.
2444  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2445    // If the callee is a GlobalAddress node (quite common, every direct call
2446    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2447    // it.
2448
2449    // We should use extra load for direct calls to dllimported functions in
2450    // non-JIT mode.
2451    const GlobalValue *GV = G->getGlobal();
2452    if (!GV->hasDLLImportLinkage()) {
2453      unsigned char OpFlags = 0;
2454      bool ExtraLoad = false;
2455      unsigned WrapperKind = ISD::DELETED_NODE;
2456
2457      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2458      // external symbols most go through the PLT in PIC mode.  If the symbol
2459      // has hidden or protected visibility, or if it is static or local, then
2460      // we don't need to use the PLT - we can directly call it.
2461      if (Subtarget->isTargetELF() &&
2462          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2463          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2464        OpFlags = X86II::MO_PLT;
2465      } else if (Subtarget->isPICStyleStubAny() &&
2466                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2467                 (!Subtarget->getTargetTriple().isMacOSX() ||
2468                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2469        // PC-relative references to external symbols should go through $stub,
2470        // unless we're building with the leopard linker or later, which
2471        // automatically synthesizes these stubs.
2472        OpFlags = X86II::MO_DARWIN_STUB;
2473      } else if (Subtarget->isPICStyleRIPRel() &&
2474                 isa<Function>(GV) &&
2475                 cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
2476        // If the function is marked as non-lazy, generate an indirect call
2477        // which loads from the GOT directly. This avoids runtime overhead
2478        // at the cost of eager binding (and one extra byte of encoding).
2479        OpFlags = X86II::MO_GOTPCREL;
2480        WrapperKind = X86ISD::WrapperRIP;
2481        ExtraLoad = true;
2482      }
2483
2484      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2485                                          G->getOffset(), OpFlags);
2486
2487      // Add a wrapper if needed.
2488      if (WrapperKind != ISD::DELETED_NODE)
2489        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2490      // Add extra indirection if needed.
2491      if (ExtraLoad)
2492        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2493                             MachinePointerInfo::getGOT(),
2494                             false, false, false, 0);
2495    }
2496  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2497    unsigned char OpFlags = 0;
2498
2499    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2500    // external symbols should go through the PLT.
2501    if (Subtarget->isTargetELF() &&
2502        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2503      OpFlags = X86II::MO_PLT;
2504    } else if (Subtarget->isPICStyleStubAny() &&
2505               (!Subtarget->getTargetTriple().isMacOSX() ||
2506                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2507      // PC-relative references to external symbols should go through $stub,
2508      // unless we're building with the leopard linker or later, which
2509      // automatically synthesizes these stubs.
2510      OpFlags = X86II::MO_DARWIN_STUB;
2511    }
2512
2513    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2514                                         OpFlags);
2515  }
2516
2517  // Returns a chain & a flag for retval copy to use.
2518  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2519  SmallVector<SDValue, 8> Ops;
2520
2521  if (!IsSibcall && isTailCall) {
2522    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2523                           DAG.getIntPtrConstant(0, true), InFlag);
2524    InFlag = Chain.getValue(1);
2525  }
2526
2527  Ops.push_back(Chain);
2528  Ops.push_back(Callee);
2529
2530  if (isTailCall)
2531    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2532
2533  // Add argument registers to the end of the list so that they are known live
2534  // into the call.
2535  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2536    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2537                                  RegsToPass[i].second.getValueType()));
2538
2539  // Add an implicit use GOT pointer in EBX.
2540  if (!isTailCall && Subtarget->isPICStyleGOT())
2541    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2542
2543  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2544  if (Is64Bit && isVarArg && !IsWin64)
2545    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2546
2547  // Add a register mask operand representing the call-preserved registers.
2548  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2549  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2550  assert(Mask && "Missing call preserved mask for calling convention");
2551  Ops.push_back(DAG.getRegisterMask(Mask));
2552
2553  if (InFlag.getNode())
2554    Ops.push_back(InFlag);
2555
2556  if (isTailCall) {
2557    // We used to do:
2558    //// If this is the first return lowered for this function, add the regs
2559    //// to the liveout set for the function.
2560    // This isn't right, although it's probably harmless on x86; liveouts
2561    // should be computed from returns not tail calls.  Consider a void
2562    // function making a tail call to a function returning int.
2563    return DAG.getNode(X86ISD::TC_RETURN, dl,
2564                       NodeTys, &Ops[0], Ops.size());
2565  }
2566
2567  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2568  InFlag = Chain.getValue(1);
2569
2570  // Create the CALLSEQ_END node.
2571  unsigned NumBytesForCalleeToPush;
2572  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2573                       getTargetMachine().Options.GuaranteedTailCallOpt))
2574    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2575  else if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2576           IsStructRet)
2577    // If this is a call to a struct-return function, the callee
2578    // pops the hidden struct pointer, so we have to push it back.
2579    // This is common for Darwin/X86, Linux & Mingw32 targets.
2580    // For MSVC Win32 targets, the caller pops the hidden struct pointer.
2581    NumBytesForCalleeToPush = 4;
2582  else
2583    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2584
2585  // Returns a flag for retval copy to use.
2586  if (!IsSibcall) {
2587    Chain = DAG.getCALLSEQ_END(Chain,
2588                               DAG.getIntPtrConstant(NumBytes, true),
2589                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2590                                                     true),
2591                               InFlag);
2592    InFlag = Chain.getValue(1);
2593  }
2594
2595  // Handle result values, copying them out of physregs into vregs that we
2596  // return.
2597  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2598                         Ins, dl, DAG, InVals);
2599}
2600
2601
2602//===----------------------------------------------------------------------===//
2603//                Fast Calling Convention (tail call) implementation
2604//===----------------------------------------------------------------------===//
2605
2606//  Like std call, callee cleans arguments, convention except that ECX is
2607//  reserved for storing the tail called function address. Only 2 registers are
2608//  free for argument passing (inreg). Tail call optimization is performed
2609//  provided:
2610//                * tailcallopt is enabled
2611//                * caller/callee are fastcc
2612//  On X86_64 architecture with GOT-style position independent code only local
2613//  (within module) calls are supported at the moment.
2614//  To keep the stack aligned according to platform abi the function
2615//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2616//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2617//  If a tail called function callee has more arguments than the caller the
2618//  caller needs to make sure that there is room to move the RETADDR to. This is
2619//  achieved by reserving an area the size of the argument delta right after the
2620//  original REtADDR, but before the saved framepointer or the spilled registers
2621//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2622//  stack layout:
2623//    arg1
2624//    arg2
2625//    RETADDR
2626//    [ new RETADDR
2627//      move area ]
2628//    (possible EBP)
2629//    ESI
2630//    EDI
2631//    local1 ..
2632
2633/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2634/// for a 16 byte align requirement.
2635unsigned
2636X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2637                                               SelectionDAG& DAG) const {
2638  MachineFunction &MF = DAG.getMachineFunction();
2639  const TargetMachine &TM = MF.getTarget();
2640  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2641  unsigned StackAlignment = TFI.getStackAlignment();
2642  uint64_t AlignMask = StackAlignment - 1;
2643  int64_t Offset = StackSize;
2644  uint64_t SlotSize = TD->getPointerSize();
2645  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2646    // Number smaller than 12 so just add the difference.
2647    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2648  } else {
2649    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2650    Offset = ((~AlignMask) & Offset) + StackAlignment +
2651      (StackAlignment-SlotSize);
2652  }
2653  return Offset;
2654}
2655
2656/// MatchingStackOffset - Return true if the given stack call argument is
2657/// already available in the same position (relatively) of the caller's
2658/// incoming argument stack.
2659static
2660bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2661                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2662                         const X86InstrInfo *TII) {
2663  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2664  int FI = INT_MAX;
2665  if (Arg.getOpcode() == ISD::CopyFromReg) {
2666    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2667    if (!TargetRegisterInfo::isVirtualRegister(VR))
2668      return false;
2669    MachineInstr *Def = MRI->getVRegDef(VR);
2670    if (!Def)
2671      return false;
2672    if (!Flags.isByVal()) {
2673      if (!TII->isLoadFromStackSlot(Def, FI))
2674        return false;
2675    } else {
2676      unsigned Opcode = Def->getOpcode();
2677      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2678          Def->getOperand(1).isFI()) {
2679        FI = Def->getOperand(1).getIndex();
2680        Bytes = Flags.getByValSize();
2681      } else
2682        return false;
2683    }
2684  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2685    if (Flags.isByVal())
2686      // ByVal argument is passed in as a pointer but it's now being
2687      // dereferenced. e.g.
2688      // define @foo(%struct.X* %A) {
2689      //   tail call @bar(%struct.X* byval %A)
2690      // }
2691      return false;
2692    SDValue Ptr = Ld->getBasePtr();
2693    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2694    if (!FINode)
2695      return false;
2696    FI = FINode->getIndex();
2697  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2698    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2699    FI = FINode->getIndex();
2700    Bytes = Flags.getByValSize();
2701  } else
2702    return false;
2703
2704  assert(FI != INT_MAX);
2705  if (!MFI->isFixedObjectIndex(FI))
2706    return false;
2707  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2708}
2709
2710/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2711/// for tail call optimization. Targets which want to do tail call
2712/// optimization should implement this function.
2713bool
2714X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2715                                                     CallingConv::ID CalleeCC,
2716                                                     bool isVarArg,
2717                                                     bool isCalleeStructRet,
2718                                                     bool isCallerStructRet,
2719                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2720                                    const SmallVectorImpl<SDValue> &OutVals,
2721                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2722                                                     SelectionDAG& DAG) const {
2723  if (!IsTailCallConvention(CalleeCC) &&
2724      CalleeCC != CallingConv::C)
2725    return false;
2726
2727  // If -tailcallopt is specified, make fastcc functions tail-callable.
2728  const MachineFunction &MF = DAG.getMachineFunction();
2729  const Function *CallerF = DAG.getMachineFunction().getFunction();
2730  CallingConv::ID CallerCC = CallerF->getCallingConv();
2731  bool CCMatch = CallerCC == CalleeCC;
2732
2733  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2734    if (IsTailCallConvention(CalleeCC) && CCMatch)
2735      return true;
2736    return false;
2737  }
2738
2739  // Look for obvious safe cases to perform tail call optimization that do not
2740  // require ABI changes. This is what gcc calls sibcall.
2741
2742  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2743  // emit a special epilogue.
2744  if (RegInfo->needsStackRealignment(MF))
2745    return false;
2746
2747  // Also avoid sibcall optimization if either caller or callee uses struct
2748  // return semantics.
2749  if (isCalleeStructRet || isCallerStructRet)
2750    return false;
2751
2752  // An stdcall caller is expected to clean up its arguments; the callee
2753  // isn't going to do that.
2754  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2755    return false;
2756
2757  // Do not sibcall optimize vararg calls unless all arguments are passed via
2758  // registers.
2759  if (isVarArg && !Outs.empty()) {
2760
2761    // Optimizing for varargs on Win64 is unlikely to be safe without
2762    // additional testing.
2763    if (Subtarget->isTargetWin64())
2764      return false;
2765
2766    SmallVector<CCValAssign, 16> ArgLocs;
2767    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2768                   getTargetMachine(), ArgLocs, *DAG.getContext());
2769
2770    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2771    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2772      if (!ArgLocs[i].isRegLoc())
2773        return false;
2774  }
2775
2776  // If the call result is in ST0 / ST1, it needs to be popped off the x87
2777  // stack.  Therefore, if it's not used by the call it is not safe to optimize
2778  // this into a sibcall.
2779  bool Unused = false;
2780  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2781    if (!Ins[i].Used) {
2782      Unused = true;
2783      break;
2784    }
2785  }
2786  if (Unused) {
2787    SmallVector<CCValAssign, 16> RVLocs;
2788    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2789                   getTargetMachine(), RVLocs, *DAG.getContext());
2790    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2791    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2792      CCValAssign &VA = RVLocs[i];
2793      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2794        return false;
2795    }
2796  }
2797
2798  // If the calling conventions do not match, then we'd better make sure the
2799  // results are returned in the same way as what the caller expects.
2800  if (!CCMatch) {
2801    SmallVector<CCValAssign, 16> RVLocs1;
2802    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2803                    getTargetMachine(), RVLocs1, *DAG.getContext());
2804    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2805
2806    SmallVector<CCValAssign, 16> RVLocs2;
2807    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2808                    getTargetMachine(), RVLocs2, *DAG.getContext());
2809    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2810
2811    if (RVLocs1.size() != RVLocs2.size())
2812      return false;
2813    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2814      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2815        return false;
2816      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2817        return false;
2818      if (RVLocs1[i].isRegLoc()) {
2819        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2820          return false;
2821      } else {
2822        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2823          return false;
2824      }
2825    }
2826  }
2827
2828  // If the callee takes no arguments then go on to check the results of the
2829  // call.
2830  if (!Outs.empty()) {
2831    // Check if stack adjustment is needed. For now, do not do this if any
2832    // argument is passed on the stack.
2833    SmallVector<CCValAssign, 16> ArgLocs;
2834    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2835                   getTargetMachine(), ArgLocs, *DAG.getContext());
2836
2837    // Allocate shadow area for Win64
2838    if (Subtarget->isTargetWin64()) {
2839      CCInfo.AllocateStack(32, 8);
2840    }
2841
2842    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2843    if (CCInfo.getNextStackOffset()) {
2844      MachineFunction &MF = DAG.getMachineFunction();
2845      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2846        return false;
2847
2848      // Check if the arguments are already laid out in the right way as
2849      // the caller's fixed stack objects.
2850      MachineFrameInfo *MFI = MF.getFrameInfo();
2851      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2852      const X86InstrInfo *TII =
2853        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2854      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2855        CCValAssign &VA = ArgLocs[i];
2856        SDValue Arg = OutVals[i];
2857        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2858        if (VA.getLocInfo() == CCValAssign::Indirect)
2859          return false;
2860        if (!VA.isRegLoc()) {
2861          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2862                                   MFI, MRI, TII))
2863            return false;
2864        }
2865      }
2866    }
2867
2868    // If the tailcall address may be in a register, then make sure it's
2869    // possible to register allocate for it. In 32-bit, the call address can
2870    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2871    // callee-saved registers are restored. These happen to be the same
2872    // registers used to pass 'inreg' arguments so watch out for those.
2873    if (!Subtarget->is64Bit() &&
2874        !isa<GlobalAddressSDNode>(Callee) &&
2875        !isa<ExternalSymbolSDNode>(Callee)) {
2876      unsigned NumInRegs = 0;
2877      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2878        CCValAssign &VA = ArgLocs[i];
2879        if (!VA.isRegLoc())
2880          continue;
2881        unsigned Reg = VA.getLocReg();
2882        switch (Reg) {
2883        default: break;
2884        case X86::EAX: case X86::EDX: case X86::ECX:
2885          if (++NumInRegs == 3)
2886            return false;
2887          break;
2888        }
2889      }
2890    }
2891  }
2892
2893  return true;
2894}
2895
2896FastISel *
2897X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2898  return X86::createFastISel(funcInfo);
2899}
2900
2901
2902//===----------------------------------------------------------------------===//
2903//                           Other Lowering Hooks
2904//===----------------------------------------------------------------------===//
2905
2906static bool MayFoldLoad(SDValue Op) {
2907  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2908}
2909
2910static bool MayFoldIntoStore(SDValue Op) {
2911  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2912}
2913
2914static bool isTargetShuffle(unsigned Opcode) {
2915  switch(Opcode) {
2916  default: return false;
2917  case X86ISD::PSHUFD:
2918  case X86ISD::PSHUFHW:
2919  case X86ISD::PSHUFLW:
2920  case X86ISD::SHUFP:
2921  case X86ISD::PALIGN:
2922  case X86ISD::MOVLHPS:
2923  case X86ISD::MOVLHPD:
2924  case X86ISD::MOVHLPS:
2925  case X86ISD::MOVLPS:
2926  case X86ISD::MOVLPD:
2927  case X86ISD::MOVSHDUP:
2928  case X86ISD::MOVSLDUP:
2929  case X86ISD::MOVDDUP:
2930  case X86ISD::MOVSS:
2931  case X86ISD::MOVSD:
2932  case X86ISD::UNPCKL:
2933  case X86ISD::UNPCKH:
2934  case X86ISD::VPERMILP:
2935  case X86ISD::VPERM2X128:
2936  case X86ISD::VPERMI:
2937    return true;
2938  }
2939}
2940
2941static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2942                                    SDValue V1, SelectionDAG &DAG) {
2943  switch(Opc) {
2944  default: llvm_unreachable("Unknown x86 shuffle node");
2945  case X86ISD::MOVSHDUP:
2946  case X86ISD::MOVSLDUP:
2947  case X86ISD::MOVDDUP:
2948    return DAG.getNode(Opc, dl, VT, V1);
2949  }
2950}
2951
2952static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2953                                    SDValue V1, unsigned TargetMask,
2954                                    SelectionDAG &DAG) {
2955  switch(Opc) {
2956  default: llvm_unreachable("Unknown x86 shuffle node");
2957  case X86ISD::PSHUFD:
2958  case X86ISD::PSHUFHW:
2959  case X86ISD::PSHUFLW:
2960  case X86ISD::VPERMILP:
2961  case X86ISD::VPERMI:
2962    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2963  }
2964}
2965
2966static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2967                                    SDValue V1, SDValue V2, unsigned TargetMask,
2968                                    SelectionDAG &DAG) {
2969  switch(Opc) {
2970  default: llvm_unreachable("Unknown x86 shuffle node");
2971  case X86ISD::PALIGN:
2972  case X86ISD::SHUFP:
2973  case X86ISD::VPERM2X128:
2974    return DAG.getNode(Opc, dl, VT, V1, V2,
2975                       DAG.getConstant(TargetMask, MVT::i8));
2976  }
2977}
2978
2979static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2980                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2981  switch(Opc) {
2982  default: llvm_unreachable("Unknown x86 shuffle node");
2983  case X86ISD::MOVLHPS:
2984  case X86ISD::MOVLHPD:
2985  case X86ISD::MOVHLPS:
2986  case X86ISD::MOVLPS:
2987  case X86ISD::MOVLPD:
2988  case X86ISD::MOVSS:
2989  case X86ISD::MOVSD:
2990  case X86ISD::UNPCKL:
2991  case X86ISD::UNPCKH:
2992    return DAG.getNode(Opc, dl, VT, V1, V2);
2993  }
2994}
2995
2996SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2997  MachineFunction &MF = DAG.getMachineFunction();
2998  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2999  int ReturnAddrIndex = FuncInfo->getRAIndex();
3000
3001  if (ReturnAddrIndex == 0) {
3002    // Set up a frame object for the return address.
3003    uint64_t SlotSize = TD->getPointerSize();
3004    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
3005                                                           false);
3006    FuncInfo->setRAIndex(ReturnAddrIndex);
3007  }
3008
3009  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
3010}
3011
3012
3013bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
3014                                       bool hasSymbolicDisplacement) {
3015  // Offset should fit into 32 bit immediate field.
3016  if (!isInt<32>(Offset))
3017    return false;
3018
3019  // If we don't have a symbolic displacement - we don't have any extra
3020  // restrictions.
3021  if (!hasSymbolicDisplacement)
3022    return true;
3023
3024  // FIXME: Some tweaks might be needed for medium code model.
3025  if (M != CodeModel::Small && M != CodeModel::Kernel)
3026    return false;
3027
3028  // For small code model we assume that latest object is 16MB before end of 31
3029  // bits boundary. We may also accept pretty large negative constants knowing
3030  // that all objects are in the positive half of address space.
3031  if (M == CodeModel::Small && Offset < 16*1024*1024)
3032    return true;
3033
3034  // For kernel code model we know that all object resist in the negative half
3035  // of 32bits address space. We may not accept negative offsets, since they may
3036  // be just off and we may accept pretty large positive ones.
3037  if (M == CodeModel::Kernel && Offset > 0)
3038    return true;
3039
3040  return false;
3041}
3042
3043/// isCalleePop - Determines whether the callee is required to pop its
3044/// own arguments. Callee pop is necessary to support tail calls.
3045bool X86::isCalleePop(CallingConv::ID CallingConv,
3046                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3047  if (IsVarArg)
3048    return false;
3049
3050  switch (CallingConv) {
3051  default:
3052    return false;
3053  case CallingConv::X86_StdCall:
3054    return !is64Bit;
3055  case CallingConv::X86_FastCall:
3056    return !is64Bit;
3057  case CallingConv::X86_ThisCall:
3058    return !is64Bit;
3059  case CallingConv::Fast:
3060    return TailCallOpt;
3061  case CallingConv::GHC:
3062    return TailCallOpt;
3063  }
3064}
3065
3066/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3067/// specific condition code, returning the condition code and the LHS/RHS of the
3068/// comparison to make.
3069static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3070                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3071  if (!isFP) {
3072    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3073      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3074        // X > -1   -> X == 0, jump !sign.
3075        RHS = DAG.getConstant(0, RHS.getValueType());
3076        return X86::COND_NS;
3077      }
3078      if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3079        // X < 0   -> X == 0, jump on sign.
3080        return X86::COND_S;
3081      }
3082      if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3083        // X < 1   -> X <= 0
3084        RHS = DAG.getConstant(0, RHS.getValueType());
3085        return X86::COND_LE;
3086      }
3087    }
3088
3089    switch (SetCCOpcode) {
3090    default: llvm_unreachable("Invalid integer condition!");
3091    case ISD::SETEQ:  return X86::COND_E;
3092    case ISD::SETGT:  return X86::COND_G;
3093    case ISD::SETGE:  return X86::COND_GE;
3094    case ISD::SETLT:  return X86::COND_L;
3095    case ISD::SETLE:  return X86::COND_LE;
3096    case ISD::SETNE:  return X86::COND_NE;
3097    case ISD::SETULT: return X86::COND_B;
3098    case ISD::SETUGT: return X86::COND_A;
3099    case ISD::SETULE: return X86::COND_BE;
3100    case ISD::SETUGE: return X86::COND_AE;
3101    }
3102  }
3103
3104  // First determine if it is required or is profitable to flip the operands.
3105
3106  // If LHS is a foldable load, but RHS is not, flip the condition.
3107  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3108      !ISD::isNON_EXTLoad(RHS.getNode())) {
3109    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3110    std::swap(LHS, RHS);
3111  }
3112
3113  switch (SetCCOpcode) {
3114  default: break;
3115  case ISD::SETOLT:
3116  case ISD::SETOLE:
3117  case ISD::SETUGT:
3118  case ISD::SETUGE:
3119    std::swap(LHS, RHS);
3120    break;
3121  }
3122
3123  // On a floating point condition, the flags are set as follows:
3124  // ZF  PF  CF   op
3125  //  0 | 0 | 0 | X > Y
3126  //  0 | 0 | 1 | X < Y
3127  //  1 | 0 | 0 | X == Y
3128  //  1 | 1 | 1 | unordered
3129  switch (SetCCOpcode) {
3130  default: llvm_unreachable("Condcode should be pre-legalized away");
3131  case ISD::SETUEQ:
3132  case ISD::SETEQ:   return X86::COND_E;
3133  case ISD::SETOLT:              // flipped
3134  case ISD::SETOGT:
3135  case ISD::SETGT:   return X86::COND_A;
3136  case ISD::SETOLE:              // flipped
3137  case ISD::SETOGE:
3138  case ISD::SETGE:   return X86::COND_AE;
3139  case ISD::SETUGT:              // flipped
3140  case ISD::SETULT:
3141  case ISD::SETLT:   return X86::COND_B;
3142  case ISD::SETUGE:              // flipped
3143  case ISD::SETULE:
3144  case ISD::SETLE:   return X86::COND_BE;
3145  case ISD::SETONE:
3146  case ISD::SETNE:   return X86::COND_NE;
3147  case ISD::SETUO:   return X86::COND_P;
3148  case ISD::SETO:    return X86::COND_NP;
3149  case ISD::SETOEQ:
3150  case ISD::SETUNE:  return X86::COND_INVALID;
3151  }
3152}
3153
3154/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3155/// code. Current x86 isa includes the following FP cmov instructions:
3156/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3157static bool hasFPCMov(unsigned X86CC) {
3158  switch (X86CC) {
3159  default:
3160    return false;
3161  case X86::COND_B:
3162  case X86::COND_BE:
3163  case X86::COND_E:
3164  case X86::COND_P:
3165  case X86::COND_A:
3166  case X86::COND_AE:
3167  case X86::COND_NE:
3168  case X86::COND_NP:
3169    return true;
3170  }
3171}
3172
3173/// isFPImmLegal - Returns true if the target can instruction select the
3174/// specified FP immediate natively. If false, the legalizer will
3175/// materialize the FP immediate as a load from a constant pool.
3176bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3177  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3178    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3179      return true;
3180  }
3181  return false;
3182}
3183
3184/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3185/// the specified range (L, H].
3186static bool isUndefOrInRange(int Val, int Low, int Hi) {
3187  return (Val < 0) || (Val >= Low && Val < Hi);
3188}
3189
3190/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3191/// specified value.
3192static bool isUndefOrEqual(int Val, int CmpVal) {
3193  if (Val < 0 || Val == CmpVal)
3194    return true;
3195  return false;
3196}
3197
3198/// isSequentialOrUndefInRange - Return true if every element in Mask, beginning
3199/// from position Pos and ending in Pos+Size, falls within the specified
3200/// sequential range (L, L+Pos]. or is undef.
3201static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
3202                                       unsigned Pos, unsigned Size, int Low) {
3203  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3204    if (!isUndefOrEqual(Mask[i], Low))
3205      return false;
3206  return true;
3207}
3208
3209/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3210/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3211/// the second operand.
3212static bool isPSHUFDMask(ArrayRef<int> Mask, EVT VT) {
3213  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3214    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3215  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3216    return (Mask[0] < 2 && Mask[1] < 2);
3217  return false;
3218}
3219
3220/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3221/// is suitable for input to PSHUFHW.
3222static bool isPSHUFHWMask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3223  if (VT != MVT::v8i16 && (!HasAVX2 || VT != MVT::v16i16))
3224    return false;
3225
3226  // Lower quadword copied in order or undef.
3227  if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
3228    return false;
3229
3230  // Upper quadword shuffled.
3231  for (unsigned i = 4; i != 8; ++i)
3232    if (!isUndefOrInRange(Mask[i], 4, 8))
3233      return false;
3234
3235  if (VT == MVT::v16i16) {
3236    // Lower quadword copied in order or undef.
3237    if (!isSequentialOrUndefInRange(Mask, 8, 4, 8))
3238      return false;
3239
3240    // Upper quadword shuffled.
3241    for (unsigned i = 12; i != 16; ++i)
3242      if (!isUndefOrInRange(Mask[i], 12, 16))
3243        return false;
3244  }
3245
3246  return true;
3247}
3248
3249/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3250/// is suitable for input to PSHUFLW.
3251static bool isPSHUFLWMask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3252  if (VT != MVT::v8i16 && (!HasAVX2 || VT != MVT::v16i16))
3253    return false;
3254
3255  // Upper quadword copied in order.
3256  if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
3257    return false;
3258
3259  // Lower quadword shuffled.
3260  for (unsigned i = 0; i != 4; ++i)
3261    if (!isUndefOrInRange(Mask[i], 0, 4))
3262      return false;
3263
3264  if (VT == MVT::v16i16) {
3265    // Upper quadword copied in order.
3266    if (!isSequentialOrUndefInRange(Mask, 12, 4, 12))
3267      return false;
3268
3269    // Lower quadword shuffled.
3270    for (unsigned i = 8; i != 12; ++i)
3271      if (!isUndefOrInRange(Mask[i], 8, 12))
3272        return false;
3273  }
3274
3275  return true;
3276}
3277
3278/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3279/// is suitable for input to PALIGNR.
3280static bool isPALIGNRMask(ArrayRef<int> Mask, EVT VT,
3281                          const X86Subtarget *Subtarget) {
3282  if ((VT.getSizeInBits() == 128 && !Subtarget->hasSSSE3()) ||
3283      (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2()))
3284    return false;
3285
3286  unsigned NumElts = VT.getVectorNumElements();
3287  unsigned NumLanes = VT.getSizeInBits()/128;
3288  unsigned NumLaneElts = NumElts/NumLanes;
3289
3290  // Do not handle 64-bit element shuffles with palignr.
3291  if (NumLaneElts == 2)
3292    return false;
3293
3294  for (unsigned l = 0; l != NumElts; l+=NumLaneElts) {
3295    unsigned i;
3296    for (i = 0; i != NumLaneElts; ++i) {
3297      if (Mask[i+l] >= 0)
3298        break;
3299    }
3300
3301    // Lane is all undef, go to next lane
3302    if (i == NumLaneElts)
3303      continue;
3304
3305    int Start = Mask[i+l];
3306
3307    // Make sure its in this lane in one of the sources
3308    if (!isUndefOrInRange(Start, l, l+NumLaneElts) &&
3309        !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts))
3310      return false;
3311
3312    // If not lane 0, then we must match lane 0
3313    if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l))
3314      return false;
3315
3316    // Correct second source to be contiguous with first source
3317    if (Start >= (int)NumElts)
3318      Start -= NumElts - NumLaneElts;
3319
3320    // Make sure we're shifting in the right direction.
3321    if (Start <= (int)(i+l))
3322      return false;
3323
3324    Start -= i;
3325
3326    // Check the rest of the elements to see if they are consecutive.
3327    for (++i; i != NumLaneElts; ++i) {
3328      int Idx = Mask[i+l];
3329
3330      // Make sure its in this lane
3331      if (!isUndefOrInRange(Idx, l, l+NumLaneElts) &&
3332          !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts))
3333        return false;
3334
3335      // If not lane 0, then we must match lane 0
3336      if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l))
3337        return false;
3338
3339      if (Idx >= (int)NumElts)
3340        Idx -= NumElts - NumLaneElts;
3341
3342      if (!isUndefOrEqual(Idx, Start+i))
3343        return false;
3344
3345    }
3346  }
3347
3348  return true;
3349}
3350
3351/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3352/// the two vector operands have swapped position.
3353static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
3354                                     unsigned NumElems) {
3355  for (unsigned i = 0; i != NumElems; ++i) {
3356    int idx = Mask[i];
3357    if (idx < 0)
3358      continue;
3359    else if (idx < (int)NumElems)
3360      Mask[i] = idx + NumElems;
3361    else
3362      Mask[i] = idx - NumElems;
3363  }
3364}
3365
3366/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3367/// specifies a shuffle of elements that is suitable for input to 128/256-bit
3368/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
3369/// reverse of what x86 shuffles want.
3370static bool isSHUFPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX,
3371                        bool Commuted = false) {
3372  if (!HasAVX && VT.getSizeInBits() == 256)
3373    return false;
3374
3375  unsigned NumElems = VT.getVectorNumElements();
3376  unsigned NumLanes = VT.getSizeInBits()/128;
3377  unsigned NumLaneElems = NumElems/NumLanes;
3378
3379  if (NumLaneElems != 2 && NumLaneElems != 4)
3380    return false;
3381
3382  // VSHUFPSY divides the resulting vector into 4 chunks.
3383  // The sources are also splitted into 4 chunks, and each destination
3384  // chunk must come from a different source chunk.
3385  //
3386  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3387  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3388  //
3389  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3390  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3391  //
3392  // VSHUFPDY divides the resulting vector into 4 chunks.
3393  // The sources are also splitted into 4 chunks, and each destination
3394  // chunk must come from a different source chunk.
3395  //
3396  //  SRC1 =>      X3       X2       X1       X0
3397  //  SRC2 =>      Y3       Y2       Y1       Y0
3398  //
3399  //  DST  =>  Y3..Y2,  X3..X2,  Y1..Y0,  X1..X0
3400  //
3401  unsigned HalfLaneElems = NumLaneElems/2;
3402  for (unsigned l = 0; l != NumElems; l += NumLaneElems) {
3403    for (unsigned i = 0; i != NumLaneElems; ++i) {
3404      int Idx = Mask[i+l];
3405      unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0);
3406      if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems))
3407        return false;
3408      // For VSHUFPSY, the mask of the second half must be the same as the
3409      // first but with the appropriate offsets. This works in the same way as
3410      // VPERMILPS works with masks.
3411      if (NumElems != 8 || l == 0 || Mask[i] < 0)
3412        continue;
3413      if (!isUndefOrEqual(Idx, Mask[i]+l))
3414        return false;
3415    }
3416  }
3417
3418  return true;
3419}
3420
3421/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3422/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3423static bool isMOVHLPSMask(ArrayRef<int> Mask, EVT VT) {
3424  unsigned NumElems = VT.getVectorNumElements();
3425
3426  if (VT.getSizeInBits() != 128)
3427    return false;
3428
3429  if (NumElems != 4)
3430    return false;
3431
3432  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3433  return isUndefOrEqual(Mask[0], 6) &&
3434         isUndefOrEqual(Mask[1], 7) &&
3435         isUndefOrEqual(Mask[2], 2) &&
3436         isUndefOrEqual(Mask[3], 3);
3437}
3438
3439/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3440/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3441/// <2, 3, 2, 3>
3442static bool isMOVHLPS_v_undef_Mask(ArrayRef<int> Mask, EVT VT) {
3443  unsigned NumElems = VT.getVectorNumElements();
3444
3445  if (VT.getSizeInBits() != 128)
3446    return false;
3447
3448  if (NumElems != 4)
3449    return false;
3450
3451  return isUndefOrEqual(Mask[0], 2) &&
3452         isUndefOrEqual(Mask[1], 3) &&
3453         isUndefOrEqual(Mask[2], 2) &&
3454         isUndefOrEqual(Mask[3], 3);
3455}
3456
3457/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3458/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3459static bool isMOVLPMask(ArrayRef<int> Mask, EVT VT) {
3460  if (VT.getSizeInBits() != 128)
3461    return false;
3462
3463  unsigned NumElems = VT.getVectorNumElements();
3464
3465  if (NumElems != 2 && NumElems != 4)
3466    return false;
3467
3468  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3469    if (!isUndefOrEqual(Mask[i], i + NumElems))
3470      return false;
3471
3472  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
3473    if (!isUndefOrEqual(Mask[i], i))
3474      return false;
3475
3476  return true;
3477}
3478
3479/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3480/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3481static bool isMOVLHPSMask(ArrayRef<int> Mask, EVT VT) {
3482  unsigned NumElems = VT.getVectorNumElements();
3483
3484  if ((NumElems != 2 && NumElems != 4)
3485      || VT.getSizeInBits() > 128)
3486    return false;
3487
3488  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3489    if (!isUndefOrEqual(Mask[i], i))
3490      return false;
3491
3492  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3493    if (!isUndefOrEqual(Mask[i + e], i + NumElems))
3494      return false;
3495
3496  return true;
3497}
3498
3499//
3500// Some special combinations that can be optimized.
3501//
3502static
3503SDValue Compact8x32ShuffleNode(ShuffleVectorSDNode *SVOp,
3504                               SelectionDAG &DAG) {
3505  EVT VT = SVOp->getValueType(0);
3506  unsigned NumElts = VT.getVectorNumElements();
3507  DebugLoc dl = SVOp->getDebugLoc();
3508
3509  if (VT != MVT::v8i32 && VT != MVT::v8f32)
3510    return SDValue();
3511
3512  ArrayRef<int> Mask = SVOp->getMask();
3513
3514  // These are the special masks that may be optimized.
3515  static const int MaskToOptimizeEven[] = {0, 8, 2, 10, 4, 12, 6, 14};
3516  static const int MaskToOptimizeOdd[]  = {1, 9, 3, 11, 5, 13, 7, 15};
3517  bool MatchEvenMask = true;
3518  bool MatchOddMask  = true;
3519  for (int i=0; i<8; ++i) {
3520    if (!isUndefOrEqual(Mask[i], MaskToOptimizeEven[i]))
3521      MatchEvenMask = false;
3522    if (!isUndefOrEqual(Mask[i], MaskToOptimizeOdd[i]))
3523      MatchOddMask = false;
3524  }
3525  static const int CompactionMaskEven[] = {0, 2, -1, -1, 4, 6, -1, -1};
3526  static const int CompactionMaskOdd [] = {1, 3, -1, -1, 5, 7, -1, -1};
3527
3528  const int *CompactionMask;
3529  if (MatchEvenMask)
3530    CompactionMask = CompactionMaskEven;
3531  else if (MatchOddMask)
3532    CompactionMask = CompactionMaskOdd;
3533  else
3534    return SDValue();
3535
3536  SDValue UndefNode = DAG.getNode(ISD::UNDEF, dl, VT);
3537
3538  SDValue Op0 = DAG.getVectorShuffle(VT, dl, SVOp->getOperand(0),
3539                                     UndefNode, CompactionMask);
3540  SDValue Op1 = DAG.getVectorShuffle(VT, dl, SVOp->getOperand(1),
3541                                     UndefNode, CompactionMask);
3542  static const int UnpackMask[] = {0, 8, 1, 9, 4, 12, 5, 13};
3543  return DAG.getVectorShuffle(VT, dl, Op0, Op1, UnpackMask);
3544}
3545
3546/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3547/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3548static bool isUNPCKLMask(ArrayRef<int> Mask, EVT VT,
3549                         bool HasAVX2, bool V2IsSplat = false) {
3550  unsigned NumElts = VT.getVectorNumElements();
3551
3552  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3553         "Unsupported vector type for unpckh");
3554
3555  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3556      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3557    return false;
3558
3559  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3560  // independently on 128-bit lanes.
3561  unsigned NumLanes = VT.getSizeInBits()/128;
3562  unsigned NumLaneElts = NumElts/NumLanes;
3563
3564  for (unsigned l = 0; l != NumLanes; ++l) {
3565    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3566         i != (l+1)*NumLaneElts;
3567         i += 2, ++j) {
3568      int BitI  = Mask[i];
3569      int BitI1 = Mask[i+1];
3570      if (!isUndefOrEqual(BitI, j))
3571        return false;
3572      if (V2IsSplat) {
3573        if (!isUndefOrEqual(BitI1, NumElts))
3574          return false;
3575      } else {
3576        if (!isUndefOrEqual(BitI1, j + NumElts))
3577          return false;
3578      }
3579    }
3580  }
3581
3582  return true;
3583}
3584
3585/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3586/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3587static bool isUNPCKHMask(ArrayRef<int> Mask, EVT VT,
3588                         bool HasAVX2, bool V2IsSplat = false) {
3589  unsigned NumElts = VT.getVectorNumElements();
3590
3591  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3592         "Unsupported vector type for unpckh");
3593
3594  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3595      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3596    return false;
3597
3598  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3599  // independently on 128-bit lanes.
3600  unsigned NumLanes = VT.getSizeInBits()/128;
3601  unsigned NumLaneElts = NumElts/NumLanes;
3602
3603  for (unsigned l = 0; l != NumLanes; ++l) {
3604    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3605         i != (l+1)*NumLaneElts; i += 2, ++j) {
3606      int BitI  = Mask[i];
3607      int BitI1 = Mask[i+1];
3608      if (!isUndefOrEqual(BitI, j))
3609        return false;
3610      if (V2IsSplat) {
3611        if (isUndefOrEqual(BitI1, NumElts))
3612          return false;
3613      } else {
3614        if (!isUndefOrEqual(BitI1, j+NumElts))
3615          return false;
3616      }
3617    }
3618  }
3619  return true;
3620}
3621
3622/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3623/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3624/// <0, 0, 1, 1>
3625static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, EVT VT,
3626                                  bool HasAVX2) {
3627  unsigned NumElts = VT.getVectorNumElements();
3628
3629  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3630         "Unsupported vector type for unpckh");
3631
3632  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3633      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3634    return false;
3635
3636  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3637  // FIXME: Need a better way to get rid of this, there's no latency difference
3638  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3639  // the former later. We should also remove the "_undef" special mask.
3640  if (NumElts == 4 && VT.getSizeInBits() == 256)
3641    return false;
3642
3643  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3644  // independently on 128-bit lanes.
3645  unsigned NumLanes = VT.getSizeInBits()/128;
3646  unsigned NumLaneElts = NumElts/NumLanes;
3647
3648  for (unsigned l = 0; l != NumLanes; ++l) {
3649    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3650         i != (l+1)*NumLaneElts;
3651         i += 2, ++j) {
3652      int BitI  = Mask[i];
3653      int BitI1 = Mask[i+1];
3654
3655      if (!isUndefOrEqual(BitI, j))
3656        return false;
3657      if (!isUndefOrEqual(BitI1, j))
3658        return false;
3659    }
3660  }
3661
3662  return true;
3663}
3664
3665/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3666/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3667/// <2, 2, 3, 3>
3668static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3669  unsigned NumElts = VT.getVectorNumElements();
3670
3671  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3672         "Unsupported vector type for unpckh");
3673
3674  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3675      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3676    return false;
3677
3678  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3679  // independently on 128-bit lanes.
3680  unsigned NumLanes = VT.getSizeInBits()/128;
3681  unsigned NumLaneElts = NumElts/NumLanes;
3682
3683  for (unsigned l = 0; l != NumLanes; ++l) {
3684    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3685         i != (l+1)*NumLaneElts; i += 2, ++j) {
3686      int BitI  = Mask[i];
3687      int BitI1 = Mask[i+1];
3688      if (!isUndefOrEqual(BitI, j))
3689        return false;
3690      if (!isUndefOrEqual(BitI1, j))
3691        return false;
3692    }
3693  }
3694  return true;
3695}
3696
3697/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3698/// specifies a shuffle of elements that is suitable for input to MOVSS,
3699/// MOVSD, and MOVD, i.e. setting the lowest element.
3700static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) {
3701  if (VT.getVectorElementType().getSizeInBits() < 32)
3702    return false;
3703  if (VT.getSizeInBits() == 256)
3704    return false;
3705
3706  unsigned NumElts = VT.getVectorNumElements();
3707
3708  if (!isUndefOrEqual(Mask[0], NumElts))
3709    return false;
3710
3711  for (unsigned i = 1; i != NumElts; ++i)
3712    if (!isUndefOrEqual(Mask[i], i))
3713      return false;
3714
3715  return true;
3716}
3717
3718/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
3719/// as permutations between 128-bit chunks or halves. As an example: this
3720/// shuffle bellow:
3721///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3722/// The first half comes from the second half of V1 and the second half from the
3723/// the second half of V2.
3724static bool isVPERM2X128Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3725  if (!HasAVX || VT.getSizeInBits() != 256)
3726    return false;
3727
3728  // The shuffle result is divided into half A and half B. In total the two
3729  // sources have 4 halves, namely: C, D, E, F. The final values of A and
3730  // B must come from C, D, E or F.
3731  unsigned HalfSize = VT.getVectorNumElements()/2;
3732  bool MatchA = false, MatchB = false;
3733
3734  // Check if A comes from one of C, D, E, F.
3735  for (unsigned Half = 0; Half != 4; ++Half) {
3736    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3737      MatchA = true;
3738      break;
3739    }
3740  }
3741
3742  // Check if B comes from one of C, D, E, F.
3743  for (unsigned Half = 0; Half != 4; ++Half) {
3744    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3745      MatchB = true;
3746      break;
3747    }
3748  }
3749
3750  return MatchA && MatchB;
3751}
3752
3753/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
3754/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
3755static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
3756  EVT VT = SVOp->getValueType(0);
3757
3758  unsigned HalfSize = VT.getVectorNumElements()/2;
3759
3760  unsigned FstHalf = 0, SndHalf = 0;
3761  for (unsigned i = 0; i < HalfSize; ++i) {
3762    if (SVOp->getMaskElt(i) > 0) {
3763      FstHalf = SVOp->getMaskElt(i)/HalfSize;
3764      break;
3765    }
3766  }
3767  for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
3768    if (SVOp->getMaskElt(i) > 0) {
3769      SndHalf = SVOp->getMaskElt(i)/HalfSize;
3770      break;
3771    }
3772  }
3773
3774  return (FstHalf | (SndHalf << 4));
3775}
3776
3777/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
3778/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3779/// Note that VPERMIL mask matching is different depending whether theunderlying
3780/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3781/// to the same elements of the low, but to the higher half of the source.
3782/// In VPERMILPD the two lanes could be shuffled independently of each other
3783/// with the same restriction that lanes can't be crossed. Also handles PSHUFDY.
3784static bool isVPERMILPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3785  if (!HasAVX)
3786    return false;
3787
3788  unsigned NumElts = VT.getVectorNumElements();
3789  // Only match 256-bit with 32/64-bit types
3790  if (VT.getSizeInBits() != 256 || (NumElts != 4 && NumElts != 8))
3791    return false;
3792
3793  unsigned NumLanes = VT.getSizeInBits()/128;
3794  unsigned LaneSize = NumElts/NumLanes;
3795  for (unsigned l = 0; l != NumElts; l += LaneSize) {
3796    for (unsigned i = 0; i != LaneSize; ++i) {
3797      if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
3798        return false;
3799      if (NumElts != 8 || l == 0)
3800        continue;
3801      // VPERMILPS handling
3802      if (Mask[i] < 0)
3803        continue;
3804      if (!isUndefOrEqual(Mask[i+l], Mask[i]+l))
3805        return false;
3806    }
3807  }
3808
3809  return true;
3810}
3811
3812/// isCommutedMOVLMask - Returns true if the shuffle mask is except the reverse
3813/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3814/// element of vector 2 and the other elements to come from vector 1 in order.
3815static bool isCommutedMOVLMask(ArrayRef<int> Mask, EVT VT,
3816                               bool V2IsSplat = false, bool V2IsUndef = false) {
3817  unsigned NumOps = VT.getVectorNumElements();
3818  if (VT.getSizeInBits() == 256)
3819    return false;
3820  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3821    return false;
3822
3823  if (!isUndefOrEqual(Mask[0], 0))
3824    return false;
3825
3826  for (unsigned i = 1; i != NumOps; ++i)
3827    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3828          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3829          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3830      return false;
3831
3832  return true;
3833}
3834
3835/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3836/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3837/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3838static bool isMOVSHDUPMask(ArrayRef<int> Mask, EVT VT,
3839                           const X86Subtarget *Subtarget) {
3840  if (!Subtarget->hasSSE3())
3841    return false;
3842
3843  unsigned NumElems = VT.getVectorNumElements();
3844
3845  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3846      (VT.getSizeInBits() == 256 && NumElems != 8))
3847    return false;
3848
3849  // "i+1" is the value the indexed mask element must have
3850  for (unsigned i = 0; i != NumElems; i += 2)
3851    if (!isUndefOrEqual(Mask[i], i+1) ||
3852        !isUndefOrEqual(Mask[i+1], i+1))
3853      return false;
3854
3855  return true;
3856}
3857
3858/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3859/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3860/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3861static bool isMOVSLDUPMask(ArrayRef<int> Mask, EVT VT,
3862                           const X86Subtarget *Subtarget) {
3863  if (!Subtarget->hasSSE3())
3864    return false;
3865
3866  unsigned NumElems = VT.getVectorNumElements();
3867
3868  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3869      (VT.getSizeInBits() == 256 && NumElems != 8))
3870    return false;
3871
3872  // "i" is the value the indexed mask element must have
3873  for (unsigned i = 0; i != NumElems; i += 2)
3874    if (!isUndefOrEqual(Mask[i], i) ||
3875        !isUndefOrEqual(Mask[i+1], i))
3876      return false;
3877
3878  return true;
3879}
3880
3881/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
3882/// specifies a shuffle of elements that is suitable for input to 256-bit
3883/// version of MOVDDUP.
3884static bool isMOVDDUPYMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3885  unsigned NumElts = VT.getVectorNumElements();
3886
3887  if (!HasAVX || VT.getSizeInBits() != 256 || NumElts != 4)
3888    return false;
3889
3890  for (unsigned i = 0; i != NumElts/2; ++i)
3891    if (!isUndefOrEqual(Mask[i], 0))
3892      return false;
3893  for (unsigned i = NumElts/2; i != NumElts; ++i)
3894    if (!isUndefOrEqual(Mask[i], NumElts/2))
3895      return false;
3896  return true;
3897}
3898
3899/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3900/// specifies a shuffle of elements that is suitable for input to 128-bit
3901/// version of MOVDDUP.
3902static bool isMOVDDUPMask(ArrayRef<int> Mask, EVT VT) {
3903  if (VT.getSizeInBits() != 128)
3904    return false;
3905
3906  unsigned e = VT.getVectorNumElements() / 2;
3907  for (unsigned i = 0; i != e; ++i)
3908    if (!isUndefOrEqual(Mask[i], i))
3909      return false;
3910  for (unsigned i = 0; i != e; ++i)
3911    if (!isUndefOrEqual(Mask[e+i], i))
3912      return false;
3913  return true;
3914}
3915
3916/// isVEXTRACTF128Index - Return true if the specified
3917/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3918/// suitable for input to VEXTRACTF128.
3919bool X86::isVEXTRACTF128Index(SDNode *N) {
3920  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3921    return false;
3922
3923  // The index should be aligned on a 128-bit boundary.
3924  uint64_t Index =
3925    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3926
3927  unsigned VL = N->getValueType(0).getVectorNumElements();
3928  unsigned VBits = N->getValueType(0).getSizeInBits();
3929  unsigned ElSize = VBits / VL;
3930  bool Result = (Index * ElSize) % 128 == 0;
3931
3932  return Result;
3933}
3934
3935/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
3936/// operand specifies a subvector insert that is suitable for input to
3937/// VINSERTF128.
3938bool X86::isVINSERTF128Index(SDNode *N) {
3939  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3940    return false;
3941
3942  // The index should be aligned on a 128-bit boundary.
3943  uint64_t Index =
3944    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3945
3946  unsigned VL = N->getValueType(0).getVectorNumElements();
3947  unsigned VBits = N->getValueType(0).getSizeInBits();
3948  unsigned ElSize = VBits / VL;
3949  bool Result = (Index * ElSize) % 128 == 0;
3950
3951  return Result;
3952}
3953
3954/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3955/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3956/// Handles 128-bit and 256-bit.
3957static unsigned getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
3958  EVT VT = N->getValueType(0);
3959
3960  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3961         "Unsupported vector type for PSHUF/SHUFP");
3962
3963  // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate
3964  // independently on 128-bit lanes.
3965  unsigned NumElts = VT.getVectorNumElements();
3966  unsigned NumLanes = VT.getSizeInBits()/128;
3967  unsigned NumLaneElts = NumElts/NumLanes;
3968
3969  assert((NumLaneElts == 2 || NumLaneElts == 4) &&
3970         "Only supports 2 or 4 elements per lane");
3971
3972  unsigned Shift = (NumLaneElts == 4) ? 1 : 0;
3973  unsigned Mask = 0;
3974  for (unsigned i = 0; i != NumElts; ++i) {
3975    int Elt = N->getMaskElt(i);
3976    if (Elt < 0) continue;
3977    Elt &= NumLaneElts - 1;
3978    unsigned ShAmt = (i << Shift) % 8;
3979    Mask |= Elt << ShAmt;
3980  }
3981
3982  return Mask;
3983}
3984
3985/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3986/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3987static unsigned getShufflePSHUFHWImmediate(ShuffleVectorSDNode *N) {
3988  EVT VT = N->getValueType(0);
3989
3990  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
3991         "Unsupported vector type for PSHUFHW");
3992
3993  unsigned NumElts = VT.getVectorNumElements();
3994
3995  unsigned Mask = 0;
3996  for (unsigned l = 0; l != NumElts; l += 8) {
3997    // 8 nodes per lane, but we only care about the last 4.
3998    for (unsigned i = 0; i < 4; ++i) {
3999      int Elt = N->getMaskElt(l+i+4);
4000      if (Elt < 0) continue;
4001      Elt &= 0x3; // only 2-bits.
4002      Mask |= Elt << (i * 2);
4003    }
4004  }
4005
4006  return Mask;
4007}
4008
4009/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
4010/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
4011static unsigned getShufflePSHUFLWImmediate(ShuffleVectorSDNode *N) {
4012  EVT VT = N->getValueType(0);
4013
4014  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
4015         "Unsupported vector type for PSHUFHW");
4016
4017  unsigned NumElts = VT.getVectorNumElements();
4018
4019  unsigned Mask = 0;
4020  for (unsigned l = 0; l != NumElts; l += 8) {
4021    // 8 nodes per lane, but we only care about the first 4.
4022    for (unsigned i = 0; i < 4; ++i) {
4023      int Elt = N->getMaskElt(l+i);
4024      if (Elt < 0) continue;
4025      Elt &= 0x3; // only 2-bits
4026      Mask |= Elt << (i * 2);
4027    }
4028  }
4029
4030  return Mask;
4031}
4032
4033/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
4034/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
4035static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
4036  EVT VT = SVOp->getValueType(0);
4037  unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3;
4038
4039  unsigned NumElts = VT.getVectorNumElements();
4040  unsigned NumLanes = VT.getSizeInBits()/128;
4041  unsigned NumLaneElts = NumElts/NumLanes;
4042
4043  int Val = 0;
4044  unsigned i;
4045  for (i = 0; i != NumElts; ++i) {
4046    Val = SVOp->getMaskElt(i);
4047    if (Val >= 0)
4048      break;
4049  }
4050  if (Val >= (int)NumElts)
4051    Val -= NumElts - NumLaneElts;
4052
4053  assert(Val - i > 0 && "PALIGNR imm should be positive");
4054  return (Val - i) * EltSize;
4055}
4056
4057/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
4058/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
4059/// instructions.
4060unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
4061  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4062    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
4063
4064  uint64_t Index =
4065    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4066
4067  EVT VecVT = N->getOperand(0).getValueType();
4068  EVT ElVT = VecVT.getVectorElementType();
4069
4070  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4071  return Index / NumElemsPerChunk;
4072}
4073
4074/// getInsertVINSERTF128Immediate - Return the appropriate immediate
4075/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4076/// instructions.
4077unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
4078  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4079    llvm_unreachable("Illegal insert subvector for VINSERTF128");
4080
4081  uint64_t Index =
4082    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4083
4084  EVT VecVT = N->getValueType(0);
4085  EVT ElVT = VecVT.getVectorElementType();
4086
4087  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4088  return Index / NumElemsPerChunk;
4089}
4090
4091/// getShuffleCLImmediate - Return the appropriate immediate to shuffle
4092/// the specified VECTOR_SHUFFLE mask with VPERMQ and VPERMPD instructions.
4093/// Handles 256-bit.
4094static unsigned getShuffleCLImmediate(ShuffleVectorSDNode *N) {
4095  EVT VT = N->getValueType(0);
4096
4097  unsigned NumElts = VT.getVectorNumElements();
4098
4099  assert((VT.is256BitVector() && NumElts == 4) &&
4100         "Unsupported vector type for VPERMQ/VPERMPD");
4101
4102  unsigned Mask = 0;
4103  for (unsigned i = 0; i != NumElts; ++i) {
4104    int Elt = N->getMaskElt(i);
4105    if (Elt < 0)
4106      continue;
4107    Mask |= Elt << (i*2);
4108  }
4109
4110  return Mask;
4111}
4112/// isZeroNode - Returns true if Elt is a constant zero or a floating point
4113/// constant +0.0.
4114bool X86::isZeroNode(SDValue Elt) {
4115  return ((isa<ConstantSDNode>(Elt) &&
4116           cast<ConstantSDNode>(Elt)->isNullValue()) ||
4117          (isa<ConstantFPSDNode>(Elt) &&
4118           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
4119}
4120
4121/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4122/// their permute mask.
4123static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4124                                    SelectionDAG &DAG) {
4125  EVT VT = SVOp->getValueType(0);
4126  unsigned NumElems = VT.getVectorNumElements();
4127  SmallVector<int, 8> MaskVec;
4128
4129  for (unsigned i = 0; i != NumElems; ++i) {
4130    int Idx = SVOp->getMaskElt(i);
4131    if (Idx >= 0) {
4132      if (Idx < (int)NumElems)
4133        Idx += NumElems;
4134      else
4135        Idx -= NumElems;
4136    }
4137    MaskVec.push_back(Idx);
4138  }
4139  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4140                              SVOp->getOperand(0), &MaskVec[0]);
4141}
4142
4143/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4144/// match movhlps. The lower half elements should come from upper half of
4145/// V1 (and in order), and the upper half elements should come from the upper
4146/// half of V2 (and in order).
4147static bool ShouldXformToMOVHLPS(ArrayRef<int> Mask, EVT VT) {
4148  if (VT.getSizeInBits() != 128)
4149    return false;
4150  if (VT.getVectorNumElements() != 4)
4151    return false;
4152  for (unsigned i = 0, e = 2; i != e; ++i)
4153    if (!isUndefOrEqual(Mask[i], i+2))
4154      return false;
4155  for (unsigned i = 2; i != 4; ++i)
4156    if (!isUndefOrEqual(Mask[i], i+4))
4157      return false;
4158  return true;
4159}
4160
4161/// isScalarLoadToVector - Returns true if the node is a scalar load that
4162/// is promoted to a vector. It also returns the LoadSDNode by reference if
4163/// required.
4164static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4165  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4166    return false;
4167  N = N->getOperand(0).getNode();
4168  if (!ISD::isNON_EXTLoad(N))
4169    return false;
4170  if (LD)
4171    *LD = cast<LoadSDNode>(N);
4172  return true;
4173}
4174
4175// Test whether the given value is a vector value which will be legalized
4176// into a load.
4177static bool WillBeConstantPoolLoad(SDNode *N) {
4178  if (N->getOpcode() != ISD::BUILD_VECTOR)
4179    return false;
4180
4181  // Check for any non-constant elements.
4182  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4183    switch (N->getOperand(i).getNode()->getOpcode()) {
4184    case ISD::UNDEF:
4185    case ISD::ConstantFP:
4186    case ISD::Constant:
4187      break;
4188    default:
4189      return false;
4190    }
4191
4192  // Vectors of all-zeros and all-ones are materialized with special
4193  // instructions rather than being loaded.
4194  return !ISD::isBuildVectorAllZeros(N) &&
4195         !ISD::isBuildVectorAllOnes(N);
4196}
4197
4198/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4199/// match movlp{s|d}. The lower half elements should come from lower half of
4200/// V1 (and in order), and the upper half elements should come from the upper
4201/// half of V2 (and in order). And since V1 will become the source of the
4202/// MOVLP, it must be either a vector load or a scalar load to vector.
4203static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4204                               ArrayRef<int> Mask, EVT VT) {
4205  if (VT.getSizeInBits() != 128)
4206    return false;
4207
4208  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4209    return false;
4210  // Is V2 is a vector load, don't do this transformation. We will try to use
4211  // load folding shufps op.
4212  if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4213    return false;
4214
4215  unsigned NumElems = VT.getVectorNumElements();
4216
4217  if (NumElems != 2 && NumElems != 4)
4218    return false;
4219  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4220    if (!isUndefOrEqual(Mask[i], i))
4221      return false;
4222  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
4223    if (!isUndefOrEqual(Mask[i], i+NumElems))
4224      return false;
4225  return true;
4226}
4227
4228/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4229/// all the same.
4230static bool isSplatVector(SDNode *N) {
4231  if (N->getOpcode() != ISD::BUILD_VECTOR)
4232    return false;
4233
4234  SDValue SplatValue = N->getOperand(0);
4235  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4236    if (N->getOperand(i) != SplatValue)
4237      return false;
4238  return true;
4239}
4240
4241/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4242/// to an zero vector.
4243/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4244static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4245  SDValue V1 = N->getOperand(0);
4246  SDValue V2 = N->getOperand(1);
4247  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4248  for (unsigned i = 0; i != NumElems; ++i) {
4249    int Idx = N->getMaskElt(i);
4250    if (Idx >= (int)NumElems) {
4251      unsigned Opc = V2.getOpcode();
4252      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4253        continue;
4254      if (Opc != ISD::BUILD_VECTOR ||
4255          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4256        return false;
4257    } else if (Idx >= 0) {
4258      unsigned Opc = V1.getOpcode();
4259      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4260        continue;
4261      if (Opc != ISD::BUILD_VECTOR ||
4262          !X86::isZeroNode(V1.getOperand(Idx)))
4263        return false;
4264    }
4265  }
4266  return true;
4267}
4268
4269/// getZeroVector - Returns a vector of specified type with all zero elements.
4270///
4271static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget,
4272                             SelectionDAG &DAG, DebugLoc dl) {
4273  assert(VT.isVector() && "Expected a vector type");
4274  unsigned Size = VT.getSizeInBits();
4275
4276  // Always build SSE zero vectors as <4 x i32> bitcasted
4277  // to their dest type. This ensures they get CSE'd.
4278  SDValue Vec;
4279  if (Size == 128) {  // SSE
4280    if (Subtarget->hasSSE2()) {  // SSE2
4281      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4282      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4283    } else { // SSE1
4284      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4285      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4286    }
4287  } else if (Size == 256) { // AVX
4288    if (Subtarget->hasAVX2()) { // AVX2
4289      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4290      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4291      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4292    } else {
4293      // 256-bit logic and arithmetic instructions in AVX are all
4294      // floating-point, no support for integer ops. Emit fp zeroed vectors.
4295      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4296      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4297      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4298    }
4299  } else
4300    llvm_unreachable("Unexpected vector type");
4301
4302  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4303}
4304
4305/// getOnesVector - Returns a vector of specified type with all bits set.
4306/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4307/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4308/// Then bitcast to their original type, ensuring they get CSE'd.
4309static SDValue getOnesVector(EVT VT, bool HasAVX2, SelectionDAG &DAG,
4310                             DebugLoc dl) {
4311  assert(VT.isVector() && "Expected a vector type");
4312  unsigned Size = VT.getSizeInBits();
4313
4314  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4315  SDValue Vec;
4316  if (Size == 256) {
4317    if (HasAVX2) { // AVX2
4318      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4319      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4320    } else { // AVX
4321      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4322      Vec = Concat128BitVectors(Vec, Vec, MVT::v8i32, 8, DAG, dl);
4323    }
4324  } else if (Size == 128) {
4325    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4326  } else
4327    llvm_unreachable("Unexpected vector type");
4328
4329  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4330}
4331
4332/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4333/// that point to V2 points to its first element.
4334static void NormalizeMask(SmallVectorImpl<int> &Mask, unsigned NumElems) {
4335  for (unsigned i = 0; i != NumElems; ++i) {
4336    if (Mask[i] > (int)NumElems) {
4337      Mask[i] = NumElems;
4338    }
4339  }
4340}
4341
4342/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4343/// operation of specified width.
4344static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4345                       SDValue V2) {
4346  unsigned NumElems = VT.getVectorNumElements();
4347  SmallVector<int, 8> Mask;
4348  Mask.push_back(NumElems);
4349  for (unsigned i = 1; i != NumElems; ++i)
4350    Mask.push_back(i);
4351  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4352}
4353
4354/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4355static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4356                          SDValue V2) {
4357  unsigned NumElems = VT.getVectorNumElements();
4358  SmallVector<int, 8> Mask;
4359  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4360    Mask.push_back(i);
4361    Mask.push_back(i + NumElems);
4362  }
4363  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4364}
4365
4366/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4367static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4368                          SDValue V2) {
4369  unsigned NumElems = VT.getVectorNumElements();
4370  SmallVector<int, 8> Mask;
4371  for (unsigned i = 0, Half = NumElems/2; i != Half; ++i) {
4372    Mask.push_back(i + Half);
4373    Mask.push_back(i + NumElems + Half);
4374  }
4375  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4376}
4377
4378// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4379// a generic shuffle instruction because the target has no such instructions.
4380// Generate shuffles which repeat i16 and i8 several times until they can be
4381// represented by v4f32 and then be manipulated by target suported shuffles.
4382static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4383  EVT VT = V.getValueType();
4384  int NumElems = VT.getVectorNumElements();
4385  DebugLoc dl = V.getDebugLoc();
4386
4387  while (NumElems > 4) {
4388    if (EltNo < NumElems/2) {
4389      V = getUnpackl(DAG, dl, VT, V, V);
4390    } else {
4391      V = getUnpackh(DAG, dl, VT, V, V);
4392      EltNo -= NumElems/2;
4393    }
4394    NumElems >>= 1;
4395  }
4396  return V;
4397}
4398
4399/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4400static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4401  EVT VT = V.getValueType();
4402  DebugLoc dl = V.getDebugLoc();
4403  unsigned Size = VT.getSizeInBits();
4404
4405  if (Size == 128) {
4406    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4407    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4408    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4409                             &SplatMask[0]);
4410  } else if (Size == 256) {
4411    // To use VPERMILPS to splat scalars, the second half of indicies must
4412    // refer to the higher part, which is a duplication of the lower one,
4413    // because VPERMILPS can only handle in-lane permutations.
4414    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4415                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4416
4417    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4418    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4419                             &SplatMask[0]);
4420  } else
4421    llvm_unreachable("Vector size not supported");
4422
4423  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4424}
4425
4426/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4427static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4428  EVT SrcVT = SV->getValueType(0);
4429  SDValue V1 = SV->getOperand(0);
4430  DebugLoc dl = SV->getDebugLoc();
4431
4432  int EltNo = SV->getSplatIndex();
4433  int NumElems = SrcVT.getVectorNumElements();
4434  unsigned Size = SrcVT.getSizeInBits();
4435
4436  assert(((Size == 128 && NumElems > 4) || Size == 256) &&
4437          "Unknown how to promote splat for type");
4438
4439  // Extract the 128-bit part containing the splat element and update
4440  // the splat element index when it refers to the higher register.
4441  if (Size == 256) {
4442    V1 = Extract128BitVector(V1, EltNo, DAG, dl);
4443    if (EltNo >= NumElems/2)
4444      EltNo -= NumElems/2;
4445  }
4446
4447  // All i16 and i8 vector types can't be used directly by a generic shuffle
4448  // instruction because the target has no such instruction. Generate shuffles
4449  // which repeat i16 and i8 several times until they fit in i32, and then can
4450  // be manipulated by target suported shuffles.
4451  EVT EltVT = SrcVT.getVectorElementType();
4452  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4453    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4454
4455  // Recreate the 256-bit vector and place the same 128-bit vector
4456  // into the low and high part. This is necessary because we want
4457  // to use VPERM* to shuffle the vectors
4458  if (Size == 256) {
4459    V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, SrcVT, V1, V1);
4460  }
4461
4462  return getLegalSplat(DAG, V1, EltNo);
4463}
4464
4465/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4466/// vector of zero or undef vector.  This produces a shuffle where the low
4467/// element of V2 is swizzled into the zero/undef vector, landing at element
4468/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4469static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4470                                           bool IsZero,
4471                                           const X86Subtarget *Subtarget,
4472                                           SelectionDAG &DAG) {
4473  EVT VT = V2.getValueType();
4474  SDValue V1 = IsZero
4475    ? getZeroVector(VT, Subtarget, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4476  unsigned NumElems = VT.getVectorNumElements();
4477  SmallVector<int, 16> MaskVec;
4478  for (unsigned i = 0; i != NumElems; ++i)
4479    // If this is the insertion idx, put the low elt of V2 here.
4480    MaskVec.push_back(i == Idx ? NumElems : i);
4481  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4482}
4483
4484/// getTargetShuffleMask - Calculates the shuffle mask corresponding to the
4485/// target specific opcode. Returns true if the Mask could be calculated.
4486/// Sets IsUnary to true if only uses one source.
4487static bool getTargetShuffleMask(SDNode *N, MVT VT,
4488                                 SmallVectorImpl<int> &Mask, bool &IsUnary) {
4489  unsigned NumElems = VT.getVectorNumElements();
4490  SDValue ImmN;
4491
4492  IsUnary = false;
4493  switch(N->getOpcode()) {
4494  case X86ISD::SHUFP:
4495    ImmN = N->getOperand(N->getNumOperands()-1);
4496    DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4497    break;
4498  case X86ISD::UNPCKH:
4499    DecodeUNPCKHMask(VT, Mask);
4500    break;
4501  case X86ISD::UNPCKL:
4502    DecodeUNPCKLMask(VT, Mask);
4503    break;
4504  case X86ISD::MOVHLPS:
4505    DecodeMOVHLPSMask(NumElems, Mask);
4506    break;
4507  case X86ISD::MOVLHPS:
4508    DecodeMOVLHPSMask(NumElems, Mask);
4509    break;
4510  case X86ISD::PSHUFD:
4511  case X86ISD::VPERMILP:
4512    ImmN = N->getOperand(N->getNumOperands()-1);
4513    DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4514    IsUnary = true;
4515    break;
4516  case X86ISD::PSHUFHW:
4517    ImmN = N->getOperand(N->getNumOperands()-1);
4518    DecodePSHUFHWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4519    IsUnary = true;
4520    break;
4521  case X86ISD::PSHUFLW:
4522    ImmN = N->getOperand(N->getNumOperands()-1);
4523    DecodePSHUFLWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4524    IsUnary = true;
4525    break;
4526  case X86ISD::VPERMI:
4527    ImmN = N->getOperand(N->getNumOperands()-1);
4528    DecodeVPERMMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4529    IsUnary = true;
4530    break;
4531  case X86ISD::MOVSS:
4532  case X86ISD::MOVSD: {
4533    // The index 0 always comes from the first element of the second source,
4534    // this is why MOVSS and MOVSD are used in the first place. The other
4535    // elements come from the other positions of the first source vector
4536    Mask.push_back(NumElems);
4537    for (unsigned i = 1; i != NumElems; ++i) {
4538      Mask.push_back(i);
4539    }
4540    break;
4541  }
4542  case X86ISD::VPERM2X128:
4543    ImmN = N->getOperand(N->getNumOperands()-1);
4544    DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4545    if (Mask.empty()) return false;
4546    break;
4547  case X86ISD::MOVDDUP:
4548  case X86ISD::MOVLHPD:
4549  case X86ISD::MOVLPD:
4550  case X86ISD::MOVLPS:
4551  case X86ISD::MOVSHDUP:
4552  case X86ISD::MOVSLDUP:
4553  case X86ISD::PALIGN:
4554    // Not yet implemented
4555    return false;
4556  default: llvm_unreachable("unknown target shuffle node");
4557  }
4558
4559  return true;
4560}
4561
4562/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4563/// element of the result of the vector shuffle.
4564static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
4565                                   unsigned Depth) {
4566  if (Depth == 6)
4567    return SDValue();  // Limit search depth.
4568
4569  SDValue V = SDValue(N, 0);
4570  EVT VT = V.getValueType();
4571  unsigned Opcode = V.getOpcode();
4572
4573  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4574  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4575    int Elt = SV->getMaskElt(Index);
4576
4577    if (Elt < 0)
4578      return DAG.getUNDEF(VT.getVectorElementType());
4579
4580    unsigned NumElems = VT.getVectorNumElements();
4581    SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0)
4582                                         : SV->getOperand(1);
4583    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1);
4584  }
4585
4586  // Recurse into target specific vector shuffles to find scalars.
4587  if (isTargetShuffle(Opcode)) {
4588    MVT ShufVT = V.getValueType().getSimpleVT();
4589    unsigned NumElems = ShufVT.getVectorNumElements();
4590    SmallVector<int, 16> ShuffleMask;
4591    SDValue ImmN;
4592    bool IsUnary;
4593
4594    if (!getTargetShuffleMask(N, ShufVT, ShuffleMask, IsUnary))
4595      return SDValue();
4596
4597    int Elt = ShuffleMask[Index];
4598    if (Elt < 0)
4599      return DAG.getUNDEF(ShufVT.getVectorElementType());
4600
4601    SDValue NewV = (Elt < (int)NumElems) ? N->getOperand(0)
4602                                         : N->getOperand(1);
4603    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG,
4604                               Depth+1);
4605  }
4606
4607  // Actual nodes that may contain scalar elements
4608  if (Opcode == ISD::BITCAST) {
4609    V = V.getOperand(0);
4610    EVT SrcVT = V.getValueType();
4611    unsigned NumElems = VT.getVectorNumElements();
4612
4613    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4614      return SDValue();
4615  }
4616
4617  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4618    return (Index == 0) ? V.getOperand(0)
4619                        : DAG.getUNDEF(VT.getVectorElementType());
4620
4621  if (V.getOpcode() == ISD::BUILD_VECTOR)
4622    return V.getOperand(Index);
4623
4624  return SDValue();
4625}
4626
4627/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4628/// shuffle operation which come from a consecutively from a zero. The
4629/// search can start in two different directions, from left or right.
4630static
4631unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, unsigned NumElems,
4632                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4633  unsigned i;
4634  for (i = 0; i != NumElems; ++i) {
4635    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4636    SDValue Elt = getShuffleScalarElt(SVOp, Index, DAG, 0);
4637    if (!(Elt.getNode() &&
4638         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4639      break;
4640  }
4641
4642  return i;
4643}
4644
4645/// isShuffleMaskConsecutive - Check if the shuffle mask indicies [MaskI, MaskE)
4646/// correspond consecutively to elements from one of the vector operands,
4647/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4648static
4649bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp,
4650                              unsigned MaskI, unsigned MaskE, unsigned OpIdx,
4651                              unsigned NumElems, unsigned &OpNum) {
4652  bool SeenV1 = false;
4653  bool SeenV2 = false;
4654
4655  for (unsigned i = MaskI; i != MaskE; ++i, ++OpIdx) {
4656    int Idx = SVOp->getMaskElt(i);
4657    // Ignore undef indicies
4658    if (Idx < 0)
4659      continue;
4660
4661    if (Idx < (int)NumElems)
4662      SeenV1 = true;
4663    else
4664      SeenV2 = true;
4665
4666    // Only accept consecutive elements from the same vector
4667    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4668      return false;
4669  }
4670
4671  OpNum = SeenV1 ? 0 : 1;
4672  return true;
4673}
4674
4675/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4676/// logical left shift of a vector.
4677static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4678                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4679  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4680  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4681              false /* check zeros from right */, DAG);
4682  unsigned OpSrc;
4683
4684  if (!NumZeros)
4685    return false;
4686
4687  // Considering the elements in the mask that are not consecutive zeros,
4688  // check if they consecutively come from only one of the source vectors.
4689  //
4690  //               V1 = {X, A, B, C}     0
4691  //                         \  \  \    /
4692  //   vector_shuffle V1, V2 <1, 2, 3, X>
4693  //
4694  if (!isShuffleMaskConsecutive(SVOp,
4695            0,                   // Mask Start Index
4696            NumElems-NumZeros,   // Mask End Index(exclusive)
4697            NumZeros,            // Where to start looking in the src vector
4698            NumElems,            // Number of elements in vector
4699            OpSrc))              // Which source operand ?
4700    return false;
4701
4702  isLeft = false;
4703  ShAmt = NumZeros;
4704  ShVal = SVOp->getOperand(OpSrc);
4705  return true;
4706}
4707
4708/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4709/// logical left shift of a vector.
4710static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4711                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4712  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4713  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4714              true /* check zeros from left */, DAG);
4715  unsigned OpSrc;
4716
4717  if (!NumZeros)
4718    return false;
4719
4720  // Considering the elements in the mask that are not consecutive zeros,
4721  // check if they consecutively come from only one of the source vectors.
4722  //
4723  //                           0    { A, B, X, X } = V2
4724  //                          / \    /  /
4725  //   vector_shuffle V1, V2 <X, X, 4, 5>
4726  //
4727  if (!isShuffleMaskConsecutive(SVOp,
4728            NumZeros,     // Mask Start Index
4729            NumElems,     // Mask End Index(exclusive)
4730            0,            // Where to start looking in the src vector
4731            NumElems,     // Number of elements in vector
4732            OpSrc))       // Which source operand ?
4733    return false;
4734
4735  isLeft = true;
4736  ShAmt = NumZeros;
4737  ShVal = SVOp->getOperand(OpSrc);
4738  return true;
4739}
4740
4741/// isVectorShift - Returns true if the shuffle can be implemented as a
4742/// logical left or right shift of a vector.
4743static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4744                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4745  // Although the logic below support any bitwidth size, there are no
4746  // shift instructions which handle more than 128-bit vectors.
4747  if (SVOp->getValueType(0).getSizeInBits() > 128)
4748    return false;
4749
4750  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4751      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4752    return true;
4753
4754  return false;
4755}
4756
4757/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4758///
4759static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4760                                       unsigned NumNonZero, unsigned NumZero,
4761                                       SelectionDAG &DAG,
4762                                       const X86Subtarget* Subtarget,
4763                                       const TargetLowering &TLI) {
4764  if (NumNonZero > 8)
4765    return SDValue();
4766
4767  DebugLoc dl = Op.getDebugLoc();
4768  SDValue V(0, 0);
4769  bool First = true;
4770  for (unsigned i = 0; i < 16; ++i) {
4771    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4772    if (ThisIsNonZero && First) {
4773      if (NumZero)
4774        V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4775      else
4776        V = DAG.getUNDEF(MVT::v8i16);
4777      First = false;
4778    }
4779
4780    if ((i & 1) != 0) {
4781      SDValue ThisElt(0, 0), LastElt(0, 0);
4782      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4783      if (LastIsNonZero) {
4784        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4785                              MVT::i16, Op.getOperand(i-1));
4786      }
4787      if (ThisIsNonZero) {
4788        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4789        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4790                              ThisElt, DAG.getConstant(8, MVT::i8));
4791        if (LastIsNonZero)
4792          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4793      } else
4794        ThisElt = LastElt;
4795
4796      if (ThisElt.getNode())
4797        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4798                        DAG.getIntPtrConstant(i/2));
4799    }
4800  }
4801
4802  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4803}
4804
4805/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4806///
4807static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4808                                     unsigned NumNonZero, unsigned NumZero,
4809                                     SelectionDAG &DAG,
4810                                     const X86Subtarget* Subtarget,
4811                                     const TargetLowering &TLI) {
4812  if (NumNonZero > 4)
4813    return SDValue();
4814
4815  DebugLoc dl = Op.getDebugLoc();
4816  SDValue V(0, 0);
4817  bool First = true;
4818  for (unsigned i = 0; i < 8; ++i) {
4819    bool isNonZero = (NonZeros & (1 << i)) != 0;
4820    if (isNonZero) {
4821      if (First) {
4822        if (NumZero)
4823          V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4824        else
4825          V = DAG.getUNDEF(MVT::v8i16);
4826        First = false;
4827      }
4828      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4829                      MVT::v8i16, V, Op.getOperand(i),
4830                      DAG.getIntPtrConstant(i));
4831    }
4832  }
4833
4834  return V;
4835}
4836
4837/// getVShift - Return a vector logical shift node.
4838///
4839static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4840                         unsigned NumBits, SelectionDAG &DAG,
4841                         const TargetLowering &TLI, DebugLoc dl) {
4842  assert(VT.getSizeInBits() == 128 && "Unknown type for VShift");
4843  EVT ShVT = MVT::v2i64;
4844  unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
4845  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4846  return DAG.getNode(ISD::BITCAST, dl, VT,
4847                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4848                             DAG.getConstant(NumBits,
4849                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4850}
4851
4852SDValue
4853X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4854                                          SelectionDAG &DAG) const {
4855
4856  // Check if the scalar load can be widened into a vector load. And if
4857  // the address is "base + cst" see if the cst can be "absorbed" into
4858  // the shuffle mask.
4859  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4860    SDValue Ptr = LD->getBasePtr();
4861    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4862      return SDValue();
4863    EVT PVT = LD->getValueType(0);
4864    if (PVT != MVT::i32 && PVT != MVT::f32)
4865      return SDValue();
4866
4867    int FI = -1;
4868    int64_t Offset = 0;
4869    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4870      FI = FINode->getIndex();
4871      Offset = 0;
4872    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4873               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4874      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4875      Offset = Ptr.getConstantOperandVal(1);
4876      Ptr = Ptr.getOperand(0);
4877    } else {
4878      return SDValue();
4879    }
4880
4881    // FIXME: 256-bit vector instructions don't require a strict alignment,
4882    // improve this code to support it better.
4883    unsigned RequiredAlign = VT.getSizeInBits()/8;
4884    SDValue Chain = LD->getChain();
4885    // Make sure the stack object alignment is at least 16 or 32.
4886    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4887    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4888      if (MFI->isFixedObjectIndex(FI)) {
4889        // Can't change the alignment. FIXME: It's possible to compute
4890        // the exact stack offset and reference FI + adjust offset instead.
4891        // If someone *really* cares about this. That's the way to implement it.
4892        return SDValue();
4893      } else {
4894        MFI->setObjectAlignment(FI, RequiredAlign);
4895      }
4896    }
4897
4898    // (Offset % 16 or 32) must be multiple of 4. Then address is then
4899    // Ptr + (Offset & ~15).
4900    if (Offset < 0)
4901      return SDValue();
4902    if ((Offset % RequiredAlign) & 3)
4903      return SDValue();
4904    int64_t StartOffset = Offset & ~(RequiredAlign-1);
4905    if (StartOffset)
4906      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4907                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4908
4909    int EltNo = (Offset - StartOffset) >> 2;
4910    unsigned NumElems = VT.getVectorNumElements();
4911
4912    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4913    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4914                             LD->getPointerInfo().getWithOffset(StartOffset),
4915                             false, false, false, 0);
4916
4917    SmallVector<int, 8> Mask;
4918    for (unsigned i = 0; i != NumElems; ++i)
4919      Mask.push_back(EltNo);
4920
4921    return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]);
4922  }
4923
4924  return SDValue();
4925}
4926
4927/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4928/// vector of type 'VT', see if the elements can be replaced by a single large
4929/// load which has the same value as a build_vector whose operands are 'elts'.
4930///
4931/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4932///
4933/// FIXME: we'd also like to handle the case where the last elements are zero
4934/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4935/// There's even a handy isZeroNode for that purpose.
4936static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4937                                        DebugLoc &DL, SelectionDAG &DAG) {
4938  EVT EltVT = VT.getVectorElementType();
4939  unsigned NumElems = Elts.size();
4940
4941  LoadSDNode *LDBase = NULL;
4942  unsigned LastLoadedElt = -1U;
4943
4944  // For each element in the initializer, see if we've found a load or an undef.
4945  // If we don't find an initial load element, or later load elements are
4946  // non-consecutive, bail out.
4947  for (unsigned i = 0; i < NumElems; ++i) {
4948    SDValue Elt = Elts[i];
4949
4950    if (!Elt.getNode() ||
4951        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4952      return SDValue();
4953    if (!LDBase) {
4954      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4955        return SDValue();
4956      LDBase = cast<LoadSDNode>(Elt.getNode());
4957      LastLoadedElt = i;
4958      continue;
4959    }
4960    if (Elt.getOpcode() == ISD::UNDEF)
4961      continue;
4962
4963    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4964    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4965      return SDValue();
4966    LastLoadedElt = i;
4967  }
4968
4969  // If we have found an entire vector of loads and undefs, then return a large
4970  // load of the entire vector width starting at the base pointer.  If we found
4971  // consecutive loads for the low half, generate a vzext_load node.
4972  if (LastLoadedElt == NumElems - 1) {
4973    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4974      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4975                         LDBase->getPointerInfo(),
4976                         LDBase->isVolatile(), LDBase->isNonTemporal(),
4977                         LDBase->isInvariant(), 0);
4978    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4979                       LDBase->getPointerInfo(),
4980                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4981                       LDBase->isInvariant(), LDBase->getAlignment());
4982  }
4983  if (NumElems == 4 && LastLoadedElt == 1 &&
4984      DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
4985    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4986    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4987    SDValue ResNode =
4988        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
4989                                LDBase->getPointerInfo(),
4990                                LDBase->getAlignment(),
4991                                false/*isVolatile*/, true/*ReadMem*/,
4992                                false/*WriteMem*/);
4993    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
4994  }
4995  return SDValue();
4996}
4997
4998/// LowerVectorBroadcast - Attempt to use the vbroadcast instruction
4999/// to generate a splat value for the following cases:
5000/// 1. A splat BUILD_VECTOR which uses a single scalar load, or a constant.
5001/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
5002/// a scalar load, or a constant.
5003/// The VBROADCAST node is returned when a pattern is found,
5004/// or SDValue() otherwise.
5005SDValue
5006X86TargetLowering::LowerVectorBroadcast(SDValue &Op, SelectionDAG &DAG) const {
5007  if (!Subtarget->hasAVX())
5008    return SDValue();
5009
5010  EVT VT = Op.getValueType();
5011  DebugLoc dl = Op.getDebugLoc();
5012
5013  assert((VT.is128BitVector() || VT.is256BitVector()) &&
5014         "Unsupported vector type for broadcast.");
5015
5016  SDValue Ld;
5017  bool ConstSplatVal;
5018
5019  switch (Op.getOpcode()) {
5020    default:
5021      // Unknown pattern found.
5022      return SDValue();
5023
5024    case ISD::BUILD_VECTOR: {
5025      // The BUILD_VECTOR node must be a splat.
5026      if (!isSplatVector(Op.getNode()))
5027        return SDValue();
5028
5029      Ld = Op.getOperand(0);
5030      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5031                     Ld.getOpcode() == ISD::ConstantFP);
5032
5033      // The suspected load node has several users. Make sure that all
5034      // of its users are from the BUILD_VECTOR node.
5035      // Constants may have multiple users.
5036      if (!ConstSplatVal && !Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
5037        return SDValue();
5038      break;
5039    }
5040
5041    case ISD::VECTOR_SHUFFLE: {
5042      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5043
5044      // Shuffles must have a splat mask where the first element is
5045      // broadcasted.
5046      if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
5047        return SDValue();
5048
5049      SDValue Sc = Op.getOperand(0);
5050      if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR &&
5051          Sc.getOpcode() != ISD::BUILD_VECTOR)
5052        return SDValue();
5053
5054      Ld = Sc.getOperand(0);
5055      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5056                       Ld.getOpcode() == ISD::ConstantFP);
5057
5058      // The scalar_to_vector node and the suspected
5059      // load node must have exactly one user.
5060      // Constants may have multiple users.
5061      if (!ConstSplatVal && (!Sc.hasOneUse() || !Ld.hasOneUse()))
5062        return SDValue();
5063      break;
5064    }
5065  }
5066
5067  bool Is256 = VT.getSizeInBits() == 256;
5068
5069  // Handle the broadcasting a single constant scalar from the constant pool
5070  // into a vector. On Sandybridge it is still better to load a constant vector
5071  // from the constant pool and not to broadcast it from a scalar.
5072  if (ConstSplatVal && Subtarget->hasAVX2()) {
5073    EVT CVT = Ld.getValueType();
5074    assert(!CVT.isVector() && "Must not broadcast a vector type");
5075    unsigned ScalarSize = CVT.getSizeInBits();
5076
5077    if (ScalarSize == 32 || (Is256 && ScalarSize == 64)) {
5078      const Constant *C = 0;
5079      if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld))
5080        C = CI->getConstantIntValue();
5081      else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld))
5082        C = CF->getConstantFPValue();
5083
5084      assert(C && "Invalid constant type");
5085
5086      SDValue CP = DAG.getConstantPool(C, getPointerTy());
5087      unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
5088      Ld = DAG.getLoad(CVT, dl, DAG.getEntryNode(), CP,
5089                       MachinePointerInfo::getConstantPool(),
5090                       false, false, false, Alignment);
5091
5092      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5093    }
5094  }
5095
5096  bool IsLoad = ISD::isNormalLoad(Ld.getNode());
5097  unsigned ScalarSize = Ld.getValueType().getSizeInBits();
5098
5099  // Handle AVX2 in-register broadcasts.
5100  if (!IsLoad && Subtarget->hasAVX2() &&
5101      (ScalarSize == 32 || (Is256 && ScalarSize == 64)))
5102    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5103
5104  // The scalar source must be a normal load.
5105  if (!IsLoad)
5106    return SDValue();
5107
5108  if (ScalarSize == 32 || (Is256 && ScalarSize == 64))
5109    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5110
5111  // The integer check is needed for the 64-bit into 128-bit so it doesn't match
5112  // double since there is no vbroadcastsd xmm
5113  if (Subtarget->hasAVX2() && Ld.getValueType().isInteger()) {
5114    if (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64)
5115      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5116  }
5117
5118  // Unsupported broadcast.
5119  return SDValue();
5120}
5121
5122SDValue
5123X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5124  DebugLoc dl = Op.getDebugLoc();
5125
5126  EVT VT = Op.getValueType();
5127  EVT ExtVT = VT.getVectorElementType();
5128  unsigned NumElems = Op.getNumOperands();
5129
5130  // Vectors containing all zeros can be matched by pxor and xorps later
5131  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5132    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5133    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5134    if (VT == MVT::v4i32 || VT == MVT::v8i32)
5135      return Op;
5136
5137    return getZeroVector(VT, Subtarget, DAG, dl);
5138  }
5139
5140  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5141  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
5142  // vpcmpeqd on 256-bit vectors.
5143  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5144    if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasAVX2()))
5145      return Op;
5146
5147    return getOnesVector(VT, Subtarget->hasAVX2(), DAG, dl);
5148  }
5149
5150  SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
5151  if (Broadcast.getNode())
5152    return Broadcast;
5153
5154  unsigned EVTBits = ExtVT.getSizeInBits();
5155
5156  unsigned NumZero  = 0;
5157  unsigned NumNonZero = 0;
5158  unsigned NonZeros = 0;
5159  bool IsAllConstants = true;
5160  SmallSet<SDValue, 8> Values;
5161  for (unsigned i = 0; i < NumElems; ++i) {
5162    SDValue Elt = Op.getOperand(i);
5163    if (Elt.getOpcode() == ISD::UNDEF)
5164      continue;
5165    Values.insert(Elt);
5166    if (Elt.getOpcode() != ISD::Constant &&
5167        Elt.getOpcode() != ISD::ConstantFP)
5168      IsAllConstants = false;
5169    if (X86::isZeroNode(Elt))
5170      NumZero++;
5171    else {
5172      NonZeros |= (1 << i);
5173      NumNonZero++;
5174    }
5175  }
5176
5177  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5178  if (NumNonZero == 0)
5179    return DAG.getUNDEF(VT);
5180
5181  // Special case for single non-zero, non-undef, element.
5182  if (NumNonZero == 1) {
5183    unsigned Idx = CountTrailingZeros_32(NonZeros);
5184    SDValue Item = Op.getOperand(Idx);
5185
5186    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5187    // the value are obviously zero, truncate the value to i32 and do the
5188    // insertion that way.  Only do this if the value is non-constant or if the
5189    // value is a constant being inserted into element 0.  It is cheaper to do
5190    // a constant pool load than it is to do a movd + shuffle.
5191    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5192        (!IsAllConstants || Idx == 0)) {
5193      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5194        // Handle SSE only.
5195        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5196        EVT VecVT = MVT::v4i32;
5197        unsigned VecElts = 4;
5198
5199        // Truncate the value (which may itself be a constant) to i32, and
5200        // convert it to a vector with movd (S2V+shuffle to zero extend).
5201        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5202        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5203        Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5204
5205        // Now we have our 32-bit value zero extended in the low element of
5206        // a vector.  If Idx != 0, swizzle it into place.
5207        if (Idx != 0) {
5208          SmallVector<int, 4> Mask;
5209          Mask.push_back(Idx);
5210          for (unsigned i = 1; i != VecElts; ++i)
5211            Mask.push_back(i);
5212          Item = DAG.getVectorShuffle(VecVT, dl, Item, DAG.getUNDEF(VecVT),
5213                                      &Mask[0]);
5214        }
5215        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5216      }
5217    }
5218
5219    // If we have a constant or non-constant insertion into the low element of
5220    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5221    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5222    // depending on what the source datatype is.
5223    if (Idx == 0) {
5224      if (NumZero == 0)
5225        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5226
5227      if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5228          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5229        if (VT.getSizeInBits() == 256) {
5230          SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl);
5231          return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
5232                             Item, DAG.getIntPtrConstant(0));
5233        }
5234        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5235        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5236        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5237        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5238      }
5239
5240      if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5241        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5242        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
5243        if (VT.getSizeInBits() == 256) {
5244          SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl);
5245          Item = Insert128BitVector(ZeroVec, Item, 0, DAG, dl);
5246        } else {
5247          assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5248          Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5249        }
5250        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5251      }
5252    }
5253
5254    // Is it a vector logical left shift?
5255    if (NumElems == 2 && Idx == 1 &&
5256        X86::isZeroNode(Op.getOperand(0)) &&
5257        !X86::isZeroNode(Op.getOperand(1))) {
5258      unsigned NumBits = VT.getSizeInBits();
5259      return getVShift(true, VT,
5260                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5261                                   VT, Op.getOperand(1)),
5262                       NumBits/2, DAG, *this, dl);
5263    }
5264
5265    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5266      return SDValue();
5267
5268    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5269    // is a non-constant being inserted into an element other than the low one,
5270    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5271    // movd/movss) to move this into the low element, then shuffle it into
5272    // place.
5273    if (EVTBits == 32) {
5274      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5275
5276      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5277      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG);
5278      SmallVector<int, 8> MaskVec;
5279      for (unsigned i = 0; i != NumElems; ++i)
5280        MaskVec.push_back(i == Idx ? 0 : 1);
5281      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5282    }
5283  }
5284
5285  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5286  if (Values.size() == 1) {
5287    if (EVTBits == 32) {
5288      // Instead of a shuffle like this:
5289      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5290      // Check if it's possible to issue this instead.
5291      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5292      unsigned Idx = CountTrailingZeros_32(NonZeros);
5293      SDValue Item = Op.getOperand(Idx);
5294      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5295        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5296    }
5297    return SDValue();
5298  }
5299
5300  // A vector full of immediates; various special cases are already
5301  // handled, so this is best done with a single constant-pool load.
5302  if (IsAllConstants)
5303    return SDValue();
5304
5305  // For AVX-length vectors, build the individual 128-bit pieces and use
5306  // shuffles to put them in place.
5307  if (VT.getSizeInBits() == 256) {
5308    SmallVector<SDValue, 32> V;
5309    for (unsigned i = 0; i != NumElems; ++i)
5310      V.push_back(Op.getOperand(i));
5311
5312    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5313
5314    // Build both the lower and upper subvector.
5315    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5316    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5317                                NumElems/2);
5318
5319    // Recreate the wider vector with the lower and upper part.
5320    return Concat128BitVectors(Lower, Upper, VT, NumElems, DAG, dl);
5321  }
5322
5323  // Let legalizer expand 2-wide build_vectors.
5324  if (EVTBits == 64) {
5325    if (NumNonZero == 1) {
5326      // One half is zero or undef.
5327      unsigned Idx = CountTrailingZeros_32(NonZeros);
5328      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5329                                 Op.getOperand(Idx));
5330      return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
5331    }
5332    return SDValue();
5333  }
5334
5335  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5336  if (EVTBits == 8 && NumElems == 16) {
5337    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5338                                        Subtarget, *this);
5339    if (V.getNode()) return V;
5340  }
5341
5342  if (EVTBits == 16 && NumElems == 8) {
5343    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5344                                      Subtarget, *this);
5345    if (V.getNode()) return V;
5346  }
5347
5348  // If element VT is == 32 bits, turn it into a number of shuffles.
5349  SmallVector<SDValue, 8> V(NumElems);
5350  if (NumElems == 4 && NumZero > 0) {
5351    for (unsigned i = 0; i < 4; ++i) {
5352      bool isZero = !(NonZeros & (1 << i));
5353      if (isZero)
5354        V[i] = getZeroVector(VT, Subtarget, DAG, dl);
5355      else
5356        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5357    }
5358
5359    for (unsigned i = 0; i < 2; ++i) {
5360      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5361        default: break;
5362        case 0:
5363          V[i] = V[i*2];  // Must be a zero vector.
5364          break;
5365        case 1:
5366          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5367          break;
5368        case 2:
5369          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5370          break;
5371        case 3:
5372          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5373          break;
5374      }
5375    }
5376
5377    bool Reverse1 = (NonZeros & 0x3) == 2;
5378    bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5379    int MaskVec[] = {
5380      Reverse1 ? 1 : 0,
5381      Reverse1 ? 0 : 1,
5382      static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
5383      static_cast<int>(Reverse2 ? NumElems   : NumElems+1)
5384    };
5385    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5386  }
5387
5388  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
5389    // Check for a build vector of consecutive loads.
5390    for (unsigned i = 0; i < NumElems; ++i)
5391      V[i] = Op.getOperand(i);
5392
5393    // Check for elements which are consecutive loads.
5394    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5395    if (LD.getNode())
5396      return LD;
5397
5398    // For SSE 4.1, use insertps to put the high elements into the low element.
5399    if (getSubtarget()->hasSSE41()) {
5400      SDValue Result;
5401      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5402        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5403      else
5404        Result = DAG.getUNDEF(VT);
5405
5406      for (unsigned i = 1; i < NumElems; ++i) {
5407        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5408        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5409                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5410      }
5411      return Result;
5412    }
5413
5414    // Otherwise, expand into a number of unpckl*, start by extending each of
5415    // our (non-undef) elements to the full vector width with the element in the
5416    // bottom slot of the vector (which generates no code for SSE).
5417    for (unsigned i = 0; i < NumElems; ++i) {
5418      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5419        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5420      else
5421        V[i] = DAG.getUNDEF(VT);
5422    }
5423
5424    // Next, we iteratively mix elements, e.g. for v4f32:
5425    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5426    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5427    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5428    unsigned EltStride = NumElems >> 1;
5429    while (EltStride != 0) {
5430      for (unsigned i = 0; i < EltStride; ++i) {
5431        // If V[i+EltStride] is undef and this is the first round of mixing,
5432        // then it is safe to just drop this shuffle: V[i] is already in the
5433        // right place, the one element (since it's the first round) being
5434        // inserted as undef can be dropped.  This isn't safe for successive
5435        // rounds because they will permute elements within both vectors.
5436        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5437            EltStride == NumElems/2)
5438          continue;
5439
5440        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5441      }
5442      EltStride >>= 1;
5443    }
5444    return V[0];
5445  }
5446  return SDValue();
5447}
5448
5449// LowerMMXCONCAT_VECTORS - We support concatenate two MMX registers and place
5450// them in a MMX register.  This is better than doing a stack convert.
5451static SDValue LowerMMXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5452  DebugLoc dl = Op.getDebugLoc();
5453  EVT ResVT = Op.getValueType();
5454
5455  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
5456         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
5457  int Mask[2];
5458  SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
5459  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5460  InVec = Op.getOperand(1);
5461  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5462    unsigned NumElts = ResVT.getVectorNumElements();
5463    VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5464    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
5465                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
5466  } else {
5467    InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
5468    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5469    Mask[0] = 0; Mask[1] = 2;
5470    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
5471  }
5472  return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5473}
5474
5475// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5476// to create 256-bit vectors from two other 128-bit ones.
5477static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5478  DebugLoc dl = Op.getDebugLoc();
5479  EVT ResVT = Op.getValueType();
5480
5481  assert(ResVT.getSizeInBits() == 256 && "Value type must be 256-bit wide");
5482
5483  SDValue V1 = Op.getOperand(0);
5484  SDValue V2 = Op.getOperand(1);
5485  unsigned NumElems = ResVT.getVectorNumElements();
5486
5487  return Concat128BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
5488}
5489
5490SDValue
5491X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
5492  EVT ResVT = Op.getValueType();
5493
5494  assert(Op.getNumOperands() == 2);
5495  assert((ResVT.getSizeInBits() == 128 || ResVT.getSizeInBits() == 256) &&
5496         "Unsupported CONCAT_VECTORS for value type");
5497
5498  // We support concatenate two MMX registers and place them in a MMX register.
5499  // This is better than doing a stack convert.
5500  if (ResVT.is128BitVector())
5501    return LowerMMXCONCAT_VECTORS(Op, DAG);
5502
5503  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5504  // from two other 128-bit ones.
5505  return LowerAVXCONCAT_VECTORS(Op, DAG);
5506}
5507
5508// Try to lower a shuffle node into a simple blend instruction.
5509static SDValue LowerVECTOR_SHUFFLEtoBlend(ShuffleVectorSDNode *SVOp,
5510                                          const X86Subtarget *Subtarget,
5511                                          SelectionDAG &DAG) {
5512  SDValue V1 = SVOp->getOperand(0);
5513  SDValue V2 = SVOp->getOperand(1);
5514  DebugLoc dl = SVOp->getDebugLoc();
5515  MVT VT = SVOp->getValueType(0).getSimpleVT();
5516  unsigned NumElems = VT.getVectorNumElements();
5517
5518  if (!Subtarget->hasSSE41())
5519    return SDValue();
5520
5521  unsigned ISDNo = 0;
5522  MVT OpTy;
5523
5524  switch (VT.SimpleTy) {
5525  default: return SDValue();
5526  case MVT::v8i16:
5527    ISDNo = X86ISD::BLENDPW;
5528    OpTy = MVT::v8i16;
5529    break;
5530  case MVT::v4i32:
5531  case MVT::v4f32:
5532    ISDNo = X86ISD::BLENDPS;
5533    OpTy = MVT::v4f32;
5534    break;
5535  case MVT::v2i64:
5536  case MVT::v2f64:
5537    ISDNo = X86ISD::BLENDPD;
5538    OpTy = MVT::v2f64;
5539    break;
5540  case MVT::v8i32:
5541  case MVT::v8f32:
5542    if (!Subtarget->hasAVX())
5543      return SDValue();
5544    ISDNo = X86ISD::BLENDPS;
5545    OpTy = MVT::v8f32;
5546    break;
5547  case MVT::v4i64:
5548  case MVT::v4f64:
5549    if (!Subtarget->hasAVX())
5550      return SDValue();
5551    ISDNo = X86ISD::BLENDPD;
5552    OpTy = MVT::v4f64;
5553    break;
5554  }
5555  assert(ISDNo && "Invalid Op Number");
5556
5557  unsigned MaskVals = 0;
5558
5559  for (unsigned i = 0; i != NumElems; ++i) {
5560    int EltIdx = SVOp->getMaskElt(i);
5561    if (EltIdx == (int)i || EltIdx < 0)
5562      MaskVals |= (1<<i);
5563    else if (EltIdx == (int)(i + NumElems))
5564      continue; // Bit is set to zero;
5565    else
5566      return SDValue();
5567  }
5568
5569  V1 = DAG.getNode(ISD::BITCAST, dl, OpTy, V1);
5570  V2 = DAG.getNode(ISD::BITCAST, dl, OpTy, V2);
5571  SDValue Ret =  DAG.getNode(ISDNo, dl, OpTy, V1, V2,
5572                             DAG.getConstant(MaskVals, MVT::i32));
5573  return DAG.getNode(ISD::BITCAST, dl, VT, Ret);
5574}
5575
5576// v8i16 shuffles - Prefer shuffles in the following order:
5577// 1. [all]   pshuflw, pshufhw, optional move
5578// 2. [ssse3] 1 x pshufb
5579// 3. [ssse3] 2 x pshufb + 1 x por
5580// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5581SDValue
5582X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
5583                                            SelectionDAG &DAG) const {
5584  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5585  SDValue V1 = SVOp->getOperand(0);
5586  SDValue V2 = SVOp->getOperand(1);
5587  DebugLoc dl = SVOp->getDebugLoc();
5588  SmallVector<int, 8> MaskVals;
5589
5590  // Determine if more than 1 of the words in each of the low and high quadwords
5591  // of the result come from the same quadword of one of the two inputs.  Undef
5592  // mask values count as coming from any quadword, for better codegen.
5593  unsigned LoQuad[] = { 0, 0, 0, 0 };
5594  unsigned HiQuad[] = { 0, 0, 0, 0 };
5595  std::bitset<4> InputQuads;
5596  for (unsigned i = 0; i < 8; ++i) {
5597    unsigned *Quad = i < 4 ? LoQuad : HiQuad;
5598    int EltIdx = SVOp->getMaskElt(i);
5599    MaskVals.push_back(EltIdx);
5600    if (EltIdx < 0) {
5601      ++Quad[0];
5602      ++Quad[1];
5603      ++Quad[2];
5604      ++Quad[3];
5605      continue;
5606    }
5607    ++Quad[EltIdx / 4];
5608    InputQuads.set(EltIdx / 4);
5609  }
5610
5611  int BestLoQuad = -1;
5612  unsigned MaxQuad = 1;
5613  for (unsigned i = 0; i < 4; ++i) {
5614    if (LoQuad[i] > MaxQuad) {
5615      BestLoQuad = i;
5616      MaxQuad = LoQuad[i];
5617    }
5618  }
5619
5620  int BestHiQuad = -1;
5621  MaxQuad = 1;
5622  for (unsigned i = 0; i < 4; ++i) {
5623    if (HiQuad[i] > MaxQuad) {
5624      BestHiQuad = i;
5625      MaxQuad = HiQuad[i];
5626    }
5627  }
5628
5629  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5630  // of the two input vectors, shuffle them into one input vector so only a
5631  // single pshufb instruction is necessary. If There are more than 2 input
5632  // quads, disable the next transformation since it does not help SSSE3.
5633  bool V1Used = InputQuads[0] || InputQuads[1];
5634  bool V2Used = InputQuads[2] || InputQuads[3];
5635  if (Subtarget->hasSSSE3()) {
5636    if (InputQuads.count() == 2 && V1Used && V2Used) {
5637      BestLoQuad = InputQuads[0] ? 0 : 1;
5638      BestHiQuad = InputQuads[2] ? 2 : 3;
5639    }
5640    if (InputQuads.count() > 2) {
5641      BestLoQuad = -1;
5642      BestHiQuad = -1;
5643    }
5644  }
5645
5646  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5647  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5648  // words from all 4 input quadwords.
5649  SDValue NewV;
5650  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5651    int MaskV[] = {
5652      BestLoQuad < 0 ? 0 : BestLoQuad,
5653      BestHiQuad < 0 ? 1 : BestHiQuad
5654    };
5655    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5656                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5657                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5658    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5659
5660    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5661    // source words for the shuffle, to aid later transformations.
5662    bool AllWordsInNewV = true;
5663    bool InOrder[2] = { true, true };
5664    for (unsigned i = 0; i != 8; ++i) {
5665      int idx = MaskVals[i];
5666      if (idx != (int)i)
5667        InOrder[i/4] = false;
5668      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5669        continue;
5670      AllWordsInNewV = false;
5671      break;
5672    }
5673
5674    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5675    if (AllWordsInNewV) {
5676      for (int i = 0; i != 8; ++i) {
5677        int idx = MaskVals[i];
5678        if (idx < 0)
5679          continue;
5680        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5681        if ((idx != i) && idx < 4)
5682          pshufhw = false;
5683        if ((idx != i) && idx > 3)
5684          pshuflw = false;
5685      }
5686      V1 = NewV;
5687      V2Used = false;
5688      BestLoQuad = 0;
5689      BestHiQuad = 1;
5690    }
5691
5692    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5693    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5694    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5695      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5696      unsigned TargetMask = 0;
5697      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5698                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5699      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5700      TargetMask = pshufhw ? getShufflePSHUFHWImmediate(SVOp):
5701                             getShufflePSHUFLWImmediate(SVOp);
5702      V1 = NewV.getOperand(0);
5703      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5704    }
5705  }
5706
5707  // If we have SSSE3, and all words of the result are from 1 input vector,
5708  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5709  // is present, fall back to case 4.
5710  if (Subtarget->hasSSSE3()) {
5711    SmallVector<SDValue,16> pshufbMask;
5712
5713    // If we have elements from both input vectors, set the high bit of the
5714    // shuffle mask element to zero out elements that come from V2 in the V1
5715    // mask, and elements that come from V1 in the V2 mask, so that the two
5716    // results can be OR'd together.
5717    bool TwoInputs = V1Used && V2Used;
5718    for (unsigned i = 0; i != 8; ++i) {
5719      int EltIdx = MaskVals[i] * 2;
5720      int Idx0 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx;
5721      int Idx1 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx+1;
5722      pshufbMask.push_back(DAG.getConstant(Idx0,   MVT::i8));
5723      pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8));
5724    }
5725    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5726    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5727                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5728                                 MVT::v16i8, &pshufbMask[0], 16));
5729    if (!TwoInputs)
5730      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5731
5732    // Calculate the shuffle mask for the second input, shuffle it, and
5733    // OR it with the first shuffled input.
5734    pshufbMask.clear();
5735    for (unsigned i = 0; i != 8; ++i) {
5736      int EltIdx = MaskVals[i] * 2;
5737      int Idx0 = (EltIdx < 16) ? 0x80 : EltIdx - 16;
5738      int Idx1 = (EltIdx < 16) ? 0x80 : EltIdx - 15;
5739      pshufbMask.push_back(DAG.getConstant(Idx0, MVT::i8));
5740      pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8));
5741    }
5742    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5743    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5744                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5745                                 MVT::v16i8, &pshufbMask[0], 16));
5746    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5747    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5748  }
5749
5750  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5751  // and update MaskVals with new element order.
5752  std::bitset<8> InOrder;
5753  if (BestLoQuad >= 0) {
5754    int MaskV[] = { -1, -1, -1, -1, 4, 5, 6, 7 };
5755    for (int i = 0; i != 4; ++i) {
5756      int idx = MaskVals[i];
5757      if (idx < 0) {
5758        InOrder.set(i);
5759      } else if ((idx / 4) == BestLoQuad) {
5760        MaskV[i] = idx & 3;
5761        InOrder.set(i);
5762      }
5763    }
5764    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5765                                &MaskV[0]);
5766
5767    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5768      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5769      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5770                                  NewV.getOperand(0),
5771                                  getShufflePSHUFLWImmediate(SVOp), DAG);
5772    }
5773  }
5774
5775  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5776  // and update MaskVals with the new element order.
5777  if (BestHiQuad >= 0) {
5778    int MaskV[] = { 0, 1, 2, 3, -1, -1, -1, -1 };
5779    for (unsigned i = 4; i != 8; ++i) {
5780      int idx = MaskVals[i];
5781      if (idx < 0) {
5782        InOrder.set(i);
5783      } else if ((idx / 4) == BestHiQuad) {
5784        MaskV[i] = (idx & 3) + 4;
5785        InOrder.set(i);
5786      }
5787    }
5788    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5789                                &MaskV[0]);
5790
5791    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5792      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5793      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5794                                  NewV.getOperand(0),
5795                                  getShufflePSHUFHWImmediate(SVOp), DAG);
5796    }
5797  }
5798
5799  // In case BestHi & BestLo were both -1, which means each quadword has a word
5800  // from each of the four input quadwords, calculate the InOrder bitvector now
5801  // before falling through to the insert/extract cleanup.
5802  if (BestLoQuad == -1 && BestHiQuad == -1) {
5803    NewV = V1;
5804    for (int i = 0; i != 8; ++i)
5805      if (MaskVals[i] < 0 || MaskVals[i] == i)
5806        InOrder.set(i);
5807  }
5808
5809  // The other elements are put in the right place using pextrw and pinsrw.
5810  for (unsigned i = 0; i != 8; ++i) {
5811    if (InOrder[i])
5812      continue;
5813    int EltIdx = MaskVals[i];
5814    if (EltIdx < 0)
5815      continue;
5816    SDValue ExtOp = (EltIdx < 8) ?
5817      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5818                  DAG.getIntPtrConstant(EltIdx)) :
5819      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5820                  DAG.getIntPtrConstant(EltIdx - 8));
5821    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5822                       DAG.getIntPtrConstant(i));
5823  }
5824  return NewV;
5825}
5826
5827// v16i8 shuffles - Prefer shuffles in the following order:
5828// 1. [ssse3] 1 x pshufb
5829// 2. [ssse3] 2 x pshufb + 1 x por
5830// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5831static
5832SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5833                                 SelectionDAG &DAG,
5834                                 const X86TargetLowering &TLI) {
5835  SDValue V1 = SVOp->getOperand(0);
5836  SDValue V2 = SVOp->getOperand(1);
5837  DebugLoc dl = SVOp->getDebugLoc();
5838  ArrayRef<int> MaskVals = SVOp->getMask();
5839
5840  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
5841
5842  // If we have SSSE3, case 1 is generated when all result bytes come from
5843  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5844  // present, fall back to case 3.
5845
5846  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5847  if (TLI.getSubtarget()->hasSSSE3()) {
5848    SmallVector<SDValue,16> pshufbMask;
5849
5850    // If all result elements are from one input vector, then only translate
5851    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5852    //
5853    // Otherwise, we have elements from both input vectors, and must zero out
5854    // elements that come from V2 in the first mask, and V1 in the second mask
5855    // so that we can OR them together.
5856    for (unsigned i = 0; i != 16; ++i) {
5857      int EltIdx = MaskVals[i];
5858      if (EltIdx < 0 || EltIdx >= 16)
5859        EltIdx = 0x80;
5860      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5861    }
5862    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5863                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5864                                 MVT::v16i8, &pshufbMask[0], 16));
5865    if (V2IsUndef)
5866      return V1;
5867
5868    // Calculate the shuffle mask for the second input, shuffle it, and
5869    // OR it with the first shuffled input.
5870    pshufbMask.clear();
5871    for (unsigned i = 0; i != 16; ++i) {
5872      int EltIdx = MaskVals[i];
5873      EltIdx = (EltIdx < 16) ? 0x80 : EltIdx - 16;
5874      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5875    }
5876    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5877                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5878                                 MVT::v16i8, &pshufbMask[0], 16));
5879    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5880  }
5881
5882  // No SSSE3 - Calculate in place words and then fix all out of place words
5883  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5884  // the 16 different words that comprise the two doublequadword input vectors.
5885  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5886  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5887  SDValue NewV = V1;
5888  for (int i = 0; i != 8; ++i) {
5889    int Elt0 = MaskVals[i*2];
5890    int Elt1 = MaskVals[i*2+1];
5891
5892    // This word of the result is all undef, skip it.
5893    if (Elt0 < 0 && Elt1 < 0)
5894      continue;
5895
5896    // This word of the result is already in the correct place, skip it.
5897    if ((Elt0 == i*2) && (Elt1 == i*2+1))
5898      continue;
5899
5900    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5901    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5902    SDValue InsElt;
5903
5904    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5905    // using a single extract together, load it and store it.
5906    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5907      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5908                           DAG.getIntPtrConstant(Elt1 / 2));
5909      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5910                        DAG.getIntPtrConstant(i));
5911      continue;
5912    }
5913
5914    // If Elt1 is defined, extract it from the appropriate source.  If the
5915    // source byte is not also odd, shift the extracted word left 8 bits
5916    // otherwise clear the bottom 8 bits if we need to do an or.
5917    if (Elt1 >= 0) {
5918      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5919                           DAG.getIntPtrConstant(Elt1 / 2));
5920      if ((Elt1 & 1) == 0)
5921        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5922                             DAG.getConstant(8,
5923                                  TLI.getShiftAmountTy(InsElt.getValueType())));
5924      else if (Elt0 >= 0)
5925        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5926                             DAG.getConstant(0xFF00, MVT::i16));
5927    }
5928    // If Elt0 is defined, extract it from the appropriate source.  If the
5929    // source byte is not also even, shift the extracted word right 8 bits. If
5930    // Elt1 was also defined, OR the extracted values together before
5931    // inserting them in the result.
5932    if (Elt0 >= 0) {
5933      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5934                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5935      if ((Elt0 & 1) != 0)
5936        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5937                              DAG.getConstant(8,
5938                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
5939      else if (Elt1 >= 0)
5940        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5941                             DAG.getConstant(0x00FF, MVT::i16));
5942      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5943                         : InsElt0;
5944    }
5945    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5946                       DAG.getIntPtrConstant(i));
5947  }
5948  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5949}
5950
5951/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5952/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5953/// done when every pair / quad of shuffle mask elements point to elements in
5954/// the right sequence. e.g.
5955/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5956static
5957SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5958                                 SelectionDAG &DAG, DebugLoc dl) {
5959  MVT VT = SVOp->getValueType(0).getSimpleVT();
5960  unsigned NumElems = VT.getVectorNumElements();
5961  MVT NewVT;
5962  unsigned Scale;
5963  switch (VT.SimpleTy) {
5964  default: llvm_unreachable("Unexpected!");
5965  case MVT::v4f32:  NewVT = MVT::v2f64; Scale = 2; break;
5966  case MVT::v4i32:  NewVT = MVT::v2i64; Scale = 2; break;
5967  case MVT::v8i16:  NewVT = MVT::v4i32; Scale = 2; break;
5968  case MVT::v16i8:  NewVT = MVT::v4i32; Scale = 4; break;
5969  case MVT::v16i16: NewVT = MVT::v8i32; Scale = 2; break;
5970  case MVT::v32i8:  NewVT = MVT::v8i32; Scale = 4; break;
5971  }
5972
5973  SmallVector<int, 8> MaskVec;
5974  for (unsigned i = 0; i != NumElems; i += Scale) {
5975    int StartIdx = -1;
5976    for (unsigned j = 0; j != Scale; ++j) {
5977      int EltIdx = SVOp->getMaskElt(i+j);
5978      if (EltIdx < 0)
5979        continue;
5980      if (StartIdx < 0)
5981        StartIdx = (EltIdx / Scale);
5982      if (EltIdx != (int)(StartIdx*Scale + j))
5983        return SDValue();
5984    }
5985    MaskVec.push_back(StartIdx);
5986  }
5987
5988  SDValue V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(0));
5989  SDValue V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(1));
5990  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
5991}
5992
5993/// getVZextMovL - Return a zero-extending vector move low node.
5994///
5995static SDValue getVZextMovL(EVT VT, EVT OpVT,
5996                            SDValue SrcOp, SelectionDAG &DAG,
5997                            const X86Subtarget *Subtarget, DebugLoc dl) {
5998  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
5999    LoadSDNode *LD = NULL;
6000    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
6001      LD = dyn_cast<LoadSDNode>(SrcOp);
6002    if (!LD) {
6003      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
6004      // instead.
6005      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
6006      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
6007          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
6008          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
6009          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
6010        // PR2108
6011        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
6012        return DAG.getNode(ISD::BITCAST, dl, VT,
6013                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
6014                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6015                                                   OpVT,
6016                                                   SrcOp.getOperand(0)
6017                                                          .getOperand(0))));
6018      }
6019    }
6020  }
6021
6022  return DAG.getNode(ISD::BITCAST, dl, VT,
6023                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
6024                                 DAG.getNode(ISD::BITCAST, dl,
6025                                             OpVT, SrcOp)));
6026}
6027
6028/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
6029/// which could not be matched by any known target speficic shuffle
6030static SDValue
6031LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6032
6033  SDValue NewOp = Compact8x32ShuffleNode(SVOp, DAG);
6034  if (NewOp.getNode())
6035    return NewOp;
6036
6037  EVT VT = SVOp->getValueType(0);
6038
6039  unsigned NumElems = VT.getVectorNumElements();
6040  unsigned NumLaneElems = NumElems / 2;
6041
6042  DebugLoc dl = SVOp->getDebugLoc();
6043  MVT EltVT = VT.getVectorElementType().getSimpleVT();
6044  EVT NVT = MVT::getVectorVT(EltVT, NumLaneElems);
6045  SDValue Output[2];
6046
6047  SmallVector<int, 16> Mask;
6048  for (unsigned l = 0; l < 2; ++l) {
6049    // Build a shuffle mask for the output, discovering on the fly which
6050    // input vectors to use as shuffle operands (recorded in InputUsed).
6051    // If building a suitable shuffle vector proves too hard, then bail
6052    // out with UseBuildVector set.
6053    bool UseBuildVector = false;
6054    int InputUsed[2] = { -1, -1 }; // Not yet discovered.
6055    unsigned LaneStart = l * NumLaneElems;
6056    for (unsigned i = 0; i != NumLaneElems; ++i) {
6057      // The mask element.  This indexes into the input.
6058      int Idx = SVOp->getMaskElt(i+LaneStart);
6059      if (Idx < 0) {
6060        // the mask element does not index into any input vector.
6061        Mask.push_back(-1);
6062        continue;
6063      }
6064
6065      // The input vector this mask element indexes into.
6066      int Input = Idx / NumLaneElems;
6067
6068      // Turn the index into an offset from the start of the input vector.
6069      Idx -= Input * NumLaneElems;
6070
6071      // Find or create a shuffle vector operand to hold this input.
6072      unsigned OpNo;
6073      for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
6074        if (InputUsed[OpNo] == Input)
6075          // This input vector is already an operand.
6076          break;
6077        if (InputUsed[OpNo] < 0) {
6078          // Create a new operand for this input vector.
6079          InputUsed[OpNo] = Input;
6080          break;
6081        }
6082      }
6083
6084      if (OpNo >= array_lengthof(InputUsed)) {
6085        // More than two input vectors used!  Give up on trying to create a
6086        // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
6087        UseBuildVector = true;
6088        break;
6089      }
6090
6091      // Add the mask index for the new shuffle vector.
6092      Mask.push_back(Idx + OpNo * NumLaneElems);
6093    }
6094
6095    if (UseBuildVector) {
6096      SmallVector<SDValue, 16> SVOps;
6097      for (unsigned i = 0; i != NumLaneElems; ++i) {
6098        // The mask element.  This indexes into the input.
6099        int Idx = SVOp->getMaskElt(i+LaneStart);
6100        if (Idx < 0) {
6101          SVOps.push_back(DAG.getUNDEF(EltVT));
6102          continue;
6103        }
6104
6105        // The input vector this mask element indexes into.
6106        int Input = Idx / NumElems;
6107
6108        // Turn the index into an offset from the start of the input vector.
6109        Idx -= Input * NumElems;
6110
6111        // Extract the vector element by hand.
6112        SVOps.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
6113                                    SVOp->getOperand(Input),
6114                                    DAG.getIntPtrConstant(Idx)));
6115      }
6116
6117      // Construct the output using a BUILD_VECTOR.
6118      Output[l] = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, &SVOps[0],
6119                              SVOps.size());
6120    } else if (InputUsed[0] < 0) {
6121      // No input vectors were used! The result is undefined.
6122      Output[l] = DAG.getUNDEF(NVT);
6123    } else {
6124      SDValue Op0 = Extract128BitVector(SVOp->getOperand(InputUsed[0] / 2),
6125                                        (InputUsed[0] % 2) * NumLaneElems,
6126                                        DAG, dl);
6127      // If only one input was used, use an undefined vector for the other.
6128      SDValue Op1 = (InputUsed[1] < 0) ? DAG.getUNDEF(NVT) :
6129        Extract128BitVector(SVOp->getOperand(InputUsed[1] / 2),
6130                            (InputUsed[1] % 2) * NumLaneElems, DAG, dl);
6131      // At least one input vector was used. Create a new shuffle vector.
6132      Output[l] = DAG.getVectorShuffle(NVT, dl, Op0, Op1, &Mask[0]);
6133    }
6134
6135    Mask.clear();
6136  }
6137
6138  // Concatenate the result back
6139  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Output[0], Output[1]);
6140}
6141
6142/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6143/// 4 elements, and match them with several different shuffle types.
6144static SDValue
6145LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6146  SDValue V1 = SVOp->getOperand(0);
6147  SDValue V2 = SVOp->getOperand(1);
6148  DebugLoc dl = SVOp->getDebugLoc();
6149  EVT VT = SVOp->getValueType(0);
6150
6151  assert(VT.getSizeInBits() == 128 && "Unsupported vector size");
6152
6153  std::pair<int, int> Locs[4];
6154  int Mask1[] = { -1, -1, -1, -1 };
6155  SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end());
6156
6157  unsigned NumHi = 0;
6158  unsigned NumLo = 0;
6159  for (unsigned i = 0; i != 4; ++i) {
6160    int Idx = PermMask[i];
6161    if (Idx < 0) {
6162      Locs[i] = std::make_pair(-1, -1);
6163    } else {
6164      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6165      if (Idx < 4) {
6166        Locs[i] = std::make_pair(0, NumLo);
6167        Mask1[NumLo] = Idx;
6168        NumLo++;
6169      } else {
6170        Locs[i] = std::make_pair(1, NumHi);
6171        if (2+NumHi < 4)
6172          Mask1[2+NumHi] = Idx;
6173        NumHi++;
6174      }
6175    }
6176  }
6177
6178  if (NumLo <= 2 && NumHi <= 2) {
6179    // If no more than two elements come from either vector. This can be
6180    // implemented with two shuffles. First shuffle gather the elements.
6181    // The second shuffle, which takes the first shuffle as both of its
6182    // vector operands, put the elements into the right order.
6183    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6184
6185    int Mask2[] = { -1, -1, -1, -1 };
6186
6187    for (unsigned i = 0; i != 4; ++i)
6188      if (Locs[i].first != -1) {
6189        unsigned Idx = (i < 2) ? 0 : 4;
6190        Idx += Locs[i].first * 2 + Locs[i].second;
6191        Mask2[i] = Idx;
6192      }
6193
6194    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6195  }
6196
6197  if (NumLo == 3 || NumHi == 3) {
6198    // Otherwise, we must have three elements from one vector, call it X, and
6199    // one element from the other, call it Y.  First, use a shufps to build an
6200    // intermediate vector with the one element from Y and the element from X
6201    // that will be in the same half in the final destination (the indexes don't
6202    // matter). Then, use a shufps to build the final vector, taking the half
6203    // containing the element from Y from the intermediate, and the other half
6204    // from X.
6205    if (NumHi == 3) {
6206      // Normalize it so the 3 elements come from V1.
6207      CommuteVectorShuffleMask(PermMask, 4);
6208      std::swap(V1, V2);
6209    }
6210
6211    // Find the element from V2.
6212    unsigned HiIndex;
6213    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6214      int Val = PermMask[HiIndex];
6215      if (Val < 0)
6216        continue;
6217      if (Val >= 4)
6218        break;
6219    }
6220
6221    Mask1[0] = PermMask[HiIndex];
6222    Mask1[1] = -1;
6223    Mask1[2] = PermMask[HiIndex^1];
6224    Mask1[3] = -1;
6225    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6226
6227    if (HiIndex >= 2) {
6228      Mask1[0] = PermMask[0];
6229      Mask1[1] = PermMask[1];
6230      Mask1[2] = HiIndex & 1 ? 6 : 4;
6231      Mask1[3] = HiIndex & 1 ? 4 : 6;
6232      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6233    }
6234
6235    Mask1[0] = HiIndex & 1 ? 2 : 0;
6236    Mask1[1] = HiIndex & 1 ? 0 : 2;
6237    Mask1[2] = PermMask[2];
6238    Mask1[3] = PermMask[3];
6239    if (Mask1[2] >= 0)
6240      Mask1[2] += 4;
6241    if (Mask1[3] >= 0)
6242      Mask1[3] += 4;
6243    return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6244  }
6245
6246  // Break it into (shuffle shuffle_hi, shuffle_lo).
6247  int LoMask[] = { -1, -1, -1, -1 };
6248  int HiMask[] = { -1, -1, -1, -1 };
6249
6250  int *MaskPtr = LoMask;
6251  unsigned MaskIdx = 0;
6252  unsigned LoIdx = 0;
6253  unsigned HiIdx = 2;
6254  for (unsigned i = 0; i != 4; ++i) {
6255    if (i == 2) {
6256      MaskPtr = HiMask;
6257      MaskIdx = 1;
6258      LoIdx = 0;
6259      HiIdx = 2;
6260    }
6261    int Idx = PermMask[i];
6262    if (Idx < 0) {
6263      Locs[i] = std::make_pair(-1, -1);
6264    } else if (Idx < 4) {
6265      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6266      MaskPtr[LoIdx] = Idx;
6267      LoIdx++;
6268    } else {
6269      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6270      MaskPtr[HiIdx] = Idx;
6271      HiIdx++;
6272    }
6273  }
6274
6275  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6276  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6277  int MaskOps[] = { -1, -1, -1, -1 };
6278  for (unsigned i = 0; i != 4; ++i)
6279    if (Locs[i].first != -1)
6280      MaskOps[i] = Locs[i].first * 4 + Locs[i].second;
6281  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6282}
6283
6284static bool MayFoldVectorLoad(SDValue V) {
6285  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6286    V = V.getOperand(0);
6287  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6288    V = V.getOperand(0);
6289  if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
6290      V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
6291    // BUILD_VECTOR (load), undef
6292    V = V.getOperand(0);
6293  if (MayFoldLoad(V))
6294    return true;
6295  return false;
6296}
6297
6298// FIXME: the version above should always be used. Since there's
6299// a bug where several vector shuffles can't be folded because the
6300// DAG is not updated during lowering and a node claims to have two
6301// uses while it only has one, use this version, and let isel match
6302// another instruction if the load really happens to have more than
6303// one use. Remove this version after this bug get fixed.
6304// rdar://8434668, PR8156
6305static bool RelaxedMayFoldVectorLoad(SDValue V) {
6306  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6307    V = V.getOperand(0);
6308  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6309    V = V.getOperand(0);
6310  if (ISD::isNormalLoad(V.getNode()))
6311    return true;
6312  return false;
6313}
6314
6315static
6316SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6317  EVT VT = Op.getValueType();
6318
6319  // Canonizalize to v2f64.
6320  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6321  return DAG.getNode(ISD::BITCAST, dl, VT,
6322                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6323                                          V1, DAG));
6324}
6325
6326static
6327SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6328                        bool HasSSE2) {
6329  SDValue V1 = Op.getOperand(0);
6330  SDValue V2 = Op.getOperand(1);
6331  EVT VT = Op.getValueType();
6332
6333  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6334
6335  if (HasSSE2 && VT == MVT::v2f64)
6336    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6337
6338  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6339  return DAG.getNode(ISD::BITCAST, dl, VT,
6340                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6341                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6342                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6343}
6344
6345static
6346SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6347  SDValue V1 = Op.getOperand(0);
6348  SDValue V2 = Op.getOperand(1);
6349  EVT VT = Op.getValueType();
6350
6351  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6352         "unsupported shuffle type");
6353
6354  if (V2.getOpcode() == ISD::UNDEF)
6355    V2 = V1;
6356
6357  // v4i32 or v4f32
6358  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6359}
6360
6361static
6362SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
6363  SDValue V1 = Op.getOperand(0);
6364  SDValue V2 = Op.getOperand(1);
6365  EVT VT = Op.getValueType();
6366  unsigned NumElems = VT.getVectorNumElements();
6367
6368  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6369  // operand of these instructions is only memory, so check if there's a
6370  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6371  // same masks.
6372  bool CanFoldLoad = false;
6373
6374  // Trivial case, when V2 comes from a load.
6375  if (MayFoldVectorLoad(V2))
6376    CanFoldLoad = true;
6377
6378  // When V1 is a load, it can be folded later into a store in isel, example:
6379  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6380  //    turns into:
6381  //  (MOVLPSmr addr:$src1, VR128:$src2)
6382  // So, recognize this potential and also use MOVLPS or MOVLPD
6383  else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6384    CanFoldLoad = true;
6385
6386  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6387  if (CanFoldLoad) {
6388    if (HasSSE2 && NumElems == 2)
6389      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6390
6391    if (NumElems == 4)
6392      // If we don't care about the second element, proceed to use movss.
6393      if (SVOp->getMaskElt(1) != -1)
6394        return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6395  }
6396
6397  // movl and movlp will both match v2i64, but v2i64 is never matched by
6398  // movl earlier because we make it strict to avoid messing with the movlp load
6399  // folding logic (see the code above getMOVLP call). Match it here then,
6400  // this is horrible, but will stay like this until we move all shuffle
6401  // matching to x86 specific nodes. Note that for the 1st condition all
6402  // types are matched with movsd.
6403  if (HasSSE2) {
6404    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6405    // as to remove this logic from here, as much as possible
6406    if (NumElems == 2 || !isMOVLMask(SVOp->getMask(), VT))
6407      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6408    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6409  }
6410
6411  assert(VT != MVT::v4i32 && "unsupported shuffle type");
6412
6413  // Invert the operand order and use SHUFPS to match it.
6414  return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
6415                              getShuffleSHUFImmediate(SVOp), DAG);
6416}
6417
6418SDValue
6419X86TargetLowering::NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG) const {
6420  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6421  EVT VT = Op.getValueType();
6422  DebugLoc dl = Op.getDebugLoc();
6423  SDValue V1 = Op.getOperand(0);
6424  SDValue V2 = Op.getOperand(1);
6425
6426  if (isZeroShuffle(SVOp))
6427    return getZeroVector(VT, Subtarget, DAG, dl);
6428
6429  // Handle splat operations
6430  if (SVOp->isSplat()) {
6431    unsigned NumElem = VT.getVectorNumElements();
6432    int Size = VT.getSizeInBits();
6433
6434    // Use vbroadcast whenever the splat comes from a foldable load
6435    SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
6436    if (Broadcast.getNode())
6437      return Broadcast;
6438
6439    // Handle splats by matching through known shuffle masks
6440    if ((Size == 128 && NumElem <= 4) ||
6441        (Size == 256 && NumElem < 8))
6442      return SDValue();
6443
6444    // All remaning splats are promoted to target supported vector shuffles.
6445    return PromoteSplat(SVOp, DAG);
6446  }
6447
6448  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6449  // do it!
6450  if (VT == MVT::v8i16  || VT == MVT::v16i8 ||
6451      VT == MVT::v16i16 || VT == MVT::v32i8) {
6452    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6453    if (NewOp.getNode())
6454      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6455  } else if ((VT == MVT::v4i32 ||
6456             (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
6457    // FIXME: Figure out a cleaner way to do this.
6458    // Try to make use of movq to zero out the top part.
6459    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6460      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6461      if (NewOp.getNode()) {
6462        EVT NewVT = NewOp.getValueType();
6463        if (isCommutedMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(),
6464                               NewVT, true, false))
6465          return getVZextMovL(VT, NewVT, NewOp.getOperand(0),
6466                              DAG, Subtarget, dl);
6467      }
6468    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6469      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6470      if (NewOp.getNode()) {
6471        EVT NewVT = NewOp.getValueType();
6472        if (isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(), NewVT))
6473          return getVZextMovL(VT, NewVT, NewOp.getOperand(1),
6474                              DAG, Subtarget, dl);
6475      }
6476    }
6477  }
6478  return SDValue();
6479}
6480
6481SDValue
6482X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6483  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6484  SDValue V1 = Op.getOperand(0);
6485  SDValue V2 = Op.getOperand(1);
6486  EVT VT = Op.getValueType();
6487  DebugLoc dl = Op.getDebugLoc();
6488  unsigned NumElems = VT.getVectorNumElements();
6489  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6490  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6491  bool V1IsSplat = false;
6492  bool V2IsSplat = false;
6493  bool HasSSE2 = Subtarget->hasSSE2();
6494  bool HasAVX    = Subtarget->hasAVX();
6495  bool HasAVX2   = Subtarget->hasAVX2();
6496  MachineFunction &MF = DAG.getMachineFunction();
6497  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
6498
6499  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
6500
6501  if (V1IsUndef && V2IsUndef)
6502    return DAG.getUNDEF(VT);
6503
6504  assert(!V1IsUndef && "Op 1 of shuffle should not be undef");
6505
6506  // Vector shuffle lowering takes 3 steps:
6507  //
6508  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6509  //    narrowing and commutation of operands should be handled.
6510  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6511  //    shuffle nodes.
6512  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6513  //    so the shuffle can be broken into other shuffles and the legalizer can
6514  //    try the lowering again.
6515  //
6516  // The general idea is that no vector_shuffle operation should be left to
6517  // be matched during isel, all of them must be converted to a target specific
6518  // node here.
6519
6520  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6521  // narrowing and commutation of operands should be handled. The actual code
6522  // doesn't include all of those, work in progress...
6523  SDValue NewOp = NormalizeVectorShuffle(Op, DAG);
6524  if (NewOp.getNode())
6525    return NewOp;
6526
6527  SmallVector<int, 8> M(SVOp->getMask().begin(), SVOp->getMask().end());
6528
6529  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6530  // unpckh_undef). Only use pshufd if speed is more important than size.
6531  if (OptForSize && isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6532    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6533  if (OptForSize && isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6534    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6535
6536  if (isMOVDDUPMask(M, VT) && Subtarget->hasSSE3() &&
6537      V2IsUndef && RelaxedMayFoldVectorLoad(V1))
6538    return getMOVDDup(Op, dl, V1, DAG);
6539
6540  if (isMOVHLPS_v_undef_Mask(M, VT))
6541    return getMOVHighToLow(Op, dl, DAG);
6542
6543  // Use to match splats
6544  if (HasSSE2 && isUNPCKHMask(M, VT, HasAVX2) && V2IsUndef &&
6545      (VT == MVT::v2f64 || VT == MVT::v2i64))
6546    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6547
6548  if (isPSHUFDMask(M, VT)) {
6549    // The actual implementation will match the mask in the if above and then
6550    // during isel it can match several different instructions, not only pshufd
6551    // as its name says, sad but true, emulate the behavior for now...
6552    if (isMOVDDUPMask(M, VT) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6553      return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6554
6555    unsigned TargetMask = getShuffleSHUFImmediate(SVOp);
6556
6557    if (HasAVX && (VT == MVT::v4f32 || VT == MVT::v2f64))
6558      return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1, TargetMask, DAG);
6559
6560    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
6561      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6562
6563    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
6564                                TargetMask, DAG);
6565  }
6566
6567  // Check if this can be converted into a logical shift.
6568  bool isLeft = false;
6569  unsigned ShAmt = 0;
6570  SDValue ShVal;
6571  bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6572  if (isShift && ShVal.hasOneUse()) {
6573    // If the shifted value has multiple uses, it may be cheaper to use
6574    // v_set0 + movlhps or movhlps, etc.
6575    EVT EltVT = VT.getVectorElementType();
6576    ShAmt *= EltVT.getSizeInBits();
6577    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6578  }
6579
6580  if (isMOVLMask(M, VT)) {
6581    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6582      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6583    if (!isMOVLPMask(M, VT)) {
6584      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6585        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6586
6587      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6588        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6589    }
6590  }
6591
6592  // FIXME: fold these into legal mask.
6593  if (isMOVLHPSMask(M, VT) && !isUNPCKLMask(M, VT, HasAVX2))
6594    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
6595
6596  if (isMOVHLPSMask(M, VT))
6597    return getMOVHighToLow(Op, dl, DAG);
6598
6599  if (V2IsUndef && isMOVSHDUPMask(M, VT, Subtarget))
6600    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6601
6602  if (V2IsUndef && isMOVSLDUPMask(M, VT, Subtarget))
6603    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6604
6605  if (isMOVLPMask(M, VT))
6606    return getMOVLP(Op, dl, DAG, HasSSE2);
6607
6608  if (ShouldXformToMOVHLPS(M, VT) ||
6609      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), M, VT))
6610    return CommuteVectorShuffle(SVOp, DAG);
6611
6612  if (isShift) {
6613    // No better options. Use a vshldq / vsrldq.
6614    EVT EltVT = VT.getVectorElementType();
6615    ShAmt *= EltVT.getSizeInBits();
6616    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6617  }
6618
6619  bool Commuted = false;
6620  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6621  // 1,1,1,1 -> v8i16 though.
6622  V1IsSplat = isSplatVector(V1.getNode());
6623  V2IsSplat = isSplatVector(V2.getNode());
6624
6625  // Canonicalize the splat or undef, if present, to be on the RHS.
6626  if (!V2IsUndef && V1IsSplat && !V2IsSplat) {
6627    CommuteVectorShuffleMask(M, NumElems);
6628    std::swap(V1, V2);
6629    std::swap(V1IsSplat, V2IsSplat);
6630    Commuted = true;
6631  }
6632
6633  if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
6634    // Shuffling low element of v1 into undef, just return v1.
6635    if (V2IsUndef)
6636      return V1;
6637    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6638    // the instruction selector will not match, so get a canonical MOVL with
6639    // swapped operands to undo the commute.
6640    return getMOVL(DAG, dl, VT, V2, V1);
6641  }
6642
6643  if (isUNPCKLMask(M, VT, HasAVX2))
6644    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6645
6646  if (isUNPCKHMask(M, VT, HasAVX2))
6647    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6648
6649  if (V2IsSplat) {
6650    // Normalize mask so all entries that point to V2 points to its first
6651    // element then try to match unpck{h|l} again. If match, return a
6652    // new vector_shuffle with the corrected mask.p
6653    SmallVector<int, 8> NewMask(M.begin(), M.end());
6654    NormalizeMask(NewMask, NumElems);
6655    if (isUNPCKLMask(NewMask, VT, HasAVX2, true))
6656      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6657    if (isUNPCKHMask(NewMask, VT, HasAVX2, true))
6658      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6659  }
6660
6661  if (Commuted) {
6662    // Commute is back and try unpck* again.
6663    // FIXME: this seems wrong.
6664    CommuteVectorShuffleMask(M, NumElems);
6665    std::swap(V1, V2);
6666    std::swap(V1IsSplat, V2IsSplat);
6667    Commuted = false;
6668
6669    if (isUNPCKLMask(M, VT, HasAVX2))
6670      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6671
6672    if (isUNPCKHMask(M, VT, HasAVX2))
6673      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6674  }
6675
6676  // Normalize the node to match x86 shuffle ops if needed
6677  if (!V2IsUndef && (isSHUFPMask(M, VT, HasAVX, /* Commuted */ true)))
6678    return CommuteVectorShuffle(SVOp, DAG);
6679
6680  // The checks below are all present in isShuffleMaskLegal, but they are
6681  // inlined here right now to enable us to directly emit target specific
6682  // nodes, and remove one by one until they don't return Op anymore.
6683
6684  if (isPALIGNRMask(M, VT, Subtarget))
6685    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6686                                getShufflePALIGNRImmediate(SVOp),
6687                                DAG);
6688
6689  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6690      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6691    if (VT == MVT::v2f64 || VT == MVT::v2i64)
6692      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6693  }
6694
6695  if (isPSHUFHWMask(M, VT, HasAVX2))
6696    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6697                                getShufflePSHUFHWImmediate(SVOp),
6698                                DAG);
6699
6700  if (isPSHUFLWMask(M, VT, HasAVX2))
6701    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6702                                getShufflePSHUFLWImmediate(SVOp),
6703                                DAG);
6704
6705  if (isSHUFPMask(M, VT, HasAVX))
6706    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
6707                                getShuffleSHUFImmediate(SVOp), DAG);
6708
6709  if (isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6710    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6711  if (isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6712    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6713
6714  //===--------------------------------------------------------------------===//
6715  // Generate target specific nodes for 128 or 256-bit shuffles only
6716  // supported in the AVX instruction set.
6717  //
6718
6719  // Handle VMOVDDUPY permutations
6720  if (V2IsUndef && isMOVDDUPYMask(M, VT, HasAVX))
6721    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
6722
6723  // Handle VPERMILPS/D* permutations
6724  if (isVPERMILPMask(M, VT, HasAVX)) {
6725    if (HasAVX2 && VT == MVT::v8i32)
6726      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1,
6727                                  getShuffleSHUFImmediate(SVOp), DAG);
6728    return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
6729                                getShuffleSHUFImmediate(SVOp), DAG);
6730  }
6731
6732  // Handle VPERM2F128/VPERM2I128 permutations
6733  if (isVPERM2X128Mask(M, VT, HasAVX))
6734    return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
6735                                V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
6736
6737  SDValue BlendOp = LowerVECTOR_SHUFFLEtoBlend(SVOp, Subtarget, DAG);
6738  if (BlendOp.getNode())
6739    return BlendOp;
6740
6741  if (V2IsUndef && HasAVX2 && (VT == MVT::v8i32 || VT == MVT::v8f32)) {
6742    SmallVector<SDValue, 8> permclMask;
6743    for (unsigned i = 0; i != 8; ++i) {
6744      permclMask.push_back(DAG.getConstant((M[i]>=0) ? M[i] : 0, MVT::i32));
6745    }
6746    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32,
6747                               &permclMask[0], 8);
6748    // Bitcast is for VPERMPS since mask is v8i32 but node takes v8f32
6749    return DAG.getNode(X86ISD::VPERMV, dl, VT,
6750                       DAG.getNode(ISD::BITCAST, dl, VT, Mask), V1);
6751  }
6752
6753  if (V2IsUndef && HasAVX2 && (VT == MVT::v4i64 || VT == MVT::v4f64))
6754    return getTargetShuffleNode(X86ISD::VPERMI, dl, VT, V1,
6755                                getShuffleCLImmediate(SVOp), DAG);
6756
6757
6758  //===--------------------------------------------------------------------===//
6759  // Since no target specific shuffle was selected for this generic one,
6760  // lower it into other known shuffles. FIXME: this isn't true yet, but
6761  // this is the plan.
6762  //
6763
6764  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6765  if (VT == MVT::v8i16) {
6766    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
6767    if (NewOp.getNode())
6768      return NewOp;
6769  }
6770
6771  if (VT == MVT::v16i8) {
6772    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6773    if (NewOp.getNode())
6774      return NewOp;
6775  }
6776
6777  // Handle all 128-bit wide vectors with 4 elements, and match them with
6778  // several different shuffle types.
6779  if (NumElems == 4 && VT.getSizeInBits() == 128)
6780    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6781
6782  // Handle general 256-bit shuffles
6783  if (VT.is256BitVector())
6784    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6785
6786  return SDValue();
6787}
6788
6789SDValue
6790X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6791                                                SelectionDAG &DAG) const {
6792  EVT VT = Op.getValueType();
6793  DebugLoc dl = Op.getDebugLoc();
6794
6795  if (Op.getOperand(0).getValueType().getSizeInBits() != 128)
6796    return SDValue();
6797
6798  if (VT.getSizeInBits() == 8) {
6799    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6800                                    Op.getOperand(0), Op.getOperand(1));
6801    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6802                                    DAG.getValueType(VT));
6803    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6804  }
6805
6806  if (VT.getSizeInBits() == 16) {
6807    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6808    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6809    if (Idx == 0)
6810      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6811                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6812                                     DAG.getNode(ISD::BITCAST, dl,
6813                                                 MVT::v4i32,
6814                                                 Op.getOperand(0)),
6815                                     Op.getOperand(1)));
6816    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6817                                    Op.getOperand(0), Op.getOperand(1));
6818    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6819                                    DAG.getValueType(VT));
6820    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6821  }
6822
6823  if (VT == MVT::f32) {
6824    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6825    // the result back to FR32 register. It's only worth matching if the
6826    // result has a single use which is a store or a bitcast to i32.  And in
6827    // the case of a store, it's not worth it if the index is a constant 0,
6828    // because a MOVSSmr can be used instead, which is smaller and faster.
6829    if (!Op.hasOneUse())
6830      return SDValue();
6831    SDNode *User = *Op.getNode()->use_begin();
6832    if ((User->getOpcode() != ISD::STORE ||
6833         (isa<ConstantSDNode>(Op.getOperand(1)) &&
6834          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6835        (User->getOpcode() != ISD::BITCAST ||
6836         User->getValueType(0) != MVT::i32))
6837      return SDValue();
6838    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6839                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
6840                                              Op.getOperand(0)),
6841                                              Op.getOperand(1));
6842    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
6843  }
6844
6845  if (VT == MVT::i32 || VT == MVT::i64) {
6846    // ExtractPS/pextrq works with constant index.
6847    if (isa<ConstantSDNode>(Op.getOperand(1)))
6848      return Op;
6849  }
6850  return SDValue();
6851}
6852
6853
6854SDValue
6855X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6856                                           SelectionDAG &DAG) const {
6857  if (!isa<ConstantSDNode>(Op.getOperand(1)))
6858    return SDValue();
6859
6860  SDValue Vec = Op.getOperand(0);
6861  EVT VecVT = Vec.getValueType();
6862
6863  // If this is a 256-bit vector result, first extract the 128-bit vector and
6864  // then extract the element from the 128-bit vector.
6865  if (VecVT.getSizeInBits() == 256) {
6866    DebugLoc dl = Op.getNode()->getDebugLoc();
6867    unsigned NumElems = VecVT.getVectorNumElements();
6868    SDValue Idx = Op.getOperand(1);
6869    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6870
6871    // Get the 128-bit vector.
6872    Vec = Extract128BitVector(Vec, IdxVal, DAG, dl);
6873
6874    if (IdxVal >= NumElems/2)
6875      IdxVal -= NumElems/2;
6876    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6877                       DAG.getConstant(IdxVal, MVT::i32));
6878  }
6879
6880  assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
6881
6882  if (Subtarget->hasSSE41()) {
6883    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6884    if (Res.getNode())
6885      return Res;
6886  }
6887
6888  EVT VT = Op.getValueType();
6889  DebugLoc dl = Op.getDebugLoc();
6890  // TODO: handle v16i8.
6891  if (VT.getSizeInBits() == 16) {
6892    SDValue Vec = Op.getOperand(0);
6893    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6894    if (Idx == 0)
6895      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6896                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6897                                     DAG.getNode(ISD::BITCAST, dl,
6898                                                 MVT::v4i32, Vec),
6899                                     Op.getOperand(1)));
6900    // Transform it so it match pextrw which produces a 32-bit result.
6901    EVT EltVT = MVT::i32;
6902    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6903                                    Op.getOperand(0), Op.getOperand(1));
6904    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6905                                    DAG.getValueType(VT));
6906    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6907  }
6908
6909  if (VT.getSizeInBits() == 32) {
6910    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6911    if (Idx == 0)
6912      return Op;
6913
6914    // SHUFPS the element to the lowest double word, then movss.
6915    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
6916    EVT VVT = Op.getOperand(0).getValueType();
6917    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6918                                       DAG.getUNDEF(VVT), Mask);
6919    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6920                       DAG.getIntPtrConstant(0));
6921  }
6922
6923  if (VT.getSizeInBits() == 64) {
6924    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6925    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6926    //        to match extract_elt for f64.
6927    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6928    if (Idx == 0)
6929      return Op;
6930
6931    // UNPCKHPD the element to the lowest double word, then movsd.
6932    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6933    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6934    int Mask[2] = { 1, -1 };
6935    EVT VVT = Op.getOperand(0).getValueType();
6936    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6937                                       DAG.getUNDEF(VVT), Mask);
6938    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6939                       DAG.getIntPtrConstant(0));
6940  }
6941
6942  return SDValue();
6943}
6944
6945SDValue
6946X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
6947                                               SelectionDAG &DAG) const {
6948  EVT VT = Op.getValueType();
6949  EVT EltVT = VT.getVectorElementType();
6950  DebugLoc dl = Op.getDebugLoc();
6951
6952  SDValue N0 = Op.getOperand(0);
6953  SDValue N1 = Op.getOperand(1);
6954  SDValue N2 = Op.getOperand(2);
6955
6956  if (VT.getSizeInBits() == 256)
6957    return SDValue();
6958
6959  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
6960      isa<ConstantSDNode>(N2)) {
6961    unsigned Opc;
6962    if (VT == MVT::v8i16)
6963      Opc = X86ISD::PINSRW;
6964    else if (VT == MVT::v16i8)
6965      Opc = X86ISD::PINSRB;
6966    else
6967      Opc = X86ISD::PINSRB;
6968
6969    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
6970    // argument.
6971    if (N1.getValueType() != MVT::i32)
6972      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6973    if (N2.getValueType() != MVT::i32)
6974      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6975    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
6976  }
6977
6978  if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
6979    // Bits [7:6] of the constant are the source select.  This will always be
6980    //  zero here.  The DAG Combiner may combine an extract_elt index into these
6981    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
6982    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
6983    // Bits [5:4] of the constant are the destination select.  This is the
6984    //  value of the incoming immediate.
6985    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
6986    //   combine either bitwise AND or insert of float 0.0 to set these bits.
6987    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
6988    // Create this as a scalar to vector..
6989    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
6990    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
6991  }
6992
6993  if ((EltVT == MVT::i32 || EltVT == MVT::i64) && isa<ConstantSDNode>(N2)) {
6994    // PINSR* works with constant index.
6995    return Op;
6996  }
6997  return SDValue();
6998}
6999
7000SDValue
7001X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
7002  EVT VT = Op.getValueType();
7003  EVT EltVT = VT.getVectorElementType();
7004
7005  DebugLoc dl = Op.getDebugLoc();
7006  SDValue N0 = Op.getOperand(0);
7007  SDValue N1 = Op.getOperand(1);
7008  SDValue N2 = Op.getOperand(2);
7009
7010  // If this is a 256-bit vector result, first extract the 128-bit vector,
7011  // insert the element into the extracted half and then place it back.
7012  if (VT.getSizeInBits() == 256) {
7013    if (!isa<ConstantSDNode>(N2))
7014      return SDValue();
7015
7016    // Get the desired 128-bit vector half.
7017    unsigned NumElems = VT.getVectorNumElements();
7018    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
7019    SDValue V = Extract128BitVector(N0, IdxVal, DAG, dl);
7020
7021    // Insert the element into the desired half.
7022    bool Upper = IdxVal >= NumElems/2;
7023    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1,
7024                 DAG.getConstant(Upper ? IdxVal-NumElems/2 : IdxVal, MVT::i32));
7025
7026    // Insert the changed part back to the 256-bit vector
7027    return Insert128BitVector(N0, V, IdxVal, DAG, dl);
7028  }
7029
7030  if (Subtarget->hasSSE41())
7031    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
7032
7033  if (EltVT == MVT::i8)
7034    return SDValue();
7035
7036  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
7037    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
7038    // as its second argument.
7039    if (N1.getValueType() != MVT::i32)
7040      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7041    if (N2.getValueType() != MVT::i32)
7042      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7043    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
7044  }
7045  return SDValue();
7046}
7047
7048SDValue
7049X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
7050  LLVMContext *Context = DAG.getContext();
7051  DebugLoc dl = Op.getDebugLoc();
7052  EVT OpVT = Op.getValueType();
7053
7054  // If this is a 256-bit vector result, first insert into a 128-bit
7055  // vector and then insert into the 256-bit vector.
7056  if (OpVT.getSizeInBits() > 128) {
7057    // Insert into a 128-bit vector.
7058    EVT VT128 = EVT::getVectorVT(*Context,
7059                                 OpVT.getVectorElementType(),
7060                                 OpVT.getVectorNumElements() / 2);
7061
7062    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
7063
7064    // Insert the 128-bit vector.
7065    return Insert128BitVector(DAG.getUNDEF(OpVT), Op, 0, DAG, dl);
7066  }
7067
7068  if (OpVT == MVT::v1i64 &&
7069      Op.getOperand(0).getValueType() == MVT::i64)
7070    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
7071
7072  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
7073  assert(OpVT.getSizeInBits() == 128 && "Expected an SSE type!");
7074  return DAG.getNode(ISD::BITCAST, dl, OpVT,
7075                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
7076}
7077
7078// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
7079// a simple subregister reference or explicit instructions to grab
7080// upper bits of a vector.
7081SDValue
7082X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7083  if (Subtarget->hasAVX()) {
7084    DebugLoc dl = Op.getNode()->getDebugLoc();
7085    SDValue Vec = Op.getNode()->getOperand(0);
7086    SDValue Idx = Op.getNode()->getOperand(1);
7087
7088    if (Op.getNode()->getValueType(0).getSizeInBits() == 128 &&
7089        Vec.getNode()->getValueType(0).getSizeInBits() == 256 &&
7090        isa<ConstantSDNode>(Idx)) {
7091      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7092      return Extract128BitVector(Vec, IdxVal, DAG, dl);
7093    }
7094  }
7095  return SDValue();
7096}
7097
7098// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
7099// simple superregister reference or explicit instructions to insert
7100// the upper bits of a vector.
7101SDValue
7102X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7103  if (Subtarget->hasAVX()) {
7104    DebugLoc dl = Op.getNode()->getDebugLoc();
7105    SDValue Vec = Op.getNode()->getOperand(0);
7106    SDValue SubVec = Op.getNode()->getOperand(1);
7107    SDValue Idx = Op.getNode()->getOperand(2);
7108
7109    if (Op.getNode()->getValueType(0).getSizeInBits() == 256 &&
7110        SubVec.getNode()->getValueType(0).getSizeInBits() == 128 &&
7111        isa<ConstantSDNode>(Idx)) {
7112      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7113      return Insert128BitVector(Vec, SubVec, IdxVal, DAG, dl);
7114    }
7115  }
7116  return SDValue();
7117}
7118
7119// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7120// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7121// one of the above mentioned nodes. It has to be wrapped because otherwise
7122// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7123// be used to form addressing mode. These wrapped nodes will be selected
7124// into MOV32ri.
7125SDValue
7126X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7127  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7128
7129  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7130  // global base reg.
7131  unsigned char OpFlag = 0;
7132  unsigned WrapperKind = X86ISD::Wrapper;
7133  CodeModel::Model M = getTargetMachine().getCodeModel();
7134
7135  if (Subtarget->isPICStyleRIPRel() &&
7136      (M == CodeModel::Small || M == CodeModel::Kernel))
7137    WrapperKind = X86ISD::WrapperRIP;
7138  else if (Subtarget->isPICStyleGOT())
7139    OpFlag = X86II::MO_GOTOFF;
7140  else if (Subtarget->isPICStyleStubPIC())
7141    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7142
7143  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7144                                             CP->getAlignment(),
7145                                             CP->getOffset(), OpFlag);
7146  DebugLoc DL = CP->getDebugLoc();
7147  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7148  // With PIC, the address is actually $g + Offset.
7149  if (OpFlag) {
7150    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7151                         DAG.getNode(X86ISD::GlobalBaseReg,
7152                                     DebugLoc(), getPointerTy()),
7153                         Result);
7154  }
7155
7156  return Result;
7157}
7158
7159SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7160  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7161
7162  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7163  // global base reg.
7164  unsigned char OpFlag = 0;
7165  unsigned WrapperKind = X86ISD::Wrapper;
7166  CodeModel::Model M = getTargetMachine().getCodeModel();
7167
7168  if (Subtarget->isPICStyleRIPRel() &&
7169      (M == CodeModel::Small || M == CodeModel::Kernel))
7170    WrapperKind = X86ISD::WrapperRIP;
7171  else if (Subtarget->isPICStyleGOT())
7172    OpFlag = X86II::MO_GOTOFF;
7173  else if (Subtarget->isPICStyleStubPIC())
7174    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7175
7176  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7177                                          OpFlag);
7178  DebugLoc DL = JT->getDebugLoc();
7179  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7180
7181  // With PIC, the address is actually $g + Offset.
7182  if (OpFlag)
7183    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7184                         DAG.getNode(X86ISD::GlobalBaseReg,
7185                                     DebugLoc(), getPointerTy()),
7186                         Result);
7187
7188  return Result;
7189}
7190
7191SDValue
7192X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7193  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7194
7195  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7196  // global base reg.
7197  unsigned char OpFlag = 0;
7198  unsigned WrapperKind = X86ISD::Wrapper;
7199  CodeModel::Model M = getTargetMachine().getCodeModel();
7200
7201  if (Subtarget->isPICStyleRIPRel() &&
7202      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7203    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7204      OpFlag = X86II::MO_GOTPCREL;
7205    WrapperKind = X86ISD::WrapperRIP;
7206  } else if (Subtarget->isPICStyleGOT()) {
7207    OpFlag = X86II::MO_GOT;
7208  } else if (Subtarget->isPICStyleStubPIC()) {
7209    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7210  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7211    OpFlag = X86II::MO_DARWIN_NONLAZY;
7212  }
7213
7214  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7215
7216  DebugLoc DL = Op.getDebugLoc();
7217  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7218
7219
7220  // With PIC, the address is actually $g + Offset.
7221  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7222      !Subtarget->is64Bit()) {
7223    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7224                         DAG.getNode(X86ISD::GlobalBaseReg,
7225                                     DebugLoc(), getPointerTy()),
7226                         Result);
7227  }
7228
7229  // For symbols that require a load from a stub to get the address, emit the
7230  // load.
7231  if (isGlobalStubReference(OpFlag))
7232    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7233                         MachinePointerInfo::getGOT(), false, false, false, 0);
7234
7235  return Result;
7236}
7237
7238SDValue
7239X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7240  // Create the TargetBlockAddressAddress node.
7241  unsigned char OpFlags =
7242    Subtarget->ClassifyBlockAddressReference();
7243  CodeModel::Model M = getTargetMachine().getCodeModel();
7244  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7245  DebugLoc dl = Op.getDebugLoc();
7246  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
7247                                       /*isTarget=*/true, OpFlags);
7248
7249  if (Subtarget->isPICStyleRIPRel() &&
7250      (M == CodeModel::Small || M == CodeModel::Kernel))
7251    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7252  else
7253    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7254
7255  // With PIC, the address is actually $g + Offset.
7256  if (isGlobalRelativeToPICBase(OpFlags)) {
7257    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7258                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7259                         Result);
7260  }
7261
7262  return Result;
7263}
7264
7265SDValue
7266X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7267                                      int64_t Offset,
7268                                      SelectionDAG &DAG) const {
7269  // Create the TargetGlobalAddress node, folding in the constant
7270  // offset if it is legal.
7271  unsigned char OpFlags =
7272    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7273  CodeModel::Model M = getTargetMachine().getCodeModel();
7274  SDValue Result;
7275  if (OpFlags == X86II::MO_NO_FLAG &&
7276      X86::isOffsetSuitableForCodeModel(Offset, M)) {
7277    // A direct static reference to a global.
7278    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7279    Offset = 0;
7280  } else {
7281    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7282  }
7283
7284  if (Subtarget->isPICStyleRIPRel() &&
7285      (M == CodeModel::Small || M == CodeModel::Kernel))
7286    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7287  else
7288    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7289
7290  // With PIC, the address is actually $g + Offset.
7291  if (isGlobalRelativeToPICBase(OpFlags)) {
7292    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7293                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7294                         Result);
7295  }
7296
7297  // For globals that require a load from a stub to get the address, emit the
7298  // load.
7299  if (isGlobalStubReference(OpFlags))
7300    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7301                         MachinePointerInfo::getGOT(), false, false, false, 0);
7302
7303  // If there was a non-zero offset that we didn't fold, create an explicit
7304  // addition for it.
7305  if (Offset != 0)
7306    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7307                         DAG.getConstant(Offset, getPointerTy()));
7308
7309  return Result;
7310}
7311
7312SDValue
7313X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7314  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7315  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7316  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7317}
7318
7319static SDValue
7320GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7321           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7322           unsigned char OperandFlags, bool LocalDynamic = false) {
7323  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7324  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7325  DebugLoc dl = GA->getDebugLoc();
7326  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7327                                           GA->getValueType(0),
7328                                           GA->getOffset(),
7329                                           OperandFlags);
7330
7331  X86ISD::NodeType CallType = LocalDynamic ? X86ISD::TLSBASEADDR
7332                                           : X86ISD::TLSADDR;
7333
7334  if (InFlag) {
7335    SDValue Ops[] = { Chain,  TGA, *InFlag };
7336    Chain = DAG.getNode(CallType, dl, NodeTys, Ops, 3);
7337  } else {
7338    SDValue Ops[]  = { Chain, TGA };
7339    Chain = DAG.getNode(CallType, dl, NodeTys, Ops, 2);
7340  }
7341
7342  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7343  MFI->setAdjustsStack(true);
7344
7345  SDValue Flag = Chain.getValue(1);
7346  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7347}
7348
7349// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7350static SDValue
7351LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7352                                const EVT PtrVT) {
7353  SDValue InFlag;
7354  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
7355  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7356                                     DAG.getNode(X86ISD::GlobalBaseReg,
7357                                                 DebugLoc(), PtrVT), InFlag);
7358  InFlag = Chain.getValue(1);
7359
7360  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7361}
7362
7363// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7364static SDValue
7365LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7366                                const EVT PtrVT) {
7367  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7368                    X86::RAX, X86II::MO_TLSGD);
7369}
7370
7371static SDValue LowerToTLSLocalDynamicModel(GlobalAddressSDNode *GA,
7372                                           SelectionDAG &DAG,
7373                                           const EVT PtrVT,
7374                                           bool is64Bit) {
7375  DebugLoc dl = GA->getDebugLoc();
7376
7377  // Get the start address of the TLS block for this module.
7378  X86MachineFunctionInfo* MFI = DAG.getMachineFunction()
7379      .getInfo<X86MachineFunctionInfo>();
7380  MFI->incNumLocalDynamicTLSAccesses();
7381
7382  SDValue Base;
7383  if (is64Bit) {
7384    Base = GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT, X86::RAX,
7385                      X86II::MO_TLSLD, /*LocalDynamic=*/true);
7386  } else {
7387    SDValue InFlag;
7388    SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7389        DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), PtrVT), InFlag);
7390    InFlag = Chain.getValue(1);
7391    Base = GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX,
7392                      X86II::MO_TLSLDM, /*LocalDynamic=*/true);
7393  }
7394
7395  // Note: the CleanupLocalDynamicTLSPass will remove redundant computations
7396  // of Base.
7397
7398  // Build x@dtpoff.
7399  unsigned char OperandFlags = X86II::MO_DTPOFF;
7400  unsigned WrapperKind = X86ISD::Wrapper;
7401  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7402                                           GA->getValueType(0),
7403                                           GA->getOffset(), OperandFlags);
7404  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7405
7406  // Add x@dtpoff with the base.
7407  return DAG.getNode(ISD::ADD, dl, PtrVT, Offset, Base);
7408}
7409
7410// Lower ISD::GlobalTLSAddress using the "initial exec" or "local exec" model.
7411static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7412                                   const EVT PtrVT, TLSModel::Model model,
7413                                   bool is64Bit, bool isPIC) {
7414  DebugLoc dl = GA->getDebugLoc();
7415
7416  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7417  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7418                                                         is64Bit ? 257 : 256));
7419
7420  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7421                                      DAG.getIntPtrConstant(0),
7422                                      MachinePointerInfo(Ptr),
7423                                      false, false, false, 0);
7424
7425  unsigned char OperandFlags = 0;
7426  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7427  // initialexec.
7428  unsigned WrapperKind = X86ISD::Wrapper;
7429  if (model == TLSModel::LocalExec) {
7430    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7431  } else if (model == TLSModel::InitialExec) {
7432    if (is64Bit) {
7433      OperandFlags = X86II::MO_GOTTPOFF;
7434      WrapperKind = X86ISD::WrapperRIP;
7435    } else {
7436      OperandFlags = isPIC ? X86II::MO_GOTNTPOFF : X86II::MO_INDNTPOFF;
7437    }
7438  } else {
7439    llvm_unreachable("Unexpected model");
7440  }
7441
7442  // emit "addl x@ntpoff,%eax" (local exec)
7443  // or "addl x@indntpoff,%eax" (initial exec)
7444  // or "addl x@gotntpoff(%ebx) ,%eax" (initial exec, 32-bit pic)
7445  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7446                                           GA->getValueType(0),
7447                                           GA->getOffset(), OperandFlags);
7448  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7449
7450  if (model == TLSModel::InitialExec) {
7451    if (isPIC && !is64Bit) {
7452      Offset = DAG.getNode(ISD::ADD, dl, PtrVT,
7453                          DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), PtrVT),
7454                           Offset);
7455    } else {
7456      Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7457                           MachinePointerInfo::getGOT(), false, false, false,
7458                           0);
7459    }
7460  }
7461
7462  // The address of the thread local variable is the add of the thread
7463  // pointer with the offset of the variable.
7464  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7465}
7466
7467SDValue
7468X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7469
7470  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7471  const GlobalValue *GV = GA->getGlobal();
7472
7473  if (Subtarget->isTargetELF()) {
7474    TLSModel::Model model = getTargetMachine().getTLSModel(GV);
7475
7476    switch (model) {
7477      case TLSModel::GeneralDynamic:
7478        if (Subtarget->is64Bit())
7479          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7480        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7481      case TLSModel::LocalDynamic:
7482        return LowerToTLSLocalDynamicModel(GA, DAG, getPointerTy(),
7483                                           Subtarget->is64Bit());
7484      case TLSModel::InitialExec:
7485      case TLSModel::LocalExec:
7486        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7487                                   Subtarget->is64Bit(),
7488                         getTargetMachine().getRelocationModel() == Reloc::PIC_);
7489    }
7490    llvm_unreachable("Unknown TLS model.");
7491  }
7492
7493  if (Subtarget->isTargetDarwin()) {
7494    // Darwin only has one model of TLS.  Lower to that.
7495    unsigned char OpFlag = 0;
7496    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7497                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7498
7499    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7500    // global base reg.
7501    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7502                  !Subtarget->is64Bit();
7503    if (PIC32)
7504      OpFlag = X86II::MO_TLVP_PIC_BASE;
7505    else
7506      OpFlag = X86II::MO_TLVP;
7507    DebugLoc DL = Op.getDebugLoc();
7508    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7509                                                GA->getValueType(0),
7510                                                GA->getOffset(), OpFlag);
7511    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7512
7513    // With PIC32, the address is actually $g + Offset.
7514    if (PIC32)
7515      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7516                           DAG.getNode(X86ISD::GlobalBaseReg,
7517                                       DebugLoc(), getPointerTy()),
7518                           Offset);
7519
7520    // Lowering the machine isd will make sure everything is in the right
7521    // location.
7522    SDValue Chain = DAG.getEntryNode();
7523    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7524    SDValue Args[] = { Chain, Offset };
7525    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7526
7527    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7528    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7529    MFI->setAdjustsStack(true);
7530
7531    // And our return value (tls address) is in the standard call return value
7532    // location.
7533    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7534    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
7535                              Chain.getValue(1));
7536  }
7537
7538  if (Subtarget->isTargetWindows()) {
7539    // Just use the implicit TLS architecture
7540    // Need to generate someting similar to:
7541    //   mov     rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage
7542    //                                  ; from TEB
7543    //   mov     ecx, dword [rel _tls_index]: Load index (from C runtime)
7544    //   mov     rcx, qword [rdx+rcx*8]
7545    //   mov     eax, .tls$:tlsvar
7546    //   [rax+rcx] contains the address
7547    // Windows 64bit: gs:0x58
7548    // Windows 32bit: fs:__tls_array
7549
7550    // If GV is an alias then use the aliasee for determining
7551    // thread-localness.
7552    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7553      GV = GA->resolveAliasedGlobal(false);
7554    DebugLoc dl = GA->getDebugLoc();
7555    SDValue Chain = DAG.getEntryNode();
7556
7557    // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
7558    // %gs:0x58 (64-bit).
7559    Value *Ptr = Constant::getNullValue(Subtarget->is64Bit()
7560                                        ? Type::getInt8PtrTy(*DAG.getContext(),
7561                                                             256)
7562                                        : Type::getInt32PtrTy(*DAG.getContext(),
7563                                                              257));
7564
7565    SDValue ThreadPointer = DAG.getLoad(getPointerTy(), dl, Chain,
7566                                        Subtarget->is64Bit()
7567                                        ? DAG.getIntPtrConstant(0x58)
7568                                        : DAG.getExternalSymbol("_tls_array",
7569                                                                getPointerTy()),
7570                                        MachinePointerInfo(Ptr),
7571                                        false, false, false, 0);
7572
7573    // Load the _tls_index variable
7574    SDValue IDX = DAG.getExternalSymbol("_tls_index", getPointerTy());
7575    if (Subtarget->is64Bit())
7576      IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, getPointerTy(), Chain,
7577                           IDX, MachinePointerInfo(), MVT::i32,
7578                           false, false, 0);
7579    else
7580      IDX = DAG.getLoad(getPointerTy(), dl, Chain, IDX, MachinePointerInfo(),
7581                        false, false, false, 0);
7582
7583    SDValue Scale = DAG.getConstant(Log2_64_Ceil(TD->getPointerSize()),
7584                                    getPointerTy());
7585    IDX = DAG.getNode(ISD::SHL, dl, getPointerTy(), IDX, Scale);
7586
7587    SDValue res = DAG.getNode(ISD::ADD, dl, getPointerTy(), ThreadPointer, IDX);
7588    res = DAG.getLoad(getPointerTy(), dl, Chain, res, MachinePointerInfo(),
7589                      false, false, false, 0);
7590
7591    // Get the offset of start of .tls section
7592    SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7593                                             GA->getValueType(0),
7594                                             GA->getOffset(), X86II::MO_SECREL);
7595    SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), TGA);
7596
7597    // The address of the thread local variable is the add of the thread
7598    // pointer with the offset of the variable.
7599    return DAG.getNode(ISD::ADD, dl, getPointerTy(), res, Offset);
7600  }
7601
7602  llvm_unreachable("TLS not implemented for this target.");
7603}
7604
7605
7606/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
7607/// and take a 2 x i32 value to shift plus a shift amount.
7608SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{
7609  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7610  EVT VT = Op.getValueType();
7611  unsigned VTBits = VT.getSizeInBits();
7612  DebugLoc dl = Op.getDebugLoc();
7613  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7614  SDValue ShOpLo = Op.getOperand(0);
7615  SDValue ShOpHi = Op.getOperand(1);
7616  SDValue ShAmt  = Op.getOperand(2);
7617  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7618                                     DAG.getConstant(VTBits - 1, MVT::i8))
7619                       : DAG.getConstant(0, VT);
7620
7621  SDValue Tmp2, Tmp3;
7622  if (Op.getOpcode() == ISD::SHL_PARTS) {
7623    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7624    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7625  } else {
7626    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7627    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7628  }
7629
7630  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7631                                DAG.getConstant(VTBits, MVT::i8));
7632  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7633                             AndNode, DAG.getConstant(0, MVT::i8));
7634
7635  SDValue Hi, Lo;
7636  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7637  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7638  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7639
7640  if (Op.getOpcode() == ISD::SHL_PARTS) {
7641    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7642    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7643  } else {
7644    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7645    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7646  }
7647
7648  SDValue Ops[2] = { Lo, Hi };
7649  return DAG.getMergeValues(Ops, 2, dl);
7650}
7651
7652SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7653                                           SelectionDAG &DAG) const {
7654  EVT SrcVT = Op.getOperand(0).getValueType();
7655
7656  if (SrcVT.isVector())
7657    return SDValue();
7658
7659  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7660         "Unknown SINT_TO_FP to lower!");
7661
7662  // These are really Legal; return the operand so the caller accepts it as
7663  // Legal.
7664  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7665    return Op;
7666  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7667      Subtarget->is64Bit()) {
7668    return Op;
7669  }
7670
7671  DebugLoc dl = Op.getDebugLoc();
7672  unsigned Size = SrcVT.getSizeInBits()/8;
7673  MachineFunction &MF = DAG.getMachineFunction();
7674  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7675  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7676  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7677                               StackSlot,
7678                               MachinePointerInfo::getFixedStack(SSFI),
7679                               false, false, 0);
7680  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7681}
7682
7683SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7684                                     SDValue StackSlot,
7685                                     SelectionDAG &DAG) const {
7686  // Build the FILD
7687  DebugLoc DL = Op.getDebugLoc();
7688  SDVTList Tys;
7689  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7690  if (useSSE)
7691    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7692  else
7693    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7694
7695  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7696
7697  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7698  MachineMemOperand *MMO;
7699  if (FI) {
7700    int SSFI = FI->getIndex();
7701    MMO =
7702      DAG.getMachineFunction()
7703      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7704                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7705  } else {
7706    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7707    StackSlot = StackSlot.getOperand(1);
7708  }
7709  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7710  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7711                                           X86ISD::FILD, DL,
7712                                           Tys, Ops, array_lengthof(Ops),
7713                                           SrcVT, MMO);
7714
7715  if (useSSE) {
7716    Chain = Result.getValue(1);
7717    SDValue InFlag = Result.getValue(2);
7718
7719    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7720    // shouldn't be necessary except that RFP cannot be live across
7721    // multiple blocks. When stackifier is fixed, they can be uncoupled.
7722    MachineFunction &MF = DAG.getMachineFunction();
7723    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7724    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7725    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7726    Tys = DAG.getVTList(MVT::Other);
7727    SDValue Ops[] = {
7728      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7729    };
7730    MachineMemOperand *MMO =
7731      DAG.getMachineFunction()
7732      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7733                            MachineMemOperand::MOStore, SSFISize, SSFISize);
7734
7735    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7736                                    Ops, array_lengthof(Ops),
7737                                    Op.getValueType(), MMO);
7738    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7739                         MachinePointerInfo::getFixedStack(SSFI),
7740                         false, false, false, 0);
7741  }
7742
7743  return Result;
7744}
7745
7746// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7747SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7748                                               SelectionDAG &DAG) const {
7749  // This algorithm is not obvious. Here it is what we're trying to output:
7750  /*
7751     movq       %rax,  %xmm0
7752     punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
7753     subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
7754     #ifdef __SSE3__
7755       haddpd   %xmm0, %xmm0
7756     #else
7757       pshufd   $0x4e, %xmm0, %xmm1
7758       addpd    %xmm1, %xmm0
7759     #endif
7760  */
7761
7762  DebugLoc dl = Op.getDebugLoc();
7763  LLVMContext *Context = DAG.getContext();
7764
7765  // Build some magic constants.
7766  const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
7767  Constant *C0 = ConstantDataVector::get(*Context, CV0);
7768  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7769
7770  SmallVector<Constant*,2> CV1;
7771  CV1.push_back(
7772        ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7773  CV1.push_back(
7774        ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7775  Constant *C1 = ConstantVector::get(CV1);
7776  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7777
7778  // Load the 64-bit value into an XMM register.
7779  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
7780                            Op.getOperand(0));
7781  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7782                              MachinePointerInfo::getConstantPool(),
7783                              false, false, false, 16);
7784  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
7785                              DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
7786                              CLod0);
7787
7788  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7789                              MachinePointerInfo::getConstantPool(),
7790                              false, false, false, 16);
7791  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
7792  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7793  SDValue Result;
7794
7795  if (Subtarget->hasSSE3()) {
7796    // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
7797    Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
7798  } else {
7799    SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
7800    SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
7801                                           S2F, 0x4E, DAG);
7802    Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
7803                         DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
7804                         Sub);
7805  }
7806
7807  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
7808                     DAG.getIntPtrConstant(0));
7809}
7810
7811// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
7812SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7813                                               SelectionDAG &DAG) const {
7814  DebugLoc dl = Op.getDebugLoc();
7815  // FP constant to bias correct the final result.
7816  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7817                                   MVT::f64);
7818
7819  // Load the 32-bit value into an XMM register.
7820  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7821                             Op.getOperand(0));
7822
7823  // Zero out the upper parts of the register.
7824  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
7825
7826  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7827                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7828                     DAG.getIntPtrConstant(0));
7829
7830  // Or the load with the bias.
7831  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7832                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7833                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7834                                                   MVT::v2f64, Load)),
7835                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7836                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7837                                                   MVT::v2f64, Bias)));
7838  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7839                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7840                   DAG.getIntPtrConstant(0));
7841
7842  // Subtract the bias.
7843  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7844
7845  // Handle final rounding.
7846  EVT DestVT = Op.getValueType();
7847
7848  if (DestVT.bitsLT(MVT::f64))
7849    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7850                       DAG.getIntPtrConstant(0));
7851  if (DestVT.bitsGT(MVT::f64))
7852    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7853
7854  // Handle final rounding.
7855  return Sub;
7856}
7857
7858SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
7859                                           SelectionDAG &DAG) const {
7860  SDValue N0 = Op.getOperand(0);
7861  DebugLoc dl = Op.getDebugLoc();
7862
7863  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
7864  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
7865  // the optimization here.
7866  if (DAG.SignBitIsZero(N0))
7867    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
7868
7869  EVT SrcVT = N0.getValueType();
7870  EVT DstVT = Op.getValueType();
7871  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
7872    return LowerUINT_TO_FP_i64(Op, DAG);
7873  if (SrcVT == MVT::i32 && X86ScalarSSEf64)
7874    return LowerUINT_TO_FP_i32(Op, DAG);
7875  if (Subtarget->is64Bit() && SrcVT == MVT::i64 && DstVT == MVT::f32)
7876    return SDValue();
7877
7878  // Make a 64-bit buffer, and use it to build an FILD.
7879  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
7880  if (SrcVT == MVT::i32) {
7881    SDValue WordOff = DAG.getConstant(4, getPointerTy());
7882    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
7883                                     getPointerTy(), StackSlot, WordOff);
7884    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7885                                  StackSlot, MachinePointerInfo(),
7886                                  false, false, 0);
7887    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
7888                                  OffsetSlot, MachinePointerInfo(),
7889                                  false, false, 0);
7890    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
7891    return Fild;
7892  }
7893
7894  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
7895  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7896                               StackSlot, MachinePointerInfo(),
7897                               false, false, 0);
7898  // For i64 source, we need to add the appropriate power of 2 if the input
7899  // was negative.  This is the same as the optimization in
7900  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
7901  // we must be careful to do the computation in x87 extended precision, not
7902  // in SSE. (The generic code can't know it's OK to do this, or how to.)
7903  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
7904  MachineMemOperand *MMO =
7905    DAG.getMachineFunction()
7906    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7907                          MachineMemOperand::MOLoad, 8, 8);
7908
7909  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
7910  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
7911  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
7912                                         MVT::i64, MMO);
7913
7914  APInt FF(32, 0x5F800000ULL);
7915
7916  // Check whether the sign bit is set.
7917  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
7918                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
7919                                 ISD::SETLT);
7920
7921  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
7922  SDValue FudgePtr = DAG.getConstantPool(
7923                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
7924                                         getPointerTy());
7925
7926  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
7927  SDValue Zero = DAG.getIntPtrConstant(0);
7928  SDValue Four = DAG.getIntPtrConstant(4);
7929  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
7930                               Zero, Four);
7931  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
7932
7933  // Load the value out, extending it from f32 to f80.
7934  // FIXME: Avoid the extend by constructing the right constant pool?
7935  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
7936                                 FudgePtr, MachinePointerInfo::getConstantPool(),
7937                                 MVT::f32, false, false, 4);
7938  // Extend everything to 80 bits to force it to be done on x87.
7939  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
7940  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
7941}
7942
7943std::pair<SDValue,SDValue> X86TargetLowering::
7944FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned, bool IsReplace) const {
7945  DebugLoc DL = Op.getDebugLoc();
7946
7947  EVT DstTy = Op.getValueType();
7948
7949  if (!IsSigned && !isIntegerTypeFTOL(DstTy)) {
7950    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
7951    DstTy = MVT::i64;
7952  }
7953
7954  assert(DstTy.getSimpleVT() <= MVT::i64 &&
7955         DstTy.getSimpleVT() >= MVT::i16 &&
7956         "Unknown FP_TO_INT to lower!");
7957
7958  // These are really Legal.
7959  if (DstTy == MVT::i32 &&
7960      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7961    return std::make_pair(SDValue(), SDValue());
7962  if (Subtarget->is64Bit() &&
7963      DstTy == MVT::i64 &&
7964      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7965    return std::make_pair(SDValue(), SDValue());
7966
7967  // We lower FP->int64 either into FISTP64 followed by a load from a temporary
7968  // stack slot, or into the FTOL runtime function.
7969  MachineFunction &MF = DAG.getMachineFunction();
7970  unsigned MemSize = DstTy.getSizeInBits()/8;
7971  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7972  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7973
7974  unsigned Opc;
7975  if (!IsSigned && isIntegerTypeFTOL(DstTy))
7976    Opc = X86ISD::WIN_FTOL;
7977  else
7978    switch (DstTy.getSimpleVT().SimpleTy) {
7979    default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
7980    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
7981    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
7982    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
7983    }
7984
7985  SDValue Chain = DAG.getEntryNode();
7986  SDValue Value = Op.getOperand(0);
7987  EVT TheVT = Op.getOperand(0).getValueType();
7988  // FIXME This causes a redundant load/store if the SSE-class value is already
7989  // in memory, such as if it is on the callstack.
7990  if (isScalarFPTypeInSSEReg(TheVT)) {
7991    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
7992    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
7993                         MachinePointerInfo::getFixedStack(SSFI),
7994                         false, false, 0);
7995    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
7996    SDValue Ops[] = {
7997      Chain, StackSlot, DAG.getValueType(TheVT)
7998    };
7999
8000    MachineMemOperand *MMO =
8001      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8002                              MachineMemOperand::MOLoad, MemSize, MemSize);
8003    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
8004                                    DstTy, MMO);
8005    Chain = Value.getValue(1);
8006    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
8007    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8008  }
8009
8010  MachineMemOperand *MMO =
8011    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8012                            MachineMemOperand::MOStore, MemSize, MemSize);
8013
8014  if (Opc != X86ISD::WIN_FTOL) {
8015    // Build the FP_TO_INT*_IN_MEM
8016    SDValue Ops[] = { Chain, Value, StackSlot };
8017    SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
8018                                           Ops, 3, DstTy, MMO);
8019    return std::make_pair(FIST, StackSlot);
8020  } else {
8021    SDValue ftol = DAG.getNode(X86ISD::WIN_FTOL, DL,
8022      DAG.getVTList(MVT::Other, MVT::Glue),
8023      Chain, Value);
8024    SDValue eax = DAG.getCopyFromReg(ftol, DL, X86::EAX,
8025      MVT::i32, ftol.getValue(1));
8026    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), DL, X86::EDX,
8027      MVT::i32, eax.getValue(2));
8028    SDValue Ops[] = { eax, edx };
8029    SDValue pair = IsReplace
8030      ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops, 2)
8031      : DAG.getMergeValues(Ops, 2, DL);
8032    return std::make_pair(pair, SDValue());
8033  }
8034}
8035
8036SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
8037                                           SelectionDAG &DAG) const {
8038  if (Op.getValueType().isVector())
8039    return SDValue();
8040
8041  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
8042    /*IsSigned=*/ true, /*IsReplace=*/ false);
8043  SDValue FIST = Vals.first, StackSlot = Vals.second;
8044  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
8045  if (FIST.getNode() == 0) return Op;
8046
8047  if (StackSlot.getNode())
8048    // Load the result.
8049    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
8050                       FIST, StackSlot, MachinePointerInfo(),
8051                       false, false, false, 0);
8052
8053  // The node is the result.
8054  return FIST;
8055}
8056
8057SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
8058                                           SelectionDAG &DAG) const {
8059  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
8060    /*IsSigned=*/ false, /*IsReplace=*/ false);
8061  SDValue FIST = Vals.first, StackSlot = Vals.second;
8062  assert(FIST.getNode() && "Unexpected failure");
8063
8064  if (StackSlot.getNode())
8065    // Load the result.
8066    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
8067                       FIST, StackSlot, MachinePointerInfo(),
8068                       false, false, false, 0);
8069
8070  // The node is the result.
8071  return FIST;
8072}
8073
8074SDValue X86TargetLowering::LowerFABS(SDValue Op,
8075                                     SelectionDAG &DAG) const {
8076  LLVMContext *Context = DAG.getContext();
8077  DebugLoc dl = Op.getDebugLoc();
8078  EVT VT = Op.getValueType();
8079  EVT EltVT = VT;
8080  if (VT.isVector())
8081    EltVT = VT.getVectorElementType();
8082  Constant *C;
8083  if (EltVT == MVT::f64) {
8084    C = ConstantVector::getSplat(2,
8085                ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
8086  } else {
8087    C = ConstantVector::getSplat(4,
8088               ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
8089  }
8090  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8091  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8092                             MachinePointerInfo::getConstantPool(),
8093                             false, false, false, 16);
8094  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
8095}
8096
8097SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
8098  LLVMContext *Context = DAG.getContext();
8099  DebugLoc dl = Op.getDebugLoc();
8100  EVT VT = Op.getValueType();
8101  EVT EltVT = VT;
8102  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
8103  if (VT.isVector()) {
8104    EltVT = VT.getVectorElementType();
8105    NumElts = VT.getVectorNumElements();
8106  }
8107  Constant *C;
8108  if (EltVT == MVT::f64)
8109    C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
8110  else
8111    C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
8112  C = ConstantVector::getSplat(NumElts, C);
8113  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8114  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8115                             MachinePointerInfo::getConstantPool(),
8116                             false, false, false, 16);
8117  if (VT.isVector()) {
8118    MVT XORVT = VT.getSizeInBits() == 128 ? MVT::v2i64 : MVT::v4i64;
8119    return DAG.getNode(ISD::BITCAST, dl, VT,
8120                       DAG.getNode(ISD::XOR, dl, XORVT,
8121                                   DAG.getNode(ISD::BITCAST, dl, XORVT,
8122                                               Op.getOperand(0)),
8123                                   DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
8124  }
8125
8126  return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
8127}
8128
8129SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
8130  LLVMContext *Context = DAG.getContext();
8131  SDValue Op0 = Op.getOperand(0);
8132  SDValue Op1 = Op.getOperand(1);
8133  DebugLoc dl = Op.getDebugLoc();
8134  EVT VT = Op.getValueType();
8135  EVT SrcVT = Op1.getValueType();
8136
8137  // If second operand is smaller, extend it first.
8138  if (SrcVT.bitsLT(VT)) {
8139    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
8140    SrcVT = VT;
8141  }
8142  // And if it is bigger, shrink it first.
8143  if (SrcVT.bitsGT(VT)) {
8144    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
8145    SrcVT = VT;
8146  }
8147
8148  // At this point the operands and the result should have the same
8149  // type, and that won't be f80 since that is not custom lowered.
8150
8151  // First get the sign bit of second operand.
8152  SmallVector<Constant*,4> CV;
8153  if (SrcVT == MVT::f64) {
8154    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
8155    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8156  } else {
8157    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
8158    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8159    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8160    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8161  }
8162  Constant *C = ConstantVector::get(CV);
8163  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8164  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
8165                              MachinePointerInfo::getConstantPool(),
8166                              false, false, false, 16);
8167  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
8168
8169  // Shift sign bit right or left if the two operands have different types.
8170  if (SrcVT.bitsGT(VT)) {
8171    // Op0 is MVT::f32, Op1 is MVT::f64.
8172    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
8173    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
8174                          DAG.getConstant(32, MVT::i32));
8175    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
8176    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
8177                          DAG.getIntPtrConstant(0));
8178  }
8179
8180  // Clear first operand sign bit.
8181  CV.clear();
8182  if (VT == MVT::f64) {
8183    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
8184    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8185  } else {
8186    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
8187    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8188    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8189    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8190  }
8191  C = ConstantVector::get(CV);
8192  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8193  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8194                              MachinePointerInfo::getConstantPool(),
8195                              false, false, false, 16);
8196  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
8197
8198  // Or the value with the sign bit.
8199  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
8200}
8201
8202SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
8203  SDValue N0 = Op.getOperand(0);
8204  DebugLoc dl = Op.getDebugLoc();
8205  EVT VT = Op.getValueType();
8206
8207  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
8208  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
8209                                  DAG.getConstant(1, VT));
8210  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
8211}
8212
8213/// Emit nodes that will be selected as "test Op0,Op0", or something
8214/// equivalent.
8215SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
8216                                    SelectionDAG &DAG) const {
8217  DebugLoc dl = Op.getDebugLoc();
8218
8219  // CF and OF aren't always set the way we want. Determine which
8220  // of these we need.
8221  bool NeedCF = false;
8222  bool NeedOF = false;
8223  switch (X86CC) {
8224  default: break;
8225  case X86::COND_A: case X86::COND_AE:
8226  case X86::COND_B: case X86::COND_BE:
8227    NeedCF = true;
8228    break;
8229  case X86::COND_G: case X86::COND_GE:
8230  case X86::COND_L: case X86::COND_LE:
8231  case X86::COND_O: case X86::COND_NO:
8232    NeedOF = true;
8233    break;
8234  }
8235
8236  // See if we can use the EFLAGS value from the operand instead of
8237  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8238  // we prove that the arithmetic won't overflow, we can't use OF or CF.
8239  if (Op.getResNo() != 0 || NeedOF || NeedCF)
8240    // Emit a CMP with 0, which is the TEST pattern.
8241    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8242                       DAG.getConstant(0, Op.getValueType()));
8243
8244  unsigned Opcode = 0;
8245  unsigned NumOperands = 0;
8246  switch (Op.getNode()->getOpcode()) {
8247  case ISD::ADD:
8248    // Due to an isel shortcoming, be conservative if this add is likely to be
8249    // selected as part of a load-modify-store instruction. When the root node
8250    // in a match is a store, isel doesn't know how to remap non-chain non-flag
8251    // uses of other nodes in the match, such as the ADD in this case. This
8252    // leads to the ADD being left around and reselected, with the result being
8253    // two adds in the output.  Alas, even if none our users are stores, that
8254    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
8255    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
8256    // climbing the DAG back to the root, and it doesn't seem to be worth the
8257    // effort.
8258    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8259         UE = Op.getNode()->use_end(); UI != UE; ++UI)
8260      if (UI->getOpcode() != ISD::CopyToReg &&
8261          UI->getOpcode() != ISD::SETCC &&
8262          UI->getOpcode() != ISD::STORE)
8263        goto default_case;
8264
8265    if (ConstantSDNode *C =
8266        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
8267      // An add of one will be selected as an INC.
8268      if (C->getAPIntValue() == 1) {
8269        Opcode = X86ISD::INC;
8270        NumOperands = 1;
8271        break;
8272      }
8273
8274      // An add of negative one (subtract of one) will be selected as a DEC.
8275      if (C->getAPIntValue().isAllOnesValue()) {
8276        Opcode = X86ISD::DEC;
8277        NumOperands = 1;
8278        break;
8279      }
8280    }
8281
8282    // Otherwise use a regular EFLAGS-setting add.
8283    Opcode = X86ISD::ADD;
8284    NumOperands = 2;
8285    break;
8286  case ISD::AND: {
8287    // If the primary and result isn't used, don't bother using X86ISD::AND,
8288    // because a TEST instruction will be better.
8289    bool NonFlagUse = false;
8290    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8291           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8292      SDNode *User = *UI;
8293      unsigned UOpNo = UI.getOperandNo();
8294      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8295        // Look pass truncate.
8296        UOpNo = User->use_begin().getOperandNo();
8297        User = *User->use_begin();
8298      }
8299
8300      if (User->getOpcode() != ISD::BRCOND &&
8301          User->getOpcode() != ISD::SETCC &&
8302          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
8303        NonFlagUse = true;
8304        break;
8305      }
8306    }
8307
8308    if (!NonFlagUse)
8309      break;
8310  }
8311    // FALL THROUGH
8312  case ISD::SUB:
8313  case ISD::OR:
8314  case ISD::XOR:
8315    // Due to the ISEL shortcoming noted above, be conservative if this op is
8316    // likely to be selected as part of a load-modify-store instruction.
8317    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8318           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8319      if (UI->getOpcode() == ISD::STORE)
8320        goto default_case;
8321
8322    // Otherwise use a regular EFLAGS-setting instruction.
8323    switch (Op.getNode()->getOpcode()) {
8324    default: llvm_unreachable("unexpected operator!");
8325    case ISD::SUB:
8326      // If the only use of SUB is EFLAGS, use CMP instead.
8327      if (Op.hasOneUse())
8328        Opcode = X86ISD::CMP;
8329      else
8330        Opcode = X86ISD::SUB;
8331      break;
8332    case ISD::OR:  Opcode = X86ISD::OR;  break;
8333    case ISD::XOR: Opcode = X86ISD::XOR; break;
8334    case ISD::AND: Opcode = X86ISD::AND; break;
8335    }
8336
8337    NumOperands = 2;
8338    break;
8339  case X86ISD::ADD:
8340  case X86ISD::SUB:
8341  case X86ISD::INC:
8342  case X86ISD::DEC:
8343  case X86ISD::OR:
8344  case X86ISD::XOR:
8345  case X86ISD::AND:
8346    return SDValue(Op.getNode(), 1);
8347  default:
8348  default_case:
8349    break;
8350  }
8351
8352  if (Opcode == 0)
8353    // Emit a CMP with 0, which is the TEST pattern.
8354    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8355                       DAG.getConstant(0, Op.getValueType()));
8356
8357  if (Opcode == X86ISD::CMP) {
8358    SDValue New = DAG.getNode(Opcode, dl, MVT::i32, Op.getOperand(0),
8359                              Op.getOperand(1));
8360    // We can't replace usage of SUB with CMP.
8361    // The SUB node will be removed later because there is no use of it.
8362    return SDValue(New.getNode(), 0);
8363  }
8364
8365  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
8366  SmallVector<SDValue, 4> Ops;
8367  for (unsigned i = 0; i != NumOperands; ++i)
8368    Ops.push_back(Op.getOperand(i));
8369
8370  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
8371  DAG.ReplaceAllUsesWith(Op, New);
8372  return SDValue(New.getNode(), 1);
8373}
8374
8375/// Emit nodes that will be selected as "cmp Op0,Op1", or something
8376/// equivalent.
8377SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
8378                                   SelectionDAG &DAG) const {
8379  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
8380    if (C->getAPIntValue() == 0)
8381      return EmitTest(Op0, X86CC, DAG);
8382
8383  DebugLoc dl = Op0.getDebugLoc();
8384  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
8385}
8386
8387/// Convert a comparison if required by the subtarget.
8388SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp,
8389                                                 SelectionDAG &DAG) const {
8390  // If the subtarget does not support the FUCOMI instruction, floating-point
8391  // comparisons have to be converted.
8392  if (Subtarget->hasCMov() ||
8393      Cmp.getOpcode() != X86ISD::CMP ||
8394      !Cmp.getOperand(0).getValueType().isFloatingPoint() ||
8395      !Cmp.getOperand(1).getValueType().isFloatingPoint())
8396    return Cmp;
8397
8398  // The instruction selector will select an FUCOM instruction instead of
8399  // FUCOMI, which writes the comparison result to FPSW instead of EFLAGS. Hence
8400  // build an SDNode sequence that transfers the result from FPSW into EFLAGS:
8401  // (X86sahf (trunc (srl (X86fp_stsw (trunc (X86cmp ...)), 8))))
8402  DebugLoc dl = Cmp.getDebugLoc();
8403  SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp);
8404  SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW);
8405  SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW,
8406                            DAG.getConstant(8, MVT::i8));
8407  SDValue TruncSrl = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Srl);
8408  return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl);
8409}
8410
8411/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
8412/// if it's possible.
8413SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
8414                                     DebugLoc dl, SelectionDAG &DAG) const {
8415  SDValue Op0 = And.getOperand(0);
8416  SDValue Op1 = And.getOperand(1);
8417  if (Op0.getOpcode() == ISD::TRUNCATE)
8418    Op0 = Op0.getOperand(0);
8419  if (Op1.getOpcode() == ISD::TRUNCATE)
8420    Op1 = Op1.getOperand(0);
8421
8422  SDValue LHS, RHS;
8423  if (Op1.getOpcode() == ISD::SHL)
8424    std::swap(Op0, Op1);
8425  if (Op0.getOpcode() == ISD::SHL) {
8426    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
8427      if (And00C->getZExtValue() == 1) {
8428        // If we looked past a truncate, check that it's only truncating away
8429        // known zeros.
8430        unsigned BitWidth = Op0.getValueSizeInBits();
8431        unsigned AndBitWidth = And.getValueSizeInBits();
8432        if (BitWidth > AndBitWidth) {
8433          APInt Zeros, Ones;
8434          DAG.ComputeMaskedBits(Op0, Zeros, Ones);
8435          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
8436            return SDValue();
8437        }
8438        LHS = Op1;
8439        RHS = Op0.getOperand(1);
8440      }
8441  } else if (Op1.getOpcode() == ISD::Constant) {
8442    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
8443    uint64_t AndRHSVal = AndRHS->getZExtValue();
8444    SDValue AndLHS = Op0;
8445
8446    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
8447      LHS = AndLHS.getOperand(0);
8448      RHS = AndLHS.getOperand(1);
8449    }
8450
8451    // Use BT if the immediate can't be encoded in a TEST instruction.
8452    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
8453      LHS = AndLHS;
8454      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
8455    }
8456  }
8457
8458  if (LHS.getNode()) {
8459    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
8460    // instruction.  Since the shift amount is in-range-or-undefined, we know
8461    // that doing a bittest on the i32 value is ok.  We extend to i32 because
8462    // the encoding for the i16 version is larger than the i32 version.
8463    // Also promote i16 to i32 for performance / code size reason.
8464    if (LHS.getValueType() == MVT::i8 ||
8465        LHS.getValueType() == MVT::i16)
8466      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
8467
8468    // If the operand types disagree, extend the shift amount to match.  Since
8469    // BT ignores high bits (like shifts) we can use anyextend.
8470    if (LHS.getValueType() != RHS.getValueType())
8471      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
8472
8473    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
8474    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
8475    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8476                       DAG.getConstant(Cond, MVT::i8), BT);
8477  }
8478
8479  return SDValue();
8480}
8481
8482SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
8483
8484  if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
8485
8486  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
8487  SDValue Op0 = Op.getOperand(0);
8488  SDValue Op1 = Op.getOperand(1);
8489  DebugLoc dl = Op.getDebugLoc();
8490  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8491
8492  // Optimize to BT if possible.
8493  // Lower (X & (1 << N)) == 0 to BT(X, N).
8494  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
8495  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
8496  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
8497      Op1.getOpcode() == ISD::Constant &&
8498      cast<ConstantSDNode>(Op1)->isNullValue() &&
8499      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8500    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
8501    if (NewSetCC.getNode())
8502      return NewSetCC;
8503  }
8504
8505  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
8506  // these.
8507  if (Op1.getOpcode() == ISD::Constant &&
8508      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
8509       cast<ConstantSDNode>(Op1)->isNullValue()) &&
8510      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8511
8512    // If the input is a setcc, then reuse the input setcc or use a new one with
8513    // the inverted condition.
8514    if (Op0.getOpcode() == X86ISD::SETCC) {
8515      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
8516      bool Invert = (CC == ISD::SETNE) ^
8517        cast<ConstantSDNode>(Op1)->isNullValue();
8518      if (!Invert) return Op0;
8519
8520      CCode = X86::GetOppositeBranchCondition(CCode);
8521      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8522                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
8523    }
8524  }
8525
8526  bool isFP = Op1.getValueType().isFloatingPoint();
8527  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
8528  if (X86CC == X86::COND_INVALID)
8529    return SDValue();
8530
8531  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
8532  EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG);
8533  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8534                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
8535}
8536
8537// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
8538// ones, and then concatenate the result back.
8539static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
8540  EVT VT = Op.getValueType();
8541
8542  assert(VT.getSizeInBits() == 256 && Op.getOpcode() == ISD::SETCC &&
8543         "Unsupported value type for operation");
8544
8545  unsigned NumElems = VT.getVectorNumElements();
8546  DebugLoc dl = Op.getDebugLoc();
8547  SDValue CC = Op.getOperand(2);
8548
8549  // Extract the LHS vectors
8550  SDValue LHS = Op.getOperand(0);
8551  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
8552  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
8553
8554  // Extract the RHS vectors
8555  SDValue RHS = Op.getOperand(1);
8556  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
8557  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
8558
8559  // Issue the operation on the smaller types and concatenate the result back
8560  MVT EltVT = VT.getVectorElementType().getSimpleVT();
8561  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
8562  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8563                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
8564                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
8565}
8566
8567
8568SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
8569  SDValue Cond;
8570  SDValue Op0 = Op.getOperand(0);
8571  SDValue Op1 = Op.getOperand(1);
8572  SDValue CC = Op.getOperand(2);
8573  EVT VT = Op.getValueType();
8574  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
8575  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
8576  DebugLoc dl = Op.getDebugLoc();
8577
8578  if (isFP) {
8579    unsigned SSECC = 8;
8580    EVT EltVT = Op0.getValueType().getVectorElementType();
8581    assert(EltVT == MVT::f32 || EltVT == MVT::f64); (void)EltVT;
8582
8583    bool Swap = false;
8584
8585    // SSE Condition code mapping:
8586    //  0 - EQ
8587    //  1 - LT
8588    //  2 - LE
8589    //  3 - UNORD
8590    //  4 - NEQ
8591    //  5 - NLT
8592    //  6 - NLE
8593    //  7 - ORD
8594    switch (SetCCOpcode) {
8595    default: break;
8596    case ISD::SETOEQ:
8597    case ISD::SETEQ:  SSECC = 0; break;
8598    case ISD::SETOGT:
8599    case ISD::SETGT: Swap = true; // Fallthrough
8600    case ISD::SETLT:
8601    case ISD::SETOLT: SSECC = 1; break;
8602    case ISD::SETOGE:
8603    case ISD::SETGE: Swap = true; // Fallthrough
8604    case ISD::SETLE:
8605    case ISD::SETOLE: SSECC = 2; break;
8606    case ISD::SETUO:  SSECC = 3; break;
8607    case ISD::SETUNE:
8608    case ISD::SETNE:  SSECC = 4; break;
8609    case ISD::SETULE: Swap = true;
8610    case ISD::SETUGE: SSECC = 5; break;
8611    case ISD::SETULT: Swap = true;
8612    case ISD::SETUGT: SSECC = 6; break;
8613    case ISD::SETO:   SSECC = 7; break;
8614    }
8615    if (Swap)
8616      std::swap(Op0, Op1);
8617
8618    // In the two special cases we can't handle, emit two comparisons.
8619    if (SSECC == 8) {
8620      if (SetCCOpcode == ISD::SETUEQ) {
8621        SDValue UNORD, EQ;
8622        UNORD = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8623                            DAG.getConstant(3, MVT::i8));
8624        EQ = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8625                         DAG.getConstant(0, MVT::i8));
8626        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
8627      }
8628      if (SetCCOpcode == ISD::SETONE) {
8629        SDValue ORD, NEQ;
8630        ORD = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8631                          DAG.getConstant(7, MVT::i8));
8632        NEQ = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8633                          DAG.getConstant(4, MVT::i8));
8634        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
8635      }
8636      llvm_unreachable("Illegal FP comparison");
8637    }
8638    // Handle all other FP comparisons here.
8639    return DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8640                       DAG.getConstant(SSECC, MVT::i8));
8641  }
8642
8643  // Break 256-bit integer vector compare into smaller ones.
8644  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
8645    return Lower256IntVSETCC(Op, DAG);
8646
8647  // We are handling one of the integer comparisons here.  Since SSE only has
8648  // GT and EQ comparisons for integer, swapping operands and multiple
8649  // operations may be required for some comparisons.
8650  unsigned Opc = 0;
8651  bool Swap = false, Invert = false, FlipSigns = false;
8652
8653  switch (SetCCOpcode) {
8654  default: break;
8655  case ISD::SETNE:  Invert = true;
8656  case ISD::SETEQ:  Opc = X86ISD::PCMPEQ; break;
8657  case ISD::SETLT:  Swap = true;
8658  case ISD::SETGT:  Opc = X86ISD::PCMPGT; break;
8659  case ISD::SETGE:  Swap = true;
8660  case ISD::SETLE:  Opc = X86ISD::PCMPGT; Invert = true; break;
8661  case ISD::SETULT: Swap = true;
8662  case ISD::SETUGT: Opc = X86ISD::PCMPGT; FlipSigns = true; break;
8663  case ISD::SETUGE: Swap = true;
8664  case ISD::SETULE: Opc = X86ISD::PCMPGT; FlipSigns = true; Invert = true; break;
8665  }
8666  if (Swap)
8667    std::swap(Op0, Op1);
8668
8669  // Check that the operation in question is available (most are plain SSE2,
8670  // but PCMPGTQ and PCMPEQQ have different requirements).
8671  if (Opc == X86ISD::PCMPGT && VT == MVT::v2i64 && !Subtarget->hasSSE42())
8672    return SDValue();
8673  if (Opc == X86ISD::PCMPEQ && VT == MVT::v2i64 && !Subtarget->hasSSE41())
8674    return SDValue();
8675
8676  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
8677  // bits of the inputs before performing those operations.
8678  if (FlipSigns) {
8679    EVT EltVT = VT.getVectorElementType();
8680    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
8681                                      EltVT);
8682    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
8683    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
8684                                    SignBits.size());
8685    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
8686    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
8687  }
8688
8689  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
8690
8691  // If the logical-not of the result is required, perform that now.
8692  if (Invert)
8693    Result = DAG.getNOT(dl, Result, VT);
8694
8695  return Result;
8696}
8697
8698// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
8699static bool isX86LogicalCmp(SDValue Op) {
8700  unsigned Opc = Op.getNode()->getOpcode();
8701  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI ||
8702      Opc == X86ISD::SAHF)
8703    return true;
8704  if (Op.getResNo() == 1 &&
8705      (Opc == X86ISD::ADD ||
8706       Opc == X86ISD::SUB ||
8707       Opc == X86ISD::ADC ||
8708       Opc == X86ISD::SBB ||
8709       Opc == X86ISD::SMUL ||
8710       Opc == X86ISD::UMUL ||
8711       Opc == X86ISD::INC ||
8712       Opc == X86ISD::DEC ||
8713       Opc == X86ISD::OR ||
8714       Opc == X86ISD::XOR ||
8715       Opc == X86ISD::AND))
8716    return true;
8717
8718  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
8719    return true;
8720
8721  return false;
8722}
8723
8724static bool isZero(SDValue V) {
8725  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8726  return C && C->isNullValue();
8727}
8728
8729static bool isAllOnes(SDValue V) {
8730  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8731  return C && C->isAllOnesValue();
8732}
8733
8734SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8735  bool addTest = true;
8736  SDValue Cond  = Op.getOperand(0);
8737  SDValue Op1 = Op.getOperand(1);
8738  SDValue Op2 = Op.getOperand(2);
8739  DebugLoc DL = Op.getDebugLoc();
8740  SDValue CC;
8741
8742  if (Cond.getOpcode() == ISD::SETCC) {
8743    SDValue NewCond = LowerSETCC(Cond, DAG);
8744    if (NewCond.getNode())
8745      Cond = NewCond;
8746  }
8747
8748  // Handle the following cases related to max and min:
8749  // (a > b) ? (a-b) : 0
8750  // (a >= b) ? (a-b) : 0
8751  // (b < a) ? (a-b) : 0
8752  // (b <= a) ? (a-b) : 0
8753  // Comparison is removed to use EFLAGS from SUB.
8754  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op2))
8755    if (Cond.getOpcode() == X86ISD::SETCC &&
8756        Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
8757        (Op1.getOpcode() == ISD::SUB || Op1.getOpcode() == X86ISD::SUB) &&
8758        C->getAPIntValue() == 0) {
8759      SDValue Cmp = Cond.getOperand(1);
8760      unsigned CC = cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
8761      if ((DAG.isEqualTo(Op1.getOperand(0), Cmp.getOperand(0)) &&
8762           DAG.isEqualTo(Op1.getOperand(1), Cmp.getOperand(1)) &&
8763           (CC == X86::COND_G || CC == X86::COND_GE ||
8764            CC == X86::COND_A || CC == X86::COND_AE)) ||
8765          (DAG.isEqualTo(Op1.getOperand(0), Cmp.getOperand(1)) &&
8766           DAG.isEqualTo(Op1.getOperand(1), Cmp.getOperand(0)) &&
8767           (CC == X86::COND_L || CC == X86::COND_LE ||
8768            CC == X86::COND_B || CC == X86::COND_BE))) {
8769
8770        if (Op1.getOpcode() == ISD::SUB) {
8771          SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i32);
8772          SDValue New = DAG.getNode(X86ISD::SUB, DL, VTs,
8773                                    Op1.getOperand(0), Op1.getOperand(1));
8774          DAG.ReplaceAllUsesWith(Op1, New);
8775          Op1 = New;
8776        }
8777
8778        SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
8779        unsigned NewCC = (CC == X86::COND_G || CC == X86::COND_GE ||
8780                          CC == X86::COND_L ||
8781                          CC == X86::COND_LE) ? X86::COND_GE : X86::COND_AE;
8782        SDValue Ops[] = { Op2, Op1, DAG.getConstant(NewCC, MVT::i8),
8783                          SDValue(Op1.getNode(), 1) };
8784        return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
8785      }
8786    }
8787
8788  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
8789  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
8790  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
8791  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
8792  if (Cond.getOpcode() == X86ISD::SETCC &&
8793      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
8794      isZero(Cond.getOperand(1).getOperand(1))) {
8795    SDValue Cmp = Cond.getOperand(1);
8796
8797    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
8798
8799    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
8800        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
8801      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
8802
8803      SDValue CmpOp0 = Cmp.getOperand(0);
8804      // Apply further optimizations for special cases
8805      // (select (x != 0), -1, 0) -> neg & sbb
8806      // (select (x == 0), 0, -1) -> neg & sbb
8807      if (ConstantSDNode *YC = dyn_cast<ConstantSDNode>(Y))
8808        if (YC->isNullValue() &&
8809            (isAllOnes(Op1) == (CondCode == X86::COND_NE))) {
8810          SDVTList VTs = DAG.getVTList(CmpOp0.getValueType(), MVT::i32);
8811          SDValue Neg = DAG.getNode(X86ISD::SUB, DL, VTs,
8812                                    DAG.getConstant(0, CmpOp0.getValueType()),
8813                                    CmpOp0);
8814          SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8815                                    DAG.getConstant(X86::COND_B, MVT::i8),
8816                                    SDValue(Neg.getNode(), 1));
8817          return Res;
8818        }
8819
8820      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
8821                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
8822      Cmp = ConvertCmpIfNecessary(Cmp, DAG);
8823
8824      SDValue Res =   // Res = 0 or -1.
8825        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8826                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
8827
8828      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
8829        Res = DAG.getNOT(DL, Res, Res.getValueType());
8830
8831      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
8832      if (N2C == 0 || !N2C->isNullValue())
8833        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
8834      return Res;
8835    }
8836  }
8837
8838  // Look past (and (setcc_carry (cmp ...)), 1).
8839  if (Cond.getOpcode() == ISD::AND &&
8840      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8841    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8842    if (C && C->getAPIntValue() == 1)
8843      Cond = Cond.getOperand(0);
8844  }
8845
8846  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8847  // setting operand in place of the X86ISD::SETCC.
8848  unsigned CondOpcode = Cond.getOpcode();
8849  if (CondOpcode == X86ISD::SETCC ||
8850      CondOpcode == X86ISD::SETCC_CARRY) {
8851    CC = Cond.getOperand(0);
8852
8853    SDValue Cmp = Cond.getOperand(1);
8854    unsigned Opc = Cmp.getOpcode();
8855    EVT VT = Op.getValueType();
8856
8857    bool IllegalFPCMov = false;
8858    if (VT.isFloatingPoint() && !VT.isVector() &&
8859        !isScalarFPTypeInSSEReg(VT))  // FPStack?
8860      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
8861
8862    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
8863        Opc == X86ISD::BT) { // FIXME
8864      Cond = Cmp;
8865      addTest = false;
8866    }
8867  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8868             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8869             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8870              Cond.getOperand(0).getValueType() != MVT::i8)) {
8871    SDValue LHS = Cond.getOperand(0);
8872    SDValue RHS = Cond.getOperand(1);
8873    unsigned X86Opcode;
8874    unsigned X86Cond;
8875    SDVTList VTs;
8876    switch (CondOpcode) {
8877    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8878    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8879    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8880    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8881    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8882    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8883    default: llvm_unreachable("unexpected overflowing operator");
8884    }
8885    if (CondOpcode == ISD::UMULO)
8886      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8887                          MVT::i32);
8888    else
8889      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8890
8891    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
8892
8893    if (CondOpcode == ISD::UMULO)
8894      Cond = X86Op.getValue(2);
8895    else
8896      Cond = X86Op.getValue(1);
8897
8898    CC = DAG.getConstant(X86Cond, MVT::i8);
8899    addTest = false;
8900  }
8901
8902  if (addTest) {
8903    // Look pass the truncate.
8904    if (Cond.getOpcode() == ISD::TRUNCATE)
8905      Cond = Cond.getOperand(0);
8906
8907    // We know the result of AND is compared against zero. Try to match
8908    // it to BT.
8909    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8910      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
8911      if (NewSetCC.getNode()) {
8912        CC = NewSetCC.getOperand(0);
8913        Cond = NewSetCC.getOperand(1);
8914        addTest = false;
8915      }
8916    }
8917  }
8918
8919  if (addTest) {
8920    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8921    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8922  }
8923
8924  // a <  b ? -1 :  0 -> RES = ~setcc_carry
8925  // a <  b ?  0 : -1 -> RES = setcc_carry
8926  // a >= b ? -1 :  0 -> RES = setcc_carry
8927  // a >= b ?  0 : -1 -> RES = ~setcc_carry
8928  if (Cond.getOpcode() == X86ISD::CMP) {
8929    Cond = ConvertCmpIfNecessary(Cond, DAG);
8930    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
8931
8932    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
8933        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
8934      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8935                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
8936      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
8937        return DAG.getNOT(DL, Res, Res.getValueType());
8938      return Res;
8939    }
8940  }
8941
8942  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
8943  // condition is true.
8944  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
8945  SDValue Ops[] = { Op2, Op1, CC, Cond };
8946  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
8947}
8948
8949// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
8950// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
8951// from the AND / OR.
8952static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
8953  Opc = Op.getOpcode();
8954  if (Opc != ISD::OR && Opc != ISD::AND)
8955    return false;
8956  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8957          Op.getOperand(0).hasOneUse() &&
8958          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
8959          Op.getOperand(1).hasOneUse());
8960}
8961
8962// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
8963// 1 and that the SETCC node has a single use.
8964static bool isXor1OfSetCC(SDValue Op) {
8965  if (Op.getOpcode() != ISD::XOR)
8966    return false;
8967  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8968  if (N1C && N1C->getAPIntValue() == 1) {
8969    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8970      Op.getOperand(0).hasOneUse();
8971  }
8972  return false;
8973}
8974
8975SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
8976  bool addTest = true;
8977  SDValue Chain = Op.getOperand(0);
8978  SDValue Cond  = Op.getOperand(1);
8979  SDValue Dest  = Op.getOperand(2);
8980  DebugLoc dl = Op.getDebugLoc();
8981  SDValue CC;
8982  bool Inverted = false;
8983
8984  if (Cond.getOpcode() == ISD::SETCC) {
8985    // Check for setcc([su]{add,sub,mul}o == 0).
8986    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
8987        isa<ConstantSDNode>(Cond.getOperand(1)) &&
8988        cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
8989        Cond.getOperand(0).getResNo() == 1 &&
8990        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
8991         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
8992         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
8993         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
8994         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
8995         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
8996      Inverted = true;
8997      Cond = Cond.getOperand(0);
8998    } else {
8999      SDValue NewCond = LowerSETCC(Cond, DAG);
9000      if (NewCond.getNode())
9001        Cond = NewCond;
9002    }
9003  }
9004#if 0
9005  // FIXME: LowerXALUO doesn't handle these!!
9006  else if (Cond.getOpcode() == X86ISD::ADD  ||
9007           Cond.getOpcode() == X86ISD::SUB  ||
9008           Cond.getOpcode() == X86ISD::SMUL ||
9009           Cond.getOpcode() == X86ISD::UMUL)
9010    Cond = LowerXALUO(Cond, DAG);
9011#endif
9012
9013  // Look pass (and (setcc_carry (cmp ...)), 1).
9014  if (Cond.getOpcode() == ISD::AND &&
9015      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
9016    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
9017    if (C && C->getAPIntValue() == 1)
9018      Cond = Cond.getOperand(0);
9019  }
9020
9021  // If condition flag is set by a X86ISD::CMP, then use it as the condition
9022  // setting operand in place of the X86ISD::SETCC.
9023  unsigned CondOpcode = Cond.getOpcode();
9024  if (CondOpcode == X86ISD::SETCC ||
9025      CondOpcode == X86ISD::SETCC_CARRY) {
9026    CC = Cond.getOperand(0);
9027
9028    SDValue Cmp = Cond.getOperand(1);
9029    unsigned Opc = Cmp.getOpcode();
9030    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
9031    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
9032      Cond = Cmp;
9033      addTest = false;
9034    } else {
9035      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
9036      default: break;
9037      case X86::COND_O:
9038      case X86::COND_B:
9039        // These can only come from an arithmetic instruction with overflow,
9040        // e.g. SADDO, UADDO.
9041        Cond = Cond.getNode()->getOperand(1);
9042        addTest = false;
9043        break;
9044      }
9045    }
9046  }
9047  CondOpcode = Cond.getOpcode();
9048  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
9049      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
9050      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
9051       Cond.getOperand(0).getValueType() != MVT::i8)) {
9052    SDValue LHS = Cond.getOperand(0);
9053    SDValue RHS = Cond.getOperand(1);
9054    unsigned X86Opcode;
9055    unsigned X86Cond;
9056    SDVTList VTs;
9057    switch (CondOpcode) {
9058    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
9059    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
9060    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
9061    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
9062    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
9063    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
9064    default: llvm_unreachable("unexpected overflowing operator");
9065    }
9066    if (Inverted)
9067      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
9068    if (CondOpcode == ISD::UMULO)
9069      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
9070                          MVT::i32);
9071    else
9072      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
9073
9074    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
9075
9076    if (CondOpcode == ISD::UMULO)
9077      Cond = X86Op.getValue(2);
9078    else
9079      Cond = X86Op.getValue(1);
9080
9081    CC = DAG.getConstant(X86Cond, MVT::i8);
9082    addTest = false;
9083  } else {
9084    unsigned CondOpc;
9085    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
9086      SDValue Cmp = Cond.getOperand(0).getOperand(1);
9087      if (CondOpc == ISD::OR) {
9088        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
9089        // two branches instead of an explicit OR instruction with a
9090        // separate test.
9091        if (Cmp == Cond.getOperand(1).getOperand(1) &&
9092            isX86LogicalCmp(Cmp)) {
9093          CC = Cond.getOperand(0).getOperand(0);
9094          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9095                              Chain, Dest, CC, Cmp);
9096          CC = Cond.getOperand(1).getOperand(0);
9097          Cond = Cmp;
9098          addTest = false;
9099        }
9100      } else { // ISD::AND
9101        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
9102        // two branches instead of an explicit AND instruction with a
9103        // separate test. However, we only do this if this block doesn't
9104        // have a fall-through edge, because this requires an explicit
9105        // jmp when the condition is false.
9106        if (Cmp == Cond.getOperand(1).getOperand(1) &&
9107            isX86LogicalCmp(Cmp) &&
9108            Op.getNode()->hasOneUse()) {
9109          X86::CondCode CCode =
9110            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
9111          CCode = X86::GetOppositeBranchCondition(CCode);
9112          CC = DAG.getConstant(CCode, MVT::i8);
9113          SDNode *User = *Op.getNode()->use_begin();
9114          // Look for an unconditional branch following this conditional branch.
9115          // We need this because we need to reverse the successors in order
9116          // to implement FCMP_OEQ.
9117          if (User->getOpcode() == ISD::BR) {
9118            SDValue FalseBB = User->getOperand(1);
9119            SDNode *NewBR =
9120              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9121            assert(NewBR == User);
9122            (void)NewBR;
9123            Dest = FalseBB;
9124
9125            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9126                                Chain, Dest, CC, Cmp);
9127            X86::CondCode CCode =
9128              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
9129            CCode = X86::GetOppositeBranchCondition(CCode);
9130            CC = DAG.getConstant(CCode, MVT::i8);
9131            Cond = Cmp;
9132            addTest = false;
9133          }
9134        }
9135      }
9136    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
9137      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
9138      // It should be transformed during dag combiner except when the condition
9139      // is set by a arithmetics with overflow node.
9140      X86::CondCode CCode =
9141        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
9142      CCode = X86::GetOppositeBranchCondition(CCode);
9143      CC = DAG.getConstant(CCode, MVT::i8);
9144      Cond = Cond.getOperand(0).getOperand(1);
9145      addTest = false;
9146    } else if (Cond.getOpcode() == ISD::SETCC &&
9147               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
9148      // For FCMP_OEQ, we can emit
9149      // two branches instead of an explicit AND instruction with a
9150      // separate test. However, we only do this if this block doesn't
9151      // have a fall-through edge, because this requires an explicit
9152      // jmp when the condition is false.
9153      if (Op.getNode()->hasOneUse()) {
9154        SDNode *User = *Op.getNode()->use_begin();
9155        // Look for an unconditional branch following this conditional branch.
9156        // We need this because we need to reverse the successors in order
9157        // to implement FCMP_OEQ.
9158        if (User->getOpcode() == ISD::BR) {
9159          SDValue FalseBB = User->getOperand(1);
9160          SDNode *NewBR =
9161            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9162          assert(NewBR == User);
9163          (void)NewBR;
9164          Dest = FalseBB;
9165
9166          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
9167                                    Cond.getOperand(0), Cond.getOperand(1));
9168          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9169          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9170          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9171                              Chain, Dest, CC, Cmp);
9172          CC = DAG.getConstant(X86::COND_P, MVT::i8);
9173          Cond = Cmp;
9174          addTest = false;
9175        }
9176      }
9177    } else if (Cond.getOpcode() == ISD::SETCC &&
9178               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
9179      // For FCMP_UNE, we can emit
9180      // two branches instead of an explicit AND instruction with a
9181      // separate test. However, we only do this if this block doesn't
9182      // have a fall-through edge, because this requires an explicit
9183      // jmp when the condition is false.
9184      if (Op.getNode()->hasOneUse()) {
9185        SDNode *User = *Op.getNode()->use_begin();
9186        // Look for an unconditional branch following this conditional branch.
9187        // We need this because we need to reverse the successors in order
9188        // to implement FCMP_UNE.
9189        if (User->getOpcode() == ISD::BR) {
9190          SDValue FalseBB = User->getOperand(1);
9191          SDNode *NewBR =
9192            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9193          assert(NewBR == User);
9194          (void)NewBR;
9195
9196          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
9197                                    Cond.getOperand(0), Cond.getOperand(1));
9198          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9199          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9200          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9201                              Chain, Dest, CC, Cmp);
9202          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
9203          Cond = Cmp;
9204          addTest = false;
9205          Dest = FalseBB;
9206        }
9207      }
9208    }
9209  }
9210
9211  if (addTest) {
9212    // Look pass the truncate.
9213    if (Cond.getOpcode() == ISD::TRUNCATE)
9214      Cond = Cond.getOperand(0);
9215
9216    // We know the result of AND is compared against zero. Try to match
9217    // it to BT.
9218    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
9219      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
9220      if (NewSetCC.getNode()) {
9221        CC = NewSetCC.getOperand(0);
9222        Cond = NewSetCC.getOperand(1);
9223        addTest = false;
9224      }
9225    }
9226  }
9227
9228  if (addTest) {
9229    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9230    Cond = EmitTest(Cond, X86::COND_NE, DAG);
9231  }
9232  Cond = ConvertCmpIfNecessary(Cond, DAG);
9233  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9234                     Chain, Dest, CC, Cond);
9235}
9236
9237
9238// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
9239// Calls to _alloca is needed to probe the stack when allocating more than 4k
9240// bytes in one go. Touching the stack at 4K increments is necessary to ensure
9241// that the guard pages used by the OS virtual memory manager are allocated in
9242// correct sequence.
9243SDValue
9244X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
9245                                           SelectionDAG &DAG) const {
9246  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
9247          getTargetMachine().Options.EnableSegmentedStacks) &&
9248         "This should be used only on Windows targets or when segmented stacks "
9249         "are being used");
9250  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
9251  DebugLoc dl = Op.getDebugLoc();
9252
9253  // Get the inputs.
9254  SDValue Chain = Op.getOperand(0);
9255  SDValue Size  = Op.getOperand(1);
9256  // FIXME: Ensure alignment here
9257
9258  bool Is64Bit = Subtarget->is64Bit();
9259  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
9260
9261  if (getTargetMachine().Options.EnableSegmentedStacks) {
9262    MachineFunction &MF = DAG.getMachineFunction();
9263    MachineRegisterInfo &MRI = MF.getRegInfo();
9264
9265    if (Is64Bit) {
9266      // The 64 bit implementation of segmented stacks needs to clobber both r10
9267      // r11. This makes it impossible to use it along with nested parameters.
9268      const Function *F = MF.getFunction();
9269
9270      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
9271           I != E; ++I)
9272        if (I->hasNestAttr())
9273          report_fatal_error("Cannot use segmented stacks with functions that "
9274                             "have nested arguments.");
9275    }
9276
9277    const TargetRegisterClass *AddrRegClass =
9278      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
9279    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
9280    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
9281    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
9282                                DAG.getRegister(Vreg, SPTy));
9283    SDValue Ops1[2] = { Value, Chain };
9284    return DAG.getMergeValues(Ops1, 2, dl);
9285  } else {
9286    SDValue Flag;
9287    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
9288
9289    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
9290    Flag = Chain.getValue(1);
9291    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9292
9293    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
9294    Flag = Chain.getValue(1);
9295
9296    Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
9297
9298    SDValue Ops1[2] = { Chain.getValue(0), Chain };
9299    return DAG.getMergeValues(Ops1, 2, dl);
9300  }
9301}
9302
9303SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
9304  MachineFunction &MF = DAG.getMachineFunction();
9305  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
9306
9307  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9308  DebugLoc DL = Op.getDebugLoc();
9309
9310  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
9311    // vastart just stores the address of the VarArgsFrameIndex slot into the
9312    // memory location argument.
9313    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9314                                   getPointerTy());
9315    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
9316                        MachinePointerInfo(SV), false, false, 0);
9317  }
9318
9319  // __va_list_tag:
9320  //   gp_offset         (0 - 6 * 8)
9321  //   fp_offset         (48 - 48 + 8 * 16)
9322  //   overflow_arg_area (point to parameters coming in memory).
9323  //   reg_save_area
9324  SmallVector<SDValue, 8> MemOps;
9325  SDValue FIN = Op.getOperand(1);
9326  // Store gp_offset
9327  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
9328                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
9329                                               MVT::i32),
9330                               FIN, MachinePointerInfo(SV), false, false, 0);
9331  MemOps.push_back(Store);
9332
9333  // Store fp_offset
9334  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9335                    FIN, DAG.getIntPtrConstant(4));
9336  Store = DAG.getStore(Op.getOperand(0), DL,
9337                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
9338                                       MVT::i32),
9339                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
9340  MemOps.push_back(Store);
9341
9342  // Store ptr to overflow_arg_area
9343  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9344                    FIN, DAG.getIntPtrConstant(4));
9345  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9346                                    getPointerTy());
9347  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
9348                       MachinePointerInfo(SV, 8),
9349                       false, false, 0);
9350  MemOps.push_back(Store);
9351
9352  // Store ptr to reg_save_area.
9353  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9354                    FIN, DAG.getIntPtrConstant(8));
9355  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
9356                                    getPointerTy());
9357  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
9358                       MachinePointerInfo(SV, 16), false, false, 0);
9359  MemOps.push_back(Store);
9360  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
9361                     &MemOps[0], MemOps.size());
9362}
9363
9364SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
9365  assert(Subtarget->is64Bit() &&
9366         "LowerVAARG only handles 64-bit va_arg!");
9367  assert((Subtarget->isTargetLinux() ||
9368          Subtarget->isTargetDarwin()) &&
9369          "Unhandled target in LowerVAARG");
9370  assert(Op.getNode()->getNumOperands() == 4);
9371  SDValue Chain = Op.getOperand(0);
9372  SDValue SrcPtr = Op.getOperand(1);
9373  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9374  unsigned Align = Op.getConstantOperandVal(3);
9375  DebugLoc dl = Op.getDebugLoc();
9376
9377  EVT ArgVT = Op.getNode()->getValueType(0);
9378  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9379  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
9380  uint8_t ArgMode;
9381
9382  // Decide which area this value should be read from.
9383  // TODO: Implement the AMD64 ABI in its entirety. This simple
9384  // selection mechanism works only for the basic types.
9385  if (ArgVT == MVT::f80) {
9386    llvm_unreachable("va_arg for f80 not yet implemented");
9387  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
9388    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
9389  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
9390    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
9391  } else {
9392    llvm_unreachable("Unhandled argument type in LowerVAARG");
9393  }
9394
9395  if (ArgMode == 2) {
9396    // Sanity Check: Make sure using fp_offset makes sense.
9397    assert(!getTargetMachine().Options.UseSoftFloat &&
9398           !(DAG.getMachineFunction()
9399                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
9400           Subtarget->hasSSE1());
9401  }
9402
9403  // Insert VAARG_64 node into the DAG
9404  // VAARG_64 returns two values: Variable Argument Address, Chain
9405  SmallVector<SDValue, 11> InstOps;
9406  InstOps.push_back(Chain);
9407  InstOps.push_back(SrcPtr);
9408  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
9409  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
9410  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
9411  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
9412  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
9413                                          VTs, &InstOps[0], InstOps.size(),
9414                                          MVT::i64,
9415                                          MachinePointerInfo(SV),
9416                                          /*Align=*/0,
9417                                          /*Volatile=*/false,
9418                                          /*ReadMem=*/true,
9419                                          /*WriteMem=*/true);
9420  Chain = VAARG.getValue(1);
9421
9422  // Load the next argument and return it
9423  return DAG.getLoad(ArgVT, dl,
9424                     Chain,
9425                     VAARG,
9426                     MachinePointerInfo(),
9427                     false, false, false, 0);
9428}
9429
9430SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
9431  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
9432  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
9433  SDValue Chain = Op.getOperand(0);
9434  SDValue DstPtr = Op.getOperand(1);
9435  SDValue SrcPtr = Op.getOperand(2);
9436  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
9437  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9438  DebugLoc DL = Op.getDebugLoc();
9439
9440  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
9441                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
9442                       false,
9443                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
9444}
9445
9446// getTargetVShiftNOde - Handle vector element shifts where the shift amount
9447// may or may not be a constant. Takes immediate version of shift as input.
9448static SDValue getTargetVShiftNode(unsigned Opc, DebugLoc dl, EVT VT,
9449                                   SDValue SrcOp, SDValue ShAmt,
9450                                   SelectionDAG &DAG) {
9451  assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32");
9452
9453  if (isa<ConstantSDNode>(ShAmt)) {
9454    switch (Opc) {
9455      default: llvm_unreachable("Unknown target vector shift node");
9456      case X86ISD::VSHLI:
9457      case X86ISD::VSRLI:
9458      case X86ISD::VSRAI:
9459        return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
9460    }
9461  }
9462
9463  // Change opcode to non-immediate version
9464  switch (Opc) {
9465    default: llvm_unreachable("Unknown target vector shift node");
9466    case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
9467    case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
9468    case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
9469  }
9470
9471  // Need to build a vector containing shift amount
9472  // Shift amount is 32-bits, but SSE instructions read 64-bit, so fill with 0
9473  SDValue ShOps[4];
9474  ShOps[0] = ShAmt;
9475  ShOps[1] = DAG.getConstant(0, MVT::i32);
9476  ShOps[2] = DAG.getUNDEF(MVT::i32);
9477  ShOps[3] = DAG.getUNDEF(MVT::i32);
9478  ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &ShOps[0], 4);
9479  ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9480  return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
9481}
9482
9483SDValue
9484X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
9485  DebugLoc dl = Op.getDebugLoc();
9486  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9487  switch (IntNo) {
9488  default: return SDValue();    // Don't custom lower most intrinsics.
9489  // Comparison intrinsics.
9490  case Intrinsic::x86_sse_comieq_ss:
9491  case Intrinsic::x86_sse_comilt_ss:
9492  case Intrinsic::x86_sse_comile_ss:
9493  case Intrinsic::x86_sse_comigt_ss:
9494  case Intrinsic::x86_sse_comige_ss:
9495  case Intrinsic::x86_sse_comineq_ss:
9496  case Intrinsic::x86_sse_ucomieq_ss:
9497  case Intrinsic::x86_sse_ucomilt_ss:
9498  case Intrinsic::x86_sse_ucomile_ss:
9499  case Intrinsic::x86_sse_ucomigt_ss:
9500  case Intrinsic::x86_sse_ucomige_ss:
9501  case Intrinsic::x86_sse_ucomineq_ss:
9502  case Intrinsic::x86_sse2_comieq_sd:
9503  case Intrinsic::x86_sse2_comilt_sd:
9504  case Intrinsic::x86_sse2_comile_sd:
9505  case Intrinsic::x86_sse2_comigt_sd:
9506  case Intrinsic::x86_sse2_comige_sd:
9507  case Intrinsic::x86_sse2_comineq_sd:
9508  case Intrinsic::x86_sse2_ucomieq_sd:
9509  case Intrinsic::x86_sse2_ucomilt_sd:
9510  case Intrinsic::x86_sse2_ucomile_sd:
9511  case Intrinsic::x86_sse2_ucomigt_sd:
9512  case Intrinsic::x86_sse2_ucomige_sd:
9513  case Intrinsic::x86_sse2_ucomineq_sd: {
9514    unsigned Opc = 0;
9515    ISD::CondCode CC = ISD::SETCC_INVALID;
9516    switch (IntNo) {
9517    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9518    case Intrinsic::x86_sse_comieq_ss:
9519    case Intrinsic::x86_sse2_comieq_sd:
9520      Opc = X86ISD::COMI;
9521      CC = ISD::SETEQ;
9522      break;
9523    case Intrinsic::x86_sse_comilt_ss:
9524    case Intrinsic::x86_sse2_comilt_sd:
9525      Opc = X86ISD::COMI;
9526      CC = ISD::SETLT;
9527      break;
9528    case Intrinsic::x86_sse_comile_ss:
9529    case Intrinsic::x86_sse2_comile_sd:
9530      Opc = X86ISD::COMI;
9531      CC = ISD::SETLE;
9532      break;
9533    case Intrinsic::x86_sse_comigt_ss:
9534    case Intrinsic::x86_sse2_comigt_sd:
9535      Opc = X86ISD::COMI;
9536      CC = ISD::SETGT;
9537      break;
9538    case Intrinsic::x86_sse_comige_ss:
9539    case Intrinsic::x86_sse2_comige_sd:
9540      Opc = X86ISD::COMI;
9541      CC = ISD::SETGE;
9542      break;
9543    case Intrinsic::x86_sse_comineq_ss:
9544    case Intrinsic::x86_sse2_comineq_sd:
9545      Opc = X86ISD::COMI;
9546      CC = ISD::SETNE;
9547      break;
9548    case Intrinsic::x86_sse_ucomieq_ss:
9549    case Intrinsic::x86_sse2_ucomieq_sd:
9550      Opc = X86ISD::UCOMI;
9551      CC = ISD::SETEQ;
9552      break;
9553    case Intrinsic::x86_sse_ucomilt_ss:
9554    case Intrinsic::x86_sse2_ucomilt_sd:
9555      Opc = X86ISD::UCOMI;
9556      CC = ISD::SETLT;
9557      break;
9558    case Intrinsic::x86_sse_ucomile_ss:
9559    case Intrinsic::x86_sse2_ucomile_sd:
9560      Opc = X86ISD::UCOMI;
9561      CC = ISD::SETLE;
9562      break;
9563    case Intrinsic::x86_sse_ucomigt_ss:
9564    case Intrinsic::x86_sse2_ucomigt_sd:
9565      Opc = X86ISD::UCOMI;
9566      CC = ISD::SETGT;
9567      break;
9568    case Intrinsic::x86_sse_ucomige_ss:
9569    case Intrinsic::x86_sse2_ucomige_sd:
9570      Opc = X86ISD::UCOMI;
9571      CC = ISD::SETGE;
9572      break;
9573    case Intrinsic::x86_sse_ucomineq_ss:
9574    case Intrinsic::x86_sse2_ucomineq_sd:
9575      Opc = X86ISD::UCOMI;
9576      CC = ISD::SETNE;
9577      break;
9578    }
9579
9580    SDValue LHS = Op.getOperand(1);
9581    SDValue RHS = Op.getOperand(2);
9582    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
9583    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
9584    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
9585    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9586                                DAG.getConstant(X86CC, MVT::i8), Cond);
9587    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9588  }
9589  // Arithmetic intrinsics.
9590  case Intrinsic::x86_sse2_pmulu_dq:
9591  case Intrinsic::x86_avx2_pmulu_dq:
9592    return DAG.getNode(X86ISD::PMULUDQ, dl, Op.getValueType(),
9593                       Op.getOperand(1), Op.getOperand(2));
9594  case Intrinsic::x86_sse3_hadd_ps:
9595  case Intrinsic::x86_sse3_hadd_pd:
9596  case Intrinsic::x86_avx_hadd_ps_256:
9597  case Intrinsic::x86_avx_hadd_pd_256:
9598    return DAG.getNode(X86ISD::FHADD, dl, Op.getValueType(),
9599                       Op.getOperand(1), Op.getOperand(2));
9600  case Intrinsic::x86_sse3_hsub_ps:
9601  case Intrinsic::x86_sse3_hsub_pd:
9602  case Intrinsic::x86_avx_hsub_ps_256:
9603  case Intrinsic::x86_avx_hsub_pd_256:
9604    return DAG.getNode(X86ISD::FHSUB, dl, Op.getValueType(),
9605                       Op.getOperand(1), Op.getOperand(2));
9606  case Intrinsic::x86_ssse3_phadd_w_128:
9607  case Intrinsic::x86_ssse3_phadd_d_128:
9608  case Intrinsic::x86_avx2_phadd_w:
9609  case Intrinsic::x86_avx2_phadd_d:
9610    return DAG.getNode(X86ISD::HADD, dl, Op.getValueType(),
9611                       Op.getOperand(1), Op.getOperand(2));
9612  case Intrinsic::x86_ssse3_phsub_w_128:
9613  case Intrinsic::x86_ssse3_phsub_d_128:
9614  case Intrinsic::x86_avx2_phsub_w:
9615  case Intrinsic::x86_avx2_phsub_d:
9616    return DAG.getNode(X86ISD::HSUB, dl, Op.getValueType(),
9617                       Op.getOperand(1), Op.getOperand(2));
9618  case Intrinsic::x86_avx2_psllv_d:
9619  case Intrinsic::x86_avx2_psllv_q:
9620  case Intrinsic::x86_avx2_psllv_d_256:
9621  case Intrinsic::x86_avx2_psllv_q_256:
9622    return DAG.getNode(ISD::SHL, dl, Op.getValueType(),
9623                      Op.getOperand(1), Op.getOperand(2));
9624  case Intrinsic::x86_avx2_psrlv_d:
9625  case Intrinsic::x86_avx2_psrlv_q:
9626  case Intrinsic::x86_avx2_psrlv_d_256:
9627  case Intrinsic::x86_avx2_psrlv_q_256:
9628    return DAG.getNode(ISD::SRL, dl, Op.getValueType(),
9629                      Op.getOperand(1), Op.getOperand(2));
9630  case Intrinsic::x86_avx2_psrav_d:
9631  case Intrinsic::x86_avx2_psrav_d_256:
9632    return DAG.getNode(ISD::SRA, dl, Op.getValueType(),
9633                      Op.getOperand(1), Op.getOperand(2));
9634  case Intrinsic::x86_ssse3_pshuf_b_128:
9635  case Intrinsic::x86_avx2_pshuf_b:
9636    return DAG.getNode(X86ISD::PSHUFB, dl, Op.getValueType(),
9637                       Op.getOperand(1), Op.getOperand(2));
9638  case Intrinsic::x86_ssse3_psign_b_128:
9639  case Intrinsic::x86_ssse3_psign_w_128:
9640  case Intrinsic::x86_ssse3_psign_d_128:
9641  case Intrinsic::x86_avx2_psign_b:
9642  case Intrinsic::x86_avx2_psign_w:
9643  case Intrinsic::x86_avx2_psign_d:
9644    return DAG.getNode(X86ISD::PSIGN, dl, Op.getValueType(),
9645                       Op.getOperand(1), Op.getOperand(2));
9646  case Intrinsic::x86_sse41_insertps:
9647    return DAG.getNode(X86ISD::INSERTPS, dl, Op.getValueType(),
9648                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
9649  case Intrinsic::x86_avx_vperm2f128_ps_256:
9650  case Intrinsic::x86_avx_vperm2f128_pd_256:
9651  case Intrinsic::x86_avx_vperm2f128_si_256:
9652  case Intrinsic::x86_avx2_vperm2i128:
9653    return DAG.getNode(X86ISD::VPERM2X128, dl, Op.getValueType(),
9654                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
9655  case Intrinsic::x86_avx2_permd:
9656  case Intrinsic::x86_avx2_permps:
9657    // Operands intentionally swapped. Mask is last operand to intrinsic,
9658    // but second operand for node/intruction.
9659    return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(),
9660                       Op.getOperand(2), Op.getOperand(1));
9661
9662  // ptest and testp intrinsics. The intrinsic these come from are designed to
9663  // return an integer value, not just an instruction so lower it to the ptest
9664  // or testp pattern and a setcc for the result.
9665  case Intrinsic::x86_sse41_ptestz:
9666  case Intrinsic::x86_sse41_ptestc:
9667  case Intrinsic::x86_sse41_ptestnzc:
9668  case Intrinsic::x86_avx_ptestz_256:
9669  case Intrinsic::x86_avx_ptestc_256:
9670  case Intrinsic::x86_avx_ptestnzc_256:
9671  case Intrinsic::x86_avx_vtestz_ps:
9672  case Intrinsic::x86_avx_vtestc_ps:
9673  case Intrinsic::x86_avx_vtestnzc_ps:
9674  case Intrinsic::x86_avx_vtestz_pd:
9675  case Intrinsic::x86_avx_vtestc_pd:
9676  case Intrinsic::x86_avx_vtestnzc_pd:
9677  case Intrinsic::x86_avx_vtestz_ps_256:
9678  case Intrinsic::x86_avx_vtestc_ps_256:
9679  case Intrinsic::x86_avx_vtestnzc_ps_256:
9680  case Intrinsic::x86_avx_vtestz_pd_256:
9681  case Intrinsic::x86_avx_vtestc_pd_256:
9682  case Intrinsic::x86_avx_vtestnzc_pd_256: {
9683    bool IsTestPacked = false;
9684    unsigned X86CC = 0;
9685    switch (IntNo) {
9686    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
9687    case Intrinsic::x86_avx_vtestz_ps:
9688    case Intrinsic::x86_avx_vtestz_pd:
9689    case Intrinsic::x86_avx_vtestz_ps_256:
9690    case Intrinsic::x86_avx_vtestz_pd_256:
9691      IsTestPacked = true; // Fallthrough
9692    case Intrinsic::x86_sse41_ptestz:
9693    case Intrinsic::x86_avx_ptestz_256:
9694      // ZF = 1
9695      X86CC = X86::COND_E;
9696      break;
9697    case Intrinsic::x86_avx_vtestc_ps:
9698    case Intrinsic::x86_avx_vtestc_pd:
9699    case Intrinsic::x86_avx_vtestc_ps_256:
9700    case Intrinsic::x86_avx_vtestc_pd_256:
9701      IsTestPacked = true; // Fallthrough
9702    case Intrinsic::x86_sse41_ptestc:
9703    case Intrinsic::x86_avx_ptestc_256:
9704      // CF = 1
9705      X86CC = X86::COND_B;
9706      break;
9707    case Intrinsic::x86_avx_vtestnzc_ps:
9708    case Intrinsic::x86_avx_vtestnzc_pd:
9709    case Intrinsic::x86_avx_vtestnzc_ps_256:
9710    case Intrinsic::x86_avx_vtestnzc_pd_256:
9711      IsTestPacked = true; // Fallthrough
9712    case Intrinsic::x86_sse41_ptestnzc:
9713    case Intrinsic::x86_avx_ptestnzc_256:
9714      // ZF and CF = 0
9715      X86CC = X86::COND_A;
9716      break;
9717    }
9718
9719    SDValue LHS = Op.getOperand(1);
9720    SDValue RHS = Op.getOperand(2);
9721    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
9722    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
9723    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
9724    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
9725    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9726  }
9727
9728  // SSE/AVX shift intrinsics
9729  case Intrinsic::x86_sse2_psll_w:
9730  case Intrinsic::x86_sse2_psll_d:
9731  case Intrinsic::x86_sse2_psll_q:
9732  case Intrinsic::x86_avx2_psll_w:
9733  case Intrinsic::x86_avx2_psll_d:
9734  case Intrinsic::x86_avx2_psll_q:
9735    return DAG.getNode(X86ISD::VSHL, dl, Op.getValueType(),
9736                       Op.getOperand(1), Op.getOperand(2));
9737  case Intrinsic::x86_sse2_psrl_w:
9738  case Intrinsic::x86_sse2_psrl_d:
9739  case Intrinsic::x86_sse2_psrl_q:
9740  case Intrinsic::x86_avx2_psrl_w:
9741  case Intrinsic::x86_avx2_psrl_d:
9742  case Intrinsic::x86_avx2_psrl_q:
9743    return DAG.getNode(X86ISD::VSRL, dl, Op.getValueType(),
9744                       Op.getOperand(1), Op.getOperand(2));
9745  case Intrinsic::x86_sse2_psra_w:
9746  case Intrinsic::x86_sse2_psra_d:
9747  case Intrinsic::x86_avx2_psra_w:
9748  case Intrinsic::x86_avx2_psra_d:
9749    return DAG.getNode(X86ISD::VSRA, dl, Op.getValueType(),
9750                       Op.getOperand(1), Op.getOperand(2));
9751  case Intrinsic::x86_sse2_pslli_w:
9752  case Intrinsic::x86_sse2_pslli_d:
9753  case Intrinsic::x86_sse2_pslli_q:
9754  case Intrinsic::x86_avx2_pslli_w:
9755  case Intrinsic::x86_avx2_pslli_d:
9756  case Intrinsic::x86_avx2_pslli_q:
9757    return getTargetVShiftNode(X86ISD::VSHLI, dl, Op.getValueType(),
9758                               Op.getOperand(1), Op.getOperand(2), DAG);
9759  case Intrinsic::x86_sse2_psrli_w:
9760  case Intrinsic::x86_sse2_psrli_d:
9761  case Intrinsic::x86_sse2_psrli_q:
9762  case Intrinsic::x86_avx2_psrli_w:
9763  case Intrinsic::x86_avx2_psrli_d:
9764  case Intrinsic::x86_avx2_psrli_q:
9765    return getTargetVShiftNode(X86ISD::VSRLI, dl, Op.getValueType(),
9766                               Op.getOperand(1), Op.getOperand(2), DAG);
9767  case Intrinsic::x86_sse2_psrai_w:
9768  case Intrinsic::x86_sse2_psrai_d:
9769  case Intrinsic::x86_avx2_psrai_w:
9770  case Intrinsic::x86_avx2_psrai_d:
9771    return getTargetVShiftNode(X86ISD::VSRAI, dl, Op.getValueType(),
9772                               Op.getOperand(1), Op.getOperand(2), DAG);
9773  // Fix vector shift instructions where the last operand is a non-immediate
9774  // i32 value.
9775  case Intrinsic::x86_mmx_pslli_w:
9776  case Intrinsic::x86_mmx_pslli_d:
9777  case Intrinsic::x86_mmx_pslli_q:
9778  case Intrinsic::x86_mmx_psrli_w:
9779  case Intrinsic::x86_mmx_psrli_d:
9780  case Intrinsic::x86_mmx_psrli_q:
9781  case Intrinsic::x86_mmx_psrai_w:
9782  case Intrinsic::x86_mmx_psrai_d: {
9783    SDValue ShAmt = Op.getOperand(2);
9784    if (isa<ConstantSDNode>(ShAmt))
9785      return SDValue();
9786
9787    unsigned NewIntNo = 0;
9788    switch (IntNo) {
9789    case Intrinsic::x86_mmx_pslli_w:
9790      NewIntNo = Intrinsic::x86_mmx_psll_w;
9791      break;
9792    case Intrinsic::x86_mmx_pslli_d:
9793      NewIntNo = Intrinsic::x86_mmx_psll_d;
9794      break;
9795    case Intrinsic::x86_mmx_pslli_q:
9796      NewIntNo = Intrinsic::x86_mmx_psll_q;
9797      break;
9798    case Intrinsic::x86_mmx_psrli_w:
9799      NewIntNo = Intrinsic::x86_mmx_psrl_w;
9800      break;
9801    case Intrinsic::x86_mmx_psrli_d:
9802      NewIntNo = Intrinsic::x86_mmx_psrl_d;
9803      break;
9804    case Intrinsic::x86_mmx_psrli_q:
9805      NewIntNo = Intrinsic::x86_mmx_psrl_q;
9806      break;
9807    case Intrinsic::x86_mmx_psrai_w:
9808      NewIntNo = Intrinsic::x86_mmx_psra_w;
9809      break;
9810    case Intrinsic::x86_mmx_psrai_d:
9811      NewIntNo = Intrinsic::x86_mmx_psra_d;
9812      break;
9813    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9814    }
9815
9816    // The vector shift intrinsics with scalars uses 32b shift amounts but
9817    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
9818    // to be zero.
9819    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, ShAmt,
9820                         DAG.getConstant(0, MVT::i32));
9821// FIXME this must be lowered to get rid of the invalid type.
9822
9823    EVT VT = Op.getValueType();
9824    ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9825    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9826                       DAG.getConstant(NewIntNo, MVT::i32),
9827                       Op.getOperand(1), ShAmt);
9828  }
9829  }
9830}
9831
9832SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
9833                                           SelectionDAG &DAG) const {
9834  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9835  MFI->setReturnAddressIsTaken(true);
9836
9837  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9838  DebugLoc dl = Op.getDebugLoc();
9839
9840  if (Depth > 0) {
9841    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
9842    SDValue Offset =
9843      DAG.getConstant(TD->getPointerSize(),
9844                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
9845    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9846                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
9847                                   FrameAddr, Offset),
9848                       MachinePointerInfo(), false, false, false, 0);
9849  }
9850
9851  // Just load the return address.
9852  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
9853  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9854                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
9855}
9856
9857SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
9858  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9859  MFI->setFrameAddressIsTaken(true);
9860
9861  EVT VT = Op.getValueType();
9862  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
9863  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9864  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
9865  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
9866  while (Depth--)
9867    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
9868                            MachinePointerInfo(),
9869                            false, false, false, 0);
9870  return FrameAddr;
9871}
9872
9873SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
9874                                                     SelectionDAG &DAG) const {
9875  return DAG.getIntPtrConstant(2*TD->getPointerSize());
9876}
9877
9878SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
9879  SDValue Chain     = Op.getOperand(0);
9880  SDValue Offset    = Op.getOperand(1);
9881  SDValue Handler   = Op.getOperand(2);
9882  DebugLoc dl       = Op.getDebugLoc();
9883
9884  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
9885                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
9886                                     getPointerTy());
9887  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
9888
9889  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
9890                                  DAG.getIntPtrConstant(TD->getPointerSize()));
9891  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
9892  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
9893                       false, false, 0);
9894  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
9895
9896  return DAG.getNode(X86ISD::EH_RETURN, dl,
9897                     MVT::Other,
9898                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
9899}
9900
9901SDValue X86TargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
9902                                                  SelectionDAG &DAG) const {
9903  return Op.getOperand(0);
9904}
9905
9906SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
9907                                                SelectionDAG &DAG) const {
9908  SDValue Root = Op.getOperand(0);
9909  SDValue Trmp = Op.getOperand(1); // trampoline
9910  SDValue FPtr = Op.getOperand(2); // nested function
9911  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
9912  DebugLoc dl  = Op.getDebugLoc();
9913
9914  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9915
9916  if (Subtarget->is64Bit()) {
9917    SDValue OutChains[6];
9918
9919    // Large code-model.
9920    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
9921    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
9922
9923    const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
9924    const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
9925
9926    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
9927
9928    // Load the pointer to the nested function into R11.
9929    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
9930    SDValue Addr = Trmp;
9931    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9932                                Addr, MachinePointerInfo(TrmpAddr),
9933                                false, false, 0);
9934
9935    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9936                       DAG.getConstant(2, MVT::i64));
9937    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
9938                                MachinePointerInfo(TrmpAddr, 2),
9939                                false, false, 2);
9940
9941    // Load the 'nest' parameter value into R10.
9942    // R10 is specified in X86CallingConv.td
9943    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
9944    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9945                       DAG.getConstant(10, MVT::i64));
9946    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9947                                Addr, MachinePointerInfo(TrmpAddr, 10),
9948                                false, false, 0);
9949
9950    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9951                       DAG.getConstant(12, MVT::i64));
9952    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
9953                                MachinePointerInfo(TrmpAddr, 12),
9954                                false, false, 2);
9955
9956    // Jump to the nested function.
9957    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
9958    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9959                       DAG.getConstant(20, MVT::i64));
9960    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9961                                Addr, MachinePointerInfo(TrmpAddr, 20),
9962                                false, false, 0);
9963
9964    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
9965    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9966                       DAG.getConstant(22, MVT::i64));
9967    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
9968                                MachinePointerInfo(TrmpAddr, 22),
9969                                false, false, 0);
9970
9971    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
9972  } else {
9973    const Function *Func =
9974      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
9975    CallingConv::ID CC = Func->getCallingConv();
9976    unsigned NestReg;
9977
9978    switch (CC) {
9979    default:
9980      llvm_unreachable("Unsupported calling convention");
9981    case CallingConv::C:
9982    case CallingConv::X86_StdCall: {
9983      // Pass 'nest' parameter in ECX.
9984      // Must be kept in sync with X86CallingConv.td
9985      NestReg = X86::ECX;
9986
9987      // Check that ECX wasn't needed by an 'inreg' parameter.
9988      FunctionType *FTy = Func->getFunctionType();
9989      const AttrListPtr &Attrs = Func->getAttributes();
9990
9991      if (!Attrs.isEmpty() && !Func->isVarArg()) {
9992        unsigned InRegCount = 0;
9993        unsigned Idx = 1;
9994
9995        for (FunctionType::param_iterator I = FTy->param_begin(),
9996             E = FTy->param_end(); I != E; ++I, ++Idx)
9997          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
9998            // FIXME: should only count parameters that are lowered to integers.
9999            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
10000
10001        if (InRegCount > 2) {
10002          report_fatal_error("Nest register in use - reduce number of inreg"
10003                             " parameters!");
10004        }
10005      }
10006      break;
10007    }
10008    case CallingConv::X86_FastCall:
10009    case CallingConv::X86_ThisCall:
10010    case CallingConv::Fast:
10011      // Pass 'nest' parameter in EAX.
10012      // Must be kept in sync with X86CallingConv.td
10013      NestReg = X86::EAX;
10014      break;
10015    }
10016
10017    SDValue OutChains[4];
10018    SDValue Addr, Disp;
10019
10020    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10021                       DAG.getConstant(10, MVT::i32));
10022    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
10023
10024    // This is storing the opcode for MOV32ri.
10025    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
10026    const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
10027    OutChains[0] = DAG.getStore(Root, dl,
10028                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
10029                                Trmp, MachinePointerInfo(TrmpAddr),
10030                                false, false, 0);
10031
10032    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10033                       DAG.getConstant(1, MVT::i32));
10034    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
10035                                MachinePointerInfo(TrmpAddr, 1),
10036                                false, false, 1);
10037
10038    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
10039    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10040                       DAG.getConstant(5, MVT::i32));
10041    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
10042                                MachinePointerInfo(TrmpAddr, 5),
10043                                false, false, 1);
10044
10045    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10046                       DAG.getConstant(6, MVT::i32));
10047    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
10048                                MachinePointerInfo(TrmpAddr, 6),
10049                                false, false, 1);
10050
10051    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
10052  }
10053}
10054
10055SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
10056                                            SelectionDAG &DAG) const {
10057  /*
10058   The rounding mode is in bits 11:10 of FPSR, and has the following
10059   settings:
10060     00 Round to nearest
10061     01 Round to -inf
10062     10 Round to +inf
10063     11 Round to 0
10064
10065  FLT_ROUNDS, on the other hand, expects the following:
10066    -1 Undefined
10067     0 Round to 0
10068     1 Round to nearest
10069     2 Round to +inf
10070     3 Round to -inf
10071
10072  To perform the conversion, we do:
10073    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
10074  */
10075
10076  MachineFunction &MF = DAG.getMachineFunction();
10077  const TargetMachine &TM = MF.getTarget();
10078  const TargetFrameLowering &TFI = *TM.getFrameLowering();
10079  unsigned StackAlignment = TFI.getStackAlignment();
10080  EVT VT = Op.getValueType();
10081  DebugLoc DL = Op.getDebugLoc();
10082
10083  // Save FP Control Word to stack slot
10084  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
10085  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
10086
10087
10088  MachineMemOperand *MMO =
10089   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
10090                           MachineMemOperand::MOStore, 2, 2);
10091
10092  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
10093  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
10094                                          DAG.getVTList(MVT::Other),
10095                                          Ops, 2, MVT::i16, MMO);
10096
10097  // Load FP Control Word from stack slot
10098  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
10099                            MachinePointerInfo(), false, false, false, 0);
10100
10101  // Transform as necessary
10102  SDValue CWD1 =
10103    DAG.getNode(ISD::SRL, DL, MVT::i16,
10104                DAG.getNode(ISD::AND, DL, MVT::i16,
10105                            CWD, DAG.getConstant(0x800, MVT::i16)),
10106                DAG.getConstant(11, MVT::i8));
10107  SDValue CWD2 =
10108    DAG.getNode(ISD::SRL, DL, MVT::i16,
10109                DAG.getNode(ISD::AND, DL, MVT::i16,
10110                            CWD, DAG.getConstant(0x400, MVT::i16)),
10111                DAG.getConstant(9, MVT::i8));
10112
10113  SDValue RetVal =
10114    DAG.getNode(ISD::AND, DL, MVT::i16,
10115                DAG.getNode(ISD::ADD, DL, MVT::i16,
10116                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
10117                            DAG.getConstant(1, MVT::i16)),
10118                DAG.getConstant(3, MVT::i16));
10119
10120
10121  return DAG.getNode((VT.getSizeInBits() < 16 ?
10122                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
10123}
10124
10125SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
10126  EVT VT = Op.getValueType();
10127  EVT OpVT = VT;
10128  unsigned NumBits = VT.getSizeInBits();
10129  DebugLoc dl = Op.getDebugLoc();
10130
10131  Op = Op.getOperand(0);
10132  if (VT == MVT::i8) {
10133    // Zero extend to i32 since there is not an i8 bsr.
10134    OpVT = MVT::i32;
10135    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
10136  }
10137
10138  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
10139  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10140  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
10141
10142  // If src is zero (i.e. bsr sets ZF), returns NumBits.
10143  SDValue Ops[] = {
10144    Op,
10145    DAG.getConstant(NumBits+NumBits-1, OpVT),
10146    DAG.getConstant(X86::COND_E, MVT::i8),
10147    Op.getValue(1)
10148  };
10149  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
10150
10151  // Finally xor with NumBits-1.
10152  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
10153
10154  if (VT == MVT::i8)
10155    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10156  return Op;
10157}
10158
10159SDValue X86TargetLowering::LowerCTLZ_ZERO_UNDEF(SDValue Op,
10160                                                SelectionDAG &DAG) const {
10161  EVT VT = Op.getValueType();
10162  EVT OpVT = VT;
10163  unsigned NumBits = VT.getSizeInBits();
10164  DebugLoc dl = Op.getDebugLoc();
10165
10166  Op = Op.getOperand(0);
10167  if (VT == MVT::i8) {
10168    // Zero extend to i32 since there is not an i8 bsr.
10169    OpVT = MVT::i32;
10170    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
10171  }
10172
10173  // Issue a bsr (scan bits in reverse).
10174  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10175  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
10176
10177  // And xor with NumBits-1.
10178  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
10179
10180  if (VT == MVT::i8)
10181    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10182  return Op;
10183}
10184
10185SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
10186  EVT VT = Op.getValueType();
10187  unsigned NumBits = VT.getSizeInBits();
10188  DebugLoc dl = Op.getDebugLoc();
10189  Op = Op.getOperand(0);
10190
10191  // Issue a bsf (scan bits forward) which also sets EFLAGS.
10192  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10193  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
10194
10195  // If src is zero (i.e. bsf sets ZF), returns NumBits.
10196  SDValue Ops[] = {
10197    Op,
10198    DAG.getConstant(NumBits, VT),
10199    DAG.getConstant(X86::COND_E, MVT::i8),
10200    Op.getValue(1)
10201  };
10202  return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops));
10203}
10204
10205// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
10206// ones, and then concatenate the result back.
10207static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
10208  EVT VT = Op.getValueType();
10209
10210  assert(VT.getSizeInBits() == 256 && VT.isInteger() &&
10211         "Unsupported value type for operation");
10212
10213  unsigned NumElems = VT.getVectorNumElements();
10214  DebugLoc dl = Op.getDebugLoc();
10215
10216  // Extract the LHS vectors
10217  SDValue LHS = Op.getOperand(0);
10218  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
10219  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
10220
10221  // Extract the RHS vectors
10222  SDValue RHS = Op.getOperand(1);
10223  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
10224  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
10225
10226  MVT EltVT = VT.getVectorElementType().getSimpleVT();
10227  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10228
10229  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
10230                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
10231                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
10232}
10233
10234SDValue X86TargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
10235  assert(Op.getValueType().getSizeInBits() == 256 &&
10236         Op.getValueType().isInteger() &&
10237         "Only handle AVX 256-bit vector integer operation");
10238  return Lower256IntArith(Op, DAG);
10239}
10240
10241SDValue X86TargetLowering::LowerSUB(SDValue Op, SelectionDAG &DAG) const {
10242  assert(Op.getValueType().getSizeInBits() == 256 &&
10243         Op.getValueType().isInteger() &&
10244         "Only handle AVX 256-bit vector integer operation");
10245  return Lower256IntArith(Op, DAG);
10246}
10247
10248SDValue X86TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10249  EVT VT = Op.getValueType();
10250
10251  // Decompose 256-bit ops into smaller 128-bit ops.
10252  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
10253    return Lower256IntArith(Op, DAG);
10254
10255  assert((VT == MVT::v2i64 || VT == MVT::v4i64) &&
10256         "Only know how to lower V2I64/V4I64 multiply");
10257
10258  DebugLoc dl = Op.getDebugLoc();
10259
10260  //  Ahi = psrlqi(a, 32);
10261  //  Bhi = psrlqi(b, 32);
10262  //
10263  //  AloBlo = pmuludq(a, b);
10264  //  AloBhi = pmuludq(a, Bhi);
10265  //  AhiBlo = pmuludq(Ahi, b);
10266
10267  //  AloBhi = psllqi(AloBhi, 32);
10268  //  AhiBlo = psllqi(AhiBlo, 32);
10269  //  return AloBlo + AloBhi + AhiBlo;
10270
10271  SDValue A = Op.getOperand(0);
10272  SDValue B = Op.getOperand(1);
10273
10274  SDValue ShAmt = DAG.getConstant(32, MVT::i32);
10275
10276  SDValue Ahi = DAG.getNode(X86ISD::VSRLI, dl, VT, A, ShAmt);
10277  SDValue Bhi = DAG.getNode(X86ISD::VSRLI, dl, VT, B, ShAmt);
10278
10279  // Bit cast to 32-bit vectors for MULUDQ
10280  EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 : MVT::v8i32;
10281  A = DAG.getNode(ISD::BITCAST, dl, MulVT, A);
10282  B = DAG.getNode(ISD::BITCAST, dl, MulVT, B);
10283  Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi);
10284  Bhi = DAG.getNode(ISD::BITCAST, dl, MulVT, Bhi);
10285
10286  SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
10287  SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
10288  SDValue AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
10289
10290  AloBhi = DAG.getNode(X86ISD::VSHLI, dl, VT, AloBhi, ShAmt);
10291  AhiBlo = DAG.getNode(X86ISD::VSHLI, dl, VT, AhiBlo, ShAmt);
10292
10293  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
10294  return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
10295}
10296
10297SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
10298
10299  EVT VT = Op.getValueType();
10300  DebugLoc dl = Op.getDebugLoc();
10301  SDValue R = Op.getOperand(0);
10302  SDValue Amt = Op.getOperand(1);
10303  LLVMContext *Context = DAG.getContext();
10304
10305  if (!Subtarget->hasSSE2())
10306    return SDValue();
10307
10308  // Optimize shl/srl/sra with constant shift amount.
10309  if (isSplatVector(Amt.getNode())) {
10310    SDValue SclrAmt = Amt->getOperand(0);
10311    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
10312      uint64_t ShiftAmt = C->getZExtValue();
10313
10314      if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
10315          (Subtarget->hasAVX2() &&
10316           (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16))) {
10317        if (Op.getOpcode() == ISD::SHL)
10318          return DAG.getNode(X86ISD::VSHLI, dl, VT, R,
10319                             DAG.getConstant(ShiftAmt, MVT::i32));
10320        if (Op.getOpcode() == ISD::SRL)
10321          return DAG.getNode(X86ISD::VSRLI, dl, VT, R,
10322                             DAG.getConstant(ShiftAmt, MVT::i32));
10323        if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64)
10324          return DAG.getNode(X86ISD::VSRAI, dl, VT, R,
10325                             DAG.getConstant(ShiftAmt, MVT::i32));
10326      }
10327
10328      if (VT == MVT::v16i8) {
10329        if (Op.getOpcode() == ISD::SHL) {
10330          // Make a large shift.
10331          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, R,
10332                                    DAG.getConstant(ShiftAmt, MVT::i32));
10333          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
10334          // Zero out the rightmost bits.
10335          SmallVector<SDValue, 16> V(16,
10336                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
10337                                                     MVT::i8));
10338          return DAG.getNode(ISD::AND, dl, VT, SHL,
10339                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10340        }
10341        if (Op.getOpcode() == ISD::SRL) {
10342          // Make a large shift.
10343          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v8i16, R,
10344                                    DAG.getConstant(ShiftAmt, MVT::i32));
10345          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
10346          // Zero out the leftmost bits.
10347          SmallVector<SDValue, 16> V(16,
10348                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10349                                                     MVT::i8));
10350          return DAG.getNode(ISD::AND, dl, VT, SRL,
10351                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10352        }
10353        if (Op.getOpcode() == ISD::SRA) {
10354          if (ShiftAmt == 7) {
10355            // R s>> 7  ===  R s< 0
10356            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
10357            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
10358          }
10359
10360          // R s>> a === ((R u>> a) ^ m) - m
10361          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10362          SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
10363                                                         MVT::i8));
10364          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
10365          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10366          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10367          return Res;
10368        }
10369        llvm_unreachable("Unknown shift opcode.");
10370      }
10371
10372      if (Subtarget->hasAVX2() && VT == MVT::v32i8) {
10373        if (Op.getOpcode() == ISD::SHL) {
10374          // Make a large shift.
10375          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v16i16, R,
10376                                    DAG.getConstant(ShiftAmt, MVT::i32));
10377          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
10378          // Zero out the rightmost bits.
10379          SmallVector<SDValue, 32> V(32,
10380                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
10381                                                     MVT::i8));
10382          return DAG.getNode(ISD::AND, dl, VT, SHL,
10383                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10384        }
10385        if (Op.getOpcode() == ISD::SRL) {
10386          // Make a large shift.
10387          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v16i16, R,
10388                                    DAG.getConstant(ShiftAmt, MVT::i32));
10389          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
10390          // Zero out the leftmost bits.
10391          SmallVector<SDValue, 32> V(32,
10392                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10393                                                     MVT::i8));
10394          return DAG.getNode(ISD::AND, dl, VT, SRL,
10395                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10396        }
10397        if (Op.getOpcode() == ISD::SRA) {
10398          if (ShiftAmt == 7) {
10399            // R s>> 7  ===  R s< 0
10400            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
10401            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
10402          }
10403
10404          // R s>> a === ((R u>> a) ^ m) - m
10405          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10406          SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
10407                                                         MVT::i8));
10408          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
10409          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10410          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10411          return Res;
10412        }
10413        llvm_unreachable("Unknown shift opcode.");
10414      }
10415    }
10416  }
10417
10418  // Lower SHL with variable shift amount.
10419  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
10420    Op = DAG.getNode(X86ISD::VSHLI, dl, VT, Op.getOperand(1),
10421                     DAG.getConstant(23, MVT::i32));
10422
10423    const uint32_t CV[] = { 0x3f800000U, 0x3f800000U, 0x3f800000U, 0x3f800000U};
10424    Constant *C = ConstantDataVector::get(*Context, CV);
10425    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10426    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10427                                 MachinePointerInfo::getConstantPool(),
10428                                 false, false, false, 16);
10429
10430    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
10431    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
10432    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
10433    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
10434  }
10435  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
10436    assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
10437
10438    // a = a << 5;
10439    Op = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, Op.getOperand(1),
10440                     DAG.getConstant(5, MVT::i32));
10441    Op = DAG.getNode(ISD::BITCAST, dl, VT, Op);
10442
10443    // Turn 'a' into a mask suitable for VSELECT
10444    SDValue VSelM = DAG.getConstant(0x80, VT);
10445    SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10446    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10447
10448    SDValue CM1 = DAG.getConstant(0x0f, VT);
10449    SDValue CM2 = DAG.getConstant(0x3f, VT);
10450
10451    // r = VSELECT(r, psllw(r & (char16)15, 4), a);
10452    SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
10453    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
10454                            DAG.getConstant(4, MVT::i32), DAG);
10455    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
10456    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10457
10458    // a += a
10459    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10460    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10461    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10462
10463    // r = VSELECT(r, psllw(r & (char16)63, 2), a);
10464    M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
10465    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
10466                            DAG.getConstant(2, MVT::i32), DAG);
10467    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
10468    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10469
10470    // a += a
10471    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10472    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10473    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10474
10475    // return VSELECT(r, r+r, a);
10476    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
10477                    DAG.getNode(ISD::ADD, dl, VT, R, R), R);
10478    return R;
10479  }
10480
10481  // Decompose 256-bit shifts into smaller 128-bit shifts.
10482  if (VT.getSizeInBits() == 256) {
10483    unsigned NumElems = VT.getVectorNumElements();
10484    MVT EltVT = VT.getVectorElementType().getSimpleVT();
10485    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10486
10487    // Extract the two vectors
10488    SDValue V1 = Extract128BitVector(R, 0, DAG, dl);
10489    SDValue V2 = Extract128BitVector(R, NumElems/2, DAG, dl);
10490
10491    // Recreate the shift amount vectors
10492    SDValue Amt1, Amt2;
10493    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
10494      // Constant shift amount
10495      SmallVector<SDValue, 4> Amt1Csts;
10496      SmallVector<SDValue, 4> Amt2Csts;
10497      for (unsigned i = 0; i != NumElems/2; ++i)
10498        Amt1Csts.push_back(Amt->getOperand(i));
10499      for (unsigned i = NumElems/2; i != NumElems; ++i)
10500        Amt2Csts.push_back(Amt->getOperand(i));
10501
10502      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10503                                 &Amt1Csts[0], NumElems/2);
10504      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10505                                 &Amt2Csts[0], NumElems/2);
10506    } else {
10507      // Variable shift amount
10508      Amt1 = Extract128BitVector(Amt, 0, DAG, dl);
10509      Amt2 = Extract128BitVector(Amt, NumElems/2, DAG, dl);
10510    }
10511
10512    // Issue new vector shifts for the smaller types
10513    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
10514    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
10515
10516    // Concatenate the result back
10517    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
10518  }
10519
10520  return SDValue();
10521}
10522
10523SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
10524  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
10525  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
10526  // looks for this combo and may remove the "setcc" instruction if the "setcc"
10527  // has only one use.
10528  SDNode *N = Op.getNode();
10529  SDValue LHS = N->getOperand(0);
10530  SDValue RHS = N->getOperand(1);
10531  unsigned BaseOp = 0;
10532  unsigned Cond = 0;
10533  DebugLoc DL = Op.getDebugLoc();
10534  switch (Op.getOpcode()) {
10535  default: llvm_unreachable("Unknown ovf instruction!");
10536  case ISD::SADDO:
10537    // A subtract of one will be selected as a INC. Note that INC doesn't
10538    // set CF, so we can't do this for UADDO.
10539    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10540      if (C->isOne()) {
10541        BaseOp = X86ISD::INC;
10542        Cond = X86::COND_O;
10543        break;
10544      }
10545    BaseOp = X86ISD::ADD;
10546    Cond = X86::COND_O;
10547    break;
10548  case ISD::UADDO:
10549    BaseOp = X86ISD::ADD;
10550    Cond = X86::COND_B;
10551    break;
10552  case ISD::SSUBO:
10553    // A subtract of one will be selected as a DEC. Note that DEC doesn't
10554    // set CF, so we can't do this for USUBO.
10555    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10556      if (C->isOne()) {
10557        BaseOp = X86ISD::DEC;
10558        Cond = X86::COND_O;
10559        break;
10560      }
10561    BaseOp = X86ISD::SUB;
10562    Cond = X86::COND_O;
10563    break;
10564  case ISD::USUBO:
10565    BaseOp = X86ISD::SUB;
10566    Cond = X86::COND_B;
10567    break;
10568  case ISD::SMULO:
10569    BaseOp = X86ISD::SMUL;
10570    Cond = X86::COND_O;
10571    break;
10572  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
10573    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
10574                                 MVT::i32);
10575    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
10576
10577    SDValue SetCC =
10578      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10579                  DAG.getConstant(X86::COND_O, MVT::i32),
10580                  SDValue(Sum.getNode(), 2));
10581
10582    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10583  }
10584  }
10585
10586  // Also sets EFLAGS.
10587  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
10588  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
10589
10590  SDValue SetCC =
10591    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
10592                DAG.getConstant(Cond, MVT::i32),
10593                SDValue(Sum.getNode(), 1));
10594
10595  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10596}
10597
10598SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
10599                                                  SelectionDAG &DAG) const {
10600  DebugLoc dl = Op.getDebugLoc();
10601  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
10602  EVT VT = Op.getValueType();
10603
10604  if (!Subtarget->hasSSE2() || !VT.isVector())
10605    return SDValue();
10606
10607  unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
10608                      ExtraVT.getScalarType().getSizeInBits();
10609  SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
10610
10611  switch (VT.getSimpleVT().SimpleTy) {
10612    default: return SDValue();
10613    case MVT::v8i32:
10614    case MVT::v16i16:
10615      if (!Subtarget->hasAVX())
10616        return SDValue();
10617      if (!Subtarget->hasAVX2()) {
10618        // needs to be split
10619        unsigned NumElems = VT.getVectorNumElements();
10620
10621        // Extract the LHS vectors
10622        SDValue LHS = Op.getOperand(0);
10623        SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
10624        SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
10625
10626        MVT EltVT = VT.getVectorElementType().getSimpleVT();
10627        EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10628
10629        EVT ExtraEltVT = ExtraVT.getVectorElementType();
10630        unsigned ExtraNumElems = ExtraVT.getVectorNumElements();
10631        ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
10632                                   ExtraNumElems/2);
10633        SDValue Extra = DAG.getValueType(ExtraVT);
10634
10635        LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
10636        LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
10637
10638        return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);;
10639      }
10640      // fall through
10641    case MVT::v4i32:
10642    case MVT::v8i16: {
10643      SDValue Tmp1 = getTargetVShiftNode(X86ISD::VSHLI, dl, VT,
10644                                         Op.getOperand(0), ShAmt, DAG);
10645      return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, Tmp1, ShAmt, DAG);
10646    }
10647  }
10648}
10649
10650
10651SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
10652  DebugLoc dl = Op.getDebugLoc();
10653
10654  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
10655  // There isn't any reason to disable it if the target processor supports it.
10656  if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) {
10657    SDValue Chain = Op.getOperand(0);
10658    SDValue Zero = DAG.getConstant(0, MVT::i32);
10659    SDValue Ops[] = {
10660      DAG.getRegister(X86::ESP, MVT::i32), // Base
10661      DAG.getTargetConstant(1, MVT::i8),   // Scale
10662      DAG.getRegister(0, MVT::i32),        // Index
10663      DAG.getTargetConstant(0, MVT::i32),  // Disp
10664      DAG.getRegister(0, MVT::i32),        // Segment.
10665      Zero,
10666      Chain
10667    };
10668    SDNode *Res =
10669      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10670                          array_lengthof(Ops));
10671    return SDValue(Res, 0);
10672  }
10673
10674  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
10675  if (!isDev)
10676    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10677
10678  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10679  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
10680  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
10681  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
10682
10683  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
10684  if (!Op1 && !Op2 && !Op3 && Op4)
10685    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
10686
10687  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
10688  if (Op1 && !Op2 && !Op3 && !Op4)
10689    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
10690
10691  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
10692  //           (MFENCE)>;
10693  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10694}
10695
10696SDValue X86TargetLowering::LowerATOMIC_FENCE(SDValue Op,
10697                                             SelectionDAG &DAG) const {
10698  DebugLoc dl = Op.getDebugLoc();
10699  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
10700    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
10701  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
10702    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
10703
10704  // The only fence that needs an instruction is a sequentially-consistent
10705  // cross-thread fence.
10706  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
10707    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
10708    // no-sse2). There isn't any reason to disable it if the target processor
10709    // supports it.
10710    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
10711      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10712
10713    SDValue Chain = Op.getOperand(0);
10714    SDValue Zero = DAG.getConstant(0, MVT::i32);
10715    SDValue Ops[] = {
10716      DAG.getRegister(X86::ESP, MVT::i32), // Base
10717      DAG.getTargetConstant(1, MVT::i8),   // Scale
10718      DAG.getRegister(0, MVT::i32),        // Index
10719      DAG.getTargetConstant(0, MVT::i32),  // Disp
10720      DAG.getRegister(0, MVT::i32),        // Segment.
10721      Zero,
10722      Chain
10723    };
10724    SDNode *Res =
10725      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10726                         array_lengthof(Ops));
10727    return SDValue(Res, 0);
10728  }
10729
10730  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
10731  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10732}
10733
10734
10735SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
10736  EVT T = Op.getValueType();
10737  DebugLoc DL = Op.getDebugLoc();
10738  unsigned Reg = 0;
10739  unsigned size = 0;
10740  switch(T.getSimpleVT().SimpleTy) {
10741  default: llvm_unreachable("Invalid value type!");
10742  case MVT::i8:  Reg = X86::AL;  size = 1; break;
10743  case MVT::i16: Reg = X86::AX;  size = 2; break;
10744  case MVT::i32: Reg = X86::EAX; size = 4; break;
10745  case MVT::i64:
10746    assert(Subtarget->is64Bit() && "Node not type legal!");
10747    Reg = X86::RAX; size = 8;
10748    break;
10749  }
10750  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
10751                                    Op.getOperand(2), SDValue());
10752  SDValue Ops[] = { cpIn.getValue(0),
10753                    Op.getOperand(1),
10754                    Op.getOperand(3),
10755                    DAG.getTargetConstant(size, MVT::i8),
10756                    cpIn.getValue(1) };
10757  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10758  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
10759  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
10760                                           Ops, 5, T, MMO);
10761  SDValue cpOut =
10762    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
10763  return cpOut;
10764}
10765
10766SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
10767                                                 SelectionDAG &DAG) const {
10768  assert(Subtarget->is64Bit() && "Result not type legalized?");
10769  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10770  SDValue TheChain = Op.getOperand(0);
10771  DebugLoc dl = Op.getDebugLoc();
10772  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10773  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
10774  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
10775                                   rax.getValue(2));
10776  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
10777                            DAG.getConstant(32, MVT::i8));
10778  SDValue Ops[] = {
10779    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
10780    rdx.getValue(1)
10781  };
10782  return DAG.getMergeValues(Ops, 2, dl);
10783}
10784
10785SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
10786                                            SelectionDAG &DAG) const {
10787  EVT SrcVT = Op.getOperand(0).getValueType();
10788  EVT DstVT = Op.getValueType();
10789  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
10790         Subtarget->hasMMX() && "Unexpected custom BITCAST");
10791  assert((DstVT == MVT::i64 ||
10792          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
10793         "Unexpected custom BITCAST");
10794  // i64 <=> MMX conversions are Legal.
10795  if (SrcVT==MVT::i64 && DstVT.isVector())
10796    return Op;
10797  if (DstVT==MVT::i64 && SrcVT.isVector())
10798    return Op;
10799  // MMX <=> MMX conversions are Legal.
10800  if (SrcVT.isVector() && DstVT.isVector())
10801    return Op;
10802  // All other conversions need to be expanded.
10803  return SDValue();
10804}
10805
10806SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
10807  SDNode *Node = Op.getNode();
10808  DebugLoc dl = Node->getDebugLoc();
10809  EVT T = Node->getValueType(0);
10810  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
10811                              DAG.getConstant(0, T), Node->getOperand(2));
10812  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
10813                       cast<AtomicSDNode>(Node)->getMemoryVT(),
10814                       Node->getOperand(0),
10815                       Node->getOperand(1), negOp,
10816                       cast<AtomicSDNode>(Node)->getSrcValue(),
10817                       cast<AtomicSDNode>(Node)->getAlignment(),
10818                       cast<AtomicSDNode>(Node)->getOrdering(),
10819                       cast<AtomicSDNode>(Node)->getSynchScope());
10820}
10821
10822static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
10823  SDNode *Node = Op.getNode();
10824  DebugLoc dl = Node->getDebugLoc();
10825  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10826
10827  // Convert seq_cst store -> xchg
10828  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
10829  // FIXME: On 32-bit, store -> fist or movq would be more efficient
10830  //        (The only way to get a 16-byte store is cmpxchg16b)
10831  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
10832  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
10833      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
10834    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
10835                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
10836                                 Node->getOperand(0),
10837                                 Node->getOperand(1), Node->getOperand(2),
10838                                 cast<AtomicSDNode>(Node)->getMemOperand(),
10839                                 cast<AtomicSDNode>(Node)->getOrdering(),
10840                                 cast<AtomicSDNode>(Node)->getSynchScope());
10841    return Swap.getValue(1);
10842  }
10843  // Other atomic stores have a simple pattern.
10844  return Op;
10845}
10846
10847static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
10848  EVT VT = Op.getNode()->getValueType(0);
10849
10850  // Let legalize expand this if it isn't a legal type yet.
10851  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
10852    return SDValue();
10853
10854  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10855
10856  unsigned Opc;
10857  bool ExtraOp = false;
10858  switch (Op.getOpcode()) {
10859  default: llvm_unreachable("Invalid code");
10860  case ISD::ADDC: Opc = X86ISD::ADD; break;
10861  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
10862  case ISD::SUBC: Opc = X86ISD::SUB; break;
10863  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
10864  }
10865
10866  if (!ExtraOp)
10867    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10868                       Op.getOperand(1));
10869  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10870                     Op.getOperand(1), Op.getOperand(2));
10871}
10872
10873/// LowerOperation - Provide custom lowering hooks for some operations.
10874///
10875SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10876  switch (Op.getOpcode()) {
10877  default: llvm_unreachable("Should not custom lower this!");
10878  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
10879  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
10880  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op,DAG);
10881  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
10882  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
10883  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
10884  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10885  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
10886  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10887  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
10888  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10889  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
10890  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
10891  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10892  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10893  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10894  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10895  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
10896  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10897  case ISD::SHL_PARTS:
10898  case ISD::SRA_PARTS:
10899  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
10900  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
10901  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
10902  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
10903  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
10904  case ISD::FABS:               return LowerFABS(Op, DAG);
10905  case ISD::FNEG:               return LowerFNEG(Op, DAG);
10906  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
10907  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
10908  case ISD::SETCC:              return LowerSETCC(Op, DAG);
10909  case ISD::SELECT:             return LowerSELECT(Op, DAG);
10910  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
10911  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10912  case ISD::VASTART:            return LowerVASTART(Op, DAG);
10913  case ISD::VAARG:              return LowerVAARG(Op, DAG);
10914  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10915  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10916  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10917  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10918  case ISD::FRAME_TO_ARGS_OFFSET:
10919                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
10920  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10921  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
10922  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10923  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10924  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10925  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
10926  case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ_ZERO_UNDEF(Op, DAG);
10927  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
10928  case ISD::MUL:                return LowerMUL(Op, DAG);
10929  case ISD::SRA:
10930  case ISD::SRL:
10931  case ISD::SHL:                return LowerShift(Op, DAG);
10932  case ISD::SADDO:
10933  case ISD::UADDO:
10934  case ISD::SSUBO:
10935  case ISD::USUBO:
10936  case ISD::SMULO:
10937  case ISD::UMULO:              return LowerXALUO(Op, DAG);
10938  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
10939  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10940  case ISD::ADDC:
10941  case ISD::ADDE:
10942  case ISD::SUBC:
10943  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
10944  case ISD::ADD:                return LowerADD(Op, DAG);
10945  case ISD::SUB:                return LowerSUB(Op, DAG);
10946  }
10947}
10948
10949static void ReplaceATOMIC_LOAD(SDNode *Node,
10950                                  SmallVectorImpl<SDValue> &Results,
10951                                  SelectionDAG &DAG) {
10952  DebugLoc dl = Node->getDebugLoc();
10953  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10954
10955  // Convert wide load -> cmpxchg8b/cmpxchg16b
10956  // FIXME: On 32-bit, load -> fild or movq would be more efficient
10957  //        (The only way to get a 16-byte load is cmpxchg16b)
10958  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
10959  SDValue Zero = DAG.getConstant(0, VT);
10960  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
10961                               Node->getOperand(0),
10962                               Node->getOperand(1), Zero, Zero,
10963                               cast<AtomicSDNode>(Node)->getMemOperand(),
10964                               cast<AtomicSDNode>(Node)->getOrdering(),
10965                               cast<AtomicSDNode>(Node)->getSynchScope());
10966  Results.push_back(Swap.getValue(0));
10967  Results.push_back(Swap.getValue(1));
10968}
10969
10970void X86TargetLowering::
10971ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
10972                        SelectionDAG &DAG, unsigned NewOp) const {
10973  DebugLoc dl = Node->getDebugLoc();
10974  assert (Node->getValueType(0) == MVT::i64 &&
10975          "Only know how to expand i64 atomics");
10976
10977  SDValue Chain = Node->getOperand(0);
10978  SDValue In1 = Node->getOperand(1);
10979  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10980                             Node->getOperand(2), DAG.getIntPtrConstant(0));
10981  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10982                             Node->getOperand(2), DAG.getIntPtrConstant(1));
10983  SDValue Ops[] = { Chain, In1, In2L, In2H };
10984  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10985  SDValue Result =
10986    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
10987                            cast<MemSDNode>(Node)->getMemOperand());
10988  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
10989  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
10990  Results.push_back(Result.getValue(2));
10991}
10992
10993/// ReplaceNodeResults - Replace a node with an illegal result type
10994/// with a new node built out of custom code.
10995void X86TargetLowering::ReplaceNodeResults(SDNode *N,
10996                                           SmallVectorImpl<SDValue>&Results,
10997                                           SelectionDAG &DAG) const {
10998  DebugLoc dl = N->getDebugLoc();
10999  switch (N->getOpcode()) {
11000  default:
11001    llvm_unreachable("Do not know how to custom type legalize this operation!");
11002  case ISD::SIGN_EXTEND_INREG:
11003  case ISD::ADDC:
11004  case ISD::ADDE:
11005  case ISD::SUBC:
11006  case ISD::SUBE:
11007    // We don't want to expand or promote these.
11008    return;
11009  case ISD::FP_TO_SINT:
11010  case ISD::FP_TO_UINT: {
11011    bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
11012
11013    if (!IsSigned && !isIntegerTypeFTOL(SDValue(N, 0).getValueType()))
11014      return;
11015
11016    std::pair<SDValue,SDValue> Vals =
11017        FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true);
11018    SDValue FIST = Vals.first, StackSlot = Vals.second;
11019    if (FIST.getNode() != 0) {
11020      EVT VT = N->getValueType(0);
11021      // Return a load from the stack slot.
11022      if (StackSlot.getNode() != 0)
11023        Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
11024                                      MachinePointerInfo(),
11025                                      false, false, false, 0));
11026      else
11027        Results.push_back(FIST);
11028    }
11029    return;
11030  }
11031  case ISD::READCYCLECOUNTER: {
11032    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11033    SDValue TheChain = N->getOperand(0);
11034    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
11035    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
11036                                     rd.getValue(1));
11037    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
11038                                     eax.getValue(2));
11039    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
11040    SDValue Ops[] = { eax, edx };
11041    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
11042    Results.push_back(edx.getValue(1));
11043    return;
11044  }
11045  case ISD::ATOMIC_CMP_SWAP: {
11046    EVT T = N->getValueType(0);
11047    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
11048    bool Regs64bit = T == MVT::i128;
11049    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
11050    SDValue cpInL, cpInH;
11051    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
11052                        DAG.getConstant(0, HalfT));
11053    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
11054                        DAG.getConstant(1, HalfT));
11055    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
11056                             Regs64bit ? X86::RAX : X86::EAX,
11057                             cpInL, SDValue());
11058    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
11059                             Regs64bit ? X86::RDX : X86::EDX,
11060                             cpInH, cpInL.getValue(1));
11061    SDValue swapInL, swapInH;
11062    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
11063                          DAG.getConstant(0, HalfT));
11064    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
11065                          DAG.getConstant(1, HalfT));
11066    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
11067                               Regs64bit ? X86::RBX : X86::EBX,
11068                               swapInL, cpInH.getValue(1));
11069    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
11070                               Regs64bit ? X86::RCX : X86::ECX,
11071                               swapInH, swapInL.getValue(1));
11072    SDValue Ops[] = { swapInH.getValue(0),
11073                      N->getOperand(1),
11074                      swapInH.getValue(1) };
11075    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11076    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
11077    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
11078                                  X86ISD::LCMPXCHG8_DAG;
11079    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
11080                                             Ops, 3, T, MMO);
11081    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
11082                                        Regs64bit ? X86::RAX : X86::EAX,
11083                                        HalfT, Result.getValue(1));
11084    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
11085                                        Regs64bit ? X86::RDX : X86::EDX,
11086                                        HalfT, cpOutL.getValue(2));
11087    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
11088    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
11089    Results.push_back(cpOutH.getValue(1));
11090    return;
11091  }
11092  case ISD::ATOMIC_LOAD_ADD:
11093    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
11094    return;
11095  case ISD::ATOMIC_LOAD_AND:
11096    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
11097    return;
11098  case ISD::ATOMIC_LOAD_NAND:
11099    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
11100    return;
11101  case ISD::ATOMIC_LOAD_OR:
11102    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
11103    return;
11104  case ISD::ATOMIC_LOAD_SUB:
11105    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
11106    return;
11107  case ISD::ATOMIC_LOAD_XOR:
11108    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
11109    return;
11110  case ISD::ATOMIC_SWAP:
11111    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
11112    return;
11113  case ISD::ATOMIC_LOAD:
11114    ReplaceATOMIC_LOAD(N, Results, DAG);
11115  }
11116}
11117
11118const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
11119  switch (Opcode) {
11120  default: return NULL;
11121  case X86ISD::BSF:                return "X86ISD::BSF";
11122  case X86ISD::BSR:                return "X86ISD::BSR";
11123  case X86ISD::SHLD:               return "X86ISD::SHLD";
11124  case X86ISD::SHRD:               return "X86ISD::SHRD";
11125  case X86ISD::FAND:               return "X86ISD::FAND";
11126  case X86ISD::FOR:                return "X86ISD::FOR";
11127  case X86ISD::FXOR:               return "X86ISD::FXOR";
11128  case X86ISD::FSRL:               return "X86ISD::FSRL";
11129  case X86ISD::FILD:               return "X86ISD::FILD";
11130  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
11131  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
11132  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
11133  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
11134  case X86ISD::FLD:                return "X86ISD::FLD";
11135  case X86ISD::FST:                return "X86ISD::FST";
11136  case X86ISD::CALL:               return "X86ISD::CALL";
11137  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
11138  case X86ISD::BT:                 return "X86ISD::BT";
11139  case X86ISD::CMP:                return "X86ISD::CMP";
11140  case X86ISD::COMI:               return "X86ISD::COMI";
11141  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
11142  case X86ISD::SETCC:              return "X86ISD::SETCC";
11143  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
11144  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
11145  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
11146  case X86ISD::CMOV:               return "X86ISD::CMOV";
11147  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
11148  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
11149  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
11150  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
11151  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
11152  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
11153  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
11154  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
11155  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
11156  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
11157  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
11158  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
11159  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
11160  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
11161  case X86ISD::PSIGN:              return "X86ISD::PSIGN";
11162  case X86ISD::BLENDV:             return "X86ISD::BLENDV";
11163  case X86ISD::BLENDPW:            return "X86ISD::BLENDPW";
11164  case X86ISD::BLENDPS:            return "X86ISD::BLENDPS";
11165  case X86ISD::BLENDPD:            return "X86ISD::BLENDPD";
11166  case X86ISD::HADD:               return "X86ISD::HADD";
11167  case X86ISD::HSUB:               return "X86ISD::HSUB";
11168  case X86ISD::FHADD:              return "X86ISD::FHADD";
11169  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
11170  case X86ISD::FMAX:               return "X86ISD::FMAX";
11171  case X86ISD::FMIN:               return "X86ISD::FMIN";
11172  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
11173  case X86ISD::FRCP:               return "X86ISD::FRCP";
11174  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
11175  case X86ISD::TLSBASEADDR:        return "X86ISD::TLSBASEADDR";
11176  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
11177  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
11178  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
11179  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
11180  case X86ISD::FNSTSW16r:          return "X86ISD::FNSTSW16r";
11181  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
11182  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
11183  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
11184  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
11185  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
11186  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
11187  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
11188  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
11189  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
11190  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
11191  case X86ISD::VSHLDQ:             return "X86ISD::VSHLDQ";
11192  case X86ISD::VSRLDQ:             return "X86ISD::VSRLDQ";
11193  case X86ISD::VSHL:               return "X86ISD::VSHL";
11194  case X86ISD::VSRL:               return "X86ISD::VSRL";
11195  case X86ISD::VSRA:               return "X86ISD::VSRA";
11196  case X86ISD::VSHLI:              return "X86ISD::VSHLI";
11197  case X86ISD::VSRLI:              return "X86ISD::VSRLI";
11198  case X86ISD::VSRAI:              return "X86ISD::VSRAI";
11199  case X86ISD::CMPP:               return "X86ISD::CMPP";
11200  case X86ISD::PCMPEQ:             return "X86ISD::PCMPEQ";
11201  case X86ISD::PCMPGT:             return "X86ISD::PCMPGT";
11202  case X86ISD::ADD:                return "X86ISD::ADD";
11203  case X86ISD::SUB:                return "X86ISD::SUB";
11204  case X86ISD::ADC:                return "X86ISD::ADC";
11205  case X86ISD::SBB:                return "X86ISD::SBB";
11206  case X86ISD::SMUL:               return "X86ISD::SMUL";
11207  case X86ISD::UMUL:               return "X86ISD::UMUL";
11208  case X86ISD::INC:                return "X86ISD::INC";
11209  case X86ISD::DEC:                return "X86ISD::DEC";
11210  case X86ISD::OR:                 return "X86ISD::OR";
11211  case X86ISD::XOR:                return "X86ISD::XOR";
11212  case X86ISD::AND:                return "X86ISD::AND";
11213  case X86ISD::ANDN:               return "X86ISD::ANDN";
11214  case X86ISD::BLSI:               return "X86ISD::BLSI";
11215  case X86ISD::BLSMSK:             return "X86ISD::BLSMSK";
11216  case X86ISD::BLSR:               return "X86ISD::BLSR";
11217  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
11218  case X86ISD::PTEST:              return "X86ISD::PTEST";
11219  case X86ISD::TESTP:              return "X86ISD::TESTP";
11220  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
11221  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
11222  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
11223  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
11224  case X86ISD::SHUFP:              return "X86ISD::SHUFP";
11225  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
11226  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
11227  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
11228  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
11229  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
11230  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
11231  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
11232  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
11233  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
11234  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
11235  case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
11236  case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
11237  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
11238  case X86ISD::VPERMILP:           return "X86ISD::VPERMILP";
11239  case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
11240  case X86ISD::VPERMV:             return "X86ISD::VPERMV";
11241  case X86ISD::VPERMI:             return "X86ISD::VPERMI";
11242  case X86ISD::PMULUDQ:            return "X86ISD::PMULUDQ";
11243  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
11244  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
11245  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
11246  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
11247  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
11248  case X86ISD::WIN_FTOL:           return "X86ISD::WIN_FTOL";
11249  case X86ISD::SAHF:               return "X86ISD::SAHF";
11250  }
11251}
11252
11253// isLegalAddressingMode - Return true if the addressing mode represented
11254// by AM is legal for this target, for a load/store of the specified type.
11255bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
11256                                              Type *Ty) const {
11257  // X86 supports extremely general addressing modes.
11258  CodeModel::Model M = getTargetMachine().getCodeModel();
11259  Reloc::Model R = getTargetMachine().getRelocationModel();
11260
11261  // X86 allows a sign-extended 32-bit immediate field as a displacement.
11262  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
11263    return false;
11264
11265  if (AM.BaseGV) {
11266    unsigned GVFlags =
11267      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
11268
11269    // If a reference to this global requires an extra load, we can't fold it.
11270    if (isGlobalStubReference(GVFlags))
11271      return false;
11272
11273    // If BaseGV requires a register for the PIC base, we cannot also have a
11274    // BaseReg specified.
11275    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
11276      return false;
11277
11278    // If lower 4G is not available, then we must use rip-relative addressing.
11279    if ((M != CodeModel::Small || R != Reloc::Static) &&
11280        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
11281      return false;
11282  }
11283
11284  switch (AM.Scale) {
11285  case 0:
11286  case 1:
11287  case 2:
11288  case 4:
11289  case 8:
11290    // These scales always work.
11291    break;
11292  case 3:
11293  case 5:
11294  case 9:
11295    // These scales are formed with basereg+scalereg.  Only accept if there is
11296    // no basereg yet.
11297    if (AM.HasBaseReg)
11298      return false;
11299    break;
11300  default:  // Other stuff never works.
11301    return false;
11302  }
11303
11304  return true;
11305}
11306
11307
11308bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
11309  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
11310    return false;
11311  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
11312  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
11313  if (NumBits1 <= NumBits2)
11314    return false;
11315  return true;
11316}
11317
11318bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
11319  if (!VT1.isInteger() || !VT2.isInteger())
11320    return false;
11321  unsigned NumBits1 = VT1.getSizeInBits();
11322  unsigned NumBits2 = VT2.getSizeInBits();
11323  if (NumBits1 <= NumBits2)
11324    return false;
11325  return true;
11326}
11327
11328bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
11329  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11330  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
11331}
11332
11333bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
11334  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11335  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
11336}
11337
11338bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
11339  // i16 instructions are longer (0x66 prefix) and potentially slower.
11340  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
11341}
11342
11343/// isShuffleMaskLegal - Targets can use this to indicate that they only
11344/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
11345/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
11346/// are assumed to be legal.
11347bool
11348X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
11349                                      EVT VT) const {
11350  // Very little shuffling can be done for 64-bit vectors right now.
11351  if (VT.getSizeInBits() == 64)
11352    return false;
11353
11354  // FIXME: pshufb, blends, shifts.
11355  return (VT.getVectorNumElements() == 2 ||
11356          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
11357          isMOVLMask(M, VT) ||
11358          isSHUFPMask(M, VT, Subtarget->hasAVX()) ||
11359          isPSHUFDMask(M, VT) ||
11360          isPSHUFHWMask(M, VT, Subtarget->hasAVX2()) ||
11361          isPSHUFLWMask(M, VT, Subtarget->hasAVX2()) ||
11362          isPALIGNRMask(M, VT, Subtarget) ||
11363          isUNPCKLMask(M, VT, Subtarget->hasAVX2()) ||
11364          isUNPCKHMask(M, VT, Subtarget->hasAVX2()) ||
11365          isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasAVX2()) ||
11366          isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasAVX2()));
11367}
11368
11369bool
11370X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
11371                                          EVT VT) const {
11372  unsigned NumElts = VT.getVectorNumElements();
11373  // FIXME: This collection of masks seems suspect.
11374  if (NumElts == 2)
11375    return true;
11376  if (NumElts == 4 && VT.getSizeInBits() == 128) {
11377    return (isMOVLMask(Mask, VT)  ||
11378            isCommutedMOVLMask(Mask, VT, true) ||
11379            isSHUFPMask(Mask, VT, Subtarget->hasAVX()) ||
11380            isSHUFPMask(Mask, VT, Subtarget->hasAVX(), /* Commuted */ true));
11381  }
11382  return false;
11383}
11384
11385//===----------------------------------------------------------------------===//
11386//                           X86 Scheduler Hooks
11387//===----------------------------------------------------------------------===//
11388
11389// private utility function
11390MachineBasicBlock *
11391X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
11392                                                       MachineBasicBlock *MBB,
11393                                                       unsigned regOpc,
11394                                                       unsigned immOpc,
11395                                                       unsigned LoadOpc,
11396                                                       unsigned CXchgOpc,
11397                                                       unsigned notOpc,
11398                                                       unsigned EAXreg,
11399                                                 const TargetRegisterClass *RC,
11400                                                       bool Invert) const {
11401  // For the atomic bitwise operator, we generate
11402  //   thisMBB:
11403  //   newMBB:
11404  //     ld  t1 = [bitinstr.addr]
11405  //     op  t2 = t1, [bitinstr.val]
11406  //     not t3 = t2  (if Invert)
11407  //     mov EAX = t1
11408  //     lcs dest = [bitinstr.addr], t3  [EAX is implicit]
11409  //     bz  newMBB
11410  //     fallthrough -->nextMBB
11411  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11412  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11413  MachineFunction::iterator MBBIter = MBB;
11414  ++MBBIter;
11415
11416  /// First build the CFG
11417  MachineFunction *F = MBB->getParent();
11418  MachineBasicBlock *thisMBB = MBB;
11419  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11420  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11421  F->insert(MBBIter, newMBB);
11422  F->insert(MBBIter, nextMBB);
11423
11424  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11425  nextMBB->splice(nextMBB->begin(), thisMBB,
11426                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11427                  thisMBB->end());
11428  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11429
11430  // Update thisMBB to fall through to newMBB
11431  thisMBB->addSuccessor(newMBB);
11432
11433  // newMBB jumps to itself and fall through to nextMBB
11434  newMBB->addSuccessor(nextMBB);
11435  newMBB->addSuccessor(newMBB);
11436
11437  // Insert instructions into newMBB based on incoming instruction
11438  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11439         "unexpected number of operands");
11440  DebugLoc dl = bInstr->getDebugLoc();
11441  MachineOperand& destOper = bInstr->getOperand(0);
11442  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11443  int numArgs = bInstr->getNumOperands() - 1;
11444  for (int i=0; i < numArgs; ++i)
11445    argOpers[i] = &bInstr->getOperand(i+1);
11446
11447  // x86 address has 4 operands: base, index, scale, and displacement
11448  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11449  int valArgIndx = lastAddrIndx + 1;
11450
11451  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11452  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
11453  for (int i=0; i <= lastAddrIndx; ++i)
11454    (*MIB).addOperand(*argOpers[i]);
11455
11456  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11457  assert((argOpers[valArgIndx]->isReg() ||
11458          argOpers[valArgIndx]->isImm()) &&
11459         "invalid operand");
11460  if (argOpers[valArgIndx]->isReg())
11461    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
11462  else
11463    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
11464  MIB.addReg(t1);
11465  (*MIB).addOperand(*argOpers[valArgIndx]);
11466
11467  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
11468  if (Invert) {
11469    MIB = BuildMI(newMBB, dl, TII->get(notOpc), t3).addReg(t2);
11470  }
11471  else
11472    t3 = t2;
11473
11474  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
11475  MIB.addReg(t1);
11476
11477  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
11478  for (int i=0; i <= lastAddrIndx; ++i)
11479    (*MIB).addOperand(*argOpers[i]);
11480  MIB.addReg(t3);
11481  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11482  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11483                    bInstr->memoperands_end());
11484
11485  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11486  MIB.addReg(EAXreg);
11487
11488  // insert branch
11489  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11490
11491  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11492  return nextMBB;
11493}
11494
11495// private utility function:  64 bit atomics on 32 bit host.
11496MachineBasicBlock *
11497X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
11498                                                       MachineBasicBlock *MBB,
11499                                                       unsigned regOpcL,
11500                                                       unsigned regOpcH,
11501                                                       unsigned immOpcL,
11502                                                       unsigned immOpcH,
11503                                                       bool Invert) const {
11504  // For the atomic bitwise operator, we generate
11505  //   thisMBB (instructions are in pairs, except cmpxchg8b)
11506  //     ld t1,t2 = [bitinstr.addr]
11507  //   newMBB:
11508  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
11509  //     op  t5, t6 <- out1, out2, [bitinstr.val]
11510  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
11511  //     neg t7, t8 < t5, t6  (if Invert)
11512  //     mov ECX, EBX <- t5, t6
11513  //     mov EAX, EDX <- t1, t2
11514  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
11515  //     mov t3, t4 <- EAX, EDX
11516  //     bz  newMBB
11517  //     result in out1, out2
11518  //     fallthrough -->nextMBB
11519
11520  const TargetRegisterClass *RC = &X86::GR32RegClass;
11521  const unsigned LoadOpc = X86::MOV32rm;
11522  const unsigned NotOpc = X86::NOT32r;
11523  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11524  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11525  MachineFunction::iterator MBBIter = MBB;
11526  ++MBBIter;
11527
11528  /// First build the CFG
11529  MachineFunction *F = MBB->getParent();
11530  MachineBasicBlock *thisMBB = MBB;
11531  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11532  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11533  F->insert(MBBIter, newMBB);
11534  F->insert(MBBIter, nextMBB);
11535
11536  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11537  nextMBB->splice(nextMBB->begin(), thisMBB,
11538                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11539                  thisMBB->end());
11540  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11541
11542  // Update thisMBB to fall through to newMBB
11543  thisMBB->addSuccessor(newMBB);
11544
11545  // newMBB jumps to itself and fall through to nextMBB
11546  newMBB->addSuccessor(nextMBB);
11547  newMBB->addSuccessor(newMBB);
11548
11549  DebugLoc dl = bInstr->getDebugLoc();
11550  // Insert instructions into newMBB based on incoming instruction
11551  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
11552  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
11553         "unexpected number of operands");
11554  MachineOperand& dest1Oper = bInstr->getOperand(0);
11555  MachineOperand& dest2Oper = bInstr->getOperand(1);
11556  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11557  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
11558    argOpers[i] = &bInstr->getOperand(i+2);
11559
11560    // We use some of the operands multiple times, so conservatively just
11561    // clear any kill flags that might be present.
11562    if (argOpers[i]->isReg() && argOpers[i]->isUse())
11563      argOpers[i]->setIsKill(false);
11564  }
11565
11566  // x86 address has 5 operands: base, index, scale, displacement, and segment.
11567  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11568
11569  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11570  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
11571  for (int i=0; i <= lastAddrIndx; ++i)
11572    (*MIB).addOperand(*argOpers[i]);
11573  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11574  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
11575  // add 4 to displacement.
11576  for (int i=0; i <= lastAddrIndx-2; ++i)
11577    (*MIB).addOperand(*argOpers[i]);
11578  MachineOperand newOp3 = *(argOpers[3]);
11579  if (newOp3.isImm())
11580    newOp3.setImm(newOp3.getImm()+4);
11581  else
11582    newOp3.setOffset(newOp3.getOffset()+4);
11583  (*MIB).addOperand(newOp3);
11584  (*MIB).addOperand(*argOpers[lastAddrIndx]);
11585
11586  // t3/4 are defined later, at the bottom of the loop
11587  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
11588  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
11589  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
11590    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
11591  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
11592    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
11593
11594  // The subsequent operations should be using the destination registers of
11595  // the PHI instructions.
11596  t1 = dest1Oper.getReg();
11597  t2 = dest2Oper.getReg();
11598
11599  int valArgIndx = lastAddrIndx + 1;
11600  assert((argOpers[valArgIndx]->isReg() ||
11601          argOpers[valArgIndx]->isImm()) &&
11602         "invalid operand");
11603  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
11604  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
11605  if (argOpers[valArgIndx]->isReg())
11606    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
11607  else
11608    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
11609  if (regOpcL != X86::MOV32rr)
11610    MIB.addReg(t1);
11611  (*MIB).addOperand(*argOpers[valArgIndx]);
11612  assert(argOpers[valArgIndx + 1]->isReg() ==
11613         argOpers[valArgIndx]->isReg());
11614  assert(argOpers[valArgIndx + 1]->isImm() ==
11615         argOpers[valArgIndx]->isImm());
11616  if (argOpers[valArgIndx + 1]->isReg())
11617    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
11618  else
11619    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
11620  if (regOpcH != X86::MOV32rr)
11621    MIB.addReg(t2);
11622  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
11623
11624  unsigned t7, t8;
11625  if (Invert) {
11626    t7 = F->getRegInfo().createVirtualRegister(RC);
11627    t8 = F->getRegInfo().createVirtualRegister(RC);
11628    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t7).addReg(t5);
11629    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t8).addReg(t6);
11630  } else {
11631    t7 = t5;
11632    t8 = t6;
11633  }
11634
11635  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11636  MIB.addReg(t1);
11637  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
11638  MIB.addReg(t2);
11639
11640  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
11641  MIB.addReg(t7);
11642  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
11643  MIB.addReg(t8);
11644
11645  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
11646  for (int i=0; i <= lastAddrIndx; ++i)
11647    (*MIB).addOperand(*argOpers[i]);
11648
11649  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11650  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11651                    bInstr->memoperands_end());
11652
11653  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
11654  MIB.addReg(X86::EAX);
11655  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
11656  MIB.addReg(X86::EDX);
11657
11658  // insert branch
11659  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11660
11661  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11662  return nextMBB;
11663}
11664
11665// private utility function
11666MachineBasicBlock *
11667X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
11668                                                      MachineBasicBlock *MBB,
11669                                                      unsigned cmovOpc) const {
11670  // For the atomic min/max operator, we generate
11671  //   thisMBB:
11672  //   newMBB:
11673  //     ld t1 = [min/max.addr]
11674  //     mov t2 = [min/max.val]
11675  //     cmp  t1, t2
11676  //     cmov[cond] t2 = t1
11677  //     mov EAX = t1
11678  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11679  //     bz   newMBB
11680  //     fallthrough -->nextMBB
11681  //
11682  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11683  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11684  MachineFunction::iterator MBBIter = MBB;
11685  ++MBBIter;
11686
11687  /// First build the CFG
11688  MachineFunction *F = MBB->getParent();
11689  MachineBasicBlock *thisMBB = MBB;
11690  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11691  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11692  F->insert(MBBIter, newMBB);
11693  F->insert(MBBIter, nextMBB);
11694
11695  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11696  nextMBB->splice(nextMBB->begin(), thisMBB,
11697                  llvm::next(MachineBasicBlock::iterator(mInstr)),
11698                  thisMBB->end());
11699  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11700
11701  // Update thisMBB to fall through to newMBB
11702  thisMBB->addSuccessor(newMBB);
11703
11704  // newMBB jumps to newMBB and fall through to nextMBB
11705  newMBB->addSuccessor(nextMBB);
11706  newMBB->addSuccessor(newMBB);
11707
11708  DebugLoc dl = mInstr->getDebugLoc();
11709  // Insert instructions into newMBB based on incoming instruction
11710  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11711         "unexpected number of operands");
11712  MachineOperand& destOper = mInstr->getOperand(0);
11713  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11714  int numArgs = mInstr->getNumOperands() - 1;
11715  for (int i=0; i < numArgs; ++i)
11716    argOpers[i] = &mInstr->getOperand(i+1);
11717
11718  // x86 address has 4 operands: base, index, scale, and displacement
11719  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11720  int valArgIndx = lastAddrIndx + 1;
11721
11722  unsigned t1 = F->getRegInfo().createVirtualRegister(&X86::GR32RegClass);
11723  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
11724  for (int i=0; i <= lastAddrIndx; ++i)
11725    (*MIB).addOperand(*argOpers[i]);
11726
11727  // We only support register and immediate values
11728  assert((argOpers[valArgIndx]->isReg() ||
11729          argOpers[valArgIndx]->isImm()) &&
11730         "invalid operand");
11731
11732  unsigned t2 = F->getRegInfo().createVirtualRegister(&X86::GR32RegClass);
11733  if (argOpers[valArgIndx]->isReg())
11734    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
11735  else
11736    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
11737  (*MIB).addOperand(*argOpers[valArgIndx]);
11738
11739  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11740  MIB.addReg(t1);
11741
11742  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
11743  MIB.addReg(t1);
11744  MIB.addReg(t2);
11745
11746  // Generate movc
11747  unsigned t3 = F->getRegInfo().createVirtualRegister(&X86::GR32RegClass);
11748  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
11749  MIB.addReg(t2);
11750  MIB.addReg(t1);
11751
11752  // Cmp and exchange if none has modified the memory location
11753  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
11754  for (int i=0; i <= lastAddrIndx; ++i)
11755    (*MIB).addOperand(*argOpers[i]);
11756  MIB.addReg(t3);
11757  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11758  (*MIB).setMemRefs(mInstr->memoperands_begin(),
11759                    mInstr->memoperands_end());
11760
11761  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11762  MIB.addReg(X86::EAX);
11763
11764  // insert branch
11765  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11766
11767  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
11768  return nextMBB;
11769}
11770
11771// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
11772// or XMM0_V32I8 in AVX all of this code can be replaced with that
11773// in the .td file.
11774MachineBasicBlock *
11775X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
11776                            unsigned numArgs, bool memArg) const {
11777  assert(Subtarget->hasSSE42() &&
11778         "Target must have SSE4.2 or AVX features enabled");
11779
11780  DebugLoc dl = MI->getDebugLoc();
11781  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11782  unsigned Opc;
11783  if (!Subtarget->hasAVX()) {
11784    if (memArg)
11785      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
11786    else
11787      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
11788  } else {
11789    if (memArg)
11790      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
11791    else
11792      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
11793  }
11794
11795  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
11796  for (unsigned i = 0; i < numArgs; ++i) {
11797    MachineOperand &Op = MI->getOperand(i+1);
11798    if (!(Op.isReg() && Op.isImplicit()))
11799      MIB.addOperand(Op);
11800  }
11801  BuildMI(*BB, MI, dl,
11802    TII->get(Subtarget->hasAVX() ? X86::VMOVAPSrr : X86::MOVAPSrr),
11803             MI->getOperand(0).getReg())
11804    .addReg(X86::XMM0);
11805
11806  MI->eraseFromParent();
11807  return BB;
11808}
11809
11810MachineBasicBlock *
11811X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
11812  DebugLoc dl = MI->getDebugLoc();
11813  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11814
11815  // Address into RAX/EAX, other two args into ECX, EDX.
11816  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
11817  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
11818  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
11819  for (int i = 0; i < X86::AddrNumOperands; ++i)
11820    MIB.addOperand(MI->getOperand(i));
11821
11822  unsigned ValOps = X86::AddrNumOperands;
11823  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11824    .addReg(MI->getOperand(ValOps).getReg());
11825  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
11826    .addReg(MI->getOperand(ValOps+1).getReg());
11827
11828  // The instruction doesn't actually take any operands though.
11829  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
11830
11831  MI->eraseFromParent(); // The pseudo is gone now.
11832  return BB;
11833}
11834
11835MachineBasicBlock *
11836X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
11837  DebugLoc dl = MI->getDebugLoc();
11838  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11839
11840  // First arg in ECX, the second in EAX.
11841  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11842    .addReg(MI->getOperand(0).getReg());
11843  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
11844    .addReg(MI->getOperand(1).getReg());
11845
11846  // The instruction doesn't actually take any operands though.
11847  BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
11848
11849  MI->eraseFromParent(); // The pseudo is gone now.
11850  return BB;
11851}
11852
11853MachineBasicBlock *
11854X86TargetLowering::EmitVAARG64WithCustomInserter(
11855                   MachineInstr *MI,
11856                   MachineBasicBlock *MBB) const {
11857  // Emit va_arg instruction on X86-64.
11858
11859  // Operands to this pseudo-instruction:
11860  // 0  ) Output        : destination address (reg)
11861  // 1-5) Input         : va_list address (addr, i64mem)
11862  // 6  ) ArgSize       : Size (in bytes) of vararg type
11863  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
11864  // 8  ) Align         : Alignment of type
11865  // 9  ) EFLAGS (implicit-def)
11866
11867  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
11868  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
11869
11870  unsigned DestReg = MI->getOperand(0).getReg();
11871  MachineOperand &Base = MI->getOperand(1);
11872  MachineOperand &Scale = MI->getOperand(2);
11873  MachineOperand &Index = MI->getOperand(3);
11874  MachineOperand &Disp = MI->getOperand(4);
11875  MachineOperand &Segment = MI->getOperand(5);
11876  unsigned ArgSize = MI->getOperand(6).getImm();
11877  unsigned ArgMode = MI->getOperand(7).getImm();
11878  unsigned Align = MI->getOperand(8).getImm();
11879
11880  // Memory Reference
11881  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
11882  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
11883  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
11884
11885  // Machine Information
11886  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11887  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
11888  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
11889  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
11890  DebugLoc DL = MI->getDebugLoc();
11891
11892  // struct va_list {
11893  //   i32   gp_offset
11894  //   i32   fp_offset
11895  //   i64   overflow_area (address)
11896  //   i64   reg_save_area (address)
11897  // }
11898  // sizeof(va_list) = 24
11899  // alignment(va_list) = 8
11900
11901  unsigned TotalNumIntRegs = 6;
11902  unsigned TotalNumXMMRegs = 8;
11903  bool UseGPOffset = (ArgMode == 1);
11904  bool UseFPOffset = (ArgMode == 2);
11905  unsigned MaxOffset = TotalNumIntRegs * 8 +
11906                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
11907
11908  /* Align ArgSize to a multiple of 8 */
11909  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
11910  bool NeedsAlign = (Align > 8);
11911
11912  MachineBasicBlock *thisMBB = MBB;
11913  MachineBasicBlock *overflowMBB;
11914  MachineBasicBlock *offsetMBB;
11915  MachineBasicBlock *endMBB;
11916
11917  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
11918  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
11919  unsigned OffsetReg = 0;
11920
11921  if (!UseGPOffset && !UseFPOffset) {
11922    // If we only pull from the overflow region, we don't create a branch.
11923    // We don't need to alter control flow.
11924    OffsetDestReg = 0; // unused
11925    OverflowDestReg = DestReg;
11926
11927    offsetMBB = NULL;
11928    overflowMBB = thisMBB;
11929    endMBB = thisMBB;
11930  } else {
11931    // First emit code to check if gp_offset (or fp_offset) is below the bound.
11932    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
11933    // If not, pull from overflow_area. (branch to overflowMBB)
11934    //
11935    //       thisMBB
11936    //         |     .
11937    //         |        .
11938    //     offsetMBB   overflowMBB
11939    //         |        .
11940    //         |     .
11941    //        endMBB
11942
11943    // Registers for the PHI in endMBB
11944    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
11945    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
11946
11947    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11948    MachineFunction *MF = MBB->getParent();
11949    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11950    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11951    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11952
11953    MachineFunction::iterator MBBIter = MBB;
11954    ++MBBIter;
11955
11956    // Insert the new basic blocks
11957    MF->insert(MBBIter, offsetMBB);
11958    MF->insert(MBBIter, overflowMBB);
11959    MF->insert(MBBIter, endMBB);
11960
11961    // Transfer the remainder of MBB and its successor edges to endMBB.
11962    endMBB->splice(endMBB->begin(), thisMBB,
11963                    llvm::next(MachineBasicBlock::iterator(MI)),
11964                    thisMBB->end());
11965    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11966
11967    // Make offsetMBB and overflowMBB successors of thisMBB
11968    thisMBB->addSuccessor(offsetMBB);
11969    thisMBB->addSuccessor(overflowMBB);
11970
11971    // endMBB is a successor of both offsetMBB and overflowMBB
11972    offsetMBB->addSuccessor(endMBB);
11973    overflowMBB->addSuccessor(endMBB);
11974
11975    // Load the offset value into a register
11976    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11977    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
11978      .addOperand(Base)
11979      .addOperand(Scale)
11980      .addOperand(Index)
11981      .addDisp(Disp, UseFPOffset ? 4 : 0)
11982      .addOperand(Segment)
11983      .setMemRefs(MMOBegin, MMOEnd);
11984
11985    // Check if there is enough room left to pull this argument.
11986    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
11987      .addReg(OffsetReg)
11988      .addImm(MaxOffset + 8 - ArgSizeA8);
11989
11990    // Branch to "overflowMBB" if offset >= max
11991    // Fall through to "offsetMBB" otherwise
11992    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
11993      .addMBB(overflowMBB);
11994  }
11995
11996  // In offsetMBB, emit code to use the reg_save_area.
11997  if (offsetMBB) {
11998    assert(OffsetReg != 0);
11999
12000    // Read the reg_save_area address.
12001    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
12002    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
12003      .addOperand(Base)
12004      .addOperand(Scale)
12005      .addOperand(Index)
12006      .addDisp(Disp, 16)
12007      .addOperand(Segment)
12008      .setMemRefs(MMOBegin, MMOEnd);
12009
12010    // Zero-extend the offset
12011    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
12012      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
12013        .addImm(0)
12014        .addReg(OffsetReg)
12015        .addImm(X86::sub_32bit);
12016
12017    // Add the offset to the reg_save_area to get the final address.
12018    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
12019      .addReg(OffsetReg64)
12020      .addReg(RegSaveReg);
12021
12022    // Compute the offset for the next argument
12023    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
12024    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
12025      .addReg(OffsetReg)
12026      .addImm(UseFPOffset ? 16 : 8);
12027
12028    // Store it back into the va_list.
12029    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
12030      .addOperand(Base)
12031      .addOperand(Scale)
12032      .addOperand(Index)
12033      .addDisp(Disp, UseFPOffset ? 4 : 0)
12034      .addOperand(Segment)
12035      .addReg(NextOffsetReg)
12036      .setMemRefs(MMOBegin, MMOEnd);
12037
12038    // Jump to endMBB
12039    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
12040      .addMBB(endMBB);
12041  }
12042
12043  //
12044  // Emit code to use overflow area
12045  //
12046
12047  // Load the overflow_area address into a register.
12048  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
12049  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
12050    .addOperand(Base)
12051    .addOperand(Scale)
12052    .addOperand(Index)
12053    .addDisp(Disp, 8)
12054    .addOperand(Segment)
12055    .setMemRefs(MMOBegin, MMOEnd);
12056
12057  // If we need to align it, do so. Otherwise, just copy the address
12058  // to OverflowDestReg.
12059  if (NeedsAlign) {
12060    // Align the overflow address
12061    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
12062    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
12063
12064    // aligned_addr = (addr + (align-1)) & ~(align-1)
12065    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
12066      .addReg(OverflowAddrReg)
12067      .addImm(Align-1);
12068
12069    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
12070      .addReg(TmpReg)
12071      .addImm(~(uint64_t)(Align-1));
12072  } else {
12073    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
12074      .addReg(OverflowAddrReg);
12075  }
12076
12077  // Compute the next overflow address after this argument.
12078  // (the overflow address should be kept 8-byte aligned)
12079  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
12080  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
12081    .addReg(OverflowDestReg)
12082    .addImm(ArgSizeA8);
12083
12084  // Store the new overflow address.
12085  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
12086    .addOperand(Base)
12087    .addOperand(Scale)
12088    .addOperand(Index)
12089    .addDisp(Disp, 8)
12090    .addOperand(Segment)
12091    .addReg(NextAddrReg)
12092    .setMemRefs(MMOBegin, MMOEnd);
12093
12094  // If we branched, emit the PHI to the front of endMBB.
12095  if (offsetMBB) {
12096    BuildMI(*endMBB, endMBB->begin(), DL,
12097            TII->get(X86::PHI), DestReg)
12098      .addReg(OffsetDestReg).addMBB(offsetMBB)
12099      .addReg(OverflowDestReg).addMBB(overflowMBB);
12100  }
12101
12102  // Erase the pseudo instruction
12103  MI->eraseFromParent();
12104
12105  return endMBB;
12106}
12107
12108MachineBasicBlock *
12109X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
12110                                                 MachineInstr *MI,
12111                                                 MachineBasicBlock *MBB) const {
12112  // Emit code to save XMM registers to the stack. The ABI says that the
12113  // number of registers to save is given in %al, so it's theoretically
12114  // possible to do an indirect jump trick to avoid saving all of them,
12115  // however this code takes a simpler approach and just executes all
12116  // of the stores if %al is non-zero. It's less code, and it's probably
12117  // easier on the hardware branch predictor, and stores aren't all that
12118  // expensive anyway.
12119
12120  // Create the new basic blocks. One block contains all the XMM stores,
12121  // and one block is the final destination regardless of whether any
12122  // stores were performed.
12123  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
12124  MachineFunction *F = MBB->getParent();
12125  MachineFunction::iterator MBBIter = MBB;
12126  ++MBBIter;
12127  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
12128  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
12129  F->insert(MBBIter, XMMSaveMBB);
12130  F->insert(MBBIter, EndMBB);
12131
12132  // Transfer the remainder of MBB and its successor edges to EndMBB.
12133  EndMBB->splice(EndMBB->begin(), MBB,
12134                 llvm::next(MachineBasicBlock::iterator(MI)),
12135                 MBB->end());
12136  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
12137
12138  // The original block will now fall through to the XMM save block.
12139  MBB->addSuccessor(XMMSaveMBB);
12140  // The XMMSaveMBB will fall through to the end block.
12141  XMMSaveMBB->addSuccessor(EndMBB);
12142
12143  // Now add the instructions.
12144  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12145  DebugLoc DL = MI->getDebugLoc();
12146
12147  unsigned CountReg = MI->getOperand(0).getReg();
12148  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
12149  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
12150
12151  if (!Subtarget->isTargetWin64()) {
12152    // If %al is 0, branch around the XMM save block.
12153    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
12154    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
12155    MBB->addSuccessor(EndMBB);
12156  }
12157
12158  unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
12159  // In the XMM save block, save all the XMM argument registers.
12160  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
12161    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
12162    MachineMemOperand *MMO =
12163      F->getMachineMemOperand(
12164          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
12165        MachineMemOperand::MOStore,
12166        /*Size=*/16, /*Align=*/16);
12167    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
12168      .addFrameIndex(RegSaveFrameIndex)
12169      .addImm(/*Scale=*/1)
12170      .addReg(/*IndexReg=*/0)
12171      .addImm(/*Disp=*/Offset)
12172      .addReg(/*Segment=*/0)
12173      .addReg(MI->getOperand(i).getReg())
12174      .addMemOperand(MMO);
12175  }
12176
12177  MI->eraseFromParent();   // The pseudo instruction is gone now.
12178
12179  return EndMBB;
12180}
12181
12182// The EFLAGS operand of SelectItr might be missing a kill marker
12183// because there were multiple uses of EFLAGS, and ISel didn't know
12184// which to mark. Figure out whether SelectItr should have had a
12185// kill marker, and set it if it should. Returns the correct kill
12186// marker value.
12187static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
12188                                     MachineBasicBlock* BB,
12189                                     const TargetRegisterInfo* TRI) {
12190  // Scan forward through BB for a use/def of EFLAGS.
12191  MachineBasicBlock::iterator miI(llvm::next(SelectItr));
12192  for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
12193    const MachineInstr& mi = *miI;
12194    if (mi.readsRegister(X86::EFLAGS))
12195      return false;
12196    if (mi.definesRegister(X86::EFLAGS))
12197      break; // Should have kill-flag - update below.
12198  }
12199
12200  // If we hit the end of the block, check whether EFLAGS is live into a
12201  // successor.
12202  if (miI == BB->end()) {
12203    for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
12204                                          sEnd = BB->succ_end();
12205         sItr != sEnd; ++sItr) {
12206      MachineBasicBlock* succ = *sItr;
12207      if (succ->isLiveIn(X86::EFLAGS))
12208        return false;
12209    }
12210  }
12211
12212  // We found a def, or hit the end of the basic block and EFLAGS wasn't live
12213  // out. SelectMI should have a kill flag on EFLAGS.
12214  SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
12215  return true;
12216}
12217
12218MachineBasicBlock *
12219X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
12220                                     MachineBasicBlock *BB) const {
12221  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12222  DebugLoc DL = MI->getDebugLoc();
12223
12224  // To "insert" a SELECT_CC instruction, we actually have to insert the
12225  // diamond control-flow pattern.  The incoming instruction knows the
12226  // destination vreg to set, the condition code register to branch on, the
12227  // true/false values to select between, and a branch opcode to use.
12228  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12229  MachineFunction::iterator It = BB;
12230  ++It;
12231
12232  //  thisMBB:
12233  //  ...
12234  //   TrueVal = ...
12235  //   cmpTY ccX, r1, r2
12236  //   bCC copy1MBB
12237  //   fallthrough --> copy0MBB
12238  MachineBasicBlock *thisMBB = BB;
12239  MachineFunction *F = BB->getParent();
12240  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
12241  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
12242  F->insert(It, copy0MBB);
12243  F->insert(It, sinkMBB);
12244
12245  // If the EFLAGS register isn't dead in the terminator, then claim that it's
12246  // live into the sink and copy blocks.
12247  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
12248  if (!MI->killsRegister(X86::EFLAGS) &&
12249      !checkAndUpdateEFLAGSKill(MI, BB, TRI)) {
12250    copy0MBB->addLiveIn(X86::EFLAGS);
12251    sinkMBB->addLiveIn(X86::EFLAGS);
12252  }
12253
12254  // Transfer the remainder of BB and its successor edges to sinkMBB.
12255  sinkMBB->splice(sinkMBB->begin(), BB,
12256                  llvm::next(MachineBasicBlock::iterator(MI)),
12257                  BB->end());
12258  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12259
12260  // Add the true and fallthrough blocks as its successors.
12261  BB->addSuccessor(copy0MBB);
12262  BB->addSuccessor(sinkMBB);
12263
12264  // Create the conditional branch instruction.
12265  unsigned Opc =
12266    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
12267  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
12268
12269  //  copy0MBB:
12270  //   %FalseValue = ...
12271  //   # fallthrough to sinkMBB
12272  copy0MBB->addSuccessor(sinkMBB);
12273
12274  //  sinkMBB:
12275  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
12276  //  ...
12277  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12278          TII->get(X86::PHI), MI->getOperand(0).getReg())
12279    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
12280    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
12281
12282  MI->eraseFromParent();   // The pseudo instruction is gone now.
12283  return sinkMBB;
12284}
12285
12286MachineBasicBlock *
12287X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
12288                                        bool Is64Bit) const {
12289  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12290  DebugLoc DL = MI->getDebugLoc();
12291  MachineFunction *MF = BB->getParent();
12292  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12293
12294  assert(getTargetMachine().Options.EnableSegmentedStacks);
12295
12296  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
12297  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
12298
12299  // BB:
12300  //  ... [Till the alloca]
12301  // If stacklet is not large enough, jump to mallocMBB
12302  //
12303  // bumpMBB:
12304  //  Allocate by subtracting from RSP
12305  //  Jump to continueMBB
12306  //
12307  // mallocMBB:
12308  //  Allocate by call to runtime
12309  //
12310  // continueMBB:
12311  //  ...
12312  //  [rest of original BB]
12313  //
12314
12315  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12316  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12317  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12318
12319  MachineRegisterInfo &MRI = MF->getRegInfo();
12320  const TargetRegisterClass *AddrRegClass =
12321    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
12322
12323  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12324    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12325    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
12326    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
12327    sizeVReg = MI->getOperand(1).getReg(),
12328    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
12329
12330  MachineFunction::iterator MBBIter = BB;
12331  ++MBBIter;
12332
12333  MF->insert(MBBIter, bumpMBB);
12334  MF->insert(MBBIter, mallocMBB);
12335  MF->insert(MBBIter, continueMBB);
12336
12337  continueMBB->splice(continueMBB->begin(), BB, llvm::next
12338                      (MachineBasicBlock::iterator(MI)), BB->end());
12339  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
12340
12341  // Add code to the main basic block to check if the stack limit has been hit,
12342  // and if so, jump to mallocMBB otherwise to bumpMBB.
12343  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
12344  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
12345    .addReg(tmpSPVReg).addReg(sizeVReg);
12346  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
12347    .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
12348    .addReg(SPLimitVReg);
12349  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
12350
12351  // bumpMBB simply decreases the stack pointer, since we know the current
12352  // stacklet has enough space.
12353  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
12354    .addReg(SPLimitVReg);
12355  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
12356    .addReg(SPLimitVReg);
12357  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12358
12359  // Calls into a routine in libgcc to allocate more space from the heap.
12360  const uint32_t *RegMask =
12361    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
12362  if (Is64Bit) {
12363    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
12364      .addReg(sizeVReg);
12365    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
12366      .addExternalSymbol("__morestack_allocate_stack_space").addReg(X86::RDI)
12367      .addRegMask(RegMask)
12368      .addReg(X86::RAX, RegState::ImplicitDefine);
12369  } else {
12370    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
12371      .addImm(12);
12372    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
12373    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
12374      .addExternalSymbol("__morestack_allocate_stack_space")
12375      .addRegMask(RegMask)
12376      .addReg(X86::EAX, RegState::ImplicitDefine);
12377  }
12378
12379  if (!Is64Bit)
12380    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
12381      .addImm(16);
12382
12383  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
12384    .addReg(Is64Bit ? X86::RAX : X86::EAX);
12385  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12386
12387  // Set up the CFG correctly.
12388  BB->addSuccessor(bumpMBB);
12389  BB->addSuccessor(mallocMBB);
12390  mallocMBB->addSuccessor(continueMBB);
12391  bumpMBB->addSuccessor(continueMBB);
12392
12393  // Take care of the PHI nodes.
12394  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
12395          MI->getOperand(0).getReg())
12396    .addReg(mallocPtrVReg).addMBB(mallocMBB)
12397    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
12398
12399  // Delete the original pseudo instruction.
12400  MI->eraseFromParent();
12401
12402  // And we're done.
12403  return continueMBB;
12404}
12405
12406MachineBasicBlock *
12407X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
12408                                          MachineBasicBlock *BB) const {
12409  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12410  DebugLoc DL = MI->getDebugLoc();
12411
12412  assert(!Subtarget->isTargetEnvMacho());
12413
12414  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
12415  // non-trivial part is impdef of ESP.
12416
12417  if (Subtarget->isTargetWin64()) {
12418    if (Subtarget->isTargetCygMing()) {
12419      // ___chkstk(Mingw64):
12420      // Clobbers R10, R11, RAX and EFLAGS.
12421      // Updates RSP.
12422      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12423        .addExternalSymbol("___chkstk")
12424        .addReg(X86::RAX, RegState::Implicit)
12425        .addReg(X86::RSP, RegState::Implicit)
12426        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
12427        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
12428        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12429    } else {
12430      // __chkstk(MSVCRT): does not update stack pointer.
12431      // Clobbers R10, R11 and EFLAGS.
12432      // FIXME: RAX(allocated size) might be reused and not killed.
12433      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12434        .addExternalSymbol("__chkstk")
12435        .addReg(X86::RAX, RegState::Implicit)
12436        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12437      // RAX has the offset to subtracted from RSP.
12438      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
12439        .addReg(X86::RSP)
12440        .addReg(X86::RAX);
12441    }
12442  } else {
12443    const char *StackProbeSymbol =
12444      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
12445
12446    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
12447      .addExternalSymbol(StackProbeSymbol)
12448      .addReg(X86::EAX, RegState::Implicit)
12449      .addReg(X86::ESP, RegState::Implicit)
12450      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
12451      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
12452      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12453  }
12454
12455  MI->eraseFromParent();   // The pseudo instruction is gone now.
12456  return BB;
12457}
12458
12459MachineBasicBlock *
12460X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
12461                                      MachineBasicBlock *BB) const {
12462  // This is pretty easy.  We're taking the value that we received from
12463  // our load from the relocation, sticking it in either RDI (x86-64)
12464  // or EAX and doing an indirect call.  The return value will then
12465  // be in the normal return register.
12466  const X86InstrInfo *TII
12467    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
12468  DebugLoc DL = MI->getDebugLoc();
12469  MachineFunction *F = BB->getParent();
12470
12471  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
12472  assert(MI->getOperand(3).isGlobal() && "This should be a global");
12473
12474  // Get a register mask for the lowered call.
12475  // FIXME: The 32-bit calls have non-standard calling conventions. Use a
12476  // proper register mask.
12477  const uint32_t *RegMask =
12478    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
12479  if (Subtarget->is64Bit()) {
12480    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12481                                      TII->get(X86::MOV64rm), X86::RDI)
12482    .addReg(X86::RIP)
12483    .addImm(0).addReg(0)
12484    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12485                      MI->getOperand(3).getTargetFlags())
12486    .addReg(0);
12487    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
12488    addDirectMem(MIB, X86::RDI);
12489    MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask);
12490  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
12491    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12492                                      TII->get(X86::MOV32rm), X86::EAX)
12493    .addReg(0)
12494    .addImm(0).addReg(0)
12495    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12496                      MI->getOperand(3).getTargetFlags())
12497    .addReg(0);
12498    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12499    addDirectMem(MIB, X86::EAX);
12500    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
12501  } else {
12502    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12503                                      TII->get(X86::MOV32rm), X86::EAX)
12504    .addReg(TII->getGlobalBaseReg(F))
12505    .addImm(0).addReg(0)
12506    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12507                      MI->getOperand(3).getTargetFlags())
12508    .addReg(0);
12509    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12510    addDirectMem(MIB, X86::EAX);
12511    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
12512  }
12513
12514  MI->eraseFromParent(); // The pseudo instruction is gone now.
12515  return BB;
12516}
12517
12518MachineBasicBlock *
12519X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
12520                                               MachineBasicBlock *BB) const {
12521  switch (MI->getOpcode()) {
12522  default: llvm_unreachable("Unexpected instr type to insert");
12523  case X86::TAILJMPd64:
12524  case X86::TAILJMPr64:
12525  case X86::TAILJMPm64:
12526    llvm_unreachable("TAILJMP64 would not be touched here.");
12527  case X86::TCRETURNdi64:
12528  case X86::TCRETURNri64:
12529  case X86::TCRETURNmi64:
12530    return BB;
12531  case X86::WIN_ALLOCA:
12532    return EmitLoweredWinAlloca(MI, BB);
12533  case X86::SEG_ALLOCA_32:
12534    return EmitLoweredSegAlloca(MI, BB, false);
12535  case X86::SEG_ALLOCA_64:
12536    return EmitLoweredSegAlloca(MI, BB, true);
12537  case X86::TLSCall_32:
12538  case X86::TLSCall_64:
12539    return EmitLoweredTLSCall(MI, BB);
12540  case X86::CMOV_GR8:
12541  case X86::CMOV_FR32:
12542  case X86::CMOV_FR64:
12543  case X86::CMOV_V4F32:
12544  case X86::CMOV_V2F64:
12545  case X86::CMOV_V2I64:
12546  case X86::CMOV_V8F32:
12547  case X86::CMOV_V4F64:
12548  case X86::CMOV_V4I64:
12549  case X86::CMOV_GR16:
12550  case X86::CMOV_GR32:
12551  case X86::CMOV_RFP32:
12552  case X86::CMOV_RFP64:
12553  case X86::CMOV_RFP80:
12554    return EmitLoweredSelect(MI, BB);
12555
12556  case X86::FP32_TO_INT16_IN_MEM:
12557  case X86::FP32_TO_INT32_IN_MEM:
12558  case X86::FP32_TO_INT64_IN_MEM:
12559  case X86::FP64_TO_INT16_IN_MEM:
12560  case X86::FP64_TO_INT32_IN_MEM:
12561  case X86::FP64_TO_INT64_IN_MEM:
12562  case X86::FP80_TO_INT16_IN_MEM:
12563  case X86::FP80_TO_INT32_IN_MEM:
12564  case X86::FP80_TO_INT64_IN_MEM: {
12565    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12566    DebugLoc DL = MI->getDebugLoc();
12567
12568    // Change the floating point control register to use "round towards zero"
12569    // mode when truncating to an integer value.
12570    MachineFunction *F = BB->getParent();
12571    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
12572    addFrameReference(BuildMI(*BB, MI, DL,
12573                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
12574
12575    // Load the old value of the high byte of the control word...
12576    unsigned OldCW =
12577      F->getRegInfo().createVirtualRegister(&X86::GR16RegClass);
12578    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
12579                      CWFrameIdx);
12580
12581    // Set the high part to be round to zero...
12582    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
12583      .addImm(0xC7F);
12584
12585    // Reload the modified control word now...
12586    addFrameReference(BuildMI(*BB, MI, DL,
12587                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12588
12589    // Restore the memory image of control word to original value
12590    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
12591      .addReg(OldCW);
12592
12593    // Get the X86 opcode to use.
12594    unsigned Opc;
12595    switch (MI->getOpcode()) {
12596    default: llvm_unreachable("illegal opcode!");
12597    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
12598    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
12599    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
12600    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
12601    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
12602    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
12603    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
12604    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
12605    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
12606    }
12607
12608    X86AddressMode AM;
12609    MachineOperand &Op = MI->getOperand(0);
12610    if (Op.isReg()) {
12611      AM.BaseType = X86AddressMode::RegBase;
12612      AM.Base.Reg = Op.getReg();
12613    } else {
12614      AM.BaseType = X86AddressMode::FrameIndexBase;
12615      AM.Base.FrameIndex = Op.getIndex();
12616    }
12617    Op = MI->getOperand(1);
12618    if (Op.isImm())
12619      AM.Scale = Op.getImm();
12620    Op = MI->getOperand(2);
12621    if (Op.isImm())
12622      AM.IndexReg = Op.getImm();
12623    Op = MI->getOperand(3);
12624    if (Op.isGlobal()) {
12625      AM.GV = Op.getGlobal();
12626    } else {
12627      AM.Disp = Op.getImm();
12628    }
12629    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
12630                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
12631
12632    // Reload the original control word now.
12633    addFrameReference(BuildMI(*BB, MI, DL,
12634                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12635
12636    MI->eraseFromParent();   // The pseudo instruction is gone now.
12637    return BB;
12638  }
12639    // String/text processing lowering.
12640  case X86::PCMPISTRM128REG:
12641  case X86::VPCMPISTRM128REG:
12642    return EmitPCMP(MI, BB, 3, false /* in-mem */);
12643  case X86::PCMPISTRM128MEM:
12644  case X86::VPCMPISTRM128MEM:
12645    return EmitPCMP(MI, BB, 3, true /* in-mem */);
12646  case X86::PCMPESTRM128REG:
12647  case X86::VPCMPESTRM128REG:
12648    return EmitPCMP(MI, BB, 5, false /* in mem */);
12649  case X86::PCMPESTRM128MEM:
12650  case X86::VPCMPESTRM128MEM:
12651    return EmitPCMP(MI, BB, 5, true /* in mem */);
12652
12653    // Thread synchronization.
12654  case X86::MONITOR:
12655    return EmitMonitor(MI, BB);
12656  case X86::MWAIT:
12657    return EmitMwait(MI, BB);
12658
12659    // Atomic Lowering.
12660  case X86::ATOMAND32:
12661    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12662                                               X86::AND32ri, X86::MOV32rm,
12663                                               X86::LCMPXCHG32,
12664                                               X86::NOT32r, X86::EAX,
12665                                               &X86::GR32RegClass);
12666  case X86::ATOMOR32:
12667    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
12668                                               X86::OR32ri, X86::MOV32rm,
12669                                               X86::LCMPXCHG32,
12670                                               X86::NOT32r, X86::EAX,
12671                                               &X86::GR32RegClass);
12672  case X86::ATOMXOR32:
12673    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
12674                                               X86::XOR32ri, X86::MOV32rm,
12675                                               X86::LCMPXCHG32,
12676                                               X86::NOT32r, X86::EAX,
12677                                               &X86::GR32RegClass);
12678  case X86::ATOMNAND32:
12679    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12680                                               X86::AND32ri, X86::MOV32rm,
12681                                               X86::LCMPXCHG32,
12682                                               X86::NOT32r, X86::EAX,
12683                                               &X86::GR32RegClass, true);
12684  case X86::ATOMMIN32:
12685    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
12686  case X86::ATOMMAX32:
12687    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
12688  case X86::ATOMUMIN32:
12689    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
12690  case X86::ATOMUMAX32:
12691    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
12692
12693  case X86::ATOMAND16:
12694    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12695                                               X86::AND16ri, X86::MOV16rm,
12696                                               X86::LCMPXCHG16,
12697                                               X86::NOT16r, X86::AX,
12698                                               &X86::GR16RegClass);
12699  case X86::ATOMOR16:
12700    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
12701                                               X86::OR16ri, X86::MOV16rm,
12702                                               X86::LCMPXCHG16,
12703                                               X86::NOT16r, X86::AX,
12704                                               &X86::GR16RegClass);
12705  case X86::ATOMXOR16:
12706    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
12707                                               X86::XOR16ri, X86::MOV16rm,
12708                                               X86::LCMPXCHG16,
12709                                               X86::NOT16r, X86::AX,
12710                                               &X86::GR16RegClass);
12711  case X86::ATOMNAND16:
12712    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12713                                               X86::AND16ri, X86::MOV16rm,
12714                                               X86::LCMPXCHG16,
12715                                               X86::NOT16r, X86::AX,
12716                                               &X86::GR16RegClass, true);
12717  case X86::ATOMMIN16:
12718    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
12719  case X86::ATOMMAX16:
12720    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
12721  case X86::ATOMUMIN16:
12722    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
12723  case X86::ATOMUMAX16:
12724    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
12725
12726  case X86::ATOMAND8:
12727    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12728                                               X86::AND8ri, X86::MOV8rm,
12729                                               X86::LCMPXCHG8,
12730                                               X86::NOT8r, X86::AL,
12731                                               &X86::GR8RegClass);
12732  case X86::ATOMOR8:
12733    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
12734                                               X86::OR8ri, X86::MOV8rm,
12735                                               X86::LCMPXCHG8,
12736                                               X86::NOT8r, X86::AL,
12737                                               &X86::GR8RegClass);
12738  case X86::ATOMXOR8:
12739    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
12740                                               X86::XOR8ri, X86::MOV8rm,
12741                                               X86::LCMPXCHG8,
12742                                               X86::NOT8r, X86::AL,
12743                                               &X86::GR8RegClass);
12744  case X86::ATOMNAND8:
12745    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12746                                               X86::AND8ri, X86::MOV8rm,
12747                                               X86::LCMPXCHG8,
12748                                               X86::NOT8r, X86::AL,
12749                                               &X86::GR8RegClass, true);
12750  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
12751  // This group is for 64-bit host.
12752  case X86::ATOMAND64:
12753    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12754                                               X86::AND64ri32, X86::MOV64rm,
12755                                               X86::LCMPXCHG64,
12756                                               X86::NOT64r, X86::RAX,
12757                                               &X86::GR64RegClass);
12758  case X86::ATOMOR64:
12759    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
12760                                               X86::OR64ri32, X86::MOV64rm,
12761                                               X86::LCMPXCHG64,
12762                                               X86::NOT64r, X86::RAX,
12763                                               &X86::GR64RegClass);
12764  case X86::ATOMXOR64:
12765    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
12766                                               X86::XOR64ri32, X86::MOV64rm,
12767                                               X86::LCMPXCHG64,
12768                                               X86::NOT64r, X86::RAX,
12769                                               &X86::GR64RegClass);
12770  case X86::ATOMNAND64:
12771    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12772                                               X86::AND64ri32, X86::MOV64rm,
12773                                               X86::LCMPXCHG64,
12774                                               X86::NOT64r, X86::RAX,
12775                                               &X86::GR64RegClass, true);
12776  case X86::ATOMMIN64:
12777    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
12778  case X86::ATOMMAX64:
12779    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
12780  case X86::ATOMUMIN64:
12781    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
12782  case X86::ATOMUMAX64:
12783    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
12784
12785  // This group does 64-bit operations on a 32-bit host.
12786  case X86::ATOMAND6432:
12787    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12788                                               X86::AND32rr, X86::AND32rr,
12789                                               X86::AND32ri, X86::AND32ri,
12790                                               false);
12791  case X86::ATOMOR6432:
12792    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12793                                               X86::OR32rr, X86::OR32rr,
12794                                               X86::OR32ri, X86::OR32ri,
12795                                               false);
12796  case X86::ATOMXOR6432:
12797    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12798                                               X86::XOR32rr, X86::XOR32rr,
12799                                               X86::XOR32ri, X86::XOR32ri,
12800                                               false);
12801  case X86::ATOMNAND6432:
12802    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12803                                               X86::AND32rr, X86::AND32rr,
12804                                               X86::AND32ri, X86::AND32ri,
12805                                               true);
12806  case X86::ATOMADD6432:
12807    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12808                                               X86::ADD32rr, X86::ADC32rr,
12809                                               X86::ADD32ri, X86::ADC32ri,
12810                                               false);
12811  case X86::ATOMSUB6432:
12812    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12813                                               X86::SUB32rr, X86::SBB32rr,
12814                                               X86::SUB32ri, X86::SBB32ri,
12815                                               false);
12816  case X86::ATOMSWAP6432:
12817    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12818                                               X86::MOV32rr, X86::MOV32rr,
12819                                               X86::MOV32ri, X86::MOV32ri,
12820                                               false);
12821  case X86::VASTART_SAVE_XMM_REGS:
12822    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
12823
12824  case X86::VAARG_64:
12825    return EmitVAARG64WithCustomInserter(MI, BB);
12826  }
12827}
12828
12829//===----------------------------------------------------------------------===//
12830//                           X86 Optimization Hooks
12831//===----------------------------------------------------------------------===//
12832
12833void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
12834                                                       APInt &KnownZero,
12835                                                       APInt &KnownOne,
12836                                                       const SelectionDAG &DAG,
12837                                                       unsigned Depth) const {
12838  unsigned BitWidth = KnownZero.getBitWidth();
12839  unsigned Opc = Op.getOpcode();
12840  assert((Opc >= ISD::BUILTIN_OP_END ||
12841          Opc == ISD::INTRINSIC_WO_CHAIN ||
12842          Opc == ISD::INTRINSIC_W_CHAIN ||
12843          Opc == ISD::INTRINSIC_VOID) &&
12844         "Should use MaskedValueIsZero if you don't know whether Op"
12845         " is a target node!");
12846
12847  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
12848  switch (Opc) {
12849  default: break;
12850  case X86ISD::ADD:
12851  case X86ISD::SUB:
12852  case X86ISD::ADC:
12853  case X86ISD::SBB:
12854  case X86ISD::SMUL:
12855  case X86ISD::UMUL:
12856  case X86ISD::INC:
12857  case X86ISD::DEC:
12858  case X86ISD::OR:
12859  case X86ISD::XOR:
12860  case X86ISD::AND:
12861    // These nodes' second result is a boolean.
12862    if (Op.getResNo() == 0)
12863      break;
12864    // Fallthrough
12865  case X86ISD::SETCC:
12866    KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
12867    break;
12868  case ISD::INTRINSIC_WO_CHAIN: {
12869    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
12870    unsigned NumLoBits = 0;
12871    switch (IntId) {
12872    default: break;
12873    case Intrinsic::x86_sse_movmsk_ps:
12874    case Intrinsic::x86_avx_movmsk_ps_256:
12875    case Intrinsic::x86_sse2_movmsk_pd:
12876    case Intrinsic::x86_avx_movmsk_pd_256:
12877    case Intrinsic::x86_mmx_pmovmskb:
12878    case Intrinsic::x86_sse2_pmovmskb_128:
12879    case Intrinsic::x86_avx2_pmovmskb: {
12880      // High bits of movmskp{s|d}, pmovmskb are known zero.
12881      switch (IntId) {
12882        default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
12883        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
12884        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
12885        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
12886        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
12887        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
12888        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
12889        case Intrinsic::x86_avx2_pmovmskb:      NumLoBits = 32; break;
12890      }
12891      KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits);
12892      break;
12893    }
12894    }
12895    break;
12896  }
12897  }
12898}
12899
12900unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
12901                                                         unsigned Depth) const {
12902  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
12903  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
12904    return Op.getValueType().getScalarType().getSizeInBits();
12905
12906  // Fallback case.
12907  return 1;
12908}
12909
12910/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
12911/// node is a GlobalAddress + offset.
12912bool X86TargetLowering::isGAPlusOffset(SDNode *N,
12913                                       const GlobalValue* &GA,
12914                                       int64_t &Offset) const {
12915  if (N->getOpcode() == X86ISD::Wrapper) {
12916    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
12917      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
12918      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
12919      return true;
12920    }
12921  }
12922  return TargetLowering::isGAPlusOffset(N, GA, Offset);
12923}
12924
12925/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
12926/// same as extracting the high 128-bit part of 256-bit vector and then
12927/// inserting the result into the low part of a new 256-bit vector
12928static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
12929  EVT VT = SVOp->getValueType(0);
12930  unsigned NumElems = VT.getVectorNumElements();
12931
12932  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12933  for (unsigned i = 0, j = NumElems/2; i != NumElems/2; ++i, ++j)
12934    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12935        SVOp->getMaskElt(j) >= 0)
12936      return false;
12937
12938  return true;
12939}
12940
12941/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
12942/// same as extracting the low 128-bit part of 256-bit vector and then
12943/// inserting the result into the high part of a new 256-bit vector
12944static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
12945  EVT VT = SVOp->getValueType(0);
12946  unsigned NumElems = VT.getVectorNumElements();
12947
12948  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12949  for (unsigned i = NumElems/2, j = 0; i != NumElems; ++i, ++j)
12950    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12951        SVOp->getMaskElt(j) >= 0)
12952      return false;
12953
12954  return true;
12955}
12956
12957/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
12958static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
12959                                        TargetLowering::DAGCombinerInfo &DCI,
12960                                        const X86Subtarget* Subtarget) {
12961  DebugLoc dl = N->getDebugLoc();
12962  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
12963  SDValue V1 = SVOp->getOperand(0);
12964  SDValue V2 = SVOp->getOperand(1);
12965  EVT VT = SVOp->getValueType(0);
12966  unsigned NumElems = VT.getVectorNumElements();
12967
12968  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
12969      V2.getOpcode() == ISD::CONCAT_VECTORS) {
12970    //
12971    //                   0,0,0,...
12972    //                      |
12973    //    V      UNDEF    BUILD_VECTOR    UNDEF
12974    //     \      /           \           /
12975    //  CONCAT_VECTOR         CONCAT_VECTOR
12976    //         \                  /
12977    //          \                /
12978    //          RESULT: V + zero extended
12979    //
12980    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
12981        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
12982        V1.getOperand(1).getOpcode() != ISD::UNDEF)
12983      return SDValue();
12984
12985    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
12986      return SDValue();
12987
12988    // To match the shuffle mask, the first half of the mask should
12989    // be exactly the first vector, and all the rest a splat with the
12990    // first element of the second one.
12991    for (unsigned i = 0; i != NumElems/2; ++i)
12992      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
12993          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
12994        return SDValue();
12995
12996    // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
12997    if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
12998      if (Ld->hasNUsesOfValue(1, 0)) {
12999        SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
13000        SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
13001        SDValue ResNode =
13002          DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2,
13003                                  Ld->getMemoryVT(),
13004                                  Ld->getPointerInfo(),
13005                                  Ld->getAlignment(),
13006                                  false/*isVolatile*/, true/*ReadMem*/,
13007                                  false/*WriteMem*/);
13008        return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
13009      }
13010    }
13011
13012    // Emit a zeroed vector and insert the desired subvector on its
13013    // first half.
13014    SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
13015    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0), 0, DAG, dl);
13016    return DCI.CombineTo(N, InsV);
13017  }
13018
13019  //===--------------------------------------------------------------------===//
13020  // Combine some shuffles into subvector extracts and inserts:
13021  //
13022
13023  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
13024  if (isShuffleHigh128VectorInsertLow(SVOp)) {
13025    SDValue V = Extract128BitVector(V1, NumElems/2, DAG, dl);
13026    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, 0, DAG, dl);
13027    return DCI.CombineTo(N, InsV);
13028  }
13029
13030  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
13031  if (isShuffleLow128VectorInsertHigh(SVOp)) {
13032    SDValue V = Extract128BitVector(V1, 0, DAG, dl);
13033    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, NumElems/2, DAG, dl);
13034    return DCI.CombineTo(N, InsV);
13035  }
13036
13037  return SDValue();
13038}
13039
13040/// PerformShuffleCombine - Performs several different shuffle combines.
13041static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
13042                                     TargetLowering::DAGCombinerInfo &DCI,
13043                                     const X86Subtarget *Subtarget) {
13044  DebugLoc dl = N->getDebugLoc();
13045  EVT VT = N->getValueType(0);
13046
13047  // Don't create instructions with illegal types after legalize types has run.
13048  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13049  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
13050    return SDValue();
13051
13052  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
13053  if (Subtarget->hasAVX() && VT.getSizeInBits() == 256 &&
13054      N->getOpcode() == ISD::VECTOR_SHUFFLE)
13055    return PerformShuffleCombine256(N, DAG, DCI, Subtarget);
13056
13057  // Only handle 128 wide vector from here on.
13058  if (VT.getSizeInBits() != 128)
13059    return SDValue();
13060
13061  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
13062  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
13063  // consecutive, non-overlapping, and in the right order.
13064  SmallVector<SDValue, 16> Elts;
13065  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
13066    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
13067
13068  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
13069}
13070
13071
13072/// DCI, PerformTruncateCombine - Converts truncate operation to
13073/// a sequence of vector shuffle operations.
13074/// It is possible when we truncate 256-bit vector to 128-bit vector
13075
13076SDValue X86TargetLowering::PerformTruncateCombine(SDNode *N, SelectionDAG &DAG,
13077                                                  DAGCombinerInfo &DCI) const {
13078  if (!DCI.isBeforeLegalizeOps())
13079    return SDValue();
13080
13081  if (!Subtarget->hasAVX())
13082    return SDValue();
13083
13084  EVT VT = N->getValueType(0);
13085  SDValue Op = N->getOperand(0);
13086  EVT OpVT = Op.getValueType();
13087  DebugLoc dl = N->getDebugLoc();
13088
13089  if ((VT == MVT::v4i32) && (OpVT == MVT::v4i64)) {
13090
13091    if (Subtarget->hasAVX2()) {
13092      // AVX2: v4i64 -> v4i32
13093
13094      // VPERMD
13095      static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1};
13096
13097      Op = DAG.getNode(ISD::BITCAST, dl, MVT::v8i32, Op);
13098      Op = DAG.getVectorShuffle(MVT::v8i32, dl, Op, DAG.getUNDEF(MVT::v8i32),
13099                                ShufMask);
13100
13101      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Op,
13102                         DAG.getIntPtrConstant(0));
13103    }
13104
13105    // AVX: v4i64 -> v4i32
13106    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
13107                               DAG.getIntPtrConstant(0));
13108
13109    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
13110                               DAG.getIntPtrConstant(2));
13111
13112    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
13113    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
13114
13115    // PSHUFD
13116    static const int ShufMask1[] = {0, 2, 0, 0};
13117
13118    OpLo = DAG.getVectorShuffle(VT, dl, OpLo, DAG.getUNDEF(VT), ShufMask1);
13119    OpHi = DAG.getVectorShuffle(VT, dl, OpHi, DAG.getUNDEF(VT), ShufMask1);
13120
13121    // MOVLHPS
13122    static const int ShufMask2[] = {0, 1, 4, 5};
13123
13124    return DAG.getVectorShuffle(VT, dl, OpLo, OpHi, ShufMask2);
13125  }
13126
13127  if ((VT == MVT::v8i16) && (OpVT == MVT::v8i32)) {
13128
13129    if (Subtarget->hasAVX2()) {
13130      // AVX2: v8i32 -> v8i16
13131
13132      Op = DAG.getNode(ISD::BITCAST, dl, MVT::v32i8, Op);
13133
13134      // PSHUFB
13135      SmallVector<SDValue,32> pshufbMask;
13136      for (unsigned i = 0; i < 2; ++i) {
13137        pshufbMask.push_back(DAG.getConstant(0x0, MVT::i8));
13138        pshufbMask.push_back(DAG.getConstant(0x1, MVT::i8));
13139        pshufbMask.push_back(DAG.getConstant(0x4, MVT::i8));
13140        pshufbMask.push_back(DAG.getConstant(0x5, MVT::i8));
13141        pshufbMask.push_back(DAG.getConstant(0x8, MVT::i8));
13142        pshufbMask.push_back(DAG.getConstant(0x9, MVT::i8));
13143        pshufbMask.push_back(DAG.getConstant(0xc, MVT::i8));
13144        pshufbMask.push_back(DAG.getConstant(0xd, MVT::i8));
13145        for (unsigned j = 0; j < 8; ++j)
13146          pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
13147      }
13148      SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v32i8,
13149                               &pshufbMask[0], 32);
13150      Op = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v32i8, Op, BV);
13151
13152      Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i64, Op);
13153
13154      static const int ShufMask[] = {0,  2,  -1,  -1};
13155      Op = DAG.getVectorShuffle(MVT::v4i64, dl,  Op, DAG.getUNDEF(MVT::v4i64),
13156                                &ShufMask[0]);
13157
13158      Op = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
13159                       DAG.getIntPtrConstant(0));
13160
13161      return DAG.getNode(ISD::BITCAST, dl, VT, Op);
13162    }
13163
13164    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
13165                               DAG.getIntPtrConstant(0));
13166
13167    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
13168                               DAG.getIntPtrConstant(4));
13169
13170    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLo);
13171    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpHi);
13172
13173    // PSHUFB
13174    static const int ShufMask1[] = {0,  1,  4,  5,  8,  9, 12, 13,
13175                                   -1, -1, -1, -1, -1, -1, -1, -1};
13176
13177    OpLo = DAG.getVectorShuffle(MVT::v16i8, dl, OpLo, DAG.getUNDEF(MVT::v16i8),
13178                                ShufMask1);
13179    OpHi = DAG.getVectorShuffle(MVT::v16i8, dl, OpHi, DAG.getUNDEF(MVT::v16i8),
13180                                ShufMask1);
13181
13182    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
13183    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
13184
13185    // MOVLHPS
13186    static const int ShufMask2[] = {0, 1, 4, 5};
13187
13188    SDValue res = DAG.getVectorShuffle(MVT::v4i32, dl, OpLo, OpHi, ShufMask2);
13189    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, res);
13190  }
13191
13192  return SDValue();
13193}
13194
13195/// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target
13196/// specific shuffle of a load can be folded into a single element load.
13197/// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but
13198/// shuffles have been customed lowered so we need to handle those here.
13199static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
13200                                         TargetLowering::DAGCombinerInfo &DCI) {
13201  if (DCI.isBeforeLegalizeOps())
13202    return SDValue();
13203
13204  SDValue InVec = N->getOperand(0);
13205  SDValue EltNo = N->getOperand(1);
13206
13207  if (!isa<ConstantSDNode>(EltNo))
13208    return SDValue();
13209
13210  EVT VT = InVec.getValueType();
13211
13212  bool HasShuffleIntoBitcast = false;
13213  if (InVec.getOpcode() == ISD::BITCAST) {
13214    // Don't duplicate a load with other uses.
13215    if (!InVec.hasOneUse())
13216      return SDValue();
13217    EVT BCVT = InVec.getOperand(0).getValueType();
13218    if (BCVT.getVectorNumElements() != VT.getVectorNumElements())
13219      return SDValue();
13220    InVec = InVec.getOperand(0);
13221    HasShuffleIntoBitcast = true;
13222  }
13223
13224  if (!isTargetShuffle(InVec.getOpcode()))
13225    return SDValue();
13226
13227  // Don't duplicate a load with other uses.
13228  if (!InVec.hasOneUse())
13229    return SDValue();
13230
13231  SmallVector<int, 16> ShuffleMask;
13232  bool UnaryShuffle;
13233  if (!getTargetShuffleMask(InVec.getNode(), VT.getSimpleVT(), ShuffleMask,
13234                            UnaryShuffle))
13235    return SDValue();
13236
13237  // Select the input vector, guarding against out of range extract vector.
13238  unsigned NumElems = VT.getVectorNumElements();
13239  int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
13240  int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt];
13241  SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0)
13242                                         : InVec.getOperand(1);
13243
13244  // If inputs to shuffle are the same for both ops, then allow 2 uses
13245  unsigned AllowedUses = InVec.getOperand(0) == InVec.getOperand(1) ? 2 : 1;
13246
13247  if (LdNode.getOpcode() == ISD::BITCAST) {
13248    // Don't duplicate a load with other uses.
13249    if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0))
13250      return SDValue();
13251
13252    AllowedUses = 1; // only allow 1 load use if we have a bitcast
13253    LdNode = LdNode.getOperand(0);
13254  }
13255
13256  if (!ISD::isNormalLoad(LdNode.getNode()))
13257    return SDValue();
13258
13259  LoadSDNode *LN0 = cast<LoadSDNode>(LdNode);
13260
13261  if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile())
13262    return SDValue();
13263
13264  if (HasShuffleIntoBitcast) {
13265    // If there's a bitcast before the shuffle, check if the load type and
13266    // alignment is valid.
13267    unsigned Align = LN0->getAlignment();
13268    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13269    unsigned NewAlign = TLI.getTargetData()->
13270      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
13271
13272    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
13273      return SDValue();
13274  }
13275
13276  // All checks match so transform back to vector_shuffle so that DAG combiner
13277  // can finish the job
13278  DebugLoc dl = N->getDebugLoc();
13279
13280  // Create shuffle node taking into account the case that its a unary shuffle
13281  SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(VT) : InVec.getOperand(1);
13282  Shuffle = DAG.getVectorShuffle(InVec.getValueType(), dl,
13283                                 InVec.getOperand(0), Shuffle,
13284                                 &ShuffleMask[0]);
13285  Shuffle = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
13286  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle,
13287                     EltNo);
13288}
13289
13290/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
13291/// generation and convert it from being a bunch of shuffles and extracts
13292/// to a simple store and scalar loads to extract the elements.
13293static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
13294                                         TargetLowering::DAGCombinerInfo &DCI) {
13295  SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI);
13296  if (NewOp.getNode())
13297    return NewOp;
13298
13299  SDValue InputVector = N->getOperand(0);
13300
13301  // Only operate on vectors of 4 elements, where the alternative shuffling
13302  // gets to be more expensive.
13303  if (InputVector.getValueType() != MVT::v4i32)
13304    return SDValue();
13305
13306  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
13307  // single use which is a sign-extend or zero-extend, and all elements are
13308  // used.
13309  SmallVector<SDNode *, 4> Uses;
13310  unsigned ExtractedElements = 0;
13311  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
13312       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
13313    if (UI.getUse().getResNo() != InputVector.getResNo())
13314      return SDValue();
13315
13316    SDNode *Extract = *UI;
13317    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13318      return SDValue();
13319
13320    if (Extract->getValueType(0) != MVT::i32)
13321      return SDValue();
13322    if (!Extract->hasOneUse())
13323      return SDValue();
13324    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
13325        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
13326      return SDValue();
13327    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
13328      return SDValue();
13329
13330    // Record which element was extracted.
13331    ExtractedElements |=
13332      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
13333
13334    Uses.push_back(Extract);
13335  }
13336
13337  // If not all the elements were used, this may not be worthwhile.
13338  if (ExtractedElements != 15)
13339    return SDValue();
13340
13341  // Ok, we've now decided to do the transformation.
13342  DebugLoc dl = InputVector.getDebugLoc();
13343
13344  // Store the value to a temporary stack slot.
13345  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
13346  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
13347                            MachinePointerInfo(), false, false, 0);
13348
13349  // Replace each use (extract) with a load of the appropriate element.
13350  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
13351       UE = Uses.end(); UI != UE; ++UI) {
13352    SDNode *Extract = *UI;
13353
13354    // cOMpute the element's address.
13355    SDValue Idx = Extract->getOperand(1);
13356    unsigned EltSize =
13357        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
13358    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
13359    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13360    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
13361
13362    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
13363                                     StackPtr, OffsetVal);
13364
13365    // Load the scalar.
13366    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
13367                                     ScalarAddr, MachinePointerInfo(),
13368                                     false, false, false, 0);
13369
13370    // Replace the exact with the load.
13371    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
13372  }
13373
13374  // The replacement was made in place; don't return anything.
13375  return SDValue();
13376}
13377
13378/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
13379/// nodes.
13380static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
13381                                    TargetLowering::DAGCombinerInfo &DCI,
13382                                    const X86Subtarget *Subtarget) {
13383  DebugLoc DL = N->getDebugLoc();
13384  SDValue Cond = N->getOperand(0);
13385  // Get the LHS/RHS of the select.
13386  SDValue LHS = N->getOperand(1);
13387  SDValue RHS = N->getOperand(2);
13388  EVT VT = LHS.getValueType();
13389
13390  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
13391  // instructions match the semantics of the common C idiom x<y?x:y but not
13392  // x<=y?x:y, because of how they handle negative zero (which can be
13393  // ignored in unsafe-math mode).
13394  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
13395      VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
13396      (Subtarget->hasSSE2() ||
13397       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
13398    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13399
13400    unsigned Opcode = 0;
13401    // Check for x CC y ? x : y.
13402    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
13403        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
13404      switch (CC) {
13405      default: break;
13406      case ISD::SETULT:
13407        // Converting this to a min would handle NaNs incorrectly, and swapping
13408        // the operands would cause it to handle comparisons between positive
13409        // and negative zero incorrectly.
13410        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
13411          if (!DAG.getTarget().Options.UnsafeFPMath &&
13412              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
13413            break;
13414          std::swap(LHS, RHS);
13415        }
13416        Opcode = X86ISD::FMIN;
13417        break;
13418      case ISD::SETOLE:
13419        // Converting this to a min would handle comparisons between positive
13420        // and negative zero incorrectly.
13421        if (!DAG.getTarget().Options.UnsafeFPMath &&
13422            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
13423          break;
13424        Opcode = X86ISD::FMIN;
13425        break;
13426      case ISD::SETULE:
13427        // Converting this to a min would handle both negative zeros and NaNs
13428        // incorrectly, but we can swap the operands to fix both.
13429        std::swap(LHS, RHS);
13430      case ISD::SETOLT:
13431      case ISD::SETLT:
13432      case ISD::SETLE:
13433        Opcode = X86ISD::FMIN;
13434        break;
13435
13436      case ISD::SETOGE:
13437        // Converting this to a max would handle comparisons between positive
13438        // and negative zero incorrectly.
13439        if (!DAG.getTarget().Options.UnsafeFPMath &&
13440            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
13441          break;
13442        Opcode = X86ISD::FMAX;
13443        break;
13444      case ISD::SETUGT:
13445        // Converting this to a max would handle NaNs incorrectly, and swapping
13446        // the operands would cause it to handle comparisons between positive
13447        // and negative zero incorrectly.
13448        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
13449          if (!DAG.getTarget().Options.UnsafeFPMath &&
13450              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
13451            break;
13452          std::swap(LHS, RHS);
13453        }
13454        Opcode = X86ISD::FMAX;
13455        break;
13456      case ISD::SETUGE:
13457        // Converting this to a max would handle both negative zeros and NaNs
13458        // incorrectly, but we can swap the operands to fix both.
13459        std::swap(LHS, RHS);
13460      case ISD::SETOGT:
13461      case ISD::SETGT:
13462      case ISD::SETGE:
13463        Opcode = X86ISD::FMAX;
13464        break;
13465      }
13466    // Check for x CC y ? y : x -- a min/max with reversed arms.
13467    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
13468               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
13469      switch (CC) {
13470      default: break;
13471      case ISD::SETOGE:
13472        // Converting this to a min would handle comparisons between positive
13473        // and negative zero incorrectly, and swapping the operands would
13474        // cause it to handle NaNs incorrectly.
13475        if (!DAG.getTarget().Options.UnsafeFPMath &&
13476            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
13477          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13478            break;
13479          std::swap(LHS, RHS);
13480        }
13481        Opcode = X86ISD::FMIN;
13482        break;
13483      case ISD::SETUGT:
13484        // Converting this to a min would handle NaNs incorrectly.
13485        if (!DAG.getTarget().Options.UnsafeFPMath &&
13486            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
13487          break;
13488        Opcode = X86ISD::FMIN;
13489        break;
13490      case ISD::SETUGE:
13491        // Converting this to a min would handle both negative zeros and NaNs
13492        // incorrectly, but we can swap the operands to fix both.
13493        std::swap(LHS, RHS);
13494      case ISD::SETOGT:
13495      case ISD::SETGT:
13496      case ISD::SETGE:
13497        Opcode = X86ISD::FMIN;
13498        break;
13499
13500      case ISD::SETULT:
13501        // Converting this to a max would handle NaNs incorrectly.
13502        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13503          break;
13504        Opcode = X86ISD::FMAX;
13505        break;
13506      case ISD::SETOLE:
13507        // Converting this to a max would handle comparisons between positive
13508        // and negative zero incorrectly, and swapping the operands would
13509        // cause it to handle NaNs incorrectly.
13510        if (!DAG.getTarget().Options.UnsafeFPMath &&
13511            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
13512          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13513            break;
13514          std::swap(LHS, RHS);
13515        }
13516        Opcode = X86ISD::FMAX;
13517        break;
13518      case ISD::SETULE:
13519        // Converting this to a max would handle both negative zeros and NaNs
13520        // incorrectly, but we can swap the operands to fix both.
13521        std::swap(LHS, RHS);
13522      case ISD::SETOLT:
13523      case ISD::SETLT:
13524      case ISD::SETLE:
13525        Opcode = X86ISD::FMAX;
13526        break;
13527      }
13528    }
13529
13530    if (Opcode)
13531      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
13532  }
13533
13534  // If this is a select between two integer constants, try to do some
13535  // optimizations.
13536  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
13537    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
13538      // Don't do this for crazy integer types.
13539      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
13540        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
13541        // so that TrueC (the true value) is larger than FalseC.
13542        bool NeedsCondInvert = false;
13543
13544        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
13545            // Efficiently invertible.
13546            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
13547             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
13548              isa<ConstantSDNode>(Cond.getOperand(1))))) {
13549          NeedsCondInvert = true;
13550          std::swap(TrueC, FalseC);
13551        }
13552
13553        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
13554        if (FalseC->getAPIntValue() == 0 &&
13555            TrueC->getAPIntValue().isPowerOf2()) {
13556          if (NeedsCondInvert) // Invert the condition if needed.
13557            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13558                               DAG.getConstant(1, Cond.getValueType()));
13559
13560          // Zero extend the condition if needed.
13561          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
13562
13563          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13564          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
13565                             DAG.getConstant(ShAmt, MVT::i8));
13566        }
13567
13568        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
13569        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13570          if (NeedsCondInvert) // Invert the condition if needed.
13571            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13572                               DAG.getConstant(1, Cond.getValueType()));
13573
13574          // Zero extend the condition if needed.
13575          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13576                             FalseC->getValueType(0), Cond);
13577          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13578                             SDValue(FalseC, 0));
13579        }
13580
13581        // Optimize cases that will turn into an LEA instruction.  This requires
13582        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13583        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13584          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13585          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13586
13587          bool isFastMultiplier = false;
13588          if (Diff < 10) {
13589            switch ((unsigned char)Diff) {
13590              default: break;
13591              case 1:  // result = add base, cond
13592              case 2:  // result = lea base(    , cond*2)
13593              case 3:  // result = lea base(cond, cond*2)
13594              case 4:  // result = lea base(    , cond*4)
13595              case 5:  // result = lea base(cond, cond*4)
13596              case 8:  // result = lea base(    , cond*8)
13597              case 9:  // result = lea base(cond, cond*8)
13598                isFastMultiplier = true;
13599                break;
13600            }
13601          }
13602
13603          if (isFastMultiplier) {
13604            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13605            if (NeedsCondInvert) // Invert the condition if needed.
13606              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13607                                 DAG.getConstant(1, Cond.getValueType()));
13608
13609            // Zero extend the condition if needed.
13610            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13611                               Cond);
13612            // Scale the condition by the difference.
13613            if (Diff != 1)
13614              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13615                                 DAG.getConstant(Diff, Cond.getValueType()));
13616
13617            // Add the base if non-zero.
13618            if (FalseC->getAPIntValue() != 0)
13619              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13620                                 SDValue(FalseC, 0));
13621            return Cond;
13622          }
13623        }
13624      }
13625  }
13626
13627  // Canonicalize max and min:
13628  // (x > y) ? x : y -> (x >= y) ? x : y
13629  // (x < y) ? x : y -> (x <= y) ? x : y
13630  // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
13631  // the need for an extra compare
13632  // against zero. e.g.
13633  // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
13634  // subl   %esi, %edi
13635  // testl  %edi, %edi
13636  // movl   $0, %eax
13637  // cmovgl %edi, %eax
13638  // =>
13639  // xorl   %eax, %eax
13640  // subl   %esi, $edi
13641  // cmovsl %eax, %edi
13642  if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
13643      DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
13644      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
13645    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13646    switch (CC) {
13647    default: break;
13648    case ISD::SETLT:
13649    case ISD::SETGT: {
13650      ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
13651      Cond = DAG.getSetCC(Cond.getDebugLoc(), Cond.getValueType(),
13652                          Cond.getOperand(0), Cond.getOperand(1), NewCC);
13653      return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
13654    }
13655    }
13656  }
13657
13658  // If we know that this node is legal then we know that it is going to be
13659  // matched by one of the SSE/AVX BLEND instructions. These instructions only
13660  // depend on the highest bit in each word. Try to use SimplifyDemandedBits
13661  // to simplify previous instructions.
13662  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13663  if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
13664      !DCI.isBeforeLegalize() && TLI.isOperationLegal(ISD::VSELECT, VT)) {
13665    unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
13666
13667    // Don't optimize vector selects that map to mask-registers.
13668    if (BitWidth == 1)
13669      return SDValue();
13670
13671    assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
13672    APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
13673
13674    APInt KnownZero, KnownOne;
13675    TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
13676                                          DCI.isBeforeLegalizeOps());
13677    if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
13678        TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO))
13679      DCI.CommitTargetLoweringOpt(TLO);
13680  }
13681
13682  return SDValue();
13683}
13684
13685/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
13686static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
13687                                  TargetLowering::DAGCombinerInfo &DCI) {
13688  DebugLoc DL = N->getDebugLoc();
13689
13690  // If the flag operand isn't dead, don't touch this CMOV.
13691  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
13692    return SDValue();
13693
13694  SDValue FalseOp = N->getOperand(0);
13695  SDValue TrueOp = N->getOperand(1);
13696  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
13697  SDValue Cond = N->getOperand(3);
13698  if (CC == X86::COND_E || CC == X86::COND_NE) {
13699    switch (Cond.getOpcode()) {
13700    default: break;
13701    case X86ISD::BSR:
13702    case X86ISD::BSF:
13703      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
13704      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
13705        return (CC == X86::COND_E) ? FalseOp : TrueOp;
13706    }
13707  }
13708
13709  // If this is a select between two integer constants, try to do some
13710  // optimizations.  Note that the operands are ordered the opposite of SELECT
13711  // operands.
13712  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
13713    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
13714      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
13715      // larger than FalseC (the false value).
13716      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
13717        CC = X86::GetOppositeBranchCondition(CC);
13718        std::swap(TrueC, FalseC);
13719      }
13720
13721      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
13722      // This is efficient for any integer data type (including i8/i16) and
13723      // shift amount.
13724      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
13725        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13726                           DAG.getConstant(CC, MVT::i8), Cond);
13727
13728        // Zero extend the condition if needed.
13729        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
13730
13731        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13732        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
13733                           DAG.getConstant(ShAmt, MVT::i8));
13734        if (N->getNumValues() == 2)  // Dead flag value?
13735          return DCI.CombineTo(N, Cond, SDValue());
13736        return Cond;
13737      }
13738
13739      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
13740      // for any integer data type, including i8/i16.
13741      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13742        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13743                           DAG.getConstant(CC, MVT::i8), Cond);
13744
13745        // Zero extend the condition if needed.
13746        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13747                           FalseC->getValueType(0), Cond);
13748        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13749                           SDValue(FalseC, 0));
13750
13751        if (N->getNumValues() == 2)  // Dead flag value?
13752          return DCI.CombineTo(N, Cond, SDValue());
13753        return Cond;
13754      }
13755
13756      // Optimize cases that will turn into an LEA instruction.  This requires
13757      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13758      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13759        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13760        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13761
13762        bool isFastMultiplier = false;
13763        if (Diff < 10) {
13764          switch ((unsigned char)Diff) {
13765          default: break;
13766          case 1:  // result = add base, cond
13767          case 2:  // result = lea base(    , cond*2)
13768          case 3:  // result = lea base(cond, cond*2)
13769          case 4:  // result = lea base(    , cond*4)
13770          case 5:  // result = lea base(cond, cond*4)
13771          case 8:  // result = lea base(    , cond*8)
13772          case 9:  // result = lea base(cond, cond*8)
13773            isFastMultiplier = true;
13774            break;
13775          }
13776        }
13777
13778        if (isFastMultiplier) {
13779          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13780          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13781                             DAG.getConstant(CC, MVT::i8), Cond);
13782          // Zero extend the condition if needed.
13783          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13784                             Cond);
13785          // Scale the condition by the difference.
13786          if (Diff != 1)
13787            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13788                               DAG.getConstant(Diff, Cond.getValueType()));
13789
13790          // Add the base if non-zero.
13791          if (FalseC->getAPIntValue() != 0)
13792            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13793                               SDValue(FalseC, 0));
13794          if (N->getNumValues() == 2)  // Dead flag value?
13795            return DCI.CombineTo(N, Cond, SDValue());
13796          return Cond;
13797        }
13798      }
13799    }
13800  }
13801  return SDValue();
13802}
13803
13804
13805/// PerformMulCombine - Optimize a single multiply with constant into two
13806/// in order to implement it with two cheaper instructions, e.g.
13807/// LEA + SHL, LEA + LEA.
13808static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
13809                                 TargetLowering::DAGCombinerInfo &DCI) {
13810  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
13811    return SDValue();
13812
13813  EVT VT = N->getValueType(0);
13814  if (VT != MVT::i64)
13815    return SDValue();
13816
13817  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
13818  if (!C)
13819    return SDValue();
13820  uint64_t MulAmt = C->getZExtValue();
13821  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
13822    return SDValue();
13823
13824  uint64_t MulAmt1 = 0;
13825  uint64_t MulAmt2 = 0;
13826  if ((MulAmt % 9) == 0) {
13827    MulAmt1 = 9;
13828    MulAmt2 = MulAmt / 9;
13829  } else if ((MulAmt % 5) == 0) {
13830    MulAmt1 = 5;
13831    MulAmt2 = MulAmt / 5;
13832  } else if ((MulAmt % 3) == 0) {
13833    MulAmt1 = 3;
13834    MulAmt2 = MulAmt / 3;
13835  }
13836  if (MulAmt2 &&
13837      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
13838    DebugLoc DL = N->getDebugLoc();
13839
13840    if (isPowerOf2_64(MulAmt2) &&
13841        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
13842      // If second multiplifer is pow2, issue it first. We want the multiply by
13843      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
13844      // is an add.
13845      std::swap(MulAmt1, MulAmt2);
13846
13847    SDValue NewMul;
13848    if (isPowerOf2_64(MulAmt1))
13849      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
13850                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
13851    else
13852      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
13853                           DAG.getConstant(MulAmt1, VT));
13854
13855    if (isPowerOf2_64(MulAmt2))
13856      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
13857                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
13858    else
13859      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
13860                           DAG.getConstant(MulAmt2, VT));
13861
13862    // Do not add new nodes to DAG combiner worklist.
13863    DCI.CombineTo(N, NewMul, false);
13864  }
13865  return SDValue();
13866}
13867
13868static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
13869  SDValue N0 = N->getOperand(0);
13870  SDValue N1 = N->getOperand(1);
13871  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
13872  EVT VT = N0.getValueType();
13873
13874  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
13875  // since the result of setcc_c is all zero's or all ones.
13876  if (VT.isInteger() && !VT.isVector() &&
13877      N1C && N0.getOpcode() == ISD::AND &&
13878      N0.getOperand(1).getOpcode() == ISD::Constant) {
13879    SDValue N00 = N0.getOperand(0);
13880    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
13881        ((N00.getOpcode() == ISD::ANY_EXTEND ||
13882          N00.getOpcode() == ISD::ZERO_EXTEND) &&
13883         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
13884      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
13885      APInt ShAmt = N1C->getAPIntValue();
13886      Mask = Mask.shl(ShAmt);
13887      if (Mask != 0)
13888        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
13889                           N00, DAG.getConstant(Mask, VT));
13890    }
13891  }
13892
13893
13894  // Hardware support for vector shifts is sparse which makes us scalarize the
13895  // vector operations in many cases. Also, on sandybridge ADD is faster than
13896  // shl.
13897  // (shl V, 1) -> add V,V
13898  if (isSplatVector(N1.getNode())) {
13899    assert(N0.getValueType().isVector() && "Invalid vector shift type");
13900    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
13901    // We shift all of the values by one. In many cases we do not have
13902    // hardware support for this operation. This is better expressed as an ADD
13903    // of two values.
13904    if (N1C && (1 == N1C->getZExtValue())) {
13905      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0);
13906    }
13907  }
13908
13909  return SDValue();
13910}
13911
13912/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
13913///                       when possible.
13914static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
13915                                   TargetLowering::DAGCombinerInfo &DCI,
13916                                   const X86Subtarget *Subtarget) {
13917  EVT VT = N->getValueType(0);
13918  if (N->getOpcode() == ISD::SHL) {
13919    SDValue V = PerformSHLCombine(N, DAG);
13920    if (V.getNode()) return V;
13921  }
13922
13923  // On X86 with SSE2 support, we can transform this to a vector shift if
13924  // all elements are shifted by the same amount.  We can't do this in legalize
13925  // because the a constant vector is typically transformed to a constant pool
13926  // so we have no knowledge of the shift amount.
13927  if (!Subtarget->hasSSE2())
13928    return SDValue();
13929
13930  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
13931      (!Subtarget->hasAVX2() ||
13932       (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
13933    return SDValue();
13934
13935  SDValue ShAmtOp = N->getOperand(1);
13936  EVT EltVT = VT.getVectorElementType();
13937  DebugLoc DL = N->getDebugLoc();
13938  SDValue BaseShAmt = SDValue();
13939  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
13940    unsigned NumElts = VT.getVectorNumElements();
13941    unsigned i = 0;
13942    for (; i != NumElts; ++i) {
13943      SDValue Arg = ShAmtOp.getOperand(i);
13944      if (Arg.getOpcode() == ISD::UNDEF) continue;
13945      BaseShAmt = Arg;
13946      break;
13947    }
13948    // Handle the case where the build_vector is all undef
13949    // FIXME: Should DAG allow this?
13950    if (i == NumElts)
13951      return SDValue();
13952
13953    for (; i != NumElts; ++i) {
13954      SDValue Arg = ShAmtOp.getOperand(i);
13955      if (Arg.getOpcode() == ISD::UNDEF) continue;
13956      if (Arg != BaseShAmt) {
13957        return SDValue();
13958      }
13959    }
13960  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
13961             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
13962    SDValue InVec = ShAmtOp.getOperand(0);
13963    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
13964      unsigned NumElts = InVec.getValueType().getVectorNumElements();
13965      unsigned i = 0;
13966      for (; i != NumElts; ++i) {
13967        SDValue Arg = InVec.getOperand(i);
13968        if (Arg.getOpcode() == ISD::UNDEF) continue;
13969        BaseShAmt = Arg;
13970        break;
13971      }
13972    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
13973       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
13974         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
13975         if (C->getZExtValue() == SplatIdx)
13976           BaseShAmt = InVec.getOperand(1);
13977       }
13978    }
13979    if (BaseShAmt.getNode() == 0) {
13980      // Don't create instructions with illegal types after legalize
13981      // types has run.
13982      if (!DAG.getTargetLoweringInfo().isTypeLegal(EltVT) &&
13983          !DCI.isBeforeLegalize())
13984        return SDValue();
13985
13986      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
13987                              DAG.getIntPtrConstant(0));
13988    }
13989  } else
13990    return SDValue();
13991
13992  // The shift amount is an i32.
13993  if (EltVT.bitsGT(MVT::i32))
13994    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
13995  else if (EltVT.bitsLT(MVT::i32))
13996    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
13997
13998  // The shift amount is identical so we can do a vector shift.
13999  SDValue  ValOp = N->getOperand(0);
14000  switch (N->getOpcode()) {
14001  default:
14002    llvm_unreachable("Unknown shift opcode!");
14003  case ISD::SHL:
14004    switch (VT.getSimpleVT().SimpleTy) {
14005    default: return SDValue();
14006    case MVT::v2i64:
14007    case MVT::v4i32:
14008    case MVT::v8i16:
14009    case MVT::v4i64:
14010    case MVT::v8i32:
14011    case MVT::v16i16:
14012      return getTargetVShiftNode(X86ISD::VSHLI, DL, VT, ValOp, BaseShAmt, DAG);
14013    }
14014  case ISD::SRA:
14015    switch (VT.getSimpleVT().SimpleTy) {
14016    default: return SDValue();
14017    case MVT::v4i32:
14018    case MVT::v8i16:
14019    case MVT::v8i32:
14020    case MVT::v16i16:
14021      return getTargetVShiftNode(X86ISD::VSRAI, DL, VT, ValOp, BaseShAmt, DAG);
14022    }
14023  case ISD::SRL:
14024    switch (VT.getSimpleVT().SimpleTy) {
14025    default: return SDValue();
14026    case MVT::v2i64:
14027    case MVT::v4i32:
14028    case MVT::v8i16:
14029    case MVT::v4i64:
14030    case MVT::v8i32:
14031    case MVT::v16i16:
14032      return getTargetVShiftNode(X86ISD::VSRLI, DL, VT, ValOp, BaseShAmt, DAG);
14033    }
14034  }
14035}
14036
14037
14038// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
14039// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
14040// and friends.  Likewise for OR -> CMPNEQSS.
14041static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
14042                            TargetLowering::DAGCombinerInfo &DCI,
14043                            const X86Subtarget *Subtarget) {
14044  unsigned opcode;
14045
14046  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
14047  // we're requiring SSE2 for both.
14048  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
14049    SDValue N0 = N->getOperand(0);
14050    SDValue N1 = N->getOperand(1);
14051    SDValue CMP0 = N0->getOperand(1);
14052    SDValue CMP1 = N1->getOperand(1);
14053    DebugLoc DL = N->getDebugLoc();
14054
14055    // The SETCCs should both refer to the same CMP.
14056    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
14057      return SDValue();
14058
14059    SDValue CMP00 = CMP0->getOperand(0);
14060    SDValue CMP01 = CMP0->getOperand(1);
14061    EVT     VT    = CMP00.getValueType();
14062
14063    if (VT == MVT::f32 || VT == MVT::f64) {
14064      bool ExpectingFlags = false;
14065      // Check for any users that want flags:
14066      for (SDNode::use_iterator UI = N->use_begin(),
14067             UE = N->use_end();
14068           !ExpectingFlags && UI != UE; ++UI)
14069        switch (UI->getOpcode()) {
14070        default:
14071        case ISD::BR_CC:
14072        case ISD::BRCOND:
14073        case ISD::SELECT:
14074          ExpectingFlags = true;
14075          break;
14076        case ISD::CopyToReg:
14077        case ISD::SIGN_EXTEND:
14078        case ISD::ZERO_EXTEND:
14079        case ISD::ANY_EXTEND:
14080          break;
14081        }
14082
14083      if (!ExpectingFlags) {
14084        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
14085        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
14086
14087        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
14088          X86::CondCode tmp = cc0;
14089          cc0 = cc1;
14090          cc1 = tmp;
14091        }
14092
14093        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
14094            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
14095          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
14096          X86ISD::NodeType NTOperator = is64BitFP ?
14097            X86ISD::FSETCCsd : X86ISD::FSETCCss;
14098          // FIXME: need symbolic constants for these magic numbers.
14099          // See X86ATTInstPrinter.cpp:printSSECC().
14100          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
14101          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
14102                                              DAG.getConstant(x86cc, MVT::i8));
14103          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
14104                                              OnesOrZeroesF);
14105          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
14106                                      DAG.getConstant(1, MVT::i32));
14107          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
14108          return OneBitOfTruth;
14109        }
14110      }
14111    }
14112  }
14113  return SDValue();
14114}
14115
14116/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
14117/// so it can be folded inside ANDNP.
14118static bool CanFoldXORWithAllOnes(const SDNode *N) {
14119  EVT VT = N->getValueType(0);
14120
14121  // Match direct AllOnes for 128 and 256-bit vectors
14122  if (ISD::isBuildVectorAllOnes(N))
14123    return true;
14124
14125  // Look through a bit convert.
14126  if (N->getOpcode() == ISD::BITCAST)
14127    N = N->getOperand(0).getNode();
14128
14129  // Sometimes the operand may come from a insert_subvector building a 256-bit
14130  // allones vector
14131  if (VT.getSizeInBits() == 256 &&
14132      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
14133    SDValue V1 = N->getOperand(0);
14134    SDValue V2 = N->getOperand(1);
14135
14136    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
14137        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
14138        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
14139        ISD::isBuildVectorAllOnes(V2.getNode()))
14140      return true;
14141  }
14142
14143  return false;
14144}
14145
14146static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
14147                                 TargetLowering::DAGCombinerInfo &DCI,
14148                                 const X86Subtarget *Subtarget) {
14149  if (DCI.isBeforeLegalizeOps())
14150    return SDValue();
14151
14152  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
14153  if (R.getNode())
14154    return R;
14155
14156  EVT VT = N->getValueType(0);
14157
14158  // Create ANDN, BLSI, and BLSR instructions
14159  // BLSI is X & (-X)
14160  // BLSR is X & (X-1)
14161  if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
14162    SDValue N0 = N->getOperand(0);
14163    SDValue N1 = N->getOperand(1);
14164    DebugLoc DL = N->getDebugLoc();
14165
14166    // Check LHS for not
14167    if (N0.getOpcode() == ISD::XOR && isAllOnes(N0.getOperand(1)))
14168      return DAG.getNode(X86ISD::ANDN, DL, VT, N0.getOperand(0), N1);
14169    // Check RHS for not
14170    if (N1.getOpcode() == ISD::XOR && isAllOnes(N1.getOperand(1)))
14171      return DAG.getNode(X86ISD::ANDN, DL, VT, N1.getOperand(0), N0);
14172
14173    // Check LHS for neg
14174    if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
14175        isZero(N0.getOperand(0)))
14176      return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
14177
14178    // Check RHS for neg
14179    if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
14180        isZero(N1.getOperand(0)))
14181      return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
14182
14183    // Check LHS for X-1
14184    if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
14185        isAllOnes(N0.getOperand(1)))
14186      return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
14187
14188    // Check RHS for X-1
14189    if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
14190        isAllOnes(N1.getOperand(1)))
14191      return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
14192
14193    return SDValue();
14194  }
14195
14196  // Want to form ANDNP nodes:
14197  // 1) In the hopes of then easily combining them with OR and AND nodes
14198  //    to form PBLEND/PSIGN.
14199  // 2) To match ANDN packed intrinsics
14200  if (VT != MVT::v2i64 && VT != MVT::v4i64)
14201    return SDValue();
14202
14203  SDValue N0 = N->getOperand(0);
14204  SDValue N1 = N->getOperand(1);
14205  DebugLoc DL = N->getDebugLoc();
14206
14207  // Check LHS for vnot
14208  if (N0.getOpcode() == ISD::XOR &&
14209      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
14210      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
14211    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
14212
14213  // Check RHS for vnot
14214  if (N1.getOpcode() == ISD::XOR &&
14215      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
14216      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
14217    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
14218
14219  return SDValue();
14220}
14221
14222static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
14223                                TargetLowering::DAGCombinerInfo &DCI,
14224                                const X86Subtarget *Subtarget) {
14225  if (DCI.isBeforeLegalizeOps())
14226    return SDValue();
14227
14228  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
14229  if (R.getNode())
14230    return R;
14231
14232  EVT VT = N->getValueType(0);
14233
14234  SDValue N0 = N->getOperand(0);
14235  SDValue N1 = N->getOperand(1);
14236
14237  // look for psign/blend
14238  if (VT == MVT::v2i64 || VT == MVT::v4i64) {
14239    if (!Subtarget->hasSSSE3() ||
14240        (VT == MVT::v4i64 && !Subtarget->hasAVX2()))
14241      return SDValue();
14242
14243    // Canonicalize pandn to RHS
14244    if (N0.getOpcode() == X86ISD::ANDNP)
14245      std::swap(N0, N1);
14246    // or (and (m, y), (pandn m, x))
14247    if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
14248      SDValue Mask = N1.getOperand(0);
14249      SDValue X    = N1.getOperand(1);
14250      SDValue Y;
14251      if (N0.getOperand(0) == Mask)
14252        Y = N0.getOperand(1);
14253      if (N0.getOperand(1) == Mask)
14254        Y = N0.getOperand(0);
14255
14256      // Check to see if the mask appeared in both the AND and ANDNP and
14257      if (!Y.getNode())
14258        return SDValue();
14259
14260      // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
14261      // Look through mask bitcast.
14262      if (Mask.getOpcode() == ISD::BITCAST)
14263        Mask = Mask.getOperand(0);
14264      if (X.getOpcode() == ISD::BITCAST)
14265        X = X.getOperand(0);
14266      if (Y.getOpcode() == ISD::BITCAST)
14267        Y = Y.getOperand(0);
14268
14269      EVT MaskVT = Mask.getValueType();
14270
14271      // Validate that the Mask operand is a vector sra node.
14272      // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
14273      // there is no psrai.b
14274      if (Mask.getOpcode() != X86ISD::VSRAI)
14275        return SDValue();
14276
14277      // Check that the SRA is all signbits.
14278      SDValue SraC = Mask.getOperand(1);
14279      unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
14280      unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
14281      if ((SraAmt + 1) != EltBits)
14282        return SDValue();
14283
14284      DebugLoc DL = N->getDebugLoc();
14285
14286      // Now we know we at least have a plendvb with the mask val.  See if
14287      // we can form a psignb/w/d.
14288      // psign = x.type == y.type == mask.type && y = sub(0, x);
14289      if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
14290          ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
14291          X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
14292        assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
14293               "Unsupported VT for PSIGN");
14294        Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0));
14295        return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
14296      }
14297      // PBLENDVB only available on SSE 4.1
14298      if (!Subtarget->hasSSE41())
14299        return SDValue();
14300
14301      EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
14302
14303      X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
14304      Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
14305      Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
14306      Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
14307      return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
14308    }
14309  }
14310
14311  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
14312    return SDValue();
14313
14314  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
14315  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
14316    std::swap(N0, N1);
14317  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
14318    return SDValue();
14319  if (!N0.hasOneUse() || !N1.hasOneUse())
14320    return SDValue();
14321
14322  SDValue ShAmt0 = N0.getOperand(1);
14323  if (ShAmt0.getValueType() != MVT::i8)
14324    return SDValue();
14325  SDValue ShAmt1 = N1.getOperand(1);
14326  if (ShAmt1.getValueType() != MVT::i8)
14327    return SDValue();
14328  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
14329    ShAmt0 = ShAmt0.getOperand(0);
14330  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
14331    ShAmt1 = ShAmt1.getOperand(0);
14332
14333  DebugLoc DL = N->getDebugLoc();
14334  unsigned Opc = X86ISD::SHLD;
14335  SDValue Op0 = N0.getOperand(0);
14336  SDValue Op1 = N1.getOperand(0);
14337  if (ShAmt0.getOpcode() == ISD::SUB) {
14338    Opc = X86ISD::SHRD;
14339    std::swap(Op0, Op1);
14340    std::swap(ShAmt0, ShAmt1);
14341  }
14342
14343  unsigned Bits = VT.getSizeInBits();
14344  if (ShAmt1.getOpcode() == ISD::SUB) {
14345    SDValue Sum = ShAmt1.getOperand(0);
14346    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
14347      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
14348      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
14349        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
14350      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
14351        return DAG.getNode(Opc, DL, VT,
14352                           Op0, Op1,
14353                           DAG.getNode(ISD::TRUNCATE, DL,
14354                                       MVT::i8, ShAmt0));
14355    }
14356  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
14357    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
14358    if (ShAmt0C &&
14359        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
14360      return DAG.getNode(Opc, DL, VT,
14361                         N0.getOperand(0), N1.getOperand(0),
14362                         DAG.getNode(ISD::TRUNCATE, DL,
14363                                       MVT::i8, ShAmt0));
14364  }
14365
14366  return SDValue();
14367}
14368
14369// Generate NEG and CMOV for integer abs.
14370static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
14371  EVT VT = N->getValueType(0);
14372
14373  // Since X86 does not have CMOV for 8-bit integer, we don't convert
14374  // 8-bit integer abs to NEG and CMOV.
14375  if (VT.isInteger() && VT.getSizeInBits() == 8)
14376    return SDValue();
14377
14378  SDValue N0 = N->getOperand(0);
14379  SDValue N1 = N->getOperand(1);
14380  DebugLoc DL = N->getDebugLoc();
14381
14382  // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
14383  // and change it to SUB and CMOV.
14384  if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
14385      N0.getOpcode() == ISD::ADD &&
14386      N0.getOperand(1) == N1 &&
14387      N1.getOpcode() == ISD::SRA &&
14388      N1.getOperand(0) == N0.getOperand(0))
14389    if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
14390      if (Y1C->getAPIntValue() == VT.getSizeInBits()-1) {
14391        // Generate SUB & CMOV.
14392        SDValue Neg = DAG.getNode(X86ISD::SUB, DL, DAG.getVTList(VT, MVT::i32),
14393                                  DAG.getConstant(0, VT), N0.getOperand(0));
14394
14395        SDValue Ops[] = { N0.getOperand(0), Neg,
14396                          DAG.getConstant(X86::COND_GE, MVT::i8),
14397                          SDValue(Neg.getNode(), 1) };
14398        return DAG.getNode(X86ISD::CMOV, DL, DAG.getVTList(VT, MVT::Glue),
14399                           Ops, array_lengthof(Ops));
14400      }
14401  return SDValue();
14402}
14403
14404// PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
14405static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
14406                                 TargetLowering::DAGCombinerInfo &DCI,
14407                                 const X86Subtarget *Subtarget) {
14408  if (DCI.isBeforeLegalizeOps())
14409    return SDValue();
14410
14411  if (Subtarget->hasCMov()) {
14412    SDValue RV = performIntegerAbsCombine(N, DAG);
14413    if (RV.getNode())
14414      return RV;
14415  }
14416
14417  // Try forming BMI if it is available.
14418  if (!Subtarget->hasBMI())
14419    return SDValue();
14420
14421  EVT VT = N->getValueType(0);
14422
14423  if (VT != MVT::i32 && VT != MVT::i64)
14424    return SDValue();
14425
14426  assert(Subtarget->hasBMI() && "Creating BLSMSK requires BMI instructions");
14427
14428  // Create BLSMSK instructions by finding X ^ (X-1)
14429  SDValue N0 = N->getOperand(0);
14430  SDValue N1 = N->getOperand(1);
14431  DebugLoc DL = N->getDebugLoc();
14432
14433  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
14434      isAllOnes(N0.getOperand(1)))
14435    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
14436
14437  if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
14438      isAllOnes(N1.getOperand(1)))
14439    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
14440
14441  return SDValue();
14442}
14443
14444/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
14445static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
14446                                   const X86Subtarget *Subtarget) {
14447  LoadSDNode *Ld = cast<LoadSDNode>(N);
14448  EVT RegVT = Ld->getValueType(0);
14449  EVT MemVT = Ld->getMemoryVT();
14450  DebugLoc dl = Ld->getDebugLoc();
14451  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14452
14453  ISD::LoadExtType Ext = Ld->getExtensionType();
14454
14455  // If this is a vector EXT Load then attempt to optimize it using a
14456  // shuffle. We need SSE4 for the shuffles.
14457  // TODO: It is possible to support ZExt by zeroing the undef values
14458  // during the shuffle phase or after the shuffle.
14459  if (RegVT.isVector() && RegVT.isInteger() &&
14460      Ext == ISD::EXTLOAD && Subtarget->hasSSE41()) {
14461    assert(MemVT != RegVT && "Cannot extend to the same type");
14462    assert(MemVT.isVector() && "Must load a vector from memory");
14463
14464    unsigned NumElems = RegVT.getVectorNumElements();
14465    unsigned RegSz = RegVT.getSizeInBits();
14466    unsigned MemSz = MemVT.getSizeInBits();
14467    assert(RegSz > MemSz && "Register size must be greater than the mem size");
14468    // All sizes must be a power of two
14469    if (!isPowerOf2_32(RegSz * MemSz * NumElems)) return SDValue();
14470
14471    // Attempt to load the original value using a single load op.
14472    // Find a scalar type which is equal to the loaded word size.
14473    MVT SclrLoadTy = MVT::i8;
14474    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14475         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14476      MVT Tp = (MVT::SimpleValueType)tp;
14477      if (TLI.isTypeLegal(Tp) &&  Tp.getSizeInBits() == MemSz) {
14478        SclrLoadTy = Tp;
14479        break;
14480      }
14481    }
14482
14483    // Proceed if a load word is found.
14484    if (SclrLoadTy.getSizeInBits() != MemSz) return SDValue();
14485
14486    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
14487      RegSz/SclrLoadTy.getSizeInBits());
14488
14489    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
14490                                  RegSz/MemVT.getScalarType().getSizeInBits());
14491    // Can't shuffle using an illegal type.
14492    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
14493
14494    // Perform a single load.
14495    SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
14496                                  Ld->getBasePtr(),
14497                                  Ld->getPointerInfo(), Ld->isVolatile(),
14498                                  Ld->isNonTemporal(), Ld->isInvariant(),
14499                                  Ld->getAlignment());
14500
14501    // Insert the word loaded into a vector.
14502    SDValue ScalarInVector = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
14503      LoadUnitVecVT, ScalarLoad);
14504
14505    // Bitcast the loaded value to a vector of the original element type, in
14506    // the size of the target vector type.
14507    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT,
14508                                    ScalarInVector);
14509    unsigned SizeRatio = RegSz/MemSz;
14510
14511    // Redistribute the loaded elements into the different locations.
14512    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14513    for (unsigned i = 0; i != NumElems; ++i)
14514      ShuffleVec[i*SizeRatio] = i;
14515
14516    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
14517                                         DAG.getUNDEF(WideVecVT),
14518                                         &ShuffleVec[0]);
14519
14520    // Bitcast to the requested type.
14521    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
14522    // Replace the original load with the new sequence
14523    // and return the new chain.
14524    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Shuff);
14525    return SDValue(ScalarLoad.getNode(), 1);
14526  }
14527
14528  return SDValue();
14529}
14530
14531/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
14532static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
14533                                   const X86Subtarget *Subtarget) {
14534  StoreSDNode *St = cast<StoreSDNode>(N);
14535  EVT VT = St->getValue().getValueType();
14536  EVT StVT = St->getMemoryVT();
14537  DebugLoc dl = St->getDebugLoc();
14538  SDValue StoredVal = St->getOperand(1);
14539  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14540
14541  // If we are saving a concatenation of two XMM registers, perform two stores.
14542  // On Sandy Bridge, 256-bit memory operations are executed by two
14543  // 128-bit ports. However, on Haswell it is better to issue a single 256-bit
14544  // memory  operation.
14545  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2() &&
14546      StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
14547      StoredVal.getNumOperands() == 2) {
14548    SDValue Value0 = StoredVal.getOperand(0);
14549    SDValue Value1 = StoredVal.getOperand(1);
14550
14551    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
14552    SDValue Ptr0 = St->getBasePtr();
14553    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
14554
14555    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
14556                                St->getPointerInfo(), St->isVolatile(),
14557                                St->isNonTemporal(), St->getAlignment());
14558    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
14559                                St->getPointerInfo(), St->isVolatile(),
14560                                St->isNonTemporal(), St->getAlignment());
14561    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
14562  }
14563
14564  // Optimize trunc store (of multiple scalars) to shuffle and store.
14565  // First, pack all of the elements in one place. Next, store to memory
14566  // in fewer chunks.
14567  if (St->isTruncatingStore() && VT.isVector()) {
14568    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14569    unsigned NumElems = VT.getVectorNumElements();
14570    assert(StVT != VT && "Cannot truncate to the same type");
14571    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
14572    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
14573
14574    // From, To sizes and ElemCount must be pow of two
14575    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
14576    // We are going to use the original vector elt for storing.
14577    // Accumulated smaller vector elements must be a multiple of the store size.
14578    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
14579
14580    unsigned SizeRatio  = FromSz / ToSz;
14581
14582    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
14583
14584    // Create a type on which we perform the shuffle
14585    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
14586            StVT.getScalarType(), NumElems*SizeRatio);
14587
14588    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
14589
14590    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
14591    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14592    for (unsigned i = 0; i != NumElems; ++i)
14593      ShuffleVec[i] = i * SizeRatio;
14594
14595    // Can't shuffle using an illegal type
14596    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
14597
14598    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
14599                                         DAG.getUNDEF(WideVecVT),
14600                                         &ShuffleVec[0]);
14601    // At this point all of the data is stored at the bottom of the
14602    // register. We now need to save it to mem.
14603
14604    // Find the largest store unit
14605    MVT StoreType = MVT::i8;
14606    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14607         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14608      MVT Tp = (MVT::SimpleValueType)tp;
14609      if (TLI.isTypeLegal(Tp) && StoreType.getSizeInBits() < NumElems * ToSz)
14610        StoreType = Tp;
14611    }
14612
14613    // Bitcast the original vector into a vector of store-size units
14614    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
14615            StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
14616    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
14617    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
14618    SmallVector<SDValue, 8> Chains;
14619    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
14620                                        TLI.getPointerTy());
14621    SDValue Ptr = St->getBasePtr();
14622
14623    // Perform one or more big stores into memory.
14624    for (unsigned i=0, e=(ToSz*NumElems)/StoreType.getSizeInBits(); i!=e; ++i) {
14625      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
14626                                   StoreType, ShuffWide,
14627                                   DAG.getIntPtrConstant(i));
14628      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
14629                                St->getPointerInfo(), St->isVolatile(),
14630                                St->isNonTemporal(), St->getAlignment());
14631      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14632      Chains.push_back(Ch);
14633    }
14634
14635    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
14636                               Chains.size());
14637  }
14638
14639
14640  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
14641  // the FP state in cases where an emms may be missing.
14642  // A preferable solution to the general problem is to figure out the right
14643  // places to insert EMMS.  This qualifies as a quick hack.
14644
14645  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
14646  if (VT.getSizeInBits() != 64)
14647    return SDValue();
14648
14649  const Function *F = DAG.getMachineFunction().getFunction();
14650  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
14651  bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
14652                     && Subtarget->hasSSE2();
14653  if ((VT.isVector() ||
14654       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
14655      isa<LoadSDNode>(St->getValue()) &&
14656      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
14657      St->getChain().hasOneUse() && !St->isVolatile()) {
14658    SDNode* LdVal = St->getValue().getNode();
14659    LoadSDNode *Ld = 0;
14660    int TokenFactorIndex = -1;
14661    SmallVector<SDValue, 8> Ops;
14662    SDNode* ChainVal = St->getChain().getNode();
14663    // Must be a store of a load.  We currently handle two cases:  the load
14664    // is a direct child, and it's under an intervening TokenFactor.  It is
14665    // possible to dig deeper under nested TokenFactors.
14666    if (ChainVal == LdVal)
14667      Ld = cast<LoadSDNode>(St->getChain());
14668    else if (St->getValue().hasOneUse() &&
14669             ChainVal->getOpcode() == ISD::TokenFactor) {
14670      for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) {
14671        if (ChainVal->getOperand(i).getNode() == LdVal) {
14672          TokenFactorIndex = i;
14673          Ld = cast<LoadSDNode>(St->getValue());
14674        } else
14675          Ops.push_back(ChainVal->getOperand(i));
14676      }
14677    }
14678
14679    if (!Ld || !ISD::isNormalLoad(Ld))
14680      return SDValue();
14681
14682    // If this is not the MMX case, i.e. we are just turning i64 load/store
14683    // into f64 load/store, avoid the transformation if there are multiple
14684    // uses of the loaded value.
14685    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
14686      return SDValue();
14687
14688    DebugLoc LdDL = Ld->getDebugLoc();
14689    DebugLoc StDL = N->getDebugLoc();
14690    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
14691    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
14692    // pair instead.
14693    if (Subtarget->is64Bit() || F64IsLegal) {
14694      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
14695      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
14696                                  Ld->getPointerInfo(), Ld->isVolatile(),
14697                                  Ld->isNonTemporal(), Ld->isInvariant(),
14698                                  Ld->getAlignment());
14699      SDValue NewChain = NewLd.getValue(1);
14700      if (TokenFactorIndex != -1) {
14701        Ops.push_back(NewChain);
14702        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14703                               Ops.size());
14704      }
14705      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
14706                          St->getPointerInfo(),
14707                          St->isVolatile(), St->isNonTemporal(),
14708                          St->getAlignment());
14709    }
14710
14711    // Otherwise, lower to two pairs of 32-bit loads / stores.
14712    SDValue LoAddr = Ld->getBasePtr();
14713    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
14714                                 DAG.getConstant(4, MVT::i32));
14715
14716    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
14717                               Ld->getPointerInfo(),
14718                               Ld->isVolatile(), Ld->isNonTemporal(),
14719                               Ld->isInvariant(), Ld->getAlignment());
14720    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
14721                               Ld->getPointerInfo().getWithOffset(4),
14722                               Ld->isVolatile(), Ld->isNonTemporal(),
14723                               Ld->isInvariant(),
14724                               MinAlign(Ld->getAlignment(), 4));
14725
14726    SDValue NewChain = LoLd.getValue(1);
14727    if (TokenFactorIndex != -1) {
14728      Ops.push_back(LoLd);
14729      Ops.push_back(HiLd);
14730      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14731                             Ops.size());
14732    }
14733
14734    LoAddr = St->getBasePtr();
14735    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
14736                         DAG.getConstant(4, MVT::i32));
14737
14738    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
14739                                St->getPointerInfo(),
14740                                St->isVolatile(), St->isNonTemporal(),
14741                                St->getAlignment());
14742    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
14743                                St->getPointerInfo().getWithOffset(4),
14744                                St->isVolatile(),
14745                                St->isNonTemporal(),
14746                                MinAlign(St->getAlignment(), 4));
14747    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
14748  }
14749  return SDValue();
14750}
14751
14752/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
14753/// and return the operands for the horizontal operation in LHS and RHS.  A
14754/// horizontal operation performs the binary operation on successive elements
14755/// of its first operand, then on successive elements of its second operand,
14756/// returning the resulting values in a vector.  For example, if
14757///   A = < float a0, float a1, float a2, float a3 >
14758/// and
14759///   B = < float b0, float b1, float b2, float b3 >
14760/// then the result of doing a horizontal operation on A and B is
14761///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
14762/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
14763/// A horizontal-op B, for some already available A and B, and if so then LHS is
14764/// set to A, RHS to B, and the routine returns 'true'.
14765/// Note that the binary operation should have the property that if one of the
14766/// operands is UNDEF then the result is UNDEF.
14767static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
14768  // Look for the following pattern: if
14769  //   A = < float a0, float a1, float a2, float a3 >
14770  //   B = < float b0, float b1, float b2, float b3 >
14771  // and
14772  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
14773  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
14774  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
14775  // which is A horizontal-op B.
14776
14777  // At least one of the operands should be a vector shuffle.
14778  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
14779      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
14780    return false;
14781
14782  EVT VT = LHS.getValueType();
14783
14784  assert((VT.is128BitVector() || VT.is256BitVector()) &&
14785         "Unsupported vector type for horizontal add/sub");
14786
14787  // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
14788  // operate independently on 128-bit lanes.
14789  unsigned NumElts = VT.getVectorNumElements();
14790  unsigned NumLanes = VT.getSizeInBits()/128;
14791  unsigned NumLaneElts = NumElts / NumLanes;
14792  assert((NumLaneElts % 2 == 0) &&
14793         "Vector type should have an even number of elements in each lane");
14794  unsigned HalfLaneElts = NumLaneElts/2;
14795
14796  // View LHS in the form
14797  //   LHS = VECTOR_SHUFFLE A, B, LMask
14798  // If LHS is not a shuffle then pretend it is the shuffle
14799  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
14800  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
14801  // type VT.
14802  SDValue A, B;
14803  SmallVector<int, 16> LMask(NumElts);
14804  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14805    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
14806      A = LHS.getOperand(0);
14807    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
14808      B = LHS.getOperand(1);
14809    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
14810    std::copy(Mask.begin(), Mask.end(), LMask.begin());
14811  } else {
14812    if (LHS.getOpcode() != ISD::UNDEF)
14813      A = LHS;
14814    for (unsigned i = 0; i != NumElts; ++i)
14815      LMask[i] = i;
14816  }
14817
14818  // Likewise, view RHS in the form
14819  //   RHS = VECTOR_SHUFFLE C, D, RMask
14820  SDValue C, D;
14821  SmallVector<int, 16> RMask(NumElts);
14822  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14823    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
14824      C = RHS.getOperand(0);
14825    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
14826      D = RHS.getOperand(1);
14827    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
14828    std::copy(Mask.begin(), Mask.end(), RMask.begin());
14829  } else {
14830    if (RHS.getOpcode() != ISD::UNDEF)
14831      C = RHS;
14832    for (unsigned i = 0; i != NumElts; ++i)
14833      RMask[i] = i;
14834  }
14835
14836  // Check that the shuffles are both shuffling the same vectors.
14837  if (!(A == C && B == D) && !(A == D && B == C))
14838    return false;
14839
14840  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
14841  if (!A.getNode() && !B.getNode())
14842    return false;
14843
14844  // If A and B occur in reverse order in RHS, then "swap" them (which means
14845  // rewriting the mask).
14846  if (A != C)
14847    CommuteVectorShuffleMask(RMask, NumElts);
14848
14849  // At this point LHS and RHS are equivalent to
14850  //   LHS = VECTOR_SHUFFLE A, B, LMask
14851  //   RHS = VECTOR_SHUFFLE A, B, RMask
14852  // Check that the masks correspond to performing a horizontal operation.
14853  for (unsigned i = 0; i != NumElts; ++i) {
14854    int LIdx = LMask[i], RIdx = RMask[i];
14855
14856    // Ignore any UNDEF components.
14857    if (LIdx < 0 || RIdx < 0 ||
14858        (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
14859        (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
14860      continue;
14861
14862    // Check that successive elements are being operated on.  If not, this is
14863    // not a horizontal operation.
14864    unsigned Src = (i/HalfLaneElts) % 2; // each lane is split between srcs
14865    unsigned LaneStart = (i/NumLaneElts) * NumLaneElts;
14866    int Index = 2*(i%HalfLaneElts) + NumElts*Src + LaneStart;
14867    if (!(LIdx == Index && RIdx == Index + 1) &&
14868        !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
14869      return false;
14870  }
14871
14872  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
14873  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
14874  return true;
14875}
14876
14877/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
14878static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
14879                                  const X86Subtarget *Subtarget) {
14880  EVT VT = N->getValueType(0);
14881  SDValue LHS = N->getOperand(0);
14882  SDValue RHS = N->getOperand(1);
14883
14884  // Try to synthesize horizontal adds from adds of shuffles.
14885  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14886       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14887      isHorizontalBinOp(LHS, RHS, true))
14888    return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
14889  return SDValue();
14890}
14891
14892/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
14893static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
14894                                  const X86Subtarget *Subtarget) {
14895  EVT VT = N->getValueType(0);
14896  SDValue LHS = N->getOperand(0);
14897  SDValue RHS = N->getOperand(1);
14898
14899  // Try to synthesize horizontal subs from subs of shuffles.
14900  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14901       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14902      isHorizontalBinOp(LHS, RHS, false))
14903    return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
14904  return SDValue();
14905}
14906
14907/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
14908/// X86ISD::FXOR nodes.
14909static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
14910  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
14911  // F[X]OR(0.0, x) -> x
14912  // F[X]OR(x, 0.0) -> x
14913  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14914    if (C->getValueAPF().isPosZero())
14915      return N->getOperand(1);
14916  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14917    if (C->getValueAPF().isPosZero())
14918      return N->getOperand(0);
14919  return SDValue();
14920}
14921
14922/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
14923static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
14924  // FAND(0.0, x) -> 0.0
14925  // FAND(x, 0.0) -> 0.0
14926  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14927    if (C->getValueAPF().isPosZero())
14928      return N->getOperand(0);
14929  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14930    if (C->getValueAPF().isPosZero())
14931      return N->getOperand(1);
14932  return SDValue();
14933}
14934
14935static SDValue PerformBTCombine(SDNode *N,
14936                                SelectionDAG &DAG,
14937                                TargetLowering::DAGCombinerInfo &DCI) {
14938  // BT ignores high bits in the bit index operand.
14939  SDValue Op1 = N->getOperand(1);
14940  if (Op1.hasOneUse()) {
14941    unsigned BitWidth = Op1.getValueSizeInBits();
14942    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
14943    APInt KnownZero, KnownOne;
14944    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
14945                                          !DCI.isBeforeLegalizeOps());
14946    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14947    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
14948        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
14949      DCI.CommitTargetLoweringOpt(TLO);
14950  }
14951  return SDValue();
14952}
14953
14954static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
14955  SDValue Op = N->getOperand(0);
14956  if (Op.getOpcode() == ISD::BITCAST)
14957    Op = Op.getOperand(0);
14958  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
14959  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
14960      VT.getVectorElementType().getSizeInBits() ==
14961      OpVT.getVectorElementType().getSizeInBits()) {
14962    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
14963  }
14964  return SDValue();
14965}
14966
14967static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG,
14968                                  TargetLowering::DAGCombinerInfo &DCI,
14969                                  const X86Subtarget *Subtarget) {
14970  if (!DCI.isBeforeLegalizeOps())
14971    return SDValue();
14972
14973  if (!Subtarget->hasAVX())
14974    return SDValue();
14975
14976  EVT VT = N->getValueType(0);
14977  SDValue Op = N->getOperand(0);
14978  EVT OpVT = Op.getValueType();
14979  DebugLoc dl = N->getDebugLoc();
14980
14981  if ((VT == MVT::v4i64 && OpVT == MVT::v4i32) ||
14982      (VT == MVT::v8i32 && OpVT == MVT::v8i16)) {
14983
14984    if (Subtarget->hasAVX2())
14985      return DAG.getNode(X86ISD::VSEXT_MOVL, dl, VT, Op);
14986
14987    // Optimize vectors in AVX mode
14988    // Sign extend  v8i16 to v8i32 and
14989    //              v4i32 to v4i64
14990    //
14991    // Divide input vector into two parts
14992    // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1}
14993    // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
14994    // concat the vectors to original VT
14995
14996    unsigned NumElems = OpVT.getVectorNumElements();
14997    SmallVector<int,8> ShufMask1(NumElems, -1);
14998    for (unsigned i = 0; i != NumElems/2; ++i)
14999      ShufMask1[i] = i;
15000
15001    SDValue OpLo = DAG.getVectorShuffle(OpVT, dl, Op, DAG.getUNDEF(OpVT),
15002                                        &ShufMask1[0]);
15003
15004    SmallVector<int,8> ShufMask2(NumElems, -1);
15005    for (unsigned i = 0; i != NumElems/2; ++i)
15006      ShufMask2[i] = i + NumElems/2;
15007
15008    SDValue OpHi = DAG.getVectorShuffle(OpVT, dl, Op, DAG.getUNDEF(OpVT),
15009                                        &ShufMask2[0]);
15010
15011    EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
15012                                  VT.getVectorNumElements()/2);
15013
15014    OpLo = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpLo);
15015    OpHi = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpHi);
15016
15017    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
15018  }
15019  return SDValue();
15020}
15021
15022static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
15023                                  TargetLowering::DAGCombinerInfo &DCI,
15024                                  const X86Subtarget *Subtarget) {
15025  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
15026  //           (and (i32 x86isd::setcc_carry), 1)
15027  // This eliminates the zext. This transformation is necessary because
15028  // ISD::SETCC is always legalized to i8.
15029  DebugLoc dl = N->getDebugLoc();
15030  SDValue N0 = N->getOperand(0);
15031  EVT VT = N->getValueType(0);
15032  EVT OpVT = N0.getValueType();
15033
15034  if (N0.getOpcode() == ISD::AND &&
15035      N0.hasOneUse() &&
15036      N0.getOperand(0).hasOneUse()) {
15037    SDValue N00 = N0.getOperand(0);
15038    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
15039      return SDValue();
15040    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
15041    if (!C || C->getZExtValue() != 1)
15042      return SDValue();
15043    return DAG.getNode(ISD::AND, dl, VT,
15044                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
15045                                   N00.getOperand(0), N00.getOperand(1)),
15046                       DAG.getConstant(1, VT));
15047  }
15048
15049  // Optimize vectors in AVX mode:
15050  //
15051  //   v8i16 -> v8i32
15052  //   Use vpunpcklwd for 4 lower elements  v8i16 -> v4i32.
15053  //   Use vpunpckhwd for 4 upper elements  v8i16 -> v4i32.
15054  //   Concat upper and lower parts.
15055  //
15056  //   v4i32 -> v4i64
15057  //   Use vpunpckldq for 4 lower elements  v4i32 -> v2i64.
15058  //   Use vpunpckhdq for 4 upper elements  v4i32 -> v2i64.
15059  //   Concat upper and lower parts.
15060  //
15061  if (!DCI.isBeforeLegalizeOps())
15062    return SDValue();
15063
15064  if (!Subtarget->hasAVX())
15065    return SDValue();
15066
15067  if (((VT == MVT::v8i32) && (OpVT == MVT::v8i16)) ||
15068      ((VT == MVT::v4i64) && (OpVT == MVT::v4i32)))  {
15069
15070    if (Subtarget->hasAVX2())
15071      return DAG.getNode(X86ISD::VZEXT_MOVL, dl, VT, N0);
15072
15073    SDValue ZeroVec = getZeroVector(OpVT, Subtarget, DAG, dl);
15074    SDValue OpLo = getUnpackl(DAG, dl, OpVT, N0, ZeroVec);
15075    SDValue OpHi = getUnpackh(DAG, dl, OpVT, N0, ZeroVec);
15076
15077    EVT HVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
15078                               VT.getVectorNumElements()/2);
15079
15080    OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo);
15081    OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi);
15082
15083    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
15084  }
15085
15086  return SDValue();
15087}
15088
15089// Optimize x == -y --> x+y == 0
15090//          x != -y --> x+y != 0
15091static SDValue PerformISDSETCCCombine(SDNode *N, SelectionDAG &DAG) {
15092  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
15093  SDValue LHS = N->getOperand(0);
15094  SDValue RHS = N->getOperand(1);
15095
15096  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && LHS.getOpcode() == ISD::SUB)
15097    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(LHS.getOperand(0)))
15098      if (C->getAPIntValue() == 0 && LHS.hasOneUse()) {
15099        SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(),
15100                                   LHS.getValueType(), RHS, LHS.getOperand(1));
15101        return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0),
15102                            addV, DAG.getConstant(0, addV.getValueType()), CC);
15103      }
15104  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && RHS.getOpcode() == ISD::SUB)
15105    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS.getOperand(0)))
15106      if (C->getAPIntValue() == 0 && RHS.hasOneUse()) {
15107        SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(),
15108                                   RHS.getValueType(), LHS, RHS.getOperand(1));
15109        return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0),
15110                            addV, DAG.getConstant(0, addV.getValueType()), CC);
15111      }
15112  return SDValue();
15113}
15114
15115// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
15116static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
15117  unsigned X86CC = N->getConstantOperandVal(0);
15118  SDValue EFLAG = N->getOperand(1);
15119  DebugLoc DL = N->getDebugLoc();
15120
15121  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
15122  // a zext and produces an all-ones bit which is more useful than 0/1 in some
15123  // cases.
15124  if (X86CC == X86::COND_B)
15125    return DAG.getNode(ISD::AND, DL, MVT::i8,
15126                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
15127                                   DAG.getConstant(X86CC, MVT::i8), EFLAG),
15128                       DAG.getConstant(1, MVT::i8));
15129
15130  return SDValue();
15131}
15132
15133static SDValue PerformUINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG) {
15134  SDValue Op0 = N->getOperand(0);
15135  EVT InVT = Op0->getValueType(0);
15136
15137  // UINT_TO_FP(v4i8) -> SINT_TO_FP(ZEXT(v4i8 to v4i32))
15138  if (InVT == MVT::v8i8 || InVT == MVT::v4i8) {
15139    DebugLoc dl = N->getDebugLoc();
15140    MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
15141    SDValue P = DAG.getNode(ISD::ZERO_EXTEND, dl, DstVT, Op0);
15142    // Notice that we use SINT_TO_FP because we know that the high bits
15143    // are zero and SINT_TO_FP is better supported by the hardware.
15144    return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P);
15145  }
15146
15147  return SDValue();
15148}
15149
15150static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
15151                                        const X86TargetLowering *XTLI) {
15152  SDValue Op0 = N->getOperand(0);
15153  EVT InVT = Op0->getValueType(0);
15154
15155  // SINT_TO_FP(v4i8) -> SINT_TO_FP(SEXT(v4i8 to v4i32))
15156  if (InVT == MVT::v8i8 || InVT == MVT::v4i8) {
15157    DebugLoc dl = N->getDebugLoc();
15158    MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
15159    SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0);
15160    return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P);
15161  }
15162
15163  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
15164  // a 32-bit target where SSE doesn't support i64->FP operations.
15165  if (Op0.getOpcode() == ISD::LOAD) {
15166    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
15167    EVT VT = Ld->getValueType(0);
15168    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
15169        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
15170        !XTLI->getSubtarget()->is64Bit() &&
15171        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
15172      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
15173                                          Ld->getChain(), Op0, DAG);
15174      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
15175      return FILDChain;
15176    }
15177  }
15178  return SDValue();
15179}
15180
15181static SDValue PerformFP_TO_SINTCombine(SDNode *N, SelectionDAG &DAG) {
15182  EVT VT = N->getValueType(0);
15183
15184  // v4i8 = FP_TO_SINT() -> v4i8 = TRUNCATE (V4i32 = FP_TO_SINT()
15185  if (VT == MVT::v8i8 || VT == MVT::v4i8) {
15186    DebugLoc dl = N->getDebugLoc();
15187    MVT DstVT = VT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
15188    SDValue I = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, N->getOperand(0));
15189    return DAG.getNode(ISD::TRUNCATE, dl, VT, I);
15190  }
15191
15192  return SDValue();
15193}
15194
15195// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
15196static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
15197                                 X86TargetLowering::DAGCombinerInfo &DCI) {
15198  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
15199  // the result is either zero or one (depending on the input carry bit).
15200  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
15201  if (X86::isZeroNode(N->getOperand(0)) &&
15202      X86::isZeroNode(N->getOperand(1)) &&
15203      // We don't have a good way to replace an EFLAGS use, so only do this when
15204      // dead right now.
15205      SDValue(N, 1).use_empty()) {
15206    DebugLoc DL = N->getDebugLoc();
15207    EVT VT = N->getValueType(0);
15208    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
15209    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
15210                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
15211                                           DAG.getConstant(X86::COND_B,MVT::i8),
15212                                           N->getOperand(2)),
15213                               DAG.getConstant(1, VT));
15214    return DCI.CombineTo(N, Res1, CarryOut);
15215  }
15216
15217  return SDValue();
15218}
15219
15220// fold (add Y, (sete  X, 0)) -> adc  0, Y
15221//      (add Y, (setne X, 0)) -> sbb -1, Y
15222//      (sub (sete  X, 0), Y) -> sbb  0, Y
15223//      (sub (setne X, 0), Y) -> adc -1, Y
15224static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
15225  DebugLoc DL = N->getDebugLoc();
15226
15227  // Look through ZExts.
15228  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
15229  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
15230    return SDValue();
15231
15232  SDValue SetCC = Ext.getOperand(0);
15233  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
15234    return SDValue();
15235
15236  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
15237  if (CC != X86::COND_E && CC != X86::COND_NE)
15238    return SDValue();
15239
15240  SDValue Cmp = SetCC.getOperand(1);
15241  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
15242      !X86::isZeroNode(Cmp.getOperand(1)) ||
15243      !Cmp.getOperand(0).getValueType().isInteger())
15244    return SDValue();
15245
15246  SDValue CmpOp0 = Cmp.getOperand(0);
15247  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
15248                               DAG.getConstant(1, CmpOp0.getValueType()));
15249
15250  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
15251  if (CC == X86::COND_NE)
15252    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
15253                       DL, OtherVal.getValueType(), OtherVal,
15254                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
15255  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
15256                     DL, OtherVal.getValueType(), OtherVal,
15257                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
15258}
15259
15260/// PerformADDCombine - Do target-specific dag combines on integer adds.
15261static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
15262                                 const X86Subtarget *Subtarget) {
15263  EVT VT = N->getValueType(0);
15264  SDValue Op0 = N->getOperand(0);
15265  SDValue Op1 = N->getOperand(1);
15266
15267  // Try to synthesize horizontal adds from adds of shuffles.
15268  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
15269       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
15270      isHorizontalBinOp(Op0, Op1, true))
15271    return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1);
15272
15273  return OptimizeConditionalInDecrement(N, DAG);
15274}
15275
15276static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
15277                                 const X86Subtarget *Subtarget) {
15278  SDValue Op0 = N->getOperand(0);
15279  SDValue Op1 = N->getOperand(1);
15280
15281  // X86 can't encode an immediate LHS of a sub. See if we can push the
15282  // negation into a preceding instruction.
15283  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
15284    // If the RHS of the sub is a XOR with one use and a constant, invert the
15285    // immediate. Then add one to the LHS of the sub so we can turn
15286    // X-Y -> X+~Y+1, saving one register.
15287    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
15288        isa<ConstantSDNode>(Op1.getOperand(1))) {
15289      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
15290      EVT VT = Op0.getValueType();
15291      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
15292                                   Op1.getOperand(0),
15293                                   DAG.getConstant(~XorC, VT));
15294      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
15295                         DAG.getConstant(C->getAPIntValue()+1, VT));
15296    }
15297  }
15298
15299  // Try to synthesize horizontal adds from adds of shuffles.
15300  EVT VT = N->getValueType(0);
15301  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
15302       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
15303      isHorizontalBinOp(Op0, Op1, true))
15304    return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1);
15305
15306  return OptimizeConditionalInDecrement(N, DAG);
15307}
15308
15309SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
15310                                             DAGCombinerInfo &DCI) const {
15311  SelectionDAG &DAG = DCI.DAG;
15312  switch (N->getOpcode()) {
15313  default: break;
15314  case ISD::EXTRACT_VECTOR_ELT:
15315    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI);
15316  case ISD::VSELECT:
15317  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, DCI, Subtarget);
15318  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
15319  case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
15320  case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
15321  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
15322  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
15323  case ISD::SHL:
15324  case ISD::SRA:
15325  case ISD::SRL:            return PerformShiftCombine(N, DAG, DCI, Subtarget);
15326  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
15327  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
15328  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
15329  case ISD::LOAD:           return PerformLOADCombine(N, DAG, Subtarget);
15330  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
15331  case ISD::UINT_TO_FP:     return PerformUINT_TO_FPCombine(N, DAG);
15332  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
15333  case ISD::FP_TO_SINT:     return PerformFP_TO_SINTCombine(N, DAG);
15334  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
15335  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
15336  case X86ISD::FXOR:
15337  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
15338  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
15339  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
15340  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
15341  case ISD::ANY_EXTEND:
15342  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG, DCI, Subtarget);
15343  case ISD::SIGN_EXTEND:    return PerformSExtCombine(N, DAG, DCI, Subtarget);
15344  case ISD::TRUNCATE:       return PerformTruncateCombine(N, DAG, DCI);
15345  case ISD::SETCC:          return PerformISDSETCCCombine(N, DAG);
15346  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
15347  case X86ISD::SHUFP:       // Handle all target specific shuffles
15348  case X86ISD::PALIGN:
15349  case X86ISD::UNPCKH:
15350  case X86ISD::UNPCKL:
15351  case X86ISD::MOVHLPS:
15352  case X86ISD::MOVLHPS:
15353  case X86ISD::PSHUFD:
15354  case X86ISD::PSHUFHW:
15355  case X86ISD::PSHUFLW:
15356  case X86ISD::MOVSS:
15357  case X86ISD::MOVSD:
15358  case X86ISD::VPERMILP:
15359  case X86ISD::VPERM2X128:
15360  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
15361  }
15362
15363  return SDValue();
15364}
15365
15366/// isTypeDesirableForOp - Return true if the target has native support for
15367/// the specified value type and it is 'desirable' to use the type for the
15368/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
15369/// instruction encodings are longer and some i16 instructions are slow.
15370bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
15371  if (!isTypeLegal(VT))
15372    return false;
15373  if (VT != MVT::i16)
15374    return true;
15375
15376  switch (Opc) {
15377  default:
15378    return true;
15379  case ISD::LOAD:
15380  case ISD::SIGN_EXTEND:
15381  case ISD::ZERO_EXTEND:
15382  case ISD::ANY_EXTEND:
15383  case ISD::SHL:
15384  case ISD::SRL:
15385  case ISD::SUB:
15386  case ISD::ADD:
15387  case ISD::MUL:
15388  case ISD::AND:
15389  case ISD::OR:
15390  case ISD::XOR:
15391    return false;
15392  }
15393}
15394
15395/// IsDesirableToPromoteOp - This method query the target whether it is
15396/// beneficial for dag combiner to promote the specified node. If true, it
15397/// should return the desired promotion type by reference.
15398bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
15399  EVT VT = Op.getValueType();
15400  if (VT != MVT::i16)
15401    return false;
15402
15403  bool Promote = false;
15404  bool Commute = false;
15405  switch (Op.getOpcode()) {
15406  default: break;
15407  case ISD::LOAD: {
15408    LoadSDNode *LD = cast<LoadSDNode>(Op);
15409    // If the non-extending load has a single use and it's not live out, then it
15410    // might be folded.
15411    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
15412                                                     Op.hasOneUse()*/) {
15413      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
15414             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
15415        // The only case where we'd want to promote LOAD (rather then it being
15416        // promoted as an operand is when it's only use is liveout.
15417        if (UI->getOpcode() != ISD::CopyToReg)
15418          return false;
15419      }
15420    }
15421    Promote = true;
15422    break;
15423  }
15424  case ISD::SIGN_EXTEND:
15425  case ISD::ZERO_EXTEND:
15426  case ISD::ANY_EXTEND:
15427    Promote = true;
15428    break;
15429  case ISD::SHL:
15430  case ISD::SRL: {
15431    SDValue N0 = Op.getOperand(0);
15432    // Look out for (store (shl (load), x)).
15433    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
15434      return false;
15435    Promote = true;
15436    break;
15437  }
15438  case ISD::ADD:
15439  case ISD::MUL:
15440  case ISD::AND:
15441  case ISD::OR:
15442  case ISD::XOR:
15443    Commute = true;
15444    // fallthrough
15445  case ISD::SUB: {
15446    SDValue N0 = Op.getOperand(0);
15447    SDValue N1 = Op.getOperand(1);
15448    if (!Commute && MayFoldLoad(N1))
15449      return false;
15450    // Avoid disabling potential load folding opportunities.
15451    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
15452      return false;
15453    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
15454      return false;
15455    Promote = true;
15456  }
15457  }
15458
15459  PVT = MVT::i32;
15460  return Promote;
15461}
15462
15463//===----------------------------------------------------------------------===//
15464//                           X86 Inline Assembly Support
15465//===----------------------------------------------------------------------===//
15466
15467namespace {
15468  // Helper to match a string separated by whitespace.
15469  bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
15470    s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
15471
15472    for (unsigned i = 0, e = args.size(); i != e; ++i) {
15473      StringRef piece(*args[i]);
15474      if (!s.startswith(piece)) // Check if the piece matches.
15475        return false;
15476
15477      s = s.substr(piece.size());
15478      StringRef::size_type pos = s.find_first_not_of(" \t");
15479      if (pos == 0) // We matched a prefix.
15480        return false;
15481
15482      s = s.substr(pos);
15483    }
15484
15485    return s.empty();
15486  }
15487  const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
15488}
15489
15490bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
15491  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
15492
15493  std::string AsmStr = IA->getAsmString();
15494
15495  IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
15496  if (!Ty || Ty->getBitWidth() % 16 != 0)
15497    return false;
15498
15499  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
15500  SmallVector<StringRef, 4> AsmPieces;
15501  SplitString(AsmStr, AsmPieces, ";\n");
15502
15503  switch (AsmPieces.size()) {
15504  default: return false;
15505  case 1:
15506    // FIXME: this should verify that we are targeting a 486 or better.  If not,
15507    // we will turn this bswap into something that will be lowered to logical
15508    // ops instead of emitting the bswap asm.  For now, we don't support 486 or
15509    // lower so don't worry about this.
15510    // bswap $0
15511    if (matchAsm(AsmPieces[0], "bswap", "$0") ||
15512        matchAsm(AsmPieces[0], "bswapl", "$0") ||
15513        matchAsm(AsmPieces[0], "bswapq", "$0") ||
15514        matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
15515        matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
15516        matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
15517      // No need to check constraints, nothing other than the equivalent of
15518      // "=r,0" would be valid here.
15519      return IntrinsicLowering::LowerToByteSwap(CI);
15520    }
15521
15522    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
15523    if (CI->getType()->isIntegerTy(16) &&
15524        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
15525        (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
15526         matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
15527      AsmPieces.clear();
15528      const std::string &ConstraintsStr = IA->getConstraintString();
15529      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
15530      std::sort(AsmPieces.begin(), AsmPieces.end());
15531      if (AsmPieces.size() == 4 &&
15532          AsmPieces[0] == "~{cc}" &&
15533          AsmPieces[1] == "~{dirflag}" &&
15534          AsmPieces[2] == "~{flags}" &&
15535          AsmPieces[3] == "~{fpsr}")
15536      return IntrinsicLowering::LowerToByteSwap(CI);
15537    }
15538    break;
15539  case 3:
15540    if (CI->getType()->isIntegerTy(32) &&
15541        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
15542        matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
15543        matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
15544        matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
15545      AsmPieces.clear();
15546      const std::string &ConstraintsStr = IA->getConstraintString();
15547      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
15548      std::sort(AsmPieces.begin(), AsmPieces.end());
15549      if (AsmPieces.size() == 4 &&
15550          AsmPieces[0] == "~{cc}" &&
15551          AsmPieces[1] == "~{dirflag}" &&
15552          AsmPieces[2] == "~{flags}" &&
15553          AsmPieces[3] == "~{fpsr}")
15554        return IntrinsicLowering::LowerToByteSwap(CI);
15555    }
15556
15557    if (CI->getType()->isIntegerTy(64)) {
15558      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
15559      if (Constraints.size() >= 2 &&
15560          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
15561          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
15562        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
15563        if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
15564            matchAsm(AsmPieces[1], "bswap", "%edx") &&
15565            matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
15566          return IntrinsicLowering::LowerToByteSwap(CI);
15567      }
15568    }
15569    break;
15570  }
15571  return false;
15572}
15573
15574
15575
15576/// getConstraintType - Given a constraint letter, return the type of
15577/// constraint it is for this target.
15578X86TargetLowering::ConstraintType
15579X86TargetLowering::getConstraintType(const std::string &Constraint) const {
15580  if (Constraint.size() == 1) {
15581    switch (Constraint[0]) {
15582    case 'R':
15583    case 'q':
15584    case 'Q':
15585    case 'f':
15586    case 't':
15587    case 'u':
15588    case 'y':
15589    case 'x':
15590    case 'Y':
15591    case 'l':
15592      return C_RegisterClass;
15593    case 'a':
15594    case 'b':
15595    case 'c':
15596    case 'd':
15597    case 'S':
15598    case 'D':
15599    case 'A':
15600      return C_Register;
15601    case 'I':
15602    case 'J':
15603    case 'K':
15604    case 'L':
15605    case 'M':
15606    case 'N':
15607    case 'G':
15608    case 'C':
15609    case 'e':
15610    case 'Z':
15611      return C_Other;
15612    default:
15613      break;
15614    }
15615  }
15616  return TargetLowering::getConstraintType(Constraint);
15617}
15618
15619/// Examine constraint type and operand type and determine a weight value.
15620/// This object must already have been set up with the operand type
15621/// and the current alternative constraint selected.
15622TargetLowering::ConstraintWeight
15623  X86TargetLowering::getSingleConstraintMatchWeight(
15624    AsmOperandInfo &info, const char *constraint) const {
15625  ConstraintWeight weight = CW_Invalid;
15626  Value *CallOperandVal = info.CallOperandVal;
15627    // If we don't have a value, we can't do a match,
15628    // but allow it at the lowest weight.
15629  if (CallOperandVal == NULL)
15630    return CW_Default;
15631  Type *type = CallOperandVal->getType();
15632  // Look at the constraint type.
15633  switch (*constraint) {
15634  default:
15635    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
15636  case 'R':
15637  case 'q':
15638  case 'Q':
15639  case 'a':
15640  case 'b':
15641  case 'c':
15642  case 'd':
15643  case 'S':
15644  case 'D':
15645  case 'A':
15646    if (CallOperandVal->getType()->isIntegerTy())
15647      weight = CW_SpecificReg;
15648    break;
15649  case 'f':
15650  case 't':
15651  case 'u':
15652      if (type->isFloatingPointTy())
15653        weight = CW_SpecificReg;
15654      break;
15655  case 'y':
15656      if (type->isX86_MMXTy() && Subtarget->hasMMX())
15657        weight = CW_SpecificReg;
15658      break;
15659  case 'x':
15660  case 'Y':
15661    if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
15662        ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasAVX()))
15663      weight = CW_Register;
15664    break;
15665  case 'I':
15666    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
15667      if (C->getZExtValue() <= 31)
15668        weight = CW_Constant;
15669    }
15670    break;
15671  case 'J':
15672    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15673      if (C->getZExtValue() <= 63)
15674        weight = CW_Constant;
15675    }
15676    break;
15677  case 'K':
15678    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15679      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
15680        weight = CW_Constant;
15681    }
15682    break;
15683  case 'L':
15684    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15685      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
15686        weight = CW_Constant;
15687    }
15688    break;
15689  case 'M':
15690    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15691      if (C->getZExtValue() <= 3)
15692        weight = CW_Constant;
15693    }
15694    break;
15695  case 'N':
15696    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15697      if (C->getZExtValue() <= 0xff)
15698        weight = CW_Constant;
15699    }
15700    break;
15701  case 'G':
15702  case 'C':
15703    if (dyn_cast<ConstantFP>(CallOperandVal)) {
15704      weight = CW_Constant;
15705    }
15706    break;
15707  case 'e':
15708    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15709      if ((C->getSExtValue() >= -0x80000000LL) &&
15710          (C->getSExtValue() <= 0x7fffffffLL))
15711        weight = CW_Constant;
15712    }
15713    break;
15714  case 'Z':
15715    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15716      if (C->getZExtValue() <= 0xffffffff)
15717        weight = CW_Constant;
15718    }
15719    break;
15720  }
15721  return weight;
15722}
15723
15724/// LowerXConstraint - try to replace an X constraint, which matches anything,
15725/// with another that has more specific requirements based on the type of the
15726/// corresponding operand.
15727const char *X86TargetLowering::
15728LowerXConstraint(EVT ConstraintVT) const {
15729  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
15730  // 'f' like normal targets.
15731  if (ConstraintVT.isFloatingPoint()) {
15732    if (Subtarget->hasSSE2())
15733      return "Y";
15734    if (Subtarget->hasSSE1())
15735      return "x";
15736  }
15737
15738  return TargetLowering::LowerXConstraint(ConstraintVT);
15739}
15740
15741/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15742/// vector.  If it is invalid, don't add anything to Ops.
15743void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
15744                                                     std::string &Constraint,
15745                                                     std::vector<SDValue>&Ops,
15746                                                     SelectionDAG &DAG) const {
15747  SDValue Result(0, 0);
15748
15749  // Only support length 1 constraints for now.
15750  if (Constraint.length() > 1) return;
15751
15752  char ConstraintLetter = Constraint[0];
15753  switch (ConstraintLetter) {
15754  default: break;
15755  case 'I':
15756    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15757      if (C->getZExtValue() <= 31) {
15758        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15759        break;
15760      }
15761    }
15762    return;
15763  case 'J':
15764    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15765      if (C->getZExtValue() <= 63) {
15766        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15767        break;
15768      }
15769    }
15770    return;
15771  case 'K':
15772    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15773      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
15774        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15775        break;
15776      }
15777    }
15778    return;
15779  case 'N':
15780    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15781      if (C->getZExtValue() <= 255) {
15782        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15783        break;
15784      }
15785    }
15786    return;
15787  case 'e': {
15788    // 32-bit signed value
15789    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15790      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15791                                           C->getSExtValue())) {
15792        // Widen to 64 bits here to get it sign extended.
15793        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
15794        break;
15795      }
15796    // FIXME gcc accepts some relocatable values here too, but only in certain
15797    // memory models; it's complicated.
15798    }
15799    return;
15800  }
15801  case 'Z': {
15802    // 32-bit unsigned value
15803    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15804      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15805                                           C->getZExtValue())) {
15806        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15807        break;
15808      }
15809    }
15810    // FIXME gcc accepts some relocatable values here too, but only in certain
15811    // memory models; it's complicated.
15812    return;
15813  }
15814  case 'i': {
15815    // Literal immediates are always ok.
15816    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
15817      // Widen to 64 bits here to get it sign extended.
15818      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
15819      break;
15820    }
15821
15822    // In any sort of PIC mode addresses need to be computed at runtime by
15823    // adding in a register or some sort of table lookup.  These can't
15824    // be used as immediates.
15825    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
15826      return;
15827
15828    // If we are in non-pic codegen mode, we allow the address of a global (with
15829    // an optional displacement) to be used with 'i'.
15830    GlobalAddressSDNode *GA = 0;
15831    int64_t Offset = 0;
15832
15833    // Match either (GA), (GA+C), (GA+C1+C2), etc.
15834    while (1) {
15835      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
15836        Offset += GA->getOffset();
15837        break;
15838      } else if (Op.getOpcode() == ISD::ADD) {
15839        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15840          Offset += C->getZExtValue();
15841          Op = Op.getOperand(0);
15842          continue;
15843        }
15844      } else if (Op.getOpcode() == ISD::SUB) {
15845        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15846          Offset += -C->getZExtValue();
15847          Op = Op.getOperand(0);
15848          continue;
15849        }
15850      }
15851
15852      // Otherwise, this isn't something we can handle, reject it.
15853      return;
15854    }
15855
15856    const GlobalValue *GV = GA->getGlobal();
15857    // If we require an extra load to get this address, as in PIC mode, we
15858    // can't accept it.
15859    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
15860                                                        getTargetMachine())))
15861      return;
15862
15863    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
15864                                        GA->getValueType(0), Offset);
15865    break;
15866  }
15867  }
15868
15869  if (Result.getNode()) {
15870    Ops.push_back(Result);
15871    return;
15872  }
15873  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
15874}
15875
15876std::pair<unsigned, const TargetRegisterClass*>
15877X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
15878                                                EVT VT) const {
15879  // First, see if this is a constraint that directly corresponds to an LLVM
15880  // register class.
15881  if (Constraint.size() == 1) {
15882    // GCC Constraint Letters
15883    switch (Constraint[0]) {
15884    default: break;
15885      // TODO: Slight differences here in allocation order and leaving
15886      // RIP in the class. Do they matter any more here than they do
15887      // in the normal allocation?
15888    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
15889      if (Subtarget->is64Bit()) {
15890        if (VT == MVT::i32 || VT == MVT::f32)
15891          return std::make_pair(0U, &X86::GR32RegClass);
15892        if (VT == MVT::i16)
15893          return std::make_pair(0U, &X86::GR16RegClass);
15894        if (VT == MVT::i8 || VT == MVT::i1)
15895          return std::make_pair(0U, &X86::GR8RegClass);
15896        if (VT == MVT::i64 || VT == MVT::f64)
15897          return std::make_pair(0U, &X86::GR64RegClass);
15898        break;
15899      }
15900      // 32-bit fallthrough
15901    case 'Q':   // Q_REGS
15902      if (VT == MVT::i32 || VT == MVT::f32)
15903        return std::make_pair(0U, &X86::GR32_ABCDRegClass);
15904      if (VT == MVT::i16)
15905        return std::make_pair(0U, &X86::GR16_ABCDRegClass);
15906      if (VT == MVT::i8 || VT == MVT::i1)
15907        return std::make_pair(0U, &X86::GR8_ABCD_LRegClass);
15908      if (VT == MVT::i64)
15909        return std::make_pair(0U, &X86::GR64_ABCDRegClass);
15910      break;
15911    case 'r':   // GENERAL_REGS
15912    case 'l':   // INDEX_REGS
15913      if (VT == MVT::i8 || VT == MVT::i1)
15914        return std::make_pair(0U, &X86::GR8RegClass);
15915      if (VT == MVT::i16)
15916        return std::make_pair(0U, &X86::GR16RegClass);
15917      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
15918        return std::make_pair(0U, &X86::GR32RegClass);
15919      return std::make_pair(0U, &X86::GR64RegClass);
15920    case 'R':   // LEGACY_REGS
15921      if (VT == MVT::i8 || VT == MVT::i1)
15922        return std::make_pair(0U, &X86::GR8_NOREXRegClass);
15923      if (VT == MVT::i16)
15924        return std::make_pair(0U, &X86::GR16_NOREXRegClass);
15925      if (VT == MVT::i32 || !Subtarget->is64Bit())
15926        return std::make_pair(0U, &X86::GR32_NOREXRegClass);
15927      return std::make_pair(0U, &X86::GR64_NOREXRegClass);
15928    case 'f':  // FP Stack registers.
15929      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
15930      // value to the correct fpstack register class.
15931      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
15932        return std::make_pair(0U, &X86::RFP32RegClass);
15933      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
15934        return std::make_pair(0U, &X86::RFP64RegClass);
15935      return std::make_pair(0U, &X86::RFP80RegClass);
15936    case 'y':   // MMX_REGS if MMX allowed.
15937      if (!Subtarget->hasMMX()) break;
15938      return std::make_pair(0U, &X86::VR64RegClass);
15939    case 'Y':   // SSE_REGS if SSE2 allowed
15940      if (!Subtarget->hasSSE2()) break;
15941      // FALL THROUGH.
15942    case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
15943      if (!Subtarget->hasSSE1()) break;
15944
15945      switch (VT.getSimpleVT().SimpleTy) {
15946      default: break;
15947      // Scalar SSE types.
15948      case MVT::f32:
15949      case MVT::i32:
15950        return std::make_pair(0U, &X86::FR32RegClass);
15951      case MVT::f64:
15952      case MVT::i64:
15953        return std::make_pair(0U, &X86::FR64RegClass);
15954      // Vector types.
15955      case MVT::v16i8:
15956      case MVT::v8i16:
15957      case MVT::v4i32:
15958      case MVT::v2i64:
15959      case MVT::v4f32:
15960      case MVT::v2f64:
15961        return std::make_pair(0U, &X86::VR128RegClass);
15962      // AVX types.
15963      case MVT::v32i8:
15964      case MVT::v16i16:
15965      case MVT::v8i32:
15966      case MVT::v4i64:
15967      case MVT::v8f32:
15968      case MVT::v4f64:
15969        return std::make_pair(0U, &X86::VR256RegClass);
15970      }
15971      break;
15972    }
15973  }
15974
15975  // Use the default implementation in TargetLowering to convert the register
15976  // constraint into a member of a register class.
15977  std::pair<unsigned, const TargetRegisterClass*> Res;
15978  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
15979
15980  // Not found as a standard register?
15981  if (Res.second == 0) {
15982    // Map st(0) -> st(7) -> ST0
15983    if (Constraint.size() == 7 && Constraint[0] == '{' &&
15984        tolower(Constraint[1]) == 's' &&
15985        tolower(Constraint[2]) == 't' &&
15986        Constraint[3] == '(' &&
15987        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
15988        Constraint[5] == ')' &&
15989        Constraint[6] == '}') {
15990
15991      Res.first = X86::ST0+Constraint[4]-'0';
15992      Res.second = &X86::RFP80RegClass;
15993      return Res;
15994    }
15995
15996    // GCC allows "st(0)" to be called just plain "st".
15997    if (StringRef("{st}").equals_lower(Constraint)) {
15998      Res.first = X86::ST0;
15999      Res.second = &X86::RFP80RegClass;
16000      return Res;
16001    }
16002
16003    // flags -> EFLAGS
16004    if (StringRef("{flags}").equals_lower(Constraint)) {
16005      Res.first = X86::EFLAGS;
16006      Res.second = &X86::CCRRegClass;
16007      return Res;
16008    }
16009
16010    // 'A' means EAX + EDX.
16011    if (Constraint == "A") {
16012      Res.first = X86::EAX;
16013      Res.second = &X86::GR32_ADRegClass;
16014      return Res;
16015    }
16016    return Res;
16017  }
16018
16019  // Otherwise, check to see if this is a register class of the wrong value
16020  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
16021  // turn into {ax},{dx}.
16022  if (Res.second->hasType(VT))
16023    return Res;   // Correct type already, nothing to do.
16024
16025  // All of the single-register GCC register classes map their values onto
16026  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
16027  // really want an 8-bit or 32-bit register, map to the appropriate register
16028  // class and return the appropriate register.
16029  if (Res.second == &X86::GR16RegClass) {
16030    if (VT == MVT::i8) {
16031      unsigned DestReg = 0;
16032      switch (Res.first) {
16033      default: break;
16034      case X86::AX: DestReg = X86::AL; break;
16035      case X86::DX: DestReg = X86::DL; break;
16036      case X86::CX: DestReg = X86::CL; break;
16037      case X86::BX: DestReg = X86::BL; break;
16038      }
16039      if (DestReg) {
16040        Res.first = DestReg;
16041        Res.second = &X86::GR8RegClass;
16042      }
16043    } else if (VT == MVT::i32) {
16044      unsigned DestReg = 0;
16045      switch (Res.first) {
16046      default: break;
16047      case X86::AX: DestReg = X86::EAX; break;
16048      case X86::DX: DestReg = X86::EDX; break;
16049      case X86::CX: DestReg = X86::ECX; break;
16050      case X86::BX: DestReg = X86::EBX; break;
16051      case X86::SI: DestReg = X86::ESI; break;
16052      case X86::DI: DestReg = X86::EDI; break;
16053      case X86::BP: DestReg = X86::EBP; break;
16054      case X86::SP: DestReg = X86::ESP; break;
16055      }
16056      if (DestReg) {
16057        Res.first = DestReg;
16058        Res.second = &X86::GR32RegClass;
16059      }
16060    } else if (VT == MVT::i64) {
16061      unsigned DestReg = 0;
16062      switch (Res.first) {
16063      default: break;
16064      case X86::AX: DestReg = X86::RAX; break;
16065      case X86::DX: DestReg = X86::RDX; break;
16066      case X86::CX: DestReg = X86::RCX; break;
16067      case X86::BX: DestReg = X86::RBX; break;
16068      case X86::SI: DestReg = X86::RSI; break;
16069      case X86::DI: DestReg = X86::RDI; break;
16070      case X86::BP: DestReg = X86::RBP; break;
16071      case X86::SP: DestReg = X86::RSP; break;
16072      }
16073      if (DestReg) {
16074        Res.first = DestReg;
16075        Res.second = &X86::GR64RegClass;
16076      }
16077    }
16078  } else if (Res.second == &X86::FR32RegClass ||
16079             Res.second == &X86::FR64RegClass ||
16080             Res.second == &X86::VR128RegClass) {
16081    // Handle references to XMM physical registers that got mapped into the
16082    // wrong class.  This can happen with constraints like {xmm0} where the
16083    // target independent register mapper will just pick the first match it can
16084    // find, ignoring the required type.
16085
16086    if (VT == MVT::f32 || VT == MVT::i32)
16087      Res.second = &X86::FR32RegClass;
16088    else if (VT == MVT::f64 || VT == MVT::i64)
16089      Res.second = &X86::FR64RegClass;
16090    else if (X86::VR128RegClass.hasType(VT))
16091      Res.second = &X86::VR128RegClass;
16092    else if (X86::VR256RegClass.hasType(VT))
16093      Res.second = &X86::VR256RegClass;
16094  }
16095
16096  return Res;
16097}
16098