X86ISelLowering.cpp revision 15cbde3cf6542ec9c120f59d5d8f3586f5f332c6
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86TargetMachine.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Function.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/ADT/BitVector.h"
27#include "llvm/ADT/VectorExtras.h"
28#include "llvm/Analysis/ScalarEvolutionExpressions.h"
29#include "llvm/CodeGen/CallingConvLower.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineModuleInfo.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/CodeGen/PseudoSourceValue.h"
36#include "llvm/CodeGen/SelectionDAG.h"
37#include "llvm/Support/MathExtras.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Target/TargetOptions.h"
40#include "llvm/ADT/SmallSet.h"
41#include "llvm/ADT/StringExtras.h"
42using namespace llvm;
43
44X86TargetLowering::X86TargetLowering(TargetMachine &TM)
45  : TargetLowering(TM) {
46  Subtarget = &TM.getSubtarget<X86Subtarget>();
47  X86ScalarSSEf64 = Subtarget->hasSSE2();
48  X86ScalarSSEf32 = Subtarget->hasSSE1();
49  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
50
51  bool Fast = false;
52
53  RegInfo = TM.getRegisterInfo();
54
55  // Set up the TargetLowering object.
56
57  // X86 is weird, it always uses i8 for shift amounts and setcc results.
58  setShiftAmountType(MVT::i8);
59  setSetCCResultContents(ZeroOrOneSetCCResult);
60  setSchedulingPreference(SchedulingForRegPressure);
61  setShiftAmountFlavor(Mask);   // shl X, 32 == shl X, 0
62  setStackPointerRegisterToSaveRestore(X86StackPtr);
63
64  if (Subtarget->isTargetDarwin()) {
65    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
66    setUseUnderscoreSetJmp(false);
67    setUseUnderscoreLongJmp(false);
68  } else if (Subtarget->isTargetMingw()) {
69    // MS runtime is weird: it exports _setjmp, but longjmp!
70    setUseUnderscoreSetJmp(true);
71    setUseUnderscoreLongJmp(false);
72  } else {
73    setUseUnderscoreSetJmp(true);
74    setUseUnderscoreLongJmp(true);
75  }
76
77  // Set up the register classes.
78  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
79  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
80  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
81  if (Subtarget->is64Bit())
82    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
83
84  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Promote);
85
86  // We don't accept any truncstore of integer registers.
87  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
88  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
89  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
90  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
91  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
92  setTruncStoreAction(MVT::i16, MVT::i8, Expand);
93
94  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
95  // operation.
96  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
97  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
98  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
99
100  if (Subtarget->is64Bit()) {
101    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
102    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
103  } else {
104    if (X86ScalarSSEf64)
105      // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
106      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Expand);
107    else
108      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Promote);
109  }
110
111  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
112  // this operation.
113  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
114  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
115  // SSE has no i16 to fp conversion, only i32
116  if (X86ScalarSSEf32) {
117    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
118    // f32 and f64 cases are Legal, f80 case is not
119    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
120  } else {
121    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
122    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
123  }
124
125  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
126  // are Legal, f80 is custom lowered.
127  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
128  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
129
130  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
131  // this operation.
132  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
133  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
134
135  if (X86ScalarSSEf32) {
136    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
137    // f32 and f64 cases are Legal, f80 case is not
138    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
139  } else {
140    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
141    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
142  }
143
144  // Handle FP_TO_UINT by promoting the destination to a larger signed
145  // conversion.
146  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
147  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
148  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
149
150  if (Subtarget->is64Bit()) {
151    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
152    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
153  } else {
154    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
155      // Expand FP_TO_UINT into a select.
156      // FIXME: We would like to use a Custom expander here eventually to do
157      // the optimal thing for SSE vs. the default expansion in the legalizer.
158      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
159    else
160      // With SSE3 we can use fisttpll to convert to a signed i64.
161      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Promote);
162  }
163
164  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
165  if (!X86ScalarSSEf64) {
166    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
167    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
168  }
169
170  // Scalar integer divide and remainder are lowered to use operations that
171  // produce two results, to match the available instructions. This exposes
172  // the two-result form to trivial CSE, which is able to combine x/y and x%y
173  // into a single instruction.
174  //
175  // Scalar integer multiply-high is also lowered to use two-result
176  // operations, to match the available instructions. However, plain multiply
177  // (low) operations are left as Legal, as there are single-result
178  // instructions for this in x86. Using the two-result multiply instructions
179  // when both high and low results are needed must be arranged by dagcombine.
180  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
181  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
182  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
183  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
184  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
185  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
186  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
187  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
188  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
189  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
190  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
191  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
192  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
193  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
194  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
195  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
196  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
197  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
198  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
199  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
200  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
201  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
202  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
203  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
204
205  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
206  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
207  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
208  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
209  setOperationAction(ISD::MEMMOVE          , MVT::Other, Expand);
210  if (Subtarget->is64Bit())
211    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
212  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
213  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
214  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
215  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
216  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
217  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
218  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
219  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
220
221  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
222  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
223  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
224  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
225  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
226  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
227  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
228  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
229  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
230  if (Subtarget->is64Bit()) {
231    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
232    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
233    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
234  }
235
236  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
237  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
238
239  // These should be promoted to a larger select which is supported.
240  setOperationAction(ISD::SELECT           , MVT::i1   , Promote);
241  setOperationAction(ISD::SELECT           , MVT::i8   , Promote);
242  // X86 wants to expand cmov itself.
243  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
244  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
245  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
246  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
247  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
248  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
249  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
250  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
251  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
252  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
253  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
254  if (Subtarget->is64Bit()) {
255    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
256    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
257  }
258  // X86 ret instruction may pop stack.
259  setOperationAction(ISD::RET             , MVT::Other, Custom);
260  if (!Subtarget->is64Bit())
261    setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
262
263  // Darwin ABI issue.
264  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
265  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
266  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
267  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
268  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
269  if (Subtarget->is64Bit()) {
270    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
271    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
272    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
273    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
274  }
275  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
276  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
277  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
278  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
279  if (Subtarget->is64Bit()) {
280    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
281    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
282    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
283  }
284  // X86 wants to expand memset / memcpy itself.
285  setOperationAction(ISD::MEMSET          , MVT::Other, Custom);
286  setOperationAction(ISD::MEMCPY          , MVT::Other, Custom);
287
288  if (Subtarget->hasSSE1())
289    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
290
291  if (!Subtarget->hasSSE2())
292    setOperationAction(ISD::MEMBARRIER    , MVT::Other, Expand);
293
294  setOperationAction(ISD::ATOMIC_LCS     , MVT::i8, Custom);
295  setOperationAction(ISD::ATOMIC_LCS     , MVT::i16, Custom);
296  setOperationAction(ISD::ATOMIC_LCS     , MVT::i32, Custom);
297  setOperationAction(ISD::ATOMIC_LCS     , MVT::i64, Custom);
298
299  // Use the default ISD::LOCATION, ISD::DECLARE expansion.
300  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
301  // FIXME - use subtarget debug flags
302  if (!Subtarget->isTargetDarwin() &&
303      !Subtarget->isTargetELF() &&
304      !Subtarget->isTargetCygMing())
305    setOperationAction(ISD::LABEL, MVT::Other, Expand);
306
307  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
308  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
309  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
310  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
311  if (Subtarget->is64Bit()) {
312    // FIXME: Verify
313    setExceptionPointerRegister(X86::RAX);
314    setExceptionSelectorRegister(X86::RDX);
315  } else {
316    setExceptionPointerRegister(X86::EAX);
317    setExceptionSelectorRegister(X86::EDX);
318  }
319  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
320
321  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
322
323  setOperationAction(ISD::TRAP, MVT::Other, Legal);
324
325  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
326  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
327  setOperationAction(ISD::VAARG             , MVT::Other, Expand);
328  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
329  if (Subtarget->is64Bit())
330    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
331  else
332    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
333
334  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
335  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
336  if (Subtarget->is64Bit())
337    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
338  if (Subtarget->isTargetCygMing())
339    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
340  else
341    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
342
343  if (X86ScalarSSEf64) {
344    // f32 and f64 use SSE.
345    // Set up the FP register classes.
346    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
347    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
348
349    // Use ANDPD to simulate FABS.
350    setOperationAction(ISD::FABS , MVT::f64, Custom);
351    setOperationAction(ISD::FABS , MVT::f32, Custom);
352
353    // Use XORP to simulate FNEG.
354    setOperationAction(ISD::FNEG , MVT::f64, Custom);
355    setOperationAction(ISD::FNEG , MVT::f32, Custom);
356
357    // Use ANDPD and ORPD to simulate FCOPYSIGN.
358    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
359    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
360
361    // We don't support sin/cos/fmod
362    setOperationAction(ISD::FSIN , MVT::f64, Expand);
363    setOperationAction(ISD::FCOS , MVT::f64, Expand);
364    setOperationAction(ISD::FSIN , MVT::f32, Expand);
365    setOperationAction(ISD::FCOS , MVT::f32, Expand);
366
367    // Expand FP immediates into loads from the stack, except for the special
368    // cases we handle.
369    addLegalFPImmediate(APFloat(+0.0)); // xorpd
370    addLegalFPImmediate(APFloat(+0.0f)); // xorps
371
372    // Floating truncations from f80 and extensions to f80 go through memory.
373    // If optimizing, we lie about this though and handle it in
374    // InstructionSelectPreprocess so that dagcombine2 can hack on these.
375    if (Fast) {
376      setConvertAction(MVT::f32, MVT::f80, Expand);
377      setConvertAction(MVT::f64, MVT::f80, Expand);
378      setConvertAction(MVT::f80, MVT::f32, Expand);
379      setConvertAction(MVT::f80, MVT::f64, Expand);
380    }
381  } else if (X86ScalarSSEf32) {
382    // Use SSE for f32, x87 for f64.
383    // Set up the FP register classes.
384    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
385    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
386
387    // Use ANDPS to simulate FABS.
388    setOperationAction(ISD::FABS , MVT::f32, Custom);
389
390    // Use XORP to simulate FNEG.
391    setOperationAction(ISD::FNEG , MVT::f32, Custom);
392
393    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
394
395    // Use ANDPS and ORPS to simulate FCOPYSIGN.
396    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
397    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
398
399    // We don't support sin/cos/fmod
400    setOperationAction(ISD::FSIN , MVT::f32, Expand);
401    setOperationAction(ISD::FCOS , MVT::f32, Expand);
402
403    // Special cases we handle for FP constants.
404    addLegalFPImmediate(APFloat(+0.0f)); // xorps
405    addLegalFPImmediate(APFloat(+0.0)); // FLD0
406    addLegalFPImmediate(APFloat(+1.0)); // FLD1
407    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
408    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
409
410    // SSE <-> X87 conversions go through memory.  If optimizing, we lie about
411    // this though and handle it in InstructionSelectPreprocess so that
412    // dagcombine2 can hack on these.
413    if (Fast) {
414      setConvertAction(MVT::f32, MVT::f64, Expand);
415      setConvertAction(MVT::f32, MVT::f80, Expand);
416      setConvertAction(MVT::f80, MVT::f32, Expand);
417      setConvertAction(MVT::f64, MVT::f32, Expand);
418      // And x87->x87 truncations also.
419      setConvertAction(MVT::f80, MVT::f64, Expand);
420    }
421
422    if (!UnsafeFPMath) {
423      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
424      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
425    }
426  } else {
427    // f32 and f64 in x87.
428    // Set up the FP register classes.
429    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
430    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
431
432    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
433    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
434    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
435    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
436
437    // Floating truncations go through memory.  If optimizing, we lie about
438    // this though and handle it in InstructionSelectPreprocess so that
439    // dagcombine2 can hack on these.
440    if (Fast) {
441      setConvertAction(MVT::f80, MVT::f32, Expand);
442      setConvertAction(MVT::f64, MVT::f32, Expand);
443      setConvertAction(MVT::f80, MVT::f64, Expand);
444    }
445
446    if (!UnsafeFPMath) {
447      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
448      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
449    }
450    addLegalFPImmediate(APFloat(+0.0)); // FLD0
451    addLegalFPImmediate(APFloat(+1.0)); // FLD1
452    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
453    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
454    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
455    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
456    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
457    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
458  }
459
460  // Long double always uses X87.
461  addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
462  setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
463  setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
464  {
465    APFloat TmpFlt(+0.0);
466    TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven);
467    addLegalFPImmediate(TmpFlt);  // FLD0
468    TmpFlt.changeSign();
469    addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
470    APFloat TmpFlt2(+1.0);
471    TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven);
472    addLegalFPImmediate(TmpFlt2);  // FLD1
473    TmpFlt2.changeSign();
474    addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
475  }
476
477  if (!UnsafeFPMath) {
478    setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
479    setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
480  }
481
482  // Always use a library call for pow.
483  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
484  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
485  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
486
487  // First set operation action for all vector types to expand. Then we
488  // will selectively turn on ones that can be effectively codegen'd.
489  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
490       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
491    setOperationAction(ISD::ADD , (MVT::ValueType)VT, Expand);
492    setOperationAction(ISD::SUB , (MVT::ValueType)VT, Expand);
493    setOperationAction(ISD::FADD, (MVT::ValueType)VT, Expand);
494    setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand);
495    setOperationAction(ISD::FSUB, (MVT::ValueType)VT, Expand);
496    setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
497    setOperationAction(ISD::FMUL, (MVT::ValueType)VT, Expand);
498    setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
499    setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
500    setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
501    setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
502    setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
503    setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Expand);
504    setOperationAction(ISD::VECTOR_SHUFFLE,     (MVT::ValueType)VT, Expand);
505    setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
506    setOperationAction(ISD::INSERT_VECTOR_ELT,  (MVT::ValueType)VT, Expand);
507    setOperationAction(ISD::FABS, (MVT::ValueType)VT, Expand);
508    setOperationAction(ISD::FSIN, (MVT::ValueType)VT, Expand);
509    setOperationAction(ISD::FCOS, (MVT::ValueType)VT, Expand);
510    setOperationAction(ISD::FREM, (MVT::ValueType)VT, Expand);
511    setOperationAction(ISD::FPOWI, (MVT::ValueType)VT, Expand);
512    setOperationAction(ISD::FSQRT, (MVT::ValueType)VT, Expand);
513    setOperationAction(ISD::FCOPYSIGN, (MVT::ValueType)VT, Expand);
514    setOperationAction(ISD::SMUL_LOHI, (MVT::ValueType)VT, Expand);
515    setOperationAction(ISD::UMUL_LOHI, (MVT::ValueType)VT, Expand);
516    setOperationAction(ISD::SDIVREM, (MVT::ValueType)VT, Expand);
517    setOperationAction(ISD::UDIVREM, (MVT::ValueType)VT, Expand);
518    setOperationAction(ISD::FPOW, (MVT::ValueType)VT, Expand);
519    setOperationAction(ISD::CTPOP, (MVT::ValueType)VT, Expand);
520    setOperationAction(ISD::CTTZ, (MVT::ValueType)VT, Expand);
521    setOperationAction(ISD::CTLZ, (MVT::ValueType)VT, Expand);
522    setOperationAction(ISD::SHL, (MVT::ValueType)VT, Expand);
523    setOperationAction(ISD::SRA, (MVT::ValueType)VT, Expand);
524    setOperationAction(ISD::SRL, (MVT::ValueType)VT, Expand);
525    setOperationAction(ISD::ROTL, (MVT::ValueType)VT, Expand);
526    setOperationAction(ISD::ROTR, (MVT::ValueType)VT, Expand);
527    setOperationAction(ISD::BSWAP, (MVT::ValueType)VT, Expand);
528  }
529
530  if (Subtarget->hasMMX()) {
531    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
532    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
533    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
534    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
535
536    // FIXME: add MMX packed arithmetics
537
538    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
539    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
540    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
541    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
542
543    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
544    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
545    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
546    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
547
548    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
549    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
550
551    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
552    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
553    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
554    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
555    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
556    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
557    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
558
559    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
560    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
561    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
562    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
563    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
564    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
565    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
566
567    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
568    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
569    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
570    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
571    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
572    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
573    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
574
575    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
576    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
577    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
578    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
579    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
580    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
581    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
582
583    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
584    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
585    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
586    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
587
588    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
589    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
590    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
591    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
592
593    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
594    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
595    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
596  }
597
598  if (Subtarget->hasSSE1()) {
599    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
600
601    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
602    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
603    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
604    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
605    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
606    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
607    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
608    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
609    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
610    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
611    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
612  }
613
614  if (Subtarget->hasSSE2()) {
615    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
616    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
617    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
618    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
619    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
620
621    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
622    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
623    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
624    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
625    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
626    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
627    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
628    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
629    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
630    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
631    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
632    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
633    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
634    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
635    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
636
637    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
638    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
639    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
640    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
641    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
642
643    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
644    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
645      // Do not attempt to custom lower non-power-of-2 vectors
646      if (!isPowerOf2_32(MVT::getVectorNumElements(VT)))
647        continue;
648      setOperationAction(ISD::BUILD_VECTOR,        (MVT::ValueType)VT, Custom);
649      setOperationAction(ISD::VECTOR_SHUFFLE,      (MVT::ValueType)VT, Custom);
650      setOperationAction(ISD::EXTRACT_VECTOR_ELT,  (MVT::ValueType)VT, Custom);
651    }
652    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
653    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
654    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
655    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
656    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
657    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
658    if (Subtarget->is64Bit()) {
659      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
660      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
661    }
662
663    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
664    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
665      setOperationAction(ISD::AND,    (MVT::ValueType)VT, Promote);
666      AddPromotedToType (ISD::AND,    (MVT::ValueType)VT, MVT::v2i64);
667      setOperationAction(ISD::OR,     (MVT::ValueType)VT, Promote);
668      AddPromotedToType (ISD::OR,     (MVT::ValueType)VT, MVT::v2i64);
669      setOperationAction(ISD::XOR,    (MVT::ValueType)VT, Promote);
670      AddPromotedToType (ISD::XOR,    (MVT::ValueType)VT, MVT::v2i64);
671      setOperationAction(ISD::LOAD,   (MVT::ValueType)VT, Promote);
672      AddPromotedToType (ISD::LOAD,   (MVT::ValueType)VT, MVT::v2i64);
673      setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
674      AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v2i64);
675    }
676
677    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
678
679    // Custom lower v2i64 and v2f64 selects.
680    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
681    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
682    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
683    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
684  }
685
686  if (Subtarget->hasSSE41()) {
687    // FIXME: Do we need to handle scalar-to-vector here?
688    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
689
690    // i8 and i16 vectors are custom , because the source register and source
691    // source memory operand types are not the same width.  f32 vectors are
692    // custom since the immediate controlling the insert encodes additional
693    // information.
694    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
695    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
696    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Legal);
697    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
698
699    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
700    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
701    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
702    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
703
704    if (Subtarget->is64Bit()) {
705      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
706      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
707    }
708  }
709
710  // We want to custom lower some of our intrinsics.
711  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
712
713  // We have target-specific dag combine patterns for the following nodes:
714  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
715  setTargetDAGCombine(ISD::SELECT);
716  setTargetDAGCombine(ISD::STORE);
717
718  computeRegisterProperties();
719
720  // FIXME: These should be based on subtarget info. Plus, the values should
721  // be smaller when we are in optimizing for size mode.
722  maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores
723  maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores
724  maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores
725  allowUnalignedMemoryAccesses = true; // x86 supports it!
726  setPrefLoopAlignment(16);
727}
728
729
730MVT::ValueType
731X86TargetLowering::getSetCCResultType(const SDOperand &) const {
732  return MVT::i8;
733}
734
735
736/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
737/// the desired ByVal argument alignment.
738static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
739  if (MaxAlign == 16)
740    return;
741  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
742    if (VTy->getBitWidth() == 128)
743      MaxAlign = 16;
744  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
745    unsigned EltAlign = 0;
746    getMaxByValAlign(ATy->getElementType(), EltAlign);
747    if (EltAlign > MaxAlign)
748      MaxAlign = EltAlign;
749  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
750    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
751      unsigned EltAlign = 0;
752      getMaxByValAlign(STy->getElementType(i), EltAlign);
753      if (EltAlign > MaxAlign)
754        MaxAlign = EltAlign;
755      if (MaxAlign == 16)
756        break;
757    }
758  }
759  return;
760}
761
762/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
763/// function arguments in the caller parameter area. For X86, aggregates
764/// that contain SSE vectors are placed at 16-byte boundaries while the rest
765/// are at 4-byte boundaries.
766unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
767  if (Subtarget->is64Bit())
768    return getTargetData()->getABITypeAlignment(Ty);
769  unsigned Align = 4;
770  if (Subtarget->hasSSE1())
771    getMaxByValAlign(Ty, Align);
772  return Align;
773}
774
775/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
776/// jumptable.
777SDOperand X86TargetLowering::getPICJumpTableRelocBase(SDOperand Table,
778                                                      SelectionDAG &DAG) const {
779  if (usesGlobalOffsetTable())
780    return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy());
781  if (!Subtarget->isPICStyleRIPRel())
782    return DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy());
783  return Table;
784}
785
786//===----------------------------------------------------------------------===//
787//               Return Value Calling Convention Implementation
788//===----------------------------------------------------------------------===//
789
790#include "X86GenCallingConv.inc"
791
792/// GetPossiblePreceedingTailCall - Get preceeding X86ISD::TAILCALL node if it
793/// exists skip possible ISD:TokenFactor.
794static SDOperand GetPossiblePreceedingTailCall(SDOperand Chain) {
795  if (Chain.getOpcode() == X86ISD::TAILCALL) {
796    return Chain;
797  } else if (Chain.getOpcode() == ISD::TokenFactor) {
798    if (Chain.getNumOperands() &&
799        Chain.getOperand(0).getOpcode() == X86ISD::TAILCALL)
800      return Chain.getOperand(0);
801  }
802  return Chain;
803}
804
805/// LowerRET - Lower an ISD::RET node.
806SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) {
807  assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
808
809  SmallVector<CCValAssign, 16> RVLocs;
810  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
811  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
812  CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
813  CCInfo.AnalyzeReturn(Op.Val, RetCC_X86);
814
815  // If this is the first return lowered for this function, add the regs to the
816  // liveout set for the function.
817  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
818    for (unsigned i = 0; i != RVLocs.size(); ++i)
819      if (RVLocs[i].isRegLoc())
820        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
821  }
822  SDOperand Chain = Op.getOperand(0);
823
824  // Handle tail call return.
825  Chain = GetPossiblePreceedingTailCall(Chain);
826  if (Chain.getOpcode() == X86ISD::TAILCALL) {
827    SDOperand TailCall = Chain;
828    SDOperand TargetAddress = TailCall.getOperand(1);
829    SDOperand StackAdjustment = TailCall.getOperand(2);
830    assert(((TargetAddress.getOpcode() == ISD::Register &&
831               (cast<RegisterSDNode>(TargetAddress)->getReg() == X86::ECX ||
832                cast<RegisterSDNode>(TargetAddress)->getReg() == X86::R9)) ||
833              TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
834              TargetAddress.getOpcode() == ISD::TargetGlobalAddress) &&
835             "Expecting an global address, external symbol, or register");
836    assert(StackAdjustment.getOpcode() == ISD::Constant &&
837           "Expecting a const value");
838
839    SmallVector<SDOperand,8> Operands;
840    Operands.push_back(Chain.getOperand(0));
841    Operands.push_back(TargetAddress);
842    Operands.push_back(StackAdjustment);
843    // Copy registers used by the call. Last operand is a flag so it is not
844    // copied.
845    for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) {
846      Operands.push_back(Chain.getOperand(i));
847    }
848    return DAG.getNode(X86ISD::TC_RETURN, MVT::Other, &Operands[0],
849                       Operands.size());
850  }
851
852  // Regular return.
853  SDOperand Flag;
854
855  SmallVector<SDOperand, 6> RetOps;
856  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
857  // Operand #1 = Bytes To Pop
858  RetOps.push_back(DAG.getConstant(getBytesToPopOnReturn(), MVT::i16));
859
860  // Copy the result values into the output registers.
861  for (unsigned i = 0; i != RVLocs.size(); ++i) {
862    CCValAssign &VA = RVLocs[i];
863    assert(VA.isRegLoc() && "Can only return in registers!");
864    SDOperand ValToCopy = Op.getOperand(i*2+1);
865
866    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
867    // the RET instruction and handled by the FP Stackifier.
868    if (RVLocs[i].getLocReg() == X86::ST0 ||
869        RVLocs[i].getLocReg() == X86::ST1) {
870      // If this is a copy from an xmm register to ST(0), use an FPExtend to
871      // change the value to the FP stack register class.
872      if (isScalarFPTypeInSSEReg(RVLocs[i].getValVT()))
873        ValToCopy = DAG.getNode(ISD::FP_EXTEND, MVT::f80, ValToCopy);
874      RetOps.push_back(ValToCopy);
875      // Don't emit a copytoreg.
876      continue;
877    }
878
879    Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), ValToCopy, Flag);
880    Flag = Chain.getValue(1);
881  }
882
883  RetOps[0] = Chain;  // Update chain.
884
885  // Add the flag if we have it.
886  if (Flag.Val)
887    RetOps.push_back(Flag);
888
889  return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, &RetOps[0], RetOps.size());
890}
891
892
893/// LowerCallResult - Lower the result values of an ISD::CALL into the
894/// appropriate copies out of appropriate physical registers.  This assumes that
895/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
896/// being lowered.  The returns a SDNode with the same number of values as the
897/// ISD::CALL.
898SDNode *X86TargetLowering::
899LowerCallResult(SDOperand Chain, SDOperand InFlag, SDNode *TheCall,
900                unsigned CallingConv, SelectionDAG &DAG) {
901
902  // Assign locations to each value returned by this call.
903  SmallVector<CCValAssign, 16> RVLocs;
904  bool isVarArg = cast<ConstantSDNode>(TheCall->getOperand(2))->getValue() != 0;
905  CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
906  CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
907
908  SmallVector<SDOperand, 8> ResultVals;
909
910  // Copy all of the result registers out of their specified physreg.
911  for (unsigned i = 0; i != RVLocs.size(); ++i) {
912    MVT::ValueType CopyVT = RVLocs[i].getValVT();
913
914    // If this is a call to a function that returns an fp value on the floating
915    // point stack, but where we prefer to use the value in xmm registers, copy
916    // it out as F80 and use a truncate to move it from fp stack reg to xmm reg.
917    if (RVLocs[i].getLocReg() == X86::ST0 &&
918        isScalarFPTypeInSSEReg(RVLocs[i].getValVT())) {
919      CopyVT = MVT::f80;
920    }
921
922    Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(),
923                               CopyVT, InFlag).getValue(1);
924    SDOperand Val = Chain.getValue(0);
925    InFlag = Chain.getValue(2);
926
927    if (CopyVT != RVLocs[i].getValVT()) {
928      // Round the F80 the right size, which also moves to the appropriate xmm
929      // register.
930      Val = DAG.getNode(ISD::FP_ROUND, RVLocs[i].getValVT(), Val,
931                        // This truncation won't change the value.
932                        DAG.getIntPtrConstant(1));
933    }
934
935    ResultVals.push_back(Val);
936  }
937
938  // Merge everything together with a MERGE_VALUES node.
939  ResultVals.push_back(Chain);
940  return DAG.getNode(ISD::MERGE_VALUES, TheCall->getVTList(),
941                     &ResultVals[0], ResultVals.size()).Val;
942}
943
944/// LowerCallResultToTwo64BitRegs - Lower the result values of an x86-64
945/// ISD::CALL where the results are known to be in two 64-bit registers,
946/// e.g. XMM0 and XMM1. This simplify store the two values back to the
947/// fixed stack slot allocated for StructRet.
948SDNode *X86TargetLowering::
949LowerCallResultToTwo64BitRegs(SDOperand Chain, SDOperand InFlag,
950                              SDNode *TheCall, unsigned Reg1, unsigned Reg2,
951                              MVT::ValueType VT, SelectionDAG &DAG) {
952  SDOperand RetVal1 = DAG.getCopyFromReg(Chain, Reg1, VT, InFlag);
953  Chain = RetVal1.getValue(1);
954  InFlag = RetVal1.getValue(2);
955  SDOperand RetVal2 = DAG.getCopyFromReg(Chain, Reg2, VT, InFlag);
956  Chain = RetVal2.getValue(1);
957  InFlag = RetVal2.getValue(2);
958  SDOperand FIN = TheCall->getOperand(5);
959  Chain = DAG.getStore(Chain, RetVal1, FIN, NULL, 0);
960  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(8));
961  Chain = DAG.getStore(Chain, RetVal2, FIN, NULL, 0);
962  return Chain.Val;
963}
964
965/// LowerCallResultToTwoX87Regs - Lower the result values of an x86-64 ISD::CALL
966/// where the results are known to be in ST0 and ST1.
967SDNode *X86TargetLowering::
968LowerCallResultToTwoX87Regs(SDOperand Chain, SDOperand InFlag,
969                            SDNode *TheCall, SelectionDAG &DAG) {
970  SmallVector<SDOperand, 8> ResultVals;
971  const MVT::ValueType VTs[] = { MVT::f80, MVT::f80, MVT::Other, MVT::Flag };
972  SDVTList Tys = DAG.getVTList(VTs, 4);
973  SDOperand Ops[] = { Chain, InFlag };
974  SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_ST0_ST1, Tys, Ops, 2);
975  Chain = RetVal.getValue(2);
976  SDOperand FIN = TheCall->getOperand(5);
977  Chain = DAG.getStore(Chain, RetVal.getValue(1), FIN, NULL, 0);
978  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(16));
979  Chain = DAG.getStore(Chain, RetVal, FIN, NULL, 0);
980  return Chain.Val;
981}
982
983//===----------------------------------------------------------------------===//
984//                C & StdCall & Fast Calling Convention implementation
985//===----------------------------------------------------------------------===//
986//  StdCall calling convention seems to be standard for many Windows' API
987//  routines and around. It differs from C calling convention just a little:
988//  callee should clean up the stack, not caller. Symbols should be also
989//  decorated in some fancy way :) It doesn't support any vector arguments.
990//  For info on fast calling convention see Fast Calling Convention (tail call)
991//  implementation LowerX86_32FastCCCallTo.
992
993/// AddLiveIn - This helper function adds the specified physical register to the
994/// MachineFunction as a live in value.  It also creates a corresponding virtual
995/// register for it.
996static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
997                          const TargetRegisterClass *RC) {
998  assert(RC->contains(PReg) && "Not the correct regclass!");
999  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
1000  MF.getRegInfo().addLiveIn(PReg, VReg);
1001  return VReg;
1002}
1003
1004/// CallIsStructReturn - Determines whether a CALL node uses struct return
1005/// semantics.
1006static bool CallIsStructReturn(SDOperand Op) {
1007  unsigned NumOps = (Op.getNumOperands() - 5) / 2;
1008  if (!NumOps)
1009    return false;
1010
1011  ConstantSDNode *Flags = cast<ConstantSDNode>(Op.getOperand(6));
1012  return Flags->getValue() & ISD::ParamFlags::StructReturn;
1013}
1014
1015/// ArgsAreStructReturn - Determines whether a FORMAL_ARGUMENTS node uses struct
1016/// return semantics.
1017static bool ArgsAreStructReturn(SDOperand Op) {
1018  unsigned NumArgs = Op.Val->getNumValues() - 1;
1019  if (!NumArgs)
1020    return false;
1021
1022  ConstantSDNode *Flags = cast<ConstantSDNode>(Op.getOperand(3));
1023  return Flags->getValue() & ISD::ParamFlags::StructReturn;
1024}
1025
1026/// IsCalleePop - Determines whether a CALL or FORMAL_ARGUMENTS node requires the
1027/// callee to pop its own arguments. Callee pop is necessary to support tail
1028/// calls.
1029bool X86TargetLowering::IsCalleePop(SDOperand Op) {
1030  bool IsVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1031  if (IsVarArg)
1032    return false;
1033
1034  switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
1035  default:
1036    return false;
1037  case CallingConv::X86_StdCall:
1038    return !Subtarget->is64Bit();
1039  case CallingConv::X86_FastCall:
1040    return !Subtarget->is64Bit();
1041  case CallingConv::Fast:
1042    return PerformTailCallOpt;
1043  }
1044}
1045
1046/// CCAssignFnForNode - Selects the correct CCAssignFn for a CALL or
1047/// FORMAL_ARGUMENTS node.
1048CCAssignFn *X86TargetLowering::CCAssignFnForNode(SDOperand Op) const {
1049  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
1050
1051  if (Subtarget->is64Bit()) {
1052    if (CC == CallingConv::Fast && PerformTailCallOpt)
1053      return CC_X86_64_TailCall;
1054    else
1055      return CC_X86_64_C;
1056  }
1057
1058  if (CC == CallingConv::X86_FastCall)
1059    return CC_X86_32_FastCall;
1060  else if (CC == CallingConv::Fast && PerformTailCallOpt)
1061    return CC_X86_32_TailCall;
1062  else
1063    return CC_X86_32_C;
1064}
1065
1066/// NameDecorationForFORMAL_ARGUMENTS - Selects the appropriate decoration to
1067/// apply to a MachineFunction containing a given FORMAL_ARGUMENTS node.
1068NameDecorationStyle
1069X86TargetLowering::NameDecorationForFORMAL_ARGUMENTS(SDOperand Op) {
1070  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
1071  if (CC == CallingConv::X86_FastCall)
1072    return FastCall;
1073  else if (CC == CallingConv::X86_StdCall)
1074    return StdCall;
1075  return None;
1076}
1077
1078/// IsPossiblyOverwrittenArgumentOfTailCall - Check if the operand could
1079/// possibly be overwritten when lowering the outgoing arguments in a tail
1080/// call. Currently the implementation of this call is very conservative and
1081/// assumes all arguments sourcing from FORMAL_ARGUMENTS or a CopyFromReg with
1082/// virtual registers would be overwritten by direct lowering.
1083static bool IsPossiblyOverwrittenArgumentOfTailCall(SDOperand Op,
1084                                                    MachineFrameInfo * MFI) {
1085  RegisterSDNode * OpReg = NULL;
1086  FrameIndexSDNode * FrameIdxNode = NULL;
1087  int FrameIdx = 0;
1088  if (Op.getOpcode() == ISD::FORMAL_ARGUMENTS ||
1089      (Op.getOpcode()== ISD::CopyFromReg &&
1090       (OpReg = dyn_cast<RegisterSDNode>(Op.getOperand(1))) &&
1091       (OpReg->getReg() >= TargetRegisterInfo::FirstVirtualRegister)) ||
1092      (Op.getOpcode() == ISD::LOAD &&
1093       (FrameIdxNode = dyn_cast<FrameIndexSDNode>(Op.getOperand(1))) &&
1094       (MFI->isFixedObjectIndex((FrameIdx = FrameIdxNode->getIndex()))) &&
1095       (MFI->getObjectOffset(FrameIdx) >= 0)))
1096    return true;
1097  return false;
1098}
1099
1100/// CallRequiresGOTInRegister - Check whether the call requires the GOT pointer
1101/// in a register before calling.
1102bool X86TargetLowering::CallRequiresGOTPtrInReg(bool Is64Bit, bool IsTailCall) {
1103  return !IsTailCall && !Is64Bit &&
1104    getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1105    Subtarget->isPICStyleGOT();
1106}
1107
1108
1109/// CallRequiresFnAddressInReg - Check whether the call requires the function
1110/// address to be loaded in a register.
1111bool
1112X86TargetLowering::CallRequiresFnAddressInReg(bool Is64Bit, bool IsTailCall) {
1113  return !Is64Bit && IsTailCall &&
1114    getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1115    Subtarget->isPICStyleGOT();
1116}
1117
1118/// CopyTailCallClobberedArgumentsToVRegs - Create virtual registers for all
1119/// arguments to force loading and guarantee that arguments sourcing from
1120/// incomming parameters are not overwriting each other.
1121static SDOperand
1122CopyTailCallClobberedArgumentsToVRegs(SDOperand Chain,
1123     SmallVector<std::pair<unsigned, SDOperand>, 8> &TailCallClobberedVRegs,
1124                                      SelectionDAG &DAG,
1125                                      MachineFunction &MF,
1126                                      const TargetLowering * TL) {
1127
1128  SDOperand InFlag;
1129  for (unsigned i = 0, e = TailCallClobberedVRegs.size(); i != e; i++) {
1130    SDOperand Arg = TailCallClobberedVRegs[i].second;
1131    unsigned Idx = TailCallClobberedVRegs[i].first;
1132    unsigned VReg =
1133      MF.getRegInfo().
1134      createVirtualRegister(TL->getRegClassFor(Arg.getValueType()));
1135    Chain = DAG.getCopyToReg(Chain, VReg, Arg, InFlag);
1136    InFlag = Chain.getValue(1);
1137    Arg = DAG.getCopyFromReg(Chain, VReg, Arg.getValueType(), InFlag);
1138    TailCallClobberedVRegs[i] = std::make_pair(Idx, Arg);
1139    Chain = Arg.getValue(1);
1140    InFlag = Arg.getValue(2);
1141  }
1142  return Chain;
1143}
1144
1145/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1146/// by "Src" to address "Dst" with size and alignment information specified by
1147/// the specific parameter attribute. The copy will be passed as a byval function
1148/// parameter.
1149static SDOperand
1150CreateCopyOfByValArgument(SDOperand Src, SDOperand Dst, SDOperand Chain,
1151                          ISD::ParamFlags::ParamFlagsTy Flags,
1152                          SelectionDAG &DAG) {
1153  unsigned Align = ISD::ParamFlags::One <<
1154    ((Flags & ISD::ParamFlags::ByValAlign) >> ISD::ParamFlags::ByValAlignOffs);
1155  unsigned Size = (Flags & ISD::ParamFlags::ByValSize) >>
1156    ISD::ParamFlags::ByValSizeOffs;
1157  SDOperand AlignNode    = DAG.getConstant(Align, MVT::i32);
1158  SDOperand SizeNode     = DAG.getConstant(Size, MVT::i32);
1159  SDOperand AlwaysInline = DAG.getConstant(1, MVT::i32);
1160  return DAG.getMemcpy(Chain, Dst, Src, SizeNode, AlignNode, AlwaysInline);
1161}
1162
1163SDOperand X86TargetLowering::LowerMemArgument(SDOperand Op, SelectionDAG &DAG,
1164                                              const CCValAssign &VA,
1165                                              MachineFrameInfo *MFI,
1166                                              unsigned CC,
1167                                              SDOperand Root, unsigned i) {
1168  // Create the nodes corresponding to a load from this parameter slot.
1169  ISD::ParamFlags::ParamFlagsTy Flags =
1170                cast<ConstantSDNode>(Op.getOperand(3 + i))->getValue();
1171  bool AlwaysUseMutable = (CC==CallingConv::Fast) && PerformTailCallOpt;
1172  bool isByVal = Flags & ISD::ParamFlags::ByVal;
1173  bool isImmutable = !AlwaysUseMutable && !isByVal;
1174
1175  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1176  // changed with more analysis.
1177  // In case of tail call optimization mark all arguments mutable. Since they
1178  // could be overwritten by lowering of arguments in case of a tail call.
1179  int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
1180                                  VA.getLocMemOffset(), isImmutable);
1181  SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
1182  if (isByVal)
1183    return FIN;
1184  return DAG.getLoad(VA.getValVT(), Root, FIN,
1185                     PseudoSourceValue::getFixedStack(), FI);
1186}
1187
1188SDOperand
1189X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) {
1190  MachineFunction &MF = DAG.getMachineFunction();
1191  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1192
1193  const Function* Fn = MF.getFunction();
1194  if (Fn->hasExternalLinkage() &&
1195      Subtarget->isTargetCygMing() &&
1196      Fn->getName() == "main")
1197    FuncInfo->setForceFramePointer(true);
1198
1199  // Decorate the function name.
1200  FuncInfo->setDecorationStyle(NameDecorationForFORMAL_ARGUMENTS(Op));
1201
1202  MachineFrameInfo *MFI = MF.getFrameInfo();
1203  SDOperand Root = Op.getOperand(0);
1204  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1205  unsigned CC = MF.getFunction()->getCallingConv();
1206  bool Is64Bit = Subtarget->is64Bit();
1207
1208  assert(!(isVarArg && CC == CallingConv::Fast) &&
1209         "Var args not supported with calling convention fastcc");
1210
1211  // Assign locations to all of the incoming arguments.
1212  SmallVector<CCValAssign, 16> ArgLocs;
1213  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1214  CCInfo.AnalyzeFormalArguments(Op.Val, CCAssignFnForNode(Op));
1215
1216  SmallVector<SDOperand, 8> ArgValues;
1217  unsigned LastVal = ~0U;
1218  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1219    CCValAssign &VA = ArgLocs[i];
1220    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1221    // places.
1222    assert(VA.getValNo() != LastVal &&
1223           "Don't support value assigned to multiple locs yet");
1224    LastVal = VA.getValNo();
1225
1226    if (VA.isRegLoc()) {
1227      MVT::ValueType RegVT = VA.getLocVT();
1228      TargetRegisterClass *RC;
1229      if (RegVT == MVT::i32)
1230        RC = X86::GR32RegisterClass;
1231      else if (Is64Bit && RegVT == MVT::i64)
1232        RC = X86::GR64RegisterClass;
1233      else if (RegVT == MVT::f32)
1234        RC = X86::FR32RegisterClass;
1235      else if (RegVT == MVT::f64)
1236        RC = X86::FR64RegisterClass;
1237      else {
1238        assert(MVT::isVector(RegVT));
1239        if (Is64Bit && MVT::getSizeInBits(RegVT) == 64) {
1240          RC = X86::GR64RegisterClass;       // MMX values are passed in GPRs.
1241          RegVT = MVT::i64;
1242        } else
1243          RC = X86::VR128RegisterClass;
1244      }
1245
1246      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1247      SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1248
1249      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1250      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1251      // right size.
1252      if (VA.getLocInfo() == CCValAssign::SExt)
1253        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1254                               DAG.getValueType(VA.getValVT()));
1255      else if (VA.getLocInfo() == CCValAssign::ZExt)
1256        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1257                               DAG.getValueType(VA.getValVT()));
1258
1259      if (VA.getLocInfo() != CCValAssign::Full)
1260        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1261
1262      // Handle MMX values passed in GPRs.
1263      if (Is64Bit && RegVT != VA.getLocVT() && RC == X86::GR64RegisterClass &&
1264          MVT::getSizeInBits(RegVT) == 64)
1265        ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
1266
1267      ArgValues.push_back(ArgValue);
1268    } else {
1269      assert(VA.isMemLoc());
1270      ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, CC, Root, i));
1271    }
1272  }
1273
1274  unsigned StackSize = CCInfo.getNextStackOffset();
1275  // align stack specially for tail calls
1276  if (CC == CallingConv::Fast)
1277    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1278
1279  // If the function takes variable number of arguments, make a frame index for
1280  // the start of the first vararg value... for expansion of llvm.va_start.
1281  if (isVarArg) {
1282    if (Is64Bit || CC != CallingConv::X86_FastCall) {
1283      VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1284    }
1285    if (Is64Bit) {
1286      static const unsigned GPR64ArgRegs[] = {
1287        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8,  X86::R9
1288      };
1289      static const unsigned XMMArgRegs[] = {
1290        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1291        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1292      };
1293
1294      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs, 6);
1295      unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1296
1297      // For X86-64, if there are vararg parameters that are passed via
1298      // registers, then we must store them to their spots on the stack so they
1299      // may be loaded by deferencing the result of va_next.
1300      VarArgsGPOffset = NumIntRegs * 8;
1301      VarArgsFPOffset = 6 * 8 + NumXMMRegs * 16;
1302      RegSaveFrameIndex = MFI->CreateStackObject(6 * 8 + 8 * 16, 16);
1303
1304      // Store the integer parameter registers.
1305      SmallVector<SDOperand, 8> MemOps;
1306      SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1307      SDOperand FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1308                                  DAG.getIntPtrConstant(VarArgsGPOffset));
1309      for (; NumIntRegs != 6; ++NumIntRegs) {
1310        unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
1311                                  X86::GR64RegisterClass);
1312        SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1313        SDOperand Store =
1314          DAG.getStore(Val.getValue(1), Val, FIN,
1315                       PseudoSourceValue::getFixedStack(),
1316                       RegSaveFrameIndex);
1317        MemOps.push_back(Store);
1318        FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1319                          DAG.getIntPtrConstant(8));
1320      }
1321
1322      // Now store the XMM (fp + vector) parameter registers.
1323      FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1324                        DAG.getIntPtrConstant(VarArgsFPOffset));
1325      for (; NumXMMRegs != 8; ++NumXMMRegs) {
1326        unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
1327                                  X86::VR128RegisterClass);
1328        SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
1329        SDOperand Store =
1330          DAG.getStore(Val.getValue(1), Val, FIN,
1331                       PseudoSourceValue::getFixedStack(),
1332                       RegSaveFrameIndex);
1333        MemOps.push_back(Store);
1334        FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1335                          DAG.getIntPtrConstant(16));
1336      }
1337      if (!MemOps.empty())
1338          Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
1339                             &MemOps[0], MemOps.size());
1340    }
1341  }
1342
1343  // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1344  // arguments and the arguments after the retaddr has been pushed are
1345  // aligned.
1346  if (!Is64Bit && CC == CallingConv::X86_FastCall &&
1347      !Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows() &&
1348      (StackSize & 7) == 0)
1349    StackSize += 4;
1350
1351  ArgValues.push_back(Root);
1352
1353  // Some CCs need callee pop.
1354  if (IsCalleePop(Op)) {
1355    BytesToPopOnReturn  = StackSize; // Callee pops everything.
1356    BytesCallerReserves = 0;
1357  } else {
1358    BytesToPopOnReturn  = 0; // Callee pops nothing.
1359    // If this is an sret function, the return should pop the hidden pointer.
1360    if (!Is64Bit && ArgsAreStructReturn(Op))
1361      BytesToPopOnReturn = 4;
1362    BytesCallerReserves = StackSize;
1363  }
1364
1365  if (!Is64Bit) {
1366    RegSaveFrameIndex = 0xAAAAAAA;   // RegSaveFrameIndex is X86-64 only.
1367    if (CC == CallingConv::X86_FastCall)
1368      VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1369  }
1370
1371  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1372
1373  // Return the new list of results.
1374  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1375                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1376}
1377
1378SDOperand
1379X86TargetLowering::LowerMemOpCallTo(SDOperand Op, SelectionDAG &DAG,
1380                                    const SDOperand &StackPtr,
1381                                    const CCValAssign &VA,
1382                                    SDOperand Chain,
1383                                    SDOperand Arg) {
1384  unsigned LocMemOffset = VA.getLocMemOffset();
1385  SDOperand PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1386  PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1387  SDOperand FlagsOp = Op.getOperand(6+2*VA.getValNo());
1388  ISD::ParamFlags::ParamFlagsTy Flags =
1389            cast<ConstantSDNode>(FlagsOp)->getValue();
1390  if (Flags & ISD::ParamFlags::ByVal) {
1391    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG);
1392  }
1393  return DAG.getStore(Chain, Arg, PtrOff,
1394                      PseudoSourceValue::getStack(), LocMemOffset);
1395}
1396
1397/// ClassifyX86_64SRetCallReturn - Classify how to implement a x86-64
1398/// struct return call to the specified function. X86-64 ABI specifies
1399/// some SRet calls are actually returned in registers. Since current
1400/// LLVM cannot represent multi-value calls, they are represent as
1401/// calls where the results are passed in a hidden struct provided by
1402/// the caller. This function examines the type of the struct to
1403/// determine the correct way to implement the call.
1404X86::X86_64SRet
1405X86TargetLowering::ClassifyX86_64SRetCallReturn(const Function *Fn) {
1406  // FIXME: Disabled for now.
1407  return X86::InMemory;
1408
1409  const PointerType *PTy = cast<PointerType>(Fn->arg_begin()->getType());
1410  const Type *RTy = PTy->getElementType();
1411  unsigned Size = getTargetData()->getABITypeSize(RTy);
1412  if (Size != 16 && Size != 32)
1413    return X86::InMemory;
1414
1415  if (Size == 32) {
1416    const StructType *STy = dyn_cast<StructType>(RTy);
1417    if (!STy) return X86::InMemory;
1418    if (STy->getNumElements() == 2 &&
1419        STy->getElementType(0) == Type::X86_FP80Ty &&
1420        STy->getElementType(1) == Type::X86_FP80Ty)
1421      return X86::InX87;
1422  }
1423
1424  bool AllFP = true;
1425  for (Type::subtype_iterator I = RTy->subtype_begin(), E = RTy->subtype_end();
1426       I != E; ++I) {
1427    const Type *STy = I->get();
1428    if (!STy->isFPOrFPVector()) {
1429      AllFP = false;
1430      break;
1431    }
1432  }
1433
1434  if (AllFP)
1435    return X86::InSSE;
1436  return X86::InGPR64;
1437}
1438
1439void X86TargetLowering::X86_64AnalyzeSRetCallOperands(SDNode *TheCall,
1440                                                      CCAssignFn *Fn,
1441                                                      CCState &CCInfo) {
1442  unsigned NumOps = (TheCall->getNumOperands() - 5) / 2;
1443  for (unsigned i = 1; i != NumOps; ++i) {
1444    MVT::ValueType ArgVT = TheCall->getOperand(5+2*i).getValueType();
1445    SDOperand FlagOp = TheCall->getOperand(5+2*i+1);
1446    unsigned ArgFlags =cast<ConstantSDNode>(FlagOp)->getValue();
1447    if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo)) {
1448      cerr << "Call operand #" << i << " has unhandled type "
1449           << MVT::getValueTypeString(ArgVT) << "\n";
1450      abort();
1451    }
1452  }
1453}
1454
1455SDOperand X86TargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) {
1456  MachineFunction &MF = DAG.getMachineFunction();
1457  MachineFrameInfo * MFI = MF.getFrameInfo();
1458  SDOperand Chain     = Op.getOperand(0);
1459  unsigned CC         = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
1460  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1461  bool IsTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0
1462                        && CC == CallingConv::Fast && PerformTailCallOpt;
1463  SDOperand Callee    = Op.getOperand(4);
1464  bool Is64Bit        = Subtarget->is64Bit();
1465  bool IsStructRet    = CallIsStructReturn(Op);
1466
1467  assert(!(isVarArg && CC == CallingConv::Fast) &&
1468         "Var args not supported with calling convention fastcc");
1469
1470  // Analyze operands of the call, assigning locations to each operand.
1471  SmallVector<CCValAssign, 16> ArgLocs;
1472  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1473  CCAssignFn *CCFn = CCAssignFnForNode(Op);
1474
1475  X86::X86_64SRet SRetMethod = X86::InMemory;
1476  if (Is64Bit && IsStructRet)
1477    // FIXME: We can't figure out type of the sret structure for indirect
1478    // calls. We need to copy more information from CallSite to the ISD::CALL
1479    // node.
1480    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1481      SRetMethod =
1482        ClassifyX86_64SRetCallReturn(dyn_cast<Function>(G->getGlobal()));
1483
1484  // UGLY HACK! For x86-64, some 128-bit aggregates are returns in a pair of
1485  // registers. Unfortunately, llvm does not support i128 yet so we pretend it's
1486  // a sret call.
1487  if (SRetMethod != X86::InMemory)
1488    X86_64AnalyzeSRetCallOperands(Op.Val, CCFn, CCInfo);
1489  else
1490    CCInfo.AnalyzeCallOperands(Op.Val, CCFn);
1491
1492  // Get a count of how many bytes are to be pushed on the stack.
1493  unsigned NumBytes = CCInfo.getNextStackOffset();
1494  if (CC == CallingConv::Fast)
1495    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1496
1497  // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1498  // arguments and the arguments after the retaddr has been pushed are aligned.
1499  if (!Is64Bit && CC == CallingConv::X86_FastCall &&
1500      !Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows() &&
1501      (NumBytes & 7) == 0)
1502    NumBytes += 4;
1503
1504  int FPDiff = 0;
1505  if (IsTailCall) {
1506    // Lower arguments at fp - stackoffset + fpdiff.
1507    unsigned NumBytesCallerPushed =
1508      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1509    FPDiff = NumBytesCallerPushed - NumBytes;
1510
1511    // Set the delta of movement of the returnaddr stackslot.
1512    // But only set if delta is greater than previous delta.
1513    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1514      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1515  }
1516
1517  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes));
1518
1519  SDOperand RetAddrFrIdx;
1520  if (IsTailCall) {
1521    // Adjust the Return address stack slot.
1522    if (FPDiff) {
1523      MVT::ValueType VT = Is64Bit ? MVT::i64 : MVT::i32;
1524      RetAddrFrIdx = getReturnAddressFrameIndex(DAG);
1525      // Load the "old" Return address.
1526      RetAddrFrIdx =
1527        DAG.getLoad(VT, Chain,RetAddrFrIdx, NULL, 0);
1528      Chain = SDOperand(RetAddrFrIdx.Val, 1);
1529    }
1530  }
1531
1532  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1533  SmallVector<std::pair<unsigned, SDOperand>, 8> TailCallClobberedVRegs;
1534  SmallVector<SDOperand, 8> MemOpChains;
1535
1536  SDOperand StackPtr;
1537
1538  // Walk the register/memloc assignments, inserting copies/loads.  For tail
1539  // calls, remember all arguments for later special lowering.
1540  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1541    CCValAssign &VA = ArgLocs[i];
1542    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1543
1544    // Promote the value if needed.
1545    switch (VA.getLocInfo()) {
1546    default: assert(0 && "Unknown loc info!");
1547    case CCValAssign::Full: break;
1548    case CCValAssign::SExt:
1549      Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1550      break;
1551    case CCValAssign::ZExt:
1552      Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1553      break;
1554    case CCValAssign::AExt:
1555      Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1556      break;
1557    }
1558
1559    if (VA.isRegLoc()) {
1560      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1561    } else {
1562      if (!IsTailCall) {
1563        assert(VA.isMemLoc());
1564        if (StackPtr.Val == 0)
1565          StackPtr = DAG.getCopyFromReg(Chain, X86StackPtr, getPointerTy());
1566
1567        MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1568                                               Arg));
1569      } else if (IsPossiblyOverwrittenArgumentOfTailCall(Arg, MFI)) {
1570        TailCallClobberedVRegs.push_back(std::make_pair(i,Arg));
1571      }
1572    }
1573  }
1574
1575  if (!MemOpChains.empty())
1576    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1577                        &MemOpChains[0], MemOpChains.size());
1578
1579  // Build a sequence of copy-to-reg nodes chained together with token chain
1580  // and flag operands which copy the outgoing args into registers.
1581  SDOperand InFlag;
1582  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1583    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1584                             InFlag);
1585    InFlag = Chain.getValue(1);
1586  }
1587
1588  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1589  // GOT pointer.
1590  if (CallRequiresGOTPtrInReg(Is64Bit, IsTailCall)) {
1591    Chain = DAG.getCopyToReg(Chain, X86::EBX,
1592                             DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1593                             InFlag);
1594    InFlag = Chain.getValue(1);
1595  }
1596  // If we are tail calling and generating PIC/GOT style code load the address
1597  // of the callee into ecx. The value in ecx is used as target of the tail
1598  // jump. This is done to circumvent the ebx/callee-saved problem for tail
1599  // calls on PIC/GOT architectures. Normally we would just put the address of
1600  // GOT into ebx and then call target@PLT. But for tail callss ebx would be
1601  // restored (since ebx is callee saved) before jumping to the target@PLT.
1602  if (CallRequiresFnAddressInReg(Is64Bit, IsTailCall)) {
1603    // Note: The actual moving to ecx is done further down.
1604    GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
1605    if (G &&  !G->getGlobal()->hasHiddenVisibility() &&
1606        !G->getGlobal()->hasProtectedVisibility())
1607      Callee =  LowerGlobalAddress(Callee, DAG);
1608    else if (isa<ExternalSymbolSDNode>(Callee))
1609      Callee = LowerExternalSymbol(Callee,DAG);
1610  }
1611
1612  if (Is64Bit && isVarArg) {
1613    // From AMD64 ABI document:
1614    // For calls that may call functions that use varargs or stdargs
1615    // (prototype-less calls or calls to functions containing ellipsis (...) in
1616    // the declaration) %al is used as hidden argument to specify the number
1617    // of SSE registers used. The contents of %al do not need to match exactly
1618    // the number of registers, but must be an ubound on the number of SSE
1619    // registers used and is in the range 0 - 8 inclusive.
1620
1621    // Count the number of XMM registers allocated.
1622    static const unsigned XMMArgRegs[] = {
1623      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1624      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1625    };
1626    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1627
1628    Chain = DAG.getCopyToReg(Chain, X86::AL,
1629                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1630    InFlag = Chain.getValue(1);
1631  }
1632
1633
1634  // For tail calls lower the arguments to the 'real' stack slot.
1635  if (IsTailCall) {
1636    SmallVector<SDOperand, 8> MemOpChains2;
1637    SDOperand FIN;
1638    int FI = 0;
1639    // Do not flag preceeding copytoreg stuff together with the following stuff.
1640    InFlag = SDOperand();
1641
1642    Chain = CopyTailCallClobberedArgumentsToVRegs(Chain, TailCallClobberedVRegs,
1643                                                  DAG, MF, this);
1644
1645    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1646      CCValAssign &VA = ArgLocs[i];
1647      if (!VA.isRegLoc()) {
1648        assert(VA.isMemLoc());
1649        SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1650        SDOperand FlagsOp = Op.getOperand(6+2*VA.getValNo());
1651        ISD::ParamFlags::ParamFlagsTy Flags =
1652                  cast<ConstantSDNode>(FlagsOp)->getValue();
1653        // Create frame index.
1654        int32_t Offset = VA.getLocMemOffset()+FPDiff;
1655        uint32_t OpSize = (MVT::getSizeInBits(VA.getLocVT())+7)/8;
1656        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
1657        FIN = DAG.getFrameIndex(FI, MVT::i32);
1658
1659        // Find virtual register for this argument.
1660        bool Found=false;
1661        for (unsigned idx=0, e= TailCallClobberedVRegs.size(); idx < e; idx++)
1662          if (TailCallClobberedVRegs[idx].first==i) {
1663            Arg = TailCallClobberedVRegs[idx].second;
1664            Found=true;
1665            break;
1666          }
1667        assert(IsPossiblyOverwrittenArgumentOfTailCall(Arg, MFI)==false ||
1668          (Found==true && "No corresponding Argument was found"));
1669
1670        if (Flags & ISD::ParamFlags::ByVal) {
1671          // Copy relative to framepointer.
1672          MemOpChains2.push_back(CreateCopyOfByValArgument(Arg, FIN, Chain,
1673                                                           Flags, DAG));
1674        } else {
1675          // Store relative to framepointer.
1676          MemOpChains2.push_back(
1677            DAG.getStore(Chain, Arg, FIN,
1678                         PseudoSourceValue::getFixedStack(), FI));
1679        }
1680      }
1681    }
1682
1683    if (!MemOpChains2.empty())
1684      Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1685                          &MemOpChains2[0], MemOpChains2.size());
1686
1687    // Store the return address to the appropriate stack slot.
1688    if (FPDiff) {
1689      // Calculate the new stack slot for the return address.
1690      int SlotSize = Is64Bit ? 8 : 4;
1691      int NewReturnAddrFI =
1692        MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize);
1693      MVT::ValueType VT = Is64Bit ? MVT::i64 : MVT::i32;
1694      SDOperand NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1695      Chain = DAG.getStore(Chain, RetAddrFrIdx, NewRetAddrFrIdx,
1696                           PseudoSourceValue::getFixedStack(), NewReturnAddrFI);
1697    }
1698  }
1699
1700  // If the callee is a GlobalAddress node (quite common, every direct call is)
1701  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1702  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1703    // We should use extra load for direct calls to dllimported functions in
1704    // non-JIT mode.
1705    if ((IsTailCall || !Is64Bit ||
1706         getTargetMachine().getCodeModel() != CodeModel::Large)
1707        && !Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1708                                           getTargetMachine(), true))
1709      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1710  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1711    if (IsTailCall || !Is64Bit ||
1712        getTargetMachine().getCodeModel() != CodeModel::Large)
1713      Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1714  } else if (IsTailCall) {
1715    unsigned Opc = Is64Bit ? X86::R9 : X86::ECX;
1716
1717    Chain = DAG.getCopyToReg(Chain,
1718                             DAG.getRegister(Opc, getPointerTy()),
1719                             Callee,InFlag);
1720    Callee = DAG.getRegister(Opc, getPointerTy());
1721    // Add register as live out.
1722    DAG.getMachineFunction().getRegInfo().addLiveOut(Opc);
1723  }
1724
1725  // Returns a chain & a flag for retval copy to use.
1726  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1727  SmallVector<SDOperand, 8> Ops;
1728
1729  if (IsTailCall) {
1730    Ops.push_back(Chain);
1731    Ops.push_back(DAG.getIntPtrConstant(NumBytes));
1732    Ops.push_back(DAG.getIntPtrConstant(0));
1733    if (InFlag.Val)
1734      Ops.push_back(InFlag);
1735    Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1736    InFlag = Chain.getValue(1);
1737
1738    // Returns a chain & a flag for retval copy to use.
1739    NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1740    Ops.clear();
1741  }
1742
1743  Ops.push_back(Chain);
1744  Ops.push_back(Callee);
1745
1746  if (IsTailCall)
1747    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
1748
1749  // Add argument registers to the end of the list so that they are known live
1750  // into the call.
1751  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1752    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1753                                  RegsToPass[i].second.getValueType()));
1754
1755  // Add an implicit use GOT pointer in EBX.
1756  if (!IsTailCall && !Is64Bit &&
1757      getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1758      Subtarget->isPICStyleGOT())
1759    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1760
1761  // Add an implicit use of AL for x86 vararg functions.
1762  if (Is64Bit && isVarArg)
1763    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
1764
1765  if (InFlag.Val)
1766    Ops.push_back(InFlag);
1767
1768  if (IsTailCall) {
1769    assert(InFlag.Val &&
1770           "Flag must be set. Depend on flag being set in LowerRET");
1771    Chain = DAG.getNode(X86ISD::TAILCALL,
1772                        Op.Val->getVTList(), &Ops[0], Ops.size());
1773
1774    return SDOperand(Chain.Val, Op.ResNo);
1775  }
1776
1777  Chain = DAG.getNode(X86ISD::CALL, NodeTys, &Ops[0], Ops.size());
1778  InFlag = Chain.getValue(1);
1779
1780  // Create the CALLSEQ_END node.
1781  unsigned NumBytesForCalleeToPush;
1782  if (IsCalleePop(Op))
1783    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
1784  else if (!Is64Bit && IsStructRet)
1785    // If this is is a call to a struct-return function, the callee
1786    // pops the hidden struct pointer, so we have to push it back.
1787    // This is common for Darwin/X86, Linux & Mingw32 targets.
1788    NumBytesForCalleeToPush = 4;
1789  else
1790    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
1791
1792  // Returns a flag for retval copy to use.
1793  Chain = DAG.getCALLSEQ_END(Chain,
1794                             DAG.getIntPtrConstant(NumBytes),
1795                             DAG.getIntPtrConstant(NumBytesForCalleeToPush),
1796                             InFlag);
1797  InFlag = Chain.getValue(1);
1798
1799  // Handle result values, copying them out of physregs into vregs that we
1800  // return.
1801  switch (SRetMethod) {
1802  default:
1803    return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1804  case X86::InGPR64:
1805    return SDOperand(LowerCallResultToTwo64BitRegs(Chain, InFlag, Op.Val,
1806                                                   X86::RAX, X86::RDX,
1807                                                   MVT::i64, DAG), Op.ResNo);
1808  case X86::InSSE:
1809    return SDOperand(LowerCallResultToTwo64BitRegs(Chain, InFlag, Op.Val,
1810                                                   X86::XMM0, X86::XMM1,
1811                                                   MVT::f64, DAG), Op.ResNo);
1812  case X86::InX87:
1813    return SDOperand(LowerCallResultToTwoX87Regs(Chain, InFlag, Op.Val, DAG),
1814                     Op.ResNo);
1815  }
1816}
1817
1818
1819//===----------------------------------------------------------------------===//
1820//                Fast Calling Convention (tail call) implementation
1821//===----------------------------------------------------------------------===//
1822
1823//  Like std call, callee cleans arguments, convention except that ECX is
1824//  reserved for storing the tail called function address. Only 2 registers are
1825//  free for argument passing (inreg). Tail call optimization is performed
1826//  provided:
1827//                * tailcallopt is enabled
1828//                * caller/callee are fastcc
1829//  On X86_64 architecture with GOT-style position independent code only local
1830//  (within module) calls are supported at the moment.
1831//  To keep the stack aligned according to platform abi the function
1832//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
1833//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
1834//  If a tail called function callee has more arguments than the caller the
1835//  caller needs to make sure that there is room to move the RETADDR to. This is
1836//  achieved by reserving an area the size of the argument delta right after the
1837//  original REtADDR, but before the saved framepointer or the spilled registers
1838//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
1839//  stack layout:
1840//    arg1
1841//    arg2
1842//    RETADDR
1843//    [ new RETADDR
1844//      move area ]
1845//    (possible EBP)
1846//    ESI
1847//    EDI
1848//    local1 ..
1849
1850/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
1851/// for a 16 byte align requirement.
1852unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
1853                                                        SelectionDAG& DAG) {
1854  if (PerformTailCallOpt) {
1855    MachineFunction &MF = DAG.getMachineFunction();
1856    const TargetMachine &TM = MF.getTarget();
1857    const TargetFrameInfo &TFI = *TM.getFrameInfo();
1858    unsigned StackAlignment = TFI.getStackAlignment();
1859    uint64_t AlignMask = StackAlignment - 1;
1860    int64_t Offset = StackSize;
1861    unsigned SlotSize = Subtarget->is64Bit() ? 8 : 4;
1862    if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
1863      // Number smaller than 12 so just add the difference.
1864      Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
1865    } else {
1866      // Mask out lower bits, add stackalignment once plus the 12 bytes.
1867      Offset = ((~AlignMask) & Offset) + StackAlignment +
1868        (StackAlignment-SlotSize);
1869    }
1870    StackSize = Offset;
1871  }
1872  return StackSize;
1873}
1874
1875/// IsEligibleForTailCallElimination - Check to see whether the next instruction
1876/// following the call is a return. A function is eligible if caller/callee
1877/// calling conventions match, currently only fastcc supports tail calls, and
1878/// the function CALL is immediatly followed by a RET.
1879bool X86TargetLowering::IsEligibleForTailCallOptimization(SDOperand Call,
1880                                                      SDOperand Ret,
1881                                                      SelectionDAG& DAG) const {
1882  if (!PerformTailCallOpt)
1883    return false;
1884
1885  // Check whether CALL node immediatly preceeds the RET node and whether the
1886  // return uses the result of the node or is a void return.
1887  unsigned NumOps = Ret.getNumOperands();
1888  if ((NumOps == 1 &&
1889       (Ret.getOperand(0) == SDOperand(Call.Val,1) ||
1890        Ret.getOperand(0) == SDOperand(Call.Val,0))) ||
1891      (NumOps > 1 &&
1892       Ret.getOperand(0) == SDOperand(Call.Val,Call.Val->getNumValues()-1) &&
1893       Ret.getOperand(1) == SDOperand(Call.Val,0))) {
1894    MachineFunction &MF = DAG.getMachineFunction();
1895    unsigned CallerCC = MF.getFunction()->getCallingConv();
1896    unsigned CalleeCC = cast<ConstantSDNode>(Call.getOperand(1))->getValue();
1897    if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
1898      SDOperand Callee = Call.getOperand(4);
1899      // On x86/32Bit PIC/GOT  tail calls are supported.
1900      if (getTargetMachine().getRelocationModel() != Reloc::PIC_ ||
1901          !Subtarget->isPICStyleGOT()|| !Subtarget->is64Bit())
1902        return true;
1903
1904      // Can only do local tail calls (in same module, hidden or protected) on
1905      // x86_64 PIC/GOT at the moment.
1906      if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1907        return G->getGlobal()->hasHiddenVisibility()
1908            || G->getGlobal()->hasProtectedVisibility();
1909    }
1910  }
1911
1912  return false;
1913}
1914
1915//===----------------------------------------------------------------------===//
1916//                           Other Lowering Hooks
1917//===----------------------------------------------------------------------===//
1918
1919
1920SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
1921  MachineFunction &MF = DAG.getMachineFunction();
1922  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1923  int ReturnAddrIndex = FuncInfo->getRAIndex();
1924
1925  if (ReturnAddrIndex == 0) {
1926    // Set up a frame object for the return address.
1927    if (Subtarget->is64Bit())
1928      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(8, -8);
1929    else
1930      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4);
1931
1932    FuncInfo->setRAIndex(ReturnAddrIndex);
1933  }
1934
1935  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
1936}
1937
1938
1939
1940/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
1941/// specific condition code. It returns a false if it cannot do a direct
1942/// translation. X86CC is the translated CondCode.  LHS/RHS are modified as
1943/// needed.
1944static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
1945                           unsigned &X86CC, SDOperand &LHS, SDOperand &RHS,
1946                           SelectionDAG &DAG) {
1947  X86CC = X86::COND_INVALID;
1948  if (!isFP) {
1949    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
1950      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
1951        // X > -1   -> X == 0, jump !sign.
1952        RHS = DAG.getConstant(0, RHS.getValueType());
1953        X86CC = X86::COND_NS;
1954        return true;
1955      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
1956        // X < 0   -> X == 0, jump on sign.
1957        X86CC = X86::COND_S;
1958        return true;
1959      } else if (SetCCOpcode == ISD::SETLT && RHSC->getValue() == 1) {
1960        // X < 1   -> X <= 0
1961        RHS = DAG.getConstant(0, RHS.getValueType());
1962        X86CC = X86::COND_LE;
1963        return true;
1964      }
1965    }
1966
1967    switch (SetCCOpcode) {
1968    default: break;
1969    case ISD::SETEQ:  X86CC = X86::COND_E;  break;
1970    case ISD::SETGT:  X86CC = X86::COND_G;  break;
1971    case ISD::SETGE:  X86CC = X86::COND_GE; break;
1972    case ISD::SETLT:  X86CC = X86::COND_L;  break;
1973    case ISD::SETLE:  X86CC = X86::COND_LE; break;
1974    case ISD::SETNE:  X86CC = X86::COND_NE; break;
1975    case ISD::SETULT: X86CC = X86::COND_B;  break;
1976    case ISD::SETUGT: X86CC = X86::COND_A;  break;
1977    case ISD::SETULE: X86CC = X86::COND_BE; break;
1978    case ISD::SETUGE: X86CC = X86::COND_AE; break;
1979    }
1980  } else {
1981    // On a floating point condition, the flags are set as follows:
1982    // ZF  PF  CF   op
1983    //  0 | 0 | 0 | X > Y
1984    //  0 | 0 | 1 | X < Y
1985    //  1 | 0 | 0 | X == Y
1986    //  1 | 1 | 1 | unordered
1987    bool Flip = false;
1988    switch (SetCCOpcode) {
1989    default: break;
1990    case ISD::SETUEQ:
1991    case ISD::SETEQ: X86CC = X86::COND_E;  break;
1992    case ISD::SETOLT: Flip = true; // Fallthrough
1993    case ISD::SETOGT:
1994    case ISD::SETGT: X86CC = X86::COND_A;  break;
1995    case ISD::SETOLE: Flip = true; // Fallthrough
1996    case ISD::SETOGE:
1997    case ISD::SETGE: X86CC = X86::COND_AE; break;
1998    case ISD::SETUGT: Flip = true; // Fallthrough
1999    case ISD::SETULT:
2000    case ISD::SETLT: X86CC = X86::COND_B;  break;
2001    case ISD::SETUGE: Flip = true; // Fallthrough
2002    case ISD::SETULE:
2003    case ISD::SETLE: X86CC = X86::COND_BE; break;
2004    case ISD::SETONE:
2005    case ISD::SETNE: X86CC = X86::COND_NE; break;
2006    case ISD::SETUO: X86CC = X86::COND_P;  break;
2007    case ISD::SETO:  X86CC = X86::COND_NP; break;
2008    }
2009    if (Flip)
2010      std::swap(LHS, RHS);
2011  }
2012
2013  return X86CC != X86::COND_INVALID;
2014}
2015
2016/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2017/// code. Current x86 isa includes the following FP cmov instructions:
2018/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2019static bool hasFPCMov(unsigned X86CC) {
2020  switch (X86CC) {
2021  default:
2022    return false;
2023  case X86::COND_B:
2024  case X86::COND_BE:
2025  case X86::COND_E:
2026  case X86::COND_P:
2027  case X86::COND_A:
2028  case X86::COND_AE:
2029  case X86::COND_NE:
2030  case X86::COND_NP:
2031    return true;
2032  }
2033}
2034
2035/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode.  Return
2036/// true if Op is undef or if its value falls within the specified range (L, H].
2037static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) {
2038  if (Op.getOpcode() == ISD::UNDEF)
2039    return true;
2040
2041  unsigned Val = cast<ConstantSDNode>(Op)->getValue();
2042  return (Val >= Low && Val < Hi);
2043}
2044
2045/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode.  Return
2046/// true if Op is undef or if its value equal to the specified value.
2047static bool isUndefOrEqual(SDOperand Op, unsigned Val) {
2048  if (Op.getOpcode() == ISD::UNDEF)
2049    return true;
2050  return cast<ConstantSDNode>(Op)->getValue() == Val;
2051}
2052
2053/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
2054/// specifies a shuffle of elements that is suitable for input to PSHUFD.
2055bool X86::isPSHUFDMask(SDNode *N) {
2056  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2057
2058  if (N->getNumOperands() != 2 && N->getNumOperands() != 4)
2059    return false;
2060
2061  // Check if the value doesn't reference the second vector.
2062  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2063    SDOperand Arg = N->getOperand(i);
2064    if (Arg.getOpcode() == ISD::UNDEF) continue;
2065    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2066    if (cast<ConstantSDNode>(Arg)->getValue() >= e)
2067      return false;
2068  }
2069
2070  return true;
2071}
2072
2073/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
2074/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
2075bool X86::isPSHUFHWMask(SDNode *N) {
2076  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2077
2078  if (N->getNumOperands() != 8)
2079    return false;
2080
2081  // Lower quadword copied in order.
2082  for (unsigned i = 0; i != 4; ++i) {
2083    SDOperand Arg = N->getOperand(i);
2084    if (Arg.getOpcode() == ISD::UNDEF) continue;
2085    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2086    if (cast<ConstantSDNode>(Arg)->getValue() != i)
2087      return false;
2088  }
2089
2090  // Upper quadword shuffled.
2091  for (unsigned i = 4; i != 8; ++i) {
2092    SDOperand Arg = N->getOperand(i);
2093    if (Arg.getOpcode() == ISD::UNDEF) continue;
2094    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2095    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2096    if (Val < 4 || Val > 7)
2097      return false;
2098  }
2099
2100  return true;
2101}
2102
2103/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
2104/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
2105bool X86::isPSHUFLWMask(SDNode *N) {
2106  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2107
2108  if (N->getNumOperands() != 8)
2109    return false;
2110
2111  // Upper quadword copied in order.
2112  for (unsigned i = 4; i != 8; ++i)
2113    if (!isUndefOrEqual(N->getOperand(i), i))
2114      return false;
2115
2116  // Lower quadword shuffled.
2117  for (unsigned i = 0; i != 4; ++i)
2118    if (!isUndefOrInRange(N->getOperand(i), 0, 4))
2119      return false;
2120
2121  return true;
2122}
2123
2124/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2125/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2126static bool isSHUFPMask(const SDOperand *Elems, unsigned NumElems) {
2127  if (NumElems != 2 && NumElems != 4) return false;
2128
2129  unsigned Half = NumElems / 2;
2130  for (unsigned i = 0; i < Half; ++i)
2131    if (!isUndefOrInRange(Elems[i], 0, NumElems))
2132      return false;
2133  for (unsigned i = Half; i < NumElems; ++i)
2134    if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2))
2135      return false;
2136
2137  return true;
2138}
2139
2140bool X86::isSHUFPMask(SDNode *N) {
2141  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2142  return ::isSHUFPMask(N->op_begin(), N->getNumOperands());
2143}
2144
2145/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2146/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2147/// half elements to come from vector 1 (which would equal the dest.) and
2148/// the upper half to come from vector 2.
2149static bool isCommutedSHUFP(const SDOperand *Ops, unsigned NumOps) {
2150  if (NumOps != 2 && NumOps != 4) return false;
2151
2152  unsigned Half = NumOps / 2;
2153  for (unsigned i = 0; i < Half; ++i)
2154    if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2))
2155      return false;
2156  for (unsigned i = Half; i < NumOps; ++i)
2157    if (!isUndefOrInRange(Ops[i], 0, NumOps))
2158      return false;
2159  return true;
2160}
2161
2162static bool isCommutedSHUFP(SDNode *N) {
2163  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2164  return isCommutedSHUFP(N->op_begin(), N->getNumOperands());
2165}
2166
2167/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2168/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2169bool X86::isMOVHLPSMask(SDNode *N) {
2170  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2171
2172  if (N->getNumOperands() != 4)
2173    return false;
2174
2175  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2176  return isUndefOrEqual(N->getOperand(0), 6) &&
2177         isUndefOrEqual(N->getOperand(1), 7) &&
2178         isUndefOrEqual(N->getOperand(2), 2) &&
2179         isUndefOrEqual(N->getOperand(3), 3);
2180}
2181
2182/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2183/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2184/// <2, 3, 2, 3>
2185bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
2186  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2187
2188  if (N->getNumOperands() != 4)
2189    return false;
2190
2191  // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
2192  return isUndefOrEqual(N->getOperand(0), 2) &&
2193         isUndefOrEqual(N->getOperand(1), 3) &&
2194         isUndefOrEqual(N->getOperand(2), 2) &&
2195         isUndefOrEqual(N->getOperand(3), 3);
2196}
2197
2198/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2199/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2200bool X86::isMOVLPMask(SDNode *N) {
2201  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2202
2203  unsigned NumElems = N->getNumOperands();
2204  if (NumElems != 2 && NumElems != 4)
2205    return false;
2206
2207  for (unsigned i = 0; i < NumElems/2; ++i)
2208    if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
2209      return false;
2210
2211  for (unsigned i = NumElems/2; i < NumElems; ++i)
2212    if (!isUndefOrEqual(N->getOperand(i), i))
2213      return false;
2214
2215  return true;
2216}
2217
2218/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
2219/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
2220/// and MOVLHPS.
2221bool X86::isMOVHPMask(SDNode *N) {
2222  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2223
2224  unsigned NumElems = N->getNumOperands();
2225  if (NumElems != 2 && NumElems != 4)
2226    return false;
2227
2228  for (unsigned i = 0; i < NumElems/2; ++i)
2229    if (!isUndefOrEqual(N->getOperand(i), i))
2230      return false;
2231
2232  for (unsigned i = 0; i < NumElems/2; ++i) {
2233    SDOperand Arg = N->getOperand(i + NumElems/2);
2234    if (!isUndefOrEqual(Arg, i + NumElems))
2235      return false;
2236  }
2237
2238  return true;
2239}
2240
2241/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2242/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2243bool static isUNPCKLMask(const SDOperand *Elts, unsigned NumElts,
2244                         bool V2IsSplat = false) {
2245  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2246    return false;
2247
2248  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2249    SDOperand BitI  = Elts[i];
2250    SDOperand BitI1 = Elts[i+1];
2251    if (!isUndefOrEqual(BitI, j))
2252      return false;
2253    if (V2IsSplat) {
2254      if (isUndefOrEqual(BitI1, NumElts))
2255        return false;
2256    } else {
2257      if (!isUndefOrEqual(BitI1, j + NumElts))
2258        return false;
2259    }
2260  }
2261
2262  return true;
2263}
2264
2265bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
2266  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2267  return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2268}
2269
2270/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2271/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2272bool static isUNPCKHMask(const SDOperand *Elts, unsigned NumElts,
2273                         bool V2IsSplat = false) {
2274  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2275    return false;
2276
2277  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2278    SDOperand BitI  = Elts[i];
2279    SDOperand BitI1 = Elts[i+1];
2280    if (!isUndefOrEqual(BitI, j + NumElts/2))
2281      return false;
2282    if (V2IsSplat) {
2283      if (isUndefOrEqual(BitI1, NumElts))
2284        return false;
2285    } else {
2286      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2287        return false;
2288    }
2289  }
2290
2291  return true;
2292}
2293
2294bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
2295  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2296  return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2297}
2298
2299/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2300/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2301/// <0, 0, 1, 1>
2302bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
2303  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2304
2305  unsigned NumElems = N->getNumOperands();
2306  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2307    return false;
2308
2309  for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
2310    SDOperand BitI  = N->getOperand(i);
2311    SDOperand BitI1 = N->getOperand(i+1);
2312
2313    if (!isUndefOrEqual(BitI, j))
2314      return false;
2315    if (!isUndefOrEqual(BitI1, j))
2316      return false;
2317  }
2318
2319  return true;
2320}
2321
2322/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2323/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2324/// <2, 2, 3, 3>
2325bool X86::isUNPCKH_v_undef_Mask(SDNode *N) {
2326  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2327
2328  unsigned NumElems = N->getNumOperands();
2329  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2330    return false;
2331
2332  for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2333    SDOperand BitI  = N->getOperand(i);
2334    SDOperand BitI1 = N->getOperand(i + 1);
2335
2336    if (!isUndefOrEqual(BitI, j))
2337      return false;
2338    if (!isUndefOrEqual(BitI1, j))
2339      return false;
2340  }
2341
2342  return true;
2343}
2344
2345/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2346/// specifies a shuffle of elements that is suitable for input to MOVSS,
2347/// MOVSD, and MOVD, i.e. setting the lowest element.
2348static bool isMOVLMask(const SDOperand *Elts, unsigned NumElts) {
2349  if (NumElts != 2 && NumElts != 4)
2350    return false;
2351
2352  if (!isUndefOrEqual(Elts[0], NumElts))
2353    return false;
2354
2355  for (unsigned i = 1; i < NumElts; ++i) {
2356    if (!isUndefOrEqual(Elts[i], i))
2357      return false;
2358  }
2359
2360  return true;
2361}
2362
2363bool X86::isMOVLMask(SDNode *N) {
2364  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2365  return ::isMOVLMask(N->op_begin(), N->getNumOperands());
2366}
2367
2368/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2369/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
2370/// element of vector 2 and the other elements to come from vector 1 in order.
2371static bool isCommutedMOVL(const SDOperand *Ops, unsigned NumOps,
2372                           bool V2IsSplat = false,
2373                           bool V2IsUndef = false) {
2374  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2375    return false;
2376
2377  if (!isUndefOrEqual(Ops[0], 0))
2378    return false;
2379
2380  for (unsigned i = 1; i < NumOps; ++i) {
2381    SDOperand Arg = Ops[i];
2382    if (!(isUndefOrEqual(Arg, i+NumOps) ||
2383          (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) ||
2384          (V2IsSplat && isUndefOrEqual(Arg, NumOps))))
2385      return false;
2386  }
2387
2388  return true;
2389}
2390
2391static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
2392                           bool V2IsUndef = false) {
2393  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2394  return isCommutedMOVL(N->op_begin(), N->getNumOperands(),
2395                        V2IsSplat, V2IsUndef);
2396}
2397
2398/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2399/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2400bool X86::isMOVSHDUPMask(SDNode *N) {
2401  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2402
2403  if (N->getNumOperands() != 4)
2404    return false;
2405
2406  // Expect 1, 1, 3, 3
2407  for (unsigned i = 0; i < 2; ++i) {
2408    SDOperand Arg = N->getOperand(i);
2409    if (Arg.getOpcode() == ISD::UNDEF) continue;
2410    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2411    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2412    if (Val != 1) return false;
2413  }
2414
2415  bool HasHi = false;
2416  for (unsigned i = 2; i < 4; ++i) {
2417    SDOperand Arg = N->getOperand(i);
2418    if (Arg.getOpcode() == ISD::UNDEF) continue;
2419    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2420    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2421    if (Val != 3) return false;
2422    HasHi = true;
2423  }
2424
2425  // Don't use movshdup if it can be done with a shufps.
2426  return HasHi;
2427}
2428
2429/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2430/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2431bool X86::isMOVSLDUPMask(SDNode *N) {
2432  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2433
2434  if (N->getNumOperands() != 4)
2435    return false;
2436
2437  // Expect 0, 0, 2, 2
2438  for (unsigned i = 0; i < 2; ++i) {
2439    SDOperand Arg = N->getOperand(i);
2440    if (Arg.getOpcode() == ISD::UNDEF) continue;
2441    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2442    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2443    if (Val != 0) return false;
2444  }
2445
2446  bool HasHi = false;
2447  for (unsigned i = 2; i < 4; ++i) {
2448    SDOperand Arg = N->getOperand(i);
2449    if (Arg.getOpcode() == ISD::UNDEF) continue;
2450    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2451    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2452    if (Val != 2) return false;
2453    HasHi = true;
2454  }
2455
2456  // Don't use movshdup if it can be done with a shufps.
2457  return HasHi;
2458}
2459
2460/// isIdentityMask - Return true if the specified VECTOR_SHUFFLE operand
2461/// specifies a identity operation on the LHS or RHS.
2462static bool isIdentityMask(SDNode *N, bool RHS = false) {
2463  unsigned NumElems = N->getNumOperands();
2464  for (unsigned i = 0; i < NumElems; ++i)
2465    if (!isUndefOrEqual(N->getOperand(i), i + (RHS ? NumElems : 0)))
2466      return false;
2467  return true;
2468}
2469
2470/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2471/// a splat of a single element.
2472static bool isSplatMask(SDNode *N) {
2473  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2474
2475  // This is a splat operation if each element of the permute is the same, and
2476  // if the value doesn't reference the second vector.
2477  unsigned NumElems = N->getNumOperands();
2478  SDOperand ElementBase;
2479  unsigned i = 0;
2480  for (; i != NumElems; ++i) {
2481    SDOperand Elt = N->getOperand(i);
2482    if (isa<ConstantSDNode>(Elt)) {
2483      ElementBase = Elt;
2484      break;
2485    }
2486  }
2487
2488  if (!ElementBase.Val)
2489    return false;
2490
2491  for (; i != NumElems; ++i) {
2492    SDOperand Arg = N->getOperand(i);
2493    if (Arg.getOpcode() == ISD::UNDEF) continue;
2494    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2495    if (Arg != ElementBase) return false;
2496  }
2497
2498  // Make sure it is a splat of the first vector operand.
2499  return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems;
2500}
2501
2502/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2503/// a splat of a single element and it's a 2 or 4 element mask.
2504bool X86::isSplatMask(SDNode *N) {
2505  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2506
2507  // We can only splat 64-bit, and 32-bit quantities with a single instruction.
2508  if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
2509    return false;
2510  return ::isSplatMask(N);
2511}
2512
2513/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
2514/// specifies a splat of zero element.
2515bool X86::isSplatLoMask(SDNode *N) {
2516  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2517
2518  for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
2519    if (!isUndefOrEqual(N->getOperand(i), 0))
2520      return false;
2521  return true;
2522}
2523
2524/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2525/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2526/// instructions.
2527unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2528  unsigned NumOperands = N->getNumOperands();
2529  unsigned Shift = (NumOperands == 4) ? 2 : 1;
2530  unsigned Mask = 0;
2531  for (unsigned i = 0; i < NumOperands; ++i) {
2532    unsigned Val = 0;
2533    SDOperand Arg = N->getOperand(NumOperands-i-1);
2534    if (Arg.getOpcode() != ISD::UNDEF)
2535      Val = cast<ConstantSDNode>(Arg)->getValue();
2536    if (Val >= NumOperands) Val -= NumOperands;
2537    Mask |= Val;
2538    if (i != NumOperands - 1)
2539      Mask <<= Shift;
2540  }
2541
2542  return Mask;
2543}
2544
2545/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2546/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2547/// instructions.
2548unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2549  unsigned Mask = 0;
2550  // 8 nodes, but we only care about the last 4.
2551  for (unsigned i = 7; i >= 4; --i) {
2552    unsigned Val = 0;
2553    SDOperand Arg = N->getOperand(i);
2554    if (Arg.getOpcode() != ISD::UNDEF)
2555      Val = cast<ConstantSDNode>(Arg)->getValue();
2556    Mask |= (Val - 4);
2557    if (i != 4)
2558      Mask <<= 2;
2559  }
2560
2561  return Mask;
2562}
2563
2564/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2565/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2566/// instructions.
2567unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2568  unsigned Mask = 0;
2569  // 8 nodes, but we only care about the first 4.
2570  for (int i = 3; i >= 0; --i) {
2571    unsigned Val = 0;
2572    SDOperand Arg = N->getOperand(i);
2573    if (Arg.getOpcode() != ISD::UNDEF)
2574      Val = cast<ConstantSDNode>(Arg)->getValue();
2575    Mask |= Val;
2576    if (i != 0)
2577      Mask <<= 2;
2578  }
2579
2580  return Mask;
2581}
2582
2583/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
2584/// specifies a 8 element shuffle that can be broken into a pair of
2585/// PSHUFHW and PSHUFLW.
2586static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
2587  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2588
2589  if (N->getNumOperands() != 8)
2590    return false;
2591
2592  // Lower quadword shuffled.
2593  for (unsigned i = 0; i != 4; ++i) {
2594    SDOperand Arg = N->getOperand(i);
2595    if (Arg.getOpcode() == ISD::UNDEF) continue;
2596    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2597    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2598    if (Val >= 4)
2599      return false;
2600  }
2601
2602  // Upper quadword shuffled.
2603  for (unsigned i = 4; i != 8; ++i) {
2604    SDOperand Arg = N->getOperand(i);
2605    if (Arg.getOpcode() == ISD::UNDEF) continue;
2606    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2607    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2608    if (Val < 4 || Val > 7)
2609      return false;
2610  }
2611
2612  return true;
2613}
2614
2615/// CommuteVectorShuffle - Swap vector_shuffle operands as well as
2616/// values in ther permute mask.
2617static SDOperand CommuteVectorShuffle(SDOperand Op, SDOperand &V1,
2618                                      SDOperand &V2, SDOperand &Mask,
2619                                      SelectionDAG &DAG) {
2620  MVT::ValueType VT = Op.getValueType();
2621  MVT::ValueType MaskVT = Mask.getValueType();
2622  MVT::ValueType EltVT = MVT::getVectorElementType(MaskVT);
2623  unsigned NumElems = Mask.getNumOperands();
2624  SmallVector<SDOperand, 8> MaskVec;
2625
2626  for (unsigned i = 0; i != NumElems; ++i) {
2627    SDOperand Arg = Mask.getOperand(i);
2628    if (Arg.getOpcode() == ISD::UNDEF) {
2629      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2630      continue;
2631    }
2632    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2633    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2634    if (Val < NumElems)
2635      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2636    else
2637      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2638  }
2639
2640  std::swap(V1, V2);
2641  Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], NumElems);
2642  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2643}
2644
2645/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
2646/// the two vector operands have swapped position.
2647static
2648SDOperand CommuteVectorShuffleMask(SDOperand Mask, SelectionDAG &DAG) {
2649  MVT::ValueType MaskVT = Mask.getValueType();
2650  MVT::ValueType EltVT = MVT::getVectorElementType(MaskVT);
2651  unsigned NumElems = Mask.getNumOperands();
2652  SmallVector<SDOperand, 8> MaskVec;
2653  for (unsigned i = 0; i != NumElems; ++i) {
2654    SDOperand Arg = Mask.getOperand(i);
2655    if (Arg.getOpcode() == ISD::UNDEF) {
2656      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2657      continue;
2658    }
2659    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2660    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2661    if (Val < NumElems)
2662      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2663    else
2664      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2665  }
2666  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], NumElems);
2667}
2668
2669
2670/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2671/// match movhlps. The lower half elements should come from upper half of
2672/// V1 (and in order), and the upper half elements should come from the upper
2673/// half of V2 (and in order).
2674static bool ShouldXformToMOVHLPS(SDNode *Mask) {
2675  unsigned NumElems = Mask->getNumOperands();
2676  if (NumElems != 4)
2677    return false;
2678  for (unsigned i = 0, e = 2; i != e; ++i)
2679    if (!isUndefOrEqual(Mask->getOperand(i), i+2))
2680      return false;
2681  for (unsigned i = 2; i != 4; ++i)
2682    if (!isUndefOrEqual(Mask->getOperand(i), i+4))
2683      return false;
2684  return true;
2685}
2686
2687/// isScalarLoadToVector - Returns true if the node is a scalar load that
2688/// is promoted to a vector.
2689static inline bool isScalarLoadToVector(SDNode *N) {
2690  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) {
2691    N = N->getOperand(0).Val;
2692    return ISD::isNON_EXTLoad(N);
2693  }
2694  return false;
2695}
2696
2697/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2698/// match movlp{s|d}. The lower half elements should come from lower half of
2699/// V1 (and in order), and the upper half elements should come from the upper
2700/// half of V2 (and in order). And since V1 will become the source of the
2701/// MOVLP, it must be either a vector load or a scalar load to vector.
2702static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
2703  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2704    return false;
2705  // Is V2 is a vector load, don't do this transformation. We will try to use
2706  // load folding shufps op.
2707  if (ISD::isNON_EXTLoad(V2))
2708    return false;
2709
2710  unsigned NumElems = Mask->getNumOperands();
2711  if (NumElems != 2 && NumElems != 4)
2712    return false;
2713  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2714    if (!isUndefOrEqual(Mask->getOperand(i), i))
2715      return false;
2716  for (unsigned i = NumElems/2; i != NumElems; ++i)
2717    if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
2718      return false;
2719  return true;
2720}
2721
2722/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2723/// all the same.
2724static bool isSplatVector(SDNode *N) {
2725  if (N->getOpcode() != ISD::BUILD_VECTOR)
2726    return false;
2727
2728  SDOperand SplatValue = N->getOperand(0);
2729  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2730    if (N->getOperand(i) != SplatValue)
2731      return false;
2732  return true;
2733}
2734
2735/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2736/// to an undef.
2737static bool isUndefShuffle(SDNode *N) {
2738  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2739    return false;
2740
2741  SDOperand V1 = N->getOperand(0);
2742  SDOperand V2 = N->getOperand(1);
2743  SDOperand Mask = N->getOperand(2);
2744  unsigned NumElems = Mask.getNumOperands();
2745  for (unsigned i = 0; i != NumElems; ++i) {
2746    SDOperand Arg = Mask.getOperand(i);
2747    if (Arg.getOpcode() != ISD::UNDEF) {
2748      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2749      if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
2750        return false;
2751      else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
2752        return false;
2753    }
2754  }
2755  return true;
2756}
2757
2758/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2759/// constant +0.0.
2760static inline bool isZeroNode(SDOperand Elt) {
2761  return ((isa<ConstantSDNode>(Elt) &&
2762           cast<ConstantSDNode>(Elt)->getValue() == 0) ||
2763          (isa<ConstantFPSDNode>(Elt) &&
2764           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
2765}
2766
2767/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2768/// to an zero vector.
2769static bool isZeroShuffle(SDNode *N) {
2770  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2771    return false;
2772
2773  SDOperand V1 = N->getOperand(0);
2774  SDOperand V2 = N->getOperand(1);
2775  SDOperand Mask = N->getOperand(2);
2776  unsigned NumElems = Mask.getNumOperands();
2777  for (unsigned i = 0; i != NumElems; ++i) {
2778    SDOperand Arg = Mask.getOperand(i);
2779    if (Arg.getOpcode() == ISD::UNDEF)
2780      continue;
2781
2782    unsigned Idx = cast<ConstantSDNode>(Arg)->getValue();
2783    if (Idx < NumElems) {
2784      unsigned Opc = V1.Val->getOpcode();
2785      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.Val))
2786        continue;
2787      if (Opc != ISD::BUILD_VECTOR ||
2788          !isZeroNode(V1.Val->getOperand(Idx)))
2789        return false;
2790    } else if (Idx >= NumElems) {
2791      unsigned Opc = V2.Val->getOpcode();
2792      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.Val))
2793        continue;
2794      if (Opc != ISD::BUILD_VECTOR ||
2795          !isZeroNode(V2.Val->getOperand(Idx - NumElems)))
2796        return false;
2797    }
2798  }
2799  return true;
2800}
2801
2802/// getZeroVector - Returns a vector of specified type with all zero elements.
2803///
2804static SDOperand getZeroVector(MVT::ValueType VT, SelectionDAG &DAG) {
2805  assert(MVT::isVector(VT) && "Expected a vector type");
2806
2807  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2808  // type.  This ensures they get CSE'd.
2809  SDOperand Cst = DAG.getTargetConstant(0, MVT::i32);
2810  SDOperand Vec;
2811  if (MVT::getSizeInBits(VT) == 64)  // MMX
2812    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst);
2813  else                                              // SSE
2814    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst);
2815  return DAG.getNode(ISD::BIT_CONVERT, VT, Vec);
2816}
2817
2818/// getOnesVector - Returns a vector of specified type with all bits set.
2819///
2820static SDOperand getOnesVector(MVT::ValueType VT, SelectionDAG &DAG) {
2821  assert(MVT::isVector(VT) && "Expected a vector type");
2822
2823  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2824  // type.  This ensures they get CSE'd.
2825  SDOperand Cst = DAG.getTargetConstant(~0U, MVT::i32);
2826  SDOperand Vec;
2827  if (MVT::getSizeInBits(VT) == 64)  // MMX
2828    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst);
2829  else                                              // SSE
2830    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst);
2831  return DAG.getNode(ISD::BIT_CONVERT, VT, Vec);
2832}
2833
2834
2835/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2836/// that point to V2 points to its first element.
2837static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) {
2838  assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
2839
2840  bool Changed = false;
2841  SmallVector<SDOperand, 8> MaskVec;
2842  unsigned NumElems = Mask.getNumOperands();
2843  for (unsigned i = 0; i != NumElems; ++i) {
2844    SDOperand Arg = Mask.getOperand(i);
2845    if (Arg.getOpcode() != ISD::UNDEF) {
2846      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2847      if (Val > NumElems) {
2848        Arg = DAG.getConstant(NumElems, Arg.getValueType());
2849        Changed = true;
2850      }
2851    }
2852    MaskVec.push_back(Arg);
2853  }
2854
2855  if (Changed)
2856    Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
2857                       &MaskVec[0], MaskVec.size());
2858  return Mask;
2859}
2860
2861/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2862/// operation of specified width.
2863static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
2864  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2865  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2866
2867  SmallVector<SDOperand, 8> MaskVec;
2868  MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
2869  for (unsigned i = 1; i != NumElems; ++i)
2870    MaskVec.push_back(DAG.getConstant(i, BaseVT));
2871  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2872}
2873
2874/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
2875/// of specified width.
2876static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
2877  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2878  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2879  SmallVector<SDOperand, 8> MaskVec;
2880  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
2881    MaskVec.push_back(DAG.getConstant(i,            BaseVT));
2882    MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
2883  }
2884  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2885}
2886
2887/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
2888/// of specified width.
2889static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
2890  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2891  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2892  unsigned Half = NumElems/2;
2893  SmallVector<SDOperand, 8> MaskVec;
2894  for (unsigned i = 0; i != Half; ++i) {
2895    MaskVec.push_back(DAG.getConstant(i + Half,            BaseVT));
2896    MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
2897  }
2898  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2899}
2900
2901/// getSwapEltZeroMask - Returns a vector_shuffle mask for a shuffle that swaps
2902/// element #0 of a vector with the specified index, leaving the rest of the
2903/// elements in place.
2904static SDOperand getSwapEltZeroMask(unsigned NumElems, unsigned DestElt,
2905                                   SelectionDAG &DAG) {
2906  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2907  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2908  SmallVector<SDOperand, 8> MaskVec;
2909  // Element #0 of the result gets the elt we are replacing.
2910  MaskVec.push_back(DAG.getConstant(DestElt, BaseVT));
2911  for (unsigned i = 1; i != NumElems; ++i)
2912    MaskVec.push_back(DAG.getConstant(i == DestElt ? 0 : i, BaseVT));
2913  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2914}
2915
2916/// PromoteSplat - Promote a splat of v8i16 or v16i8 to v4i32.
2917///
2918static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG) {
2919  SDOperand V1 = Op.getOperand(0);
2920  SDOperand Mask = Op.getOperand(2);
2921  MVT::ValueType VT = Op.getValueType();
2922  unsigned NumElems = Mask.getNumOperands();
2923  Mask = getUnpacklMask(NumElems, DAG);
2924  while (NumElems != 4) {
2925    V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
2926    NumElems >>= 1;
2927  }
2928  V1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, V1);
2929
2930  Mask = getZeroVector(MVT::v4i32, DAG);
2931  SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32, V1,
2932                                  DAG.getNode(ISD::UNDEF, MVT::v4i32), Mask);
2933  return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
2934}
2935
2936/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
2937/// vector of zero or undef vector.  This produces a shuffle where the low
2938/// element of V2 is swizzled into the zero/undef vector, landing at element
2939/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
2940static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, unsigned Idx,
2941                                             bool isZero, SelectionDAG &DAG) {
2942  MVT::ValueType VT = V2.getValueType();
2943  SDOperand V1 = isZero ? getZeroVector(VT, DAG) : DAG.getNode(ISD::UNDEF, VT);
2944  unsigned NumElems = MVT::getVectorNumElements(V2.getValueType());
2945  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2946  MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
2947  SmallVector<SDOperand, 16> MaskVec;
2948  for (unsigned i = 0; i != NumElems; ++i)
2949    if (i == Idx)  // If this is the insertion idx, put the low elt of V2 here.
2950      MaskVec.push_back(DAG.getConstant(NumElems, EVT));
2951    else
2952      MaskVec.push_back(DAG.getConstant(i, EVT));
2953  SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2954                               &MaskVec[0], MaskVec.size());
2955  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2956}
2957
2958/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
2959///
2960static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros,
2961                                       unsigned NumNonZero, unsigned NumZero,
2962                                       SelectionDAG &DAG, TargetLowering &TLI) {
2963  if (NumNonZero > 8)
2964    return SDOperand();
2965
2966  SDOperand V(0, 0);
2967  bool First = true;
2968  for (unsigned i = 0; i < 16; ++i) {
2969    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
2970    if (ThisIsNonZero && First) {
2971      if (NumZero)
2972        V = getZeroVector(MVT::v8i16, DAG);
2973      else
2974        V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2975      First = false;
2976    }
2977
2978    if ((i & 1) != 0) {
2979      SDOperand ThisElt(0, 0), LastElt(0, 0);
2980      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
2981      if (LastIsNonZero) {
2982        LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
2983      }
2984      if (ThisIsNonZero) {
2985        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
2986        ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
2987                              ThisElt, DAG.getConstant(8, MVT::i8));
2988        if (LastIsNonZero)
2989          ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
2990      } else
2991        ThisElt = LastElt;
2992
2993      if (ThisElt.Val)
2994        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
2995                        DAG.getIntPtrConstant(i/2));
2996    }
2997  }
2998
2999  return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
3000}
3001
3002/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3003///
3004static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros,
3005                                       unsigned NumNonZero, unsigned NumZero,
3006                                       SelectionDAG &DAG, TargetLowering &TLI) {
3007  if (NumNonZero > 4)
3008    return SDOperand();
3009
3010  SDOperand V(0, 0);
3011  bool First = true;
3012  for (unsigned i = 0; i < 8; ++i) {
3013    bool isNonZero = (NonZeros & (1 << i)) != 0;
3014    if (isNonZero) {
3015      if (First) {
3016        if (NumZero)
3017          V = getZeroVector(MVT::v8i16, DAG);
3018        else
3019          V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
3020        First = false;
3021      }
3022      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
3023                      DAG.getIntPtrConstant(i));
3024    }
3025  }
3026
3027  return V;
3028}
3029
3030SDOperand
3031X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
3032  // All zero's are handled with pxor, all one's are handled with pcmpeqd.
3033  if (ISD::isBuildVectorAllZeros(Op.Val) || ISD::isBuildVectorAllOnes(Op.Val)) {
3034    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3035    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3036    // eliminated on x86-32 hosts.
3037    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
3038      return Op;
3039
3040    if (ISD::isBuildVectorAllOnes(Op.Val))
3041      return getOnesVector(Op.getValueType(), DAG);
3042    return getZeroVector(Op.getValueType(), DAG);
3043  }
3044
3045  MVT::ValueType VT = Op.getValueType();
3046  MVT::ValueType EVT = MVT::getVectorElementType(VT);
3047  unsigned EVTBits = MVT::getSizeInBits(EVT);
3048
3049  unsigned NumElems = Op.getNumOperands();
3050  unsigned NumZero  = 0;
3051  unsigned NumNonZero = 0;
3052  unsigned NonZeros = 0;
3053  bool IsAllConstants = true;
3054  SmallSet<SDOperand, 8> Values;
3055  for (unsigned i = 0; i < NumElems; ++i) {
3056    SDOperand Elt = Op.getOperand(i);
3057    if (Elt.getOpcode() == ISD::UNDEF)
3058      continue;
3059    Values.insert(Elt);
3060    if (Elt.getOpcode() != ISD::Constant &&
3061        Elt.getOpcode() != ISD::ConstantFP)
3062      IsAllConstants = false;
3063    if (isZeroNode(Elt))
3064      NumZero++;
3065    else {
3066      NonZeros |= (1 << i);
3067      NumNonZero++;
3068    }
3069  }
3070
3071  if (NumNonZero == 0) {
3072    // All undef vector. Return an UNDEF.  All zero vectors were handled above.
3073    return DAG.getNode(ISD::UNDEF, VT);
3074  }
3075
3076  // Special case for single non-zero, non-undef, element.
3077  if (NumNonZero == 1 && NumElems <= 4) {
3078    unsigned Idx = CountTrailingZeros_32(NonZeros);
3079    SDOperand Item = Op.getOperand(Idx);
3080
3081    // If this is an insertion of an i64 value on x86-32, and if the top bits of
3082    // the value are obviously zero, truncate the value to i32 and do the
3083    // insertion that way.  Only do this if the value is non-constant or if the
3084    // value is a constant being inserted into element 0.  It is cheaper to do
3085    // a constant pool load than it is to do a movd + shuffle.
3086    if (EVT == MVT::i64 && !Subtarget->is64Bit() &&
3087        (!IsAllConstants || Idx == 0)) {
3088      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
3089        // Handle MMX and SSE both.
3090        MVT::ValueType VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
3091        MVT::ValueType VecElts = VT == MVT::v2i64 ? 4 : 2;
3092
3093        // Truncate the value (which may itself be a constant) to i32, and
3094        // convert it to a vector with movd (S2V+shuffle to zero extend).
3095        Item = DAG.getNode(ISD::TRUNCATE, MVT::i32, Item);
3096        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VecVT, Item);
3097        Item = getShuffleVectorZeroOrUndef(Item, 0, true, DAG);
3098
3099        // Now we have our 32-bit value zero extended in the low element of
3100        // a vector.  If Idx != 0, swizzle it into place.
3101        if (Idx != 0) {
3102          SDOperand Ops[] = {
3103            Item, DAG.getNode(ISD::UNDEF, Item.getValueType()),
3104            getSwapEltZeroMask(VecElts, Idx, DAG)
3105          };
3106          Item = DAG.getNode(ISD::VECTOR_SHUFFLE, VecVT, Ops, 3);
3107        }
3108        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Item);
3109      }
3110    }
3111
3112    // If we have a constant or non-constant insertion into the low element of
3113    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3114    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
3115    // depending on what the source datatype is.  Because we can only get here
3116    // when NumElems <= 4, this only needs to handle i32/f32/i64/f64.
3117    if (Idx == 0 &&
3118        // Don't do this for i64 values on x86-32.
3119        (EVT != MVT::i64 || Subtarget->is64Bit())) {
3120      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
3121      // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3122      return getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, DAG);
3123    }
3124
3125    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
3126      return SDOperand();
3127
3128    // Otherwise, if this is a vector with i32 or f32 elements, and the element
3129    // is a non-constant being inserted into an element other than the low one,
3130    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
3131    // movd/movss) to move this into the low element, then shuffle it into
3132    // place.
3133    if (EVTBits == 32) {
3134      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
3135
3136      // Turn it into a shuffle of zero and zero-extended scalar to vector.
3137      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, DAG);
3138      MVT::ValueType MaskVT  = MVT::getIntVectorWithNumElements(NumElems);
3139      MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
3140      SmallVector<SDOperand, 8> MaskVec;
3141      for (unsigned i = 0; i < NumElems; i++)
3142        MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
3143      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3144                                   &MaskVec[0], MaskVec.size());
3145      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
3146                         DAG.getNode(ISD::UNDEF, VT), Mask);
3147    }
3148  }
3149
3150  // Splat is obviously ok. Let legalizer expand it to a shuffle.
3151  if (Values.size() == 1)
3152    return SDOperand();
3153
3154  // A vector full of immediates; various special cases are already
3155  // handled, so this is best done with a single constant-pool load.
3156  if (IsAllConstants)
3157    return SDOperand();
3158
3159  // Let legalizer expand 2-wide build_vectors.
3160  if (EVTBits == 64)
3161    return SDOperand();
3162
3163  // If element VT is < 32 bits, convert it to inserts into a zero vector.
3164  if (EVTBits == 8 && NumElems == 16) {
3165    SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3166                                        *this);
3167    if (V.Val) return V;
3168  }
3169
3170  if (EVTBits == 16 && NumElems == 8) {
3171    SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3172                                        *this);
3173    if (V.Val) return V;
3174  }
3175
3176  // If element VT is == 32 bits, turn it into a number of shuffles.
3177  SmallVector<SDOperand, 8> V;
3178  V.resize(NumElems);
3179  if (NumElems == 4 && NumZero > 0) {
3180    for (unsigned i = 0; i < 4; ++i) {
3181      bool isZero = !(NonZeros & (1 << i));
3182      if (isZero)
3183        V[i] = getZeroVector(VT, DAG);
3184      else
3185        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3186    }
3187
3188    for (unsigned i = 0; i < 2; ++i) {
3189      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3190        default: break;
3191        case 0:
3192          V[i] = V[i*2];  // Must be a zero vector.
3193          break;
3194        case 1:
3195          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
3196                             getMOVLMask(NumElems, DAG));
3197          break;
3198        case 2:
3199          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3200                             getMOVLMask(NumElems, DAG));
3201          break;
3202        case 3:
3203          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3204                             getUnpacklMask(NumElems, DAG));
3205          break;
3206      }
3207    }
3208
3209    // Take advantage of the fact GR32 to VR128 scalar_to_vector (i.e. movd)
3210    // clears the upper bits.
3211    // FIXME: we can do the same for v4f32 case when we know both parts of
3212    // the lower half come from scalar_to_vector (loadf32). We should do
3213    // that in post legalizer dag combiner with target specific hooks.
3214    if (MVT::isInteger(EVT) && (NonZeros & (0x3 << 2)) == 0)
3215      return V[0];
3216    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3217    MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
3218    SmallVector<SDOperand, 8> MaskVec;
3219    bool Reverse = (NonZeros & 0x3) == 2;
3220    for (unsigned i = 0; i < 2; ++i)
3221      if (Reverse)
3222        MaskVec.push_back(DAG.getConstant(1-i, EVT));
3223      else
3224        MaskVec.push_back(DAG.getConstant(i, EVT));
3225    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3226    for (unsigned i = 0; i < 2; ++i)
3227      if (Reverse)
3228        MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
3229      else
3230        MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
3231    SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3232                                     &MaskVec[0], MaskVec.size());
3233    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
3234  }
3235
3236  if (Values.size() > 2) {
3237    // Expand into a number of unpckl*.
3238    // e.g. for v4f32
3239    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3240    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3241    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
3242    SDOperand UnpckMask = getUnpacklMask(NumElems, DAG);
3243    for (unsigned i = 0; i < NumElems; ++i)
3244      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3245    NumElems >>= 1;
3246    while (NumElems != 0) {
3247      for (unsigned i = 0; i < NumElems; ++i)
3248        V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
3249                           UnpckMask);
3250      NumElems >>= 1;
3251    }
3252    return V[0];
3253  }
3254
3255  return SDOperand();
3256}
3257
3258static
3259SDOperand LowerVECTOR_SHUFFLEv8i16(SDOperand V1, SDOperand V2,
3260                                   SDOperand PermMask, SelectionDAG &DAG,
3261                                   TargetLowering &TLI) {
3262  SDOperand NewV;
3263  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(8);
3264  MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
3265  MVT::ValueType PtrVT = TLI.getPointerTy();
3266  SmallVector<SDOperand, 8> MaskElts(PermMask.Val->op_begin(),
3267                                     PermMask.Val->op_end());
3268
3269  // First record which half of which vector the low elements come from.
3270  SmallVector<unsigned, 4> LowQuad(4);
3271  for (unsigned i = 0; i < 4; ++i) {
3272    SDOperand Elt = MaskElts[i];
3273    if (Elt.getOpcode() == ISD::UNDEF)
3274      continue;
3275    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3276    int QuadIdx = EltIdx / 4;
3277    ++LowQuad[QuadIdx];
3278  }
3279  int BestLowQuad = -1;
3280  unsigned MaxQuad = 1;
3281  for (unsigned i = 0; i < 4; ++i) {
3282    if (LowQuad[i] > MaxQuad) {
3283      BestLowQuad = i;
3284      MaxQuad = LowQuad[i];
3285    }
3286  }
3287
3288  // Record which half of which vector the high elements come from.
3289  SmallVector<unsigned, 4> HighQuad(4);
3290  for (unsigned i = 4; i < 8; ++i) {
3291    SDOperand Elt = MaskElts[i];
3292    if (Elt.getOpcode() == ISD::UNDEF)
3293      continue;
3294    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3295    int QuadIdx = EltIdx / 4;
3296    ++HighQuad[QuadIdx];
3297  }
3298  int BestHighQuad = -1;
3299  MaxQuad = 1;
3300  for (unsigned i = 0; i < 4; ++i) {
3301    if (HighQuad[i] > MaxQuad) {
3302      BestHighQuad = i;
3303      MaxQuad = HighQuad[i];
3304    }
3305  }
3306
3307  // If it's possible to sort parts of either half with PSHUF{H|L}W, then do it.
3308  if (BestLowQuad != -1 || BestHighQuad != -1) {
3309    // First sort the 4 chunks in order using shufpd.
3310    SmallVector<SDOperand, 8> MaskVec;
3311    if (BestLowQuad != -1)
3312      MaskVec.push_back(DAG.getConstant(BestLowQuad, MVT::i32));
3313    else
3314      MaskVec.push_back(DAG.getConstant(0, MVT::i32));
3315    if (BestHighQuad != -1)
3316      MaskVec.push_back(DAG.getConstant(BestHighQuad, MVT::i32));
3317    else
3318      MaskVec.push_back(DAG.getConstant(1, MVT::i32));
3319    SDOperand Mask= DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, &MaskVec[0],2);
3320    NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v2i64,
3321                       DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, V1),
3322                       DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, V2), Mask);
3323    NewV = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, NewV);
3324
3325    // Now sort high and low parts separately.
3326    BitVector InOrder(8);
3327    if (BestLowQuad != -1) {
3328      // Sort lower half in order using PSHUFLW.
3329      MaskVec.clear();
3330      bool AnyOutOrder = false;
3331      for (unsigned i = 0; i != 4; ++i) {
3332        SDOperand Elt = MaskElts[i];
3333        if (Elt.getOpcode() == ISD::UNDEF) {
3334          MaskVec.push_back(Elt);
3335          InOrder.set(i);
3336        } else {
3337          unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3338          if (EltIdx != i)
3339            AnyOutOrder = true;
3340          MaskVec.push_back(DAG.getConstant(EltIdx % 4, MaskEVT));
3341          // If this element is in the right place after this shuffle, then
3342          // remember it.
3343          if ((int)(EltIdx / 4) == BestLowQuad)
3344            InOrder.set(i);
3345        }
3346      }
3347      if (AnyOutOrder) {
3348        for (unsigned i = 4; i != 8; ++i)
3349          MaskVec.push_back(DAG.getConstant(i, MaskEVT));
3350        SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3351        NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, NewV, NewV, Mask);
3352      }
3353    }
3354
3355    if (BestHighQuad != -1) {
3356      // Sort high half in order using PSHUFHW if possible.
3357      MaskVec.clear();
3358      for (unsigned i = 0; i != 4; ++i)
3359        MaskVec.push_back(DAG.getConstant(i, MaskEVT));
3360      bool AnyOutOrder = false;
3361      for (unsigned i = 4; i != 8; ++i) {
3362        SDOperand Elt = MaskElts[i];
3363        if (Elt.getOpcode() == ISD::UNDEF) {
3364          MaskVec.push_back(Elt);
3365          InOrder.set(i);
3366        } else {
3367          unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3368          if (EltIdx != i)
3369            AnyOutOrder = true;
3370          MaskVec.push_back(DAG.getConstant((EltIdx % 4) + 4, MaskEVT));
3371          // If this element is in the right place after this shuffle, then
3372          // remember it.
3373          if ((int)(EltIdx / 4) == BestHighQuad)
3374            InOrder.set(i);
3375        }
3376      }
3377      if (AnyOutOrder) {
3378        SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3379        NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, NewV, NewV, Mask);
3380      }
3381    }
3382
3383    // The other elements are put in the right place using pextrw and pinsrw.
3384    for (unsigned i = 0; i != 8; ++i) {
3385      if (InOrder[i])
3386        continue;
3387      SDOperand Elt = MaskElts[i];
3388      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3389      if (EltIdx == i)
3390        continue;
3391      SDOperand ExtOp = (EltIdx < 8)
3392        ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V1,
3393                      DAG.getConstant(EltIdx, PtrVT))
3394        : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V2,
3395                      DAG.getConstant(EltIdx - 8, PtrVT));
3396      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3397                         DAG.getConstant(i, PtrVT));
3398    }
3399    return NewV;
3400  }
3401
3402  // PSHUF{H|L}W are not used. Lower into extracts and inserts but try to use
3403  ///as few as possible.
3404  // First, let's find out how many elements are already in the right order.
3405  unsigned V1InOrder = 0;
3406  unsigned V1FromV1 = 0;
3407  unsigned V2InOrder = 0;
3408  unsigned V2FromV2 = 0;
3409  SmallVector<SDOperand, 8> V1Elts;
3410  SmallVector<SDOperand, 8> V2Elts;
3411  for (unsigned i = 0; i < 8; ++i) {
3412    SDOperand Elt = MaskElts[i];
3413    if (Elt.getOpcode() == ISD::UNDEF) {
3414      V1Elts.push_back(Elt);
3415      V2Elts.push_back(Elt);
3416      ++V1InOrder;
3417      ++V2InOrder;
3418      continue;
3419    }
3420    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3421    if (EltIdx == i) {
3422      V1Elts.push_back(Elt);
3423      V2Elts.push_back(DAG.getConstant(i+8, MaskEVT));
3424      ++V1InOrder;
3425    } else if (EltIdx == i+8) {
3426      V1Elts.push_back(Elt);
3427      V2Elts.push_back(DAG.getConstant(i, MaskEVT));
3428      ++V2InOrder;
3429    } else if (EltIdx < 8) {
3430      V1Elts.push_back(Elt);
3431      ++V1FromV1;
3432    } else {
3433      V2Elts.push_back(DAG.getConstant(EltIdx-8, MaskEVT));
3434      ++V2FromV2;
3435    }
3436  }
3437
3438  if (V2InOrder > V1InOrder) {
3439    PermMask = CommuteVectorShuffleMask(PermMask, DAG);
3440    std::swap(V1, V2);
3441    std::swap(V1Elts, V2Elts);
3442    std::swap(V1FromV1, V2FromV2);
3443  }
3444
3445  if ((V1FromV1 + V1InOrder) != 8) {
3446    // Some elements are from V2.
3447    if (V1FromV1) {
3448      // If there are elements that are from V1 but out of place,
3449      // then first sort them in place
3450      SmallVector<SDOperand, 8> MaskVec;
3451      for (unsigned i = 0; i < 8; ++i) {
3452        SDOperand Elt = V1Elts[i];
3453        if (Elt.getOpcode() == ISD::UNDEF) {
3454          MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3455          continue;
3456        }
3457        unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3458        if (EltIdx >= 8)
3459          MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3460        else
3461          MaskVec.push_back(DAG.getConstant(EltIdx, MaskEVT));
3462      }
3463      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3464      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, V1, V1, Mask);
3465    }
3466
3467    NewV = V1;
3468    for (unsigned i = 0; i < 8; ++i) {
3469      SDOperand Elt = V1Elts[i];
3470      if (Elt.getOpcode() == ISD::UNDEF)
3471        continue;
3472      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3473      if (EltIdx < 8)
3474        continue;
3475      SDOperand ExtOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V2,
3476                                    DAG.getConstant(EltIdx - 8, PtrVT));
3477      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3478                         DAG.getConstant(i, PtrVT));
3479    }
3480    return NewV;
3481  } else {
3482    // All elements are from V1.
3483    NewV = V1;
3484    for (unsigned i = 0; i < 8; ++i) {
3485      SDOperand Elt = V1Elts[i];
3486      if (Elt.getOpcode() == ISD::UNDEF)
3487        continue;
3488      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3489      SDOperand ExtOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V1,
3490                                    DAG.getConstant(EltIdx, PtrVT));
3491      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3492                         DAG.getConstant(i, PtrVT));
3493    }
3494    return NewV;
3495  }
3496}
3497
3498/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
3499/// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
3500/// done when every pair / quad of shuffle mask elements point to elements in
3501/// the right sequence. e.g.
3502/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
3503static
3504SDOperand RewriteAsNarrowerShuffle(SDOperand V1, SDOperand V2,
3505                                MVT::ValueType VT,
3506                                SDOperand PermMask, SelectionDAG &DAG,
3507                                TargetLowering &TLI) {
3508  unsigned NumElems = PermMask.getNumOperands();
3509  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
3510  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
3511  MVT::ValueType NewVT = MaskVT;
3512  switch (VT) {
3513  case MVT::v4f32: NewVT = MVT::v2f64; break;
3514  case MVT::v4i32: NewVT = MVT::v2i64; break;
3515  case MVT::v8i16: NewVT = MVT::v4i32; break;
3516  case MVT::v16i8: NewVT = MVT::v4i32; break;
3517  default: assert(false && "Unexpected!");
3518  }
3519
3520  if (NewWidth == 2) {
3521    if (MVT::isInteger(VT))
3522      NewVT = MVT::v2i64;
3523    else
3524      NewVT = MVT::v2f64;
3525  }
3526  unsigned Scale = NumElems / NewWidth;
3527  SmallVector<SDOperand, 8> MaskVec;
3528  for (unsigned i = 0; i < NumElems; i += Scale) {
3529    unsigned StartIdx = ~0U;
3530    for (unsigned j = 0; j < Scale; ++j) {
3531      SDOperand Elt = PermMask.getOperand(i+j);
3532      if (Elt.getOpcode() == ISD::UNDEF)
3533        continue;
3534      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3535      if (StartIdx == ~0U)
3536        StartIdx = EltIdx - (EltIdx % Scale);
3537      if (EltIdx != StartIdx + j)
3538        return SDOperand();
3539    }
3540    if (StartIdx == ~0U)
3541      MaskVec.push_back(DAG.getNode(ISD::UNDEF, MVT::i32));
3542    else
3543      MaskVec.push_back(DAG.getConstant(StartIdx / Scale, MVT::i32));
3544  }
3545
3546  V1 = DAG.getNode(ISD::BIT_CONVERT, NewVT, V1);
3547  V2 = DAG.getNode(ISD::BIT_CONVERT, NewVT, V2);
3548  return DAG.getNode(ISD::VECTOR_SHUFFLE, NewVT, V1, V2,
3549                     DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3550                                 &MaskVec[0], MaskVec.size()));
3551}
3552
3553SDOperand
3554X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
3555  SDOperand V1 = Op.getOperand(0);
3556  SDOperand V2 = Op.getOperand(1);
3557  SDOperand PermMask = Op.getOperand(2);
3558  MVT::ValueType VT = Op.getValueType();
3559  unsigned NumElems = PermMask.getNumOperands();
3560  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
3561  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
3562  bool V1IsSplat = false;
3563  bool V2IsSplat = false;
3564
3565  if (isUndefShuffle(Op.Val))
3566    return DAG.getNode(ISD::UNDEF, VT);
3567
3568  if (isZeroShuffle(Op.Val))
3569    return getZeroVector(VT, DAG);
3570
3571  if (isIdentityMask(PermMask.Val))
3572    return V1;
3573  else if (isIdentityMask(PermMask.Val, true))
3574    return V2;
3575
3576  if (isSplatMask(PermMask.Val)) {
3577    if (NumElems <= 4) return Op;
3578    // Promote it to a v4i32 splat.
3579    return PromoteSplat(Op, DAG);
3580  }
3581
3582  // If the shuffle can be profitably rewritten as a narrower shuffle, then
3583  // do it!
3584  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
3585    SDOperand NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask, DAG, *this);
3586    if (NewOp.Val)
3587      return DAG.getNode(ISD::BIT_CONVERT, VT, LowerVECTOR_SHUFFLE(NewOp, DAG));
3588  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
3589    // FIXME: Figure out a cleaner way to do this.
3590    // Try to make use of movq to zero out the top part.
3591    if (ISD::isBuildVectorAllZeros(V2.Val)) {
3592      SDOperand NewOp = RewriteAsNarrowerShuffle(V1, V2, VT, PermMask, DAG, *this);
3593      if (NewOp.Val) {
3594        SDOperand NewV1 = NewOp.getOperand(0);
3595        SDOperand NewV2 = NewOp.getOperand(1);
3596        SDOperand NewMask = NewOp.getOperand(2);
3597        if (isCommutedMOVL(NewMask.Val, true, false)) {
3598          NewOp = CommuteVectorShuffle(NewOp, NewV1, NewV2, NewMask, DAG);
3599          NewOp = DAG.getNode(ISD::VECTOR_SHUFFLE, NewOp.getValueType(),
3600                              NewV1, NewV2, getMOVLMask(2, DAG));
3601          return DAG.getNode(ISD::BIT_CONVERT, VT, LowerVECTOR_SHUFFLE(NewOp, DAG));
3602        }
3603      }
3604    } else if (ISD::isBuildVectorAllZeros(V1.Val)) {
3605      SDOperand NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask, DAG, *this);
3606      if (NewOp.Val && X86::isMOVLMask(NewOp.getOperand(2).Val))
3607        return DAG.getNode(ISD::BIT_CONVERT, VT, LowerVECTOR_SHUFFLE(NewOp, DAG));
3608    }
3609  }
3610
3611  if (X86::isMOVLMask(PermMask.Val))
3612    return (V1IsUndef) ? V2 : Op;
3613
3614  if (X86::isMOVSHDUPMask(PermMask.Val) ||
3615      X86::isMOVSLDUPMask(PermMask.Val) ||
3616      X86::isMOVHLPSMask(PermMask.Val) ||
3617      X86::isMOVHPMask(PermMask.Val) ||
3618      X86::isMOVLPMask(PermMask.Val))
3619    return Op;
3620
3621  if (ShouldXformToMOVHLPS(PermMask.Val) ||
3622      ShouldXformToMOVLP(V1.Val, V2.Val, PermMask.Val))
3623    return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3624
3625  bool Commuted = false;
3626  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
3627  // 1,1,1,1 -> v8i16 though.
3628  V1IsSplat = isSplatVector(V1.Val);
3629  V2IsSplat = isSplatVector(V2.Val);
3630
3631  // Canonicalize the splat or undef, if present, to be on the RHS.
3632  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
3633    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3634    std::swap(V1IsSplat, V2IsSplat);
3635    std::swap(V1IsUndef, V2IsUndef);
3636    Commuted = true;
3637  }
3638
3639  // FIXME: Figure out a cleaner way to do this.
3640  if (isCommutedMOVL(PermMask.Val, V2IsSplat, V2IsUndef)) {
3641    if (V2IsUndef) return V1;
3642    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3643    if (V2IsSplat) {
3644      // V2 is a splat, so the mask may be malformed. That is, it may point
3645      // to any V2 element. The instruction selectior won't like this. Get
3646      // a corrected mask and commute to form a proper MOVS{S|D}.
3647      SDOperand NewMask = getMOVLMask(NumElems, DAG);
3648      if (NewMask.Val != PermMask.Val)
3649        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3650    }
3651    return Op;
3652  }
3653
3654  if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
3655      X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
3656      X86::isUNPCKLMask(PermMask.Val) ||
3657      X86::isUNPCKHMask(PermMask.Val))
3658    return Op;
3659
3660  if (V2IsSplat) {
3661    // Normalize mask so all entries that point to V2 points to its first
3662    // element then try to match unpck{h|l} again. If match, return a
3663    // new vector_shuffle with the corrected mask.
3664    SDOperand NewMask = NormalizeMask(PermMask, DAG);
3665    if (NewMask.Val != PermMask.Val) {
3666      if (X86::isUNPCKLMask(PermMask.Val, true)) {
3667        SDOperand NewMask = getUnpacklMask(NumElems, DAG);
3668        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3669      } else if (X86::isUNPCKHMask(PermMask.Val, true)) {
3670        SDOperand NewMask = getUnpackhMask(NumElems, DAG);
3671        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3672      }
3673    }
3674  }
3675
3676  // Normalize the node to match x86 shuffle ops if needed
3677  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.Val))
3678      Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3679
3680  if (Commuted) {
3681    // Commute is back and try unpck* again.
3682    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3683    if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
3684        X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
3685        X86::isUNPCKLMask(PermMask.Val) ||
3686        X86::isUNPCKHMask(PermMask.Val))
3687      return Op;
3688  }
3689
3690  // If VT is integer, try PSHUF* first, then SHUFP*.
3691  if (MVT::isInteger(VT)) {
3692    // MMX doesn't have PSHUFD; it does have PSHUFW. While it's theoretically
3693    // possible to shuffle a v2i32 using PSHUFW, that's not yet implemented.
3694    if (((MVT::getSizeInBits(VT) != 64 || NumElems == 4) &&
3695         X86::isPSHUFDMask(PermMask.Val)) ||
3696        X86::isPSHUFHWMask(PermMask.Val) ||
3697        X86::isPSHUFLWMask(PermMask.Val)) {
3698      if (V2.getOpcode() != ISD::UNDEF)
3699        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
3700                           DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
3701      return Op;
3702    }
3703
3704    if (X86::isSHUFPMask(PermMask.Val) &&
3705        MVT::getSizeInBits(VT) != 64)    // Don't do this for MMX.
3706      return Op;
3707  } else {
3708    // Floating point cases in the other order.
3709    if (X86::isSHUFPMask(PermMask.Val))
3710      return Op;
3711    if (X86::isPSHUFDMask(PermMask.Val) ||
3712        X86::isPSHUFHWMask(PermMask.Val) ||
3713        X86::isPSHUFLWMask(PermMask.Val)) {
3714      if (V2.getOpcode() != ISD::UNDEF)
3715        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
3716                           DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
3717      return Op;
3718    }
3719  }
3720
3721  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
3722  if (VT == MVT::v8i16) {
3723    SDOperand NewOp = LowerVECTOR_SHUFFLEv8i16(V1, V2, PermMask, DAG, *this);
3724    if (NewOp.Val)
3725      return NewOp;
3726  }
3727
3728  // Handle all 4 wide cases with a number of shuffles.
3729  if (NumElems == 4 && MVT::getSizeInBits(VT) != 64) {
3730    // Don't do this for MMX.
3731    MVT::ValueType MaskVT = PermMask.getValueType();
3732    MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
3733    SmallVector<std::pair<int, int>, 8> Locs;
3734    Locs.reserve(NumElems);
3735    SmallVector<SDOperand, 8> Mask1(NumElems,
3736                                    DAG.getNode(ISD::UNDEF, MaskEVT));
3737    SmallVector<SDOperand, 8> Mask2(NumElems,
3738                                    DAG.getNode(ISD::UNDEF, MaskEVT));
3739    unsigned NumHi = 0;
3740    unsigned NumLo = 0;
3741    // If no more than two elements come from either vector. This can be
3742    // implemented with two shuffles. First shuffle gather the elements.
3743    // The second shuffle, which takes the first shuffle as both of its
3744    // vector operands, put the elements into the right order.
3745    for (unsigned i = 0; i != NumElems; ++i) {
3746      SDOperand Elt = PermMask.getOperand(i);
3747      if (Elt.getOpcode() == ISD::UNDEF) {
3748        Locs[i] = std::make_pair(-1, -1);
3749      } else {
3750        unsigned Val = cast<ConstantSDNode>(Elt)->getValue();
3751        if (Val < NumElems) {
3752          Locs[i] = std::make_pair(0, NumLo);
3753          Mask1[NumLo] = Elt;
3754          NumLo++;
3755        } else {
3756          Locs[i] = std::make_pair(1, NumHi);
3757          if (2+NumHi < NumElems)
3758            Mask1[2+NumHi] = Elt;
3759          NumHi++;
3760        }
3761      }
3762    }
3763    if (NumLo <= 2 && NumHi <= 2) {
3764      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3765                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3766                                   &Mask1[0], Mask1.size()));
3767      for (unsigned i = 0; i != NumElems; ++i) {
3768        if (Locs[i].first == -1)
3769          continue;
3770        else {
3771          unsigned Idx = (i < NumElems/2) ? 0 : NumElems;
3772          Idx += Locs[i].first * (NumElems/2) + Locs[i].second;
3773          Mask2[i] = DAG.getConstant(Idx, MaskEVT);
3774        }
3775      }
3776
3777      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
3778                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3779                                     &Mask2[0], Mask2.size()));
3780    }
3781
3782    // Break it into (shuffle shuffle_hi, shuffle_lo).
3783    Locs.clear();
3784    SmallVector<SDOperand,8> LoMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3785    SmallVector<SDOperand,8> HiMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3786    SmallVector<SDOperand,8> *MaskPtr = &LoMask;
3787    unsigned MaskIdx = 0;
3788    unsigned LoIdx = 0;
3789    unsigned HiIdx = NumElems/2;
3790    for (unsigned i = 0; i != NumElems; ++i) {
3791      if (i == NumElems/2) {
3792        MaskPtr = &HiMask;
3793        MaskIdx = 1;
3794        LoIdx = 0;
3795        HiIdx = NumElems/2;
3796      }
3797      SDOperand Elt = PermMask.getOperand(i);
3798      if (Elt.getOpcode() == ISD::UNDEF) {
3799        Locs[i] = std::make_pair(-1, -1);
3800      } else if (cast<ConstantSDNode>(Elt)->getValue() < NumElems) {
3801        Locs[i] = std::make_pair(MaskIdx, LoIdx);
3802        (*MaskPtr)[LoIdx] = Elt;
3803        LoIdx++;
3804      } else {
3805        Locs[i] = std::make_pair(MaskIdx, HiIdx);
3806        (*MaskPtr)[HiIdx] = Elt;
3807        HiIdx++;
3808      }
3809    }
3810
3811    SDOperand LoShuffle =
3812      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3813                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3814                              &LoMask[0], LoMask.size()));
3815    SDOperand HiShuffle =
3816      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3817                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3818                              &HiMask[0], HiMask.size()));
3819    SmallVector<SDOperand, 8> MaskOps;
3820    for (unsigned i = 0; i != NumElems; ++i) {
3821      if (Locs[i].first == -1) {
3822        MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3823      } else {
3824        unsigned Idx = Locs[i].first * NumElems + Locs[i].second;
3825        MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
3826      }
3827    }
3828    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
3829                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3830                                   &MaskOps[0], MaskOps.size()));
3831  }
3832
3833  return SDOperand();
3834}
3835
3836SDOperand
3837X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDOperand Op,
3838                                                SelectionDAG &DAG) {
3839  MVT::ValueType VT = Op.getValueType();
3840  if (MVT::getSizeInBits(VT) == 8) {
3841    SDOperand Extract = DAG.getNode(X86ISD::PEXTRB, MVT::i32,
3842                                    Op.getOperand(0), Op.getOperand(1));
3843    SDOperand Assert  = DAG.getNode(ISD::AssertZext, MVT::i32, Extract,
3844                                    DAG.getValueType(VT));
3845    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
3846  } else if (MVT::getSizeInBits(VT) == 16) {
3847    SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, MVT::i32,
3848                                    Op.getOperand(0), Op.getOperand(1));
3849    SDOperand Assert  = DAG.getNode(ISD::AssertZext, MVT::i32, Extract,
3850                                    DAG.getValueType(VT));
3851    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
3852  }
3853  return SDOperand();
3854}
3855
3856
3857SDOperand
3858X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3859  if (!isa<ConstantSDNode>(Op.getOperand(1)))
3860    return SDOperand();
3861
3862  if (Subtarget->hasSSE41())
3863    return LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
3864
3865  MVT::ValueType VT = Op.getValueType();
3866  // TODO: handle v16i8.
3867  if (MVT::getSizeInBits(VT) == 16) {
3868    SDOperand Vec = Op.getOperand(0);
3869    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3870    if (Idx == 0)
3871      return DAG.getNode(ISD::TRUNCATE, MVT::i16,
3872                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32,
3873                                 DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, Vec),
3874                                     Op.getOperand(1)));
3875    // Transform it so it match pextrw which produces a 32-bit result.
3876    MVT::ValueType EVT = (MVT::ValueType)(VT+1);
3877    SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
3878                                    Op.getOperand(0), Op.getOperand(1));
3879    SDOperand Assert  = DAG.getNode(ISD::AssertZext, EVT, Extract,
3880                                    DAG.getValueType(VT));
3881    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
3882  } else if (MVT::getSizeInBits(VT) == 32) {
3883    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3884    if (Idx == 0)
3885      return Op;
3886    // SHUFPS the element to the lowest double word, then movss.
3887    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3888    SmallVector<SDOperand, 8> IdxVec;
3889    IdxVec.
3890      push_back(DAG.getConstant(Idx, MVT::getVectorElementType(MaskVT)));
3891    IdxVec.
3892      push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3893    IdxVec.
3894      push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3895    IdxVec.
3896      push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3897    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3898                                 &IdxVec[0], IdxVec.size());
3899    SDOperand Vec = Op.getOperand(0);
3900    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3901                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3902    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3903                       DAG.getIntPtrConstant(0));
3904  } else if (MVT::getSizeInBits(VT) == 64) {
3905    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
3906    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
3907    //        to match extract_elt for f64.
3908    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3909    if (Idx == 0)
3910      return Op;
3911
3912    // UNPCKHPD the element to the lowest double word, then movsd.
3913    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
3914    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
3915    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3916    SmallVector<SDOperand, 8> IdxVec;
3917    IdxVec.push_back(DAG.getConstant(1, MVT::getVectorElementType(MaskVT)));
3918    IdxVec.
3919      push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3920    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3921                                 &IdxVec[0], IdxVec.size());
3922    SDOperand Vec = Op.getOperand(0);
3923    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3924                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3925    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3926                       DAG.getIntPtrConstant(0));
3927  }
3928
3929  return SDOperand();
3930}
3931
3932SDOperand
3933X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDOperand Op, SelectionDAG &DAG){
3934  MVT::ValueType VT = Op.getValueType();
3935  MVT::ValueType EVT = MVT::getVectorElementType(VT);
3936
3937  SDOperand N0 = Op.getOperand(0);
3938  SDOperand N1 = Op.getOperand(1);
3939  SDOperand N2 = Op.getOperand(2);
3940
3941  if ((MVT::getSizeInBits(EVT) == 8) || (MVT::getSizeInBits(EVT) == 16)) {
3942    unsigned Opc = (MVT::getSizeInBits(EVT) == 8) ? X86ISD::PINSRB
3943                                                  : X86ISD::PINSRW;
3944    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
3945    // argument.
3946    if (N1.getValueType() != MVT::i32)
3947      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
3948    if (N2.getValueType() != MVT::i32)
3949      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getValue());
3950    return DAG.getNode(Opc, VT, N0, N1, N2);
3951  } else if (EVT == MVT::f32) {
3952    // Bits [7:6] of the constant are the source select.  This will always be
3953    //  zero here.  The DAG Combiner may combine an extract_elt index into these
3954    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
3955    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
3956    // Bits [5:4] of the constant are the destination select.  This is the
3957    //  value of the incoming immediate.
3958    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
3959    //   combine either bitwise AND or insert of float 0.0 to set these bits.
3960    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getValue() << 4);
3961    return DAG.getNode(X86ISD::INSERTPS, VT, N0, N1, N2);
3962  }
3963  return SDOperand();
3964}
3965
3966SDOperand
3967X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3968  MVT::ValueType VT = Op.getValueType();
3969  MVT::ValueType EVT = MVT::getVectorElementType(VT);
3970
3971  if (Subtarget->hasSSE41())
3972    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
3973
3974  if (EVT == MVT::i8)
3975    return SDOperand();
3976
3977  SDOperand N0 = Op.getOperand(0);
3978  SDOperand N1 = Op.getOperand(1);
3979  SDOperand N2 = Op.getOperand(2);
3980
3981  if (MVT::getSizeInBits(EVT) == 16) {
3982    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
3983    // as its second argument.
3984    if (N1.getValueType() != MVT::i32)
3985      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
3986    if (N2.getValueType() != MVT::i32)
3987      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getValue());
3988    return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
3989  }
3990  return SDOperand();
3991}
3992
3993SDOperand
3994X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
3995  SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
3996  MVT::ValueType VT = MVT::v2i32;
3997  switch (Op.getValueType()) {
3998  default: break;
3999  case MVT::v16i8:
4000  case MVT::v8i16:
4001    VT = MVT::v4i32;
4002    break;
4003  }
4004  return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(),
4005                     DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, AnyExt));
4006}
4007
4008// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
4009// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
4010// one of the above mentioned nodes. It has to be wrapped because otherwise
4011// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
4012// be used to form addressing mode. These wrapped nodes will be selected
4013// into MOV32ri.
4014SDOperand
4015X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
4016  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
4017  SDOperand Result = DAG.getTargetConstantPool(CP->getConstVal(),
4018                                               getPointerTy(),
4019                                               CP->getAlignment());
4020  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4021  // With PIC, the address is actually $g + Offset.
4022  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4023      !Subtarget->isPICStyleRIPRel()) {
4024    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4025                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4026                         Result);
4027  }
4028
4029  return Result;
4030}
4031
4032SDOperand
4033X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
4034  GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
4035  SDOperand Result = DAG.getTargetGlobalAddress(GV, getPointerTy());
4036  // If it's a debug information descriptor, don't mess with it.
4037  if (DAG.isVerifiedDebugInfoDesc(Op))
4038    return Result;
4039  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4040  // With PIC, the address is actually $g + Offset.
4041  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4042      !Subtarget->isPICStyleRIPRel()) {
4043    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4044                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4045                         Result);
4046  }
4047
4048  // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
4049  // load the value at address GV, not the value of GV itself. This means that
4050  // the GlobalAddress must be in the base or index register of the address, not
4051  // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
4052  // The same applies for external symbols during PIC codegen
4053  if (Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false))
4054    Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result,
4055                         PseudoSourceValue::getGOT(), 0);
4056
4057  return Result;
4058}
4059
4060// Lower ISD::GlobalTLSAddress using the "general dynamic" model
4061static SDOperand
4062LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4063                              const MVT::ValueType PtrVT) {
4064  SDOperand InFlag;
4065  SDOperand Chain = DAG.getCopyToReg(DAG.getEntryNode(), X86::EBX,
4066                                     DAG.getNode(X86ISD::GlobalBaseReg,
4067                                                 PtrVT), InFlag);
4068  InFlag = Chain.getValue(1);
4069
4070  // emit leal symbol@TLSGD(,%ebx,1), %eax
4071  SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
4072  SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4073                                             GA->getValueType(0),
4074                                             GA->getOffset());
4075  SDOperand Ops[] = { Chain,  TGA, InFlag };
4076  SDOperand Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 3);
4077  InFlag = Result.getValue(2);
4078  Chain = Result.getValue(1);
4079
4080  // call ___tls_get_addr. This function receives its argument in
4081  // the register EAX.
4082  Chain = DAG.getCopyToReg(Chain, X86::EAX, Result, InFlag);
4083  InFlag = Chain.getValue(1);
4084
4085  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4086  SDOperand Ops1[] = { Chain,
4087                      DAG.getTargetExternalSymbol("___tls_get_addr",
4088                                                  PtrVT),
4089                      DAG.getRegister(X86::EAX, PtrVT),
4090                      DAG.getRegister(X86::EBX, PtrVT),
4091                      InFlag };
4092  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 5);
4093  InFlag = Chain.getValue(1);
4094
4095  return DAG.getCopyFromReg(Chain, X86::EAX, PtrVT, InFlag);
4096}
4097
4098// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
4099// "local exec" model.
4100static SDOperand
4101LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4102                         const MVT::ValueType PtrVT) {
4103  // Get the Thread Pointer
4104  SDOperand ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER, PtrVT);
4105  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
4106  // exec)
4107  SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4108                                             GA->getValueType(0),
4109                                             GA->getOffset());
4110  SDOperand Offset = DAG.getNode(X86ISD::Wrapper, PtrVT, TGA);
4111
4112  if (GA->getGlobal()->isDeclaration()) // initial exec TLS model
4113    Offset = DAG.getLoad(PtrVT, DAG.getEntryNode(), Offset,
4114                         PseudoSourceValue::getGOT(), 0);
4115
4116  // The address of the thread local variable is the add of the thread
4117  // pointer with the offset of the variable.
4118  return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset);
4119}
4120
4121SDOperand
4122X86TargetLowering::LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) {
4123  // TODO: implement the "local dynamic" model
4124  // TODO: implement the "initial exec"model for pic executables
4125  assert(!Subtarget->is64Bit() && Subtarget->isTargetELF() &&
4126         "TLS not implemented for non-ELF and 64-bit targets");
4127  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
4128  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
4129  // otherwise use the "Local Exec"TLS Model
4130  if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
4131    return LowerToTLSGeneralDynamicModel(GA, DAG, getPointerTy());
4132  else
4133    return LowerToTLSExecModel(GA, DAG, getPointerTy());
4134}
4135
4136SDOperand
4137X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) {
4138  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
4139  SDOperand Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
4140  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4141  // With PIC, the address is actually $g + Offset.
4142  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4143      !Subtarget->isPICStyleRIPRel()) {
4144    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4145                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4146                         Result);
4147  }
4148
4149  return Result;
4150}
4151
4152SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
4153  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
4154  SDOperand Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
4155  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4156  // With PIC, the address is actually $g + Offset.
4157  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4158      !Subtarget->isPICStyleRIPRel()) {
4159    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4160                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4161                         Result);
4162  }
4163
4164  return Result;
4165}
4166
4167/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
4168/// take a 2 x i32 value to shift plus a shift amount.
4169SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) {
4170  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4171  MVT::ValueType VT = Op.getValueType();
4172  unsigned VTBits = MVT::getSizeInBits(VT);
4173  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
4174  SDOperand ShOpLo = Op.getOperand(0);
4175  SDOperand ShOpHi = Op.getOperand(1);
4176  SDOperand ShAmt  = Op.getOperand(2);
4177  SDOperand Tmp1 = isSRA ?
4178    DAG.getNode(ISD::SRA, VT, ShOpHi, DAG.getConstant(VTBits - 1, MVT::i8)) :
4179    DAG.getConstant(0, VT);
4180
4181  SDOperand Tmp2, Tmp3;
4182  if (Op.getOpcode() == ISD::SHL_PARTS) {
4183    Tmp2 = DAG.getNode(X86ISD::SHLD, VT, ShOpHi, ShOpLo, ShAmt);
4184    Tmp3 = DAG.getNode(ISD::SHL, VT, ShOpLo, ShAmt);
4185  } else {
4186    Tmp2 = DAG.getNode(X86ISD::SHRD, VT, ShOpLo, ShOpHi, ShAmt);
4187    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, VT, ShOpHi, ShAmt);
4188  }
4189
4190  const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
4191  SDOperand AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
4192                                  DAG.getConstant(VTBits, MVT::i8));
4193  SDOperand Cond = DAG.getNode(X86ISD::CMP, VT,
4194                               AndNode, DAG.getConstant(0, MVT::i8));
4195
4196  SDOperand Hi, Lo;
4197  SDOperand CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4198  VTs = DAG.getNodeValueTypes(VT, MVT::Flag);
4199  SmallVector<SDOperand, 4> Ops;
4200  if (Op.getOpcode() == ISD::SHL_PARTS) {
4201    Ops.push_back(Tmp2);
4202    Ops.push_back(Tmp3);
4203    Ops.push_back(CC);
4204    Ops.push_back(Cond);
4205    Hi = DAG.getNode(X86ISD::CMOV, VT, &Ops[0], Ops.size());
4206
4207    Ops.clear();
4208    Ops.push_back(Tmp3);
4209    Ops.push_back(Tmp1);
4210    Ops.push_back(CC);
4211    Ops.push_back(Cond);
4212    Lo = DAG.getNode(X86ISD::CMOV, VT, &Ops[0], Ops.size());
4213  } else {
4214    Ops.push_back(Tmp2);
4215    Ops.push_back(Tmp3);
4216    Ops.push_back(CC);
4217    Ops.push_back(Cond);
4218    Lo = DAG.getNode(X86ISD::CMOV, VT, &Ops[0], Ops.size());
4219
4220    Ops.clear();
4221    Ops.push_back(Tmp3);
4222    Ops.push_back(Tmp1);
4223    Ops.push_back(CC);
4224    Ops.push_back(Cond);
4225    Hi = DAG.getNode(X86ISD::CMOV, VT, &Ops[0], Ops.size());
4226  }
4227
4228  VTs = DAG.getNodeValueTypes(VT, VT);
4229  Ops.clear();
4230  Ops.push_back(Lo);
4231  Ops.push_back(Hi);
4232  return DAG.getNode(ISD::MERGE_VALUES, VTs, 2, &Ops[0], Ops.size());
4233}
4234
4235SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
4236  MVT::ValueType SrcVT = Op.getOperand(0).getValueType();
4237  assert(SrcVT <= MVT::i64 && SrcVT >= MVT::i16 &&
4238         "Unknown SINT_TO_FP to lower!");
4239
4240  // These are really Legal; caller falls through into that case.
4241  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
4242    return SDOperand();
4243  if (SrcVT == MVT::i64 && Op.getValueType() != MVT::f80 &&
4244      Subtarget->is64Bit())
4245    return SDOperand();
4246
4247  unsigned Size = MVT::getSizeInBits(SrcVT)/8;
4248  MachineFunction &MF = DAG.getMachineFunction();
4249  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
4250  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4251  SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
4252                                 StackSlot,
4253                                 PseudoSourceValue::getFixedStack(),
4254                                 SSFI);
4255
4256  // Build the FILD
4257  SDVTList Tys;
4258  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
4259  if (useSSE)
4260    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
4261  else
4262    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
4263  SmallVector<SDOperand, 8> Ops;
4264  Ops.push_back(Chain);
4265  Ops.push_back(StackSlot);
4266  Ops.push_back(DAG.getValueType(SrcVT));
4267  SDOperand Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD,
4268                                 Tys, &Ops[0], Ops.size());
4269
4270  if (useSSE) {
4271    Chain = Result.getValue(1);
4272    SDOperand InFlag = Result.getValue(2);
4273
4274    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
4275    // shouldn't be necessary except that RFP cannot be live across
4276    // multiple blocks. When stackifier is fixed, they can be uncoupled.
4277    MachineFunction &MF = DAG.getMachineFunction();
4278    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
4279    SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4280    Tys = DAG.getVTList(MVT::Other);
4281    SmallVector<SDOperand, 8> Ops;
4282    Ops.push_back(Chain);
4283    Ops.push_back(Result);
4284    Ops.push_back(StackSlot);
4285    Ops.push_back(DAG.getValueType(Op.getValueType()));
4286    Ops.push_back(InFlag);
4287    Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
4288    Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot,
4289                         PseudoSourceValue::getFixedStack(), SSFI);
4290  }
4291
4292  return Result;
4293}
4294
4295std::pair<SDOperand,SDOperand> X86TargetLowering::
4296FP_TO_SINTHelper(SDOperand Op, SelectionDAG &DAG) {
4297  assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 &&
4298         "Unknown FP_TO_SINT to lower!");
4299
4300  // These are really Legal.
4301  if (Op.getValueType() == MVT::i32 &&
4302      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
4303    return std::make_pair(SDOperand(), SDOperand());
4304  if (Subtarget->is64Bit() &&
4305      Op.getValueType() == MVT::i64 &&
4306      Op.getOperand(0).getValueType() != MVT::f80)
4307    return std::make_pair(SDOperand(), SDOperand());
4308
4309  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
4310  // stack slot.
4311  MachineFunction &MF = DAG.getMachineFunction();
4312  unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8;
4313  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
4314  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4315  unsigned Opc;
4316  switch (Op.getValueType()) {
4317  default: assert(0 && "Invalid FP_TO_SINT to lower!");
4318  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
4319  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
4320  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
4321  }
4322
4323  SDOperand Chain = DAG.getEntryNode();
4324  SDOperand Value = Op.getOperand(0);
4325  if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
4326    assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
4327    Chain = DAG.getStore(Chain, Value, StackSlot,
4328                         PseudoSourceValue::getFixedStack(), SSFI);
4329    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
4330    SDOperand Ops[] = {
4331      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
4332    };
4333    Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
4334    Chain = Value.getValue(1);
4335    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
4336    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4337  }
4338
4339  // Build the FP_TO_INT*_IN_MEM
4340  SDOperand Ops[] = { Chain, Value, StackSlot };
4341  SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops, 3);
4342
4343  return std::make_pair(FIST, StackSlot);
4344}
4345
4346SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
4347  std::pair<SDOperand,SDOperand> Vals = FP_TO_SINTHelper(Op, DAG);
4348  SDOperand FIST = Vals.first, StackSlot = Vals.second;
4349  if (FIST.Val == 0) return SDOperand();
4350
4351  // Load the result.
4352  return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
4353}
4354
4355SDNode *X86TargetLowering::ExpandFP_TO_SINT(SDNode *N, SelectionDAG &DAG) {
4356  std::pair<SDOperand,SDOperand> Vals = FP_TO_SINTHelper(SDOperand(N, 0), DAG);
4357  SDOperand FIST = Vals.first, StackSlot = Vals.second;
4358  if (FIST.Val == 0) return 0;
4359
4360  // Return an i64 load from the stack slot.
4361  SDOperand Res = DAG.getLoad(MVT::i64, FIST, StackSlot, NULL, 0);
4362
4363  // Use a MERGE_VALUES node to drop the chain result value.
4364  return DAG.getNode(ISD::MERGE_VALUES, MVT::i64, Res).Val;
4365}
4366
4367SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) {
4368  MVT::ValueType VT = Op.getValueType();
4369  MVT::ValueType EltVT = VT;
4370  if (MVT::isVector(VT))
4371    EltVT = MVT::getVectorElementType(VT);
4372  const Type *OpNTy =  MVT::getTypeForValueType(EltVT);
4373  std::vector<Constant*> CV;
4374  if (EltVT == MVT::f64) {
4375    Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(64, ~(1ULL << 63))));
4376    CV.push_back(C);
4377    CV.push_back(C);
4378  } else {
4379    Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(32, ~(1U << 31))));
4380    CV.push_back(C);
4381    CV.push_back(C);
4382    CV.push_back(C);
4383    CV.push_back(C);
4384  }
4385  Constant *C = ConstantVector::get(CV);
4386  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4387  SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
4388                               PseudoSourceValue::getConstantPool(), 0,
4389                               false, 16);
4390  return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
4391}
4392
4393SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) {
4394  MVT::ValueType VT = Op.getValueType();
4395  MVT::ValueType EltVT = VT;
4396  unsigned EltNum = 1;
4397  if (MVT::isVector(VT)) {
4398    EltVT = MVT::getVectorElementType(VT);
4399    EltNum = MVT::getVectorNumElements(VT);
4400  }
4401  const Type *OpNTy =  MVT::getTypeForValueType(EltVT);
4402  std::vector<Constant*> CV;
4403  if (EltVT == MVT::f64) {
4404    Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(64, 1ULL << 63)));
4405    CV.push_back(C);
4406    CV.push_back(C);
4407  } else {
4408    Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(32, 1U << 31)));
4409    CV.push_back(C);
4410    CV.push_back(C);
4411    CV.push_back(C);
4412    CV.push_back(C);
4413  }
4414  Constant *C = ConstantVector::get(CV);
4415  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4416  SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
4417                               PseudoSourceValue::getConstantPool(), 0,
4418                               false, 16);
4419  if (MVT::isVector(VT)) {
4420    return DAG.getNode(ISD::BIT_CONVERT, VT,
4421                       DAG.getNode(ISD::XOR, MVT::v2i64,
4422                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Op.getOperand(0)),
4423                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Mask)));
4424  } else {
4425    return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
4426  }
4427}
4428
4429SDOperand X86TargetLowering::LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) {
4430  SDOperand Op0 = Op.getOperand(0);
4431  SDOperand Op1 = Op.getOperand(1);
4432  MVT::ValueType VT = Op.getValueType();
4433  MVT::ValueType SrcVT = Op1.getValueType();
4434  const Type *SrcTy =  MVT::getTypeForValueType(SrcVT);
4435
4436  // If second operand is smaller, extend it first.
4437  if (MVT::getSizeInBits(SrcVT) < MVT::getSizeInBits(VT)) {
4438    Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1);
4439    SrcVT = VT;
4440    SrcTy = MVT::getTypeForValueType(SrcVT);
4441  }
4442  // And if it is bigger, shrink it first.
4443  if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) {
4444    Op1 = DAG.getNode(ISD::FP_ROUND, VT, Op1, DAG.getIntPtrConstant(1));
4445    SrcVT = VT;
4446    SrcTy = MVT::getTypeForValueType(SrcVT);
4447  }
4448
4449  // At this point the operands and the result should have the same
4450  // type, and that won't be f80 since that is not custom lowered.
4451
4452  // First get the sign bit of second operand.
4453  std::vector<Constant*> CV;
4454  if (SrcVT == MVT::f64) {
4455    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 1ULL << 63))));
4456    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 0))));
4457  } else {
4458    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 1U << 31))));
4459    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4460    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4461    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4462  }
4463  Constant *C = ConstantVector::get(CV);
4464  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4465  SDOperand Mask1 = DAG.getLoad(SrcVT, DAG.getEntryNode(), CPIdx,
4466                                PseudoSourceValue::getConstantPool(), 0,
4467                                false, 16);
4468  SDOperand SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1);
4469
4470  // Shift sign bit right or left if the two operands have different types.
4471  if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) {
4472    // Op0 is MVT::f32, Op1 is MVT::f64.
4473    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit);
4474    SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit,
4475                          DAG.getConstant(32, MVT::i32));
4476    SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit);
4477    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit,
4478                          DAG.getIntPtrConstant(0));
4479  }
4480
4481  // Clear first operand sign bit.
4482  CV.clear();
4483  if (VT == MVT::f64) {
4484    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, ~(1ULL << 63)))));
4485    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 0))));
4486  } else {
4487    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, ~(1U << 31)))));
4488    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4489    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4490    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4491  }
4492  C = ConstantVector::get(CV);
4493  CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4494  SDOperand Mask2 = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
4495                                PseudoSourceValue::getConstantPool(), 0,
4496                                false, 16);
4497  SDOperand Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2);
4498
4499  // Or the value with the sign bit.
4500  return DAG.getNode(X86ISD::FOR, VT, Val, SignBit);
4501}
4502
4503SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
4504  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
4505  SDOperand Cond;
4506  SDOperand Op0 = Op.getOperand(0);
4507  SDOperand Op1 = Op.getOperand(1);
4508  SDOperand CC = Op.getOperand(2);
4509  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
4510  bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType());
4511  unsigned X86CC;
4512
4513  if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
4514                     Op0, Op1, DAG)) {
4515    Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
4516    return DAG.getNode(X86ISD::SETCC, MVT::i8,
4517                       DAG.getConstant(X86CC, MVT::i8), Cond);
4518  }
4519
4520  assert(isFP && "Illegal integer SetCC!");
4521
4522  Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
4523  switch (SetCCOpcode) {
4524  default: assert(false && "Illegal floating point SetCC!");
4525  case ISD::SETOEQ: {  // !PF & ZF
4526    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4527                                 DAG.getConstant(X86::COND_NP, MVT::i8), Cond);
4528    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4529                                 DAG.getConstant(X86::COND_E, MVT::i8), Cond);
4530    return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
4531  }
4532  case ISD::SETUNE: {  // PF | !ZF
4533    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4534                                 DAG.getConstant(X86::COND_P, MVT::i8), Cond);
4535    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4536                                 DAG.getConstant(X86::COND_NE, MVT::i8), Cond);
4537    return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
4538  }
4539  }
4540}
4541
4542
4543SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) {
4544  bool addTest = true;
4545  SDOperand Cond  = Op.getOperand(0);
4546  SDOperand CC;
4547
4548  if (Cond.getOpcode() == ISD::SETCC)
4549    Cond = LowerSETCC(Cond, DAG);
4550
4551  // If condition flag is set by a X86ISD::CMP, then use it as the condition
4552  // setting operand in place of the X86ISD::SETCC.
4553  if (Cond.getOpcode() == X86ISD::SETCC) {
4554    CC = Cond.getOperand(0);
4555
4556    SDOperand Cmp = Cond.getOperand(1);
4557    unsigned Opc = Cmp.getOpcode();
4558    MVT::ValueType VT = Op.getValueType();
4559
4560    bool IllegalFPCMov = false;
4561    if (MVT::isFloatingPoint(VT) && !MVT::isVector(VT) &&
4562        !isScalarFPTypeInSSEReg(VT))  // FPStack?
4563      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
4564
4565    if ((Opc == X86ISD::CMP ||
4566         Opc == X86ISD::COMI ||
4567         Opc == X86ISD::UCOMI) && !IllegalFPCMov) {
4568      Cond = Cmp;
4569      addTest = false;
4570    }
4571  }
4572
4573  if (addTest) {
4574    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4575    Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
4576  }
4577
4578  const MVT::ValueType *VTs = DAG.getNodeValueTypes(Op.getValueType(),
4579                                                    MVT::Flag);
4580  SmallVector<SDOperand, 4> Ops;
4581  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
4582  // condition is true.
4583  Ops.push_back(Op.getOperand(2));
4584  Ops.push_back(Op.getOperand(1));
4585  Ops.push_back(CC);
4586  Ops.push_back(Cond);
4587  return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
4588}
4589
4590SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) {
4591  bool addTest = true;
4592  SDOperand Chain = Op.getOperand(0);
4593  SDOperand Cond  = Op.getOperand(1);
4594  SDOperand Dest  = Op.getOperand(2);
4595  SDOperand CC;
4596
4597  if (Cond.getOpcode() == ISD::SETCC)
4598    Cond = LowerSETCC(Cond, DAG);
4599
4600  // If condition flag is set by a X86ISD::CMP, then use it as the condition
4601  // setting operand in place of the X86ISD::SETCC.
4602  if (Cond.getOpcode() == X86ISD::SETCC) {
4603    CC = Cond.getOperand(0);
4604
4605    SDOperand Cmp = Cond.getOperand(1);
4606    unsigned Opc = Cmp.getOpcode();
4607    if (Opc == X86ISD::CMP ||
4608        Opc == X86ISD::COMI ||
4609        Opc == X86ISD::UCOMI) {
4610      Cond = Cmp;
4611      addTest = false;
4612    }
4613  }
4614
4615  if (addTest) {
4616    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4617    Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
4618  }
4619  return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
4620                     Chain, Op.getOperand(2), CC, Cond);
4621}
4622
4623
4624// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
4625// Calls to _alloca is needed to probe the stack when allocating more than 4k
4626// bytes in one go. Touching the stack at 4K increments is necessary to ensure
4627// that the guard pages used by the OS virtual memory manager are allocated in
4628// correct sequence.
4629SDOperand
4630X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDOperand Op,
4631                                           SelectionDAG &DAG) {
4632  assert(Subtarget->isTargetCygMing() &&
4633         "This should be used only on Cygwin/Mingw targets");
4634
4635  // Get the inputs.
4636  SDOperand Chain = Op.getOperand(0);
4637  SDOperand Size  = Op.getOperand(1);
4638  // FIXME: Ensure alignment here
4639
4640  SDOperand Flag;
4641
4642  MVT::ValueType IntPtr = getPointerTy();
4643  MVT::ValueType SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
4644
4645  Chain = DAG.getCopyToReg(Chain, X86::EAX, Size, Flag);
4646  Flag = Chain.getValue(1);
4647
4648  SDVTList  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4649  SDOperand Ops[] = { Chain,
4650                      DAG.getTargetExternalSymbol("_alloca", IntPtr),
4651                      DAG.getRegister(X86::EAX, IntPtr),
4652                      Flag };
4653  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops, 4);
4654  Flag = Chain.getValue(1);
4655
4656  Chain = DAG.getCopyFromReg(Chain, X86StackPtr, SPTy).getValue(1);
4657
4658  std::vector<MVT::ValueType> Tys;
4659  Tys.push_back(SPTy);
4660  Tys.push_back(MVT::Other);
4661  SDOperand Ops1[2] = { Chain.getValue(0), Chain };
4662  return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops1, 2);
4663}
4664
4665SDOperand X86TargetLowering::LowerMEMSET(SDOperand Op, SelectionDAG &DAG) {
4666  SDOperand InFlag(0, 0);
4667  SDOperand Chain = Op.getOperand(0);
4668  unsigned Align =
4669    (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
4670  if (Align == 0) Align = 1;
4671
4672  ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
4673  // If not DWORD aligned or size is more than the threshold, call memset.
4674  // The libc version is likely to be faster for these cases. It can use the
4675  // address value and run time information about the CPU.
4676  if ((Align & 3) != 0 ||
4677      (I && I->getValue() > Subtarget->getMaxInlineSizeThreshold())) {
4678    MVT::ValueType IntPtr = getPointerTy();
4679    const Type *IntPtrTy = getTargetData()->getIntPtrType();
4680    TargetLowering::ArgListTy Args;
4681    TargetLowering::ArgListEntry Entry;
4682    Entry.Node = Op.getOperand(1);
4683    Entry.Ty = IntPtrTy;
4684    Args.push_back(Entry);
4685    // Extend the unsigned i8 argument to be an int value for the call.
4686    Entry.Node = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2));
4687    Entry.Ty = IntPtrTy;
4688    Args.push_back(Entry);
4689    Entry.Node = Op.getOperand(3);
4690    Args.push_back(Entry);
4691    std::pair<SDOperand,SDOperand> CallResult =
4692      LowerCallTo(Chain, Type::VoidTy, false, false, false, CallingConv::C,
4693                  false, DAG.getExternalSymbol("memset", IntPtr), Args, DAG);
4694    return CallResult.second;
4695  }
4696
4697  MVT::ValueType AVT;
4698  SDOperand Count;
4699  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4700  unsigned BytesLeft = 0;
4701  bool TwoRepStos = false;
4702  if (ValC) {
4703    unsigned ValReg;
4704    uint64_t Val = ValC->getValue() & 255;
4705
4706    // If the value is a constant, then we can potentially use larger sets.
4707    switch (Align & 3) {
4708      case 2:   // WORD aligned
4709        AVT = MVT::i16;
4710        ValReg = X86::AX;
4711        Val = (Val << 8) | Val;
4712        break;
4713      case 0:  // DWORD aligned
4714        AVT = MVT::i32;
4715        ValReg = X86::EAX;
4716        Val = (Val << 8)  | Val;
4717        Val = (Val << 16) | Val;
4718        if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) {  // QWORD aligned
4719          AVT = MVT::i64;
4720          ValReg = X86::RAX;
4721          Val = (Val << 32) | Val;
4722        }
4723        break;
4724      default:  // Byte aligned
4725        AVT = MVT::i8;
4726        ValReg = X86::AL;
4727        Count = Op.getOperand(3);
4728        break;
4729    }
4730
4731    if (AVT > MVT::i8) {
4732      if (I) {
4733        unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
4734        Count = DAG.getIntPtrConstant(I->getValue() / UBytes);
4735        BytesLeft = I->getValue() % UBytes;
4736      } else {
4737        assert(AVT >= MVT::i32 &&
4738               "Do not use rep;stos if not at least DWORD aligned");
4739        Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
4740                            Op.getOperand(3), DAG.getConstant(2, MVT::i8));
4741        TwoRepStos = true;
4742      }
4743    }
4744
4745    Chain  = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
4746                              InFlag);
4747    InFlag = Chain.getValue(1);
4748  } else {
4749    AVT = MVT::i8;
4750    Count  = Op.getOperand(3);
4751    Chain  = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag);
4752    InFlag = Chain.getValue(1);
4753  }
4754
4755  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4756                            Count, InFlag);
4757  InFlag = Chain.getValue(1);
4758  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
4759                            Op.getOperand(1), InFlag);
4760  InFlag = Chain.getValue(1);
4761
4762  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4763  SmallVector<SDOperand, 8> Ops;
4764  Ops.push_back(Chain);
4765  Ops.push_back(DAG.getValueType(AVT));
4766  Ops.push_back(InFlag);
4767  Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
4768
4769  if (TwoRepStos) {
4770    InFlag = Chain.getValue(1);
4771    Count = Op.getOperand(3);
4772    MVT::ValueType CVT = Count.getValueType();
4773    SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
4774                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
4775    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
4776                              Left, InFlag);
4777    InFlag = Chain.getValue(1);
4778    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4779    Ops.clear();
4780    Ops.push_back(Chain);
4781    Ops.push_back(DAG.getValueType(MVT::i8));
4782    Ops.push_back(InFlag);
4783    Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
4784  } else if (BytesLeft) {
4785    // Issue stores for the last 1 - 7 bytes.
4786    SDOperand Value;
4787    unsigned Val = ValC->getValue() & 255;
4788    unsigned Offset = I->getValue() - BytesLeft;
4789    SDOperand DstAddr = Op.getOperand(1);
4790    MVT::ValueType AddrVT = DstAddr.getValueType();
4791    if (BytesLeft >= 4) {
4792      Val = (Val << 8)  | Val;
4793      Val = (Val << 16) | Val;
4794      Value = DAG.getConstant(Val, MVT::i32);
4795      Chain = DAG.getStore(Chain, Value,
4796                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4797                                       DAG.getConstant(Offset, AddrVT)),
4798                           NULL, 0);
4799      BytesLeft -= 4;
4800      Offset += 4;
4801    }
4802    if (BytesLeft >= 2) {
4803      Value = DAG.getConstant((Val << 8) | Val, MVT::i16);
4804      Chain = DAG.getStore(Chain, Value,
4805                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4806                                       DAG.getConstant(Offset, AddrVT)),
4807                           NULL, 0);
4808      BytesLeft -= 2;
4809      Offset += 2;
4810    }
4811    if (BytesLeft == 1) {
4812      Value = DAG.getConstant(Val, MVT::i8);
4813      Chain = DAG.getStore(Chain, Value,
4814                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4815                                       DAG.getConstant(Offset, AddrVT)),
4816                           NULL, 0);
4817    }
4818  }
4819
4820  return Chain;
4821}
4822
4823SDOperand X86TargetLowering::LowerMEMCPYInline(SDOperand Chain,
4824                                               SDOperand Dest,
4825                                               SDOperand Source,
4826                                               unsigned Size,
4827                                               unsigned Align,
4828                                               SelectionDAG &DAG) {
4829  MVT::ValueType AVT;
4830  unsigned BytesLeft = 0;
4831  switch (Align & 3) {
4832    case 2:   // WORD aligned
4833      AVT = MVT::i16;
4834      break;
4835    case 0:  // DWORD aligned
4836      AVT = MVT::i32;
4837      if (Subtarget->is64Bit() && ((Align & 0xF) == 0))  // QWORD aligned
4838        AVT = MVT::i64;
4839      break;
4840    default:  // Byte aligned
4841      AVT = MVT::i8;
4842      break;
4843  }
4844
4845  unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
4846  SDOperand Count = DAG.getIntPtrConstant(Size / UBytes);
4847  BytesLeft = Size % UBytes;
4848
4849  SDOperand InFlag(0, 0);
4850  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4851                            Count, InFlag);
4852  InFlag = Chain.getValue(1);
4853  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
4854                            Dest, InFlag);
4855  InFlag = Chain.getValue(1);
4856  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
4857                            Source, InFlag);
4858  InFlag = Chain.getValue(1);
4859
4860  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4861  SmallVector<SDOperand, 8> Ops;
4862  Ops.push_back(Chain);
4863  Ops.push_back(DAG.getValueType(AVT));
4864  Ops.push_back(InFlag);
4865  Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
4866
4867  if (BytesLeft) {
4868    // Issue loads and stores for the last 1 - 7 bytes.
4869    unsigned Offset = Size - BytesLeft;
4870    SDOperand DstAddr = Dest;
4871    MVT::ValueType DstVT = DstAddr.getValueType();
4872    SDOperand SrcAddr = Source;
4873    MVT::ValueType SrcVT = SrcAddr.getValueType();
4874    SDOperand Value;
4875    if (BytesLeft >= 4) {
4876      Value = DAG.getLoad(MVT::i32, Chain,
4877                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4878                                      DAG.getConstant(Offset, SrcVT)),
4879                          NULL, 0);
4880      Chain = Value.getValue(1);
4881      Chain = DAG.getStore(Chain, Value,
4882                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4883                                       DAG.getConstant(Offset, DstVT)),
4884                           NULL, 0);
4885      BytesLeft -= 4;
4886      Offset += 4;
4887    }
4888    if (BytesLeft >= 2) {
4889      Value = DAG.getLoad(MVT::i16, Chain,
4890                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4891                                      DAG.getConstant(Offset, SrcVT)),
4892                          NULL, 0);
4893      Chain = Value.getValue(1);
4894      Chain = DAG.getStore(Chain, Value,
4895                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4896                                       DAG.getConstant(Offset, DstVT)),
4897                           NULL, 0);
4898      BytesLeft -= 2;
4899      Offset += 2;
4900    }
4901
4902    if (BytesLeft == 1) {
4903      Value = DAG.getLoad(MVT::i8, Chain,
4904                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4905                                      DAG.getConstant(Offset, SrcVT)),
4906                          NULL, 0);
4907      Chain = Value.getValue(1);
4908      Chain = DAG.getStore(Chain, Value,
4909                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4910                                       DAG.getConstant(Offset, DstVT)),
4911                           NULL, 0);
4912    }
4913  }
4914
4915  return Chain;
4916}
4917
4918/// Expand the result of: i64,outchain = READCYCLECOUNTER inchain
4919SDNode *X86TargetLowering::ExpandREADCYCLECOUNTER(SDNode *N, SelectionDAG &DAG){
4920  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4921  SDOperand TheChain = N->getOperand(0);
4922  SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheChain, 1);
4923  if (Subtarget->is64Bit()) {
4924    SDOperand rax = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
4925    SDOperand rdx = DAG.getCopyFromReg(rax.getValue(1), X86::RDX,
4926                                       MVT::i64, rax.getValue(2));
4927    SDOperand Tmp = DAG.getNode(ISD::SHL, MVT::i64, rdx,
4928                                DAG.getConstant(32, MVT::i8));
4929    SDOperand Ops[] = {
4930      DAG.getNode(ISD::OR, MVT::i64, rax, Tmp), rdx.getValue(1)
4931    };
4932
4933    Tys = DAG.getVTList(MVT::i64, MVT::Other);
4934    return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2).Val;
4935  }
4936
4937  SDOperand eax = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
4938  SDOperand edx = DAG.getCopyFromReg(eax.getValue(1), X86::EDX,
4939                                       MVT::i32, eax.getValue(2));
4940  // Use a buildpair to merge the two 32-bit values into a 64-bit one.
4941  SDOperand Ops[] = { eax, edx };
4942  Ops[0] = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Ops, 2);
4943
4944  // Use a MERGE_VALUES to return the value and chain.
4945  Ops[1] = edx.getValue(1);
4946  Tys = DAG.getVTList(MVT::i64, MVT::Other);
4947  return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2).Val;
4948}
4949
4950SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) {
4951  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4952
4953  if (!Subtarget->is64Bit()) {
4954    // vastart just stores the address of the VarArgsFrameIndex slot into the
4955    // memory location argument.
4956    SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4957    return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV, 0);
4958  }
4959
4960  // __va_list_tag:
4961  //   gp_offset         (0 - 6 * 8)
4962  //   fp_offset         (48 - 48 + 8 * 16)
4963  //   overflow_arg_area (point to parameters coming in memory).
4964  //   reg_save_area
4965  SmallVector<SDOperand, 8> MemOps;
4966  SDOperand FIN = Op.getOperand(1);
4967  // Store gp_offset
4968  SDOperand Store = DAG.getStore(Op.getOperand(0),
4969                                 DAG.getConstant(VarArgsGPOffset, MVT::i32),
4970                                 FIN, SV, 0);
4971  MemOps.push_back(Store);
4972
4973  // Store fp_offset
4974  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(4));
4975  Store = DAG.getStore(Op.getOperand(0),
4976                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
4977                       FIN, SV, 0);
4978  MemOps.push_back(Store);
4979
4980  // Store ptr to overflow_arg_area
4981  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(4));
4982  SDOperand OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4983  Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV, 0);
4984  MemOps.push_back(Store);
4985
4986  // Store ptr to reg_save_area.
4987  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(8));
4988  SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
4989  Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV, 0);
4990  MemOps.push_back(Store);
4991  return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
4992}
4993
4994SDOperand X86TargetLowering::LowerVACOPY(SDOperand Op, SelectionDAG &DAG) {
4995  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
4996  SDOperand Chain = Op.getOperand(0);
4997  SDOperand DstPtr = Op.getOperand(1);
4998  SDOperand SrcPtr = Op.getOperand(2);
4999  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
5000  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
5001
5002  SrcPtr = DAG.getLoad(getPointerTy(), Chain, SrcPtr, SrcSV, 0);
5003  Chain = SrcPtr.getValue(1);
5004  for (unsigned i = 0; i < 3; ++i) {
5005    SDOperand Val = DAG.getLoad(MVT::i64, Chain, SrcPtr, SrcSV, 0);
5006    Chain = Val.getValue(1);
5007    Chain = DAG.getStore(Chain, Val, DstPtr, DstSV, 0);
5008    if (i == 2)
5009      break;
5010    SrcPtr = DAG.getNode(ISD::ADD, getPointerTy(), SrcPtr,
5011                         DAG.getIntPtrConstant(8));
5012    DstPtr = DAG.getNode(ISD::ADD, getPointerTy(), DstPtr,
5013                         DAG.getIntPtrConstant(8));
5014  }
5015  return Chain;
5016}
5017
5018SDOperand
5019X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
5020  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
5021  switch (IntNo) {
5022  default: return SDOperand();    // Don't custom lower most intrinsics.
5023    // Comparison intrinsics.
5024  case Intrinsic::x86_sse_comieq_ss:
5025  case Intrinsic::x86_sse_comilt_ss:
5026  case Intrinsic::x86_sse_comile_ss:
5027  case Intrinsic::x86_sse_comigt_ss:
5028  case Intrinsic::x86_sse_comige_ss:
5029  case Intrinsic::x86_sse_comineq_ss:
5030  case Intrinsic::x86_sse_ucomieq_ss:
5031  case Intrinsic::x86_sse_ucomilt_ss:
5032  case Intrinsic::x86_sse_ucomile_ss:
5033  case Intrinsic::x86_sse_ucomigt_ss:
5034  case Intrinsic::x86_sse_ucomige_ss:
5035  case Intrinsic::x86_sse_ucomineq_ss:
5036  case Intrinsic::x86_sse2_comieq_sd:
5037  case Intrinsic::x86_sse2_comilt_sd:
5038  case Intrinsic::x86_sse2_comile_sd:
5039  case Intrinsic::x86_sse2_comigt_sd:
5040  case Intrinsic::x86_sse2_comige_sd:
5041  case Intrinsic::x86_sse2_comineq_sd:
5042  case Intrinsic::x86_sse2_ucomieq_sd:
5043  case Intrinsic::x86_sse2_ucomilt_sd:
5044  case Intrinsic::x86_sse2_ucomile_sd:
5045  case Intrinsic::x86_sse2_ucomigt_sd:
5046  case Intrinsic::x86_sse2_ucomige_sd:
5047  case Intrinsic::x86_sse2_ucomineq_sd: {
5048    unsigned Opc = 0;
5049    ISD::CondCode CC = ISD::SETCC_INVALID;
5050    switch (IntNo) {
5051    default: break;
5052    case Intrinsic::x86_sse_comieq_ss:
5053    case Intrinsic::x86_sse2_comieq_sd:
5054      Opc = X86ISD::COMI;
5055      CC = ISD::SETEQ;
5056      break;
5057    case Intrinsic::x86_sse_comilt_ss:
5058    case Intrinsic::x86_sse2_comilt_sd:
5059      Opc = X86ISD::COMI;
5060      CC = ISD::SETLT;
5061      break;
5062    case Intrinsic::x86_sse_comile_ss:
5063    case Intrinsic::x86_sse2_comile_sd:
5064      Opc = X86ISD::COMI;
5065      CC = ISD::SETLE;
5066      break;
5067    case Intrinsic::x86_sse_comigt_ss:
5068    case Intrinsic::x86_sse2_comigt_sd:
5069      Opc = X86ISD::COMI;
5070      CC = ISD::SETGT;
5071      break;
5072    case Intrinsic::x86_sse_comige_ss:
5073    case Intrinsic::x86_sse2_comige_sd:
5074      Opc = X86ISD::COMI;
5075      CC = ISD::SETGE;
5076      break;
5077    case Intrinsic::x86_sse_comineq_ss:
5078    case Intrinsic::x86_sse2_comineq_sd:
5079      Opc = X86ISD::COMI;
5080      CC = ISD::SETNE;
5081      break;
5082    case Intrinsic::x86_sse_ucomieq_ss:
5083    case Intrinsic::x86_sse2_ucomieq_sd:
5084      Opc = X86ISD::UCOMI;
5085      CC = ISD::SETEQ;
5086      break;
5087    case Intrinsic::x86_sse_ucomilt_ss:
5088    case Intrinsic::x86_sse2_ucomilt_sd:
5089      Opc = X86ISD::UCOMI;
5090      CC = ISD::SETLT;
5091      break;
5092    case Intrinsic::x86_sse_ucomile_ss:
5093    case Intrinsic::x86_sse2_ucomile_sd:
5094      Opc = X86ISD::UCOMI;
5095      CC = ISD::SETLE;
5096      break;
5097    case Intrinsic::x86_sse_ucomigt_ss:
5098    case Intrinsic::x86_sse2_ucomigt_sd:
5099      Opc = X86ISD::UCOMI;
5100      CC = ISD::SETGT;
5101      break;
5102    case Intrinsic::x86_sse_ucomige_ss:
5103    case Intrinsic::x86_sse2_ucomige_sd:
5104      Opc = X86ISD::UCOMI;
5105      CC = ISD::SETGE;
5106      break;
5107    case Intrinsic::x86_sse_ucomineq_ss:
5108    case Intrinsic::x86_sse2_ucomineq_sd:
5109      Opc = X86ISD::UCOMI;
5110      CC = ISD::SETNE;
5111      break;
5112    }
5113
5114    unsigned X86CC;
5115    SDOperand LHS = Op.getOperand(1);
5116    SDOperand RHS = Op.getOperand(2);
5117    translateX86CC(CC, true, X86CC, LHS, RHS, DAG);
5118
5119    SDOperand Cond = DAG.getNode(Opc, MVT::i32, LHS, RHS);
5120    SDOperand SetCC = DAG.getNode(X86ISD::SETCC, MVT::i8,
5121                                  DAG.getConstant(X86CC, MVT::i8), Cond);
5122    return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC);
5123  }
5124  }
5125}
5126
5127SDOperand X86TargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
5128  // Depths > 0 not supported yet!
5129  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
5130    return SDOperand();
5131
5132  // Just load the return address
5133  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
5134  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
5135}
5136
5137SDOperand X86TargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
5138  // Depths > 0 not supported yet!
5139  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
5140    return SDOperand();
5141
5142  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
5143  return DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI,
5144                     DAG.getIntPtrConstant(4));
5145}
5146
5147SDOperand X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDOperand Op,
5148                                                       SelectionDAG &DAG) {
5149  // Is not yet supported on x86-64
5150  if (Subtarget->is64Bit())
5151    return SDOperand();
5152
5153  return DAG.getIntPtrConstant(8);
5154}
5155
5156SDOperand X86TargetLowering::LowerEH_RETURN(SDOperand Op, SelectionDAG &DAG)
5157{
5158  assert(!Subtarget->is64Bit() &&
5159         "Lowering of eh_return builtin is not supported yet on x86-64");
5160
5161  MachineFunction &MF = DAG.getMachineFunction();
5162  SDOperand Chain     = Op.getOperand(0);
5163  SDOperand Offset    = Op.getOperand(1);
5164  SDOperand Handler   = Op.getOperand(2);
5165
5166  SDOperand Frame = DAG.getRegister(RegInfo->getFrameRegister(MF),
5167                                    getPointerTy());
5168
5169  SDOperand StoreAddr = DAG.getNode(ISD::SUB, getPointerTy(), Frame,
5170                                    DAG.getIntPtrConstant(-4UL));
5171  StoreAddr = DAG.getNode(ISD::ADD, getPointerTy(), StoreAddr, Offset);
5172  Chain = DAG.getStore(Chain, Handler, StoreAddr, NULL, 0);
5173  Chain = DAG.getCopyToReg(Chain, X86::ECX, StoreAddr);
5174  MF.getRegInfo().addLiveOut(X86::ECX);
5175
5176  return DAG.getNode(X86ISD::EH_RETURN, MVT::Other,
5177                     Chain, DAG.getRegister(X86::ECX, getPointerTy()));
5178}
5179
5180SDOperand X86TargetLowering::LowerTRAMPOLINE(SDOperand Op,
5181                                             SelectionDAG &DAG) {
5182  SDOperand Root = Op.getOperand(0);
5183  SDOperand Trmp = Op.getOperand(1); // trampoline
5184  SDOperand FPtr = Op.getOperand(2); // nested function
5185  SDOperand Nest = Op.getOperand(3); // 'nest' parameter value
5186
5187  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
5188
5189  const X86InstrInfo *TII =
5190    ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
5191
5192  if (Subtarget->is64Bit()) {
5193    SDOperand OutChains[6];
5194
5195    // Large code-model.
5196
5197    const unsigned char JMP64r  = TII->getBaseOpcodeFor(X86::JMP64r);
5198    const unsigned char MOV64ri = TII->getBaseOpcodeFor(X86::MOV64ri);
5199
5200    const unsigned char N86R10 =
5201      ((const X86RegisterInfo*)RegInfo)->getX86RegNum(X86::R10);
5202    const unsigned char N86R11 =
5203      ((const X86RegisterInfo*)RegInfo)->getX86RegNum(X86::R11);
5204
5205    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
5206
5207    // Load the pointer to the nested function into R11.
5208    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
5209    SDOperand Addr = Trmp;
5210    OutChains[0] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
5211                                TrmpAddr, 0);
5212
5213    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(2, MVT::i64));
5214    OutChains[1] = DAG.getStore(Root, FPtr, Addr, TrmpAddr, 2, false, 2);
5215
5216    // Load the 'nest' parameter value into R10.
5217    // R10 is specified in X86CallingConv.td
5218    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
5219    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(10, MVT::i64));
5220    OutChains[2] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
5221                                TrmpAddr, 10);
5222
5223    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(12, MVT::i64));
5224    OutChains[3] = DAG.getStore(Root, Nest, Addr, TrmpAddr, 12, false, 2);
5225
5226    // Jump to the nested function.
5227    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
5228    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(20, MVT::i64));
5229    OutChains[4] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
5230                                TrmpAddr, 20);
5231
5232    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
5233    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(22, MVT::i64));
5234    OutChains[5] = DAG.getStore(Root, DAG.getConstant(ModRM, MVT::i8), Addr,
5235                                TrmpAddr, 22);
5236
5237    SDOperand Ops[] =
5238      { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 6) };
5239    return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(), Ops, 2);
5240  } else {
5241    const Function *Func =
5242      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
5243    unsigned CC = Func->getCallingConv();
5244    unsigned NestReg;
5245
5246    switch (CC) {
5247    default:
5248      assert(0 && "Unsupported calling convention");
5249    case CallingConv::C:
5250    case CallingConv::X86_StdCall: {
5251      // Pass 'nest' parameter in ECX.
5252      // Must be kept in sync with X86CallingConv.td
5253      NestReg = X86::ECX;
5254
5255      // Check that ECX wasn't needed by an 'inreg' parameter.
5256      const FunctionType *FTy = Func->getFunctionType();
5257      const PAListPtr &Attrs = Func->getParamAttrs();
5258
5259      if (!Attrs.isEmpty() && !Func->isVarArg()) {
5260        unsigned InRegCount = 0;
5261        unsigned Idx = 1;
5262
5263        for (FunctionType::param_iterator I = FTy->param_begin(),
5264             E = FTy->param_end(); I != E; ++I, ++Idx)
5265          if (Attrs.paramHasAttr(Idx, ParamAttr::InReg))
5266            // FIXME: should only count parameters that are lowered to integers.
5267            InRegCount += (getTargetData()->getTypeSizeInBits(*I) + 31) / 32;
5268
5269        if (InRegCount > 2) {
5270          cerr << "Nest register in use - reduce number of inreg parameters!\n";
5271          abort();
5272        }
5273      }
5274      break;
5275    }
5276    case CallingConv::X86_FastCall:
5277      // Pass 'nest' parameter in EAX.
5278      // Must be kept in sync with X86CallingConv.td
5279      NestReg = X86::EAX;
5280      break;
5281    }
5282
5283    SDOperand OutChains[4];
5284    SDOperand Addr, Disp;
5285
5286    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(10, MVT::i32));
5287    Disp = DAG.getNode(ISD::SUB, MVT::i32, FPtr, Addr);
5288
5289    const unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
5290    const unsigned char N86Reg =
5291      ((const X86RegisterInfo*)RegInfo)->getX86RegNum(NestReg);
5292    OutChains[0] = DAG.getStore(Root, DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
5293                                Trmp, TrmpAddr, 0);
5294
5295    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(1, MVT::i32));
5296    OutChains[1] = DAG.getStore(Root, Nest, Addr, TrmpAddr, 1, false, 1);
5297
5298    const unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
5299    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(5, MVT::i32));
5300    OutChains[2] = DAG.getStore(Root, DAG.getConstant(JMP, MVT::i8), Addr,
5301                                TrmpAddr, 5, false, 1);
5302
5303    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(6, MVT::i32));
5304    OutChains[3] = DAG.getStore(Root, Disp, Addr, TrmpAddr, 6, false, 1);
5305
5306    SDOperand Ops[] =
5307      { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 4) };
5308    return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(), Ops, 2);
5309  }
5310}
5311
5312SDOperand X86TargetLowering::LowerFLT_ROUNDS_(SDOperand Op, SelectionDAG &DAG) {
5313  /*
5314   The rounding mode is in bits 11:10 of FPSR, and has the following
5315   settings:
5316     00 Round to nearest
5317     01 Round to -inf
5318     10 Round to +inf
5319     11 Round to 0
5320
5321  FLT_ROUNDS, on the other hand, expects the following:
5322    -1 Undefined
5323     0 Round to 0
5324     1 Round to nearest
5325     2 Round to +inf
5326     3 Round to -inf
5327
5328  To perform the conversion, we do:
5329    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
5330  */
5331
5332  MachineFunction &MF = DAG.getMachineFunction();
5333  const TargetMachine &TM = MF.getTarget();
5334  const TargetFrameInfo &TFI = *TM.getFrameInfo();
5335  unsigned StackAlignment = TFI.getStackAlignment();
5336  MVT::ValueType VT = Op.getValueType();
5337
5338  // Save FP Control Word to stack slot
5339  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment);
5340  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5341
5342  SDOperand Chain = DAG.getNode(X86ISD::FNSTCW16m, MVT::Other,
5343                                DAG.getEntryNode(), StackSlot);
5344
5345  // Load FP Control Word from stack slot
5346  SDOperand CWD = DAG.getLoad(MVT::i16, Chain, StackSlot, NULL, 0);
5347
5348  // Transform as necessary
5349  SDOperand CWD1 =
5350    DAG.getNode(ISD::SRL, MVT::i16,
5351                DAG.getNode(ISD::AND, MVT::i16,
5352                            CWD, DAG.getConstant(0x800, MVT::i16)),
5353                DAG.getConstant(11, MVT::i8));
5354  SDOperand CWD2 =
5355    DAG.getNode(ISD::SRL, MVT::i16,
5356                DAG.getNode(ISD::AND, MVT::i16,
5357                            CWD, DAG.getConstant(0x400, MVT::i16)),
5358                DAG.getConstant(9, MVT::i8));
5359
5360  SDOperand RetVal =
5361    DAG.getNode(ISD::AND, MVT::i16,
5362                DAG.getNode(ISD::ADD, MVT::i16,
5363                            DAG.getNode(ISD::OR, MVT::i16, CWD1, CWD2),
5364                            DAG.getConstant(1, MVT::i16)),
5365                DAG.getConstant(3, MVT::i16));
5366
5367
5368  return DAG.getNode((MVT::getSizeInBits(VT) < 16 ?
5369                      ISD::TRUNCATE : ISD::ZERO_EXTEND), VT, RetVal);
5370}
5371
5372SDOperand X86TargetLowering::LowerCTLZ(SDOperand Op, SelectionDAG &DAG) {
5373  MVT::ValueType VT = Op.getValueType();
5374  MVT::ValueType OpVT = VT;
5375  unsigned NumBits = MVT::getSizeInBits(VT);
5376
5377  Op = Op.getOperand(0);
5378  if (VT == MVT::i8) {
5379    // Zero extend to i32 since there is not an i8 bsr.
5380    OpVT = MVT::i32;
5381    Op = DAG.getNode(ISD::ZERO_EXTEND, OpVT, Op);
5382  }
5383
5384  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
5385  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
5386  Op = DAG.getNode(X86ISD::BSR, VTs, Op);
5387
5388  // If src is zero (i.e. bsr sets ZF), returns NumBits.
5389  SmallVector<SDOperand, 4> Ops;
5390  Ops.push_back(Op);
5391  Ops.push_back(DAG.getConstant(NumBits+NumBits-1, OpVT));
5392  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
5393  Ops.push_back(Op.getValue(1));
5394  Op = DAG.getNode(X86ISD::CMOV, OpVT, &Ops[0], 4);
5395
5396  // Finally xor with NumBits-1.
5397  Op = DAG.getNode(ISD::XOR, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
5398
5399  if (VT == MVT::i8)
5400    Op = DAG.getNode(ISD::TRUNCATE, MVT::i8, Op);
5401  return Op;
5402}
5403
5404SDOperand X86TargetLowering::LowerCTTZ(SDOperand Op, SelectionDAG &DAG) {
5405  MVT::ValueType VT = Op.getValueType();
5406  MVT::ValueType OpVT = VT;
5407  unsigned NumBits = MVT::getSizeInBits(VT);
5408
5409  Op = Op.getOperand(0);
5410  if (VT == MVT::i8) {
5411    OpVT = MVT::i32;
5412    Op = DAG.getNode(ISD::ZERO_EXTEND, OpVT, Op);
5413  }
5414
5415  // Issue a bsf (scan bits forward) which also sets EFLAGS.
5416  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
5417  Op = DAG.getNode(X86ISD::BSF, VTs, Op);
5418
5419  // If src is zero (i.e. bsf sets ZF), returns NumBits.
5420  SmallVector<SDOperand, 4> Ops;
5421  Ops.push_back(Op);
5422  Ops.push_back(DAG.getConstant(NumBits, OpVT));
5423  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
5424  Ops.push_back(Op.getValue(1));
5425  Op = DAG.getNode(X86ISD::CMOV, OpVT, &Ops[0], 4);
5426
5427  if (VT == MVT::i8)
5428    Op = DAG.getNode(ISD::TRUNCATE, MVT::i8, Op);
5429  return Op;
5430}
5431
5432SDOperand X86TargetLowering::LowerLCS(SDOperand Op, SelectionDAG &DAG) {
5433  MVT::ValueType T = cast<AtomicSDNode>(Op.Val)->getVT();
5434  unsigned Reg = 0;
5435  unsigned size = 0;
5436  switch(T) {
5437  case MVT::i8:  Reg = X86::AL;  size = 1; break;
5438  case MVT::i16: Reg = X86::AX;  size = 2; break;
5439  case MVT::i32: Reg = X86::EAX; size = 4; break;
5440  case MVT::i64:
5441    if (Subtarget->is64Bit()) {
5442      Reg = X86::RAX; size = 8;
5443    } else //Should go away when LowerType stuff lands
5444      return SDOperand(ExpandATOMIC_LCS(Op.Val, DAG), 0);
5445    break;
5446  };
5447  SDOperand cpIn = DAG.getCopyToReg(Op.getOperand(0), Reg,
5448                                    Op.getOperand(3), SDOperand());
5449  SDOperand Ops[] = { cpIn.getValue(0),
5450                      Op.getOperand(1),
5451                      Op.getOperand(2),
5452                      DAG.getTargetConstant(size, MVT::i8),
5453                      cpIn.getValue(1) };
5454  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5455  SDOperand Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, Tys, Ops, 5);
5456  SDOperand cpOut =
5457    DAG.getCopyFromReg(Result.getValue(0), Reg, T, Result.getValue(1));
5458  return cpOut;
5459}
5460
5461SDNode* X86TargetLowering::ExpandATOMIC_LCS(SDNode* Op, SelectionDAG &DAG) {
5462  MVT::ValueType T = cast<AtomicSDNode>(Op)->getVT();
5463  assert (T == MVT::i64 && "Only know how to expand i64 CAS");
5464  SDOperand cpInL, cpInH;
5465  cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(3),
5466                      DAG.getConstant(0, MVT::i32));
5467  cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(3),
5468                      DAG.getConstant(1, MVT::i32));
5469  cpInL = DAG.getCopyToReg(Op->getOperand(0), X86::EAX,
5470                           cpInL, SDOperand());
5471  cpInH = DAG.getCopyToReg(cpInL.getValue(0), X86::EDX,
5472                           cpInH, cpInL.getValue(1));
5473  SDOperand swapInL, swapInH;
5474  swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(2),
5475                        DAG.getConstant(0, MVT::i32));
5476  swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(2),
5477                        DAG.getConstant(1, MVT::i32));
5478  swapInL = DAG.getCopyToReg(cpInH.getValue(0), X86::EBX,
5479                             swapInL, cpInH.getValue(1));
5480  swapInH = DAG.getCopyToReg(swapInL.getValue(0), X86::ECX,
5481                             swapInH, swapInL.getValue(1));
5482  SDOperand Ops[] = { swapInH.getValue(0),
5483                      Op->getOperand(1),
5484                      swapInH.getValue(1)};
5485  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5486  SDOperand Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, Tys, Ops, 3);
5487  SDOperand cpOutL = DAG.getCopyFromReg(Result.getValue(0), X86::EAX, MVT::i32,
5488                                        Result.getValue(1));
5489  SDOperand cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), X86::EDX, MVT::i32,
5490                                        cpOutL.getValue(2));
5491  SDOperand OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
5492  SDOperand ResultVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OpsF, 2);
5493  Tys = DAG.getVTList(MVT::i64, MVT::Other);
5494  return DAG.getNode(ISD::MERGE_VALUES, Tys, ResultVal, cpOutH.getValue(1)).Val;
5495}
5496
5497/// LowerOperation - Provide custom lowering hooks for some operations.
5498///
5499SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
5500  switch (Op.getOpcode()) {
5501  default: assert(0 && "Should not custom lower this!");
5502  case ISD::ATOMIC_LCS:         return LowerLCS(Op,DAG);
5503  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
5504  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
5505  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
5506  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
5507  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
5508  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
5509  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
5510  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
5511  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
5512  case ISD::SHL_PARTS:
5513  case ISD::SRA_PARTS:
5514  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
5515  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
5516  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
5517  case ISD::FABS:               return LowerFABS(Op, DAG);
5518  case ISD::FNEG:               return LowerFNEG(Op, DAG);
5519  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
5520  case ISD::SETCC:              return LowerSETCC(Op, DAG);
5521  case ISD::SELECT:             return LowerSELECT(Op, DAG);
5522  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
5523  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
5524  case ISD::CALL:               return LowerCALL(Op, DAG);
5525  case ISD::RET:                return LowerRET(Op, DAG);
5526  case ISD::FORMAL_ARGUMENTS:   return LowerFORMAL_ARGUMENTS(Op, DAG);
5527  case ISD::MEMSET:             return LowerMEMSET(Op, DAG);
5528  case ISD::MEMCPY:             return LowerMEMCPY(Op, DAG);
5529  case ISD::VASTART:            return LowerVASTART(Op, DAG);
5530  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
5531  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
5532  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
5533  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
5534  case ISD::FRAME_TO_ARGS_OFFSET:
5535                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
5536  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
5537  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
5538  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
5539  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
5540  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
5541  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
5542
5543  // FIXME: REMOVE THIS WHEN LegalizeDAGTypes lands.
5544  case ISD::READCYCLECOUNTER:
5545    return SDOperand(ExpandREADCYCLECOUNTER(Op.Val, DAG), 0);
5546  }
5547}
5548
5549/// ExpandOperation - Provide custom lowering hooks for expanding operations.
5550SDNode *X86TargetLowering::ExpandOperationResult(SDNode *N, SelectionDAG &DAG) {
5551  switch (N->getOpcode()) {
5552  default: assert(0 && "Should not custom lower this!");
5553  case ISD::FP_TO_SINT:         return ExpandFP_TO_SINT(N, DAG);
5554  case ISD::READCYCLECOUNTER:   return ExpandREADCYCLECOUNTER(N, DAG);
5555  case ISD::ATOMIC_LCS:         return ExpandATOMIC_LCS(N, DAG);
5556  }
5557}
5558
5559const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
5560  switch (Opcode) {
5561  default: return NULL;
5562  case X86ISD::BSF:                return "X86ISD::BSF";
5563  case X86ISD::BSR:                return "X86ISD::BSR";
5564  case X86ISD::SHLD:               return "X86ISD::SHLD";
5565  case X86ISD::SHRD:               return "X86ISD::SHRD";
5566  case X86ISD::FAND:               return "X86ISD::FAND";
5567  case X86ISD::FOR:                return "X86ISD::FOR";
5568  case X86ISD::FXOR:               return "X86ISD::FXOR";
5569  case X86ISD::FSRL:               return "X86ISD::FSRL";
5570  case X86ISD::FILD:               return "X86ISD::FILD";
5571  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
5572  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
5573  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
5574  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
5575  case X86ISD::FLD:                return "X86ISD::FLD";
5576  case X86ISD::FST:                return "X86ISD::FST";
5577  case X86ISD::FP_GET_ST0_ST1:     return "X86ISD::FP_GET_ST0_ST1";
5578  case X86ISD::CALL:               return "X86ISD::CALL";
5579  case X86ISD::TAILCALL:           return "X86ISD::TAILCALL";
5580  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
5581  case X86ISD::CMP:                return "X86ISD::CMP";
5582  case X86ISD::COMI:               return "X86ISD::COMI";
5583  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
5584  case X86ISD::SETCC:              return "X86ISD::SETCC";
5585  case X86ISD::CMOV:               return "X86ISD::CMOV";
5586  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
5587  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
5588  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
5589  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
5590  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
5591  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
5592  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
5593  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
5594  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
5595  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
5596  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
5597  case X86ISD::FMAX:               return "X86ISD::FMAX";
5598  case X86ISD::FMIN:               return "X86ISD::FMIN";
5599  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
5600  case X86ISD::FRCP:               return "X86ISD::FRCP";
5601  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
5602  case X86ISD::THREAD_POINTER:     return "X86ISD::THREAD_POINTER";
5603  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
5604  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
5605  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
5606  case X86ISD::LCMPXCHG_DAG:       return "x86ISD::LCMPXCHG_DAG";
5607  case X86ISD::LCMPXCHG8_DAG:      return "x86ISD::LCMPXCHG8_DAG";
5608  }
5609}
5610
5611// isLegalAddressingMode - Return true if the addressing mode represented
5612// by AM is legal for this target, for a load/store of the specified type.
5613bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
5614                                              const Type *Ty) const {
5615  // X86 supports extremely general addressing modes.
5616
5617  // X86 allows a sign-extended 32-bit immediate field as a displacement.
5618  if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
5619    return false;
5620
5621  if (AM.BaseGV) {
5622    // We can only fold this if we don't need an extra load.
5623    if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
5624      return false;
5625
5626    // X86-64 only supports addr of globals in small code model.
5627    if (Subtarget->is64Bit()) {
5628      if (getTargetMachine().getCodeModel() != CodeModel::Small)
5629        return false;
5630      // If lower 4G is not available, then we must use rip-relative addressing.
5631      if (AM.BaseOffs || AM.Scale > 1)
5632        return false;
5633    }
5634  }
5635
5636  switch (AM.Scale) {
5637  case 0:
5638  case 1:
5639  case 2:
5640  case 4:
5641  case 8:
5642    // These scales always work.
5643    break;
5644  case 3:
5645  case 5:
5646  case 9:
5647    // These scales are formed with basereg+scalereg.  Only accept if there is
5648    // no basereg yet.
5649    if (AM.HasBaseReg)
5650      return false;
5651    break;
5652  default:  // Other stuff never works.
5653    return false;
5654  }
5655
5656  return true;
5657}
5658
5659
5660bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
5661  if (!Ty1->isInteger() || !Ty2->isInteger())
5662    return false;
5663  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
5664  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
5665  if (NumBits1 <= NumBits2 || NumBits2 < 8)
5666    return false;
5667  return Subtarget->is64Bit() || NumBits1 < 64;
5668}
5669
5670bool X86TargetLowering::isTruncateFree(MVT::ValueType VT1,
5671                                       MVT::ValueType VT2) const {
5672  if (!MVT::isInteger(VT1) || !MVT::isInteger(VT2))
5673    return false;
5674  unsigned NumBits1 = MVT::getSizeInBits(VT1);
5675  unsigned NumBits2 = MVT::getSizeInBits(VT2);
5676  if (NumBits1 <= NumBits2 || NumBits2 < 8)
5677    return false;
5678  return Subtarget->is64Bit() || NumBits1 < 64;
5679}
5680
5681/// isShuffleMaskLegal - Targets can use this to indicate that they only
5682/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
5683/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
5684/// are assumed to be legal.
5685bool
5686X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
5687  // Only do shuffles on 128-bit vector types for now.
5688  if (MVT::getSizeInBits(VT) == 64) return false;
5689  return (Mask.Val->getNumOperands() <= 4 ||
5690          isIdentityMask(Mask.Val) ||
5691          isIdentityMask(Mask.Val, true) ||
5692          isSplatMask(Mask.Val)  ||
5693          isPSHUFHW_PSHUFLWMask(Mask.Val) ||
5694          X86::isUNPCKLMask(Mask.Val) ||
5695          X86::isUNPCKHMask(Mask.Val) ||
5696          X86::isUNPCKL_v_undef_Mask(Mask.Val) ||
5697          X86::isUNPCKH_v_undef_Mask(Mask.Val));
5698}
5699
5700bool X86TargetLowering::isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
5701                                               MVT::ValueType EVT,
5702                                               SelectionDAG &DAG) const {
5703  unsigned NumElts = BVOps.size();
5704  // Only do shuffles on 128-bit vector types for now.
5705  if (MVT::getSizeInBits(EVT) * NumElts == 64) return false;
5706  if (NumElts == 2) return true;
5707  if (NumElts == 4) {
5708    return (isMOVLMask(&BVOps[0], 4)  ||
5709            isCommutedMOVL(&BVOps[0], 4, true) ||
5710            isSHUFPMask(&BVOps[0], 4) ||
5711            isCommutedSHUFP(&BVOps[0], 4));
5712  }
5713  return false;
5714}
5715
5716//===----------------------------------------------------------------------===//
5717//                           X86 Scheduler Hooks
5718//===----------------------------------------------------------------------===//
5719
5720MachineBasicBlock *
5721X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
5722                                               MachineBasicBlock *BB) {
5723  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5724  switch (MI->getOpcode()) {
5725  default: assert(false && "Unexpected instr type to insert");
5726  case X86::CMOV_FR32:
5727  case X86::CMOV_FR64:
5728  case X86::CMOV_V4F32:
5729  case X86::CMOV_V2F64:
5730  case X86::CMOV_V2I64: {
5731    // To "insert" a SELECT_CC instruction, we actually have to insert the
5732    // diamond control-flow pattern.  The incoming instruction knows the
5733    // destination vreg to set, the condition code register to branch on, the
5734    // true/false values to select between, and a branch opcode to use.
5735    const BasicBlock *LLVM_BB = BB->getBasicBlock();
5736    ilist<MachineBasicBlock>::iterator It = BB;
5737    ++It;
5738
5739    //  thisMBB:
5740    //  ...
5741    //   TrueVal = ...
5742    //   cmpTY ccX, r1, r2
5743    //   bCC copy1MBB
5744    //   fallthrough --> copy0MBB
5745    MachineBasicBlock *thisMBB = BB;
5746    MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
5747    MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
5748    unsigned Opc =
5749      X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
5750    BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
5751    MachineFunction *F = BB->getParent();
5752    F->getBasicBlockList().insert(It, copy0MBB);
5753    F->getBasicBlockList().insert(It, sinkMBB);
5754    // Update machine-CFG edges by first adding all successors of the current
5755    // block to the new block which will contain the Phi node for the select.
5756    for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
5757        e = BB->succ_end(); i != e; ++i)
5758      sinkMBB->addSuccessor(*i);
5759    // Next, remove all successors of the current block, and add the true
5760    // and fallthrough blocks as its successors.
5761    while(!BB->succ_empty())
5762      BB->removeSuccessor(BB->succ_begin());
5763    BB->addSuccessor(copy0MBB);
5764    BB->addSuccessor(sinkMBB);
5765
5766    //  copy0MBB:
5767    //   %FalseValue = ...
5768    //   # fallthrough to sinkMBB
5769    BB = copy0MBB;
5770
5771    // Update machine-CFG edges
5772    BB->addSuccessor(sinkMBB);
5773
5774    //  sinkMBB:
5775    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
5776    //  ...
5777    BB = sinkMBB;
5778    BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
5779      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
5780      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
5781
5782    delete MI;   // The pseudo instruction is gone now.
5783    return BB;
5784  }
5785
5786  case X86::FP32_TO_INT16_IN_MEM:
5787  case X86::FP32_TO_INT32_IN_MEM:
5788  case X86::FP32_TO_INT64_IN_MEM:
5789  case X86::FP64_TO_INT16_IN_MEM:
5790  case X86::FP64_TO_INT32_IN_MEM:
5791  case X86::FP64_TO_INT64_IN_MEM:
5792  case X86::FP80_TO_INT16_IN_MEM:
5793  case X86::FP80_TO_INT32_IN_MEM:
5794  case X86::FP80_TO_INT64_IN_MEM: {
5795    // Change the floating point control register to use "round towards zero"
5796    // mode when truncating to an integer value.
5797    MachineFunction *F = BB->getParent();
5798    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
5799    addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
5800
5801    // Load the old value of the high byte of the control word...
5802    unsigned OldCW =
5803      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
5804    addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);
5805
5806    // Set the high part to be round to zero...
5807    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
5808      .addImm(0xC7F);
5809
5810    // Reload the modified control word now...
5811    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
5812
5813    // Restore the memory image of control word to original value
5814    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
5815      .addReg(OldCW);
5816
5817    // Get the X86 opcode to use.
5818    unsigned Opc;
5819    switch (MI->getOpcode()) {
5820    default: assert(0 && "illegal opcode!");
5821    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
5822    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
5823    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
5824    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
5825    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
5826    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
5827    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
5828    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
5829    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
5830    }
5831
5832    X86AddressMode AM;
5833    MachineOperand &Op = MI->getOperand(0);
5834    if (Op.isRegister()) {
5835      AM.BaseType = X86AddressMode::RegBase;
5836      AM.Base.Reg = Op.getReg();
5837    } else {
5838      AM.BaseType = X86AddressMode::FrameIndexBase;
5839      AM.Base.FrameIndex = Op.getIndex();
5840    }
5841    Op = MI->getOperand(1);
5842    if (Op.isImmediate())
5843      AM.Scale = Op.getImm();
5844    Op = MI->getOperand(2);
5845    if (Op.isImmediate())
5846      AM.IndexReg = Op.getImm();
5847    Op = MI->getOperand(3);
5848    if (Op.isGlobalAddress()) {
5849      AM.GV = Op.getGlobal();
5850    } else {
5851      AM.Disp = Op.getImm();
5852    }
5853    addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
5854                      .addReg(MI->getOperand(4).getReg());
5855
5856    // Reload the original control word now.
5857    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
5858
5859    delete MI;   // The pseudo instruction is gone now.
5860    return BB;
5861  }
5862  }
5863}
5864
5865//===----------------------------------------------------------------------===//
5866//                           X86 Optimization Hooks
5867//===----------------------------------------------------------------------===//
5868
5869void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
5870                                                       const APInt &Mask,
5871                                                       APInt &KnownZero,
5872                                                       APInt &KnownOne,
5873                                                       const SelectionDAG &DAG,
5874                                                       unsigned Depth) const {
5875  unsigned Opc = Op.getOpcode();
5876  assert((Opc >= ISD::BUILTIN_OP_END ||
5877          Opc == ISD::INTRINSIC_WO_CHAIN ||
5878          Opc == ISD::INTRINSIC_W_CHAIN ||
5879          Opc == ISD::INTRINSIC_VOID) &&
5880         "Should use MaskedValueIsZero if you don't know whether Op"
5881         " is a target node!");
5882
5883  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
5884  switch (Opc) {
5885  default: break;
5886  case X86ISD::SETCC:
5887    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
5888                                       Mask.getBitWidth() - 1);
5889    break;
5890  }
5891}
5892
5893/// getShuffleScalarElt - Returns the scalar element that will make up the ith
5894/// element of the result of the vector shuffle.
5895static SDOperand getShuffleScalarElt(SDNode *N, unsigned i, SelectionDAG &DAG) {
5896  MVT::ValueType VT = N->getValueType(0);
5897  SDOperand PermMask = N->getOperand(2);
5898  unsigned NumElems = PermMask.getNumOperands();
5899  SDOperand V = (i < NumElems) ? N->getOperand(0) : N->getOperand(1);
5900  i %= NumElems;
5901  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5902    return (i == 0)
5903     ? V.getOperand(0) : DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
5904  } else if (V.getOpcode() == ISD::VECTOR_SHUFFLE) {
5905    SDOperand Idx = PermMask.getOperand(i);
5906    if (Idx.getOpcode() == ISD::UNDEF)
5907      return DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
5908    return getShuffleScalarElt(V.Val,cast<ConstantSDNode>(Idx)->getValue(),DAG);
5909  }
5910  return SDOperand();
5911}
5912
5913/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
5914/// node is a GlobalAddress + an offset.
5915static bool isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) {
5916  unsigned Opc = N->getOpcode();
5917  if (Opc == X86ISD::Wrapper) {
5918    if (dyn_cast<GlobalAddressSDNode>(N->getOperand(0))) {
5919      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
5920      return true;
5921    }
5922  } else if (Opc == ISD::ADD) {
5923    SDOperand N1 = N->getOperand(0);
5924    SDOperand N2 = N->getOperand(1);
5925    if (isGAPlusOffset(N1.Val, GA, Offset)) {
5926      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
5927      if (V) {
5928        Offset += V->getSignExtended();
5929        return true;
5930      }
5931    } else if (isGAPlusOffset(N2.Val, GA, Offset)) {
5932      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
5933      if (V) {
5934        Offset += V->getSignExtended();
5935        return true;
5936      }
5937    }
5938  }
5939  return false;
5940}
5941
5942/// isConsecutiveLoad - Returns true if N is loading from an address of Base
5943/// + Dist * Size.
5944static bool isConsecutiveLoad(SDNode *N, SDNode *Base, int Dist, int Size,
5945                              MachineFrameInfo *MFI) {
5946  if (N->getOperand(0).Val != Base->getOperand(0).Val)
5947    return false;
5948
5949  SDOperand Loc = N->getOperand(1);
5950  SDOperand BaseLoc = Base->getOperand(1);
5951  if (Loc.getOpcode() == ISD::FrameIndex) {
5952    if (BaseLoc.getOpcode() != ISD::FrameIndex)
5953      return false;
5954    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
5955    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
5956    int FS  = MFI->getObjectSize(FI);
5957    int BFS = MFI->getObjectSize(BFI);
5958    if (FS != BFS || FS != Size) return false;
5959    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Size);
5960  } else {
5961    GlobalValue *GV1 = NULL;
5962    GlobalValue *GV2 = NULL;
5963    int64_t Offset1 = 0;
5964    int64_t Offset2 = 0;
5965    bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1);
5966    bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2);
5967    if (isGA1 && isGA2 && GV1 == GV2)
5968      return Offset1 == (Offset2 + Dist*Size);
5969  }
5970
5971  return false;
5972}
5973
5974static bool isBaseAlignment16(SDNode *Base, MachineFrameInfo *MFI,
5975                              const X86Subtarget *Subtarget) {
5976  GlobalValue *GV;
5977  int64_t Offset = 0;
5978  if (isGAPlusOffset(Base, GV, Offset))
5979    return (GV->getAlignment() >= 16 && (Offset % 16) == 0);
5980  // DAG combine handles the stack object case.
5981  return false;
5982}
5983
5984
5985/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
5986/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
5987/// if the load addresses are consecutive, non-overlapping, and in the right
5988/// order.
5989static SDOperand PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
5990                                       const X86Subtarget *Subtarget) {
5991  MachineFunction &MF = DAG.getMachineFunction();
5992  MachineFrameInfo *MFI = MF.getFrameInfo();
5993  MVT::ValueType VT = N->getValueType(0);
5994  MVT::ValueType EVT = MVT::getVectorElementType(VT);
5995  SDOperand PermMask = N->getOperand(2);
5996  int NumElems = (int)PermMask.getNumOperands();
5997  SDNode *Base = NULL;
5998  for (int i = 0; i < NumElems; ++i) {
5999    SDOperand Idx = PermMask.getOperand(i);
6000    if (Idx.getOpcode() == ISD::UNDEF) {
6001      if (!Base) return SDOperand();
6002    } else {
6003      SDOperand Arg =
6004        getShuffleScalarElt(N, cast<ConstantSDNode>(Idx)->getValue(), DAG);
6005      if (!Arg.Val || !ISD::isNON_EXTLoad(Arg.Val))
6006        return SDOperand();
6007      if (!Base)
6008        Base = Arg.Val;
6009      else if (!isConsecutiveLoad(Arg.Val, Base,
6010                                  i, MVT::getSizeInBits(EVT)/8,MFI))
6011        return SDOperand();
6012    }
6013  }
6014
6015  bool isAlign16 = isBaseAlignment16(Base->getOperand(1).Val, MFI, Subtarget);
6016  LoadSDNode *LD = cast<LoadSDNode>(Base);
6017  if (isAlign16) {
6018    return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
6019                       LD->getSrcValueOffset(), LD->isVolatile());
6020  } else {
6021    return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
6022                       LD->getSrcValueOffset(), LD->isVolatile(),
6023                       LD->getAlignment());
6024  }
6025}
6026
6027/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
6028static SDOperand PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
6029                                      const X86Subtarget *Subtarget) {
6030  SDOperand Cond = N->getOperand(0);
6031
6032  // If we have SSE[12] support, try to form min/max nodes.
6033  if (Subtarget->hasSSE2() &&
6034      (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
6035    if (Cond.getOpcode() == ISD::SETCC) {
6036      // Get the LHS/RHS of the select.
6037      SDOperand LHS = N->getOperand(1);
6038      SDOperand RHS = N->getOperand(2);
6039      ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
6040
6041      unsigned Opcode = 0;
6042      if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
6043        switch (CC) {
6044        default: break;
6045        case ISD::SETOLE: // (X <= Y) ? X : Y -> min
6046        case ISD::SETULE:
6047        case ISD::SETLE:
6048          if (!UnsafeFPMath) break;
6049          // FALL THROUGH.
6050        case ISD::SETOLT:  // (X olt/lt Y) ? X : Y -> min
6051        case ISD::SETLT:
6052          Opcode = X86ISD::FMIN;
6053          break;
6054
6055        case ISD::SETOGT: // (X > Y) ? X : Y -> max
6056        case ISD::SETUGT:
6057        case ISD::SETGT:
6058          if (!UnsafeFPMath) break;
6059          // FALL THROUGH.
6060        case ISD::SETUGE:  // (X uge/ge Y) ? X : Y -> max
6061        case ISD::SETGE:
6062          Opcode = X86ISD::FMAX;
6063          break;
6064        }
6065      } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
6066        switch (CC) {
6067        default: break;
6068        case ISD::SETOGT: // (X > Y) ? Y : X -> min
6069        case ISD::SETUGT:
6070        case ISD::SETGT:
6071          if (!UnsafeFPMath) break;
6072          // FALL THROUGH.
6073        case ISD::SETUGE:  // (X uge/ge Y) ? Y : X -> min
6074        case ISD::SETGE:
6075          Opcode = X86ISD::FMIN;
6076          break;
6077
6078        case ISD::SETOLE:   // (X <= Y) ? Y : X -> max
6079        case ISD::SETULE:
6080        case ISD::SETLE:
6081          if (!UnsafeFPMath) break;
6082          // FALL THROUGH.
6083        case ISD::SETOLT:   // (X olt/lt Y) ? Y : X -> max
6084        case ISD::SETLT:
6085          Opcode = X86ISD::FMAX;
6086          break;
6087        }
6088      }
6089
6090      if (Opcode)
6091        return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS);
6092    }
6093
6094  }
6095
6096  return SDOperand();
6097}
6098
6099/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
6100static SDOperand PerformSTORECombine(StoreSDNode *St, SelectionDAG &DAG,
6101                                     const X86Subtarget *Subtarget) {
6102  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
6103  // the FP state in cases where an emms may be missing.
6104  // A preferable solution to the general problem is to figure out the right
6105  // places to insert EMMS.  This qualifies as a quick hack.
6106  if (MVT::isVector(St->getValue().getValueType()) &&
6107      MVT::getSizeInBits(St->getValue().getValueType()) == 64 &&
6108      isa<LoadSDNode>(St->getValue()) &&
6109      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
6110      St->getChain().hasOneUse() && !St->isVolatile()) {
6111    SDNode* LdVal = St->getValue().Val;
6112    LoadSDNode *Ld = 0;
6113    int TokenFactorIndex = -1;
6114    SmallVector<SDOperand, 8> Ops;
6115    SDNode* ChainVal = St->getChain().Val;
6116    // Must be a store of a load.  We currently handle two cases:  the load
6117    // is a direct child, and it's under an intervening TokenFactor.  It is
6118    // possible to dig deeper under nested TokenFactors.
6119    if (ChainVal == LdVal)
6120      Ld = cast<LoadSDNode>(St->getChain());
6121    else if (St->getValue().hasOneUse() &&
6122             ChainVal->getOpcode() == ISD::TokenFactor) {
6123      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
6124        if (ChainVal->getOperand(i).Val == LdVal) {
6125          TokenFactorIndex = i;
6126          Ld = cast<LoadSDNode>(St->getValue());
6127        } else
6128          Ops.push_back(ChainVal->getOperand(i));
6129      }
6130    }
6131    if (Ld) {
6132      // If we are a 64-bit capable x86, lower to a single movq load/store pair.
6133      if (Subtarget->is64Bit()) {
6134        SDOperand NewLd = DAG.getLoad(MVT::i64, Ld->getChain(),
6135                                      Ld->getBasePtr(), Ld->getSrcValue(),
6136                                      Ld->getSrcValueOffset(), Ld->isVolatile(),
6137                                      Ld->getAlignment());
6138        SDOperand NewChain = NewLd.getValue(1);
6139        if (TokenFactorIndex != -1) {
6140          Ops.push_back(NewLd);
6141          NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0],
6142                                 Ops.size());
6143        }
6144        return DAG.getStore(NewChain, NewLd, St->getBasePtr(),
6145                            St->getSrcValue(), St->getSrcValueOffset(),
6146                            St->isVolatile(), St->getAlignment());
6147      }
6148
6149      // Otherwise, lower to two 32-bit copies.
6150      SDOperand LoAddr = Ld->getBasePtr();
6151      SDOperand HiAddr = DAG.getNode(ISD::ADD, MVT::i32, LoAddr,
6152                                     DAG.getConstant(MVT::i32, 4));
6153
6154      SDOperand LoLd = DAG.getLoad(MVT::i32, Ld->getChain(), LoAddr,
6155                                   Ld->getSrcValue(), Ld->getSrcValueOffset(),
6156                                   Ld->isVolatile(), Ld->getAlignment());
6157      SDOperand HiLd = DAG.getLoad(MVT::i32, Ld->getChain(), HiAddr,
6158                                   Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
6159                                   Ld->isVolatile(),
6160                                   MinAlign(Ld->getAlignment(), 4));
6161
6162      SDOperand NewChain = LoLd.getValue(1);
6163      if (TokenFactorIndex != -1) {
6164        Ops.push_back(LoLd);
6165        Ops.push_back(HiLd);
6166        NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0],
6167                               Ops.size());
6168      }
6169
6170      LoAddr = St->getBasePtr();
6171      HiAddr = DAG.getNode(ISD::ADD, MVT::i32, LoAddr,
6172                           DAG.getConstant(MVT::i32, 4));
6173
6174      SDOperand LoSt = DAG.getStore(NewChain, LoLd, LoAddr,
6175                          St->getSrcValue(), St->getSrcValueOffset(),
6176                          St->isVolatile(), St->getAlignment());
6177      SDOperand HiSt = DAG.getStore(NewChain, HiLd, HiAddr,
6178                                    St->getSrcValue(), St->getSrcValueOffset()+4,
6179                                    St->isVolatile(),
6180                                    MinAlign(St->getAlignment(), 4));
6181      return DAG.getNode(ISD::TokenFactor, MVT::Other, LoSt, HiSt);
6182    }
6183  }
6184  return SDOperand();
6185}
6186
6187/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
6188/// X86ISD::FXOR nodes.
6189static SDOperand PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
6190  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
6191  // F[X]OR(0.0, x) -> x
6192  // F[X]OR(x, 0.0) -> x
6193  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
6194    if (C->getValueAPF().isPosZero())
6195      return N->getOperand(1);
6196  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
6197    if (C->getValueAPF().isPosZero())
6198      return N->getOperand(0);
6199  return SDOperand();
6200}
6201
6202/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
6203static SDOperand PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
6204  // FAND(0.0, x) -> 0.0
6205  // FAND(x, 0.0) -> 0.0
6206  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
6207    if (C->getValueAPF().isPosZero())
6208      return N->getOperand(0);
6209  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
6210    if (C->getValueAPF().isPosZero())
6211      return N->getOperand(1);
6212  return SDOperand();
6213}
6214
6215
6216SDOperand X86TargetLowering::PerformDAGCombine(SDNode *N,
6217                                               DAGCombinerInfo &DCI) const {
6218  SelectionDAG &DAG = DCI.DAG;
6219  switch (N->getOpcode()) {
6220  default: break;
6221  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, Subtarget);
6222  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
6223  case ISD::STORE:
6224      return PerformSTORECombine(cast<StoreSDNode>(N), DAG, Subtarget);
6225  case X86ISD::FXOR:
6226  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
6227  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
6228  }
6229
6230  return SDOperand();
6231}
6232
6233//===----------------------------------------------------------------------===//
6234//                           X86 Inline Assembly Support
6235//===----------------------------------------------------------------------===//
6236
6237/// getConstraintType - Given a constraint letter, return the type of
6238/// constraint it is for this target.
6239X86TargetLowering::ConstraintType
6240X86TargetLowering::getConstraintType(const std::string &Constraint) const {
6241  if (Constraint.size() == 1) {
6242    switch (Constraint[0]) {
6243    case 'A':
6244    case 'f':
6245    case 'r':
6246    case 'R':
6247    case 'l':
6248    case 'q':
6249    case 'Q':
6250    case 'x':
6251    case 'Y':
6252      return C_RegisterClass;
6253    default:
6254      break;
6255    }
6256  }
6257  return TargetLowering::getConstraintType(Constraint);
6258}
6259
6260/// LowerXConstraint - try to replace an X constraint, which matches anything,
6261/// with another that has more specific requirements based on the type of the
6262/// corresponding operand.
6263void X86TargetLowering::lowerXConstraint(MVT::ValueType ConstraintVT,
6264                                         std::string& s) const {
6265  if (MVT::isFloatingPoint(ConstraintVT)) {
6266    if (Subtarget->hasSSE2())
6267      s = "Y";
6268    else if (Subtarget->hasSSE1())
6269      s = "x";
6270    else
6271      s = "f";
6272  } else
6273    return TargetLowering::lowerXConstraint(ConstraintVT, s);
6274}
6275
6276/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
6277/// vector.  If it is invalid, don't add anything to Ops.
6278void X86TargetLowering::LowerAsmOperandForConstraint(SDOperand Op,
6279                                                     char Constraint,
6280                                                     std::vector<SDOperand>&Ops,
6281                                                     SelectionDAG &DAG) {
6282  SDOperand Result(0, 0);
6283
6284  switch (Constraint) {
6285  default: break;
6286  case 'I':
6287    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
6288      if (C->getValue() <= 31) {
6289        Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
6290        break;
6291      }
6292    }
6293    return;
6294  case 'N':
6295    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
6296      if (C->getValue() <= 255) {
6297        Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
6298        break;
6299      }
6300    }
6301    return;
6302  case 'i': {
6303    // Literal immediates are always ok.
6304    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
6305      Result = DAG.getTargetConstant(CST->getValue(), Op.getValueType());
6306      break;
6307    }
6308
6309    // If we are in non-pic codegen mode, we allow the address of a global (with
6310    // an optional displacement) to be used with 'i'.
6311    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
6312    int64_t Offset = 0;
6313
6314    // Match either (GA) or (GA+C)
6315    if (GA) {
6316      Offset = GA->getOffset();
6317    } else if (Op.getOpcode() == ISD::ADD) {
6318      ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6319      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
6320      if (C && GA) {
6321        Offset = GA->getOffset()+C->getValue();
6322      } else {
6323        C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6324        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
6325        if (C && GA)
6326          Offset = GA->getOffset()+C->getValue();
6327        else
6328          C = 0, GA = 0;
6329      }
6330    }
6331
6332    if (GA) {
6333      // If addressing this global requires a load (e.g. in PIC mode), we can't
6334      // match.
6335      if (Subtarget->GVRequiresExtraLoad(GA->getGlobal(), getTargetMachine(),
6336                                         false))
6337        return;
6338
6339      Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
6340                                      Offset);
6341      Result = Op;
6342      break;
6343    }
6344
6345    // Otherwise, not valid for this mode.
6346    return;
6347  }
6348  }
6349
6350  if (Result.Val) {
6351    Ops.push_back(Result);
6352    return;
6353  }
6354  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
6355}
6356
6357std::vector<unsigned> X86TargetLowering::
6358getRegClassForInlineAsmConstraint(const std::string &Constraint,
6359                                  MVT::ValueType VT) const {
6360  if (Constraint.size() == 1) {
6361    // FIXME: not handling fp-stack yet!
6362    switch (Constraint[0]) {      // GCC X86 Constraint Letters
6363    default: break;  // Unknown constraint letter
6364    case 'A':   // EAX/EDX
6365      if (VT == MVT::i32 || VT == MVT::i64)
6366        return make_vector<unsigned>(X86::EAX, X86::EDX, 0);
6367      break;
6368    case 'q':   // Q_REGS (GENERAL_REGS in 64-bit mode)
6369    case 'Q':   // Q_REGS
6370      if (VT == MVT::i32)
6371        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
6372      else if (VT == MVT::i16)
6373        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
6374      else if (VT == MVT::i8)
6375        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
6376      else if (VT == MVT::i64)
6377        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
6378      break;
6379    }
6380  }
6381
6382  return std::vector<unsigned>();
6383}
6384
6385std::pair<unsigned, const TargetRegisterClass*>
6386X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
6387                                                MVT::ValueType VT) const {
6388  // First, see if this is a constraint that directly corresponds to an LLVM
6389  // register class.
6390  if (Constraint.size() == 1) {
6391    // GCC Constraint Letters
6392    switch (Constraint[0]) {
6393    default: break;
6394    case 'r':   // GENERAL_REGS
6395    case 'R':   // LEGACY_REGS
6396    case 'l':   // INDEX_REGS
6397      if (VT == MVT::i64 && Subtarget->is64Bit())
6398        return std::make_pair(0U, X86::GR64RegisterClass);
6399      if (VT == MVT::i32)
6400        return std::make_pair(0U, X86::GR32RegisterClass);
6401      else if (VT == MVT::i16)
6402        return std::make_pair(0U, X86::GR16RegisterClass);
6403      else if (VT == MVT::i8)
6404        return std::make_pair(0U, X86::GR8RegisterClass);
6405      break;
6406    case 'f':  // FP Stack registers.
6407      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
6408      // value to the correct fpstack register class.
6409      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
6410        return std::make_pair(0U, X86::RFP32RegisterClass);
6411      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
6412        return std::make_pair(0U, X86::RFP64RegisterClass);
6413      return std::make_pair(0U, X86::RFP80RegisterClass);
6414    case 'y':   // MMX_REGS if MMX allowed.
6415      if (!Subtarget->hasMMX()) break;
6416      return std::make_pair(0U, X86::VR64RegisterClass);
6417      break;
6418    case 'Y':   // SSE_REGS if SSE2 allowed
6419      if (!Subtarget->hasSSE2()) break;
6420      // FALL THROUGH.
6421    case 'x':   // SSE_REGS if SSE1 allowed
6422      if (!Subtarget->hasSSE1()) break;
6423
6424      switch (VT) {
6425      default: break;
6426      // Scalar SSE types.
6427      case MVT::f32:
6428      case MVT::i32:
6429        return std::make_pair(0U, X86::FR32RegisterClass);
6430      case MVT::f64:
6431      case MVT::i64:
6432        return std::make_pair(0U, X86::FR64RegisterClass);
6433      // Vector types.
6434      case MVT::v16i8:
6435      case MVT::v8i16:
6436      case MVT::v4i32:
6437      case MVT::v2i64:
6438      case MVT::v4f32:
6439      case MVT::v2f64:
6440        return std::make_pair(0U, X86::VR128RegisterClass);
6441      }
6442      break;
6443    }
6444  }
6445
6446  // Use the default implementation in TargetLowering to convert the register
6447  // constraint into a member of a register class.
6448  std::pair<unsigned, const TargetRegisterClass*> Res;
6449  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
6450
6451  // Not found as a standard register?
6452  if (Res.second == 0) {
6453    // GCC calls "st(0)" just plain "st".
6454    if (StringsEqualNoCase("{st}", Constraint)) {
6455      Res.first = X86::ST0;
6456      Res.second = X86::RFP80RegisterClass;
6457    }
6458
6459    return Res;
6460  }
6461
6462  // Otherwise, check to see if this is a register class of the wrong value
6463  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
6464  // turn into {ax},{dx}.
6465  if (Res.second->hasType(VT))
6466    return Res;   // Correct type already, nothing to do.
6467
6468  // All of the single-register GCC register classes map their values onto
6469  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
6470  // really want an 8-bit or 32-bit register, map to the appropriate register
6471  // class and return the appropriate register.
6472  if (Res.second != X86::GR16RegisterClass)
6473    return Res;
6474
6475  if (VT == MVT::i8) {
6476    unsigned DestReg = 0;
6477    switch (Res.first) {
6478    default: break;
6479    case X86::AX: DestReg = X86::AL; break;
6480    case X86::DX: DestReg = X86::DL; break;
6481    case X86::CX: DestReg = X86::CL; break;
6482    case X86::BX: DestReg = X86::BL; break;
6483    }
6484    if (DestReg) {
6485      Res.first = DestReg;
6486      Res.second = Res.second = X86::GR8RegisterClass;
6487    }
6488  } else if (VT == MVT::i32) {
6489    unsigned DestReg = 0;
6490    switch (Res.first) {
6491    default: break;
6492    case X86::AX: DestReg = X86::EAX; break;
6493    case X86::DX: DestReg = X86::EDX; break;
6494    case X86::CX: DestReg = X86::ECX; break;
6495    case X86::BX: DestReg = X86::EBX; break;
6496    case X86::SI: DestReg = X86::ESI; break;
6497    case X86::DI: DestReg = X86::EDI; break;
6498    case X86::BP: DestReg = X86::EBP; break;
6499    case X86::SP: DestReg = X86::ESP; break;
6500    }
6501    if (DestReg) {
6502      Res.first = DestReg;
6503      Res.second = Res.second = X86::GR32RegisterClass;
6504    }
6505  } else if (VT == MVT::i64) {
6506    unsigned DestReg = 0;
6507    switch (Res.first) {
6508    default: break;
6509    case X86::AX: DestReg = X86::RAX; break;
6510    case X86::DX: DestReg = X86::RDX; break;
6511    case X86::CX: DestReg = X86::RCX; break;
6512    case X86::BX: DestReg = X86::RBX; break;
6513    case X86::SI: DestReg = X86::RSI; break;
6514    case X86::DI: DestReg = X86::RDI; break;
6515    case X86::BP: DestReg = X86::RBP; break;
6516    case X86::SP: DestReg = X86::RSP; break;
6517    }
6518    if (DestReg) {
6519      Res.first = DestReg;
6520      Res.second = Res.second = X86::GR64RegisterClass;
6521    }
6522  }
6523
6524  return Res;
6525}
6526