X86ISelLowering.cpp revision 162ee5c725fdfd327243dc11520afb88659f2ed4
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/PseudoSourceValue.h"
39#include "llvm/MC/MCAsmInfo.h"
40#include "llvm/MC/MCContext.h"
41#include "llvm/MC/MCExpr.h"
42#include "llvm/MC/MCSymbol.h"
43#include "llvm/ADT/BitVector.h"
44#include "llvm/ADT/SmallSet.h"
45#include "llvm/ADT/Statistic.h"
46#include "llvm/ADT/StringExtras.h"
47#include "llvm/ADT/VectorExtras.h"
48#include "llvm/Support/CallSite.h"
49#include "llvm/Support/Debug.h"
50#include "llvm/Support/Dwarf.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/raw_ostream.h"
54using namespace llvm;
55using namespace dwarf;
56
57STATISTIC(NumTailCalls, "Number of tail calls");
58
59// Forward declarations.
60static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
61                       SDValue V2);
62
63static SDValue Insert128BitVector(SDValue Result,
64                                  SDValue Vec,
65                                  SDValue Idx,
66                                  SelectionDAG &DAG,
67                                  DebugLoc dl);
68
69static SDValue Extract128BitVector(SDValue Vec,
70                                   SDValue Idx,
71                                   SelectionDAG &DAG,
72                                   DebugLoc dl);
73
74/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
75/// sets things up to match to an AVX VEXTRACTF128 instruction or a
76/// simple subregister reference.  Idx is an index in the 128 bits we
77/// want.  It need not be aligned to a 128-bit bounday.  That makes
78/// lowering EXTRACT_VECTOR_ELT operations easier.
79static SDValue Extract128BitVector(SDValue Vec,
80                                   SDValue Idx,
81                                   SelectionDAG &DAG,
82                                   DebugLoc dl) {
83  EVT VT = Vec.getValueType();
84  assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
85  EVT ElVT = VT.getVectorElementType();
86  int Factor = VT.getSizeInBits()/128;
87  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
88                                  VT.getVectorNumElements()/Factor);
89
90  // Extract from UNDEF is UNDEF.
91  if (Vec.getOpcode() == ISD::UNDEF)
92    return DAG.getNode(ISD::UNDEF, dl, ResultVT);
93
94  if (isa<ConstantSDNode>(Idx)) {
95    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
96
97    // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
98    // we can match to VEXTRACTF128.
99    unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
100
101    // This is the index of the first element of the 128-bit chunk
102    // we want.
103    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
104                                 * ElemsPerChunk);
105
106    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
107    SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
108                                 VecIdx);
109
110    return Result;
111  }
112
113  return SDValue();
114}
115
116/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
117/// sets things up to match to an AVX VINSERTF128 instruction or a
118/// simple superregister reference.  Idx is an index in the 128 bits
119/// we want.  It need not be aligned to a 128-bit bounday.  That makes
120/// lowering INSERT_VECTOR_ELT operations easier.
121static SDValue Insert128BitVector(SDValue Result,
122                                  SDValue Vec,
123                                  SDValue Idx,
124                                  SelectionDAG &DAG,
125                                  DebugLoc dl) {
126  if (isa<ConstantSDNode>(Idx)) {
127    EVT VT = Vec.getValueType();
128    assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
129
130    EVT ElVT = VT.getVectorElementType();
131    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
132    EVT ResultVT = Result.getValueType();
133
134    // Insert the relevant 128 bits.
135    unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
136
137    // This is the index of the first element of the 128-bit chunk
138    // we want.
139    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
140                                 * ElemsPerChunk);
141
142    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
143    Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
144                         VecIdx);
145    return Result;
146  }
147
148  return SDValue();
149}
150
151static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
152  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
153  bool is64Bit = Subtarget->is64Bit();
154
155  if (Subtarget->isTargetEnvMacho()) {
156    if (is64Bit)
157      return new X8664_MachoTargetObjectFile();
158    return new TargetLoweringObjectFileMachO();
159  }
160
161  if (Subtarget->isTargetELF())
162    return new TargetLoweringObjectFileELF();
163  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
164    return new TargetLoweringObjectFileCOFF();
165  llvm_unreachable("unknown subtarget type");
166}
167
168X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
169  : TargetLowering(TM, createTLOF(TM)) {
170  Subtarget = &TM.getSubtarget<X86Subtarget>();
171  X86ScalarSSEf64 = Subtarget->hasXMMInt();
172  X86ScalarSSEf32 = Subtarget->hasXMM();
173  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
174
175  RegInfo = TM.getRegisterInfo();
176  TD = getTargetData();
177
178  // Set up the TargetLowering object.
179  static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
180
181  // X86 is weird, it always uses i8 for shift amounts and setcc results.
182  setBooleanContents(ZeroOrOneBooleanContent);
183
184  // For 64-bit since we have so many registers use the ILP scheduler, for
185  // 32-bit code use the register pressure specific scheduling.
186  if (Subtarget->is64Bit())
187    setSchedulingPreference(Sched::ILP);
188  else
189    setSchedulingPreference(Sched::RegPressure);
190  setStackPointerRegisterToSaveRestore(X86StackPtr);
191
192  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
193    // Setup Windows compiler runtime calls.
194    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
195    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
196    setLibcallName(RTLIB::SREM_I64, "_allrem");
197    setLibcallName(RTLIB::UREM_I64, "_aullrem");
198    setLibcallName(RTLIB::MUL_I64, "_allmul");
199    setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2");
200    setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2");
201    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
202    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
203    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
204    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
205    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
206    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C);
207    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C);
208  }
209
210  if (Subtarget->isTargetDarwin()) {
211    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
212    setUseUnderscoreSetJmp(false);
213    setUseUnderscoreLongJmp(false);
214  } else if (Subtarget->isTargetMingw()) {
215    // MS runtime is weird: it exports _setjmp, but longjmp!
216    setUseUnderscoreSetJmp(true);
217    setUseUnderscoreLongJmp(false);
218  } else {
219    setUseUnderscoreSetJmp(true);
220    setUseUnderscoreLongJmp(true);
221  }
222
223  // Set up the register classes.
224  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
225  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
226  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
227  if (Subtarget->is64Bit())
228    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
229
230  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
231
232  // We don't accept any truncstore of integer registers.
233  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
234  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
235  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
236  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
237  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
238  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
239
240  // SETOEQ and SETUNE require checking two conditions.
241  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
242  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
243  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
244  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
245  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
246  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
247
248  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
249  // operation.
250  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
251  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
252  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
253
254  if (Subtarget->is64Bit()) {
255    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
256    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
257  } else if (!UseSoftFloat) {
258    // We have an algorithm for SSE2->double, and we turn this into a
259    // 64-bit FILD followed by conditional FADD for other targets.
260    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
261    // We have an algorithm for SSE2, and we turn this into a 64-bit
262    // FILD for other targets.
263    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
264  }
265
266  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
267  // this operation.
268  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
269  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
270
271  if (!UseSoftFloat) {
272    // SSE has no i16 to fp conversion, only i32
273    if (X86ScalarSSEf32) {
274      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
275      // f32 and f64 cases are Legal, f80 case is not
276      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
277    } else {
278      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
279      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
280    }
281  } else {
282    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
283    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
284  }
285
286  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
287  // are Legal, f80 is custom lowered.
288  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
289  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
290
291  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
292  // this operation.
293  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
294  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
295
296  if (X86ScalarSSEf32) {
297    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
298    // f32 and f64 cases are Legal, f80 case is not
299    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
300  } else {
301    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
302    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
303  }
304
305  // Handle FP_TO_UINT by promoting the destination to a larger signed
306  // conversion.
307  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
308  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
309  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
310
311  if (Subtarget->is64Bit()) {
312    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
313    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
314  } else if (!UseSoftFloat) {
315    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
316      // Expand FP_TO_UINT into a select.
317      // FIXME: We would like to use a Custom expander here eventually to do
318      // the optimal thing for SSE vs. the default expansion in the legalizer.
319      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
320    else
321      // With SSE3 we can use fisttpll to convert to a signed i64; without
322      // SSE, we're stuck with a fistpll.
323      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
324  }
325
326  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
327  if (!X86ScalarSSEf64) {
328    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
329    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
330    if (Subtarget->is64Bit()) {
331      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
332      // Without SSE, i64->f64 goes through memory.
333      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
334    }
335  }
336
337  // Scalar integer divide and remainder are lowered to use operations that
338  // produce two results, to match the available instructions. This exposes
339  // the two-result form to trivial CSE, which is able to combine x/y and x%y
340  // into a single instruction.
341  //
342  // Scalar integer multiply-high is also lowered to use two-result
343  // operations, to match the available instructions. However, plain multiply
344  // (low) operations are left as Legal, as there are single-result
345  // instructions for this in x86. Using the two-result multiply instructions
346  // when both high and low results are needed must be arranged by dagcombine.
347  for (unsigned i = 0, e = 4; i != e; ++i) {
348    MVT VT = IntVTs[i];
349    setOperationAction(ISD::MULHS, VT, Expand);
350    setOperationAction(ISD::MULHU, VT, Expand);
351    setOperationAction(ISD::SDIV, VT, Expand);
352    setOperationAction(ISD::UDIV, VT, Expand);
353    setOperationAction(ISD::SREM, VT, Expand);
354    setOperationAction(ISD::UREM, VT, Expand);
355
356    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
357    setOperationAction(ISD::ADDC, VT, Custom);
358    setOperationAction(ISD::ADDE, VT, Custom);
359    setOperationAction(ISD::SUBC, VT, Custom);
360    setOperationAction(ISD::SUBE, VT, Custom);
361  }
362
363  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
364  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
365  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
366  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
367  if (Subtarget->is64Bit())
368    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
369  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
370  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
371  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
372  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
373  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
374  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
375  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
376  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
377
378  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
379  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
380  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
381  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
382  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
383  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
384  if (Subtarget->is64Bit()) {
385    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
386    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
387  }
388
389  if (Subtarget->hasPOPCNT()) {
390    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
391  } else {
392    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
393    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
394    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
395    if (Subtarget->is64Bit())
396      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
397  }
398
399  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
400  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
401
402  // These should be promoted to a larger select which is supported.
403  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
404  // X86 wants to expand cmov itself.
405  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
406  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
407  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
408  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
409  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
410  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
411  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
412  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
413  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
414  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
415  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
416  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
417  if (Subtarget->is64Bit()) {
418    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
419    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
420  }
421  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
422
423  // Darwin ABI issue.
424  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
425  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
426  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
427  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
428  if (Subtarget->is64Bit())
429    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
430  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
431  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
432  if (Subtarget->is64Bit()) {
433    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
434    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
435    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
436    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
437    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
438  }
439  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
440  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
441  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
442  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
443  if (Subtarget->is64Bit()) {
444    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
445    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
446    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
447  }
448
449  if (Subtarget->hasXMM())
450    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
451
452  // We may not have a libcall for MEMBARRIER so we should lower this.
453  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
454
455  // On X86 and X86-64, atomic operations are lowered to locked instructions.
456  // Locked instructions, in turn, have implicit fence semantics (all memory
457  // operations are flushed before issuing the locked instruction, and they
458  // are not buffered), so we can fold away the common pattern of
459  // fence-atomic-fence.
460  setShouldFoldAtomicFences(true);
461
462  // Expand certain atomics
463  for (unsigned i = 0, e = 4; i != e; ++i) {
464    MVT VT = IntVTs[i];
465    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
466    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
467  }
468
469  if (!Subtarget->is64Bit()) {
470    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
471    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
472    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
473    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
474    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
475    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
476    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
477  }
478
479  // FIXME - use subtarget debug flags
480  if (!Subtarget->isTargetDarwin() &&
481      !Subtarget->isTargetELF() &&
482      !Subtarget->isTargetCygMing()) {
483    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
484  }
485
486  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
487  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
488  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
489  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
490  if (Subtarget->is64Bit()) {
491    setExceptionPointerRegister(X86::RAX);
492    setExceptionSelectorRegister(X86::RDX);
493  } else {
494    setExceptionPointerRegister(X86::EAX);
495    setExceptionSelectorRegister(X86::EDX);
496  }
497  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
498  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
499
500  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
501
502  setOperationAction(ISD::TRAP, MVT::Other, Legal);
503
504  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
505  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
506  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
507  if (Subtarget->is64Bit()) {
508    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
509    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
510  } else {
511    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
512    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
513  }
514
515  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
516  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
517  setOperationAction(ISD::DYNAMIC_STACKALLOC,
518                     (Subtarget->is64Bit() ? MVT::i64 : MVT::i32),
519                     (Subtarget->isTargetCOFF()
520                      && !Subtarget->isTargetEnvMacho()
521                      ? Custom : Expand));
522
523  if (!UseSoftFloat && X86ScalarSSEf64) {
524    // f32 and f64 use SSE.
525    // Set up the FP register classes.
526    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
527    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
528
529    // Use ANDPD to simulate FABS.
530    setOperationAction(ISD::FABS , MVT::f64, Custom);
531    setOperationAction(ISD::FABS , MVT::f32, Custom);
532
533    // Use XORP to simulate FNEG.
534    setOperationAction(ISD::FNEG , MVT::f64, Custom);
535    setOperationAction(ISD::FNEG , MVT::f32, Custom);
536
537    // Use ANDPD and ORPD to simulate FCOPYSIGN.
538    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
539    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
540
541    // Lower this to FGETSIGNx86 plus an AND.
542    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
543    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
544
545    // We don't support sin/cos/fmod
546    setOperationAction(ISD::FSIN , MVT::f64, Expand);
547    setOperationAction(ISD::FCOS , MVT::f64, Expand);
548    setOperationAction(ISD::FSIN , MVT::f32, Expand);
549    setOperationAction(ISD::FCOS , MVT::f32, Expand);
550
551    // Expand FP immediates into loads from the stack, except for the special
552    // cases we handle.
553    addLegalFPImmediate(APFloat(+0.0)); // xorpd
554    addLegalFPImmediate(APFloat(+0.0f)); // xorps
555  } else if (!UseSoftFloat && X86ScalarSSEf32) {
556    // Use SSE for f32, x87 for f64.
557    // Set up the FP register classes.
558    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
559    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
560
561    // Use ANDPS to simulate FABS.
562    setOperationAction(ISD::FABS , MVT::f32, Custom);
563
564    // Use XORP to simulate FNEG.
565    setOperationAction(ISD::FNEG , MVT::f32, Custom);
566
567    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
568
569    // Use ANDPS and ORPS to simulate FCOPYSIGN.
570    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
571    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
572
573    // We don't support sin/cos/fmod
574    setOperationAction(ISD::FSIN , MVT::f32, Expand);
575    setOperationAction(ISD::FCOS , MVT::f32, Expand);
576
577    // Special cases we handle for FP constants.
578    addLegalFPImmediate(APFloat(+0.0f)); // xorps
579    addLegalFPImmediate(APFloat(+0.0)); // FLD0
580    addLegalFPImmediate(APFloat(+1.0)); // FLD1
581    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
582    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
583
584    if (!UnsafeFPMath) {
585      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
586      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
587    }
588  } else if (!UseSoftFloat) {
589    // f32 and f64 in x87.
590    // Set up the FP register classes.
591    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
592    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
593
594    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
595    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
596    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
597    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
598
599    if (!UnsafeFPMath) {
600      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
601      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
602    }
603    addLegalFPImmediate(APFloat(+0.0)); // FLD0
604    addLegalFPImmediate(APFloat(+1.0)); // FLD1
605    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
606    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
607    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
608    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
609    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
610    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
611  }
612
613  // We don't support FMA.
614  setOperationAction(ISD::FMA, MVT::f64, Expand);
615  setOperationAction(ISD::FMA, MVT::f32, Expand);
616
617  // Long double always uses X87.
618  if (!UseSoftFloat) {
619    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
620    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
621    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
622    {
623      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
624      addLegalFPImmediate(TmpFlt);  // FLD0
625      TmpFlt.changeSign();
626      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
627
628      bool ignored;
629      APFloat TmpFlt2(+1.0);
630      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
631                      &ignored);
632      addLegalFPImmediate(TmpFlt2);  // FLD1
633      TmpFlt2.changeSign();
634      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
635    }
636
637    if (!UnsafeFPMath) {
638      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
639      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
640    }
641
642    setOperationAction(ISD::FMA, MVT::f80, Expand);
643  }
644
645  // Always use a library call for pow.
646  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
647  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
648  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
649
650  setOperationAction(ISD::FLOG, MVT::f80, Expand);
651  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
652  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
653  setOperationAction(ISD::FEXP, MVT::f80, Expand);
654  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
655
656  // First set operation action for all vector types to either promote
657  // (for widening) or expand (for scalarization). Then we will selectively
658  // turn on ones that can be effectively codegen'd.
659  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
660       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
661    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
662    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
663    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
664    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
665    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
666    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
667    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
668    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
669    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
670    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
671    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
672    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
673    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
674    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
675    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
676    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
677    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
678    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
679    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
680    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
681    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
682    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
683    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
684    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
685    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
686    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
687    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
688    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
689    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
690    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
691    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
692    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
693    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
694    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
695    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
696    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
697    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
698    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
699    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
700    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
701    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
702    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
703    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
704    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
705    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
706    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
707    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
708    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
709    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
710    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
711    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
712    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
713    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
714    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
715    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
716         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
717      setTruncStoreAction((MVT::SimpleValueType)VT,
718                          (MVT::SimpleValueType)InnerVT, Expand);
719    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
720    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
721    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
722  }
723
724  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
725  // with -msoft-float, disable use of MMX as well.
726  if (!UseSoftFloat && Subtarget->hasMMX()) {
727    addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
728    // No operations on x86mmx supported, everything uses intrinsics.
729  }
730
731  // MMX-sized vectors (other than x86mmx) are expected to be expanded
732  // into smaller operations.
733  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
734  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
735  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
736  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
737  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
738  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
739  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
740  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
741  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
742  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
743  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
744  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
745  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
746  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
747  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
748  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
749  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
750  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
751  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
752  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
753  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
754  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
755  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
756  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
757  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
758  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
759  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
760  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
761  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
762
763  if (!UseSoftFloat && Subtarget->hasXMM()) {
764    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
765
766    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
767    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
768    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
769    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
770    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
771    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
772    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
773    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
774    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
775    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
776    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
777    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
778  }
779
780  if (!UseSoftFloat && Subtarget->hasXMMInt()) {
781    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
782
783    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
784    // registers cannot be used even for integer operations.
785    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
786    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
787    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
788    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
789
790    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
791    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
792    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
793    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
794    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
795    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
796    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
797    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
798    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
799    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
800    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
801    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
802    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
803    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
804    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
805    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
806
807    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
808    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
809    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
810    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
811
812    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
813    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
814    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
815    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
816    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
817
818    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
819    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
820    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
821    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
822    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
823
824    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
825    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
826      EVT VT = (MVT::SimpleValueType)i;
827      // Do not attempt to custom lower non-power-of-2 vectors
828      if (!isPowerOf2_32(VT.getVectorNumElements()))
829        continue;
830      // Do not attempt to custom lower non-128-bit vectors
831      if (!VT.is128BitVector())
832        continue;
833      setOperationAction(ISD::BUILD_VECTOR,
834                         VT.getSimpleVT().SimpleTy, Custom);
835      setOperationAction(ISD::VECTOR_SHUFFLE,
836                         VT.getSimpleVT().SimpleTy, Custom);
837      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
838                         VT.getSimpleVT().SimpleTy, Custom);
839    }
840
841    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
842    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
843    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
844    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
845    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
846    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
847
848    if (Subtarget->is64Bit()) {
849      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
850      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
851    }
852
853    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
854    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
855      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
856      EVT VT = SVT;
857
858      // Do not attempt to promote non-128-bit vectors
859      if (!VT.is128BitVector())
860        continue;
861
862      setOperationAction(ISD::AND,    SVT, Promote);
863      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
864      setOperationAction(ISD::OR,     SVT, Promote);
865      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
866      setOperationAction(ISD::XOR,    SVT, Promote);
867      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
868      setOperationAction(ISD::LOAD,   SVT, Promote);
869      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
870      setOperationAction(ISD::SELECT, SVT, Promote);
871      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
872    }
873
874    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
875
876    // Custom lower v2i64 and v2f64 selects.
877    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
878    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
879    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
880    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
881
882    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
883    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
884  }
885
886  if (Subtarget->hasSSE41()) {
887    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
888    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
889    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
890    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
891    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
892    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
893    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
894    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
895    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
896    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
897
898    // FIXME: Do we need to handle scalar-to-vector here?
899    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
900
901    // Can turn SHL into an integer multiply.
902    setOperationAction(ISD::SHL,                MVT::v4i32, Custom);
903    setOperationAction(ISD::SHL,                MVT::v16i8, Custom);
904
905    // i8 and i16 vectors are custom , because the source register and source
906    // source memory operand types are not the same width.  f32 vectors are
907    // custom since the immediate controlling the insert encodes additional
908    // information.
909    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
910    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
911    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
912    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
913
914    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
915    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
916    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
917    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
918
919    if (Subtarget->is64Bit()) {
920      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
921      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
922    }
923  }
924
925  if (Subtarget->hasSSE2()) {
926    setOperationAction(ISD::SRL,               MVT::v2i64, Custom);
927    setOperationAction(ISD::SRL,               MVT::v4i32, Custom);
928    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
929
930    setOperationAction(ISD::SHL,               MVT::v2i64, Custom);
931    setOperationAction(ISD::SHL,               MVT::v4i32, Custom);
932    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
933
934    setOperationAction(ISD::SRA,               MVT::v4i32, Custom);
935    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
936  }
937
938  if (Subtarget->hasSSE42())
939    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
940
941  if (!UseSoftFloat && Subtarget->hasAVX()) {
942    addRegisterClass(MVT::v32i8,  X86::VR256RegisterClass);
943    addRegisterClass(MVT::v16i16, X86::VR256RegisterClass);
944    addRegisterClass(MVT::v8i32,  X86::VR256RegisterClass);
945    addRegisterClass(MVT::v8f32,  X86::VR256RegisterClass);
946    addRegisterClass(MVT::v4i64,  X86::VR256RegisterClass);
947    addRegisterClass(MVT::v4f64,  X86::VR256RegisterClass);
948
949    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
950    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
951    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
952
953    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
954    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
955    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
956    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
957    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
958    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
959
960    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
961    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
962    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
963    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
964    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
965    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
966
967    // Custom lower several nodes for 256-bit types.
968    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
969                  i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
970      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
971      EVT VT = SVT;
972
973      // Extract subvector is special because the value type
974      // (result) is 128-bit but the source is 256-bit wide.
975      if (VT.is128BitVector())
976        setOperationAction(ISD::EXTRACT_SUBVECTOR, SVT, Custom);
977
978      // Do not attempt to custom lower other non-256-bit vectors
979      if (!VT.is256BitVector())
980        continue;
981
982      setOperationAction(ISD::BUILD_VECTOR,       SVT, Custom);
983      setOperationAction(ISD::VECTOR_SHUFFLE,     SVT, Custom);
984      setOperationAction(ISD::INSERT_VECTOR_ELT,  SVT, Custom);
985      setOperationAction(ISD::EXTRACT_VECTOR_ELT, SVT, Custom);
986      setOperationAction(ISD::SCALAR_TO_VECTOR,   SVT, Custom);
987      setOperationAction(ISD::INSERT_SUBVECTOR,   SVT, Custom);
988    }
989
990    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
991    for (unsigned i = (unsigned)MVT::v32i8; i != (unsigned)MVT::v4i64; ++i) {
992      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
993      EVT VT = SVT;
994
995      // Do not attempt to promote non-256-bit vectors
996      if (!VT.is256BitVector())
997        continue;
998
999      setOperationAction(ISD::AND,    SVT, Promote);
1000      AddPromotedToType (ISD::AND,    SVT, MVT::v4i64);
1001      setOperationAction(ISD::OR,     SVT, Promote);
1002      AddPromotedToType (ISD::OR,     SVT, MVT::v4i64);
1003      setOperationAction(ISD::XOR,    SVT, Promote);
1004      AddPromotedToType (ISD::XOR,    SVT, MVT::v4i64);
1005      setOperationAction(ISD::LOAD,   SVT, Promote);
1006      AddPromotedToType (ISD::LOAD,   SVT, MVT::v4i64);
1007      setOperationAction(ISD::SELECT, SVT, Promote);
1008      AddPromotedToType (ISD::SELECT, SVT, MVT::v4i64);
1009    }
1010  }
1011
1012  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1013  // of this type with custom code.
1014  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1015         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; VT++) {
1016    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT, Custom);
1017  }
1018
1019  // We want to custom lower some of our intrinsics.
1020  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1021
1022
1023  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1024  // handle type legalization for these operations here.
1025  //
1026  // FIXME: We really should do custom legalization for addition and
1027  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1028  // than generic legalization for 64-bit multiplication-with-overflow, though.
1029  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1030    // Add/Sub/Mul with overflow operations are custom lowered.
1031    MVT VT = IntVTs[i];
1032    setOperationAction(ISD::SADDO, VT, Custom);
1033    setOperationAction(ISD::UADDO, VT, Custom);
1034    setOperationAction(ISD::SSUBO, VT, Custom);
1035    setOperationAction(ISD::USUBO, VT, Custom);
1036    setOperationAction(ISD::SMULO, VT, Custom);
1037    setOperationAction(ISD::UMULO, VT, Custom);
1038  }
1039
1040  // There are no 8-bit 3-address imul/mul instructions
1041  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1042  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1043
1044  if (!Subtarget->is64Bit()) {
1045    // These libcalls are not available in 32-bit.
1046    setLibcallName(RTLIB::SHL_I128, 0);
1047    setLibcallName(RTLIB::SRL_I128, 0);
1048    setLibcallName(RTLIB::SRA_I128, 0);
1049  }
1050
1051  // We have target-specific dag combine patterns for the following nodes:
1052  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1053  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1054  setTargetDAGCombine(ISD::BUILD_VECTOR);
1055  setTargetDAGCombine(ISD::SELECT);
1056  setTargetDAGCombine(ISD::SHL);
1057  setTargetDAGCombine(ISD::SRA);
1058  setTargetDAGCombine(ISD::SRL);
1059  setTargetDAGCombine(ISD::OR);
1060  setTargetDAGCombine(ISD::AND);
1061  setTargetDAGCombine(ISD::ADD);
1062  setTargetDAGCombine(ISD::SUB);
1063  setTargetDAGCombine(ISD::STORE);
1064  setTargetDAGCombine(ISD::ZERO_EXTEND);
1065  setTargetDAGCombine(ISD::SINT_TO_FP);
1066  if (Subtarget->is64Bit())
1067    setTargetDAGCombine(ISD::MUL);
1068
1069  computeRegisterProperties();
1070
1071  // On Darwin, -Os means optimize for size without hurting performance,
1072  // do not reduce the limit.
1073  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1074  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1075  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1076  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1077  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1078  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1079  setPrefLoopAlignment(16);
1080  benefitFromCodePlacementOpt = true;
1081
1082  setPrefFunctionAlignment(4);
1083}
1084
1085
1086MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
1087  return MVT::i8;
1088}
1089
1090
1091/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1092/// the desired ByVal argument alignment.
1093static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1094  if (MaxAlign == 16)
1095    return;
1096  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1097    if (VTy->getBitWidth() == 128)
1098      MaxAlign = 16;
1099  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1100    unsigned EltAlign = 0;
1101    getMaxByValAlign(ATy->getElementType(), EltAlign);
1102    if (EltAlign > MaxAlign)
1103      MaxAlign = EltAlign;
1104  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1105    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1106      unsigned EltAlign = 0;
1107      getMaxByValAlign(STy->getElementType(i), EltAlign);
1108      if (EltAlign > MaxAlign)
1109        MaxAlign = EltAlign;
1110      if (MaxAlign == 16)
1111        break;
1112    }
1113  }
1114  return;
1115}
1116
1117/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1118/// function arguments in the caller parameter area. For X86, aggregates
1119/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1120/// are at 4-byte boundaries.
1121unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1122  if (Subtarget->is64Bit()) {
1123    // Max of 8 and alignment of type.
1124    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1125    if (TyAlign > 8)
1126      return TyAlign;
1127    return 8;
1128  }
1129
1130  unsigned Align = 4;
1131  if (Subtarget->hasXMM())
1132    getMaxByValAlign(Ty, Align);
1133  return Align;
1134}
1135
1136/// getOptimalMemOpType - Returns the target specific optimal type for load
1137/// and store operations as a result of memset, memcpy, and memmove
1138/// lowering. If DstAlign is zero that means it's safe to destination
1139/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1140/// means there isn't a need to check it against alignment requirement,
1141/// probably because the source does not need to be loaded. If
1142/// 'NonScalarIntSafe' is true, that means it's safe to return a
1143/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1144/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1145/// constant so it does not need to be loaded.
1146/// It returns EVT::Other if the type should be determined using generic
1147/// target-independent logic.
1148EVT
1149X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1150                                       unsigned DstAlign, unsigned SrcAlign,
1151                                       bool NonScalarIntSafe,
1152                                       bool MemcpyStrSrc,
1153                                       MachineFunction &MF) const {
1154  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1155  // linux.  This is because the stack realignment code can't handle certain
1156  // cases like PR2962.  This should be removed when PR2962 is fixed.
1157  const Function *F = MF.getFunction();
1158  if (NonScalarIntSafe &&
1159      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1160    if (Size >= 16 &&
1161        (Subtarget->isUnalignedMemAccessFast() ||
1162         ((DstAlign == 0 || DstAlign >= 16) &&
1163          (SrcAlign == 0 || SrcAlign >= 16))) &&
1164        Subtarget->getStackAlignment() >= 16) {
1165      if (Subtarget->hasSSE2())
1166        return MVT::v4i32;
1167      if (Subtarget->hasSSE1())
1168        return MVT::v4f32;
1169    } else if (!MemcpyStrSrc && Size >= 8 &&
1170               !Subtarget->is64Bit() &&
1171               Subtarget->getStackAlignment() >= 8 &&
1172               Subtarget->hasXMMInt()) {
1173      // Do not use f64 to lower memcpy if source is string constant. It's
1174      // better to use i32 to avoid the loads.
1175      return MVT::f64;
1176    }
1177  }
1178  if (Subtarget->is64Bit() && Size >= 8)
1179    return MVT::i64;
1180  return MVT::i32;
1181}
1182
1183/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1184/// current function.  The returned value is a member of the
1185/// MachineJumpTableInfo::JTEntryKind enum.
1186unsigned X86TargetLowering::getJumpTableEncoding() const {
1187  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1188  // symbol.
1189  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1190      Subtarget->isPICStyleGOT())
1191    return MachineJumpTableInfo::EK_Custom32;
1192
1193  // Otherwise, use the normal jump table encoding heuristics.
1194  return TargetLowering::getJumpTableEncoding();
1195}
1196
1197const MCExpr *
1198X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1199                                             const MachineBasicBlock *MBB,
1200                                             unsigned uid,MCContext &Ctx) const{
1201  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1202         Subtarget->isPICStyleGOT());
1203  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1204  // entries.
1205  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1206                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1207}
1208
1209/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1210/// jumptable.
1211SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1212                                                    SelectionDAG &DAG) const {
1213  if (!Subtarget->is64Bit())
1214    // This doesn't have DebugLoc associated with it, but is not really the
1215    // same as a Register.
1216    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1217  return Table;
1218}
1219
1220/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1221/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1222/// MCExpr.
1223const MCExpr *X86TargetLowering::
1224getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1225                             MCContext &Ctx) const {
1226  // X86-64 uses RIP relative addressing based on the jump table label.
1227  if (Subtarget->isPICStyleRIPRel())
1228    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1229
1230  // Otherwise, the reference is relative to the PIC base.
1231  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1232}
1233
1234// FIXME: Why this routine is here? Move to RegInfo!
1235std::pair<const TargetRegisterClass*, uint8_t>
1236X86TargetLowering::findRepresentativeClass(EVT VT) const{
1237  const TargetRegisterClass *RRC = 0;
1238  uint8_t Cost = 1;
1239  switch (VT.getSimpleVT().SimpleTy) {
1240  default:
1241    return TargetLowering::findRepresentativeClass(VT);
1242  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1243    RRC = (Subtarget->is64Bit()
1244           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1245    break;
1246  case MVT::x86mmx:
1247    RRC = X86::VR64RegisterClass;
1248    break;
1249  case MVT::f32: case MVT::f64:
1250  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1251  case MVT::v4f32: case MVT::v2f64:
1252  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1253  case MVT::v4f64:
1254    RRC = X86::VR128RegisterClass;
1255    break;
1256  }
1257  return std::make_pair(RRC, Cost);
1258}
1259
1260bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1261                                               unsigned &Offset) const {
1262  if (!Subtarget->isTargetLinux())
1263    return false;
1264
1265  if (Subtarget->is64Bit()) {
1266    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1267    Offset = 0x28;
1268    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1269      AddressSpace = 256;
1270    else
1271      AddressSpace = 257;
1272  } else {
1273    // %gs:0x14 on i386
1274    Offset = 0x14;
1275    AddressSpace = 256;
1276  }
1277  return true;
1278}
1279
1280
1281//===----------------------------------------------------------------------===//
1282//               Return Value Calling Convention Implementation
1283//===----------------------------------------------------------------------===//
1284
1285#include "X86GenCallingConv.inc"
1286
1287bool
1288X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1289				  MachineFunction &MF, bool isVarArg,
1290                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1291                        LLVMContext &Context) const {
1292  SmallVector<CCValAssign, 16> RVLocs;
1293  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1294                 RVLocs, Context);
1295  return CCInfo.CheckReturn(Outs, RetCC_X86);
1296}
1297
1298SDValue
1299X86TargetLowering::LowerReturn(SDValue Chain,
1300                               CallingConv::ID CallConv, bool isVarArg,
1301                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1302                               const SmallVectorImpl<SDValue> &OutVals,
1303                               DebugLoc dl, SelectionDAG &DAG) const {
1304  MachineFunction &MF = DAG.getMachineFunction();
1305  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1306
1307  SmallVector<CCValAssign, 16> RVLocs;
1308  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1309                 RVLocs, *DAG.getContext());
1310  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1311
1312  // Add the regs to the liveout set for the function.
1313  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1314  for (unsigned i = 0; i != RVLocs.size(); ++i)
1315    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1316      MRI.addLiveOut(RVLocs[i].getLocReg());
1317
1318  SDValue Flag;
1319
1320  SmallVector<SDValue, 6> RetOps;
1321  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1322  // Operand #1 = Bytes To Pop
1323  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1324                   MVT::i16));
1325
1326  // Copy the result values into the output registers.
1327  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1328    CCValAssign &VA = RVLocs[i];
1329    assert(VA.isRegLoc() && "Can only return in registers!");
1330    SDValue ValToCopy = OutVals[i];
1331    EVT ValVT = ValToCopy.getValueType();
1332
1333    // If this is x86-64, and we disabled SSE, we can't return FP values,
1334    // or SSE or MMX vectors.
1335    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1336         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1337          (Subtarget->is64Bit() && !Subtarget->hasXMM())) {
1338      report_fatal_error("SSE register return with SSE disabled");
1339    }
1340    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1341    // llvm-gcc has never done it right and no one has noticed, so this
1342    // should be OK for now.
1343    if (ValVT == MVT::f64 &&
1344        (Subtarget->is64Bit() && !Subtarget->hasXMMInt()))
1345      report_fatal_error("SSE2 register return with SSE2 disabled");
1346
1347    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1348    // the RET instruction and handled by the FP Stackifier.
1349    if (VA.getLocReg() == X86::ST0 ||
1350        VA.getLocReg() == X86::ST1) {
1351      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1352      // change the value to the FP stack register class.
1353      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1354        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1355      RetOps.push_back(ValToCopy);
1356      // Don't emit a copytoreg.
1357      continue;
1358    }
1359
1360    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1361    // which is returned in RAX / RDX.
1362    if (Subtarget->is64Bit()) {
1363      if (ValVT == MVT::x86mmx) {
1364        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1365          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1366          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1367                                  ValToCopy);
1368          // If we don't have SSE2 available, convert to v4f32 so the generated
1369          // register is legal.
1370          if (!Subtarget->hasSSE2())
1371            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1372        }
1373      }
1374    }
1375
1376    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1377    Flag = Chain.getValue(1);
1378  }
1379
1380  // The x86-64 ABI for returning structs by value requires that we copy
1381  // the sret argument into %rax for the return. We saved the argument into
1382  // a virtual register in the entry block, so now we copy the value out
1383  // and into %rax.
1384  if (Subtarget->is64Bit() &&
1385      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1386    MachineFunction &MF = DAG.getMachineFunction();
1387    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1388    unsigned Reg = FuncInfo->getSRetReturnReg();
1389    assert(Reg &&
1390           "SRetReturnReg should have been set in LowerFormalArguments().");
1391    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1392
1393    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1394    Flag = Chain.getValue(1);
1395
1396    // RAX now acts like a return value.
1397    MRI.addLiveOut(X86::RAX);
1398  }
1399
1400  RetOps[0] = Chain;  // Update chain.
1401
1402  // Add the flag if we have it.
1403  if (Flag.getNode())
1404    RetOps.push_back(Flag);
1405
1406  return DAG.getNode(X86ISD::RET_FLAG, dl,
1407                     MVT::Other, &RetOps[0], RetOps.size());
1408}
1409
1410bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const {
1411  if (N->getNumValues() != 1)
1412    return false;
1413  if (!N->hasNUsesOfValue(1, 0))
1414    return false;
1415
1416  SDNode *Copy = *N->use_begin();
1417  if (Copy->getOpcode() != ISD::CopyToReg &&
1418      Copy->getOpcode() != ISD::FP_EXTEND)
1419    return false;
1420
1421  bool HasRet = false;
1422  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1423       UI != UE; ++UI) {
1424    if (UI->getOpcode() != X86ISD::RET_FLAG)
1425      return false;
1426    HasRet = true;
1427  }
1428
1429  return HasRet;
1430}
1431
1432EVT
1433X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1434                                            ISD::NodeType ExtendKind) const {
1435  MVT ReturnMVT;
1436  // TODO: Is this also valid on 32-bit?
1437  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1438    ReturnMVT = MVT::i8;
1439  else
1440    ReturnMVT = MVT::i32;
1441
1442  EVT MinVT = getRegisterType(Context, ReturnMVT);
1443  return VT.bitsLT(MinVT) ? MinVT : VT;
1444}
1445
1446/// LowerCallResult - Lower the result values of a call into the
1447/// appropriate copies out of appropriate physical registers.
1448///
1449SDValue
1450X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1451                                   CallingConv::ID CallConv, bool isVarArg,
1452                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1453                                   DebugLoc dl, SelectionDAG &DAG,
1454                                   SmallVectorImpl<SDValue> &InVals) const {
1455
1456  // Assign locations to each value returned by this call.
1457  SmallVector<CCValAssign, 16> RVLocs;
1458  bool Is64Bit = Subtarget->is64Bit();
1459  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1460		 getTargetMachine(), RVLocs, *DAG.getContext());
1461  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1462
1463  // Copy all of the result registers out of their specified physreg.
1464  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1465    CCValAssign &VA = RVLocs[i];
1466    EVT CopyVT = VA.getValVT();
1467
1468    // If this is x86-64, and we disabled SSE, we can't return FP values
1469    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1470        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasXMM())) {
1471      report_fatal_error("SSE register return with SSE disabled");
1472    }
1473
1474    SDValue Val;
1475
1476    // If this is a call to a function that returns an fp value on the floating
1477    // point stack, we must guarantee the the value is popped from the stack, so
1478    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1479    // if the return value is not used. We use the FpPOP_RETVAL instruction
1480    // instead.
1481    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1482      // If we prefer to use the value in xmm registers, copy it out as f80 and
1483      // use a truncate to move it from fp stack reg to xmm reg.
1484      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1485      SDValue Ops[] = { Chain, InFlag };
1486      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1487                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1488      Val = Chain.getValue(0);
1489
1490      // Round the f80 to the right size, which also moves it to the appropriate
1491      // xmm register.
1492      if (CopyVT != VA.getValVT())
1493        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1494                          // This truncation won't change the value.
1495                          DAG.getIntPtrConstant(1));
1496    } else {
1497      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1498                                 CopyVT, InFlag).getValue(1);
1499      Val = Chain.getValue(0);
1500    }
1501    InFlag = Chain.getValue(2);
1502    InVals.push_back(Val);
1503  }
1504
1505  return Chain;
1506}
1507
1508
1509//===----------------------------------------------------------------------===//
1510//                C & StdCall & Fast Calling Convention implementation
1511//===----------------------------------------------------------------------===//
1512//  StdCall calling convention seems to be standard for many Windows' API
1513//  routines and around. It differs from C calling convention just a little:
1514//  callee should clean up the stack, not caller. Symbols should be also
1515//  decorated in some fancy way :) It doesn't support any vector arguments.
1516//  For info on fast calling convention see Fast Calling Convention (tail call)
1517//  implementation LowerX86_32FastCCCallTo.
1518
1519/// CallIsStructReturn - Determines whether a call uses struct return
1520/// semantics.
1521static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1522  if (Outs.empty())
1523    return false;
1524
1525  return Outs[0].Flags.isSRet();
1526}
1527
1528/// ArgsAreStructReturn - Determines whether a function uses struct
1529/// return semantics.
1530static bool
1531ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1532  if (Ins.empty())
1533    return false;
1534
1535  return Ins[0].Flags.isSRet();
1536}
1537
1538/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1539/// by "Src" to address "Dst" with size and alignment information specified by
1540/// the specific parameter attribute. The copy will be passed as a byval
1541/// function parameter.
1542static SDValue
1543CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1544                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1545                          DebugLoc dl) {
1546  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1547
1548  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1549                       /*isVolatile*/false, /*AlwaysInline=*/true,
1550                       MachinePointerInfo(), MachinePointerInfo());
1551}
1552
1553/// IsTailCallConvention - Return true if the calling convention is one that
1554/// supports tail call optimization.
1555static bool IsTailCallConvention(CallingConv::ID CC) {
1556  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1557}
1558
1559bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1560  if (!CI->isTailCall())
1561    return false;
1562
1563  CallSite CS(CI);
1564  CallingConv::ID CalleeCC = CS.getCallingConv();
1565  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1566    return false;
1567
1568  return true;
1569}
1570
1571/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1572/// a tailcall target by changing its ABI.
1573static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1574  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1575}
1576
1577SDValue
1578X86TargetLowering::LowerMemArgument(SDValue Chain,
1579                                    CallingConv::ID CallConv,
1580                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1581                                    DebugLoc dl, SelectionDAG &DAG,
1582                                    const CCValAssign &VA,
1583                                    MachineFrameInfo *MFI,
1584                                    unsigned i) const {
1585  // Create the nodes corresponding to a load from this parameter slot.
1586  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1587  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1588  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1589  EVT ValVT;
1590
1591  // If value is passed by pointer we have address passed instead of the value
1592  // itself.
1593  if (VA.getLocInfo() == CCValAssign::Indirect)
1594    ValVT = VA.getLocVT();
1595  else
1596    ValVT = VA.getValVT();
1597
1598  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1599  // changed with more analysis.
1600  // In case of tail call optimization mark all arguments mutable. Since they
1601  // could be overwritten by lowering of arguments in case of a tail call.
1602  if (Flags.isByVal()) {
1603    unsigned Bytes = Flags.getByValSize();
1604    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1605    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1606    return DAG.getFrameIndex(FI, getPointerTy());
1607  } else {
1608    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1609                                    VA.getLocMemOffset(), isImmutable);
1610    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1611    return DAG.getLoad(ValVT, dl, Chain, FIN,
1612                       MachinePointerInfo::getFixedStack(FI),
1613                       false, false, 0);
1614  }
1615}
1616
1617SDValue
1618X86TargetLowering::LowerFormalArguments(SDValue Chain,
1619                                        CallingConv::ID CallConv,
1620                                        bool isVarArg,
1621                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1622                                        DebugLoc dl,
1623                                        SelectionDAG &DAG,
1624                                        SmallVectorImpl<SDValue> &InVals)
1625                                          const {
1626  MachineFunction &MF = DAG.getMachineFunction();
1627  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1628
1629  const Function* Fn = MF.getFunction();
1630  if (Fn->hasExternalLinkage() &&
1631      Subtarget->isTargetCygMing() &&
1632      Fn->getName() == "main")
1633    FuncInfo->setForceFramePointer(true);
1634
1635  MachineFrameInfo *MFI = MF.getFrameInfo();
1636  bool Is64Bit = Subtarget->is64Bit();
1637  bool IsWin64 = Subtarget->isTargetWin64();
1638
1639  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1640         "Var args not supported with calling convention fastcc or ghc");
1641
1642  // Assign locations to all of the incoming arguments.
1643  SmallVector<CCValAssign, 16> ArgLocs;
1644  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1645                 ArgLocs, *DAG.getContext());
1646
1647  // Allocate shadow area for Win64
1648  if (IsWin64) {
1649    CCInfo.AllocateStack(32, 8);
1650  }
1651
1652  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1653
1654  unsigned LastVal = ~0U;
1655  SDValue ArgValue;
1656  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1657    CCValAssign &VA = ArgLocs[i];
1658    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1659    // places.
1660    assert(VA.getValNo() != LastVal &&
1661           "Don't support value assigned to multiple locs yet");
1662    LastVal = VA.getValNo();
1663
1664    if (VA.isRegLoc()) {
1665      EVT RegVT = VA.getLocVT();
1666      TargetRegisterClass *RC = NULL;
1667      if (RegVT == MVT::i32)
1668        RC = X86::GR32RegisterClass;
1669      else if (Is64Bit && RegVT == MVT::i64)
1670        RC = X86::GR64RegisterClass;
1671      else if (RegVT == MVT::f32)
1672        RC = X86::FR32RegisterClass;
1673      else if (RegVT == MVT::f64)
1674        RC = X86::FR64RegisterClass;
1675      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1676        RC = X86::VR256RegisterClass;
1677      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1678        RC = X86::VR128RegisterClass;
1679      else if (RegVT == MVT::x86mmx)
1680        RC = X86::VR64RegisterClass;
1681      else
1682        llvm_unreachable("Unknown argument type!");
1683
1684      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1685      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1686
1687      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1688      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1689      // right size.
1690      if (VA.getLocInfo() == CCValAssign::SExt)
1691        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1692                               DAG.getValueType(VA.getValVT()));
1693      else if (VA.getLocInfo() == CCValAssign::ZExt)
1694        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1695                               DAG.getValueType(VA.getValVT()));
1696      else if (VA.getLocInfo() == CCValAssign::BCvt)
1697        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1698
1699      if (VA.isExtInLoc()) {
1700        // Handle MMX values passed in XMM regs.
1701        if (RegVT.isVector()) {
1702          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1703                                 ArgValue);
1704        } else
1705          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1706      }
1707    } else {
1708      assert(VA.isMemLoc());
1709      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1710    }
1711
1712    // If value is passed via pointer - do a load.
1713    if (VA.getLocInfo() == CCValAssign::Indirect)
1714      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1715                             MachinePointerInfo(), false, false, 0);
1716
1717    InVals.push_back(ArgValue);
1718  }
1719
1720  // The x86-64 ABI for returning structs by value requires that we copy
1721  // the sret argument into %rax for the return. Save the argument into
1722  // a virtual register so that we can access it from the return points.
1723  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1724    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1725    unsigned Reg = FuncInfo->getSRetReturnReg();
1726    if (!Reg) {
1727      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1728      FuncInfo->setSRetReturnReg(Reg);
1729    }
1730    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1731    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1732  }
1733
1734  unsigned StackSize = CCInfo.getNextStackOffset();
1735  // Align stack specially for tail calls.
1736  if (FuncIsMadeTailCallSafe(CallConv))
1737    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1738
1739  // If the function takes variable number of arguments, make a frame index for
1740  // the start of the first vararg value... for expansion of llvm.va_start.
1741  if (isVarArg) {
1742    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1743                    CallConv != CallingConv::X86_ThisCall)) {
1744      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1745    }
1746    if (Is64Bit) {
1747      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1748
1749      // FIXME: We should really autogenerate these arrays
1750      static const unsigned GPR64ArgRegsWin64[] = {
1751        X86::RCX, X86::RDX, X86::R8,  X86::R9
1752      };
1753      static const unsigned GPR64ArgRegs64Bit[] = {
1754        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1755      };
1756      static const unsigned XMMArgRegs64Bit[] = {
1757        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1758        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1759      };
1760      const unsigned *GPR64ArgRegs;
1761      unsigned NumXMMRegs = 0;
1762
1763      if (IsWin64) {
1764        // The XMM registers which might contain var arg parameters are shadowed
1765        // in their paired GPR.  So we only need to save the GPR to their home
1766        // slots.
1767        TotalNumIntRegs = 4;
1768        GPR64ArgRegs = GPR64ArgRegsWin64;
1769      } else {
1770        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1771        GPR64ArgRegs = GPR64ArgRegs64Bit;
1772
1773        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit, TotalNumXMMRegs);
1774      }
1775      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1776                                                       TotalNumIntRegs);
1777
1778      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1779      assert(!(NumXMMRegs && !Subtarget->hasXMM()) &&
1780             "SSE register cannot be used when SSE is disabled!");
1781      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1782             "SSE register cannot be used when SSE is disabled!");
1783      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasXMM())
1784        // Kernel mode asks for SSE to be disabled, so don't push them
1785        // on the stack.
1786        TotalNumXMMRegs = 0;
1787
1788      if (IsWin64) {
1789        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1790        // Get to the caller-allocated home save location.  Add 8 to account
1791        // for the return address.
1792        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1793        FuncInfo->setRegSaveFrameIndex(
1794          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1795        // Fixup to set vararg frame on shadow area (4 x i64).
1796        if (NumIntRegs < 4)
1797          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1798      } else {
1799        // For X86-64, if there are vararg parameters that are passed via
1800        // registers, then we must store them to their spots on the stack so they
1801        // may be loaded by deferencing the result of va_next.
1802        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1803        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1804        FuncInfo->setRegSaveFrameIndex(
1805          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1806                               false));
1807      }
1808
1809      // Store the integer parameter registers.
1810      SmallVector<SDValue, 8> MemOps;
1811      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1812                                        getPointerTy());
1813      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1814      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1815        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1816                                  DAG.getIntPtrConstant(Offset));
1817        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1818                                     X86::GR64RegisterClass);
1819        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1820        SDValue Store =
1821          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1822                       MachinePointerInfo::getFixedStack(
1823                         FuncInfo->getRegSaveFrameIndex(), Offset),
1824                       false, false, 0);
1825        MemOps.push_back(Store);
1826        Offset += 8;
1827      }
1828
1829      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1830        // Now store the XMM (fp + vector) parameter registers.
1831        SmallVector<SDValue, 11> SaveXMMOps;
1832        SaveXMMOps.push_back(Chain);
1833
1834        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1835        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1836        SaveXMMOps.push_back(ALVal);
1837
1838        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1839                               FuncInfo->getRegSaveFrameIndex()));
1840        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1841                               FuncInfo->getVarArgsFPOffset()));
1842
1843        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1844          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
1845                                       X86::VR128RegisterClass);
1846          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1847          SaveXMMOps.push_back(Val);
1848        }
1849        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1850                                     MVT::Other,
1851                                     &SaveXMMOps[0], SaveXMMOps.size()));
1852      }
1853
1854      if (!MemOps.empty())
1855        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1856                            &MemOps[0], MemOps.size());
1857    }
1858  }
1859
1860  // Some CCs need callee pop.
1861  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, GuaranteedTailCallOpt)) {
1862    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
1863  } else {
1864    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
1865    // If this is an sret function, the return should pop the hidden pointer.
1866    if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
1867      FuncInfo->setBytesToPopOnReturn(4);
1868  }
1869
1870  if (!Is64Bit) {
1871    // RegSaveFrameIndex is X86-64 only.
1872    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
1873    if (CallConv == CallingConv::X86_FastCall ||
1874        CallConv == CallingConv::X86_ThisCall)
1875      // fastcc functions can't have varargs.
1876      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
1877  }
1878
1879  return Chain;
1880}
1881
1882SDValue
1883X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1884                                    SDValue StackPtr, SDValue Arg,
1885                                    DebugLoc dl, SelectionDAG &DAG,
1886                                    const CCValAssign &VA,
1887                                    ISD::ArgFlagsTy Flags) const {
1888  unsigned LocMemOffset = VA.getLocMemOffset();
1889  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1890  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1891  if (Flags.isByVal())
1892    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1893
1894  return DAG.getStore(Chain, dl, Arg, PtrOff,
1895                      MachinePointerInfo::getStack(LocMemOffset),
1896                      false, false, 0);
1897}
1898
1899/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1900/// optimization is performed and it is required.
1901SDValue
1902X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1903                                           SDValue &OutRetAddr, SDValue Chain,
1904                                           bool IsTailCall, bool Is64Bit,
1905                                           int FPDiff, DebugLoc dl) const {
1906  // Adjust the Return address stack slot.
1907  EVT VT = getPointerTy();
1908  OutRetAddr = getReturnAddressFrameIndex(DAG);
1909
1910  // Load the "old" Return address.
1911  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
1912                           false, false, 0);
1913  return SDValue(OutRetAddr.getNode(), 1);
1914}
1915
1916/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
1917/// optimization is performed and it is required (FPDiff!=0).
1918static SDValue
1919EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1920                         SDValue Chain, SDValue RetAddrFrIdx,
1921                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1922  // Store the return address to the appropriate stack slot.
1923  if (!FPDiff) return Chain;
1924  // Calculate the new stack slot for the return address.
1925  int SlotSize = Is64Bit ? 8 : 4;
1926  int NewReturnAddrFI =
1927    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
1928  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1929  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1930  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1931                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
1932                       false, false, 0);
1933  return Chain;
1934}
1935
1936SDValue
1937X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1938                             CallingConv::ID CallConv, bool isVarArg,
1939                             bool &isTailCall,
1940                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1941                             const SmallVectorImpl<SDValue> &OutVals,
1942                             const SmallVectorImpl<ISD::InputArg> &Ins,
1943                             DebugLoc dl, SelectionDAG &DAG,
1944                             SmallVectorImpl<SDValue> &InVals) const {
1945  MachineFunction &MF = DAG.getMachineFunction();
1946  bool Is64Bit        = Subtarget->is64Bit();
1947  bool IsWin64        = Subtarget->isTargetWin64();
1948  bool IsStructRet    = CallIsStructReturn(Outs);
1949  bool IsSibcall      = false;
1950
1951  if (isTailCall) {
1952    // Check if it's really possible to do a tail call.
1953    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1954                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1955                                                   Outs, OutVals, Ins, DAG);
1956
1957    // Sibcalls are automatically detected tailcalls which do not require
1958    // ABI changes.
1959    if (!GuaranteedTailCallOpt && isTailCall)
1960      IsSibcall = true;
1961
1962    if (isTailCall)
1963      ++NumTailCalls;
1964  }
1965
1966  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1967         "Var args not supported with calling convention fastcc or ghc");
1968
1969  // Analyze operands of the call, assigning locations to each operand.
1970  SmallVector<CCValAssign, 16> ArgLocs;
1971  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1972                 ArgLocs, *DAG.getContext());
1973
1974  // Allocate shadow area for Win64
1975  if (IsWin64) {
1976    CCInfo.AllocateStack(32, 8);
1977  }
1978
1979  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
1980
1981  // Get a count of how many bytes are to be pushed on the stack.
1982  unsigned NumBytes = CCInfo.getNextStackOffset();
1983  if (IsSibcall)
1984    // This is a sibcall. The memory operands are available in caller's
1985    // own caller's stack.
1986    NumBytes = 0;
1987  else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
1988    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1989
1990  int FPDiff = 0;
1991  if (isTailCall && !IsSibcall) {
1992    // Lower arguments at fp - stackoffset + fpdiff.
1993    unsigned NumBytesCallerPushed =
1994      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1995    FPDiff = NumBytesCallerPushed - NumBytes;
1996
1997    // Set the delta of movement of the returnaddr stackslot.
1998    // But only set if delta is greater than previous delta.
1999    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2000      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2001  }
2002
2003  if (!IsSibcall)
2004    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2005
2006  SDValue RetAddrFrIdx;
2007  // Load return address for tail calls.
2008  if (isTailCall && FPDiff)
2009    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2010                                    Is64Bit, FPDiff, dl);
2011
2012  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2013  SmallVector<SDValue, 8> MemOpChains;
2014  SDValue StackPtr;
2015
2016  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2017  // of tail call optimization arguments are handle later.
2018  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2019    CCValAssign &VA = ArgLocs[i];
2020    EVT RegVT = VA.getLocVT();
2021    SDValue Arg = OutVals[i];
2022    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2023    bool isByVal = Flags.isByVal();
2024
2025    // Promote the value if needed.
2026    switch (VA.getLocInfo()) {
2027    default: llvm_unreachable("Unknown loc info!");
2028    case CCValAssign::Full: break;
2029    case CCValAssign::SExt:
2030      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2031      break;
2032    case CCValAssign::ZExt:
2033      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2034      break;
2035    case CCValAssign::AExt:
2036      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2037        // Special case: passing MMX values in XMM registers.
2038        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2039        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2040        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2041      } else
2042        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2043      break;
2044    case CCValAssign::BCvt:
2045      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2046      break;
2047    case CCValAssign::Indirect: {
2048      // Store the argument.
2049      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2050      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2051      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2052                           MachinePointerInfo::getFixedStack(FI),
2053                           false, false, 0);
2054      Arg = SpillSlot;
2055      break;
2056    }
2057    }
2058
2059    if (VA.isRegLoc()) {
2060      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2061      if (isVarArg && IsWin64) {
2062        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2063        // shadow reg if callee is a varargs function.
2064        unsigned ShadowReg = 0;
2065        switch (VA.getLocReg()) {
2066        case X86::XMM0: ShadowReg = X86::RCX; break;
2067        case X86::XMM1: ShadowReg = X86::RDX; break;
2068        case X86::XMM2: ShadowReg = X86::R8; break;
2069        case X86::XMM3: ShadowReg = X86::R9; break;
2070        }
2071        if (ShadowReg)
2072          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2073      }
2074    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2075      assert(VA.isMemLoc());
2076      if (StackPtr.getNode() == 0)
2077        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2078      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2079                                             dl, DAG, VA, Flags));
2080    }
2081  }
2082
2083  if (!MemOpChains.empty())
2084    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2085                        &MemOpChains[0], MemOpChains.size());
2086
2087  // Build a sequence of copy-to-reg nodes chained together with token chain
2088  // and flag operands which copy the outgoing args into registers.
2089  SDValue InFlag;
2090  // Tail call byval lowering might overwrite argument registers so in case of
2091  // tail call optimization the copies to registers are lowered later.
2092  if (!isTailCall)
2093    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2094      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2095                               RegsToPass[i].second, InFlag);
2096      InFlag = Chain.getValue(1);
2097    }
2098
2099  if (Subtarget->isPICStyleGOT()) {
2100    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2101    // GOT pointer.
2102    if (!isTailCall) {
2103      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2104                               DAG.getNode(X86ISD::GlobalBaseReg,
2105                                           DebugLoc(), getPointerTy()),
2106                               InFlag);
2107      InFlag = Chain.getValue(1);
2108    } else {
2109      // If we are tail calling and generating PIC/GOT style code load the
2110      // address of the callee into ECX. The value in ecx is used as target of
2111      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2112      // for tail calls on PIC/GOT architectures. Normally we would just put the
2113      // address of GOT into ebx and then call target@PLT. But for tail calls
2114      // ebx would be restored (since ebx is callee saved) before jumping to the
2115      // target@PLT.
2116
2117      // Note: The actual moving to ECX is done further down.
2118      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2119      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2120          !G->getGlobal()->hasProtectedVisibility())
2121        Callee = LowerGlobalAddress(Callee, DAG);
2122      else if (isa<ExternalSymbolSDNode>(Callee))
2123        Callee = LowerExternalSymbol(Callee, DAG);
2124    }
2125  }
2126
2127  if (Is64Bit && isVarArg && !IsWin64) {
2128    // From AMD64 ABI document:
2129    // For calls that may call functions that use varargs or stdargs
2130    // (prototype-less calls or calls to functions containing ellipsis (...) in
2131    // the declaration) %al is used as hidden argument to specify the number
2132    // of SSE registers used. The contents of %al do not need to match exactly
2133    // the number of registers, but must be an ubound on the number of SSE
2134    // registers used and is in the range 0 - 8 inclusive.
2135
2136    // Count the number of XMM registers allocated.
2137    static const unsigned XMMArgRegs[] = {
2138      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2139      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2140    };
2141    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2142    assert((Subtarget->hasXMM() || !NumXMMRegs)
2143           && "SSE registers cannot be used when SSE is disabled");
2144
2145    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2146                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2147    InFlag = Chain.getValue(1);
2148  }
2149
2150
2151  // For tail calls lower the arguments to the 'real' stack slot.
2152  if (isTailCall) {
2153    // Force all the incoming stack arguments to be loaded from the stack
2154    // before any new outgoing arguments are stored to the stack, because the
2155    // outgoing stack slots may alias the incoming argument stack slots, and
2156    // the alias isn't otherwise explicit. This is slightly more conservative
2157    // than necessary, because it means that each store effectively depends
2158    // on every argument instead of just those arguments it would clobber.
2159    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2160
2161    SmallVector<SDValue, 8> MemOpChains2;
2162    SDValue FIN;
2163    int FI = 0;
2164    // Do not flag preceding copytoreg stuff together with the following stuff.
2165    InFlag = SDValue();
2166    if (GuaranteedTailCallOpt) {
2167      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2168        CCValAssign &VA = ArgLocs[i];
2169        if (VA.isRegLoc())
2170          continue;
2171        assert(VA.isMemLoc());
2172        SDValue Arg = OutVals[i];
2173        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2174        // Create frame index.
2175        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2176        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2177        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2178        FIN = DAG.getFrameIndex(FI, getPointerTy());
2179
2180        if (Flags.isByVal()) {
2181          // Copy relative to framepointer.
2182          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2183          if (StackPtr.getNode() == 0)
2184            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2185                                          getPointerTy());
2186          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2187
2188          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2189                                                           ArgChain,
2190                                                           Flags, DAG, dl));
2191        } else {
2192          // Store relative to framepointer.
2193          MemOpChains2.push_back(
2194            DAG.getStore(ArgChain, dl, Arg, FIN,
2195                         MachinePointerInfo::getFixedStack(FI),
2196                         false, false, 0));
2197        }
2198      }
2199    }
2200
2201    if (!MemOpChains2.empty())
2202      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2203                          &MemOpChains2[0], MemOpChains2.size());
2204
2205    // Copy arguments to their registers.
2206    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2207      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2208                               RegsToPass[i].second, InFlag);
2209      InFlag = Chain.getValue(1);
2210    }
2211    InFlag =SDValue();
2212
2213    // Store the return address to the appropriate stack slot.
2214    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2215                                     FPDiff, dl);
2216  }
2217
2218  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2219    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2220    // In the 64-bit large code model, we have to make all calls
2221    // through a register, since the call instruction's 32-bit
2222    // pc-relative offset may not be large enough to hold the whole
2223    // address.
2224  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2225    // If the callee is a GlobalAddress node (quite common, every direct call
2226    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2227    // it.
2228
2229    // We should use extra load for direct calls to dllimported functions in
2230    // non-JIT mode.
2231    const GlobalValue *GV = G->getGlobal();
2232    if (!GV->hasDLLImportLinkage()) {
2233      unsigned char OpFlags = 0;
2234      bool ExtraLoad = false;
2235      unsigned WrapperKind = ISD::DELETED_NODE;
2236
2237      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2238      // external symbols most go through the PLT in PIC mode.  If the symbol
2239      // has hidden or protected visibility, or if it is static or local, then
2240      // we don't need to use the PLT - we can directly call it.
2241      if (Subtarget->isTargetELF() &&
2242          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2243          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2244        OpFlags = X86II::MO_PLT;
2245      } else if (Subtarget->isPICStyleStubAny() &&
2246                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2247                 (!Subtarget->getTargetTriple().isMacOSX() ||
2248                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2249        // PC-relative references to external symbols should go through $stub,
2250        // unless we're building with the leopard linker or later, which
2251        // automatically synthesizes these stubs.
2252        OpFlags = X86II::MO_DARWIN_STUB;
2253      } else if (Subtarget->isPICStyleRIPRel() &&
2254                 isa<Function>(GV) &&
2255                 cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
2256        // If the function is marked as non-lazy, generate an indirect call
2257        // which loads from the GOT directly. This avoids runtime overhead
2258        // at the cost of eager binding (and one extra byte of encoding).
2259        OpFlags = X86II::MO_GOTPCREL;
2260        WrapperKind = X86ISD::WrapperRIP;
2261        ExtraLoad = true;
2262      }
2263
2264      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2265                                          G->getOffset(), OpFlags);
2266
2267      // Add a wrapper if needed.
2268      if (WrapperKind != ISD::DELETED_NODE)
2269        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2270      // Add extra indirection if needed.
2271      if (ExtraLoad)
2272        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2273                             MachinePointerInfo::getGOT(),
2274                             false, false, 0);
2275    }
2276  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2277    unsigned char OpFlags = 0;
2278
2279    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2280    // external symbols should go through the PLT.
2281    if (Subtarget->isTargetELF() &&
2282        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2283      OpFlags = X86II::MO_PLT;
2284    } else if (Subtarget->isPICStyleStubAny() &&
2285               (!Subtarget->getTargetTriple().isMacOSX() ||
2286                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2287      // PC-relative references to external symbols should go through $stub,
2288      // unless we're building with the leopard linker or later, which
2289      // automatically synthesizes these stubs.
2290      OpFlags = X86II::MO_DARWIN_STUB;
2291    }
2292
2293    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2294                                         OpFlags);
2295  }
2296
2297  // Returns a chain & a flag for retval copy to use.
2298  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2299  SmallVector<SDValue, 8> Ops;
2300
2301  if (!IsSibcall && isTailCall) {
2302    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2303                           DAG.getIntPtrConstant(0, true), InFlag);
2304    InFlag = Chain.getValue(1);
2305  }
2306
2307  Ops.push_back(Chain);
2308  Ops.push_back(Callee);
2309
2310  if (isTailCall)
2311    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2312
2313  // Add argument registers to the end of the list so that they are known live
2314  // into the call.
2315  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2316    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2317                                  RegsToPass[i].second.getValueType()));
2318
2319  // Add an implicit use GOT pointer in EBX.
2320  if (!isTailCall && Subtarget->isPICStyleGOT())
2321    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2322
2323  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2324  if (Is64Bit && isVarArg && !IsWin64)
2325    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2326
2327  if (InFlag.getNode())
2328    Ops.push_back(InFlag);
2329
2330  if (isTailCall) {
2331    // We used to do:
2332    //// If this is the first return lowered for this function, add the regs
2333    //// to the liveout set for the function.
2334    // This isn't right, although it's probably harmless on x86; liveouts
2335    // should be computed from returns not tail calls.  Consider a void
2336    // function making a tail call to a function returning int.
2337    return DAG.getNode(X86ISD::TC_RETURN, dl,
2338                       NodeTys, &Ops[0], Ops.size());
2339  }
2340
2341  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2342  InFlag = Chain.getValue(1);
2343
2344  // Create the CALLSEQ_END node.
2345  unsigned NumBytesForCalleeToPush;
2346  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, GuaranteedTailCallOpt))
2347    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2348  else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2349    // If this is a call to a struct-return function, the callee
2350    // pops the hidden struct pointer, so we have to push it back.
2351    // This is common for Darwin/X86, Linux & Mingw32 targets.
2352    NumBytesForCalleeToPush = 4;
2353  else
2354    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2355
2356  // Returns a flag for retval copy to use.
2357  if (!IsSibcall) {
2358    Chain = DAG.getCALLSEQ_END(Chain,
2359                               DAG.getIntPtrConstant(NumBytes, true),
2360                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2361                                                     true),
2362                               InFlag);
2363    InFlag = Chain.getValue(1);
2364  }
2365
2366  // Handle result values, copying them out of physregs into vregs that we
2367  // return.
2368  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2369                         Ins, dl, DAG, InVals);
2370}
2371
2372
2373//===----------------------------------------------------------------------===//
2374//                Fast Calling Convention (tail call) implementation
2375//===----------------------------------------------------------------------===//
2376
2377//  Like std call, callee cleans arguments, convention except that ECX is
2378//  reserved for storing the tail called function address. Only 2 registers are
2379//  free for argument passing (inreg). Tail call optimization is performed
2380//  provided:
2381//                * tailcallopt is enabled
2382//                * caller/callee are fastcc
2383//  On X86_64 architecture with GOT-style position independent code only local
2384//  (within module) calls are supported at the moment.
2385//  To keep the stack aligned according to platform abi the function
2386//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2387//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2388//  If a tail called function callee has more arguments than the caller the
2389//  caller needs to make sure that there is room to move the RETADDR to. This is
2390//  achieved by reserving an area the size of the argument delta right after the
2391//  original REtADDR, but before the saved framepointer or the spilled registers
2392//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2393//  stack layout:
2394//    arg1
2395//    arg2
2396//    RETADDR
2397//    [ new RETADDR
2398//      move area ]
2399//    (possible EBP)
2400//    ESI
2401//    EDI
2402//    local1 ..
2403
2404/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2405/// for a 16 byte align requirement.
2406unsigned
2407X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2408                                               SelectionDAG& DAG) const {
2409  MachineFunction &MF = DAG.getMachineFunction();
2410  const TargetMachine &TM = MF.getTarget();
2411  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2412  unsigned StackAlignment = TFI.getStackAlignment();
2413  uint64_t AlignMask = StackAlignment - 1;
2414  int64_t Offset = StackSize;
2415  uint64_t SlotSize = TD->getPointerSize();
2416  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2417    // Number smaller than 12 so just add the difference.
2418    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2419  } else {
2420    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2421    Offset = ((~AlignMask) & Offset) + StackAlignment +
2422      (StackAlignment-SlotSize);
2423  }
2424  return Offset;
2425}
2426
2427/// MatchingStackOffset - Return true if the given stack call argument is
2428/// already available in the same position (relatively) of the caller's
2429/// incoming argument stack.
2430static
2431bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2432                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2433                         const X86InstrInfo *TII) {
2434  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2435  int FI = INT_MAX;
2436  if (Arg.getOpcode() == ISD::CopyFromReg) {
2437    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2438    if (!TargetRegisterInfo::isVirtualRegister(VR))
2439      return false;
2440    MachineInstr *Def = MRI->getVRegDef(VR);
2441    if (!Def)
2442      return false;
2443    if (!Flags.isByVal()) {
2444      if (!TII->isLoadFromStackSlot(Def, FI))
2445        return false;
2446    } else {
2447      unsigned Opcode = Def->getOpcode();
2448      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2449          Def->getOperand(1).isFI()) {
2450        FI = Def->getOperand(1).getIndex();
2451        Bytes = Flags.getByValSize();
2452      } else
2453        return false;
2454    }
2455  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2456    if (Flags.isByVal())
2457      // ByVal argument is passed in as a pointer but it's now being
2458      // dereferenced. e.g.
2459      // define @foo(%struct.X* %A) {
2460      //   tail call @bar(%struct.X* byval %A)
2461      // }
2462      return false;
2463    SDValue Ptr = Ld->getBasePtr();
2464    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2465    if (!FINode)
2466      return false;
2467    FI = FINode->getIndex();
2468  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2469    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2470    FI = FINode->getIndex();
2471    Bytes = Flags.getByValSize();
2472  } else
2473    return false;
2474
2475  assert(FI != INT_MAX);
2476  if (!MFI->isFixedObjectIndex(FI))
2477    return false;
2478  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2479}
2480
2481/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2482/// for tail call optimization. Targets which want to do tail call
2483/// optimization should implement this function.
2484bool
2485X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2486                                                     CallingConv::ID CalleeCC,
2487                                                     bool isVarArg,
2488                                                     bool isCalleeStructRet,
2489                                                     bool isCallerStructRet,
2490                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2491                                    const SmallVectorImpl<SDValue> &OutVals,
2492                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2493                                                     SelectionDAG& DAG) const {
2494  if (!IsTailCallConvention(CalleeCC) &&
2495      CalleeCC != CallingConv::C)
2496    return false;
2497
2498  // If -tailcallopt is specified, make fastcc functions tail-callable.
2499  const MachineFunction &MF = DAG.getMachineFunction();
2500  const Function *CallerF = DAG.getMachineFunction().getFunction();
2501  CallingConv::ID CallerCC = CallerF->getCallingConv();
2502  bool CCMatch = CallerCC == CalleeCC;
2503
2504  if (GuaranteedTailCallOpt) {
2505    if (IsTailCallConvention(CalleeCC) && CCMatch)
2506      return true;
2507    return false;
2508  }
2509
2510  // Look for obvious safe cases to perform tail call optimization that do not
2511  // require ABI changes. This is what gcc calls sibcall.
2512
2513  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2514  // emit a special epilogue.
2515  if (RegInfo->needsStackRealignment(MF))
2516    return false;
2517
2518  // Also avoid sibcall optimization if either caller or callee uses struct
2519  // return semantics.
2520  if (isCalleeStructRet || isCallerStructRet)
2521    return false;
2522
2523  // An stdcall caller is expected to clean up its arguments; the callee
2524  // isn't going to do that.
2525  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2526    return false;
2527
2528  // Do not sibcall optimize vararg calls unless all arguments are passed via
2529  // registers.
2530  if (isVarArg && !Outs.empty()) {
2531
2532    // Optimizing for varargs on Win64 is unlikely to be safe without
2533    // additional testing.
2534    if (Subtarget->isTargetWin64())
2535      return false;
2536
2537    SmallVector<CCValAssign, 16> ArgLocs;
2538    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2539		   getTargetMachine(), ArgLocs, *DAG.getContext());
2540
2541    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2542    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2543      if (!ArgLocs[i].isRegLoc())
2544        return false;
2545  }
2546
2547  // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2548  // Therefore if it's not used by the call it is not safe to optimize this into
2549  // a sibcall.
2550  bool Unused = false;
2551  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2552    if (!Ins[i].Used) {
2553      Unused = true;
2554      break;
2555    }
2556  }
2557  if (Unused) {
2558    SmallVector<CCValAssign, 16> RVLocs;
2559    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2560		   getTargetMachine(), RVLocs, *DAG.getContext());
2561    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2562    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2563      CCValAssign &VA = RVLocs[i];
2564      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2565        return false;
2566    }
2567  }
2568
2569  // If the calling conventions do not match, then we'd better make sure the
2570  // results are returned in the same way as what the caller expects.
2571  if (!CCMatch) {
2572    SmallVector<CCValAssign, 16> RVLocs1;
2573    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2574		    getTargetMachine(), RVLocs1, *DAG.getContext());
2575    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2576
2577    SmallVector<CCValAssign, 16> RVLocs2;
2578    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2579		    getTargetMachine(), RVLocs2, *DAG.getContext());
2580    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2581
2582    if (RVLocs1.size() != RVLocs2.size())
2583      return false;
2584    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2585      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2586        return false;
2587      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2588        return false;
2589      if (RVLocs1[i].isRegLoc()) {
2590        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2591          return false;
2592      } else {
2593        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2594          return false;
2595      }
2596    }
2597  }
2598
2599  // If the callee takes no arguments then go on to check the results of the
2600  // call.
2601  if (!Outs.empty()) {
2602    // Check if stack adjustment is needed. For now, do not do this if any
2603    // argument is passed on the stack.
2604    SmallVector<CCValAssign, 16> ArgLocs;
2605    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2606		   getTargetMachine(), ArgLocs, *DAG.getContext());
2607
2608    // Allocate shadow area for Win64
2609    if (Subtarget->isTargetWin64()) {
2610      CCInfo.AllocateStack(32, 8);
2611    }
2612
2613    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2614    if (CCInfo.getNextStackOffset()) {
2615      MachineFunction &MF = DAG.getMachineFunction();
2616      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2617        return false;
2618
2619      // Check if the arguments are already laid out in the right way as
2620      // the caller's fixed stack objects.
2621      MachineFrameInfo *MFI = MF.getFrameInfo();
2622      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2623      const X86InstrInfo *TII =
2624        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2625      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2626        CCValAssign &VA = ArgLocs[i];
2627        SDValue Arg = OutVals[i];
2628        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2629        if (VA.getLocInfo() == CCValAssign::Indirect)
2630          return false;
2631        if (!VA.isRegLoc()) {
2632          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2633                                   MFI, MRI, TII))
2634            return false;
2635        }
2636      }
2637    }
2638
2639    // If the tailcall address may be in a register, then make sure it's
2640    // possible to register allocate for it. In 32-bit, the call address can
2641    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2642    // callee-saved registers are restored. These happen to be the same
2643    // registers used to pass 'inreg' arguments so watch out for those.
2644    if (!Subtarget->is64Bit() &&
2645        !isa<GlobalAddressSDNode>(Callee) &&
2646        !isa<ExternalSymbolSDNode>(Callee)) {
2647      unsigned NumInRegs = 0;
2648      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2649        CCValAssign &VA = ArgLocs[i];
2650        if (!VA.isRegLoc())
2651          continue;
2652        unsigned Reg = VA.getLocReg();
2653        switch (Reg) {
2654        default: break;
2655        case X86::EAX: case X86::EDX: case X86::ECX:
2656          if (++NumInRegs == 3)
2657            return false;
2658          break;
2659        }
2660      }
2661    }
2662  }
2663
2664  return true;
2665}
2666
2667FastISel *
2668X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2669  return X86::createFastISel(funcInfo);
2670}
2671
2672
2673//===----------------------------------------------------------------------===//
2674//                           Other Lowering Hooks
2675//===----------------------------------------------------------------------===//
2676
2677static bool MayFoldLoad(SDValue Op) {
2678  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2679}
2680
2681static bool MayFoldIntoStore(SDValue Op) {
2682  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2683}
2684
2685static bool isTargetShuffle(unsigned Opcode) {
2686  switch(Opcode) {
2687  default: return false;
2688  case X86ISD::PSHUFD:
2689  case X86ISD::PSHUFHW:
2690  case X86ISD::PSHUFLW:
2691  case X86ISD::SHUFPD:
2692  case X86ISD::PALIGN:
2693  case X86ISD::SHUFPS:
2694  case X86ISD::MOVLHPS:
2695  case X86ISD::MOVLHPD:
2696  case X86ISD::MOVHLPS:
2697  case X86ISD::MOVLPS:
2698  case X86ISD::MOVLPD:
2699  case X86ISD::MOVSHDUP:
2700  case X86ISD::MOVSLDUP:
2701  case X86ISD::MOVDDUP:
2702  case X86ISD::MOVSS:
2703  case X86ISD::MOVSD:
2704  case X86ISD::UNPCKLPS:
2705  case X86ISD::UNPCKLPD:
2706  case X86ISD::VUNPCKLPSY:
2707  case X86ISD::VUNPCKLPDY:
2708  case X86ISD::PUNPCKLWD:
2709  case X86ISD::PUNPCKLBW:
2710  case X86ISD::PUNPCKLDQ:
2711  case X86ISD::PUNPCKLQDQ:
2712  case X86ISD::UNPCKHPS:
2713  case X86ISD::UNPCKHPD:
2714  case X86ISD::VUNPCKHPSY:
2715  case X86ISD::VUNPCKHPDY:
2716  case X86ISD::PUNPCKHWD:
2717  case X86ISD::PUNPCKHBW:
2718  case X86ISD::PUNPCKHDQ:
2719  case X86ISD::PUNPCKHQDQ:
2720  case X86ISD::VPERMIL:
2721    return true;
2722  }
2723  return false;
2724}
2725
2726static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2727                                               SDValue V1, SelectionDAG &DAG) {
2728  switch(Opc) {
2729  default: llvm_unreachable("Unknown x86 shuffle node");
2730  case X86ISD::MOVSHDUP:
2731  case X86ISD::MOVSLDUP:
2732  case X86ISD::MOVDDUP:
2733    return DAG.getNode(Opc, dl, VT, V1);
2734  }
2735
2736  return SDValue();
2737}
2738
2739static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2740                          SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2741  switch(Opc) {
2742  default: llvm_unreachable("Unknown x86 shuffle node");
2743  case X86ISD::PSHUFD:
2744  case X86ISD::PSHUFHW:
2745  case X86ISD::PSHUFLW:
2746  case X86ISD::VPERMIL:
2747    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2748  }
2749
2750  return SDValue();
2751}
2752
2753static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2754               SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2755  switch(Opc) {
2756  default: llvm_unreachable("Unknown x86 shuffle node");
2757  case X86ISD::PALIGN:
2758  case X86ISD::SHUFPD:
2759  case X86ISD::SHUFPS:
2760    return DAG.getNode(Opc, dl, VT, V1, V2,
2761                       DAG.getConstant(TargetMask, MVT::i8));
2762  }
2763  return SDValue();
2764}
2765
2766static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2767                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2768  switch(Opc) {
2769  default: llvm_unreachable("Unknown x86 shuffle node");
2770  case X86ISD::MOVLHPS:
2771  case X86ISD::MOVLHPD:
2772  case X86ISD::MOVHLPS:
2773  case X86ISD::MOVLPS:
2774  case X86ISD::MOVLPD:
2775  case X86ISD::MOVSS:
2776  case X86ISD::MOVSD:
2777  case X86ISD::UNPCKLPS:
2778  case X86ISD::UNPCKLPD:
2779  case X86ISD::VUNPCKLPSY:
2780  case X86ISD::VUNPCKLPDY:
2781  case X86ISD::PUNPCKLWD:
2782  case X86ISD::PUNPCKLBW:
2783  case X86ISD::PUNPCKLDQ:
2784  case X86ISD::PUNPCKLQDQ:
2785  case X86ISD::UNPCKHPS:
2786  case X86ISD::UNPCKHPD:
2787  case X86ISD::VUNPCKHPSY:
2788  case X86ISD::VUNPCKHPDY:
2789  case X86ISD::PUNPCKHWD:
2790  case X86ISD::PUNPCKHBW:
2791  case X86ISD::PUNPCKHDQ:
2792  case X86ISD::PUNPCKHQDQ:
2793    return DAG.getNode(Opc, dl, VT, V1, V2);
2794  }
2795  return SDValue();
2796}
2797
2798SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2799  MachineFunction &MF = DAG.getMachineFunction();
2800  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2801  int ReturnAddrIndex = FuncInfo->getRAIndex();
2802
2803  if (ReturnAddrIndex == 0) {
2804    // Set up a frame object for the return address.
2805    uint64_t SlotSize = TD->getPointerSize();
2806    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2807                                                           false);
2808    FuncInfo->setRAIndex(ReturnAddrIndex);
2809  }
2810
2811  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2812}
2813
2814
2815bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2816                                       bool hasSymbolicDisplacement) {
2817  // Offset should fit into 32 bit immediate field.
2818  if (!isInt<32>(Offset))
2819    return false;
2820
2821  // If we don't have a symbolic displacement - we don't have any extra
2822  // restrictions.
2823  if (!hasSymbolicDisplacement)
2824    return true;
2825
2826  // FIXME: Some tweaks might be needed for medium code model.
2827  if (M != CodeModel::Small && M != CodeModel::Kernel)
2828    return false;
2829
2830  // For small code model we assume that latest object is 16MB before end of 31
2831  // bits boundary. We may also accept pretty large negative constants knowing
2832  // that all objects are in the positive half of address space.
2833  if (M == CodeModel::Small && Offset < 16*1024*1024)
2834    return true;
2835
2836  // For kernel code model we know that all object resist in the negative half
2837  // of 32bits address space. We may not accept negative offsets, since they may
2838  // be just off and we may accept pretty large positive ones.
2839  if (M == CodeModel::Kernel && Offset > 0)
2840    return true;
2841
2842  return false;
2843}
2844
2845/// isCalleePop - Determines whether the callee is required to pop its
2846/// own arguments. Callee pop is necessary to support tail calls.
2847bool X86::isCalleePop(CallingConv::ID CallingConv,
2848                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
2849  if (IsVarArg)
2850    return false;
2851
2852  switch (CallingConv) {
2853  default:
2854    return false;
2855  case CallingConv::X86_StdCall:
2856    return !is64Bit;
2857  case CallingConv::X86_FastCall:
2858    return !is64Bit;
2859  case CallingConv::X86_ThisCall:
2860    return !is64Bit;
2861  case CallingConv::Fast:
2862    return TailCallOpt;
2863  case CallingConv::GHC:
2864    return TailCallOpt;
2865  }
2866}
2867
2868/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2869/// specific condition code, returning the condition code and the LHS/RHS of the
2870/// comparison to make.
2871static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2872                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2873  if (!isFP) {
2874    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2875      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2876        // X > -1   -> X == 0, jump !sign.
2877        RHS = DAG.getConstant(0, RHS.getValueType());
2878        return X86::COND_NS;
2879      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2880        // X < 0   -> X == 0, jump on sign.
2881        return X86::COND_S;
2882      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2883        // X < 1   -> X <= 0
2884        RHS = DAG.getConstant(0, RHS.getValueType());
2885        return X86::COND_LE;
2886      }
2887    }
2888
2889    switch (SetCCOpcode) {
2890    default: llvm_unreachable("Invalid integer condition!");
2891    case ISD::SETEQ:  return X86::COND_E;
2892    case ISD::SETGT:  return X86::COND_G;
2893    case ISD::SETGE:  return X86::COND_GE;
2894    case ISD::SETLT:  return X86::COND_L;
2895    case ISD::SETLE:  return X86::COND_LE;
2896    case ISD::SETNE:  return X86::COND_NE;
2897    case ISD::SETULT: return X86::COND_B;
2898    case ISD::SETUGT: return X86::COND_A;
2899    case ISD::SETULE: return X86::COND_BE;
2900    case ISD::SETUGE: return X86::COND_AE;
2901    }
2902  }
2903
2904  // First determine if it is required or is profitable to flip the operands.
2905
2906  // If LHS is a foldable load, but RHS is not, flip the condition.
2907  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
2908      !ISD::isNON_EXTLoad(RHS.getNode())) {
2909    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2910    std::swap(LHS, RHS);
2911  }
2912
2913  switch (SetCCOpcode) {
2914  default: break;
2915  case ISD::SETOLT:
2916  case ISD::SETOLE:
2917  case ISD::SETUGT:
2918  case ISD::SETUGE:
2919    std::swap(LHS, RHS);
2920    break;
2921  }
2922
2923  // On a floating point condition, the flags are set as follows:
2924  // ZF  PF  CF   op
2925  //  0 | 0 | 0 | X > Y
2926  //  0 | 0 | 1 | X < Y
2927  //  1 | 0 | 0 | X == Y
2928  //  1 | 1 | 1 | unordered
2929  switch (SetCCOpcode) {
2930  default: llvm_unreachable("Condcode should be pre-legalized away");
2931  case ISD::SETUEQ:
2932  case ISD::SETEQ:   return X86::COND_E;
2933  case ISD::SETOLT:              // flipped
2934  case ISD::SETOGT:
2935  case ISD::SETGT:   return X86::COND_A;
2936  case ISD::SETOLE:              // flipped
2937  case ISD::SETOGE:
2938  case ISD::SETGE:   return X86::COND_AE;
2939  case ISD::SETUGT:              // flipped
2940  case ISD::SETULT:
2941  case ISD::SETLT:   return X86::COND_B;
2942  case ISD::SETUGE:              // flipped
2943  case ISD::SETULE:
2944  case ISD::SETLE:   return X86::COND_BE;
2945  case ISD::SETONE:
2946  case ISD::SETNE:   return X86::COND_NE;
2947  case ISD::SETUO:   return X86::COND_P;
2948  case ISD::SETO:    return X86::COND_NP;
2949  case ISD::SETOEQ:
2950  case ISD::SETUNE:  return X86::COND_INVALID;
2951  }
2952}
2953
2954/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2955/// code. Current x86 isa includes the following FP cmov instructions:
2956/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2957static bool hasFPCMov(unsigned X86CC) {
2958  switch (X86CC) {
2959  default:
2960    return false;
2961  case X86::COND_B:
2962  case X86::COND_BE:
2963  case X86::COND_E:
2964  case X86::COND_P:
2965  case X86::COND_A:
2966  case X86::COND_AE:
2967  case X86::COND_NE:
2968  case X86::COND_NP:
2969    return true;
2970  }
2971}
2972
2973/// isFPImmLegal - Returns true if the target can instruction select the
2974/// specified FP immediate natively. If false, the legalizer will
2975/// materialize the FP immediate as a load from a constant pool.
2976bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
2977  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
2978    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
2979      return true;
2980  }
2981  return false;
2982}
2983
2984/// isUndefOrInRange - Return true if Val is undef or if its value falls within
2985/// the specified range (L, H].
2986static bool isUndefOrInRange(int Val, int Low, int Hi) {
2987  return (Val < 0) || (Val >= Low && Val < Hi);
2988}
2989
2990/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2991/// specified value.
2992static bool isUndefOrEqual(int Val, int CmpVal) {
2993  if (Val < 0 || Val == CmpVal)
2994    return true;
2995  return false;
2996}
2997
2998/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2999/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3000/// the second operand.
3001static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3002  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3003    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3004  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3005    return (Mask[0] < 2 && Mask[1] < 2);
3006  return false;
3007}
3008
3009bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
3010  SmallVector<int, 8> M;
3011  N->getMask(M);
3012  return ::isPSHUFDMask(M, N->getValueType(0));
3013}
3014
3015/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3016/// is suitable for input to PSHUFHW.
3017static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3018  if (VT != MVT::v8i16)
3019    return false;
3020
3021  // Lower quadword copied in order or undef.
3022  for (int i = 0; i != 4; ++i)
3023    if (Mask[i] >= 0 && Mask[i] != i)
3024      return false;
3025
3026  // Upper quadword shuffled.
3027  for (int i = 4; i != 8; ++i)
3028    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
3029      return false;
3030
3031  return true;
3032}
3033
3034bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
3035  SmallVector<int, 8> M;
3036  N->getMask(M);
3037  return ::isPSHUFHWMask(M, N->getValueType(0));
3038}
3039
3040/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3041/// is suitable for input to PSHUFLW.
3042static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3043  if (VT != MVT::v8i16)
3044    return false;
3045
3046  // Upper quadword copied in order.
3047  for (int i = 4; i != 8; ++i)
3048    if (Mask[i] >= 0 && Mask[i] != i)
3049      return false;
3050
3051  // Lower quadword shuffled.
3052  for (int i = 0; i != 4; ++i)
3053    if (Mask[i] >= 4)
3054      return false;
3055
3056  return true;
3057}
3058
3059bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
3060  SmallVector<int, 8> M;
3061  N->getMask(M);
3062  return ::isPSHUFLWMask(M, N->getValueType(0));
3063}
3064
3065/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3066/// is suitable for input to PALIGNR.
3067static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
3068                          bool hasSSSE3) {
3069  int i, e = VT.getVectorNumElements();
3070
3071  // Do not handle v2i64 / v2f64 shuffles with palignr.
3072  if (e < 4 || !hasSSSE3)
3073    return false;
3074
3075  for (i = 0; i != e; ++i)
3076    if (Mask[i] >= 0)
3077      break;
3078
3079  // All undef, not a palignr.
3080  if (i == e)
3081    return false;
3082
3083  // Make sure we're shifting in the right direction.
3084  if (Mask[i] <= i)
3085    return false;
3086
3087  int s = Mask[i] - i;
3088
3089  // Check the rest of the elements to see if they are consecutive.
3090  for (++i; i != e; ++i) {
3091    int m = Mask[i];
3092    if (m >= 0 && m != s+i)
3093      return false;
3094  }
3095  return true;
3096}
3097
3098bool X86::isPALIGNRMask(ShuffleVectorSDNode *N) {
3099  SmallVector<int, 8> M;
3100  N->getMask(M);
3101  return ::isPALIGNRMask(M, N->getValueType(0), true);
3102}
3103
3104/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3105/// specifies a shuffle of elements that is suitable for input to SHUFP*.
3106static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3107  int NumElems = VT.getVectorNumElements();
3108  if (NumElems != 2 && NumElems != 4)
3109    return false;
3110
3111  int Half = NumElems / 2;
3112  for (int i = 0; i < Half; ++i)
3113    if (!isUndefOrInRange(Mask[i], 0, NumElems))
3114      return false;
3115  for (int i = Half; i < NumElems; ++i)
3116    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3117      return false;
3118
3119  return true;
3120}
3121
3122bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
3123  SmallVector<int, 8> M;
3124  N->getMask(M);
3125  return ::isSHUFPMask(M, N->getValueType(0));
3126}
3127
3128/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
3129/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
3130/// half elements to come from vector 1 (which would equal the dest.) and
3131/// the upper half to come from vector 2.
3132static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3133  int NumElems = VT.getVectorNumElements();
3134
3135  if (NumElems != 2 && NumElems != 4)
3136    return false;
3137
3138  int Half = NumElems / 2;
3139  for (int i = 0; i < Half; ++i)
3140    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3141      return false;
3142  for (int i = Half; i < NumElems; ++i)
3143    if (!isUndefOrInRange(Mask[i], 0, NumElems))
3144      return false;
3145  return true;
3146}
3147
3148static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
3149  SmallVector<int, 8> M;
3150  N->getMask(M);
3151  return isCommutedSHUFPMask(M, N->getValueType(0));
3152}
3153
3154/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3155/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3156bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
3157  if (N->getValueType(0).getVectorNumElements() != 4)
3158    return false;
3159
3160  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3161  return isUndefOrEqual(N->getMaskElt(0), 6) &&
3162         isUndefOrEqual(N->getMaskElt(1), 7) &&
3163         isUndefOrEqual(N->getMaskElt(2), 2) &&
3164         isUndefOrEqual(N->getMaskElt(3), 3);
3165}
3166
3167/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3168/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3169/// <2, 3, 2, 3>
3170bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
3171  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3172
3173  if (NumElems != 4)
3174    return false;
3175
3176  return isUndefOrEqual(N->getMaskElt(0), 2) &&
3177  isUndefOrEqual(N->getMaskElt(1), 3) &&
3178  isUndefOrEqual(N->getMaskElt(2), 2) &&
3179  isUndefOrEqual(N->getMaskElt(3), 3);
3180}
3181
3182/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3183/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3184bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
3185  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3186
3187  if (NumElems != 2 && NumElems != 4)
3188    return false;
3189
3190  for (unsigned i = 0; i < NumElems/2; ++i)
3191    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
3192      return false;
3193
3194  for (unsigned i = NumElems/2; i < NumElems; ++i)
3195    if (!isUndefOrEqual(N->getMaskElt(i), i))
3196      return false;
3197
3198  return true;
3199}
3200
3201/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3202/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3203bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
3204  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3205
3206  if ((NumElems != 2 && NumElems != 4)
3207      || N->getValueType(0).getSizeInBits() > 128)
3208    return false;
3209
3210  for (unsigned i = 0; i < NumElems/2; ++i)
3211    if (!isUndefOrEqual(N->getMaskElt(i), i))
3212      return false;
3213
3214  for (unsigned i = 0; i < NumElems/2; ++i)
3215    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3216      return false;
3217
3218  return true;
3219}
3220
3221/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3222/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3223static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3224                         bool V2IsSplat = false) {
3225  int NumElts = VT.getVectorNumElements();
3226
3227  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3228         "Unsupported vector type for unpckh");
3229
3230  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8)
3231    return false;
3232
3233  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3234  // independently on 128-bit lanes.
3235  unsigned NumLanes = VT.getSizeInBits()/128;
3236  unsigned NumLaneElts = NumElts/NumLanes;
3237
3238  unsigned Start = 0;
3239  unsigned End = NumLaneElts;
3240  for (unsigned s = 0; s < NumLanes; ++s) {
3241    for (unsigned i = Start, j = s * NumLaneElts;
3242         i != End;
3243         i += 2, ++j) {
3244      int BitI  = Mask[i];
3245      int BitI1 = Mask[i+1];
3246      if (!isUndefOrEqual(BitI, j))
3247        return false;
3248      if (V2IsSplat) {
3249        if (!isUndefOrEqual(BitI1, NumElts))
3250          return false;
3251      } else {
3252        if (!isUndefOrEqual(BitI1, j + NumElts))
3253          return false;
3254      }
3255    }
3256    // Process the next 128 bits.
3257    Start += NumLaneElts;
3258    End += NumLaneElts;
3259  }
3260
3261  return true;
3262}
3263
3264bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3265  SmallVector<int, 8> M;
3266  N->getMask(M);
3267  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
3268}
3269
3270/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3271/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3272static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
3273                         bool V2IsSplat = false) {
3274  int NumElts = VT.getVectorNumElements();
3275
3276  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3277         "Unsupported vector type for unpckh");
3278
3279  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8)
3280    return false;
3281
3282  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3283  // independently on 128-bit lanes.
3284  unsigned NumLanes = VT.getSizeInBits()/128;
3285  unsigned NumLaneElts = NumElts/NumLanes;
3286
3287  unsigned Start = 0;
3288  unsigned End = NumLaneElts;
3289  for (unsigned l = 0; l != NumLanes; ++l) {
3290    for (unsigned i = Start, j = (l*NumLaneElts)+NumLaneElts/2;
3291                             i != End; i += 2, ++j) {
3292      int BitI  = Mask[i];
3293      int BitI1 = Mask[i+1];
3294      if (!isUndefOrEqual(BitI, j))
3295        return false;
3296      if (V2IsSplat) {
3297        if (isUndefOrEqual(BitI1, NumElts))
3298          return false;
3299      } else {
3300        if (!isUndefOrEqual(BitI1, j+NumElts))
3301          return false;
3302      }
3303    }
3304    // Process the next 128 bits.
3305    Start += NumLaneElts;
3306    End += NumLaneElts;
3307  }
3308  return true;
3309}
3310
3311bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3312  SmallVector<int, 8> M;
3313  N->getMask(M);
3314  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
3315}
3316
3317/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3318/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3319/// <0, 0, 1, 1>
3320static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3321  int NumElems = VT.getVectorNumElements();
3322  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3323    return false;
3324
3325  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3326  // independently on 128-bit lanes.
3327  unsigned NumLanes = VT.getSizeInBits() / 128;
3328  unsigned NumLaneElts = NumElems / NumLanes;
3329
3330  for (unsigned s = 0; s < NumLanes; ++s) {
3331    for (unsigned i = s * NumLaneElts, j = s * NumLaneElts;
3332         i != NumLaneElts * (s + 1);
3333         i += 2, ++j) {
3334      int BitI  = Mask[i];
3335      int BitI1 = Mask[i+1];
3336
3337      if (!isUndefOrEqual(BitI, j))
3338        return false;
3339      if (!isUndefOrEqual(BitI1, j))
3340        return false;
3341    }
3342  }
3343
3344  return true;
3345}
3346
3347bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
3348  SmallVector<int, 8> M;
3349  N->getMask(M);
3350  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
3351}
3352
3353/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3354/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3355/// <2, 2, 3, 3>
3356static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3357  int NumElems = VT.getVectorNumElements();
3358  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3359    return false;
3360
3361  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
3362    int BitI  = Mask[i];
3363    int BitI1 = Mask[i+1];
3364    if (!isUndefOrEqual(BitI, j))
3365      return false;
3366    if (!isUndefOrEqual(BitI1, j))
3367      return false;
3368  }
3369  return true;
3370}
3371
3372bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
3373  SmallVector<int, 8> M;
3374  N->getMask(M);
3375  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
3376}
3377
3378/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3379/// specifies a shuffle of elements that is suitable for input to MOVSS,
3380/// MOVSD, and MOVD, i.e. setting the lowest element.
3381static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3382  if (VT.getVectorElementType().getSizeInBits() < 32)
3383    return false;
3384
3385  int NumElts = VT.getVectorNumElements();
3386
3387  if (!isUndefOrEqual(Mask[0], NumElts))
3388    return false;
3389
3390  for (int i = 1; i < NumElts; ++i)
3391    if (!isUndefOrEqual(Mask[i], i))
3392      return false;
3393
3394  return true;
3395}
3396
3397bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3398  SmallVector<int, 8> M;
3399  N->getMask(M);
3400  return ::isMOVLMask(M, N->getValueType(0));
3401}
3402
3403/// isVPERMILMask - Return true if the specified VECTOR_SHUFFLE operand
3404/// specifies a shuffle of elements that is suitable for input to VPERMIL*.
3405static bool isVPERMILMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3406  unsigned NumElts = VT.getVectorNumElements();
3407  unsigned NumLanes = VT.getSizeInBits()/128;
3408
3409  // Match any permutation of 128-bit vector with 32/64-bit types
3410  if (NumLanes == 1) {
3411    if (NumElts == 4 || NumElts == 2)
3412      return true;
3413    return false;
3414  }
3415
3416  // Only match 256-bit with 32/64-bit types
3417  if (NumElts != 8 && NumElts != 4)
3418    return false;
3419
3420  // The mask on the high lane should be the same as the low. Actually,
3421  // they can differ if any of the corresponding index in a lane is undef.
3422  int LaneSize = NumElts/NumLanes;
3423  for (int i = 0; i < LaneSize; ++i) {
3424    int HighElt = i+LaneSize;
3425    if (Mask[i] < 0 || Mask[HighElt] < 0)
3426      continue;
3427
3428    if (Mask[HighElt]-Mask[i] != LaneSize)
3429      return false;
3430  }
3431
3432  return true;
3433}
3434
3435/// getShuffleVPERMILImmediateediate - Return the appropriate immediate to shuffle
3436/// the specified VECTOR_MASK mask with VPERMIL* instructions.
3437static unsigned getShuffleVPERMILImmediate(SDNode *N) {
3438  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3439  EVT VT = SVOp->getValueType(0);
3440
3441  int NumElts = VT.getVectorNumElements();
3442  int NumLanes = VT.getSizeInBits()/128;
3443
3444  unsigned Mask = 0;
3445  for (int i = 0; i < NumElts/NumLanes /* lane size */; ++i)
3446    Mask |= SVOp->getMaskElt(i) << (i*2);
3447
3448  return Mask;
3449}
3450
3451/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3452/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3453/// element of vector 2 and the other elements to come from vector 1 in order.
3454static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3455                               bool V2IsSplat = false, bool V2IsUndef = false) {
3456  int NumOps = VT.getVectorNumElements();
3457  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3458    return false;
3459
3460  if (!isUndefOrEqual(Mask[0], 0))
3461    return false;
3462
3463  for (int i = 1; i < NumOps; ++i)
3464    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3465          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3466          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3467      return false;
3468
3469  return true;
3470}
3471
3472static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3473                           bool V2IsUndef = false) {
3474  SmallVector<int, 8> M;
3475  N->getMask(M);
3476  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
3477}
3478
3479/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3480/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3481/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3482bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N,
3483                         const X86Subtarget *Subtarget) {
3484  if (!Subtarget->hasSSE3() && !Subtarget->hasAVX())
3485    return false;
3486
3487  // The second vector must be undef
3488  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3489    return false;
3490
3491  EVT VT = N->getValueType(0);
3492  unsigned NumElems = VT.getVectorNumElements();
3493
3494  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3495      (VT.getSizeInBits() == 256 && NumElems != 8))
3496    return false;
3497
3498  // "i+1" is the value the indexed mask element must have
3499  for (unsigned i = 0; i < NumElems; i += 2)
3500    if (!isUndefOrEqual(N->getMaskElt(i), i+1) ||
3501        !isUndefOrEqual(N->getMaskElt(i+1), i+1))
3502      return false;
3503
3504  return true;
3505}
3506
3507/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3508/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3509/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3510bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N,
3511                         const X86Subtarget *Subtarget) {
3512  if (!Subtarget->hasSSE3() && !Subtarget->hasAVX())
3513    return false;
3514
3515  // The second vector must be undef
3516  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3517    return false;
3518
3519  EVT VT = N->getValueType(0);
3520  unsigned NumElems = VT.getVectorNumElements();
3521
3522  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3523      (VT.getSizeInBits() == 256 && NumElems != 8))
3524    return false;
3525
3526  // "i" is the value the indexed mask element must have
3527  for (unsigned i = 0; i < NumElems; i += 2)
3528    if (!isUndefOrEqual(N->getMaskElt(i), i) ||
3529        !isUndefOrEqual(N->getMaskElt(i+1), i))
3530      return false;
3531
3532  return true;
3533}
3534
3535/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3536/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
3537bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3538  int e = N->getValueType(0).getVectorNumElements() / 2;
3539
3540  for (int i = 0; i < e; ++i)
3541    if (!isUndefOrEqual(N->getMaskElt(i), i))
3542      return false;
3543  for (int i = 0; i < e; ++i)
3544    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3545      return false;
3546  return true;
3547}
3548
3549/// isVEXTRACTF128Index - Return true if the specified
3550/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3551/// suitable for input to VEXTRACTF128.
3552bool X86::isVEXTRACTF128Index(SDNode *N) {
3553  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3554    return false;
3555
3556  // The index should be aligned on a 128-bit boundary.
3557  uint64_t Index =
3558    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3559
3560  unsigned VL = N->getValueType(0).getVectorNumElements();
3561  unsigned VBits = N->getValueType(0).getSizeInBits();
3562  unsigned ElSize = VBits / VL;
3563  bool Result = (Index * ElSize) % 128 == 0;
3564
3565  return Result;
3566}
3567
3568/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
3569/// operand specifies a subvector insert that is suitable for input to
3570/// VINSERTF128.
3571bool X86::isVINSERTF128Index(SDNode *N) {
3572  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3573    return false;
3574
3575  // The index should be aligned on a 128-bit boundary.
3576  uint64_t Index =
3577    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3578
3579  unsigned VL = N->getValueType(0).getVectorNumElements();
3580  unsigned VBits = N->getValueType(0).getSizeInBits();
3581  unsigned ElSize = VBits / VL;
3582  bool Result = (Index * ElSize) % 128 == 0;
3583
3584  return Result;
3585}
3586
3587/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3588/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3589unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
3590  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3591  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
3592
3593  unsigned Shift = (NumOperands == 4) ? 2 : 1;
3594  unsigned Mask = 0;
3595  for (int i = 0; i < NumOperands; ++i) {
3596    int Val = SVOp->getMaskElt(NumOperands-i-1);
3597    if (Val < 0) Val = 0;
3598    if (Val >= NumOperands) Val -= NumOperands;
3599    Mask |= Val;
3600    if (i != NumOperands - 1)
3601      Mask <<= Shift;
3602  }
3603  return Mask;
3604}
3605
3606/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3607/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3608unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3609  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3610  unsigned Mask = 0;
3611  // 8 nodes, but we only care about the last 4.
3612  for (unsigned i = 7; i >= 4; --i) {
3613    int Val = SVOp->getMaskElt(i);
3614    if (Val >= 0)
3615      Mask |= (Val - 4);
3616    if (i != 4)
3617      Mask <<= 2;
3618  }
3619  return Mask;
3620}
3621
3622/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3623/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3624unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
3625  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3626  unsigned Mask = 0;
3627  // 8 nodes, but we only care about the first 4.
3628  for (int i = 3; i >= 0; --i) {
3629    int Val = SVOp->getMaskElt(i);
3630    if (Val >= 0)
3631      Mask |= Val;
3632    if (i != 0)
3633      Mask <<= 2;
3634  }
3635  return Mask;
3636}
3637
3638/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3639/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3640unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
3641  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3642  EVT VVT = N->getValueType(0);
3643  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
3644  int Val = 0;
3645
3646  unsigned i, e;
3647  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
3648    Val = SVOp->getMaskElt(i);
3649    if (Val >= 0)
3650      break;
3651  }
3652  assert(Val - i > 0 && "PALIGNR imm should be positive");
3653  return (Val - i) * EltSize;
3654}
3655
3656/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
3657/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
3658/// instructions.
3659unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
3660  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3661    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
3662
3663  uint64_t Index =
3664    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3665
3666  EVT VecVT = N->getOperand(0).getValueType();
3667  EVT ElVT = VecVT.getVectorElementType();
3668
3669  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
3670  return Index / NumElemsPerChunk;
3671}
3672
3673/// getInsertVINSERTF128Immediate - Return the appropriate immediate
3674/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
3675/// instructions.
3676unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
3677  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3678    llvm_unreachable("Illegal insert subvector for VINSERTF128");
3679
3680  uint64_t Index =
3681    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3682
3683  EVT VecVT = N->getValueType(0);
3684  EVT ElVT = VecVT.getVectorElementType();
3685
3686  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
3687  return Index / NumElemsPerChunk;
3688}
3689
3690/// isZeroNode - Returns true if Elt is a constant zero or a floating point
3691/// constant +0.0.
3692bool X86::isZeroNode(SDValue Elt) {
3693  return ((isa<ConstantSDNode>(Elt) &&
3694           cast<ConstantSDNode>(Elt)->isNullValue()) ||
3695          (isa<ConstantFPSDNode>(Elt) &&
3696           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
3697}
3698
3699/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
3700/// their permute mask.
3701static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
3702                                    SelectionDAG &DAG) {
3703  EVT VT = SVOp->getValueType(0);
3704  unsigned NumElems = VT.getVectorNumElements();
3705  SmallVector<int, 8> MaskVec;
3706
3707  for (unsigned i = 0; i != NumElems; ++i) {
3708    int idx = SVOp->getMaskElt(i);
3709    if (idx < 0)
3710      MaskVec.push_back(idx);
3711    else if (idx < (int)NumElems)
3712      MaskVec.push_back(idx + NumElems);
3713    else
3714      MaskVec.push_back(idx - NumElems);
3715  }
3716  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
3717                              SVOp->getOperand(0), &MaskVec[0]);
3718}
3719
3720/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3721/// the two vector operands have swapped position.
3722static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
3723  unsigned NumElems = VT.getVectorNumElements();
3724  for (unsigned i = 0; i != NumElems; ++i) {
3725    int idx = Mask[i];
3726    if (idx < 0)
3727      continue;
3728    else if (idx < (int)NumElems)
3729      Mask[i] = idx + NumElems;
3730    else
3731      Mask[i] = idx - NumElems;
3732  }
3733}
3734
3735/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
3736/// match movhlps. The lower half elements should come from upper half of
3737/// V1 (and in order), and the upper half elements should come from the upper
3738/// half of V2 (and in order).
3739static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
3740  if (Op->getValueType(0).getVectorNumElements() != 4)
3741    return false;
3742  for (unsigned i = 0, e = 2; i != e; ++i)
3743    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
3744      return false;
3745  for (unsigned i = 2; i != 4; ++i)
3746    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
3747      return false;
3748  return true;
3749}
3750
3751/// isScalarLoadToVector - Returns true if the node is a scalar load that
3752/// is promoted to a vector. It also returns the LoadSDNode by reference if
3753/// required.
3754static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
3755  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
3756    return false;
3757  N = N->getOperand(0).getNode();
3758  if (!ISD::isNON_EXTLoad(N))
3759    return false;
3760  if (LD)
3761    *LD = cast<LoadSDNode>(N);
3762  return true;
3763}
3764
3765/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
3766/// match movlp{s|d}. The lower half elements should come from lower half of
3767/// V1 (and in order), and the upper half elements should come from the upper
3768/// half of V2 (and in order). And since V1 will become the source of the
3769/// MOVLP, it must be either a vector load or a scalar load to vector.
3770static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
3771                               ShuffleVectorSDNode *Op) {
3772  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
3773    return false;
3774  // Is V2 is a vector load, don't do this transformation. We will try to use
3775  // load folding shufps op.
3776  if (ISD::isNON_EXTLoad(V2))
3777    return false;
3778
3779  unsigned NumElems = Op->getValueType(0).getVectorNumElements();
3780
3781  if (NumElems != 2 && NumElems != 4)
3782    return false;
3783  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3784    if (!isUndefOrEqual(Op->getMaskElt(i), i))
3785      return false;
3786  for (unsigned i = NumElems/2; i != NumElems; ++i)
3787    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
3788      return false;
3789  return true;
3790}
3791
3792/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
3793/// all the same.
3794static bool isSplatVector(SDNode *N) {
3795  if (N->getOpcode() != ISD::BUILD_VECTOR)
3796    return false;
3797
3798  SDValue SplatValue = N->getOperand(0);
3799  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
3800    if (N->getOperand(i) != SplatValue)
3801      return false;
3802  return true;
3803}
3804
3805/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
3806/// to an zero vector.
3807/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
3808static bool isZeroShuffle(ShuffleVectorSDNode *N) {
3809  SDValue V1 = N->getOperand(0);
3810  SDValue V2 = N->getOperand(1);
3811  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3812  for (unsigned i = 0; i != NumElems; ++i) {
3813    int Idx = N->getMaskElt(i);
3814    if (Idx >= (int)NumElems) {
3815      unsigned Opc = V2.getOpcode();
3816      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
3817        continue;
3818      if (Opc != ISD::BUILD_VECTOR ||
3819          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
3820        return false;
3821    } else if (Idx >= 0) {
3822      unsigned Opc = V1.getOpcode();
3823      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
3824        continue;
3825      if (Opc != ISD::BUILD_VECTOR ||
3826          !X86::isZeroNode(V1.getOperand(Idx)))
3827        return false;
3828    }
3829  }
3830  return true;
3831}
3832
3833/// getZeroVector - Returns a vector of specified type with all zero elements.
3834///
3835static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
3836                             DebugLoc dl) {
3837  assert(VT.isVector() && "Expected a vector type");
3838
3839  // Always build SSE zero vectors as <4 x i32> bitcasted
3840  // to their dest type. This ensures they get CSE'd.
3841  SDValue Vec;
3842  if (VT.getSizeInBits() == 128) {  // SSE
3843    if (HasSSE2) {  // SSE2
3844      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3845      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3846    } else { // SSE1
3847      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3848      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
3849    }
3850  } else if (VT.getSizeInBits() == 256) { // AVX
3851    // 256-bit logic and arithmetic instructions in AVX are
3852    // all floating-point, no support for integer ops. Default
3853    // to emitting fp zeroed vectors then.
3854    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3855    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
3856    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
3857  }
3858  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
3859}
3860
3861/// getOnesVector - Returns a vector of specified type with all bits set.
3862/// Always build ones vectors as <4 x i32>. For 256-bit types, use two
3863/// <4 x i32> inserted in a <8 x i32> appropriately. Then bitcast to their
3864/// original type, ensuring they get CSE'd.
3865static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3866  assert(VT.isVector() && "Expected a vector type");
3867  assert((VT.is128BitVector() || VT.is256BitVector())
3868         && "Expected a 128-bit or 256-bit vector type");
3869
3870  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
3871  SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
3872                            Cst, Cst, Cst, Cst);
3873
3874  if (VT.is256BitVector()) {
3875    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, MVT::v8i32),
3876                              Vec, DAG.getConstant(0, MVT::i32), DAG, dl);
3877    Vec = Insert128BitVector(InsV, Vec,
3878                  DAG.getConstant(4 /* NumElems/2 */, MVT::i32), DAG, dl);
3879  }
3880
3881  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
3882}
3883
3884/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
3885/// that point to V2 points to its first element.
3886static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3887  EVT VT = SVOp->getValueType(0);
3888  unsigned NumElems = VT.getVectorNumElements();
3889
3890  bool Changed = false;
3891  SmallVector<int, 8> MaskVec;
3892  SVOp->getMask(MaskVec);
3893
3894  for (unsigned i = 0; i != NumElems; ++i) {
3895    if (MaskVec[i] > (int)NumElems) {
3896      MaskVec[i] = NumElems;
3897      Changed = true;
3898    }
3899  }
3900  if (Changed)
3901    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
3902                                SVOp->getOperand(1), &MaskVec[0]);
3903  return SDValue(SVOp, 0);
3904}
3905
3906/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
3907/// operation of specified width.
3908static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3909                       SDValue V2) {
3910  unsigned NumElems = VT.getVectorNumElements();
3911  SmallVector<int, 8> Mask;
3912  Mask.push_back(NumElems);
3913  for (unsigned i = 1; i != NumElems; ++i)
3914    Mask.push_back(i);
3915  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3916}
3917
3918/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
3919static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3920                          SDValue V2) {
3921  unsigned NumElems = VT.getVectorNumElements();
3922  SmallVector<int, 8> Mask;
3923  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3924    Mask.push_back(i);
3925    Mask.push_back(i + NumElems);
3926  }
3927  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3928}
3929
3930/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
3931static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3932                          SDValue V2) {
3933  unsigned NumElems = VT.getVectorNumElements();
3934  unsigned Half = NumElems/2;
3935  SmallVector<int, 8> Mask;
3936  for (unsigned i = 0; i != Half; ++i) {
3937    Mask.push_back(i + Half);
3938    Mask.push_back(i + NumElems + Half);
3939  }
3940  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3941}
3942
3943// PromoteSplatv8v16 - All i16 and i8 vector types can't be used directly by
3944// a generic shuffle instruction because the target has no such instructions.
3945// Generate shuffles which repeat i16 and i8 several times until they can be
3946// represented by v4f32 and then be manipulated by target suported shuffles.
3947static SDValue PromoteSplatv8v16(SDValue V, SelectionDAG &DAG, int &EltNo) {
3948  EVT VT = V.getValueType();
3949  int NumElems = VT.getVectorNumElements();
3950  DebugLoc dl = V.getDebugLoc();
3951
3952  while (NumElems > 4) {
3953    if (EltNo < NumElems/2) {
3954      V = getUnpackl(DAG, dl, VT, V, V);
3955    } else {
3956      V = getUnpackh(DAG, dl, VT, V, V);
3957      EltNo -= NumElems/2;
3958    }
3959    NumElems >>= 1;
3960  }
3961  return V;
3962}
3963
3964/// getLegalSplat - Generate a legal splat with supported x86 shuffles
3965static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
3966  EVT VT = V.getValueType();
3967  DebugLoc dl = V.getDebugLoc();
3968  assert((VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256)
3969         && "Vector size not supported");
3970
3971  bool Is128 = VT.getSizeInBits() == 128;
3972  EVT NVT = Is128 ? MVT::v4f32 : MVT::v8f32;
3973  V = DAG.getNode(ISD::BITCAST, dl, NVT, V);
3974
3975  if (Is128) {
3976    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
3977    V = DAG.getVectorShuffle(NVT, dl, V, DAG.getUNDEF(NVT), &SplatMask[0]);
3978  } else {
3979    // The second half of indicies refer to the higher part, which is a
3980    // duplication of the lower one. This makes this shuffle a perfect match
3981    // for the VPERM instruction.
3982    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
3983                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
3984    V = DAG.getVectorShuffle(NVT, dl, V, DAG.getUNDEF(NVT), &SplatMask[0]);
3985  }
3986
3987  return DAG.getNode(ISD::BITCAST, dl, VT, V);
3988}
3989
3990/// PromoteVectorToScalarSplat - Since there's no native support for
3991/// scalar_to_vector for 256-bit AVX, a 128-bit scalar_to_vector +
3992/// INSERT_SUBVECTOR is generated. Recognize this idiom and do the
3993/// shuffle before the insertion, this yields less instructions in the end.
3994static SDValue PromoteVectorToScalarSplat(ShuffleVectorSDNode *SV,
3995                                          SelectionDAG &DAG) {
3996  EVT SrcVT = SV->getValueType(0);
3997  SDValue V1 = SV->getOperand(0);
3998  DebugLoc dl = SV->getDebugLoc();
3999  int NumElems = SrcVT.getVectorNumElements();
4000
4001  assert(SrcVT.is256BitVector() && "unknown howto handle vector type");
4002
4003  SmallVector<int, 4> Mask;
4004  for (int i = 0; i < NumElems/2; ++i)
4005    Mask.push_back(SV->getMaskElt(i));
4006
4007  EVT SVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getVectorElementType(),
4008                             NumElems/2);
4009  SDValue SV1 = DAG.getVectorShuffle(SVT, dl, V1.getOperand(1),
4010                                     DAG.getUNDEF(SVT), &Mask[0]);
4011  SDValue InsV = Insert128BitVector(DAG.getUNDEF(SrcVT), SV1,
4012                                    DAG.getConstant(0, MVT::i32), DAG, dl);
4013
4014  return Insert128BitVector(InsV, SV1,
4015                       DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
4016}
4017
4018/// PromoteSplat - Promote a splat of v4i32, v8i16 or v16i8 to v4f32 and
4019/// v8i32, v16i16 or v32i8 to v8f32.
4020static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4021  EVT SrcVT = SV->getValueType(0);
4022  SDValue V1 = SV->getOperand(0);
4023  DebugLoc dl = SV->getDebugLoc();
4024
4025  int EltNo = SV->getSplatIndex();
4026  int NumElems = SrcVT.getVectorNumElements();
4027  unsigned Size = SrcVT.getSizeInBits();
4028
4029  // Extract the 128-bit part containing the splat element and update
4030  // the splat element index when it refers to the higher register.
4031  if (Size == 256) {
4032    unsigned Idx = (EltNo > NumElems/2) ? NumElems/2 : 0;
4033    V1 = Extract128BitVector(V1, DAG.getConstant(Idx, MVT::i32), DAG, dl);
4034    if (Idx > 0)
4035      EltNo -= NumElems/2;
4036  }
4037
4038  // Make this 128-bit vector duplicate i8 and i16 elements
4039  if (NumElems > 4)
4040    V1 = PromoteSplatv8v16(V1, DAG, EltNo);
4041
4042  // Recreate the 256-bit vector and place the same 128-bit vector
4043  // into the low and high part. This is necessary because we want
4044  // to use VPERM to shuffle the v8f32 vector, and VPERM only shuffles
4045  // inside each separate v4f32 lane.
4046  if (Size == 256) {
4047    SDValue InsV = Insert128BitVector(DAG.getUNDEF(SrcVT), V1,
4048                         DAG.getConstant(0, MVT::i32), DAG, dl);
4049    V1 = Insert128BitVector(InsV, V1,
4050               DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
4051  }
4052
4053  return getLegalSplat(DAG, V1, EltNo);
4054}
4055
4056/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4057/// vector of zero or undef vector.  This produces a shuffle where the low
4058/// element of V2 is swizzled into the zero/undef vector, landing at element
4059/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4060static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4061                                             bool isZero, bool HasSSE2,
4062                                             SelectionDAG &DAG) {
4063  EVT VT = V2.getValueType();
4064  SDValue V1 = isZero
4065    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4066  unsigned NumElems = VT.getVectorNumElements();
4067  SmallVector<int, 16> MaskVec;
4068  for (unsigned i = 0; i != NumElems; ++i)
4069    // If this is the insertion idx, put the low elt of V2 here.
4070    MaskVec.push_back(i == Idx ? NumElems : i);
4071  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4072}
4073
4074/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4075/// element of the result of the vector shuffle.
4076static SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
4077                                   unsigned Depth) {
4078  if (Depth == 6)
4079    return SDValue();  // Limit search depth.
4080
4081  SDValue V = SDValue(N, 0);
4082  EVT VT = V.getValueType();
4083  unsigned Opcode = V.getOpcode();
4084
4085  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4086  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4087    Index = SV->getMaskElt(Index);
4088
4089    if (Index < 0)
4090      return DAG.getUNDEF(VT.getVectorElementType());
4091
4092    int NumElems = VT.getVectorNumElements();
4093    SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
4094    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
4095  }
4096
4097  // Recurse into target specific vector shuffles to find scalars.
4098  if (isTargetShuffle(Opcode)) {
4099    int NumElems = VT.getVectorNumElements();
4100    SmallVector<unsigned, 16> ShuffleMask;
4101    SDValue ImmN;
4102
4103    switch(Opcode) {
4104    case X86ISD::SHUFPS:
4105    case X86ISD::SHUFPD:
4106      ImmN = N->getOperand(N->getNumOperands()-1);
4107      DecodeSHUFPSMask(NumElems,
4108                       cast<ConstantSDNode>(ImmN)->getZExtValue(),
4109                       ShuffleMask);
4110      break;
4111    case X86ISD::PUNPCKHBW:
4112    case X86ISD::PUNPCKHWD:
4113    case X86ISD::PUNPCKHDQ:
4114    case X86ISD::PUNPCKHQDQ:
4115      DecodePUNPCKHMask(NumElems, ShuffleMask);
4116      break;
4117    case X86ISD::UNPCKHPS:
4118    case X86ISD::UNPCKHPD:
4119    case X86ISD::VUNPCKHPSY:
4120    case X86ISD::VUNPCKHPDY:
4121      DecodeUNPCKHPMask(NumElems, ShuffleMask);
4122      break;
4123    case X86ISD::PUNPCKLBW:
4124    case X86ISD::PUNPCKLWD:
4125    case X86ISD::PUNPCKLDQ:
4126    case X86ISD::PUNPCKLQDQ:
4127      DecodePUNPCKLMask(VT, ShuffleMask);
4128      break;
4129    case X86ISD::UNPCKLPS:
4130    case X86ISD::UNPCKLPD:
4131    case X86ISD::VUNPCKLPSY:
4132    case X86ISD::VUNPCKLPDY:
4133      DecodeUNPCKLPMask(VT, ShuffleMask);
4134      break;
4135    case X86ISD::MOVHLPS:
4136      DecodeMOVHLPSMask(NumElems, ShuffleMask);
4137      break;
4138    case X86ISD::MOVLHPS:
4139      DecodeMOVLHPSMask(NumElems, ShuffleMask);
4140      break;
4141    case X86ISD::PSHUFD:
4142      ImmN = N->getOperand(N->getNumOperands()-1);
4143      DecodePSHUFMask(NumElems,
4144                      cast<ConstantSDNode>(ImmN)->getZExtValue(),
4145                      ShuffleMask);
4146      break;
4147    case X86ISD::PSHUFHW:
4148      ImmN = N->getOperand(N->getNumOperands()-1);
4149      DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4150                        ShuffleMask);
4151      break;
4152    case X86ISD::PSHUFLW:
4153      ImmN = N->getOperand(N->getNumOperands()-1);
4154      DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4155                        ShuffleMask);
4156      break;
4157    case X86ISD::MOVSS:
4158    case X86ISD::MOVSD: {
4159      // The index 0 always comes from the first element of the second source,
4160      // this is why MOVSS and MOVSD are used in the first place. The other
4161      // elements come from the other positions of the first source vector.
4162      unsigned OpNum = (Index == 0) ? 1 : 0;
4163      return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
4164                                 Depth+1);
4165    }
4166    case X86ISD::VPERMIL:
4167      ImmN = N->getOperand(N->getNumOperands()-1);
4168      DecodeVPERMILMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4169                        ShuffleMask);
4170    default:
4171      assert("not implemented for target shuffle node");
4172      return SDValue();
4173    }
4174
4175    Index = ShuffleMask[Index];
4176    if (Index < 0)
4177      return DAG.getUNDEF(VT.getVectorElementType());
4178
4179    SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
4180    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
4181                               Depth+1);
4182  }
4183
4184  // Actual nodes that may contain scalar elements
4185  if (Opcode == ISD::BITCAST) {
4186    V = V.getOperand(0);
4187    EVT SrcVT = V.getValueType();
4188    unsigned NumElems = VT.getVectorNumElements();
4189
4190    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4191      return SDValue();
4192  }
4193
4194  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4195    return (Index == 0) ? V.getOperand(0)
4196                          : DAG.getUNDEF(VT.getVectorElementType());
4197
4198  if (V.getOpcode() == ISD::BUILD_VECTOR)
4199    return V.getOperand(Index);
4200
4201  return SDValue();
4202}
4203
4204/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4205/// shuffle operation which come from a consecutively from a zero. The
4206/// search can start in two different directions, from left or right.
4207static
4208unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
4209                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4210  int i = 0;
4211
4212  while (i < NumElems) {
4213    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4214    SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
4215    if (!(Elt.getNode() &&
4216         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4217      break;
4218    ++i;
4219  }
4220
4221  return i;
4222}
4223
4224/// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
4225/// MaskE correspond consecutively to elements from one of the vector operands,
4226/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4227static
4228bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
4229                              int OpIdx, int NumElems, unsigned &OpNum) {
4230  bool SeenV1 = false;
4231  bool SeenV2 = false;
4232
4233  for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
4234    int Idx = SVOp->getMaskElt(i);
4235    // Ignore undef indicies
4236    if (Idx < 0)
4237      continue;
4238
4239    if (Idx < NumElems)
4240      SeenV1 = true;
4241    else
4242      SeenV2 = true;
4243
4244    // Only accept consecutive elements from the same vector
4245    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4246      return false;
4247  }
4248
4249  OpNum = SeenV1 ? 0 : 1;
4250  return true;
4251}
4252
4253/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4254/// logical left shift of a vector.
4255static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4256                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4257  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4258  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4259              false /* check zeros from right */, DAG);
4260  unsigned OpSrc;
4261
4262  if (!NumZeros)
4263    return false;
4264
4265  // Considering the elements in the mask that are not consecutive zeros,
4266  // check if they consecutively come from only one of the source vectors.
4267  //
4268  //               V1 = {X, A, B, C}     0
4269  //                         \  \  \    /
4270  //   vector_shuffle V1, V2 <1, 2, 3, X>
4271  //
4272  if (!isShuffleMaskConsecutive(SVOp,
4273            0,                   // Mask Start Index
4274            NumElems-NumZeros-1, // Mask End Index
4275            NumZeros,            // Where to start looking in the src vector
4276            NumElems,            // Number of elements in vector
4277            OpSrc))              // Which source operand ?
4278    return false;
4279
4280  isLeft = false;
4281  ShAmt = NumZeros;
4282  ShVal = SVOp->getOperand(OpSrc);
4283  return true;
4284}
4285
4286/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4287/// logical left shift of a vector.
4288static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4289                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4290  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4291  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4292              true /* check zeros from left */, DAG);
4293  unsigned OpSrc;
4294
4295  if (!NumZeros)
4296    return false;
4297
4298  // Considering the elements in the mask that are not consecutive zeros,
4299  // check if they consecutively come from only one of the source vectors.
4300  //
4301  //                           0    { A, B, X, X } = V2
4302  //                          / \    /  /
4303  //   vector_shuffle V1, V2 <X, X, 4, 5>
4304  //
4305  if (!isShuffleMaskConsecutive(SVOp,
4306            NumZeros,     // Mask Start Index
4307            NumElems-1,   // Mask End Index
4308            0,            // Where to start looking in the src vector
4309            NumElems,     // Number of elements in vector
4310            OpSrc))       // Which source operand ?
4311    return false;
4312
4313  isLeft = true;
4314  ShAmt = NumZeros;
4315  ShVal = SVOp->getOperand(OpSrc);
4316  return true;
4317}
4318
4319/// isVectorShift - Returns true if the shuffle can be implemented as a
4320/// logical left or right shift of a vector.
4321static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4322                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4323  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4324      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4325    return true;
4326
4327  return false;
4328}
4329
4330/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4331///
4332static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4333                                       unsigned NumNonZero, unsigned NumZero,
4334                                       SelectionDAG &DAG,
4335                                       const TargetLowering &TLI) {
4336  if (NumNonZero > 8)
4337    return SDValue();
4338
4339  DebugLoc dl = Op.getDebugLoc();
4340  SDValue V(0, 0);
4341  bool First = true;
4342  for (unsigned i = 0; i < 16; ++i) {
4343    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4344    if (ThisIsNonZero && First) {
4345      if (NumZero)
4346        V = getZeroVector(MVT::v8i16, true, DAG, dl);
4347      else
4348        V = DAG.getUNDEF(MVT::v8i16);
4349      First = false;
4350    }
4351
4352    if ((i & 1) != 0) {
4353      SDValue ThisElt(0, 0), LastElt(0, 0);
4354      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4355      if (LastIsNonZero) {
4356        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4357                              MVT::i16, Op.getOperand(i-1));
4358      }
4359      if (ThisIsNonZero) {
4360        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4361        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4362                              ThisElt, DAG.getConstant(8, MVT::i8));
4363        if (LastIsNonZero)
4364          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4365      } else
4366        ThisElt = LastElt;
4367
4368      if (ThisElt.getNode())
4369        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4370                        DAG.getIntPtrConstant(i/2));
4371    }
4372  }
4373
4374  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4375}
4376
4377/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4378///
4379static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4380                                     unsigned NumNonZero, unsigned NumZero,
4381                                     SelectionDAG &DAG,
4382                                     const TargetLowering &TLI) {
4383  if (NumNonZero > 4)
4384    return SDValue();
4385
4386  DebugLoc dl = Op.getDebugLoc();
4387  SDValue V(0, 0);
4388  bool First = true;
4389  for (unsigned i = 0; i < 8; ++i) {
4390    bool isNonZero = (NonZeros & (1 << i)) != 0;
4391    if (isNonZero) {
4392      if (First) {
4393        if (NumZero)
4394          V = getZeroVector(MVT::v8i16, true, DAG, dl);
4395        else
4396          V = DAG.getUNDEF(MVT::v8i16);
4397        First = false;
4398      }
4399      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4400                      MVT::v8i16, V, Op.getOperand(i),
4401                      DAG.getIntPtrConstant(i));
4402    }
4403  }
4404
4405  return V;
4406}
4407
4408/// getVShift - Return a vector logical shift node.
4409///
4410static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4411                         unsigned NumBits, SelectionDAG &DAG,
4412                         const TargetLowering &TLI, DebugLoc dl) {
4413  EVT ShVT = MVT::v2i64;
4414  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
4415  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4416  return DAG.getNode(ISD::BITCAST, dl, VT,
4417                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4418                             DAG.getConstant(NumBits,
4419                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4420}
4421
4422SDValue
4423X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4424                                          SelectionDAG &DAG) const {
4425
4426  // Check if the scalar load can be widened into a vector load. And if
4427  // the address is "base + cst" see if the cst can be "absorbed" into
4428  // the shuffle mask.
4429  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4430    SDValue Ptr = LD->getBasePtr();
4431    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4432      return SDValue();
4433    EVT PVT = LD->getValueType(0);
4434    if (PVT != MVT::i32 && PVT != MVT::f32)
4435      return SDValue();
4436
4437    int FI = -1;
4438    int64_t Offset = 0;
4439    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4440      FI = FINode->getIndex();
4441      Offset = 0;
4442    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4443               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4444      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4445      Offset = Ptr.getConstantOperandVal(1);
4446      Ptr = Ptr.getOperand(0);
4447    } else {
4448      return SDValue();
4449    }
4450
4451    SDValue Chain = LD->getChain();
4452    // Make sure the stack object alignment is at least 16.
4453    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4454    if (DAG.InferPtrAlignment(Ptr) < 16) {
4455      if (MFI->isFixedObjectIndex(FI)) {
4456        // Can't change the alignment. FIXME: It's possible to compute
4457        // the exact stack offset and reference FI + adjust offset instead.
4458        // If someone *really* cares about this. That's the way to implement it.
4459        return SDValue();
4460      } else {
4461        MFI->setObjectAlignment(FI, 16);
4462      }
4463    }
4464
4465    // (Offset % 16) must be multiple of 4. Then address is then
4466    // Ptr + (Offset & ~15).
4467    if (Offset < 0)
4468      return SDValue();
4469    if ((Offset % 16) & 3)
4470      return SDValue();
4471    int64_t StartOffset = Offset & ~15;
4472    if (StartOffset)
4473      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4474                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4475
4476    int EltNo = (Offset - StartOffset) >> 2;
4477    int Mask[4] = { EltNo, EltNo, EltNo, EltNo };
4478    EVT VT = (PVT == MVT::i32) ? MVT::v4i32 : MVT::v4f32;
4479    SDValue V1 = DAG.getLoad(VT, dl, Chain, Ptr,
4480                             LD->getPointerInfo().getWithOffset(StartOffset),
4481                             false, false, 0);
4482    // Canonicalize it to a v4i32 shuffle.
4483    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
4484    return DAG.getNode(ISD::BITCAST, dl, VT,
4485                       DAG.getVectorShuffle(MVT::v4i32, dl, V1,
4486                                            DAG.getUNDEF(MVT::v4i32),&Mask[0]));
4487  }
4488
4489  return SDValue();
4490}
4491
4492/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4493/// vector of type 'VT', see if the elements can be replaced by a single large
4494/// load which has the same value as a build_vector whose operands are 'elts'.
4495///
4496/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4497///
4498/// FIXME: we'd also like to handle the case where the last elements are zero
4499/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4500/// There's even a handy isZeroNode for that purpose.
4501static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4502                                        DebugLoc &DL, SelectionDAG &DAG) {
4503  EVT EltVT = VT.getVectorElementType();
4504  unsigned NumElems = Elts.size();
4505
4506  LoadSDNode *LDBase = NULL;
4507  unsigned LastLoadedElt = -1U;
4508
4509  // For each element in the initializer, see if we've found a load or an undef.
4510  // If we don't find an initial load element, or later load elements are
4511  // non-consecutive, bail out.
4512  for (unsigned i = 0; i < NumElems; ++i) {
4513    SDValue Elt = Elts[i];
4514
4515    if (!Elt.getNode() ||
4516        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4517      return SDValue();
4518    if (!LDBase) {
4519      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4520        return SDValue();
4521      LDBase = cast<LoadSDNode>(Elt.getNode());
4522      LastLoadedElt = i;
4523      continue;
4524    }
4525    if (Elt.getOpcode() == ISD::UNDEF)
4526      continue;
4527
4528    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4529    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4530      return SDValue();
4531    LastLoadedElt = i;
4532  }
4533
4534  // If we have found an entire vector of loads and undefs, then return a large
4535  // load of the entire vector width starting at the base pointer.  If we found
4536  // consecutive loads for the low half, generate a vzext_load node.
4537  if (LastLoadedElt == NumElems - 1) {
4538    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4539      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4540                         LDBase->getPointerInfo(),
4541                         LDBase->isVolatile(), LDBase->isNonTemporal(), 0);
4542    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4543                       LDBase->getPointerInfo(),
4544                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4545                       LDBase->getAlignment());
4546  } else if (NumElems == 4 && LastLoadedElt == 1 &&
4547             DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
4548    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4549    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4550    SDValue ResNode = DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys,
4551                                              Ops, 2, MVT::i32,
4552                                              LDBase->getMemOperand());
4553    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
4554  }
4555  return SDValue();
4556}
4557
4558SDValue
4559X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
4560  DebugLoc dl = Op.getDebugLoc();
4561
4562  EVT VT = Op.getValueType();
4563  EVT ExtVT = VT.getVectorElementType();
4564  unsigned NumElems = Op.getNumOperands();
4565
4566  // All zero's:
4567  //  - pxor (SSE2), xorps (SSE1), vpxor (128 AVX), xorp[s|d] (256 AVX)
4568  // All one's:
4569  //  - pcmpeqd (SSE2 and 128 AVX), fallback to constant pools (256 AVX)
4570  if (ISD::isBuildVectorAllZeros(Op.getNode()) ||
4571      ISD::isBuildVectorAllOnes(Op.getNode())) {
4572    // Canonicalize this to <4 x i32> or <8 x 32> (SSE) to
4573    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
4574    // eliminated on x86-32 hosts.
4575    if (Op.getValueType() == MVT::v4i32 ||
4576        Op.getValueType() == MVT::v8i32)
4577      return Op;
4578
4579    if (ISD::isBuildVectorAllOnes(Op.getNode()))
4580      return getOnesVector(Op.getValueType(), DAG, dl);
4581    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
4582  }
4583
4584  unsigned EVTBits = ExtVT.getSizeInBits();
4585
4586  unsigned NumZero  = 0;
4587  unsigned NumNonZero = 0;
4588  unsigned NonZeros = 0;
4589  bool IsAllConstants = true;
4590  SmallSet<SDValue, 8> Values;
4591  for (unsigned i = 0; i < NumElems; ++i) {
4592    SDValue Elt = Op.getOperand(i);
4593    if (Elt.getOpcode() == ISD::UNDEF)
4594      continue;
4595    Values.insert(Elt);
4596    if (Elt.getOpcode() != ISD::Constant &&
4597        Elt.getOpcode() != ISD::ConstantFP)
4598      IsAllConstants = false;
4599    if (X86::isZeroNode(Elt))
4600      NumZero++;
4601    else {
4602      NonZeros |= (1 << i);
4603      NumNonZero++;
4604    }
4605  }
4606
4607  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
4608  if (NumNonZero == 0)
4609    return DAG.getUNDEF(VT);
4610
4611  // Special case for single non-zero, non-undef, element.
4612  if (NumNonZero == 1) {
4613    unsigned Idx = CountTrailingZeros_32(NonZeros);
4614    SDValue Item = Op.getOperand(Idx);
4615
4616    // If this is an insertion of an i64 value on x86-32, and if the top bits of
4617    // the value are obviously zero, truncate the value to i32 and do the
4618    // insertion that way.  Only do this if the value is non-constant or if the
4619    // value is a constant being inserted into element 0.  It is cheaper to do
4620    // a constant pool load than it is to do a movd + shuffle.
4621    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
4622        (!IsAllConstants || Idx == 0)) {
4623      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
4624        // Handle SSE only.
4625        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
4626        EVT VecVT = MVT::v4i32;
4627        unsigned VecElts = 4;
4628
4629        // Truncate the value (which may itself be a constant) to i32, and
4630        // convert it to a vector with movd (S2V+shuffle to zero extend).
4631        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
4632        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
4633        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
4634                                           Subtarget->hasSSE2(), DAG);
4635
4636        // Now we have our 32-bit value zero extended in the low element of
4637        // a vector.  If Idx != 0, swizzle it into place.
4638        if (Idx != 0) {
4639          SmallVector<int, 4> Mask;
4640          Mask.push_back(Idx);
4641          for (unsigned i = 1; i != VecElts; ++i)
4642            Mask.push_back(i);
4643          Item = DAG.getVectorShuffle(VecVT, dl, Item,
4644                                      DAG.getUNDEF(Item.getValueType()),
4645                                      &Mask[0]);
4646        }
4647        return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Item);
4648      }
4649    }
4650
4651    // If we have a constant or non-constant insertion into the low element of
4652    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
4653    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
4654    // depending on what the source datatype is.
4655    if (Idx == 0) {
4656      if (NumZero == 0) {
4657        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4658      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
4659          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
4660        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4661        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
4662        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
4663                                           DAG);
4664      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
4665        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
4666        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
4667        EVT MiddleVT = MVT::v4i32;
4668        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
4669        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
4670                                           Subtarget->hasSSE2(), DAG);
4671        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
4672      }
4673    }
4674
4675    // Is it a vector logical left shift?
4676    if (NumElems == 2 && Idx == 1 &&
4677        X86::isZeroNode(Op.getOperand(0)) &&
4678        !X86::isZeroNode(Op.getOperand(1))) {
4679      unsigned NumBits = VT.getSizeInBits();
4680      return getVShift(true, VT,
4681                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4682                                   VT, Op.getOperand(1)),
4683                       NumBits/2, DAG, *this, dl);
4684    }
4685
4686    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
4687      return SDValue();
4688
4689    // Otherwise, if this is a vector with i32 or f32 elements, and the element
4690    // is a non-constant being inserted into an element other than the low one,
4691    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
4692    // movd/movss) to move this into the low element, then shuffle it into
4693    // place.
4694    if (EVTBits == 32) {
4695      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4696
4697      // Turn it into a shuffle of zero and zero-extended scalar to vector.
4698      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
4699                                         Subtarget->hasSSE2(), DAG);
4700      SmallVector<int, 8> MaskVec;
4701      for (unsigned i = 0; i < NumElems; i++)
4702        MaskVec.push_back(i == Idx ? 0 : 1);
4703      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
4704    }
4705  }
4706
4707  // Splat is obviously ok. Let legalizer expand it to a shuffle.
4708  if (Values.size() == 1) {
4709    if (EVTBits == 32) {
4710      // Instead of a shuffle like this:
4711      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
4712      // Check if it's possible to issue this instead.
4713      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
4714      unsigned Idx = CountTrailingZeros_32(NonZeros);
4715      SDValue Item = Op.getOperand(Idx);
4716      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
4717        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
4718    }
4719    return SDValue();
4720  }
4721
4722  // A vector full of immediates; various special cases are already
4723  // handled, so this is best done with a single constant-pool load.
4724  if (IsAllConstants)
4725    return SDValue();
4726
4727  // For AVX-length vectors, build the individual 128-bit pieces and use
4728  // shuffles to put them in place.
4729  if (VT.getSizeInBits() == 256 && !ISD::isBuildVectorAllZeros(Op.getNode())) {
4730    SmallVector<SDValue, 32> V;
4731    for (unsigned i = 0; i < NumElems; ++i)
4732      V.push_back(Op.getOperand(i));
4733
4734    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
4735
4736    // Build both the lower and upper subvector.
4737    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
4738    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
4739                                NumElems/2);
4740
4741    // Recreate the wider vector with the lower and upper part.
4742    SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Upper,
4743                                DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
4744    return Insert128BitVector(Vec, Lower, DAG.getConstant(0, MVT::i32),
4745                              DAG, dl);
4746  }
4747
4748  // Let legalizer expand 2-wide build_vectors.
4749  if (EVTBits == 64) {
4750    if (NumNonZero == 1) {
4751      // One half is zero or undef.
4752      unsigned Idx = CountTrailingZeros_32(NonZeros);
4753      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
4754                                 Op.getOperand(Idx));
4755      return getShuffleVectorZeroOrUndef(V2, Idx, true,
4756                                         Subtarget->hasSSE2(), DAG);
4757    }
4758    return SDValue();
4759  }
4760
4761  // If element VT is < 32 bits, convert it to inserts into a zero vector.
4762  if (EVTBits == 8 && NumElems == 16) {
4763    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
4764                                        *this);
4765    if (V.getNode()) return V;
4766  }
4767
4768  if (EVTBits == 16 && NumElems == 8) {
4769    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
4770                                      *this);
4771    if (V.getNode()) return V;
4772  }
4773
4774  // If element VT is == 32 bits, turn it into a number of shuffles.
4775  SmallVector<SDValue, 8> V;
4776  V.resize(NumElems);
4777  if (NumElems == 4 && NumZero > 0) {
4778    for (unsigned i = 0; i < 4; ++i) {
4779      bool isZero = !(NonZeros & (1 << i));
4780      if (isZero)
4781        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4782      else
4783        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4784    }
4785
4786    for (unsigned i = 0; i < 2; ++i) {
4787      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
4788        default: break;
4789        case 0:
4790          V[i] = V[i*2];  // Must be a zero vector.
4791          break;
4792        case 1:
4793          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
4794          break;
4795        case 2:
4796          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
4797          break;
4798        case 3:
4799          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
4800          break;
4801      }
4802    }
4803
4804    SmallVector<int, 8> MaskVec;
4805    bool Reverse = (NonZeros & 0x3) == 2;
4806    for (unsigned i = 0; i < 2; ++i)
4807      MaskVec.push_back(Reverse ? 1-i : i);
4808    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
4809    for (unsigned i = 0; i < 2; ++i)
4810      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
4811    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
4812  }
4813
4814  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
4815    // Check for a build vector of consecutive loads.
4816    for (unsigned i = 0; i < NumElems; ++i)
4817      V[i] = Op.getOperand(i);
4818
4819    // Check for elements which are consecutive loads.
4820    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
4821    if (LD.getNode())
4822      return LD;
4823
4824    // For SSE 4.1, use insertps to put the high elements into the low element.
4825    if (getSubtarget()->hasSSE41()) {
4826      SDValue Result;
4827      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
4828        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
4829      else
4830        Result = DAG.getUNDEF(VT);
4831
4832      for (unsigned i = 1; i < NumElems; ++i) {
4833        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
4834        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
4835                             Op.getOperand(i), DAG.getIntPtrConstant(i));
4836      }
4837      return Result;
4838    }
4839
4840    // Otherwise, expand into a number of unpckl*, start by extending each of
4841    // our (non-undef) elements to the full vector width with the element in the
4842    // bottom slot of the vector (which generates no code for SSE).
4843    for (unsigned i = 0; i < NumElems; ++i) {
4844      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
4845        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4846      else
4847        V[i] = DAG.getUNDEF(VT);
4848    }
4849
4850    // Next, we iteratively mix elements, e.g. for v4f32:
4851    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
4852    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
4853    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
4854    unsigned EltStride = NumElems >> 1;
4855    while (EltStride != 0) {
4856      for (unsigned i = 0; i < EltStride; ++i) {
4857        // If V[i+EltStride] is undef and this is the first round of mixing,
4858        // then it is safe to just drop this shuffle: V[i] is already in the
4859        // right place, the one element (since it's the first round) being
4860        // inserted as undef can be dropped.  This isn't safe for successive
4861        // rounds because they will permute elements within both vectors.
4862        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
4863            EltStride == NumElems/2)
4864          continue;
4865
4866        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
4867      }
4868      EltStride >>= 1;
4869    }
4870    return V[0];
4871  }
4872  return SDValue();
4873}
4874
4875SDValue
4876X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
4877  // We support concatenate two MMX registers and place them in a MMX
4878  // register.  This is better than doing a stack convert.
4879  DebugLoc dl = Op.getDebugLoc();
4880  EVT ResVT = Op.getValueType();
4881  assert(Op.getNumOperands() == 2);
4882  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
4883         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
4884  int Mask[2];
4885  SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
4886  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4887  InVec = Op.getOperand(1);
4888  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4889    unsigned NumElts = ResVT.getVectorNumElements();
4890    VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
4891    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
4892                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
4893  } else {
4894    InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
4895    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4896    Mask[0] = 0; Mask[1] = 2;
4897    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
4898  }
4899  return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
4900}
4901
4902// v8i16 shuffles - Prefer shuffles in the following order:
4903// 1. [all]   pshuflw, pshufhw, optional move
4904// 2. [ssse3] 1 x pshufb
4905// 3. [ssse3] 2 x pshufb + 1 x por
4906// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
4907SDValue
4908X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
4909                                            SelectionDAG &DAG) const {
4910  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4911  SDValue V1 = SVOp->getOperand(0);
4912  SDValue V2 = SVOp->getOperand(1);
4913  DebugLoc dl = SVOp->getDebugLoc();
4914  SmallVector<int, 8> MaskVals;
4915
4916  // Determine if more than 1 of the words in each of the low and high quadwords
4917  // of the result come from the same quadword of one of the two inputs.  Undef
4918  // mask values count as coming from any quadword, for better codegen.
4919  SmallVector<unsigned, 4> LoQuad(4);
4920  SmallVector<unsigned, 4> HiQuad(4);
4921  BitVector InputQuads(4);
4922  for (unsigned i = 0; i < 8; ++i) {
4923    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
4924    int EltIdx = SVOp->getMaskElt(i);
4925    MaskVals.push_back(EltIdx);
4926    if (EltIdx < 0) {
4927      ++Quad[0];
4928      ++Quad[1];
4929      ++Quad[2];
4930      ++Quad[3];
4931      continue;
4932    }
4933    ++Quad[EltIdx / 4];
4934    InputQuads.set(EltIdx / 4);
4935  }
4936
4937  int BestLoQuad = -1;
4938  unsigned MaxQuad = 1;
4939  for (unsigned i = 0; i < 4; ++i) {
4940    if (LoQuad[i] > MaxQuad) {
4941      BestLoQuad = i;
4942      MaxQuad = LoQuad[i];
4943    }
4944  }
4945
4946  int BestHiQuad = -1;
4947  MaxQuad = 1;
4948  for (unsigned i = 0; i < 4; ++i) {
4949    if (HiQuad[i] > MaxQuad) {
4950      BestHiQuad = i;
4951      MaxQuad = HiQuad[i];
4952    }
4953  }
4954
4955  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
4956  // of the two input vectors, shuffle them into one input vector so only a
4957  // single pshufb instruction is necessary. If There are more than 2 input
4958  // quads, disable the next transformation since it does not help SSSE3.
4959  bool V1Used = InputQuads[0] || InputQuads[1];
4960  bool V2Used = InputQuads[2] || InputQuads[3];
4961  if (Subtarget->hasSSSE3()) {
4962    if (InputQuads.count() == 2 && V1Used && V2Used) {
4963      BestLoQuad = InputQuads.find_first();
4964      BestHiQuad = InputQuads.find_next(BestLoQuad);
4965    }
4966    if (InputQuads.count() > 2) {
4967      BestLoQuad = -1;
4968      BestHiQuad = -1;
4969    }
4970  }
4971
4972  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
4973  // the shuffle mask.  If a quad is scored as -1, that means that it contains
4974  // words from all 4 input quadwords.
4975  SDValue NewV;
4976  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
4977    SmallVector<int, 8> MaskV;
4978    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
4979    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
4980    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
4981                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
4982                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
4983    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
4984
4985    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
4986    // source words for the shuffle, to aid later transformations.
4987    bool AllWordsInNewV = true;
4988    bool InOrder[2] = { true, true };
4989    for (unsigned i = 0; i != 8; ++i) {
4990      int idx = MaskVals[i];
4991      if (idx != (int)i)
4992        InOrder[i/4] = false;
4993      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
4994        continue;
4995      AllWordsInNewV = false;
4996      break;
4997    }
4998
4999    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5000    if (AllWordsInNewV) {
5001      for (int i = 0; i != 8; ++i) {
5002        int idx = MaskVals[i];
5003        if (idx < 0)
5004          continue;
5005        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5006        if ((idx != i) && idx < 4)
5007          pshufhw = false;
5008        if ((idx != i) && idx > 3)
5009          pshuflw = false;
5010      }
5011      V1 = NewV;
5012      V2Used = false;
5013      BestLoQuad = 0;
5014      BestHiQuad = 1;
5015    }
5016
5017    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5018    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5019    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5020      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5021      unsigned TargetMask = 0;
5022      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5023                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5024      TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
5025                             X86::getShufflePSHUFLWImmediate(NewV.getNode());
5026      V1 = NewV.getOperand(0);
5027      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5028    }
5029  }
5030
5031  // If we have SSSE3, and all words of the result are from 1 input vector,
5032  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5033  // is present, fall back to case 4.
5034  if (Subtarget->hasSSSE3()) {
5035    SmallVector<SDValue,16> pshufbMask;
5036
5037    // If we have elements from both input vectors, set the high bit of the
5038    // shuffle mask element to zero out elements that come from V2 in the V1
5039    // mask, and elements that come from V1 in the V2 mask, so that the two
5040    // results can be OR'd together.
5041    bool TwoInputs = V1Used && V2Used;
5042    for (unsigned i = 0; i != 8; ++i) {
5043      int EltIdx = MaskVals[i] * 2;
5044      if (TwoInputs && (EltIdx >= 16)) {
5045        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5046        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5047        continue;
5048      }
5049      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
5050      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
5051    }
5052    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5053    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5054                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5055                                 MVT::v16i8, &pshufbMask[0], 16));
5056    if (!TwoInputs)
5057      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5058
5059    // Calculate the shuffle mask for the second input, shuffle it, and
5060    // OR it with the first shuffled input.
5061    pshufbMask.clear();
5062    for (unsigned i = 0; i != 8; ++i) {
5063      int EltIdx = MaskVals[i] * 2;
5064      if (EltIdx < 16) {
5065        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5066        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5067        continue;
5068      }
5069      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5070      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
5071    }
5072    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5073    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5074                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5075                                 MVT::v16i8, &pshufbMask[0], 16));
5076    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5077    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5078  }
5079
5080  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5081  // and update MaskVals with new element order.
5082  BitVector InOrder(8);
5083  if (BestLoQuad >= 0) {
5084    SmallVector<int, 8> MaskV;
5085    for (int i = 0; i != 4; ++i) {
5086      int idx = MaskVals[i];
5087      if (idx < 0) {
5088        MaskV.push_back(-1);
5089        InOrder.set(i);
5090      } else if ((idx / 4) == BestLoQuad) {
5091        MaskV.push_back(idx & 3);
5092        InOrder.set(i);
5093      } else {
5094        MaskV.push_back(-1);
5095      }
5096    }
5097    for (unsigned i = 4; i != 8; ++i)
5098      MaskV.push_back(i);
5099    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5100                                &MaskV[0]);
5101
5102    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
5103      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5104                               NewV.getOperand(0),
5105                               X86::getShufflePSHUFLWImmediate(NewV.getNode()),
5106                               DAG);
5107  }
5108
5109  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5110  // and update MaskVals with the new element order.
5111  if (BestHiQuad >= 0) {
5112    SmallVector<int, 8> MaskV;
5113    for (unsigned i = 0; i != 4; ++i)
5114      MaskV.push_back(i);
5115    for (unsigned i = 4; i != 8; ++i) {
5116      int idx = MaskVals[i];
5117      if (idx < 0) {
5118        MaskV.push_back(-1);
5119        InOrder.set(i);
5120      } else if ((idx / 4) == BestHiQuad) {
5121        MaskV.push_back((idx & 3) + 4);
5122        InOrder.set(i);
5123      } else {
5124        MaskV.push_back(-1);
5125      }
5126    }
5127    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5128                                &MaskV[0]);
5129
5130    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
5131      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5132                              NewV.getOperand(0),
5133                              X86::getShufflePSHUFHWImmediate(NewV.getNode()),
5134                              DAG);
5135  }
5136
5137  // In case BestHi & BestLo were both -1, which means each quadword has a word
5138  // from each of the four input quadwords, calculate the InOrder bitvector now
5139  // before falling through to the insert/extract cleanup.
5140  if (BestLoQuad == -1 && BestHiQuad == -1) {
5141    NewV = V1;
5142    for (int i = 0; i != 8; ++i)
5143      if (MaskVals[i] < 0 || MaskVals[i] == i)
5144        InOrder.set(i);
5145  }
5146
5147  // The other elements are put in the right place using pextrw and pinsrw.
5148  for (unsigned i = 0; i != 8; ++i) {
5149    if (InOrder[i])
5150      continue;
5151    int EltIdx = MaskVals[i];
5152    if (EltIdx < 0)
5153      continue;
5154    SDValue ExtOp = (EltIdx < 8)
5155    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5156                  DAG.getIntPtrConstant(EltIdx))
5157    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5158                  DAG.getIntPtrConstant(EltIdx - 8));
5159    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5160                       DAG.getIntPtrConstant(i));
5161  }
5162  return NewV;
5163}
5164
5165// v16i8 shuffles - Prefer shuffles in the following order:
5166// 1. [ssse3] 1 x pshufb
5167// 2. [ssse3] 2 x pshufb + 1 x por
5168// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5169static
5170SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5171                                 SelectionDAG &DAG,
5172                                 const X86TargetLowering &TLI) {
5173  SDValue V1 = SVOp->getOperand(0);
5174  SDValue V2 = SVOp->getOperand(1);
5175  DebugLoc dl = SVOp->getDebugLoc();
5176  SmallVector<int, 16> MaskVals;
5177  SVOp->getMask(MaskVals);
5178
5179  // If we have SSSE3, case 1 is generated when all result bytes come from
5180  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5181  // present, fall back to case 3.
5182  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
5183  bool V1Only = true;
5184  bool V2Only = true;
5185  for (unsigned i = 0; i < 16; ++i) {
5186    int EltIdx = MaskVals[i];
5187    if (EltIdx < 0)
5188      continue;
5189    if (EltIdx < 16)
5190      V2Only = false;
5191    else
5192      V1Only = false;
5193  }
5194
5195  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5196  if (TLI.getSubtarget()->hasSSSE3()) {
5197    SmallVector<SDValue,16> pshufbMask;
5198
5199    // If all result elements are from one input vector, then only translate
5200    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5201    //
5202    // Otherwise, we have elements from both input vectors, and must zero out
5203    // elements that come from V2 in the first mask, and V1 in the second mask
5204    // so that we can OR them together.
5205    bool TwoInputs = !(V1Only || V2Only);
5206    for (unsigned i = 0; i != 16; ++i) {
5207      int EltIdx = MaskVals[i];
5208      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
5209        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5210        continue;
5211      }
5212      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5213    }
5214    // If all the elements are from V2, assign it to V1 and return after
5215    // building the first pshufb.
5216    if (V2Only)
5217      V1 = V2;
5218    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5219                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5220                                 MVT::v16i8, &pshufbMask[0], 16));
5221    if (!TwoInputs)
5222      return V1;
5223
5224    // Calculate the shuffle mask for the second input, shuffle it, and
5225    // OR it with the first shuffled input.
5226    pshufbMask.clear();
5227    for (unsigned i = 0; i != 16; ++i) {
5228      int EltIdx = MaskVals[i];
5229      if (EltIdx < 16) {
5230        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5231        continue;
5232      }
5233      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5234    }
5235    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5236                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5237                                 MVT::v16i8, &pshufbMask[0], 16));
5238    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5239  }
5240
5241  // No SSSE3 - Calculate in place words and then fix all out of place words
5242  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5243  // the 16 different words that comprise the two doublequadword input vectors.
5244  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5245  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5246  SDValue NewV = V2Only ? V2 : V1;
5247  for (int i = 0; i != 8; ++i) {
5248    int Elt0 = MaskVals[i*2];
5249    int Elt1 = MaskVals[i*2+1];
5250
5251    // This word of the result is all undef, skip it.
5252    if (Elt0 < 0 && Elt1 < 0)
5253      continue;
5254
5255    // This word of the result is already in the correct place, skip it.
5256    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
5257      continue;
5258    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
5259      continue;
5260
5261    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5262    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5263    SDValue InsElt;
5264
5265    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5266    // using a single extract together, load it and store it.
5267    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5268      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5269                           DAG.getIntPtrConstant(Elt1 / 2));
5270      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5271                        DAG.getIntPtrConstant(i));
5272      continue;
5273    }
5274
5275    // If Elt1 is defined, extract it from the appropriate source.  If the
5276    // source byte is not also odd, shift the extracted word left 8 bits
5277    // otherwise clear the bottom 8 bits if we need to do an or.
5278    if (Elt1 >= 0) {
5279      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5280                           DAG.getIntPtrConstant(Elt1 / 2));
5281      if ((Elt1 & 1) == 0)
5282        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5283                             DAG.getConstant(8,
5284                                  TLI.getShiftAmountTy(InsElt.getValueType())));
5285      else if (Elt0 >= 0)
5286        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5287                             DAG.getConstant(0xFF00, MVT::i16));
5288    }
5289    // If Elt0 is defined, extract it from the appropriate source.  If the
5290    // source byte is not also even, shift the extracted word right 8 bits. If
5291    // Elt1 was also defined, OR the extracted values together before
5292    // inserting them in the result.
5293    if (Elt0 >= 0) {
5294      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5295                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5296      if ((Elt0 & 1) != 0)
5297        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5298                              DAG.getConstant(8,
5299                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
5300      else if (Elt1 >= 0)
5301        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5302                             DAG.getConstant(0x00FF, MVT::i16));
5303      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5304                         : InsElt0;
5305    }
5306    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5307                       DAG.getIntPtrConstant(i));
5308  }
5309  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5310}
5311
5312/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5313/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5314/// done when every pair / quad of shuffle mask elements point to elements in
5315/// the right sequence. e.g.
5316/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5317static
5318SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5319                                 SelectionDAG &DAG, DebugLoc dl) {
5320  EVT VT = SVOp->getValueType(0);
5321  SDValue V1 = SVOp->getOperand(0);
5322  SDValue V2 = SVOp->getOperand(1);
5323  unsigned NumElems = VT.getVectorNumElements();
5324  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
5325  EVT NewVT;
5326  switch (VT.getSimpleVT().SimpleTy) {
5327  default: assert(false && "Unexpected!");
5328  case MVT::v4f32: NewVT = MVT::v2f64; break;
5329  case MVT::v4i32: NewVT = MVT::v2i64; break;
5330  case MVT::v8i16: NewVT = MVT::v4i32; break;
5331  case MVT::v16i8: NewVT = MVT::v4i32; break;
5332  }
5333
5334  int Scale = NumElems / NewWidth;
5335  SmallVector<int, 8> MaskVec;
5336  for (unsigned i = 0; i < NumElems; i += Scale) {
5337    int StartIdx = -1;
5338    for (int j = 0; j < Scale; ++j) {
5339      int EltIdx = SVOp->getMaskElt(i+j);
5340      if (EltIdx < 0)
5341        continue;
5342      if (StartIdx == -1)
5343        StartIdx = EltIdx - (EltIdx % Scale);
5344      if (EltIdx != StartIdx + j)
5345        return SDValue();
5346    }
5347    if (StartIdx == -1)
5348      MaskVec.push_back(-1);
5349    else
5350      MaskVec.push_back(StartIdx / Scale);
5351  }
5352
5353  V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
5354  V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
5355  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
5356}
5357
5358/// getVZextMovL - Return a zero-extending vector move low node.
5359///
5360static SDValue getVZextMovL(EVT VT, EVT OpVT,
5361                            SDValue SrcOp, SelectionDAG &DAG,
5362                            const X86Subtarget *Subtarget, DebugLoc dl) {
5363  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
5364    LoadSDNode *LD = NULL;
5365    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
5366      LD = dyn_cast<LoadSDNode>(SrcOp);
5367    if (!LD) {
5368      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
5369      // instead.
5370      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
5371      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
5372          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5373          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
5374          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
5375        // PR2108
5376        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
5377        return DAG.getNode(ISD::BITCAST, dl, VT,
5378                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5379                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5380                                                   OpVT,
5381                                                   SrcOp.getOperand(0)
5382                                                          .getOperand(0))));
5383      }
5384    }
5385  }
5386
5387  return DAG.getNode(ISD::BITCAST, dl, VT,
5388                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5389                                 DAG.getNode(ISD::BITCAST, dl,
5390                                             OpVT, SrcOp)));
5391}
5392
5393/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
5394/// which could not be matched by any known target speficic shuffle
5395static SDValue
5396LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5397  return SDValue();
5398}
5399
5400/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
5401/// 4 elements, and match them with several different shuffle types.
5402static SDValue
5403LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5404  SDValue V1 = SVOp->getOperand(0);
5405  SDValue V2 = SVOp->getOperand(1);
5406  DebugLoc dl = SVOp->getDebugLoc();
5407  EVT VT = SVOp->getValueType(0);
5408
5409  assert(VT.getSizeInBits() == 128 && "Unsupported vector size");
5410
5411  SmallVector<std::pair<int, int>, 8> Locs;
5412  Locs.resize(4);
5413  SmallVector<int, 8> Mask1(4U, -1);
5414  SmallVector<int, 8> PermMask;
5415  SVOp->getMask(PermMask);
5416
5417  unsigned NumHi = 0;
5418  unsigned NumLo = 0;
5419  for (unsigned i = 0; i != 4; ++i) {
5420    int Idx = PermMask[i];
5421    if (Idx < 0) {
5422      Locs[i] = std::make_pair(-1, -1);
5423    } else {
5424      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
5425      if (Idx < 4) {
5426        Locs[i] = std::make_pair(0, NumLo);
5427        Mask1[NumLo] = Idx;
5428        NumLo++;
5429      } else {
5430        Locs[i] = std::make_pair(1, NumHi);
5431        if (2+NumHi < 4)
5432          Mask1[2+NumHi] = Idx;
5433        NumHi++;
5434      }
5435    }
5436  }
5437
5438  if (NumLo <= 2 && NumHi <= 2) {
5439    // If no more than two elements come from either vector. This can be
5440    // implemented with two shuffles. First shuffle gather the elements.
5441    // The second shuffle, which takes the first shuffle as both of its
5442    // vector operands, put the elements into the right order.
5443    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5444
5445    SmallVector<int, 8> Mask2(4U, -1);
5446
5447    for (unsigned i = 0; i != 4; ++i) {
5448      if (Locs[i].first == -1)
5449        continue;
5450      else {
5451        unsigned Idx = (i < 2) ? 0 : 4;
5452        Idx += Locs[i].first * 2 + Locs[i].second;
5453        Mask2[i] = Idx;
5454      }
5455    }
5456
5457    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
5458  } else if (NumLo == 3 || NumHi == 3) {
5459    // Otherwise, we must have three elements from one vector, call it X, and
5460    // one element from the other, call it Y.  First, use a shufps to build an
5461    // intermediate vector with the one element from Y and the element from X
5462    // that will be in the same half in the final destination (the indexes don't
5463    // matter). Then, use a shufps to build the final vector, taking the half
5464    // containing the element from Y from the intermediate, and the other half
5465    // from X.
5466    if (NumHi == 3) {
5467      // Normalize it so the 3 elements come from V1.
5468      CommuteVectorShuffleMask(PermMask, VT);
5469      std::swap(V1, V2);
5470    }
5471
5472    // Find the element from V2.
5473    unsigned HiIndex;
5474    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
5475      int Val = PermMask[HiIndex];
5476      if (Val < 0)
5477        continue;
5478      if (Val >= 4)
5479        break;
5480    }
5481
5482    Mask1[0] = PermMask[HiIndex];
5483    Mask1[1] = -1;
5484    Mask1[2] = PermMask[HiIndex^1];
5485    Mask1[3] = -1;
5486    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5487
5488    if (HiIndex >= 2) {
5489      Mask1[0] = PermMask[0];
5490      Mask1[1] = PermMask[1];
5491      Mask1[2] = HiIndex & 1 ? 6 : 4;
5492      Mask1[3] = HiIndex & 1 ? 4 : 6;
5493      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5494    } else {
5495      Mask1[0] = HiIndex & 1 ? 2 : 0;
5496      Mask1[1] = HiIndex & 1 ? 0 : 2;
5497      Mask1[2] = PermMask[2];
5498      Mask1[3] = PermMask[3];
5499      if (Mask1[2] >= 0)
5500        Mask1[2] += 4;
5501      if (Mask1[3] >= 0)
5502        Mask1[3] += 4;
5503      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
5504    }
5505  }
5506
5507  // Break it into (shuffle shuffle_hi, shuffle_lo).
5508  Locs.clear();
5509  Locs.resize(4);
5510  SmallVector<int,8> LoMask(4U, -1);
5511  SmallVector<int,8> HiMask(4U, -1);
5512
5513  SmallVector<int,8> *MaskPtr = &LoMask;
5514  unsigned MaskIdx = 0;
5515  unsigned LoIdx = 0;
5516  unsigned HiIdx = 2;
5517  for (unsigned i = 0; i != 4; ++i) {
5518    if (i == 2) {
5519      MaskPtr = &HiMask;
5520      MaskIdx = 1;
5521      LoIdx = 0;
5522      HiIdx = 2;
5523    }
5524    int Idx = PermMask[i];
5525    if (Idx < 0) {
5526      Locs[i] = std::make_pair(-1, -1);
5527    } else if (Idx < 4) {
5528      Locs[i] = std::make_pair(MaskIdx, LoIdx);
5529      (*MaskPtr)[LoIdx] = Idx;
5530      LoIdx++;
5531    } else {
5532      Locs[i] = std::make_pair(MaskIdx, HiIdx);
5533      (*MaskPtr)[HiIdx] = Idx;
5534      HiIdx++;
5535    }
5536  }
5537
5538  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
5539  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
5540  SmallVector<int, 8> MaskOps;
5541  for (unsigned i = 0; i != 4; ++i) {
5542    if (Locs[i].first == -1) {
5543      MaskOps.push_back(-1);
5544    } else {
5545      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
5546      MaskOps.push_back(Idx);
5547    }
5548  }
5549  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
5550}
5551
5552static bool MayFoldVectorLoad(SDValue V) {
5553  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
5554    V = V.getOperand(0);
5555  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
5556    V = V.getOperand(0);
5557  if (MayFoldLoad(V))
5558    return true;
5559  return false;
5560}
5561
5562// FIXME: the version above should always be used. Since there's
5563// a bug where several vector shuffles can't be folded because the
5564// DAG is not updated during lowering and a node claims to have two
5565// uses while it only has one, use this version, and let isel match
5566// another instruction if the load really happens to have more than
5567// one use. Remove this version after this bug get fixed.
5568// rdar://8434668, PR8156
5569static bool RelaxedMayFoldVectorLoad(SDValue V) {
5570  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
5571    V = V.getOperand(0);
5572  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
5573    V = V.getOperand(0);
5574  if (ISD::isNormalLoad(V.getNode()))
5575    return true;
5576  return false;
5577}
5578
5579/// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
5580/// a vector extract, and if both can be later optimized into a single load.
5581/// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
5582/// here because otherwise a target specific shuffle node is going to be
5583/// emitted for this shuffle, and the optimization not done.
5584/// FIXME: This is probably not the best approach, but fix the problem
5585/// until the right path is decided.
5586static
5587bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
5588                                         const TargetLowering &TLI) {
5589  EVT VT = V.getValueType();
5590  ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
5591
5592  // Be sure that the vector shuffle is present in a pattern like this:
5593  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
5594  if (!V.hasOneUse())
5595    return false;
5596
5597  SDNode *N = *V.getNode()->use_begin();
5598  if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
5599    return false;
5600
5601  SDValue EltNo = N->getOperand(1);
5602  if (!isa<ConstantSDNode>(EltNo))
5603    return false;
5604
5605  // If the bit convert changed the number of elements, it is unsafe
5606  // to examine the mask.
5607  bool HasShuffleIntoBitcast = false;
5608  if (V.getOpcode() == ISD::BITCAST) {
5609    EVT SrcVT = V.getOperand(0).getValueType();
5610    if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
5611      return false;
5612    V = V.getOperand(0);
5613    HasShuffleIntoBitcast = true;
5614  }
5615
5616  // Select the input vector, guarding against out of range extract vector.
5617  unsigned NumElems = VT.getVectorNumElements();
5618  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
5619  int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
5620  V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
5621
5622  // Skip one more bit_convert if necessary
5623  if (V.getOpcode() == ISD::BITCAST)
5624    V = V.getOperand(0);
5625
5626  if (ISD::isNormalLoad(V.getNode())) {
5627    // Is the original load suitable?
5628    LoadSDNode *LN0 = cast<LoadSDNode>(V);
5629
5630    // FIXME: avoid the multi-use bug that is preventing lots of
5631    // of foldings to be detected, this is still wrong of course, but
5632    // give the temporary desired behavior, and if it happens that
5633    // the load has real more uses, during isel it will not fold, and
5634    // will generate poor code.
5635    if (!LN0 || LN0->isVolatile()) // || !LN0->hasOneUse()
5636      return false;
5637
5638    if (!HasShuffleIntoBitcast)
5639      return true;
5640
5641    // If there's a bitcast before the shuffle, check if the load type and
5642    // alignment is valid.
5643    unsigned Align = LN0->getAlignment();
5644    unsigned NewAlign =
5645      TLI.getTargetData()->getABITypeAlignment(
5646                                    VT.getTypeForEVT(*DAG.getContext()));
5647
5648    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
5649      return false;
5650  }
5651
5652  return true;
5653}
5654
5655static
5656SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
5657  EVT VT = Op.getValueType();
5658
5659  // Canonizalize to v2f64.
5660  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
5661  return DAG.getNode(ISD::BITCAST, dl, VT,
5662                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
5663                                          V1, DAG));
5664}
5665
5666static
5667SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
5668                        bool HasSSE2) {
5669  SDValue V1 = Op.getOperand(0);
5670  SDValue V2 = Op.getOperand(1);
5671  EVT VT = Op.getValueType();
5672
5673  assert(VT != MVT::v2i64 && "unsupported shuffle type");
5674
5675  if (HasSSE2 && VT == MVT::v2f64)
5676    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
5677
5678  // v4f32 or v4i32
5679  return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V2, DAG);
5680}
5681
5682static
5683SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
5684  SDValue V1 = Op.getOperand(0);
5685  SDValue V2 = Op.getOperand(1);
5686  EVT VT = Op.getValueType();
5687
5688  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
5689         "unsupported shuffle type");
5690
5691  if (V2.getOpcode() == ISD::UNDEF)
5692    V2 = V1;
5693
5694  // v4i32 or v4f32
5695  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
5696}
5697
5698static
5699SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
5700  SDValue V1 = Op.getOperand(0);
5701  SDValue V2 = Op.getOperand(1);
5702  EVT VT = Op.getValueType();
5703  unsigned NumElems = VT.getVectorNumElements();
5704
5705  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
5706  // operand of these instructions is only memory, so check if there's a
5707  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
5708  // same masks.
5709  bool CanFoldLoad = false;
5710
5711  // Trivial case, when V2 comes from a load.
5712  if (MayFoldVectorLoad(V2))
5713    CanFoldLoad = true;
5714
5715  // When V1 is a load, it can be folded later into a store in isel, example:
5716  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
5717  //    turns into:
5718  //  (MOVLPSmr addr:$src1, VR128:$src2)
5719  // So, recognize this potential and also use MOVLPS or MOVLPD
5720  if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
5721    CanFoldLoad = true;
5722
5723  // Both of them can't be memory operations though.
5724  if (MayFoldVectorLoad(V1) && MayFoldVectorLoad(V2))
5725    CanFoldLoad = false;
5726
5727  if (CanFoldLoad) {
5728    if (HasSSE2 && NumElems == 2)
5729      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
5730
5731    if (NumElems == 4)
5732      return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
5733  }
5734
5735  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5736  // movl and movlp will both match v2i64, but v2i64 is never matched by
5737  // movl earlier because we make it strict to avoid messing with the movlp load
5738  // folding logic (see the code above getMOVLP call). Match it here then,
5739  // this is horrible, but will stay like this until we move all shuffle
5740  // matching to x86 specific nodes. Note that for the 1st condition all
5741  // types are matched with movsd.
5742  if ((HasSSE2 && NumElems == 2) || !X86::isMOVLMask(SVOp))
5743    return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
5744  else if (HasSSE2)
5745    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
5746
5747
5748  assert(VT != MVT::v4i32 && "unsupported shuffle type");
5749
5750  // Invert the operand order and use SHUFPS to match it.
5751  return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V2, V1,
5752                              X86::getShuffleSHUFImmediate(SVOp), DAG);
5753}
5754
5755static inline unsigned getUNPCKLOpcode(EVT VT) {
5756  switch(VT.getSimpleVT().SimpleTy) {
5757  case MVT::v4i32: return X86ISD::PUNPCKLDQ;
5758  case MVT::v2i64: return X86ISD::PUNPCKLQDQ;
5759  case MVT::v4f32: return X86ISD::UNPCKLPS;
5760  case MVT::v2f64: return X86ISD::UNPCKLPD;
5761  case MVT::v8f32: return X86ISD::VUNPCKLPSY;
5762  case MVT::v4f64: return X86ISD::VUNPCKLPDY;
5763  case MVT::v16i8: return X86ISD::PUNPCKLBW;
5764  case MVT::v8i16: return X86ISD::PUNPCKLWD;
5765  default:
5766    llvm_unreachable("Unknown type for unpckl");
5767  }
5768  return 0;
5769}
5770
5771static inline unsigned getUNPCKHOpcode(EVT VT) {
5772  switch(VT.getSimpleVT().SimpleTy) {
5773  case MVT::v4i32: return X86ISD::PUNPCKHDQ;
5774  case MVT::v2i64: return X86ISD::PUNPCKHQDQ;
5775  case MVT::v4f32: return X86ISD::UNPCKHPS;
5776  case MVT::v2f64: return X86ISD::UNPCKHPD;
5777  case MVT::v8f32: return X86ISD::VUNPCKHPSY;
5778  case MVT::v4f64: return X86ISD::VUNPCKHPDY;
5779  case MVT::v16i8: return X86ISD::PUNPCKHBW;
5780  case MVT::v8i16: return X86ISD::PUNPCKHWD;
5781  default:
5782    llvm_unreachable("Unknown type for unpckh");
5783  }
5784  return 0;
5785}
5786
5787static
5788SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
5789                               const TargetLowering &TLI,
5790                               const X86Subtarget *Subtarget) {
5791  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5792  EVT VT = Op.getValueType();
5793  DebugLoc dl = Op.getDebugLoc();
5794  SDValue V1 = Op.getOperand(0);
5795  SDValue V2 = Op.getOperand(1);
5796
5797  if (isZeroShuffle(SVOp))
5798    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
5799
5800  // Handle splat operations
5801  if (SVOp->isSplat()) {
5802    unsigned NumElem = VT.getVectorNumElements();
5803    // Special case, this is the only place now where it's allowed to return
5804    // a vector_shuffle operation without using a target specific node, because
5805    // *hopefully* it will be optimized away by the dag combiner. FIXME: should
5806    // this be moved to DAGCombine instead?
5807    if (NumElem <= 4 && CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
5808      return Op;
5809
5810    // Since there's no native support for scalar_to_vector for 256-bit AVX, a
5811    // 128-bit scalar_to_vector + INSERT_SUBVECTOR is generated. Recognize this
5812    // idiom and do the shuffle before the insertion, this yields less
5813    // instructions in the end.
5814    if (VT.is256BitVector() &&
5815        V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
5816        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
5817        V1.getOperand(1).getOpcode() == ISD::SCALAR_TO_VECTOR)
5818      return PromoteVectorToScalarSplat(SVOp, DAG);
5819
5820    // Handle splats by matching through known shuffle masks
5821    if ((VT.is128BitVector() && NumElem <= 4) ||
5822        (VT.is256BitVector() && NumElem <= 8))
5823      return SDValue();
5824
5825    // All i16 and i8 vector types can't be used directly by a generic shuffle
5826    // instruction because the target has no such instruction. Generate shuffles
5827    // which repeat i16 and i8 several times until they fit in i32, and then can
5828    // be manipulated by target suported shuffles. After the insertion of the
5829    // necessary shuffles, the result is bitcasted back to v4f32 or v8f32.
5830    return PromoteSplat(SVOp, DAG);
5831  }
5832
5833  // If the shuffle can be profitably rewritten as a narrower shuffle, then
5834  // do it!
5835  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
5836    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5837    if (NewOp.getNode())
5838      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
5839  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
5840    // FIXME: Figure out a cleaner way to do this.
5841    // Try to make use of movq to zero out the top part.
5842    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
5843      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5844      if (NewOp.getNode()) {
5845        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
5846          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
5847                              DAG, Subtarget, dl);
5848      }
5849    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
5850      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5851      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
5852        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
5853                            DAG, Subtarget, dl);
5854    }
5855  }
5856  return SDValue();
5857}
5858
5859SDValue
5860X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
5861  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5862  SDValue V1 = Op.getOperand(0);
5863  SDValue V2 = Op.getOperand(1);
5864  EVT VT = Op.getValueType();
5865  DebugLoc dl = Op.getDebugLoc();
5866  unsigned NumElems = VT.getVectorNumElements();
5867  bool isMMX = VT.getSizeInBits() == 64;
5868  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
5869  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
5870  bool V1IsSplat = false;
5871  bool V2IsSplat = false;
5872  bool HasSSE2 = Subtarget->hasSSE2() || Subtarget->hasAVX();
5873  bool HasSSE3 = Subtarget->hasSSE3() || Subtarget->hasAVX();
5874  bool HasSSSE3 = Subtarget->hasSSSE3() || Subtarget->hasAVX();
5875  MachineFunction &MF = DAG.getMachineFunction();
5876  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
5877
5878  // Shuffle operations on MMX not supported.
5879  if (isMMX)
5880    return Op;
5881
5882  // Vector shuffle lowering takes 3 steps:
5883  //
5884  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
5885  //    narrowing and commutation of operands should be handled.
5886  // 2) Matching of shuffles with known shuffle masks to x86 target specific
5887  //    shuffle nodes.
5888  // 3) Rewriting of unmatched masks into new generic shuffle operations,
5889  //    so the shuffle can be broken into other shuffles and the legalizer can
5890  //    try the lowering again.
5891  //
5892  // The general ideia is that no vector_shuffle operation should be left to
5893  // be matched during isel, all of them must be converted to a target specific
5894  // node here.
5895
5896  // Normalize the input vectors. Here splats, zeroed vectors, profitable
5897  // narrowing and commutation of operands should be handled. The actual code
5898  // doesn't include all of those, work in progress...
5899  SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
5900  if (NewOp.getNode())
5901    return NewOp;
5902
5903  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
5904  // unpckh_undef). Only use pshufd if speed is more important than size.
5905  if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp))
5906    return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
5907  if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp))
5908    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
5909
5910  if (X86::isMOVDDUPMask(SVOp) && HasSSE3 && V2IsUndef &&
5911      RelaxedMayFoldVectorLoad(V1))
5912    return getMOVDDup(Op, dl, V1, DAG);
5913
5914  if (X86::isMOVHLPS_v_undef_Mask(SVOp))
5915    return getMOVHighToLow(Op, dl, DAG);
5916
5917  // Use to match splats
5918  if (HasSSE2 && X86::isUNPCKHMask(SVOp) && V2IsUndef &&
5919      (VT == MVT::v2f64 || VT == MVT::v2i64))
5920    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
5921
5922  if (X86::isPSHUFDMask(SVOp)) {
5923    // The actual implementation will match the mask in the if above and then
5924    // during isel it can match several different instructions, not only pshufd
5925    // as its name says, sad but true, emulate the behavior for now...
5926    if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
5927        return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
5928
5929    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
5930
5931    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
5932      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
5933
5934    if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
5935      return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V1,
5936                                  TargetMask, DAG);
5937
5938    if (VT == MVT::v4f32)
5939      return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V1,
5940                                  TargetMask, DAG);
5941  }
5942
5943  // Check if this can be converted into a logical shift.
5944  bool isLeft = false;
5945  unsigned ShAmt = 0;
5946  SDValue ShVal;
5947  bool isShift = getSubtarget()->hasSSE2() &&
5948    isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
5949  if (isShift && ShVal.hasOneUse()) {
5950    // If the shifted value has multiple uses, it may be cheaper to use
5951    // v_set0 + movlhps or movhlps, etc.
5952    EVT EltVT = VT.getVectorElementType();
5953    ShAmt *= EltVT.getSizeInBits();
5954    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
5955  }
5956
5957  if (X86::isMOVLMask(SVOp)) {
5958    if (V1IsUndef)
5959      return V2;
5960    if (ISD::isBuildVectorAllZeros(V1.getNode()))
5961      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
5962    if (!X86::isMOVLPMask(SVOp)) {
5963      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
5964        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
5965
5966      if (VT == MVT::v4i32 || VT == MVT::v4f32)
5967        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
5968    }
5969  }
5970
5971  // FIXME: fold these into legal mask.
5972  if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp))
5973    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
5974
5975  if (X86::isMOVHLPSMask(SVOp))
5976    return getMOVHighToLow(Op, dl, DAG);
5977
5978  if (X86::isMOVSHDUPMask(SVOp, Subtarget))
5979    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
5980
5981  if (X86::isMOVSLDUPMask(SVOp, Subtarget))
5982    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
5983
5984  if (X86::isMOVLPMask(SVOp))
5985    return getMOVLP(Op, dl, DAG, HasSSE2);
5986
5987  if (ShouldXformToMOVHLPS(SVOp) ||
5988      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
5989    return CommuteVectorShuffle(SVOp, DAG);
5990
5991  if (isShift) {
5992    // No better options. Use a vshl / vsrl.
5993    EVT EltVT = VT.getVectorElementType();
5994    ShAmt *= EltVT.getSizeInBits();
5995    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
5996  }
5997
5998  bool Commuted = false;
5999  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6000  // 1,1,1,1 -> v8i16 though.
6001  V1IsSplat = isSplatVector(V1.getNode());
6002  V2IsSplat = isSplatVector(V2.getNode());
6003
6004  // Canonicalize the splat or undef, if present, to be on the RHS.
6005  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
6006    Op = CommuteVectorShuffle(SVOp, DAG);
6007    SVOp = cast<ShuffleVectorSDNode>(Op);
6008    V1 = SVOp->getOperand(0);
6009    V2 = SVOp->getOperand(1);
6010    std::swap(V1IsSplat, V2IsSplat);
6011    std::swap(V1IsUndef, V2IsUndef);
6012    Commuted = true;
6013  }
6014
6015  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
6016    // Shuffling low element of v1 into undef, just return v1.
6017    if (V2IsUndef)
6018      return V1;
6019    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6020    // the instruction selector will not match, so get a canonical MOVL with
6021    // swapped operands to undo the commute.
6022    return getMOVL(DAG, dl, VT, V2, V1);
6023  }
6024
6025  if (X86::isUNPCKLMask(SVOp))
6026    return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V2, DAG);
6027
6028  if (X86::isUNPCKHMask(SVOp))
6029    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V2, DAG);
6030
6031  if (V2IsSplat) {
6032    // Normalize mask so all entries that point to V2 points to its first
6033    // element then try to match unpck{h|l} again. If match, return a
6034    // new vector_shuffle with the corrected mask.
6035    SDValue NewMask = NormalizeMask(SVOp, DAG);
6036    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
6037    if (NSVOp != SVOp) {
6038      if (X86::isUNPCKLMask(NSVOp, true)) {
6039        return NewMask;
6040      } else if (X86::isUNPCKHMask(NSVOp, true)) {
6041        return NewMask;
6042      }
6043    }
6044  }
6045
6046  if (Commuted) {
6047    // Commute is back and try unpck* again.
6048    // FIXME: this seems wrong.
6049    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
6050    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
6051
6052    if (X86::isUNPCKLMask(NewSVOp))
6053      return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V2, V1, DAG);
6054
6055    if (X86::isUNPCKHMask(NewSVOp))
6056      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V2, V1, DAG);
6057  }
6058
6059  // Normalize the node to match x86 shuffle ops if needed
6060  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
6061    return CommuteVectorShuffle(SVOp, DAG);
6062
6063  // The checks below are all present in isShuffleMaskLegal, but they are
6064  // inlined here right now to enable us to directly emit target specific
6065  // nodes, and remove one by one until they don't return Op anymore.
6066  SmallVector<int, 16> M;
6067  SVOp->getMask(M);
6068
6069  if (isPALIGNRMask(M, VT, HasSSSE3))
6070    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6071                                X86::getShufflePALIGNRImmediate(SVOp),
6072                                DAG);
6073
6074  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6075      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6076    if (VT == MVT::v2f64)
6077      return getTargetShuffleNode(X86ISD::UNPCKLPD, dl, VT, V1, V1, DAG);
6078    if (VT == MVT::v2i64)
6079      return getTargetShuffleNode(X86ISD::PUNPCKLQDQ, dl, VT, V1, V1, DAG);
6080  }
6081
6082  if (isPSHUFHWMask(M, VT))
6083    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6084                                X86::getShufflePSHUFHWImmediate(SVOp),
6085                                DAG);
6086
6087  if (isPSHUFLWMask(M, VT))
6088    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6089                                X86::getShufflePSHUFLWImmediate(SVOp),
6090                                DAG);
6091
6092  if (isSHUFPMask(M, VT)) {
6093    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
6094    if (VT == MVT::v4f32 || VT == MVT::v4i32)
6095      return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V2,
6096                                  TargetMask, DAG);
6097    if (VT == MVT::v2f64 || VT == MVT::v2i64)
6098      return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V2,
6099                                  TargetMask, DAG);
6100  }
6101
6102  if (X86::isUNPCKL_v_undef_Mask(SVOp))
6103    return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
6104  if (X86::isUNPCKH_v_undef_Mask(SVOp))
6105    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
6106
6107  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6108  if (VT == MVT::v8i16) {
6109    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
6110    if (NewOp.getNode())
6111      return NewOp;
6112  }
6113
6114  if (VT == MVT::v16i8) {
6115    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6116    if (NewOp.getNode())
6117      return NewOp;
6118  }
6119
6120  // Handle all 128-bit wide vectors with 4 elements, and match them with
6121  // several different shuffle types.
6122  if (NumElems == 4 && VT.getSizeInBits() == 128)
6123    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6124
6125  //===--------------------------------------------------------------------===//
6126  //  Custom lower or generate target specific nodes for 256-bit shuffles.
6127
6128  // Handle VPERMIL permutations
6129  if (isVPERMILMask(M, VT)) {
6130    unsigned TargetMask = getShuffleVPERMILImmediate(SVOp);
6131    if (VT == MVT::v8f32)
6132      return getTargetShuffleNode(X86ISD::VPERMIL, dl, VT, V1, TargetMask, DAG);
6133  }
6134
6135  // Handle general 256-bit shuffles
6136  if (VT.is256BitVector())
6137    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6138
6139  return SDValue();
6140}
6141
6142SDValue
6143X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6144                                                SelectionDAG &DAG) const {
6145  EVT VT = Op.getValueType();
6146  DebugLoc dl = Op.getDebugLoc();
6147  if (VT.getSizeInBits() == 8) {
6148    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6149                                    Op.getOperand(0), Op.getOperand(1));
6150    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6151                                    DAG.getValueType(VT));
6152    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6153  } else if (VT.getSizeInBits() == 16) {
6154    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6155    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6156    if (Idx == 0)
6157      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6158                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6159                                     DAG.getNode(ISD::BITCAST, dl,
6160                                                 MVT::v4i32,
6161                                                 Op.getOperand(0)),
6162                                     Op.getOperand(1)));
6163    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6164                                    Op.getOperand(0), Op.getOperand(1));
6165    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6166                                    DAG.getValueType(VT));
6167    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6168  } else if (VT == MVT::f32) {
6169    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6170    // the result back to FR32 register. It's only worth matching if the
6171    // result has a single use which is a store or a bitcast to i32.  And in
6172    // the case of a store, it's not worth it if the index is a constant 0,
6173    // because a MOVSSmr can be used instead, which is smaller and faster.
6174    if (!Op.hasOneUse())
6175      return SDValue();
6176    SDNode *User = *Op.getNode()->use_begin();
6177    if ((User->getOpcode() != ISD::STORE ||
6178         (isa<ConstantSDNode>(Op.getOperand(1)) &&
6179          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6180        (User->getOpcode() != ISD::BITCAST ||
6181         User->getValueType(0) != MVT::i32))
6182      return SDValue();
6183    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6184                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
6185                                              Op.getOperand(0)),
6186                                              Op.getOperand(1));
6187    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
6188  } else if (VT == MVT::i32) {
6189    // ExtractPS works with constant index.
6190    if (isa<ConstantSDNode>(Op.getOperand(1)))
6191      return Op;
6192  }
6193  return SDValue();
6194}
6195
6196
6197SDValue
6198X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6199                                           SelectionDAG &DAG) const {
6200  if (!isa<ConstantSDNode>(Op.getOperand(1)))
6201    return SDValue();
6202
6203  SDValue Vec = Op.getOperand(0);
6204  EVT VecVT = Vec.getValueType();
6205
6206  // If this is a 256-bit vector result, first extract the 128-bit
6207  // vector and then extract from the 128-bit vector.
6208  if (VecVT.getSizeInBits() > 128) {
6209    DebugLoc dl = Op.getNode()->getDebugLoc();
6210    unsigned NumElems = VecVT.getVectorNumElements();
6211    SDValue Idx = Op.getOperand(1);
6212
6213    if (!isa<ConstantSDNode>(Idx))
6214      return SDValue();
6215
6216    unsigned ExtractNumElems = NumElems / (VecVT.getSizeInBits() / 128);
6217    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6218
6219    // Get the 128-bit vector.
6220    bool Upper = IdxVal >= ExtractNumElems;
6221    Vec = Extract128BitVector(Vec, Idx, DAG, dl);
6222
6223    // Extract from it.
6224    SDValue ScaledIdx = Idx;
6225    if (Upper)
6226      ScaledIdx = DAG.getNode(ISD::SUB, dl, Idx.getValueType(), Idx,
6227                              DAG.getConstant(ExtractNumElems,
6228                                              Idx.getValueType()));
6229    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6230                       ScaledIdx);
6231  }
6232
6233  assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
6234
6235  if (Subtarget->hasSSE41()) {
6236    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6237    if (Res.getNode())
6238      return Res;
6239  }
6240
6241  EVT VT = Op.getValueType();
6242  DebugLoc dl = Op.getDebugLoc();
6243  // TODO: handle v16i8.
6244  if (VT.getSizeInBits() == 16) {
6245    SDValue Vec = Op.getOperand(0);
6246    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6247    if (Idx == 0)
6248      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6249                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6250                                     DAG.getNode(ISD::BITCAST, dl,
6251                                                 MVT::v4i32, Vec),
6252                                     Op.getOperand(1)));
6253    // Transform it so it match pextrw which produces a 32-bit result.
6254    EVT EltVT = MVT::i32;
6255    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6256                                    Op.getOperand(0), Op.getOperand(1));
6257    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6258                                    DAG.getValueType(VT));
6259    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6260  } else if (VT.getSizeInBits() == 32) {
6261    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6262    if (Idx == 0)
6263      return Op;
6264
6265    // SHUFPS the element to the lowest double word, then movss.
6266    int Mask[4] = { Idx, -1, -1, -1 };
6267    EVT VVT = Op.getOperand(0).getValueType();
6268    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6269                                       DAG.getUNDEF(VVT), Mask);
6270    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6271                       DAG.getIntPtrConstant(0));
6272  } else if (VT.getSizeInBits() == 64) {
6273    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6274    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6275    //        to match extract_elt for f64.
6276    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6277    if (Idx == 0)
6278      return Op;
6279
6280    // UNPCKHPD the element to the lowest double word, then movsd.
6281    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6282    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6283    int Mask[2] = { 1, -1 };
6284    EVT VVT = Op.getOperand(0).getValueType();
6285    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6286                                       DAG.getUNDEF(VVT), Mask);
6287    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6288                       DAG.getIntPtrConstant(0));
6289  }
6290
6291  return SDValue();
6292}
6293
6294SDValue
6295X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
6296                                               SelectionDAG &DAG) const {
6297  EVT VT = Op.getValueType();
6298  EVT EltVT = VT.getVectorElementType();
6299  DebugLoc dl = Op.getDebugLoc();
6300
6301  SDValue N0 = Op.getOperand(0);
6302  SDValue N1 = Op.getOperand(1);
6303  SDValue N2 = Op.getOperand(2);
6304
6305  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
6306      isa<ConstantSDNode>(N2)) {
6307    unsigned Opc;
6308    if (VT == MVT::v8i16)
6309      Opc = X86ISD::PINSRW;
6310    else if (VT == MVT::v16i8)
6311      Opc = X86ISD::PINSRB;
6312    else
6313      Opc = X86ISD::PINSRB;
6314
6315    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
6316    // argument.
6317    if (N1.getValueType() != MVT::i32)
6318      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6319    if (N2.getValueType() != MVT::i32)
6320      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6321    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
6322  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
6323    // Bits [7:6] of the constant are the source select.  This will always be
6324    //  zero here.  The DAG Combiner may combine an extract_elt index into these
6325    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
6326    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
6327    // Bits [5:4] of the constant are the destination select.  This is the
6328    //  value of the incoming immediate.
6329    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
6330    //   combine either bitwise AND or insert of float 0.0 to set these bits.
6331    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
6332    // Create this as a scalar to vector..
6333    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
6334    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
6335  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
6336    // PINSR* works with constant index.
6337    return Op;
6338  }
6339  return SDValue();
6340}
6341
6342SDValue
6343X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
6344  EVT VT = Op.getValueType();
6345  EVT EltVT = VT.getVectorElementType();
6346
6347  DebugLoc dl = Op.getDebugLoc();
6348  SDValue N0 = Op.getOperand(0);
6349  SDValue N1 = Op.getOperand(1);
6350  SDValue N2 = Op.getOperand(2);
6351
6352  // If this is a 256-bit vector result, first insert into a 128-bit
6353  // vector and then insert into the 256-bit vector.
6354  if (VT.getSizeInBits() > 128) {
6355    if (!isa<ConstantSDNode>(N2))
6356      return SDValue();
6357
6358    // Get the 128-bit vector.
6359    unsigned NumElems = VT.getVectorNumElements();
6360    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
6361    bool Upper = IdxVal >= NumElems / 2;
6362
6363    SDValue SubN0 = Extract128BitVector(N0, N2, DAG, dl);
6364
6365    // Insert into it.
6366    SDValue ScaledN2 = N2;
6367    if (Upper)
6368      ScaledN2 = DAG.getNode(ISD::SUB, dl, N2.getValueType(), N2,
6369                             DAG.getConstant(NumElems /
6370                                             (VT.getSizeInBits() / 128),
6371                                             N2.getValueType()));
6372    Op = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, SubN0.getValueType(), SubN0,
6373                     N1, ScaledN2);
6374
6375    // Insert the 128-bit vector
6376    // FIXME: Why UNDEF?
6377    return Insert128BitVector(N0, Op, N2, DAG, dl);
6378  }
6379
6380  if (Subtarget->hasSSE41())
6381    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
6382
6383  if (EltVT == MVT::i8)
6384    return SDValue();
6385
6386  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
6387    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
6388    // as its second argument.
6389    if (N1.getValueType() != MVT::i32)
6390      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6391    if (N2.getValueType() != MVT::i32)
6392      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6393    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
6394  }
6395  return SDValue();
6396}
6397
6398SDValue
6399X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
6400  LLVMContext *Context = DAG.getContext();
6401  DebugLoc dl = Op.getDebugLoc();
6402  EVT OpVT = Op.getValueType();
6403
6404  // If this is a 256-bit vector result, first insert into a 128-bit
6405  // vector and then insert into the 256-bit vector.
6406  if (OpVT.getSizeInBits() > 128) {
6407    // Insert into a 128-bit vector.
6408    EVT VT128 = EVT::getVectorVT(*Context,
6409                                 OpVT.getVectorElementType(),
6410                                 OpVT.getVectorNumElements() / 2);
6411
6412    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
6413
6414    // Insert the 128-bit vector.
6415    return Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, OpVT), Op,
6416                              DAG.getConstant(0, MVT::i32),
6417                              DAG, dl);
6418  }
6419
6420  if (Op.getValueType() == MVT::v1i64 &&
6421      Op.getOperand(0).getValueType() == MVT::i64)
6422    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
6423
6424  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
6425  assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
6426         "Expected an SSE type!");
6427  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
6428                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
6429}
6430
6431// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
6432// a simple subregister reference or explicit instructions to grab
6433// upper bits of a vector.
6434SDValue
6435X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
6436  if (Subtarget->hasAVX()) {
6437    DebugLoc dl = Op.getNode()->getDebugLoc();
6438    SDValue Vec = Op.getNode()->getOperand(0);
6439    SDValue Idx = Op.getNode()->getOperand(1);
6440
6441    if (Op.getNode()->getValueType(0).getSizeInBits() == 128
6442        && Vec.getNode()->getValueType(0).getSizeInBits() == 256) {
6443        return Extract128BitVector(Vec, Idx, DAG, dl);
6444    }
6445  }
6446  return SDValue();
6447}
6448
6449// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
6450// simple superregister reference or explicit instructions to insert
6451// the upper bits of a vector.
6452SDValue
6453X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
6454  if (Subtarget->hasAVX()) {
6455    DebugLoc dl = Op.getNode()->getDebugLoc();
6456    SDValue Vec = Op.getNode()->getOperand(0);
6457    SDValue SubVec = Op.getNode()->getOperand(1);
6458    SDValue Idx = Op.getNode()->getOperand(2);
6459
6460    if (Op.getNode()->getValueType(0).getSizeInBits() == 256
6461        && SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
6462      return Insert128BitVector(Vec, SubVec, Idx, DAG, dl);
6463    }
6464  }
6465  return SDValue();
6466}
6467
6468// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
6469// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
6470// one of the above mentioned nodes. It has to be wrapped because otherwise
6471// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
6472// be used to form addressing mode. These wrapped nodes will be selected
6473// into MOV32ri.
6474SDValue
6475X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
6476  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
6477
6478  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6479  // global base reg.
6480  unsigned char OpFlag = 0;
6481  unsigned WrapperKind = X86ISD::Wrapper;
6482  CodeModel::Model M = getTargetMachine().getCodeModel();
6483
6484  if (Subtarget->isPICStyleRIPRel() &&
6485      (M == CodeModel::Small || M == CodeModel::Kernel))
6486    WrapperKind = X86ISD::WrapperRIP;
6487  else if (Subtarget->isPICStyleGOT())
6488    OpFlag = X86II::MO_GOTOFF;
6489  else if (Subtarget->isPICStyleStubPIC())
6490    OpFlag = X86II::MO_PIC_BASE_OFFSET;
6491
6492  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
6493                                             CP->getAlignment(),
6494                                             CP->getOffset(), OpFlag);
6495  DebugLoc DL = CP->getDebugLoc();
6496  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6497  // With PIC, the address is actually $g + Offset.
6498  if (OpFlag) {
6499    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6500                         DAG.getNode(X86ISD::GlobalBaseReg,
6501                                     DebugLoc(), getPointerTy()),
6502                         Result);
6503  }
6504
6505  return Result;
6506}
6507
6508SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
6509  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
6510
6511  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6512  // global base reg.
6513  unsigned char OpFlag = 0;
6514  unsigned WrapperKind = X86ISD::Wrapper;
6515  CodeModel::Model M = getTargetMachine().getCodeModel();
6516
6517  if (Subtarget->isPICStyleRIPRel() &&
6518      (M == CodeModel::Small || M == CodeModel::Kernel))
6519    WrapperKind = X86ISD::WrapperRIP;
6520  else if (Subtarget->isPICStyleGOT())
6521    OpFlag = X86II::MO_GOTOFF;
6522  else if (Subtarget->isPICStyleStubPIC())
6523    OpFlag = X86II::MO_PIC_BASE_OFFSET;
6524
6525  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
6526                                          OpFlag);
6527  DebugLoc DL = JT->getDebugLoc();
6528  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6529
6530  // With PIC, the address is actually $g + Offset.
6531  if (OpFlag)
6532    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6533                         DAG.getNode(X86ISD::GlobalBaseReg,
6534                                     DebugLoc(), getPointerTy()),
6535                         Result);
6536
6537  return Result;
6538}
6539
6540SDValue
6541X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
6542  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
6543
6544  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6545  // global base reg.
6546  unsigned char OpFlag = 0;
6547  unsigned WrapperKind = X86ISD::Wrapper;
6548  CodeModel::Model M = getTargetMachine().getCodeModel();
6549
6550  if (Subtarget->isPICStyleRIPRel() &&
6551      (M == CodeModel::Small || M == CodeModel::Kernel))
6552    WrapperKind = X86ISD::WrapperRIP;
6553  else if (Subtarget->isPICStyleGOT())
6554    OpFlag = X86II::MO_GOTOFF;
6555  else if (Subtarget->isPICStyleStubPIC())
6556    OpFlag = X86II::MO_PIC_BASE_OFFSET;
6557
6558  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
6559
6560  DebugLoc DL = Op.getDebugLoc();
6561  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6562
6563
6564  // With PIC, the address is actually $g + Offset.
6565  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
6566      !Subtarget->is64Bit()) {
6567    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6568                         DAG.getNode(X86ISD::GlobalBaseReg,
6569                                     DebugLoc(), getPointerTy()),
6570                         Result);
6571  }
6572
6573  return Result;
6574}
6575
6576SDValue
6577X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
6578  // Create the TargetBlockAddressAddress node.
6579  unsigned char OpFlags =
6580    Subtarget->ClassifyBlockAddressReference();
6581  CodeModel::Model M = getTargetMachine().getCodeModel();
6582  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
6583  DebugLoc dl = Op.getDebugLoc();
6584  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
6585                                       /*isTarget=*/true, OpFlags);
6586
6587  if (Subtarget->isPICStyleRIPRel() &&
6588      (M == CodeModel::Small || M == CodeModel::Kernel))
6589    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
6590  else
6591    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
6592
6593  // With PIC, the address is actually $g + Offset.
6594  if (isGlobalRelativeToPICBase(OpFlags)) {
6595    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6596                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
6597                         Result);
6598  }
6599
6600  return Result;
6601}
6602
6603SDValue
6604X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
6605                                      int64_t Offset,
6606                                      SelectionDAG &DAG) const {
6607  // Create the TargetGlobalAddress node, folding in the constant
6608  // offset if it is legal.
6609  unsigned char OpFlags =
6610    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
6611  CodeModel::Model M = getTargetMachine().getCodeModel();
6612  SDValue Result;
6613  if (OpFlags == X86II::MO_NO_FLAG &&
6614      X86::isOffsetSuitableForCodeModel(Offset, M)) {
6615    // A direct static reference to a global.
6616    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
6617    Offset = 0;
6618  } else {
6619    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
6620  }
6621
6622  if (Subtarget->isPICStyleRIPRel() &&
6623      (M == CodeModel::Small || M == CodeModel::Kernel))
6624    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
6625  else
6626    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
6627
6628  // With PIC, the address is actually $g + Offset.
6629  if (isGlobalRelativeToPICBase(OpFlags)) {
6630    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6631                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
6632                         Result);
6633  }
6634
6635  // For globals that require a load from a stub to get the address, emit the
6636  // load.
6637  if (isGlobalStubReference(OpFlags))
6638    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
6639                         MachinePointerInfo::getGOT(), false, false, 0);
6640
6641  // If there was a non-zero offset that we didn't fold, create an explicit
6642  // addition for it.
6643  if (Offset != 0)
6644    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
6645                         DAG.getConstant(Offset, getPointerTy()));
6646
6647  return Result;
6648}
6649
6650SDValue
6651X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
6652  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
6653  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
6654  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
6655}
6656
6657static SDValue
6658GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
6659           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
6660           unsigned char OperandFlags) {
6661  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6662  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6663  DebugLoc dl = GA->getDebugLoc();
6664  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
6665                                           GA->getValueType(0),
6666                                           GA->getOffset(),
6667                                           OperandFlags);
6668  if (InFlag) {
6669    SDValue Ops[] = { Chain,  TGA, *InFlag };
6670    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
6671  } else {
6672    SDValue Ops[]  = { Chain, TGA };
6673    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
6674  }
6675
6676  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
6677  MFI->setAdjustsStack(true);
6678
6679  SDValue Flag = Chain.getValue(1);
6680  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
6681}
6682
6683// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
6684static SDValue
6685LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6686                                const EVT PtrVT) {
6687  SDValue InFlag;
6688  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
6689  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
6690                                     DAG.getNode(X86ISD::GlobalBaseReg,
6691                                                 DebugLoc(), PtrVT), InFlag);
6692  InFlag = Chain.getValue(1);
6693
6694  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
6695}
6696
6697// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
6698static SDValue
6699LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6700                                const EVT PtrVT) {
6701  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
6702                    X86::RAX, X86II::MO_TLSGD);
6703}
6704
6705// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
6706// "local exec" model.
6707static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6708                                   const EVT PtrVT, TLSModel::Model model,
6709                                   bool is64Bit) {
6710  DebugLoc dl = GA->getDebugLoc();
6711
6712  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
6713  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
6714                                                         is64Bit ? 257 : 256));
6715
6716  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
6717                                      DAG.getIntPtrConstant(0),
6718                                      MachinePointerInfo(Ptr), false, false, 0);
6719
6720  unsigned char OperandFlags = 0;
6721  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
6722  // initialexec.
6723  unsigned WrapperKind = X86ISD::Wrapper;
6724  if (model == TLSModel::LocalExec) {
6725    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
6726  } else if (is64Bit) {
6727    assert(model == TLSModel::InitialExec);
6728    OperandFlags = X86II::MO_GOTTPOFF;
6729    WrapperKind = X86ISD::WrapperRIP;
6730  } else {
6731    assert(model == TLSModel::InitialExec);
6732    OperandFlags = X86II::MO_INDNTPOFF;
6733  }
6734
6735  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
6736  // exec)
6737  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
6738                                           GA->getValueType(0),
6739                                           GA->getOffset(), OperandFlags);
6740  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
6741
6742  if (model == TLSModel::InitialExec)
6743    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
6744                         MachinePointerInfo::getGOT(), false, false, 0);
6745
6746  // The address of the thread local variable is the add of the thread
6747  // pointer with the offset of the variable.
6748  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
6749}
6750
6751SDValue
6752X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
6753
6754  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
6755  const GlobalValue *GV = GA->getGlobal();
6756
6757  if (Subtarget->isTargetELF()) {
6758    // TODO: implement the "local dynamic" model
6759    // TODO: implement the "initial exec"model for pic executables
6760
6761    // If GV is an alias then use the aliasee for determining
6762    // thread-localness.
6763    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
6764      GV = GA->resolveAliasedGlobal(false);
6765
6766    TLSModel::Model model
6767      = getTLSModel(GV, getTargetMachine().getRelocationModel());
6768
6769    switch (model) {
6770      case TLSModel::GeneralDynamic:
6771      case TLSModel::LocalDynamic: // not implemented
6772        if (Subtarget->is64Bit())
6773          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
6774        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
6775
6776      case TLSModel::InitialExec:
6777      case TLSModel::LocalExec:
6778        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
6779                                   Subtarget->is64Bit());
6780    }
6781  } else if (Subtarget->isTargetDarwin()) {
6782    // Darwin only has one model of TLS.  Lower to that.
6783    unsigned char OpFlag = 0;
6784    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
6785                           X86ISD::WrapperRIP : X86ISD::Wrapper;
6786
6787    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6788    // global base reg.
6789    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
6790                  !Subtarget->is64Bit();
6791    if (PIC32)
6792      OpFlag = X86II::MO_TLVP_PIC_BASE;
6793    else
6794      OpFlag = X86II::MO_TLVP;
6795    DebugLoc DL = Op.getDebugLoc();
6796    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
6797                                                GA->getValueType(0),
6798                                                GA->getOffset(), OpFlag);
6799    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6800
6801    // With PIC32, the address is actually $g + Offset.
6802    if (PIC32)
6803      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6804                           DAG.getNode(X86ISD::GlobalBaseReg,
6805                                       DebugLoc(), getPointerTy()),
6806                           Offset);
6807
6808    // Lowering the machine isd will make sure everything is in the right
6809    // location.
6810    SDValue Chain = DAG.getEntryNode();
6811    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6812    SDValue Args[] = { Chain, Offset };
6813    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
6814
6815    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
6816    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6817    MFI->setAdjustsStack(true);
6818
6819    // And our return value (tls address) is in the standard call return value
6820    // location.
6821    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
6822    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
6823  }
6824
6825  assert(false &&
6826         "TLS not implemented for this target.");
6827
6828  llvm_unreachable("Unreachable");
6829  return SDValue();
6830}
6831
6832
6833/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values and
6834/// take a 2 x i32 value to shift plus a shift amount.
6835SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const {
6836  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
6837  EVT VT = Op.getValueType();
6838  unsigned VTBits = VT.getSizeInBits();
6839  DebugLoc dl = Op.getDebugLoc();
6840  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
6841  SDValue ShOpLo = Op.getOperand(0);
6842  SDValue ShOpHi = Op.getOperand(1);
6843  SDValue ShAmt  = Op.getOperand(2);
6844  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
6845                                     DAG.getConstant(VTBits - 1, MVT::i8))
6846                       : DAG.getConstant(0, VT);
6847
6848  SDValue Tmp2, Tmp3;
6849  if (Op.getOpcode() == ISD::SHL_PARTS) {
6850    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
6851    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
6852  } else {
6853    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
6854    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
6855  }
6856
6857  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
6858                                DAG.getConstant(VTBits, MVT::i8));
6859  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
6860                             AndNode, DAG.getConstant(0, MVT::i8));
6861
6862  SDValue Hi, Lo;
6863  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6864  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
6865  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
6866
6867  if (Op.getOpcode() == ISD::SHL_PARTS) {
6868    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
6869    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
6870  } else {
6871    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
6872    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
6873  }
6874
6875  SDValue Ops[2] = { Lo, Hi };
6876  return DAG.getMergeValues(Ops, 2, dl);
6877}
6878
6879SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
6880                                           SelectionDAG &DAG) const {
6881  EVT SrcVT = Op.getOperand(0).getValueType();
6882
6883  if (SrcVT.isVector())
6884    return SDValue();
6885
6886  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
6887         "Unknown SINT_TO_FP to lower!");
6888
6889  // These are really Legal; return the operand so the caller accepts it as
6890  // Legal.
6891  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
6892    return Op;
6893  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
6894      Subtarget->is64Bit()) {
6895    return Op;
6896  }
6897
6898  DebugLoc dl = Op.getDebugLoc();
6899  unsigned Size = SrcVT.getSizeInBits()/8;
6900  MachineFunction &MF = DAG.getMachineFunction();
6901  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
6902  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6903  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6904                               StackSlot,
6905                               MachinePointerInfo::getFixedStack(SSFI),
6906                               false, false, 0);
6907  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
6908}
6909
6910SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
6911                                     SDValue StackSlot,
6912                                     SelectionDAG &DAG) const {
6913  // Build the FILD
6914  DebugLoc DL = Op.getDebugLoc();
6915  SDVTList Tys;
6916  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
6917  if (useSSE)
6918    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
6919  else
6920    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
6921
6922  unsigned ByteSize = SrcVT.getSizeInBits()/8;
6923
6924  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
6925  MachineMemOperand *MMO;
6926  if (FI) {
6927    int SSFI = FI->getIndex();
6928    MMO =
6929      DAG.getMachineFunction()
6930      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6931                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
6932  } else {
6933    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
6934    StackSlot = StackSlot.getOperand(1);
6935  }
6936  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
6937  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
6938                                           X86ISD::FILD, DL,
6939                                           Tys, Ops, array_lengthof(Ops),
6940                                           SrcVT, MMO);
6941
6942  if (useSSE) {
6943    Chain = Result.getValue(1);
6944    SDValue InFlag = Result.getValue(2);
6945
6946    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
6947    // shouldn't be necessary except that RFP cannot be live across
6948    // multiple blocks. When stackifier is fixed, they can be uncoupled.
6949    MachineFunction &MF = DAG.getMachineFunction();
6950    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
6951    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
6952    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6953    Tys = DAG.getVTList(MVT::Other);
6954    SDValue Ops[] = {
6955      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
6956    };
6957    MachineMemOperand *MMO =
6958      DAG.getMachineFunction()
6959      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6960                            MachineMemOperand::MOStore, SSFISize, SSFISize);
6961
6962    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
6963                                    Ops, array_lengthof(Ops),
6964                                    Op.getValueType(), MMO);
6965    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
6966                         MachinePointerInfo::getFixedStack(SSFI),
6967                         false, false, 0);
6968  }
6969
6970  return Result;
6971}
6972
6973// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
6974SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
6975                                               SelectionDAG &DAG) const {
6976  // This algorithm is not obvious. Here it is in C code, more or less:
6977  /*
6978    double uint64_to_double( uint32_t hi, uint32_t lo ) {
6979      static const __m128i exp = { 0x4330000045300000ULL, 0 };
6980      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
6981
6982      // Copy ints to xmm registers.
6983      __m128i xh = _mm_cvtsi32_si128( hi );
6984      __m128i xl = _mm_cvtsi32_si128( lo );
6985
6986      // Combine into low half of a single xmm register.
6987      __m128i x = _mm_unpacklo_epi32( xh, xl );
6988      __m128d d;
6989      double sd;
6990
6991      // Merge in appropriate exponents to give the integer bits the right
6992      // magnitude.
6993      x = _mm_unpacklo_epi32( x, exp );
6994
6995      // Subtract away the biases to deal with the IEEE-754 double precision
6996      // implicit 1.
6997      d = _mm_sub_pd( (__m128d) x, bias );
6998
6999      // All conversions up to here are exact. The correctly rounded result is
7000      // calculated using the current rounding mode using the following
7001      // horizontal add.
7002      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
7003      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
7004                                // store doesn't really need to be here (except
7005                                // maybe to zero the other double)
7006      return sd;
7007    }
7008  */
7009
7010  DebugLoc dl = Op.getDebugLoc();
7011  LLVMContext *Context = DAG.getContext();
7012
7013  // Build some magic constants.
7014  std::vector<Constant*> CV0;
7015  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
7016  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
7017  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7018  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7019  Constant *C0 = ConstantVector::get(CV0);
7020  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7021
7022  std::vector<Constant*> CV1;
7023  CV1.push_back(
7024    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7025  CV1.push_back(
7026    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7027  Constant *C1 = ConstantVector::get(CV1);
7028  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7029
7030  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7031                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7032                                        Op.getOperand(0),
7033                                        DAG.getIntPtrConstant(1)));
7034  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7035                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7036                                        Op.getOperand(0),
7037                                        DAG.getIntPtrConstant(0)));
7038  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
7039  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7040                              MachinePointerInfo::getConstantPool(),
7041                              false, false, 16);
7042  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
7043  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck2);
7044  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7045                              MachinePointerInfo::getConstantPool(),
7046                              false, false, 16);
7047  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7048
7049  // Add the halves; easiest way is to swap them into another reg first.
7050  int ShufMask[2] = { 1, -1 };
7051  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
7052                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
7053  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
7054  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
7055                     DAG.getIntPtrConstant(0));
7056}
7057
7058// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
7059SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7060                                               SelectionDAG &DAG) const {
7061  DebugLoc dl = Op.getDebugLoc();
7062  // FP constant to bias correct the final result.
7063  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7064                                   MVT::f64);
7065
7066  // Load the 32-bit value into an XMM register.
7067  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7068                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7069                                         Op.getOperand(0),
7070                                         DAG.getIntPtrConstant(0)));
7071
7072  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7073                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7074                     DAG.getIntPtrConstant(0));
7075
7076  // Or the load with the bias.
7077  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7078                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7079                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7080                                                   MVT::v2f64, Load)),
7081                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7082                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7083                                                   MVT::v2f64, Bias)));
7084  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7085                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7086                   DAG.getIntPtrConstant(0));
7087
7088  // Subtract the bias.
7089  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7090
7091  // Handle final rounding.
7092  EVT DestVT = Op.getValueType();
7093
7094  if (DestVT.bitsLT(MVT::f64)) {
7095    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7096                       DAG.getIntPtrConstant(0));
7097  } else if (DestVT.bitsGT(MVT::f64)) {
7098    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7099  }
7100
7101  // Handle final rounding.
7102  return Sub;
7103}
7104
7105SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
7106                                           SelectionDAG &DAG) const {
7107  SDValue N0 = Op.getOperand(0);
7108  DebugLoc dl = Op.getDebugLoc();
7109
7110  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
7111  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
7112  // the optimization here.
7113  if (DAG.SignBitIsZero(N0))
7114    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
7115
7116  EVT SrcVT = N0.getValueType();
7117  EVT DstVT = Op.getValueType();
7118  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
7119    return LowerUINT_TO_FP_i64(Op, DAG);
7120  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
7121    return LowerUINT_TO_FP_i32(Op, DAG);
7122
7123  // Make a 64-bit buffer, and use it to build an FILD.
7124  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
7125  if (SrcVT == MVT::i32) {
7126    SDValue WordOff = DAG.getConstant(4, getPointerTy());
7127    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
7128                                     getPointerTy(), StackSlot, WordOff);
7129    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7130                                  StackSlot, MachinePointerInfo(),
7131                                  false, false, 0);
7132    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
7133                                  OffsetSlot, MachinePointerInfo(),
7134                                  false, false, 0);
7135    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
7136    return Fild;
7137  }
7138
7139  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
7140  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7141                                StackSlot, MachinePointerInfo(),
7142                               false, false, 0);
7143  // For i64 source, we need to add the appropriate power of 2 if the input
7144  // was negative.  This is the same as the optimization in
7145  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
7146  // we must be careful to do the computation in x87 extended precision, not
7147  // in SSE. (The generic code can't know it's OK to do this, or how to.)
7148  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
7149  MachineMemOperand *MMO =
7150    DAG.getMachineFunction()
7151    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7152                          MachineMemOperand::MOLoad, 8, 8);
7153
7154  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
7155  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
7156  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
7157                                         MVT::i64, MMO);
7158
7159  APInt FF(32, 0x5F800000ULL);
7160
7161  // Check whether the sign bit is set.
7162  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
7163                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
7164                                 ISD::SETLT);
7165
7166  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
7167  SDValue FudgePtr = DAG.getConstantPool(
7168                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
7169                                         getPointerTy());
7170
7171  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
7172  SDValue Zero = DAG.getIntPtrConstant(0);
7173  SDValue Four = DAG.getIntPtrConstant(4);
7174  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
7175                               Zero, Four);
7176  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
7177
7178  // Load the value out, extending it from f32 to f80.
7179  // FIXME: Avoid the extend by constructing the right constant pool?
7180  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
7181                                 FudgePtr, MachinePointerInfo::getConstantPool(),
7182                                 MVT::f32, false, false, 4);
7183  // Extend everything to 80 bits to force it to be done on x87.
7184  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
7185  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
7186}
7187
7188std::pair<SDValue,SDValue> X86TargetLowering::
7189FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
7190  DebugLoc DL = Op.getDebugLoc();
7191
7192  EVT DstTy = Op.getValueType();
7193
7194  if (!IsSigned) {
7195    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
7196    DstTy = MVT::i64;
7197  }
7198
7199  assert(DstTy.getSimpleVT() <= MVT::i64 &&
7200         DstTy.getSimpleVT() >= MVT::i16 &&
7201         "Unknown FP_TO_SINT to lower!");
7202
7203  // These are really Legal.
7204  if (DstTy == MVT::i32 &&
7205      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7206    return std::make_pair(SDValue(), SDValue());
7207  if (Subtarget->is64Bit() &&
7208      DstTy == MVT::i64 &&
7209      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7210    return std::make_pair(SDValue(), SDValue());
7211
7212  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
7213  // stack slot.
7214  MachineFunction &MF = DAG.getMachineFunction();
7215  unsigned MemSize = DstTy.getSizeInBits()/8;
7216  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7217  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7218
7219
7220
7221  unsigned Opc;
7222  switch (DstTy.getSimpleVT().SimpleTy) {
7223  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
7224  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
7225  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
7226  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
7227  }
7228
7229  SDValue Chain = DAG.getEntryNode();
7230  SDValue Value = Op.getOperand(0);
7231  EVT TheVT = Op.getOperand(0).getValueType();
7232  if (isScalarFPTypeInSSEReg(TheVT)) {
7233    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
7234    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
7235                         MachinePointerInfo::getFixedStack(SSFI),
7236                         false, false, 0);
7237    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
7238    SDValue Ops[] = {
7239      Chain, StackSlot, DAG.getValueType(TheVT)
7240    };
7241
7242    MachineMemOperand *MMO =
7243      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7244                              MachineMemOperand::MOLoad, MemSize, MemSize);
7245    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
7246                                    DstTy, MMO);
7247    Chain = Value.getValue(1);
7248    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7249    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7250  }
7251
7252  MachineMemOperand *MMO =
7253    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7254                            MachineMemOperand::MOStore, MemSize, MemSize);
7255
7256  // Build the FP_TO_INT*_IN_MEM
7257  SDValue Ops[] = { Chain, Value, StackSlot };
7258  SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
7259                                         Ops, 3, DstTy, MMO);
7260
7261  return std::make_pair(FIST, StackSlot);
7262}
7263
7264SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
7265                                           SelectionDAG &DAG) const {
7266  if (Op.getValueType().isVector())
7267    return SDValue();
7268
7269  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
7270  SDValue FIST = Vals.first, StackSlot = Vals.second;
7271  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
7272  if (FIST.getNode() == 0) return Op;
7273
7274  // Load the result.
7275  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7276                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
7277}
7278
7279SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
7280                                           SelectionDAG &DAG) const {
7281  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
7282  SDValue FIST = Vals.first, StackSlot = Vals.second;
7283  assert(FIST.getNode() && "Unexpected failure");
7284
7285  // Load the result.
7286  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7287                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
7288}
7289
7290SDValue X86TargetLowering::LowerFABS(SDValue Op,
7291                                     SelectionDAG &DAG) const {
7292  LLVMContext *Context = DAG.getContext();
7293  DebugLoc dl = Op.getDebugLoc();
7294  EVT VT = Op.getValueType();
7295  EVT EltVT = VT;
7296  if (VT.isVector())
7297    EltVT = VT.getVectorElementType();
7298  std::vector<Constant*> CV;
7299  if (EltVT == MVT::f64) {
7300    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
7301    CV.push_back(C);
7302    CV.push_back(C);
7303  } else {
7304    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
7305    CV.push_back(C);
7306    CV.push_back(C);
7307    CV.push_back(C);
7308    CV.push_back(C);
7309  }
7310  Constant *C = ConstantVector::get(CV);
7311  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7312  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7313                             MachinePointerInfo::getConstantPool(),
7314                             false, false, 16);
7315  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
7316}
7317
7318SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
7319  LLVMContext *Context = DAG.getContext();
7320  DebugLoc dl = Op.getDebugLoc();
7321  EVT VT = Op.getValueType();
7322  EVT EltVT = VT;
7323  if (VT.isVector())
7324    EltVT = VT.getVectorElementType();
7325  std::vector<Constant*> CV;
7326  if (EltVT == MVT::f64) {
7327    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
7328    CV.push_back(C);
7329    CV.push_back(C);
7330  } else {
7331    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
7332    CV.push_back(C);
7333    CV.push_back(C);
7334    CV.push_back(C);
7335    CV.push_back(C);
7336  }
7337  Constant *C = ConstantVector::get(CV);
7338  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7339  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7340                             MachinePointerInfo::getConstantPool(),
7341                             false, false, 16);
7342  if (VT.isVector()) {
7343    return DAG.getNode(ISD::BITCAST, dl, VT,
7344                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
7345                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7346                                Op.getOperand(0)),
7347                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Mask)));
7348  } else {
7349    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
7350  }
7351}
7352
7353SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
7354  LLVMContext *Context = DAG.getContext();
7355  SDValue Op0 = Op.getOperand(0);
7356  SDValue Op1 = Op.getOperand(1);
7357  DebugLoc dl = Op.getDebugLoc();
7358  EVT VT = Op.getValueType();
7359  EVT SrcVT = Op1.getValueType();
7360
7361  // If second operand is smaller, extend it first.
7362  if (SrcVT.bitsLT(VT)) {
7363    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
7364    SrcVT = VT;
7365  }
7366  // And if it is bigger, shrink it first.
7367  if (SrcVT.bitsGT(VT)) {
7368    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
7369    SrcVT = VT;
7370  }
7371
7372  // At this point the operands and the result should have the same
7373  // type, and that won't be f80 since that is not custom lowered.
7374
7375  // First get the sign bit of second operand.
7376  std::vector<Constant*> CV;
7377  if (SrcVT == MVT::f64) {
7378    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
7379    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7380  } else {
7381    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
7382    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7383    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7384    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7385  }
7386  Constant *C = ConstantVector::get(CV);
7387  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7388  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
7389                              MachinePointerInfo::getConstantPool(),
7390                              false, false, 16);
7391  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
7392
7393  // Shift sign bit right or left if the two operands have different types.
7394  if (SrcVT.bitsGT(VT)) {
7395    // Op0 is MVT::f32, Op1 is MVT::f64.
7396    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
7397    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
7398                          DAG.getConstant(32, MVT::i32));
7399    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
7400    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
7401                          DAG.getIntPtrConstant(0));
7402  }
7403
7404  // Clear first operand sign bit.
7405  CV.clear();
7406  if (VT == MVT::f64) {
7407    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
7408    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7409  } else {
7410    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
7411    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7412    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7413    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7414  }
7415  C = ConstantVector::get(CV);
7416  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7417  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7418                              MachinePointerInfo::getConstantPool(),
7419                              false, false, 16);
7420  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
7421
7422  // Or the value with the sign bit.
7423  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
7424}
7425
7426SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
7427  SDValue N0 = Op.getOperand(0);
7428  DebugLoc dl = Op.getDebugLoc();
7429  EVT VT = Op.getValueType();
7430
7431  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
7432  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
7433                                  DAG.getConstant(1, VT));
7434  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
7435}
7436
7437/// Emit nodes that will be selected as "test Op0,Op0", or something
7438/// equivalent.
7439SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
7440                                    SelectionDAG &DAG) const {
7441  DebugLoc dl = Op.getDebugLoc();
7442
7443  // CF and OF aren't always set the way we want. Determine which
7444  // of these we need.
7445  bool NeedCF = false;
7446  bool NeedOF = false;
7447  switch (X86CC) {
7448  default: break;
7449  case X86::COND_A: case X86::COND_AE:
7450  case X86::COND_B: case X86::COND_BE:
7451    NeedCF = true;
7452    break;
7453  case X86::COND_G: case X86::COND_GE:
7454  case X86::COND_L: case X86::COND_LE:
7455  case X86::COND_O: case X86::COND_NO:
7456    NeedOF = true;
7457    break;
7458  }
7459
7460  // See if we can use the EFLAGS value from the operand instead of
7461  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
7462  // we prove that the arithmetic won't overflow, we can't use OF or CF.
7463  if (Op.getResNo() != 0 || NeedOF || NeedCF)
7464    // Emit a CMP with 0, which is the TEST pattern.
7465    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
7466                       DAG.getConstant(0, Op.getValueType()));
7467
7468  unsigned Opcode = 0;
7469  unsigned NumOperands = 0;
7470  switch (Op.getNode()->getOpcode()) {
7471  case ISD::ADD:
7472    // Due to an isel shortcoming, be conservative if this add is likely to be
7473    // selected as part of a load-modify-store instruction. When the root node
7474    // in a match is a store, isel doesn't know how to remap non-chain non-flag
7475    // uses of other nodes in the match, such as the ADD in this case. This
7476    // leads to the ADD being left around and reselected, with the result being
7477    // two adds in the output.  Alas, even if none our users are stores, that
7478    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
7479    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
7480    // climbing the DAG back to the root, and it doesn't seem to be worth the
7481    // effort.
7482    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
7483           UE = Op.getNode()->use_end(); UI != UE; ++UI)
7484      if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC)
7485        goto default_case;
7486
7487    if (ConstantSDNode *C =
7488        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
7489      // An add of one will be selected as an INC.
7490      if (C->getAPIntValue() == 1) {
7491        Opcode = X86ISD::INC;
7492        NumOperands = 1;
7493        break;
7494      }
7495
7496      // An add of negative one (subtract of one) will be selected as a DEC.
7497      if (C->getAPIntValue().isAllOnesValue()) {
7498        Opcode = X86ISD::DEC;
7499        NumOperands = 1;
7500        break;
7501      }
7502    }
7503
7504    // Otherwise use a regular EFLAGS-setting add.
7505    Opcode = X86ISD::ADD;
7506    NumOperands = 2;
7507    break;
7508  case ISD::AND: {
7509    // If the primary and result isn't used, don't bother using X86ISD::AND,
7510    // because a TEST instruction will be better.
7511    bool NonFlagUse = false;
7512    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
7513           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
7514      SDNode *User = *UI;
7515      unsigned UOpNo = UI.getOperandNo();
7516      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
7517        // Look pass truncate.
7518        UOpNo = User->use_begin().getOperandNo();
7519        User = *User->use_begin();
7520      }
7521
7522      if (User->getOpcode() != ISD::BRCOND &&
7523          User->getOpcode() != ISD::SETCC &&
7524          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
7525        NonFlagUse = true;
7526        break;
7527      }
7528    }
7529
7530    if (!NonFlagUse)
7531      break;
7532  }
7533    // FALL THROUGH
7534  case ISD::SUB:
7535  case ISD::OR:
7536  case ISD::XOR:
7537    // Due to the ISEL shortcoming noted above, be conservative if this op is
7538    // likely to be selected as part of a load-modify-store instruction.
7539    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
7540           UE = Op.getNode()->use_end(); UI != UE; ++UI)
7541      if (UI->getOpcode() == ISD::STORE)
7542        goto default_case;
7543
7544    // Otherwise use a regular EFLAGS-setting instruction.
7545    switch (Op.getNode()->getOpcode()) {
7546    default: llvm_unreachable("unexpected operator!");
7547    case ISD::SUB: Opcode = X86ISD::SUB; break;
7548    case ISD::OR:  Opcode = X86ISD::OR;  break;
7549    case ISD::XOR: Opcode = X86ISD::XOR; break;
7550    case ISD::AND: Opcode = X86ISD::AND; break;
7551    }
7552
7553    NumOperands = 2;
7554    break;
7555  case X86ISD::ADD:
7556  case X86ISD::SUB:
7557  case X86ISD::INC:
7558  case X86ISD::DEC:
7559  case X86ISD::OR:
7560  case X86ISD::XOR:
7561  case X86ISD::AND:
7562    return SDValue(Op.getNode(), 1);
7563  default:
7564  default_case:
7565    break;
7566  }
7567
7568  if (Opcode == 0)
7569    // Emit a CMP with 0, which is the TEST pattern.
7570    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
7571                       DAG.getConstant(0, Op.getValueType()));
7572
7573  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
7574  SmallVector<SDValue, 4> Ops;
7575  for (unsigned i = 0; i != NumOperands; ++i)
7576    Ops.push_back(Op.getOperand(i));
7577
7578  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
7579  DAG.ReplaceAllUsesWith(Op, New);
7580  return SDValue(New.getNode(), 1);
7581}
7582
7583/// Emit nodes that will be selected as "cmp Op0,Op1", or something
7584/// equivalent.
7585SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
7586                                   SelectionDAG &DAG) const {
7587  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
7588    if (C->getAPIntValue() == 0)
7589      return EmitTest(Op0, X86CC, DAG);
7590
7591  DebugLoc dl = Op0.getDebugLoc();
7592  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
7593}
7594
7595/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
7596/// if it's possible.
7597SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
7598                                     DebugLoc dl, SelectionDAG &DAG) const {
7599  SDValue Op0 = And.getOperand(0);
7600  SDValue Op1 = And.getOperand(1);
7601  if (Op0.getOpcode() == ISD::TRUNCATE)
7602    Op0 = Op0.getOperand(0);
7603  if (Op1.getOpcode() == ISD::TRUNCATE)
7604    Op1 = Op1.getOperand(0);
7605
7606  SDValue LHS, RHS;
7607  if (Op1.getOpcode() == ISD::SHL)
7608    std::swap(Op0, Op1);
7609  if (Op0.getOpcode() == ISD::SHL) {
7610    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
7611      if (And00C->getZExtValue() == 1) {
7612        // If we looked past a truncate, check that it's only truncating away
7613        // known zeros.
7614        unsigned BitWidth = Op0.getValueSizeInBits();
7615        unsigned AndBitWidth = And.getValueSizeInBits();
7616        if (BitWidth > AndBitWidth) {
7617          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
7618          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
7619          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
7620            return SDValue();
7621        }
7622        LHS = Op1;
7623        RHS = Op0.getOperand(1);
7624      }
7625  } else if (Op1.getOpcode() == ISD::Constant) {
7626    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
7627    SDValue AndLHS = Op0;
7628    if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
7629      LHS = AndLHS.getOperand(0);
7630      RHS = AndLHS.getOperand(1);
7631    }
7632  }
7633
7634  if (LHS.getNode()) {
7635    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
7636    // instruction.  Since the shift amount is in-range-or-undefined, we know
7637    // that doing a bittest on the i32 value is ok.  We extend to i32 because
7638    // the encoding for the i16 version is larger than the i32 version.
7639    // Also promote i16 to i32 for performance / code size reason.
7640    if (LHS.getValueType() == MVT::i8 ||
7641        LHS.getValueType() == MVT::i16)
7642      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
7643
7644    // If the operand types disagree, extend the shift amount to match.  Since
7645    // BT ignores high bits (like shifts) we can use anyextend.
7646    if (LHS.getValueType() != RHS.getValueType())
7647      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
7648
7649    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
7650    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
7651    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7652                       DAG.getConstant(Cond, MVT::i8), BT);
7653  }
7654
7655  return SDValue();
7656}
7657
7658SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
7659  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
7660  SDValue Op0 = Op.getOperand(0);
7661  SDValue Op1 = Op.getOperand(1);
7662  DebugLoc dl = Op.getDebugLoc();
7663  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7664
7665  // Optimize to BT if possible.
7666  // Lower (X & (1 << N)) == 0 to BT(X, N).
7667  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
7668  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
7669  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
7670      Op1.getOpcode() == ISD::Constant &&
7671      cast<ConstantSDNode>(Op1)->isNullValue() &&
7672      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
7673    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
7674    if (NewSetCC.getNode())
7675      return NewSetCC;
7676  }
7677
7678  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
7679  // these.
7680  if (Op1.getOpcode() == ISD::Constant &&
7681      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
7682       cast<ConstantSDNode>(Op1)->isNullValue()) &&
7683      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
7684
7685    // If the input is a setcc, then reuse the input setcc or use a new one with
7686    // the inverted condition.
7687    if (Op0.getOpcode() == X86ISD::SETCC) {
7688      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
7689      bool Invert = (CC == ISD::SETNE) ^
7690        cast<ConstantSDNode>(Op1)->isNullValue();
7691      if (!Invert) return Op0;
7692
7693      CCode = X86::GetOppositeBranchCondition(CCode);
7694      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7695                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
7696    }
7697  }
7698
7699  bool isFP = Op1.getValueType().isFloatingPoint();
7700  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
7701  if (X86CC == X86::COND_INVALID)
7702    return SDValue();
7703
7704  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
7705  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7706                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
7707}
7708
7709SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
7710  SDValue Cond;
7711  SDValue Op0 = Op.getOperand(0);
7712  SDValue Op1 = Op.getOperand(1);
7713  SDValue CC = Op.getOperand(2);
7714  EVT VT = Op.getValueType();
7715  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
7716  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
7717  DebugLoc dl = Op.getDebugLoc();
7718
7719  if (isFP) {
7720    unsigned SSECC = 8;
7721    EVT VT0 = Op0.getValueType();
7722    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
7723    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
7724    bool Swap = false;
7725
7726    switch (SetCCOpcode) {
7727    default: break;
7728    case ISD::SETOEQ:
7729    case ISD::SETEQ:  SSECC = 0; break;
7730    case ISD::SETOGT:
7731    case ISD::SETGT: Swap = true; // Fallthrough
7732    case ISD::SETLT:
7733    case ISD::SETOLT: SSECC = 1; break;
7734    case ISD::SETOGE:
7735    case ISD::SETGE: Swap = true; // Fallthrough
7736    case ISD::SETLE:
7737    case ISD::SETOLE: SSECC = 2; break;
7738    case ISD::SETUO:  SSECC = 3; break;
7739    case ISD::SETUNE:
7740    case ISD::SETNE:  SSECC = 4; break;
7741    case ISD::SETULE: Swap = true;
7742    case ISD::SETUGE: SSECC = 5; break;
7743    case ISD::SETULT: Swap = true;
7744    case ISD::SETUGT: SSECC = 6; break;
7745    case ISD::SETO:   SSECC = 7; break;
7746    }
7747    if (Swap)
7748      std::swap(Op0, Op1);
7749
7750    // In the two special cases we can't handle, emit two comparisons.
7751    if (SSECC == 8) {
7752      if (SetCCOpcode == ISD::SETUEQ) {
7753        SDValue UNORD, EQ;
7754        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
7755        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
7756        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
7757      }
7758      else if (SetCCOpcode == ISD::SETONE) {
7759        SDValue ORD, NEQ;
7760        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
7761        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
7762        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
7763      }
7764      llvm_unreachable("Illegal FP comparison");
7765    }
7766    // Handle all other FP comparisons here.
7767    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
7768  }
7769
7770  // We are handling one of the integer comparisons here.  Since SSE only has
7771  // GT and EQ comparisons for integer, swapping operands and multiple
7772  // operations may be required for some comparisons.
7773  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
7774  bool Swap = false, Invert = false, FlipSigns = false;
7775
7776  switch (VT.getSimpleVT().SimpleTy) {
7777  default: break;
7778  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
7779  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
7780  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
7781  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
7782  }
7783
7784  switch (SetCCOpcode) {
7785  default: break;
7786  case ISD::SETNE:  Invert = true;
7787  case ISD::SETEQ:  Opc = EQOpc; break;
7788  case ISD::SETLT:  Swap = true;
7789  case ISD::SETGT:  Opc = GTOpc; break;
7790  case ISD::SETGE:  Swap = true;
7791  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
7792  case ISD::SETULT: Swap = true;
7793  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
7794  case ISD::SETUGE: Swap = true;
7795  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
7796  }
7797  if (Swap)
7798    std::swap(Op0, Op1);
7799
7800  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
7801  // bits of the inputs before performing those operations.
7802  if (FlipSigns) {
7803    EVT EltVT = VT.getVectorElementType();
7804    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
7805                                      EltVT);
7806    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
7807    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
7808                                    SignBits.size());
7809    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
7810    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
7811  }
7812
7813  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
7814
7815  // If the logical-not of the result is required, perform that now.
7816  if (Invert)
7817    Result = DAG.getNOT(dl, Result, VT);
7818
7819  return Result;
7820}
7821
7822// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
7823static bool isX86LogicalCmp(SDValue Op) {
7824  unsigned Opc = Op.getNode()->getOpcode();
7825  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
7826    return true;
7827  if (Op.getResNo() == 1 &&
7828      (Opc == X86ISD::ADD ||
7829       Opc == X86ISD::SUB ||
7830       Opc == X86ISD::ADC ||
7831       Opc == X86ISD::SBB ||
7832       Opc == X86ISD::SMUL ||
7833       Opc == X86ISD::UMUL ||
7834       Opc == X86ISD::INC ||
7835       Opc == X86ISD::DEC ||
7836       Opc == X86ISD::OR ||
7837       Opc == X86ISD::XOR ||
7838       Opc == X86ISD::AND))
7839    return true;
7840
7841  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
7842    return true;
7843
7844  return false;
7845}
7846
7847static bool isZero(SDValue V) {
7848  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
7849  return C && C->isNullValue();
7850}
7851
7852static bool isAllOnes(SDValue V) {
7853  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
7854  return C && C->isAllOnesValue();
7855}
7856
7857SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
7858  bool addTest = true;
7859  SDValue Cond  = Op.getOperand(0);
7860  SDValue Op1 = Op.getOperand(1);
7861  SDValue Op2 = Op.getOperand(2);
7862  DebugLoc DL = Op.getDebugLoc();
7863  SDValue CC;
7864
7865  if (Cond.getOpcode() == ISD::SETCC) {
7866    SDValue NewCond = LowerSETCC(Cond, DAG);
7867    if (NewCond.getNode())
7868      Cond = NewCond;
7869  }
7870
7871  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
7872  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
7873  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
7874  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
7875  if (Cond.getOpcode() == X86ISD::SETCC &&
7876      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
7877      isZero(Cond.getOperand(1).getOperand(1))) {
7878    SDValue Cmp = Cond.getOperand(1);
7879
7880    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
7881
7882    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
7883        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
7884      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
7885
7886      SDValue CmpOp0 = Cmp.getOperand(0);
7887      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
7888                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
7889
7890      SDValue Res =   // Res = 0 or -1.
7891        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
7892                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
7893
7894      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
7895        Res = DAG.getNOT(DL, Res, Res.getValueType());
7896
7897      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
7898      if (N2C == 0 || !N2C->isNullValue())
7899        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
7900      return Res;
7901    }
7902  }
7903
7904  // Look past (and (setcc_carry (cmp ...)), 1).
7905  if (Cond.getOpcode() == ISD::AND &&
7906      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
7907    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
7908    if (C && C->getAPIntValue() == 1)
7909      Cond = Cond.getOperand(0);
7910  }
7911
7912  // If condition flag is set by a X86ISD::CMP, then use it as the condition
7913  // setting operand in place of the X86ISD::SETCC.
7914  if (Cond.getOpcode() == X86ISD::SETCC ||
7915      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
7916    CC = Cond.getOperand(0);
7917
7918    SDValue Cmp = Cond.getOperand(1);
7919    unsigned Opc = Cmp.getOpcode();
7920    EVT VT = Op.getValueType();
7921
7922    bool IllegalFPCMov = false;
7923    if (VT.isFloatingPoint() && !VT.isVector() &&
7924        !isScalarFPTypeInSSEReg(VT))  // FPStack?
7925      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
7926
7927    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
7928        Opc == X86ISD::BT) { // FIXME
7929      Cond = Cmp;
7930      addTest = false;
7931    }
7932  }
7933
7934  if (addTest) {
7935    // Look pass the truncate.
7936    if (Cond.getOpcode() == ISD::TRUNCATE)
7937      Cond = Cond.getOperand(0);
7938
7939    // We know the result of AND is compared against zero. Try to match
7940    // it to BT.
7941    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
7942      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
7943      if (NewSetCC.getNode()) {
7944        CC = NewSetCC.getOperand(0);
7945        Cond = NewSetCC.getOperand(1);
7946        addTest = false;
7947      }
7948    }
7949  }
7950
7951  if (addTest) {
7952    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7953    Cond = EmitTest(Cond, X86::COND_NE, DAG);
7954  }
7955
7956  // a <  b ? -1 :  0 -> RES = ~setcc_carry
7957  // a <  b ?  0 : -1 -> RES = setcc_carry
7958  // a >= b ? -1 :  0 -> RES = setcc_carry
7959  // a >= b ?  0 : -1 -> RES = ~setcc_carry
7960  if (Cond.getOpcode() == X86ISD::CMP) {
7961    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
7962
7963    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
7964        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
7965      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
7966                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
7967      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
7968        return DAG.getNOT(DL, Res, Res.getValueType());
7969      return Res;
7970    }
7971  }
7972
7973  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
7974  // condition is true.
7975  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
7976  SDValue Ops[] = { Op2, Op1, CC, Cond };
7977  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
7978}
7979
7980// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
7981// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
7982// from the AND / OR.
7983static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
7984  Opc = Op.getOpcode();
7985  if (Opc != ISD::OR && Opc != ISD::AND)
7986    return false;
7987  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
7988          Op.getOperand(0).hasOneUse() &&
7989          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
7990          Op.getOperand(1).hasOneUse());
7991}
7992
7993// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
7994// 1 and that the SETCC node has a single use.
7995static bool isXor1OfSetCC(SDValue Op) {
7996  if (Op.getOpcode() != ISD::XOR)
7997    return false;
7998  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7999  if (N1C && N1C->getAPIntValue() == 1) {
8000    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8001      Op.getOperand(0).hasOneUse();
8002  }
8003  return false;
8004}
8005
8006SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
8007  bool addTest = true;
8008  SDValue Chain = Op.getOperand(0);
8009  SDValue Cond  = Op.getOperand(1);
8010  SDValue Dest  = Op.getOperand(2);
8011  DebugLoc dl = Op.getDebugLoc();
8012  SDValue CC;
8013
8014  if (Cond.getOpcode() == ISD::SETCC) {
8015    SDValue NewCond = LowerSETCC(Cond, DAG);
8016    if (NewCond.getNode())
8017      Cond = NewCond;
8018  }
8019#if 0
8020  // FIXME: LowerXALUO doesn't handle these!!
8021  else if (Cond.getOpcode() == X86ISD::ADD  ||
8022           Cond.getOpcode() == X86ISD::SUB  ||
8023           Cond.getOpcode() == X86ISD::SMUL ||
8024           Cond.getOpcode() == X86ISD::UMUL)
8025    Cond = LowerXALUO(Cond, DAG);
8026#endif
8027
8028  // Look pass (and (setcc_carry (cmp ...)), 1).
8029  if (Cond.getOpcode() == ISD::AND &&
8030      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8031    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8032    if (C && C->getAPIntValue() == 1)
8033      Cond = Cond.getOperand(0);
8034  }
8035
8036  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8037  // setting operand in place of the X86ISD::SETCC.
8038  if (Cond.getOpcode() == X86ISD::SETCC ||
8039      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
8040    CC = Cond.getOperand(0);
8041
8042    SDValue Cmp = Cond.getOperand(1);
8043    unsigned Opc = Cmp.getOpcode();
8044    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
8045    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
8046      Cond = Cmp;
8047      addTest = false;
8048    } else {
8049      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
8050      default: break;
8051      case X86::COND_O:
8052      case X86::COND_B:
8053        // These can only come from an arithmetic instruction with overflow,
8054        // e.g. SADDO, UADDO.
8055        Cond = Cond.getNode()->getOperand(1);
8056        addTest = false;
8057        break;
8058      }
8059    }
8060  } else {
8061    unsigned CondOpc;
8062    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
8063      SDValue Cmp = Cond.getOperand(0).getOperand(1);
8064      if (CondOpc == ISD::OR) {
8065        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
8066        // two branches instead of an explicit OR instruction with a
8067        // separate test.
8068        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8069            isX86LogicalCmp(Cmp)) {
8070          CC = Cond.getOperand(0).getOperand(0);
8071          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8072                              Chain, Dest, CC, Cmp);
8073          CC = Cond.getOperand(1).getOperand(0);
8074          Cond = Cmp;
8075          addTest = false;
8076        }
8077      } else { // ISD::AND
8078        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
8079        // two branches instead of an explicit AND instruction with a
8080        // separate test. However, we only do this if this block doesn't
8081        // have a fall-through edge, because this requires an explicit
8082        // jmp when the condition is false.
8083        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8084            isX86LogicalCmp(Cmp) &&
8085            Op.getNode()->hasOneUse()) {
8086          X86::CondCode CCode =
8087            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8088          CCode = X86::GetOppositeBranchCondition(CCode);
8089          CC = DAG.getConstant(CCode, MVT::i8);
8090          SDNode *User = *Op.getNode()->use_begin();
8091          // Look for an unconditional branch following this conditional branch.
8092          // We need this because we need to reverse the successors in order
8093          // to implement FCMP_OEQ.
8094          if (User->getOpcode() == ISD::BR) {
8095            SDValue FalseBB = User->getOperand(1);
8096            SDNode *NewBR =
8097              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8098            assert(NewBR == User);
8099            (void)NewBR;
8100            Dest = FalseBB;
8101
8102            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8103                                Chain, Dest, CC, Cmp);
8104            X86::CondCode CCode =
8105              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
8106            CCode = X86::GetOppositeBranchCondition(CCode);
8107            CC = DAG.getConstant(CCode, MVT::i8);
8108            Cond = Cmp;
8109            addTest = false;
8110          }
8111        }
8112      }
8113    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
8114      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
8115      // It should be transformed during dag combiner except when the condition
8116      // is set by a arithmetics with overflow node.
8117      X86::CondCode CCode =
8118        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8119      CCode = X86::GetOppositeBranchCondition(CCode);
8120      CC = DAG.getConstant(CCode, MVT::i8);
8121      Cond = Cond.getOperand(0).getOperand(1);
8122      addTest = false;
8123    }
8124  }
8125
8126  if (addTest) {
8127    // Look pass the truncate.
8128    if (Cond.getOpcode() == ISD::TRUNCATE)
8129      Cond = Cond.getOperand(0);
8130
8131    // We know the result of AND is compared against zero. Try to match
8132    // it to BT.
8133    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8134      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
8135      if (NewSetCC.getNode()) {
8136        CC = NewSetCC.getOperand(0);
8137        Cond = NewSetCC.getOperand(1);
8138        addTest = false;
8139      }
8140    }
8141  }
8142
8143  if (addTest) {
8144    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8145    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8146  }
8147  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8148                     Chain, Dest, CC, Cond);
8149}
8150
8151
8152// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
8153// Calls to _alloca is needed to probe the stack when allocating more than 4k
8154// bytes in one go. Touching the stack at 4K increments is necessary to ensure
8155// that the guard pages used by the OS virtual memory manager are allocated in
8156// correct sequence.
8157SDValue
8158X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
8159                                           SelectionDAG &DAG) const {
8160  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows()) &&
8161         "This should be used only on Windows targets");
8162  assert(!Subtarget->isTargetEnvMacho());
8163  DebugLoc dl = Op.getDebugLoc();
8164
8165  // Get the inputs.
8166  SDValue Chain = Op.getOperand(0);
8167  SDValue Size  = Op.getOperand(1);
8168  // FIXME: Ensure alignment here
8169
8170  SDValue Flag;
8171
8172  EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
8173  unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
8174
8175  Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
8176  Flag = Chain.getValue(1);
8177
8178  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8179
8180  Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
8181  Flag = Chain.getValue(1);
8182
8183  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
8184
8185  SDValue Ops1[2] = { Chain.getValue(0), Chain };
8186  return DAG.getMergeValues(Ops1, 2, dl);
8187}
8188
8189SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
8190  MachineFunction &MF = DAG.getMachineFunction();
8191  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
8192
8193  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
8194  DebugLoc DL = Op.getDebugLoc();
8195
8196  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
8197    // vastart just stores the address of the VarArgsFrameIndex slot into the
8198    // memory location argument.
8199    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
8200                                   getPointerTy());
8201    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
8202                        MachinePointerInfo(SV), false, false, 0);
8203  }
8204
8205  // __va_list_tag:
8206  //   gp_offset         (0 - 6 * 8)
8207  //   fp_offset         (48 - 48 + 8 * 16)
8208  //   overflow_arg_area (point to parameters coming in memory).
8209  //   reg_save_area
8210  SmallVector<SDValue, 8> MemOps;
8211  SDValue FIN = Op.getOperand(1);
8212  // Store gp_offset
8213  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
8214                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
8215                                               MVT::i32),
8216                               FIN, MachinePointerInfo(SV), false, false, 0);
8217  MemOps.push_back(Store);
8218
8219  // Store fp_offset
8220  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8221                    FIN, DAG.getIntPtrConstant(4));
8222  Store = DAG.getStore(Op.getOperand(0), DL,
8223                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
8224                                       MVT::i32),
8225                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
8226  MemOps.push_back(Store);
8227
8228  // Store ptr to overflow_arg_area
8229  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8230                    FIN, DAG.getIntPtrConstant(4));
8231  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
8232                                    getPointerTy());
8233  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
8234                       MachinePointerInfo(SV, 8),
8235                       false, false, 0);
8236  MemOps.push_back(Store);
8237
8238  // Store ptr to reg_save_area.
8239  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8240                    FIN, DAG.getIntPtrConstant(8));
8241  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
8242                                    getPointerTy());
8243  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
8244                       MachinePointerInfo(SV, 16), false, false, 0);
8245  MemOps.push_back(Store);
8246  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
8247                     &MemOps[0], MemOps.size());
8248}
8249
8250SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
8251  assert(Subtarget->is64Bit() &&
8252         "LowerVAARG only handles 64-bit va_arg!");
8253  assert((Subtarget->isTargetLinux() ||
8254          Subtarget->isTargetDarwin()) &&
8255          "Unhandled target in LowerVAARG");
8256  assert(Op.getNode()->getNumOperands() == 4);
8257  SDValue Chain = Op.getOperand(0);
8258  SDValue SrcPtr = Op.getOperand(1);
8259  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
8260  unsigned Align = Op.getConstantOperandVal(3);
8261  DebugLoc dl = Op.getDebugLoc();
8262
8263  EVT ArgVT = Op.getNode()->getValueType(0);
8264  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
8265  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
8266  uint8_t ArgMode;
8267
8268  // Decide which area this value should be read from.
8269  // TODO: Implement the AMD64 ABI in its entirety. This simple
8270  // selection mechanism works only for the basic types.
8271  if (ArgVT == MVT::f80) {
8272    llvm_unreachable("va_arg for f80 not yet implemented");
8273  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
8274    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
8275  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
8276    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
8277  } else {
8278    llvm_unreachable("Unhandled argument type in LowerVAARG");
8279  }
8280
8281  if (ArgMode == 2) {
8282    // Sanity Check: Make sure using fp_offset makes sense.
8283    assert(!UseSoftFloat &&
8284           !(DAG.getMachineFunction()
8285                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
8286           Subtarget->hasXMM());
8287  }
8288
8289  // Insert VAARG_64 node into the DAG
8290  // VAARG_64 returns two values: Variable Argument Address, Chain
8291  SmallVector<SDValue, 11> InstOps;
8292  InstOps.push_back(Chain);
8293  InstOps.push_back(SrcPtr);
8294  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
8295  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
8296  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
8297  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
8298  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
8299                                          VTs, &InstOps[0], InstOps.size(),
8300                                          MVT::i64,
8301                                          MachinePointerInfo(SV),
8302                                          /*Align=*/0,
8303                                          /*Volatile=*/false,
8304                                          /*ReadMem=*/true,
8305                                          /*WriteMem=*/true);
8306  Chain = VAARG.getValue(1);
8307
8308  // Load the next argument and return it
8309  return DAG.getLoad(ArgVT, dl,
8310                     Chain,
8311                     VAARG,
8312                     MachinePointerInfo(),
8313                     false, false, 0);
8314}
8315
8316SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
8317  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
8318  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
8319  SDValue Chain = Op.getOperand(0);
8320  SDValue DstPtr = Op.getOperand(1);
8321  SDValue SrcPtr = Op.getOperand(2);
8322  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
8323  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
8324  DebugLoc DL = Op.getDebugLoc();
8325
8326  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
8327                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
8328                       false,
8329                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
8330}
8331
8332SDValue
8333X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
8334  DebugLoc dl = Op.getDebugLoc();
8335  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8336  switch (IntNo) {
8337  default: return SDValue();    // Don't custom lower most intrinsics.
8338  // Comparison intrinsics.
8339  case Intrinsic::x86_sse_comieq_ss:
8340  case Intrinsic::x86_sse_comilt_ss:
8341  case Intrinsic::x86_sse_comile_ss:
8342  case Intrinsic::x86_sse_comigt_ss:
8343  case Intrinsic::x86_sse_comige_ss:
8344  case Intrinsic::x86_sse_comineq_ss:
8345  case Intrinsic::x86_sse_ucomieq_ss:
8346  case Intrinsic::x86_sse_ucomilt_ss:
8347  case Intrinsic::x86_sse_ucomile_ss:
8348  case Intrinsic::x86_sse_ucomigt_ss:
8349  case Intrinsic::x86_sse_ucomige_ss:
8350  case Intrinsic::x86_sse_ucomineq_ss:
8351  case Intrinsic::x86_sse2_comieq_sd:
8352  case Intrinsic::x86_sse2_comilt_sd:
8353  case Intrinsic::x86_sse2_comile_sd:
8354  case Intrinsic::x86_sse2_comigt_sd:
8355  case Intrinsic::x86_sse2_comige_sd:
8356  case Intrinsic::x86_sse2_comineq_sd:
8357  case Intrinsic::x86_sse2_ucomieq_sd:
8358  case Intrinsic::x86_sse2_ucomilt_sd:
8359  case Intrinsic::x86_sse2_ucomile_sd:
8360  case Intrinsic::x86_sse2_ucomigt_sd:
8361  case Intrinsic::x86_sse2_ucomige_sd:
8362  case Intrinsic::x86_sse2_ucomineq_sd: {
8363    unsigned Opc = 0;
8364    ISD::CondCode CC = ISD::SETCC_INVALID;
8365    switch (IntNo) {
8366    default: break;
8367    case Intrinsic::x86_sse_comieq_ss:
8368    case Intrinsic::x86_sse2_comieq_sd:
8369      Opc = X86ISD::COMI;
8370      CC = ISD::SETEQ;
8371      break;
8372    case Intrinsic::x86_sse_comilt_ss:
8373    case Intrinsic::x86_sse2_comilt_sd:
8374      Opc = X86ISD::COMI;
8375      CC = ISD::SETLT;
8376      break;
8377    case Intrinsic::x86_sse_comile_ss:
8378    case Intrinsic::x86_sse2_comile_sd:
8379      Opc = X86ISD::COMI;
8380      CC = ISD::SETLE;
8381      break;
8382    case Intrinsic::x86_sse_comigt_ss:
8383    case Intrinsic::x86_sse2_comigt_sd:
8384      Opc = X86ISD::COMI;
8385      CC = ISD::SETGT;
8386      break;
8387    case Intrinsic::x86_sse_comige_ss:
8388    case Intrinsic::x86_sse2_comige_sd:
8389      Opc = X86ISD::COMI;
8390      CC = ISD::SETGE;
8391      break;
8392    case Intrinsic::x86_sse_comineq_ss:
8393    case Intrinsic::x86_sse2_comineq_sd:
8394      Opc = X86ISD::COMI;
8395      CC = ISD::SETNE;
8396      break;
8397    case Intrinsic::x86_sse_ucomieq_ss:
8398    case Intrinsic::x86_sse2_ucomieq_sd:
8399      Opc = X86ISD::UCOMI;
8400      CC = ISD::SETEQ;
8401      break;
8402    case Intrinsic::x86_sse_ucomilt_ss:
8403    case Intrinsic::x86_sse2_ucomilt_sd:
8404      Opc = X86ISD::UCOMI;
8405      CC = ISD::SETLT;
8406      break;
8407    case Intrinsic::x86_sse_ucomile_ss:
8408    case Intrinsic::x86_sse2_ucomile_sd:
8409      Opc = X86ISD::UCOMI;
8410      CC = ISD::SETLE;
8411      break;
8412    case Intrinsic::x86_sse_ucomigt_ss:
8413    case Intrinsic::x86_sse2_ucomigt_sd:
8414      Opc = X86ISD::UCOMI;
8415      CC = ISD::SETGT;
8416      break;
8417    case Intrinsic::x86_sse_ucomige_ss:
8418    case Intrinsic::x86_sse2_ucomige_sd:
8419      Opc = X86ISD::UCOMI;
8420      CC = ISD::SETGE;
8421      break;
8422    case Intrinsic::x86_sse_ucomineq_ss:
8423    case Intrinsic::x86_sse2_ucomineq_sd:
8424      Opc = X86ISD::UCOMI;
8425      CC = ISD::SETNE;
8426      break;
8427    }
8428
8429    SDValue LHS = Op.getOperand(1);
8430    SDValue RHS = Op.getOperand(2);
8431    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
8432    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
8433    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
8434    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8435                                DAG.getConstant(X86CC, MVT::i8), Cond);
8436    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
8437  }
8438  // ptest and testp intrinsics. The intrinsic these come from are designed to
8439  // return an integer value, not just an instruction so lower it to the ptest
8440  // or testp pattern and a setcc for the result.
8441  case Intrinsic::x86_sse41_ptestz:
8442  case Intrinsic::x86_sse41_ptestc:
8443  case Intrinsic::x86_sse41_ptestnzc:
8444  case Intrinsic::x86_avx_ptestz_256:
8445  case Intrinsic::x86_avx_ptestc_256:
8446  case Intrinsic::x86_avx_ptestnzc_256:
8447  case Intrinsic::x86_avx_vtestz_ps:
8448  case Intrinsic::x86_avx_vtestc_ps:
8449  case Intrinsic::x86_avx_vtestnzc_ps:
8450  case Intrinsic::x86_avx_vtestz_pd:
8451  case Intrinsic::x86_avx_vtestc_pd:
8452  case Intrinsic::x86_avx_vtestnzc_pd:
8453  case Intrinsic::x86_avx_vtestz_ps_256:
8454  case Intrinsic::x86_avx_vtestc_ps_256:
8455  case Intrinsic::x86_avx_vtestnzc_ps_256:
8456  case Intrinsic::x86_avx_vtestz_pd_256:
8457  case Intrinsic::x86_avx_vtestc_pd_256:
8458  case Intrinsic::x86_avx_vtestnzc_pd_256: {
8459    bool IsTestPacked = false;
8460    unsigned X86CC = 0;
8461    switch (IntNo) {
8462    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
8463    case Intrinsic::x86_avx_vtestz_ps:
8464    case Intrinsic::x86_avx_vtestz_pd:
8465    case Intrinsic::x86_avx_vtestz_ps_256:
8466    case Intrinsic::x86_avx_vtestz_pd_256:
8467      IsTestPacked = true; // Fallthrough
8468    case Intrinsic::x86_sse41_ptestz:
8469    case Intrinsic::x86_avx_ptestz_256:
8470      // ZF = 1
8471      X86CC = X86::COND_E;
8472      break;
8473    case Intrinsic::x86_avx_vtestc_ps:
8474    case Intrinsic::x86_avx_vtestc_pd:
8475    case Intrinsic::x86_avx_vtestc_ps_256:
8476    case Intrinsic::x86_avx_vtestc_pd_256:
8477      IsTestPacked = true; // Fallthrough
8478    case Intrinsic::x86_sse41_ptestc:
8479    case Intrinsic::x86_avx_ptestc_256:
8480      // CF = 1
8481      X86CC = X86::COND_B;
8482      break;
8483    case Intrinsic::x86_avx_vtestnzc_ps:
8484    case Intrinsic::x86_avx_vtestnzc_pd:
8485    case Intrinsic::x86_avx_vtestnzc_ps_256:
8486    case Intrinsic::x86_avx_vtestnzc_pd_256:
8487      IsTestPacked = true; // Fallthrough
8488    case Intrinsic::x86_sse41_ptestnzc:
8489    case Intrinsic::x86_avx_ptestnzc_256:
8490      // ZF and CF = 0
8491      X86CC = X86::COND_A;
8492      break;
8493    }
8494
8495    SDValue LHS = Op.getOperand(1);
8496    SDValue RHS = Op.getOperand(2);
8497    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
8498    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
8499    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
8500    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
8501    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
8502  }
8503
8504  // Fix vector shift instructions where the last operand is a non-immediate
8505  // i32 value.
8506  case Intrinsic::x86_sse2_pslli_w:
8507  case Intrinsic::x86_sse2_pslli_d:
8508  case Intrinsic::x86_sse2_pslli_q:
8509  case Intrinsic::x86_sse2_psrli_w:
8510  case Intrinsic::x86_sse2_psrli_d:
8511  case Intrinsic::x86_sse2_psrli_q:
8512  case Intrinsic::x86_sse2_psrai_w:
8513  case Intrinsic::x86_sse2_psrai_d:
8514  case Intrinsic::x86_mmx_pslli_w:
8515  case Intrinsic::x86_mmx_pslli_d:
8516  case Intrinsic::x86_mmx_pslli_q:
8517  case Intrinsic::x86_mmx_psrli_w:
8518  case Intrinsic::x86_mmx_psrli_d:
8519  case Intrinsic::x86_mmx_psrli_q:
8520  case Intrinsic::x86_mmx_psrai_w:
8521  case Intrinsic::x86_mmx_psrai_d: {
8522    SDValue ShAmt = Op.getOperand(2);
8523    if (isa<ConstantSDNode>(ShAmt))
8524      return SDValue();
8525
8526    unsigned NewIntNo = 0;
8527    EVT ShAmtVT = MVT::v4i32;
8528    switch (IntNo) {
8529    case Intrinsic::x86_sse2_pslli_w:
8530      NewIntNo = Intrinsic::x86_sse2_psll_w;
8531      break;
8532    case Intrinsic::x86_sse2_pslli_d:
8533      NewIntNo = Intrinsic::x86_sse2_psll_d;
8534      break;
8535    case Intrinsic::x86_sse2_pslli_q:
8536      NewIntNo = Intrinsic::x86_sse2_psll_q;
8537      break;
8538    case Intrinsic::x86_sse2_psrli_w:
8539      NewIntNo = Intrinsic::x86_sse2_psrl_w;
8540      break;
8541    case Intrinsic::x86_sse2_psrli_d:
8542      NewIntNo = Intrinsic::x86_sse2_psrl_d;
8543      break;
8544    case Intrinsic::x86_sse2_psrli_q:
8545      NewIntNo = Intrinsic::x86_sse2_psrl_q;
8546      break;
8547    case Intrinsic::x86_sse2_psrai_w:
8548      NewIntNo = Intrinsic::x86_sse2_psra_w;
8549      break;
8550    case Intrinsic::x86_sse2_psrai_d:
8551      NewIntNo = Intrinsic::x86_sse2_psra_d;
8552      break;
8553    default: {
8554      ShAmtVT = MVT::v2i32;
8555      switch (IntNo) {
8556      case Intrinsic::x86_mmx_pslli_w:
8557        NewIntNo = Intrinsic::x86_mmx_psll_w;
8558        break;
8559      case Intrinsic::x86_mmx_pslli_d:
8560        NewIntNo = Intrinsic::x86_mmx_psll_d;
8561        break;
8562      case Intrinsic::x86_mmx_pslli_q:
8563        NewIntNo = Intrinsic::x86_mmx_psll_q;
8564        break;
8565      case Intrinsic::x86_mmx_psrli_w:
8566        NewIntNo = Intrinsic::x86_mmx_psrl_w;
8567        break;
8568      case Intrinsic::x86_mmx_psrli_d:
8569        NewIntNo = Intrinsic::x86_mmx_psrl_d;
8570        break;
8571      case Intrinsic::x86_mmx_psrli_q:
8572        NewIntNo = Intrinsic::x86_mmx_psrl_q;
8573        break;
8574      case Intrinsic::x86_mmx_psrai_w:
8575        NewIntNo = Intrinsic::x86_mmx_psra_w;
8576        break;
8577      case Intrinsic::x86_mmx_psrai_d:
8578        NewIntNo = Intrinsic::x86_mmx_psra_d;
8579        break;
8580      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
8581      }
8582      break;
8583    }
8584    }
8585
8586    // The vector shift intrinsics with scalars uses 32b shift amounts but
8587    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
8588    // to be zero.
8589    SDValue ShOps[4];
8590    ShOps[0] = ShAmt;
8591    ShOps[1] = DAG.getConstant(0, MVT::i32);
8592    if (ShAmtVT == MVT::v4i32) {
8593      ShOps[2] = DAG.getUNDEF(MVT::i32);
8594      ShOps[3] = DAG.getUNDEF(MVT::i32);
8595      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
8596    } else {
8597      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
8598// FIXME this must be lowered to get rid of the invalid type.
8599    }
8600
8601    EVT VT = Op.getValueType();
8602    ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
8603    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8604                       DAG.getConstant(NewIntNo, MVT::i32),
8605                       Op.getOperand(1), ShAmt);
8606  }
8607  }
8608}
8609
8610SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
8611                                           SelectionDAG &DAG) const {
8612  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8613  MFI->setReturnAddressIsTaken(true);
8614
8615  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8616  DebugLoc dl = Op.getDebugLoc();
8617
8618  if (Depth > 0) {
8619    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
8620    SDValue Offset =
8621      DAG.getConstant(TD->getPointerSize(),
8622                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
8623    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
8624                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
8625                                   FrameAddr, Offset),
8626                       MachinePointerInfo(), false, false, 0);
8627  }
8628
8629  // Just load the return address.
8630  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
8631  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
8632                     RetAddrFI, MachinePointerInfo(), false, false, 0);
8633}
8634
8635SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
8636  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8637  MFI->setFrameAddressIsTaken(true);
8638
8639  EVT VT = Op.getValueType();
8640  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
8641  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8642  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
8643  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
8644  while (Depth--)
8645    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
8646                            MachinePointerInfo(),
8647                            false, false, 0);
8648  return FrameAddr;
8649}
8650
8651SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
8652                                                     SelectionDAG &DAG) const {
8653  return DAG.getIntPtrConstant(2*TD->getPointerSize());
8654}
8655
8656SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
8657  MachineFunction &MF = DAG.getMachineFunction();
8658  SDValue Chain     = Op.getOperand(0);
8659  SDValue Offset    = Op.getOperand(1);
8660  SDValue Handler   = Op.getOperand(2);
8661  DebugLoc dl       = Op.getDebugLoc();
8662
8663  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
8664                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
8665                                     getPointerTy());
8666  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
8667
8668  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
8669                                  DAG.getIntPtrConstant(TD->getPointerSize()));
8670  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
8671  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
8672                       false, false, 0);
8673  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
8674  MF.getRegInfo().addLiveOut(StoreAddrReg);
8675
8676  return DAG.getNode(X86ISD::EH_RETURN, dl,
8677                     MVT::Other,
8678                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
8679}
8680
8681SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
8682                                             SelectionDAG &DAG) const {
8683  SDValue Root = Op.getOperand(0);
8684  SDValue Trmp = Op.getOperand(1); // trampoline
8685  SDValue FPtr = Op.getOperand(2); // nested function
8686  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
8687  DebugLoc dl  = Op.getDebugLoc();
8688
8689  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
8690
8691  if (Subtarget->is64Bit()) {
8692    SDValue OutChains[6];
8693
8694    // Large code-model.
8695    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
8696    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
8697
8698    const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
8699    const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
8700
8701    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
8702
8703    // Load the pointer to the nested function into R11.
8704    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
8705    SDValue Addr = Trmp;
8706    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8707                                Addr, MachinePointerInfo(TrmpAddr),
8708                                false, false, 0);
8709
8710    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8711                       DAG.getConstant(2, MVT::i64));
8712    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
8713                                MachinePointerInfo(TrmpAddr, 2),
8714                                false, false, 2);
8715
8716    // Load the 'nest' parameter value into R10.
8717    // R10 is specified in X86CallingConv.td
8718    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
8719    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8720                       DAG.getConstant(10, MVT::i64));
8721    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8722                                Addr, MachinePointerInfo(TrmpAddr, 10),
8723                                false, false, 0);
8724
8725    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8726                       DAG.getConstant(12, MVT::i64));
8727    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
8728                                MachinePointerInfo(TrmpAddr, 12),
8729                                false, false, 2);
8730
8731    // Jump to the nested function.
8732    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
8733    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8734                       DAG.getConstant(20, MVT::i64));
8735    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8736                                Addr, MachinePointerInfo(TrmpAddr, 20),
8737                                false, false, 0);
8738
8739    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
8740    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8741                       DAG.getConstant(22, MVT::i64));
8742    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
8743                                MachinePointerInfo(TrmpAddr, 22),
8744                                false, false, 0);
8745
8746    SDValue Ops[] =
8747      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
8748    return DAG.getMergeValues(Ops, 2, dl);
8749  } else {
8750    const Function *Func =
8751      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
8752    CallingConv::ID CC = Func->getCallingConv();
8753    unsigned NestReg;
8754
8755    switch (CC) {
8756    default:
8757      llvm_unreachable("Unsupported calling convention");
8758    case CallingConv::C:
8759    case CallingConv::X86_StdCall: {
8760      // Pass 'nest' parameter in ECX.
8761      // Must be kept in sync with X86CallingConv.td
8762      NestReg = X86::ECX;
8763
8764      // Check that ECX wasn't needed by an 'inreg' parameter.
8765      FunctionType *FTy = Func->getFunctionType();
8766      const AttrListPtr &Attrs = Func->getAttributes();
8767
8768      if (!Attrs.isEmpty() && !Func->isVarArg()) {
8769        unsigned InRegCount = 0;
8770        unsigned Idx = 1;
8771
8772        for (FunctionType::param_iterator I = FTy->param_begin(),
8773             E = FTy->param_end(); I != E; ++I, ++Idx)
8774          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
8775            // FIXME: should only count parameters that are lowered to integers.
8776            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
8777
8778        if (InRegCount > 2) {
8779          report_fatal_error("Nest register in use - reduce number of inreg"
8780                             " parameters!");
8781        }
8782      }
8783      break;
8784    }
8785    case CallingConv::X86_FastCall:
8786    case CallingConv::X86_ThisCall:
8787    case CallingConv::Fast:
8788      // Pass 'nest' parameter in EAX.
8789      // Must be kept in sync with X86CallingConv.td
8790      NestReg = X86::EAX;
8791      break;
8792    }
8793
8794    SDValue OutChains[4];
8795    SDValue Addr, Disp;
8796
8797    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8798                       DAG.getConstant(10, MVT::i32));
8799    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
8800
8801    // This is storing the opcode for MOV32ri.
8802    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
8803    const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
8804    OutChains[0] = DAG.getStore(Root, dl,
8805                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
8806                                Trmp, MachinePointerInfo(TrmpAddr),
8807                                false, false, 0);
8808
8809    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8810                       DAG.getConstant(1, MVT::i32));
8811    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
8812                                MachinePointerInfo(TrmpAddr, 1),
8813                                false, false, 1);
8814
8815    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
8816    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8817                       DAG.getConstant(5, MVT::i32));
8818    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
8819                                MachinePointerInfo(TrmpAddr, 5),
8820                                false, false, 1);
8821
8822    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8823                       DAG.getConstant(6, MVT::i32));
8824    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
8825                                MachinePointerInfo(TrmpAddr, 6),
8826                                false, false, 1);
8827
8828    SDValue Ops[] =
8829      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
8830    return DAG.getMergeValues(Ops, 2, dl);
8831  }
8832}
8833
8834SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
8835                                            SelectionDAG &DAG) const {
8836  /*
8837   The rounding mode is in bits 11:10 of FPSR, and has the following
8838   settings:
8839     00 Round to nearest
8840     01 Round to -inf
8841     10 Round to +inf
8842     11 Round to 0
8843
8844  FLT_ROUNDS, on the other hand, expects the following:
8845    -1 Undefined
8846     0 Round to 0
8847     1 Round to nearest
8848     2 Round to +inf
8849     3 Round to -inf
8850
8851  To perform the conversion, we do:
8852    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
8853  */
8854
8855  MachineFunction &MF = DAG.getMachineFunction();
8856  const TargetMachine &TM = MF.getTarget();
8857  const TargetFrameLowering &TFI = *TM.getFrameLowering();
8858  unsigned StackAlignment = TFI.getStackAlignment();
8859  EVT VT = Op.getValueType();
8860  DebugLoc DL = Op.getDebugLoc();
8861
8862  // Save FP Control Word to stack slot
8863  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
8864  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8865
8866
8867  MachineMemOperand *MMO =
8868   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8869                           MachineMemOperand::MOStore, 2, 2);
8870
8871  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
8872  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
8873                                          DAG.getVTList(MVT::Other),
8874                                          Ops, 2, MVT::i16, MMO);
8875
8876  // Load FP Control Word from stack slot
8877  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
8878                            MachinePointerInfo(), false, false, 0);
8879
8880  // Transform as necessary
8881  SDValue CWD1 =
8882    DAG.getNode(ISD::SRL, DL, MVT::i16,
8883                DAG.getNode(ISD::AND, DL, MVT::i16,
8884                            CWD, DAG.getConstant(0x800, MVT::i16)),
8885                DAG.getConstant(11, MVT::i8));
8886  SDValue CWD2 =
8887    DAG.getNode(ISD::SRL, DL, MVT::i16,
8888                DAG.getNode(ISD::AND, DL, MVT::i16,
8889                            CWD, DAG.getConstant(0x400, MVT::i16)),
8890                DAG.getConstant(9, MVT::i8));
8891
8892  SDValue RetVal =
8893    DAG.getNode(ISD::AND, DL, MVT::i16,
8894                DAG.getNode(ISD::ADD, DL, MVT::i16,
8895                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
8896                            DAG.getConstant(1, MVT::i16)),
8897                DAG.getConstant(3, MVT::i16));
8898
8899
8900  return DAG.getNode((VT.getSizeInBits() < 16 ?
8901                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
8902}
8903
8904SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
8905  EVT VT = Op.getValueType();
8906  EVT OpVT = VT;
8907  unsigned NumBits = VT.getSizeInBits();
8908  DebugLoc dl = Op.getDebugLoc();
8909
8910  Op = Op.getOperand(0);
8911  if (VT == MVT::i8) {
8912    // Zero extend to i32 since there is not an i8 bsr.
8913    OpVT = MVT::i32;
8914    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
8915  }
8916
8917  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
8918  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
8919  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
8920
8921  // If src is zero (i.e. bsr sets ZF), returns NumBits.
8922  SDValue Ops[] = {
8923    Op,
8924    DAG.getConstant(NumBits+NumBits-1, OpVT),
8925    DAG.getConstant(X86::COND_E, MVT::i8),
8926    Op.getValue(1)
8927  };
8928  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
8929
8930  // Finally xor with NumBits-1.
8931  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
8932
8933  if (VT == MVT::i8)
8934    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
8935  return Op;
8936}
8937
8938SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
8939  EVT VT = Op.getValueType();
8940  EVT OpVT = VT;
8941  unsigned NumBits = VT.getSizeInBits();
8942  DebugLoc dl = Op.getDebugLoc();
8943
8944  Op = Op.getOperand(0);
8945  if (VT == MVT::i8) {
8946    OpVT = MVT::i32;
8947    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
8948  }
8949
8950  // Issue a bsf (scan bits forward) which also sets EFLAGS.
8951  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
8952  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
8953
8954  // If src is zero (i.e. bsf sets ZF), returns NumBits.
8955  SDValue Ops[] = {
8956    Op,
8957    DAG.getConstant(NumBits, OpVT),
8958    DAG.getConstant(X86::COND_E, MVT::i8),
8959    Op.getValue(1)
8960  };
8961  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
8962
8963  if (VT == MVT::i8)
8964    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
8965  return Op;
8966}
8967
8968SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) const {
8969  EVT VT = Op.getValueType();
8970  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
8971  DebugLoc dl = Op.getDebugLoc();
8972
8973  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
8974  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
8975  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
8976  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
8977  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
8978  //
8979  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
8980  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
8981  //  return AloBlo + AloBhi + AhiBlo;
8982
8983  SDValue A = Op.getOperand(0);
8984  SDValue B = Op.getOperand(1);
8985
8986  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8987                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8988                       A, DAG.getConstant(32, MVT::i32));
8989  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8990                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8991                       B, DAG.getConstant(32, MVT::i32));
8992  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8993                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
8994                       A, B);
8995  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8996                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
8997                       A, Bhi);
8998  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8999                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9000                       Ahi, B);
9001  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9002                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9003                       AloBhi, DAG.getConstant(32, MVT::i32));
9004  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9005                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9006                       AhiBlo, DAG.getConstant(32, MVT::i32));
9007  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
9008  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
9009  return Res;
9010}
9011
9012SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
9013
9014  EVT VT = Op.getValueType();
9015  DebugLoc dl = Op.getDebugLoc();
9016  SDValue R = Op.getOperand(0);
9017  SDValue Amt = Op.getOperand(1);
9018
9019  LLVMContext *Context = DAG.getContext();
9020
9021  // Must have SSE2.
9022  if (!Subtarget->hasSSE2()) return SDValue();
9023
9024  // Optimize shl/srl/sra with constant shift amount.
9025  if (isSplatVector(Amt.getNode())) {
9026    SDValue SclrAmt = Amt->getOperand(0);
9027    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
9028      uint64_t ShiftAmt = C->getZExtValue();
9029
9030      if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SHL)
9031       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9032                     DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9033                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9034
9035      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SHL)
9036       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9037                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
9038                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9039
9040      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SHL)
9041       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9042                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
9043                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9044
9045      if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SRL)
9046       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9047                     DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9048                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9049
9050      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRL)
9051       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9052                     DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
9053                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9054
9055      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRL)
9056       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9057                     DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
9058                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9059
9060      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRA)
9061       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9062                     DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
9063                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9064
9065      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRA)
9066       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9067                     DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
9068                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9069    }
9070  }
9071
9072  // Lower SHL with variable shift amount.
9073  // Cannot lower SHL without SSE2 or later.
9074  if (!Subtarget->hasSSE2()) return SDValue();
9075
9076  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
9077    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9078                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
9079                     Op.getOperand(1), DAG.getConstant(23, MVT::i32));
9080
9081    ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
9082
9083    std::vector<Constant*> CV(4, CI);
9084    Constant *C = ConstantVector::get(CV);
9085    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
9086    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9087                                 MachinePointerInfo::getConstantPool(),
9088                                 false, false, 16);
9089
9090    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
9091    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
9092    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
9093    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
9094  }
9095  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
9096    // a = a << 5;
9097    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9098                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
9099                     Op.getOperand(1), DAG.getConstant(5, MVT::i32));
9100
9101    ConstantInt *CM1 = ConstantInt::get(*Context, APInt(8, 15));
9102    ConstantInt *CM2 = ConstantInt::get(*Context, APInt(8, 63));
9103
9104    std::vector<Constant*> CVM1(16, CM1);
9105    std::vector<Constant*> CVM2(16, CM2);
9106    Constant *C = ConstantVector::get(CVM1);
9107    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
9108    SDValue M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9109                            MachinePointerInfo::getConstantPool(),
9110                            false, false, 16);
9111
9112    // r = pblendv(r, psllw(r & (char16)15, 4), a);
9113    M = DAG.getNode(ISD::AND, dl, VT, R, M);
9114    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9115                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
9116                    DAG.getConstant(4, MVT::i32));
9117    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT, R, M, Op);
9118    // a += a
9119    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
9120
9121    C = ConstantVector::get(CVM2);
9122    CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
9123    M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9124                    MachinePointerInfo::getConstantPool(),
9125                    false, false, 16);
9126
9127    // r = pblendv(r, psllw(r & (char16)63, 2), a);
9128    M = DAG.getNode(ISD::AND, dl, VT, R, M);
9129    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9130                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
9131                    DAG.getConstant(2, MVT::i32));
9132    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT, R, M, Op);
9133    // a += a
9134    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
9135
9136    // return pblendv(r, r+r, a);
9137    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT,
9138                    R, DAG.getNode(ISD::ADD, dl, VT, R, R), Op);
9139    return R;
9140  }
9141  return SDValue();
9142}
9143
9144SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
9145  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
9146  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
9147  // looks for this combo and may remove the "setcc" instruction if the "setcc"
9148  // has only one use.
9149  SDNode *N = Op.getNode();
9150  SDValue LHS = N->getOperand(0);
9151  SDValue RHS = N->getOperand(1);
9152  unsigned BaseOp = 0;
9153  unsigned Cond = 0;
9154  DebugLoc DL = Op.getDebugLoc();
9155  switch (Op.getOpcode()) {
9156  default: llvm_unreachable("Unknown ovf instruction!");
9157  case ISD::SADDO:
9158    // A subtract of one will be selected as a INC. Note that INC doesn't
9159    // set CF, so we can't do this for UADDO.
9160    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
9161      if (C->isOne()) {
9162        BaseOp = X86ISD::INC;
9163        Cond = X86::COND_O;
9164        break;
9165      }
9166    BaseOp = X86ISD::ADD;
9167    Cond = X86::COND_O;
9168    break;
9169  case ISD::UADDO:
9170    BaseOp = X86ISD::ADD;
9171    Cond = X86::COND_B;
9172    break;
9173  case ISD::SSUBO:
9174    // A subtract of one will be selected as a DEC. Note that DEC doesn't
9175    // set CF, so we can't do this for USUBO.
9176    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
9177      if (C->isOne()) {
9178        BaseOp = X86ISD::DEC;
9179        Cond = X86::COND_O;
9180        break;
9181      }
9182    BaseOp = X86ISD::SUB;
9183    Cond = X86::COND_O;
9184    break;
9185  case ISD::USUBO:
9186    BaseOp = X86ISD::SUB;
9187    Cond = X86::COND_B;
9188    break;
9189  case ISD::SMULO:
9190    BaseOp = X86ISD::SMUL;
9191    Cond = X86::COND_O;
9192    break;
9193  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
9194    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
9195                                 MVT::i32);
9196    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
9197
9198    SDValue SetCC =
9199      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9200                  DAG.getConstant(X86::COND_O, MVT::i32),
9201                  SDValue(Sum.getNode(), 2));
9202
9203    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
9204  }
9205  }
9206
9207  // Also sets EFLAGS.
9208  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
9209  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
9210
9211  SDValue SetCC =
9212    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
9213                DAG.getConstant(Cond, MVT::i32),
9214                SDValue(Sum.getNode(), 1));
9215
9216  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
9217}
9218
9219SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const{
9220  DebugLoc dl = Op.getDebugLoc();
9221  SDNode* Node = Op.getNode();
9222  EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
9223  EVT VT = Node->getValueType(0);
9224
9225  if (Subtarget->hasSSE2() && VT.isVector()) {
9226    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
9227                        ExtraVT.getScalarType().getSizeInBits();
9228    SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
9229
9230    unsigned SHLIntrinsicsID = 0;
9231    unsigned SRAIntrinsicsID = 0;
9232    switch (VT.getSimpleVT().SimpleTy) {
9233      default:
9234        return SDValue();
9235      case MVT::v2i64: {
9236        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_q;
9237        SRAIntrinsicsID = 0;
9238        break;
9239      }
9240      case MVT::v4i32: {
9241        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_d;
9242        SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_d;
9243        break;
9244      }
9245      case MVT::v8i16: {
9246        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_w;
9247        SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_w;
9248        break;
9249      }
9250    }
9251
9252    SDValue Tmp1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9253                         DAG.getConstant(SHLIntrinsicsID, MVT::i32),
9254                         Node->getOperand(0), ShAmt);
9255
9256    // In case of 1 bit sext, no need to shr
9257    if (ExtraVT.getScalarType().getSizeInBits() == 1) return Tmp1;
9258
9259    if (SRAIntrinsicsID) {
9260      Tmp1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9261                         DAG.getConstant(SRAIntrinsicsID, MVT::i32),
9262                         Tmp1, ShAmt);
9263    }
9264    return Tmp1;
9265  }
9266
9267  return SDValue();
9268}
9269
9270
9271SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
9272  DebugLoc dl = Op.getDebugLoc();
9273
9274  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
9275  // There isn't any reason to disable it if the target processor supports it.
9276  if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) {
9277    SDValue Chain = Op.getOperand(0);
9278    SDValue Zero = DAG.getConstant(0, MVT::i32);
9279    SDValue Ops[] = {
9280      DAG.getRegister(X86::ESP, MVT::i32), // Base
9281      DAG.getTargetConstant(1, MVT::i8),   // Scale
9282      DAG.getRegister(0, MVT::i32),        // Index
9283      DAG.getTargetConstant(0, MVT::i32),  // Disp
9284      DAG.getRegister(0, MVT::i32),        // Segment.
9285      Zero,
9286      Chain
9287    };
9288    SDNode *Res =
9289      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
9290                          array_lengthof(Ops));
9291    return SDValue(Res, 0);
9292  }
9293
9294  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
9295  if (!isDev)
9296    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
9297
9298  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
9299  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
9300  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
9301  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
9302
9303  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
9304  if (!Op1 && !Op2 && !Op3 && Op4)
9305    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
9306
9307  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
9308  if (Op1 && !Op2 && !Op3 && !Op4)
9309    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
9310
9311  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
9312  //           (MFENCE)>;
9313  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
9314}
9315
9316SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
9317  EVT T = Op.getValueType();
9318  DebugLoc DL = Op.getDebugLoc();
9319  unsigned Reg = 0;
9320  unsigned size = 0;
9321  switch(T.getSimpleVT().SimpleTy) {
9322  default:
9323    assert(false && "Invalid value type!");
9324  case MVT::i8:  Reg = X86::AL;  size = 1; break;
9325  case MVT::i16: Reg = X86::AX;  size = 2; break;
9326  case MVT::i32: Reg = X86::EAX; size = 4; break;
9327  case MVT::i64:
9328    assert(Subtarget->is64Bit() && "Node not type legal!");
9329    Reg = X86::RAX; size = 8;
9330    break;
9331  }
9332  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
9333                                    Op.getOperand(2), SDValue());
9334  SDValue Ops[] = { cpIn.getValue(0),
9335                    Op.getOperand(1),
9336                    Op.getOperand(3),
9337                    DAG.getTargetConstant(size, MVT::i8),
9338                    cpIn.getValue(1) };
9339  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
9340  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
9341  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
9342                                           Ops, 5, T, MMO);
9343  SDValue cpOut =
9344    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
9345  return cpOut;
9346}
9347
9348SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
9349                                                 SelectionDAG &DAG) const {
9350  assert(Subtarget->is64Bit() && "Result not type legalized?");
9351  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
9352  SDValue TheChain = Op.getOperand(0);
9353  DebugLoc dl = Op.getDebugLoc();
9354  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
9355  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
9356  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
9357                                   rax.getValue(2));
9358  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
9359                            DAG.getConstant(32, MVT::i8));
9360  SDValue Ops[] = {
9361    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
9362    rdx.getValue(1)
9363  };
9364  return DAG.getMergeValues(Ops, 2, dl);
9365}
9366
9367SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
9368                                            SelectionDAG &DAG) const {
9369  EVT SrcVT = Op.getOperand(0).getValueType();
9370  EVT DstVT = Op.getValueType();
9371  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
9372         Subtarget->hasMMX() && "Unexpected custom BITCAST");
9373  assert((DstVT == MVT::i64 ||
9374          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
9375         "Unexpected custom BITCAST");
9376  // i64 <=> MMX conversions are Legal.
9377  if (SrcVT==MVT::i64 && DstVT.isVector())
9378    return Op;
9379  if (DstVT==MVT::i64 && SrcVT.isVector())
9380    return Op;
9381  // MMX <=> MMX conversions are Legal.
9382  if (SrcVT.isVector() && DstVT.isVector())
9383    return Op;
9384  // All other conversions need to be expanded.
9385  return SDValue();
9386}
9387
9388SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
9389  SDNode *Node = Op.getNode();
9390  DebugLoc dl = Node->getDebugLoc();
9391  EVT T = Node->getValueType(0);
9392  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
9393                              DAG.getConstant(0, T), Node->getOperand(2));
9394  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
9395                       cast<AtomicSDNode>(Node)->getMemoryVT(),
9396                       Node->getOperand(0),
9397                       Node->getOperand(1), negOp,
9398                       cast<AtomicSDNode>(Node)->getSrcValue(),
9399                       cast<AtomicSDNode>(Node)->getAlignment());
9400}
9401
9402static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
9403  EVT VT = Op.getNode()->getValueType(0);
9404
9405  // Let legalize expand this if it isn't a legal type yet.
9406  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
9407    return SDValue();
9408
9409  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
9410
9411  unsigned Opc;
9412  bool ExtraOp = false;
9413  switch (Op.getOpcode()) {
9414  default: assert(0 && "Invalid code");
9415  case ISD::ADDC: Opc = X86ISD::ADD; break;
9416  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
9417  case ISD::SUBC: Opc = X86ISD::SUB; break;
9418  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
9419  }
9420
9421  if (!ExtraOp)
9422    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
9423                       Op.getOperand(1));
9424  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
9425                     Op.getOperand(1), Op.getOperand(2));
9426}
9427
9428/// LowerOperation - Provide custom lowering hooks for some operations.
9429///
9430SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9431  switch (Op.getOpcode()) {
9432  default: llvm_unreachable("Should not custom lower this!");
9433  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
9434  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
9435  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
9436  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
9437  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
9438  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
9439  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
9440  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
9441  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
9442  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
9443  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
9444  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
9445  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
9446  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
9447  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
9448  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
9449  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
9450  case ISD::SHL_PARTS:
9451  case ISD::SRA_PARTS:
9452  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
9453  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
9454  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
9455  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
9456  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
9457  case ISD::FABS:               return LowerFABS(Op, DAG);
9458  case ISD::FNEG:               return LowerFNEG(Op, DAG);
9459  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
9460  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
9461  case ISD::SETCC:              return LowerSETCC(Op, DAG);
9462  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
9463  case ISD::SELECT:             return LowerSELECT(Op, DAG);
9464  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
9465  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
9466  case ISD::VASTART:            return LowerVASTART(Op, DAG);
9467  case ISD::VAARG:              return LowerVAARG(Op, DAG);
9468  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
9469  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
9470  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
9471  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
9472  case ISD::FRAME_TO_ARGS_OFFSET:
9473                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
9474  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
9475  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
9476  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
9477  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
9478  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
9479  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
9480  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
9481  case ISD::SRA:
9482  case ISD::SRL:
9483  case ISD::SHL:                return LowerShift(Op, DAG);
9484  case ISD::SADDO:
9485  case ISD::UADDO:
9486  case ISD::SSUBO:
9487  case ISD::USUBO:
9488  case ISD::SMULO:
9489  case ISD::UMULO:              return LowerXALUO(Op, DAG);
9490  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
9491  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
9492  case ISD::ADDC:
9493  case ISD::ADDE:
9494  case ISD::SUBC:
9495  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
9496  }
9497}
9498
9499void X86TargetLowering::
9500ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
9501                        SelectionDAG &DAG, unsigned NewOp) const {
9502  EVT T = Node->getValueType(0);
9503  DebugLoc dl = Node->getDebugLoc();
9504  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
9505
9506  SDValue Chain = Node->getOperand(0);
9507  SDValue In1 = Node->getOperand(1);
9508  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
9509                             Node->getOperand(2), DAG.getIntPtrConstant(0));
9510  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
9511                             Node->getOperand(2), DAG.getIntPtrConstant(1));
9512  SDValue Ops[] = { Chain, In1, In2L, In2H };
9513  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
9514  SDValue Result =
9515    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
9516                            cast<MemSDNode>(Node)->getMemOperand());
9517  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
9518  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
9519  Results.push_back(Result.getValue(2));
9520}
9521
9522/// ReplaceNodeResults - Replace a node with an illegal result type
9523/// with a new node built out of custom code.
9524void X86TargetLowering::ReplaceNodeResults(SDNode *N,
9525                                           SmallVectorImpl<SDValue>&Results,
9526                                           SelectionDAG &DAG) const {
9527  DebugLoc dl = N->getDebugLoc();
9528  switch (N->getOpcode()) {
9529  default:
9530    assert(false && "Do not know how to custom type legalize this operation!");
9531    return;
9532  case ISD::SIGN_EXTEND_INREG:
9533  case ISD::ADDC:
9534  case ISD::ADDE:
9535  case ISD::SUBC:
9536  case ISD::SUBE:
9537    // We don't want to expand or promote these.
9538    return;
9539  case ISD::FP_TO_SINT: {
9540    std::pair<SDValue,SDValue> Vals =
9541        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
9542    SDValue FIST = Vals.first, StackSlot = Vals.second;
9543    if (FIST.getNode() != 0) {
9544      EVT VT = N->getValueType(0);
9545      // Return a load from the stack slot.
9546      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
9547                                    MachinePointerInfo(), false, false, 0));
9548    }
9549    return;
9550  }
9551  case ISD::READCYCLECOUNTER: {
9552    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
9553    SDValue TheChain = N->getOperand(0);
9554    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
9555    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
9556                                     rd.getValue(1));
9557    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
9558                                     eax.getValue(2));
9559    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
9560    SDValue Ops[] = { eax, edx };
9561    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
9562    Results.push_back(edx.getValue(1));
9563    return;
9564  }
9565  case ISD::ATOMIC_CMP_SWAP: {
9566    EVT T = N->getValueType(0);
9567    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
9568    SDValue cpInL, cpInH;
9569    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
9570                        DAG.getConstant(0, MVT::i32));
9571    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
9572                        DAG.getConstant(1, MVT::i32));
9573    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
9574    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
9575                             cpInL.getValue(1));
9576    SDValue swapInL, swapInH;
9577    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
9578                          DAG.getConstant(0, MVT::i32));
9579    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
9580                          DAG.getConstant(1, MVT::i32));
9581    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
9582                               cpInH.getValue(1));
9583    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
9584                               swapInL.getValue(1));
9585    SDValue Ops[] = { swapInH.getValue(0),
9586                      N->getOperand(1),
9587                      swapInH.getValue(1) };
9588    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
9589    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
9590    SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG8_DAG, dl, Tys,
9591                                             Ops, 3, T, MMO);
9592    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
9593                                        MVT::i32, Result.getValue(1));
9594    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
9595                                        MVT::i32, cpOutL.getValue(2));
9596    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
9597    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
9598    Results.push_back(cpOutH.getValue(1));
9599    return;
9600  }
9601  case ISD::ATOMIC_LOAD_ADD:
9602    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
9603    return;
9604  case ISD::ATOMIC_LOAD_AND:
9605    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
9606    return;
9607  case ISD::ATOMIC_LOAD_NAND:
9608    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
9609    return;
9610  case ISD::ATOMIC_LOAD_OR:
9611    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
9612    return;
9613  case ISD::ATOMIC_LOAD_SUB:
9614    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
9615    return;
9616  case ISD::ATOMIC_LOAD_XOR:
9617    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
9618    return;
9619  case ISD::ATOMIC_SWAP:
9620    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
9621    return;
9622  }
9623}
9624
9625const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
9626  switch (Opcode) {
9627  default: return NULL;
9628  case X86ISD::BSF:                return "X86ISD::BSF";
9629  case X86ISD::BSR:                return "X86ISD::BSR";
9630  case X86ISD::SHLD:               return "X86ISD::SHLD";
9631  case X86ISD::SHRD:               return "X86ISD::SHRD";
9632  case X86ISD::FAND:               return "X86ISD::FAND";
9633  case X86ISD::FOR:                return "X86ISD::FOR";
9634  case X86ISD::FXOR:               return "X86ISD::FXOR";
9635  case X86ISD::FSRL:               return "X86ISD::FSRL";
9636  case X86ISD::FILD:               return "X86ISD::FILD";
9637  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
9638  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
9639  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
9640  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
9641  case X86ISD::FLD:                return "X86ISD::FLD";
9642  case X86ISD::FST:                return "X86ISD::FST";
9643  case X86ISD::CALL:               return "X86ISD::CALL";
9644  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
9645  case X86ISD::BT:                 return "X86ISD::BT";
9646  case X86ISD::CMP:                return "X86ISD::CMP";
9647  case X86ISD::COMI:               return "X86ISD::COMI";
9648  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
9649  case X86ISD::SETCC:              return "X86ISD::SETCC";
9650  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
9651  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
9652  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
9653  case X86ISD::CMOV:               return "X86ISD::CMOV";
9654  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
9655  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
9656  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
9657  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
9658  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
9659  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
9660  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
9661  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
9662  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
9663  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
9664  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
9665  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
9666  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
9667  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
9668  case X86ISD::PSIGNB:             return "X86ISD::PSIGNB";
9669  case X86ISD::PSIGNW:             return "X86ISD::PSIGNW";
9670  case X86ISD::PSIGND:             return "X86ISD::PSIGND";
9671  case X86ISD::PBLENDVB:           return "X86ISD::PBLENDVB";
9672  case X86ISD::FMAX:               return "X86ISD::FMAX";
9673  case X86ISD::FMIN:               return "X86ISD::FMIN";
9674  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
9675  case X86ISD::FRCP:               return "X86ISD::FRCP";
9676  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
9677  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
9678  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
9679  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
9680  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
9681  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
9682  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
9683  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
9684  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
9685  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
9686  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
9687  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
9688  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
9689  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
9690  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
9691  case X86ISD::VSHL:               return "X86ISD::VSHL";
9692  case X86ISD::VSRL:               return "X86ISD::VSRL";
9693  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
9694  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
9695  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
9696  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
9697  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
9698  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
9699  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
9700  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
9701  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
9702  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
9703  case X86ISD::ADD:                return "X86ISD::ADD";
9704  case X86ISD::SUB:                return "X86ISD::SUB";
9705  case X86ISD::ADC:                return "X86ISD::ADC";
9706  case X86ISD::SBB:                return "X86ISD::SBB";
9707  case X86ISD::SMUL:               return "X86ISD::SMUL";
9708  case X86ISD::UMUL:               return "X86ISD::UMUL";
9709  case X86ISD::INC:                return "X86ISD::INC";
9710  case X86ISD::DEC:                return "X86ISD::DEC";
9711  case X86ISD::OR:                 return "X86ISD::OR";
9712  case X86ISD::XOR:                return "X86ISD::XOR";
9713  case X86ISD::AND:                return "X86ISD::AND";
9714  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
9715  case X86ISD::PTEST:              return "X86ISD::PTEST";
9716  case X86ISD::TESTP:              return "X86ISD::TESTP";
9717  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
9718  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
9719  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
9720  case X86ISD::PSHUFHW_LD:         return "X86ISD::PSHUFHW_LD";
9721  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
9722  case X86ISD::PSHUFLW_LD:         return "X86ISD::PSHUFLW_LD";
9723  case X86ISD::SHUFPS:             return "X86ISD::SHUFPS";
9724  case X86ISD::SHUFPD:             return "X86ISD::SHUFPD";
9725  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
9726  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
9727  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
9728  case X86ISD::MOVHLPD:            return "X86ISD::MOVHLPD";
9729  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
9730  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
9731  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
9732  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
9733  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
9734  case X86ISD::MOVSHDUP_LD:        return "X86ISD::MOVSHDUP_LD";
9735  case X86ISD::MOVSLDUP_LD:        return "X86ISD::MOVSLDUP_LD";
9736  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
9737  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
9738  case X86ISD::UNPCKLPS:           return "X86ISD::UNPCKLPS";
9739  case X86ISD::UNPCKLPD:           return "X86ISD::UNPCKLPD";
9740  case X86ISD::VUNPCKLPDY:         return "X86ISD::VUNPCKLPDY";
9741  case X86ISD::UNPCKHPS:           return "X86ISD::UNPCKHPS";
9742  case X86ISD::UNPCKHPD:           return "X86ISD::UNPCKHPD";
9743  case X86ISD::PUNPCKLBW:          return "X86ISD::PUNPCKLBW";
9744  case X86ISD::PUNPCKLWD:          return "X86ISD::PUNPCKLWD";
9745  case X86ISD::PUNPCKLDQ:          return "X86ISD::PUNPCKLDQ";
9746  case X86ISD::PUNPCKLQDQ:         return "X86ISD::PUNPCKLQDQ";
9747  case X86ISD::PUNPCKHBW:          return "X86ISD::PUNPCKHBW";
9748  case X86ISD::PUNPCKHWD:          return "X86ISD::PUNPCKHWD";
9749  case X86ISD::PUNPCKHDQ:          return "X86ISD::PUNPCKHDQ";
9750  case X86ISD::PUNPCKHQDQ:         return "X86ISD::PUNPCKHQDQ";
9751  case X86ISD::VPERMIL:            return "X86ISD::VPERMIL";
9752  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
9753  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
9754  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
9755  }
9756}
9757
9758// isLegalAddressingMode - Return true if the addressing mode represented
9759// by AM is legal for this target, for a load/store of the specified type.
9760bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
9761                                              Type *Ty) const {
9762  // X86 supports extremely general addressing modes.
9763  CodeModel::Model M = getTargetMachine().getCodeModel();
9764  Reloc::Model R = getTargetMachine().getRelocationModel();
9765
9766  // X86 allows a sign-extended 32-bit immediate field as a displacement.
9767  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
9768    return false;
9769
9770  if (AM.BaseGV) {
9771    unsigned GVFlags =
9772      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
9773
9774    // If a reference to this global requires an extra load, we can't fold it.
9775    if (isGlobalStubReference(GVFlags))
9776      return false;
9777
9778    // If BaseGV requires a register for the PIC base, we cannot also have a
9779    // BaseReg specified.
9780    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
9781      return false;
9782
9783    // If lower 4G is not available, then we must use rip-relative addressing.
9784    if ((M != CodeModel::Small || R != Reloc::Static) &&
9785        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
9786      return false;
9787  }
9788
9789  switch (AM.Scale) {
9790  case 0:
9791  case 1:
9792  case 2:
9793  case 4:
9794  case 8:
9795    // These scales always work.
9796    break;
9797  case 3:
9798  case 5:
9799  case 9:
9800    // These scales are formed with basereg+scalereg.  Only accept if there is
9801    // no basereg yet.
9802    if (AM.HasBaseReg)
9803      return false;
9804    break;
9805  default:  // Other stuff never works.
9806    return false;
9807  }
9808
9809  return true;
9810}
9811
9812
9813bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
9814  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
9815    return false;
9816  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
9817  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
9818  if (NumBits1 <= NumBits2)
9819    return false;
9820  return true;
9821}
9822
9823bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
9824  if (!VT1.isInteger() || !VT2.isInteger())
9825    return false;
9826  unsigned NumBits1 = VT1.getSizeInBits();
9827  unsigned NumBits2 = VT2.getSizeInBits();
9828  if (NumBits1 <= NumBits2)
9829    return false;
9830  return true;
9831}
9832
9833bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
9834  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
9835  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
9836}
9837
9838bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
9839  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
9840  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
9841}
9842
9843bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
9844  // i16 instructions are longer (0x66 prefix) and potentially slower.
9845  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
9846}
9847
9848/// isShuffleMaskLegal - Targets can use this to indicate that they only
9849/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
9850/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
9851/// are assumed to be legal.
9852bool
9853X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
9854                                      EVT VT) const {
9855  // Very little shuffling can be done for 64-bit vectors right now.
9856  if (VT.getSizeInBits() == 64)
9857    return isPALIGNRMask(M, VT, Subtarget->hasSSSE3());
9858
9859  // FIXME: pshufb, blends, shifts.
9860  return (VT.getVectorNumElements() == 2 ||
9861          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
9862          isMOVLMask(M, VT) ||
9863          isSHUFPMask(M, VT) ||
9864          isPSHUFDMask(M, VT) ||
9865          isPSHUFHWMask(M, VT) ||
9866          isPSHUFLWMask(M, VT) ||
9867          isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
9868          isUNPCKLMask(M, VT) ||
9869          isUNPCKHMask(M, VT) ||
9870          isUNPCKL_v_undef_Mask(M, VT) ||
9871          isUNPCKH_v_undef_Mask(M, VT));
9872}
9873
9874bool
9875X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
9876                                          EVT VT) const {
9877  unsigned NumElts = VT.getVectorNumElements();
9878  // FIXME: This collection of masks seems suspect.
9879  if (NumElts == 2)
9880    return true;
9881  if (NumElts == 4 && VT.getSizeInBits() == 128) {
9882    return (isMOVLMask(Mask, VT)  ||
9883            isCommutedMOVLMask(Mask, VT, true) ||
9884            isSHUFPMask(Mask, VT) ||
9885            isCommutedSHUFPMask(Mask, VT));
9886  }
9887  return false;
9888}
9889
9890//===----------------------------------------------------------------------===//
9891//                           X86 Scheduler Hooks
9892//===----------------------------------------------------------------------===//
9893
9894// private utility function
9895MachineBasicBlock *
9896X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
9897                                                       MachineBasicBlock *MBB,
9898                                                       unsigned regOpc,
9899                                                       unsigned immOpc,
9900                                                       unsigned LoadOpc,
9901                                                       unsigned CXchgOpc,
9902                                                       unsigned notOpc,
9903                                                       unsigned EAXreg,
9904                                                       TargetRegisterClass *RC,
9905                                                       bool invSrc) const {
9906  // For the atomic bitwise operator, we generate
9907  //   thisMBB:
9908  //   newMBB:
9909  //     ld  t1 = [bitinstr.addr]
9910  //     op  t2 = t1, [bitinstr.val]
9911  //     mov EAX = t1
9912  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
9913  //     bz  newMBB
9914  //     fallthrough -->nextMBB
9915  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9916  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9917  MachineFunction::iterator MBBIter = MBB;
9918  ++MBBIter;
9919
9920  /// First build the CFG
9921  MachineFunction *F = MBB->getParent();
9922  MachineBasicBlock *thisMBB = MBB;
9923  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
9924  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
9925  F->insert(MBBIter, newMBB);
9926  F->insert(MBBIter, nextMBB);
9927
9928  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
9929  nextMBB->splice(nextMBB->begin(), thisMBB,
9930                  llvm::next(MachineBasicBlock::iterator(bInstr)),
9931                  thisMBB->end());
9932  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9933
9934  // Update thisMBB to fall through to newMBB
9935  thisMBB->addSuccessor(newMBB);
9936
9937  // newMBB jumps to itself and fall through to nextMBB
9938  newMBB->addSuccessor(nextMBB);
9939  newMBB->addSuccessor(newMBB);
9940
9941  // Insert instructions into newMBB based on incoming instruction
9942  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
9943         "unexpected number of operands");
9944  DebugLoc dl = bInstr->getDebugLoc();
9945  MachineOperand& destOper = bInstr->getOperand(0);
9946  MachineOperand* argOpers[2 + X86::AddrNumOperands];
9947  int numArgs = bInstr->getNumOperands() - 1;
9948  for (int i=0; i < numArgs; ++i)
9949    argOpers[i] = &bInstr->getOperand(i+1);
9950
9951  // x86 address has 4 operands: base, index, scale, and displacement
9952  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
9953  int valArgIndx = lastAddrIndx + 1;
9954
9955  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
9956  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
9957  for (int i=0; i <= lastAddrIndx; ++i)
9958    (*MIB).addOperand(*argOpers[i]);
9959
9960  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
9961  if (invSrc) {
9962    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
9963  }
9964  else
9965    tt = t1;
9966
9967  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
9968  assert((argOpers[valArgIndx]->isReg() ||
9969          argOpers[valArgIndx]->isImm()) &&
9970         "invalid operand");
9971  if (argOpers[valArgIndx]->isReg())
9972    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
9973  else
9974    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
9975  MIB.addReg(tt);
9976  (*MIB).addOperand(*argOpers[valArgIndx]);
9977
9978  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
9979  MIB.addReg(t1);
9980
9981  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
9982  for (int i=0; i <= lastAddrIndx; ++i)
9983    (*MIB).addOperand(*argOpers[i]);
9984  MIB.addReg(t2);
9985  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
9986  (*MIB).setMemRefs(bInstr->memoperands_begin(),
9987                    bInstr->memoperands_end());
9988
9989  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
9990  MIB.addReg(EAXreg);
9991
9992  // insert branch
9993  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
9994
9995  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
9996  return nextMBB;
9997}
9998
9999// private utility function:  64 bit atomics on 32 bit host.
10000MachineBasicBlock *
10001X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
10002                                                       MachineBasicBlock *MBB,
10003                                                       unsigned regOpcL,
10004                                                       unsigned regOpcH,
10005                                                       unsigned immOpcL,
10006                                                       unsigned immOpcH,
10007                                                       bool invSrc) const {
10008  // For the atomic bitwise operator, we generate
10009  //   thisMBB (instructions are in pairs, except cmpxchg8b)
10010  //     ld t1,t2 = [bitinstr.addr]
10011  //   newMBB:
10012  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
10013  //     op  t5, t6 <- out1, out2, [bitinstr.val]
10014  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
10015  //     mov ECX, EBX <- t5, t6
10016  //     mov EAX, EDX <- t1, t2
10017  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
10018  //     mov t3, t4 <- EAX, EDX
10019  //     bz  newMBB
10020  //     result in out1, out2
10021  //     fallthrough -->nextMBB
10022
10023  const TargetRegisterClass *RC = X86::GR32RegisterClass;
10024  const unsigned LoadOpc = X86::MOV32rm;
10025  const unsigned NotOpc = X86::NOT32r;
10026  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10027  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10028  MachineFunction::iterator MBBIter = MBB;
10029  ++MBBIter;
10030
10031  /// First build the CFG
10032  MachineFunction *F = MBB->getParent();
10033  MachineBasicBlock *thisMBB = MBB;
10034  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
10035  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
10036  F->insert(MBBIter, newMBB);
10037  F->insert(MBBIter, nextMBB);
10038
10039  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
10040  nextMBB->splice(nextMBB->begin(), thisMBB,
10041                  llvm::next(MachineBasicBlock::iterator(bInstr)),
10042                  thisMBB->end());
10043  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
10044
10045  // Update thisMBB to fall through to newMBB
10046  thisMBB->addSuccessor(newMBB);
10047
10048  // newMBB jumps to itself and fall through to nextMBB
10049  newMBB->addSuccessor(nextMBB);
10050  newMBB->addSuccessor(newMBB);
10051
10052  DebugLoc dl = bInstr->getDebugLoc();
10053  // Insert instructions into newMBB based on incoming instruction
10054  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
10055  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
10056         "unexpected number of operands");
10057  MachineOperand& dest1Oper = bInstr->getOperand(0);
10058  MachineOperand& dest2Oper = bInstr->getOperand(1);
10059  MachineOperand* argOpers[2 + X86::AddrNumOperands];
10060  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
10061    argOpers[i] = &bInstr->getOperand(i+2);
10062
10063    // We use some of the operands multiple times, so conservatively just
10064    // clear any kill flags that might be present.
10065    if (argOpers[i]->isReg() && argOpers[i]->isUse())
10066      argOpers[i]->setIsKill(false);
10067  }
10068
10069  // x86 address has 5 operands: base, index, scale, displacement, and segment.
10070  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
10071
10072  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
10073  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
10074  for (int i=0; i <= lastAddrIndx; ++i)
10075    (*MIB).addOperand(*argOpers[i]);
10076  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
10077  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
10078  // add 4 to displacement.
10079  for (int i=0; i <= lastAddrIndx-2; ++i)
10080    (*MIB).addOperand(*argOpers[i]);
10081  MachineOperand newOp3 = *(argOpers[3]);
10082  if (newOp3.isImm())
10083    newOp3.setImm(newOp3.getImm()+4);
10084  else
10085    newOp3.setOffset(newOp3.getOffset()+4);
10086  (*MIB).addOperand(newOp3);
10087  (*MIB).addOperand(*argOpers[lastAddrIndx]);
10088
10089  // t3/4 are defined later, at the bottom of the loop
10090  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
10091  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
10092  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
10093    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
10094  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
10095    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
10096
10097  // The subsequent operations should be using the destination registers of
10098  //the PHI instructions.
10099  if (invSrc) {
10100    t1 = F->getRegInfo().createVirtualRegister(RC);
10101    t2 = F->getRegInfo().createVirtualRegister(RC);
10102    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
10103    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
10104  } else {
10105    t1 = dest1Oper.getReg();
10106    t2 = dest2Oper.getReg();
10107  }
10108
10109  int valArgIndx = lastAddrIndx + 1;
10110  assert((argOpers[valArgIndx]->isReg() ||
10111          argOpers[valArgIndx]->isImm()) &&
10112         "invalid operand");
10113  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
10114  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
10115  if (argOpers[valArgIndx]->isReg())
10116    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
10117  else
10118    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
10119  if (regOpcL != X86::MOV32rr)
10120    MIB.addReg(t1);
10121  (*MIB).addOperand(*argOpers[valArgIndx]);
10122  assert(argOpers[valArgIndx + 1]->isReg() ==
10123         argOpers[valArgIndx]->isReg());
10124  assert(argOpers[valArgIndx + 1]->isImm() ==
10125         argOpers[valArgIndx]->isImm());
10126  if (argOpers[valArgIndx + 1]->isReg())
10127    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
10128  else
10129    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
10130  if (regOpcH != X86::MOV32rr)
10131    MIB.addReg(t2);
10132  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
10133
10134  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
10135  MIB.addReg(t1);
10136  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
10137  MIB.addReg(t2);
10138
10139  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
10140  MIB.addReg(t5);
10141  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
10142  MIB.addReg(t6);
10143
10144  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
10145  for (int i=0; i <= lastAddrIndx; ++i)
10146    (*MIB).addOperand(*argOpers[i]);
10147
10148  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
10149  (*MIB).setMemRefs(bInstr->memoperands_begin(),
10150                    bInstr->memoperands_end());
10151
10152  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
10153  MIB.addReg(X86::EAX);
10154  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
10155  MIB.addReg(X86::EDX);
10156
10157  // insert branch
10158  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
10159
10160  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
10161  return nextMBB;
10162}
10163
10164// private utility function
10165MachineBasicBlock *
10166X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
10167                                                      MachineBasicBlock *MBB,
10168                                                      unsigned cmovOpc) const {
10169  // For the atomic min/max operator, we generate
10170  //   thisMBB:
10171  //   newMBB:
10172  //     ld t1 = [min/max.addr]
10173  //     mov t2 = [min/max.val]
10174  //     cmp  t1, t2
10175  //     cmov[cond] t2 = t1
10176  //     mov EAX = t1
10177  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
10178  //     bz   newMBB
10179  //     fallthrough -->nextMBB
10180  //
10181  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10182  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10183  MachineFunction::iterator MBBIter = MBB;
10184  ++MBBIter;
10185
10186  /// First build the CFG
10187  MachineFunction *F = MBB->getParent();
10188  MachineBasicBlock *thisMBB = MBB;
10189  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
10190  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
10191  F->insert(MBBIter, newMBB);
10192  F->insert(MBBIter, nextMBB);
10193
10194  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
10195  nextMBB->splice(nextMBB->begin(), thisMBB,
10196                  llvm::next(MachineBasicBlock::iterator(mInstr)),
10197                  thisMBB->end());
10198  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
10199
10200  // Update thisMBB to fall through to newMBB
10201  thisMBB->addSuccessor(newMBB);
10202
10203  // newMBB jumps to newMBB and fall through to nextMBB
10204  newMBB->addSuccessor(nextMBB);
10205  newMBB->addSuccessor(newMBB);
10206
10207  DebugLoc dl = mInstr->getDebugLoc();
10208  // Insert instructions into newMBB based on incoming instruction
10209  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
10210         "unexpected number of operands");
10211  MachineOperand& destOper = mInstr->getOperand(0);
10212  MachineOperand* argOpers[2 + X86::AddrNumOperands];
10213  int numArgs = mInstr->getNumOperands() - 1;
10214  for (int i=0; i < numArgs; ++i)
10215    argOpers[i] = &mInstr->getOperand(i+1);
10216
10217  // x86 address has 4 operands: base, index, scale, and displacement
10218  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
10219  int valArgIndx = lastAddrIndx + 1;
10220
10221  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
10222  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
10223  for (int i=0; i <= lastAddrIndx; ++i)
10224    (*MIB).addOperand(*argOpers[i]);
10225
10226  // We only support register and immediate values
10227  assert((argOpers[valArgIndx]->isReg() ||
10228          argOpers[valArgIndx]->isImm()) &&
10229         "invalid operand");
10230
10231  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
10232  if (argOpers[valArgIndx]->isReg())
10233    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
10234  else
10235    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
10236  (*MIB).addOperand(*argOpers[valArgIndx]);
10237
10238  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
10239  MIB.addReg(t1);
10240
10241  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
10242  MIB.addReg(t1);
10243  MIB.addReg(t2);
10244
10245  // Generate movc
10246  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
10247  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
10248  MIB.addReg(t2);
10249  MIB.addReg(t1);
10250
10251  // Cmp and exchange if none has modified the memory location
10252  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
10253  for (int i=0; i <= lastAddrIndx; ++i)
10254    (*MIB).addOperand(*argOpers[i]);
10255  MIB.addReg(t3);
10256  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
10257  (*MIB).setMemRefs(mInstr->memoperands_begin(),
10258                    mInstr->memoperands_end());
10259
10260  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
10261  MIB.addReg(X86::EAX);
10262
10263  // insert branch
10264  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
10265
10266  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
10267  return nextMBB;
10268}
10269
10270// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
10271// or XMM0_V32I8 in AVX all of this code can be replaced with that
10272// in the .td file.
10273MachineBasicBlock *
10274X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
10275                            unsigned numArgs, bool memArg) const {
10276  assert((Subtarget->hasSSE42() || Subtarget->hasAVX()) &&
10277         "Target must have SSE4.2 or AVX features enabled");
10278
10279  DebugLoc dl = MI->getDebugLoc();
10280  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10281  unsigned Opc;
10282  if (!Subtarget->hasAVX()) {
10283    if (memArg)
10284      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
10285    else
10286      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
10287  } else {
10288    if (memArg)
10289      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
10290    else
10291      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
10292  }
10293
10294  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
10295  for (unsigned i = 0; i < numArgs; ++i) {
10296    MachineOperand &Op = MI->getOperand(i+1);
10297    if (!(Op.isReg() && Op.isImplicit()))
10298      MIB.addOperand(Op);
10299  }
10300  BuildMI(*BB, MI, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
10301    .addReg(X86::XMM0);
10302
10303  MI->eraseFromParent();
10304  return BB;
10305}
10306
10307MachineBasicBlock *
10308X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
10309  DebugLoc dl = MI->getDebugLoc();
10310  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10311
10312  // Address into RAX/EAX, other two args into ECX, EDX.
10313  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
10314  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
10315  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
10316  for (int i = 0; i < X86::AddrNumOperands; ++i)
10317    MIB.addOperand(MI->getOperand(i));
10318
10319  unsigned ValOps = X86::AddrNumOperands;
10320  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
10321    .addReg(MI->getOperand(ValOps).getReg());
10322  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
10323    .addReg(MI->getOperand(ValOps+1).getReg());
10324
10325  // The instruction doesn't actually take any operands though.
10326  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
10327
10328  MI->eraseFromParent(); // The pseudo is gone now.
10329  return BB;
10330}
10331
10332MachineBasicBlock *
10333X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
10334  DebugLoc dl = MI->getDebugLoc();
10335  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10336
10337  // First arg in ECX, the second in EAX.
10338  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
10339    .addReg(MI->getOperand(0).getReg());
10340  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
10341    .addReg(MI->getOperand(1).getReg());
10342
10343  // The instruction doesn't actually take any operands though.
10344  BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
10345
10346  MI->eraseFromParent(); // The pseudo is gone now.
10347  return BB;
10348}
10349
10350MachineBasicBlock *
10351X86TargetLowering::EmitVAARG64WithCustomInserter(
10352                   MachineInstr *MI,
10353                   MachineBasicBlock *MBB) const {
10354  // Emit va_arg instruction on X86-64.
10355
10356  // Operands to this pseudo-instruction:
10357  // 0  ) Output        : destination address (reg)
10358  // 1-5) Input         : va_list address (addr, i64mem)
10359  // 6  ) ArgSize       : Size (in bytes) of vararg type
10360  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
10361  // 8  ) Align         : Alignment of type
10362  // 9  ) EFLAGS (implicit-def)
10363
10364  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
10365  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
10366
10367  unsigned DestReg = MI->getOperand(0).getReg();
10368  MachineOperand &Base = MI->getOperand(1);
10369  MachineOperand &Scale = MI->getOperand(2);
10370  MachineOperand &Index = MI->getOperand(3);
10371  MachineOperand &Disp = MI->getOperand(4);
10372  MachineOperand &Segment = MI->getOperand(5);
10373  unsigned ArgSize = MI->getOperand(6).getImm();
10374  unsigned ArgMode = MI->getOperand(7).getImm();
10375  unsigned Align = MI->getOperand(8).getImm();
10376
10377  // Memory Reference
10378  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
10379  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
10380  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
10381
10382  // Machine Information
10383  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10384  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
10385  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
10386  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
10387  DebugLoc DL = MI->getDebugLoc();
10388
10389  // struct va_list {
10390  //   i32   gp_offset
10391  //   i32   fp_offset
10392  //   i64   overflow_area (address)
10393  //   i64   reg_save_area (address)
10394  // }
10395  // sizeof(va_list) = 24
10396  // alignment(va_list) = 8
10397
10398  unsigned TotalNumIntRegs = 6;
10399  unsigned TotalNumXMMRegs = 8;
10400  bool UseGPOffset = (ArgMode == 1);
10401  bool UseFPOffset = (ArgMode == 2);
10402  unsigned MaxOffset = TotalNumIntRegs * 8 +
10403                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
10404
10405  /* Align ArgSize to a multiple of 8 */
10406  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
10407  bool NeedsAlign = (Align > 8);
10408
10409  MachineBasicBlock *thisMBB = MBB;
10410  MachineBasicBlock *overflowMBB;
10411  MachineBasicBlock *offsetMBB;
10412  MachineBasicBlock *endMBB;
10413
10414  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
10415  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
10416  unsigned OffsetReg = 0;
10417
10418  if (!UseGPOffset && !UseFPOffset) {
10419    // If we only pull from the overflow region, we don't create a branch.
10420    // We don't need to alter control flow.
10421    OffsetDestReg = 0; // unused
10422    OverflowDestReg = DestReg;
10423
10424    offsetMBB = NULL;
10425    overflowMBB = thisMBB;
10426    endMBB = thisMBB;
10427  } else {
10428    // First emit code to check if gp_offset (or fp_offset) is below the bound.
10429    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
10430    // If not, pull from overflow_area. (branch to overflowMBB)
10431    //
10432    //       thisMBB
10433    //         |     .
10434    //         |        .
10435    //     offsetMBB   overflowMBB
10436    //         |        .
10437    //         |     .
10438    //        endMBB
10439
10440    // Registers for the PHI in endMBB
10441    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
10442    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
10443
10444    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10445    MachineFunction *MF = MBB->getParent();
10446    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
10447    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
10448    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
10449
10450    MachineFunction::iterator MBBIter = MBB;
10451    ++MBBIter;
10452
10453    // Insert the new basic blocks
10454    MF->insert(MBBIter, offsetMBB);
10455    MF->insert(MBBIter, overflowMBB);
10456    MF->insert(MBBIter, endMBB);
10457
10458    // Transfer the remainder of MBB and its successor edges to endMBB.
10459    endMBB->splice(endMBB->begin(), thisMBB,
10460                    llvm::next(MachineBasicBlock::iterator(MI)),
10461                    thisMBB->end());
10462    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
10463
10464    // Make offsetMBB and overflowMBB successors of thisMBB
10465    thisMBB->addSuccessor(offsetMBB);
10466    thisMBB->addSuccessor(overflowMBB);
10467
10468    // endMBB is a successor of both offsetMBB and overflowMBB
10469    offsetMBB->addSuccessor(endMBB);
10470    overflowMBB->addSuccessor(endMBB);
10471
10472    // Load the offset value into a register
10473    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
10474    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
10475      .addOperand(Base)
10476      .addOperand(Scale)
10477      .addOperand(Index)
10478      .addDisp(Disp, UseFPOffset ? 4 : 0)
10479      .addOperand(Segment)
10480      .setMemRefs(MMOBegin, MMOEnd);
10481
10482    // Check if there is enough room left to pull this argument.
10483    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
10484      .addReg(OffsetReg)
10485      .addImm(MaxOffset + 8 - ArgSizeA8);
10486
10487    // Branch to "overflowMBB" if offset >= max
10488    // Fall through to "offsetMBB" otherwise
10489    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
10490      .addMBB(overflowMBB);
10491  }
10492
10493  // In offsetMBB, emit code to use the reg_save_area.
10494  if (offsetMBB) {
10495    assert(OffsetReg != 0);
10496
10497    // Read the reg_save_area address.
10498    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
10499    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
10500      .addOperand(Base)
10501      .addOperand(Scale)
10502      .addOperand(Index)
10503      .addDisp(Disp, 16)
10504      .addOperand(Segment)
10505      .setMemRefs(MMOBegin, MMOEnd);
10506
10507    // Zero-extend the offset
10508    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
10509      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
10510        .addImm(0)
10511        .addReg(OffsetReg)
10512        .addImm(X86::sub_32bit);
10513
10514    // Add the offset to the reg_save_area to get the final address.
10515    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
10516      .addReg(OffsetReg64)
10517      .addReg(RegSaveReg);
10518
10519    // Compute the offset for the next argument
10520    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
10521    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
10522      .addReg(OffsetReg)
10523      .addImm(UseFPOffset ? 16 : 8);
10524
10525    // Store it back into the va_list.
10526    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
10527      .addOperand(Base)
10528      .addOperand(Scale)
10529      .addOperand(Index)
10530      .addDisp(Disp, UseFPOffset ? 4 : 0)
10531      .addOperand(Segment)
10532      .addReg(NextOffsetReg)
10533      .setMemRefs(MMOBegin, MMOEnd);
10534
10535    // Jump to endMBB
10536    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
10537      .addMBB(endMBB);
10538  }
10539
10540  //
10541  // Emit code to use overflow area
10542  //
10543
10544  // Load the overflow_area address into a register.
10545  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
10546  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
10547    .addOperand(Base)
10548    .addOperand(Scale)
10549    .addOperand(Index)
10550    .addDisp(Disp, 8)
10551    .addOperand(Segment)
10552    .setMemRefs(MMOBegin, MMOEnd);
10553
10554  // If we need to align it, do so. Otherwise, just copy the address
10555  // to OverflowDestReg.
10556  if (NeedsAlign) {
10557    // Align the overflow address
10558    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
10559    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
10560
10561    // aligned_addr = (addr + (align-1)) & ~(align-1)
10562    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
10563      .addReg(OverflowAddrReg)
10564      .addImm(Align-1);
10565
10566    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
10567      .addReg(TmpReg)
10568      .addImm(~(uint64_t)(Align-1));
10569  } else {
10570    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
10571      .addReg(OverflowAddrReg);
10572  }
10573
10574  // Compute the next overflow address after this argument.
10575  // (the overflow address should be kept 8-byte aligned)
10576  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
10577  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
10578    .addReg(OverflowDestReg)
10579    .addImm(ArgSizeA8);
10580
10581  // Store the new overflow address.
10582  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
10583    .addOperand(Base)
10584    .addOperand(Scale)
10585    .addOperand(Index)
10586    .addDisp(Disp, 8)
10587    .addOperand(Segment)
10588    .addReg(NextAddrReg)
10589    .setMemRefs(MMOBegin, MMOEnd);
10590
10591  // If we branched, emit the PHI to the front of endMBB.
10592  if (offsetMBB) {
10593    BuildMI(*endMBB, endMBB->begin(), DL,
10594            TII->get(X86::PHI), DestReg)
10595      .addReg(OffsetDestReg).addMBB(offsetMBB)
10596      .addReg(OverflowDestReg).addMBB(overflowMBB);
10597  }
10598
10599  // Erase the pseudo instruction
10600  MI->eraseFromParent();
10601
10602  return endMBB;
10603}
10604
10605MachineBasicBlock *
10606X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
10607                                                 MachineInstr *MI,
10608                                                 MachineBasicBlock *MBB) const {
10609  // Emit code to save XMM registers to the stack. The ABI says that the
10610  // number of registers to save is given in %al, so it's theoretically
10611  // possible to do an indirect jump trick to avoid saving all of them,
10612  // however this code takes a simpler approach and just executes all
10613  // of the stores if %al is non-zero. It's less code, and it's probably
10614  // easier on the hardware branch predictor, and stores aren't all that
10615  // expensive anyway.
10616
10617  // Create the new basic blocks. One block contains all the XMM stores,
10618  // and one block is the final destination regardless of whether any
10619  // stores were performed.
10620  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10621  MachineFunction *F = MBB->getParent();
10622  MachineFunction::iterator MBBIter = MBB;
10623  ++MBBIter;
10624  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
10625  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
10626  F->insert(MBBIter, XMMSaveMBB);
10627  F->insert(MBBIter, EndMBB);
10628
10629  // Transfer the remainder of MBB and its successor edges to EndMBB.
10630  EndMBB->splice(EndMBB->begin(), MBB,
10631                 llvm::next(MachineBasicBlock::iterator(MI)),
10632                 MBB->end());
10633  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
10634
10635  // The original block will now fall through to the XMM save block.
10636  MBB->addSuccessor(XMMSaveMBB);
10637  // The XMMSaveMBB will fall through to the end block.
10638  XMMSaveMBB->addSuccessor(EndMBB);
10639
10640  // Now add the instructions.
10641  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10642  DebugLoc DL = MI->getDebugLoc();
10643
10644  unsigned CountReg = MI->getOperand(0).getReg();
10645  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
10646  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
10647
10648  if (!Subtarget->isTargetWin64()) {
10649    // If %al is 0, branch around the XMM save block.
10650    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
10651    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
10652    MBB->addSuccessor(EndMBB);
10653  }
10654
10655  // In the XMM save block, save all the XMM argument registers.
10656  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
10657    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
10658    MachineMemOperand *MMO =
10659      F->getMachineMemOperand(
10660          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
10661        MachineMemOperand::MOStore,
10662        /*Size=*/16, /*Align=*/16);
10663    BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
10664      .addFrameIndex(RegSaveFrameIndex)
10665      .addImm(/*Scale=*/1)
10666      .addReg(/*IndexReg=*/0)
10667      .addImm(/*Disp=*/Offset)
10668      .addReg(/*Segment=*/0)
10669      .addReg(MI->getOperand(i).getReg())
10670      .addMemOperand(MMO);
10671  }
10672
10673  MI->eraseFromParent();   // The pseudo instruction is gone now.
10674
10675  return EndMBB;
10676}
10677
10678MachineBasicBlock *
10679X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
10680                                     MachineBasicBlock *BB) const {
10681  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10682  DebugLoc DL = MI->getDebugLoc();
10683
10684  // To "insert" a SELECT_CC instruction, we actually have to insert the
10685  // diamond control-flow pattern.  The incoming instruction knows the
10686  // destination vreg to set, the condition code register to branch on, the
10687  // true/false values to select between, and a branch opcode to use.
10688  const BasicBlock *LLVM_BB = BB->getBasicBlock();
10689  MachineFunction::iterator It = BB;
10690  ++It;
10691
10692  //  thisMBB:
10693  //  ...
10694  //   TrueVal = ...
10695  //   cmpTY ccX, r1, r2
10696  //   bCC copy1MBB
10697  //   fallthrough --> copy0MBB
10698  MachineBasicBlock *thisMBB = BB;
10699  MachineFunction *F = BB->getParent();
10700  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
10701  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
10702  F->insert(It, copy0MBB);
10703  F->insert(It, sinkMBB);
10704
10705  // If the EFLAGS register isn't dead in the terminator, then claim that it's
10706  // live into the sink and copy blocks.
10707  const MachineFunction *MF = BB->getParent();
10708  const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
10709  BitVector ReservedRegs = TRI->getReservedRegs(*MF);
10710
10711  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
10712    const MachineOperand &MO = MI->getOperand(I);
10713    if (!MO.isReg() || !MO.isUse() || MO.isKill()) continue;
10714    unsigned Reg = MO.getReg();
10715    if (Reg != X86::EFLAGS) continue;
10716    copy0MBB->addLiveIn(Reg);
10717    sinkMBB->addLiveIn(Reg);
10718  }
10719
10720  // Transfer the remainder of BB and its successor edges to sinkMBB.
10721  sinkMBB->splice(sinkMBB->begin(), BB,
10722                  llvm::next(MachineBasicBlock::iterator(MI)),
10723                  BB->end());
10724  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
10725
10726  // Add the true and fallthrough blocks as its successors.
10727  BB->addSuccessor(copy0MBB);
10728  BB->addSuccessor(sinkMBB);
10729
10730  // Create the conditional branch instruction.
10731  unsigned Opc =
10732    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
10733  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
10734
10735  //  copy0MBB:
10736  //   %FalseValue = ...
10737  //   # fallthrough to sinkMBB
10738  copy0MBB->addSuccessor(sinkMBB);
10739
10740  //  sinkMBB:
10741  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
10742  //  ...
10743  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
10744          TII->get(X86::PHI), MI->getOperand(0).getReg())
10745    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
10746    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
10747
10748  MI->eraseFromParent();   // The pseudo instruction is gone now.
10749  return sinkMBB;
10750}
10751
10752MachineBasicBlock *
10753X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
10754                                          MachineBasicBlock *BB) const {
10755  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10756  DebugLoc DL = MI->getDebugLoc();
10757
10758  assert(!Subtarget->isTargetEnvMacho());
10759
10760  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
10761  // non-trivial part is impdef of ESP.
10762
10763  if (Subtarget->isTargetWin64()) {
10764    if (Subtarget->isTargetCygMing()) {
10765      // ___chkstk(Mingw64):
10766      // Clobbers R10, R11, RAX and EFLAGS.
10767      // Updates RSP.
10768      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
10769        .addExternalSymbol("___chkstk")
10770        .addReg(X86::RAX, RegState::Implicit)
10771        .addReg(X86::RSP, RegState::Implicit)
10772        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
10773        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
10774        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
10775    } else {
10776      // __chkstk(MSVCRT): does not update stack pointer.
10777      // Clobbers R10, R11 and EFLAGS.
10778      // FIXME: RAX(allocated size) might be reused and not killed.
10779      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
10780        .addExternalSymbol("__chkstk")
10781        .addReg(X86::RAX, RegState::Implicit)
10782        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
10783      // RAX has the offset to subtracted from RSP.
10784      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
10785        .addReg(X86::RSP)
10786        .addReg(X86::RAX);
10787    }
10788  } else {
10789    const char *StackProbeSymbol =
10790      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
10791
10792    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
10793      .addExternalSymbol(StackProbeSymbol)
10794      .addReg(X86::EAX, RegState::Implicit)
10795      .addReg(X86::ESP, RegState::Implicit)
10796      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
10797      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
10798      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
10799  }
10800
10801  MI->eraseFromParent();   // The pseudo instruction is gone now.
10802  return BB;
10803}
10804
10805MachineBasicBlock *
10806X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
10807                                      MachineBasicBlock *BB) const {
10808  // This is pretty easy.  We're taking the value that we received from
10809  // our load from the relocation, sticking it in either RDI (x86-64)
10810  // or EAX and doing an indirect call.  The return value will then
10811  // be in the normal return register.
10812  const X86InstrInfo *TII
10813    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
10814  DebugLoc DL = MI->getDebugLoc();
10815  MachineFunction *F = BB->getParent();
10816
10817  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
10818  assert(MI->getOperand(3).isGlobal() && "This should be a global");
10819
10820  if (Subtarget->is64Bit()) {
10821    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
10822                                      TII->get(X86::MOV64rm), X86::RDI)
10823    .addReg(X86::RIP)
10824    .addImm(0).addReg(0)
10825    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
10826                      MI->getOperand(3).getTargetFlags())
10827    .addReg(0);
10828    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
10829    addDirectMem(MIB, X86::RDI);
10830  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
10831    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
10832                                      TII->get(X86::MOV32rm), X86::EAX)
10833    .addReg(0)
10834    .addImm(0).addReg(0)
10835    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
10836                      MI->getOperand(3).getTargetFlags())
10837    .addReg(0);
10838    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
10839    addDirectMem(MIB, X86::EAX);
10840  } else {
10841    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
10842                                      TII->get(X86::MOV32rm), X86::EAX)
10843    .addReg(TII->getGlobalBaseReg(F))
10844    .addImm(0).addReg(0)
10845    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
10846                      MI->getOperand(3).getTargetFlags())
10847    .addReg(0);
10848    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
10849    addDirectMem(MIB, X86::EAX);
10850  }
10851
10852  MI->eraseFromParent(); // The pseudo instruction is gone now.
10853  return BB;
10854}
10855
10856MachineBasicBlock *
10857X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
10858                                               MachineBasicBlock *BB) const {
10859  switch (MI->getOpcode()) {
10860  default: assert(false && "Unexpected instr type to insert");
10861  case X86::TAILJMPd64:
10862  case X86::TAILJMPr64:
10863  case X86::TAILJMPm64:
10864    assert(!"TAILJMP64 would not be touched here.");
10865  case X86::TCRETURNdi64:
10866  case X86::TCRETURNri64:
10867  case X86::TCRETURNmi64:
10868    // Defs of TCRETURNxx64 has Win64's callee-saved registers, as subset.
10869    // On AMD64, additional defs should be added before register allocation.
10870    if (!Subtarget->isTargetWin64()) {
10871      MI->addRegisterDefined(X86::RSI);
10872      MI->addRegisterDefined(X86::RDI);
10873      MI->addRegisterDefined(X86::XMM6);
10874      MI->addRegisterDefined(X86::XMM7);
10875      MI->addRegisterDefined(X86::XMM8);
10876      MI->addRegisterDefined(X86::XMM9);
10877      MI->addRegisterDefined(X86::XMM10);
10878      MI->addRegisterDefined(X86::XMM11);
10879      MI->addRegisterDefined(X86::XMM12);
10880      MI->addRegisterDefined(X86::XMM13);
10881      MI->addRegisterDefined(X86::XMM14);
10882      MI->addRegisterDefined(X86::XMM15);
10883    }
10884    return BB;
10885  case X86::WIN_ALLOCA:
10886    return EmitLoweredWinAlloca(MI, BB);
10887  case X86::TLSCall_32:
10888  case X86::TLSCall_64:
10889    return EmitLoweredTLSCall(MI, BB);
10890  case X86::CMOV_GR8:
10891  case X86::CMOV_FR32:
10892  case X86::CMOV_FR64:
10893  case X86::CMOV_V4F32:
10894  case X86::CMOV_V2F64:
10895  case X86::CMOV_V2I64:
10896  case X86::CMOV_GR16:
10897  case X86::CMOV_GR32:
10898  case X86::CMOV_RFP32:
10899  case X86::CMOV_RFP64:
10900  case X86::CMOV_RFP80:
10901    return EmitLoweredSelect(MI, BB);
10902
10903  case X86::FP32_TO_INT16_IN_MEM:
10904  case X86::FP32_TO_INT32_IN_MEM:
10905  case X86::FP32_TO_INT64_IN_MEM:
10906  case X86::FP64_TO_INT16_IN_MEM:
10907  case X86::FP64_TO_INT32_IN_MEM:
10908  case X86::FP64_TO_INT64_IN_MEM:
10909  case X86::FP80_TO_INT16_IN_MEM:
10910  case X86::FP80_TO_INT32_IN_MEM:
10911  case X86::FP80_TO_INT64_IN_MEM: {
10912    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10913    DebugLoc DL = MI->getDebugLoc();
10914
10915    // Change the floating point control register to use "round towards zero"
10916    // mode when truncating to an integer value.
10917    MachineFunction *F = BB->getParent();
10918    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
10919    addFrameReference(BuildMI(*BB, MI, DL,
10920                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
10921
10922    // Load the old value of the high byte of the control word...
10923    unsigned OldCW =
10924      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
10925    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
10926                      CWFrameIdx);
10927
10928    // Set the high part to be round to zero...
10929    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
10930      .addImm(0xC7F);
10931
10932    // Reload the modified control word now...
10933    addFrameReference(BuildMI(*BB, MI, DL,
10934                              TII->get(X86::FLDCW16m)), CWFrameIdx);
10935
10936    // Restore the memory image of control word to original value
10937    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
10938      .addReg(OldCW);
10939
10940    // Get the X86 opcode to use.
10941    unsigned Opc;
10942    switch (MI->getOpcode()) {
10943    default: llvm_unreachable("illegal opcode!");
10944    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
10945    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
10946    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
10947    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
10948    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
10949    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
10950    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
10951    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
10952    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
10953    }
10954
10955    X86AddressMode AM;
10956    MachineOperand &Op = MI->getOperand(0);
10957    if (Op.isReg()) {
10958      AM.BaseType = X86AddressMode::RegBase;
10959      AM.Base.Reg = Op.getReg();
10960    } else {
10961      AM.BaseType = X86AddressMode::FrameIndexBase;
10962      AM.Base.FrameIndex = Op.getIndex();
10963    }
10964    Op = MI->getOperand(1);
10965    if (Op.isImm())
10966      AM.Scale = Op.getImm();
10967    Op = MI->getOperand(2);
10968    if (Op.isImm())
10969      AM.IndexReg = Op.getImm();
10970    Op = MI->getOperand(3);
10971    if (Op.isGlobal()) {
10972      AM.GV = Op.getGlobal();
10973    } else {
10974      AM.Disp = Op.getImm();
10975    }
10976    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
10977                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
10978
10979    // Reload the original control word now.
10980    addFrameReference(BuildMI(*BB, MI, DL,
10981                              TII->get(X86::FLDCW16m)), CWFrameIdx);
10982
10983    MI->eraseFromParent();   // The pseudo instruction is gone now.
10984    return BB;
10985  }
10986    // String/text processing lowering.
10987  case X86::PCMPISTRM128REG:
10988  case X86::VPCMPISTRM128REG:
10989    return EmitPCMP(MI, BB, 3, false /* in-mem */);
10990  case X86::PCMPISTRM128MEM:
10991  case X86::VPCMPISTRM128MEM:
10992    return EmitPCMP(MI, BB, 3, true /* in-mem */);
10993  case X86::PCMPESTRM128REG:
10994  case X86::VPCMPESTRM128REG:
10995    return EmitPCMP(MI, BB, 5, false /* in mem */);
10996  case X86::PCMPESTRM128MEM:
10997  case X86::VPCMPESTRM128MEM:
10998    return EmitPCMP(MI, BB, 5, true /* in mem */);
10999
11000    // Thread synchronization.
11001  case X86::MONITOR:
11002    return EmitMonitor(MI, BB);
11003  case X86::MWAIT:
11004    return EmitMwait(MI, BB);
11005
11006    // Atomic Lowering.
11007  case X86::ATOMAND32:
11008    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
11009                                               X86::AND32ri, X86::MOV32rm,
11010                                               X86::LCMPXCHG32,
11011                                               X86::NOT32r, X86::EAX,
11012                                               X86::GR32RegisterClass);
11013  case X86::ATOMOR32:
11014    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
11015                                               X86::OR32ri, X86::MOV32rm,
11016                                               X86::LCMPXCHG32,
11017                                               X86::NOT32r, X86::EAX,
11018                                               X86::GR32RegisterClass);
11019  case X86::ATOMXOR32:
11020    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
11021                                               X86::XOR32ri, X86::MOV32rm,
11022                                               X86::LCMPXCHG32,
11023                                               X86::NOT32r, X86::EAX,
11024                                               X86::GR32RegisterClass);
11025  case X86::ATOMNAND32:
11026    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
11027                                               X86::AND32ri, X86::MOV32rm,
11028                                               X86::LCMPXCHG32,
11029                                               X86::NOT32r, X86::EAX,
11030                                               X86::GR32RegisterClass, true);
11031  case X86::ATOMMIN32:
11032    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
11033  case X86::ATOMMAX32:
11034    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
11035  case X86::ATOMUMIN32:
11036    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
11037  case X86::ATOMUMAX32:
11038    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
11039
11040  case X86::ATOMAND16:
11041    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
11042                                               X86::AND16ri, X86::MOV16rm,
11043                                               X86::LCMPXCHG16,
11044                                               X86::NOT16r, X86::AX,
11045                                               X86::GR16RegisterClass);
11046  case X86::ATOMOR16:
11047    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
11048                                               X86::OR16ri, X86::MOV16rm,
11049                                               X86::LCMPXCHG16,
11050                                               X86::NOT16r, X86::AX,
11051                                               X86::GR16RegisterClass);
11052  case X86::ATOMXOR16:
11053    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
11054                                               X86::XOR16ri, X86::MOV16rm,
11055                                               X86::LCMPXCHG16,
11056                                               X86::NOT16r, X86::AX,
11057                                               X86::GR16RegisterClass);
11058  case X86::ATOMNAND16:
11059    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
11060                                               X86::AND16ri, X86::MOV16rm,
11061                                               X86::LCMPXCHG16,
11062                                               X86::NOT16r, X86::AX,
11063                                               X86::GR16RegisterClass, true);
11064  case X86::ATOMMIN16:
11065    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
11066  case X86::ATOMMAX16:
11067    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
11068  case X86::ATOMUMIN16:
11069    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
11070  case X86::ATOMUMAX16:
11071    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
11072
11073  case X86::ATOMAND8:
11074    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
11075                                               X86::AND8ri, X86::MOV8rm,
11076                                               X86::LCMPXCHG8,
11077                                               X86::NOT8r, X86::AL,
11078                                               X86::GR8RegisterClass);
11079  case X86::ATOMOR8:
11080    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
11081                                               X86::OR8ri, X86::MOV8rm,
11082                                               X86::LCMPXCHG8,
11083                                               X86::NOT8r, X86::AL,
11084                                               X86::GR8RegisterClass);
11085  case X86::ATOMXOR8:
11086    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
11087                                               X86::XOR8ri, X86::MOV8rm,
11088                                               X86::LCMPXCHG8,
11089                                               X86::NOT8r, X86::AL,
11090                                               X86::GR8RegisterClass);
11091  case X86::ATOMNAND8:
11092    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
11093                                               X86::AND8ri, X86::MOV8rm,
11094                                               X86::LCMPXCHG8,
11095                                               X86::NOT8r, X86::AL,
11096                                               X86::GR8RegisterClass, true);
11097  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
11098  // This group is for 64-bit host.
11099  case X86::ATOMAND64:
11100    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
11101                                               X86::AND64ri32, X86::MOV64rm,
11102                                               X86::LCMPXCHG64,
11103                                               X86::NOT64r, X86::RAX,
11104                                               X86::GR64RegisterClass);
11105  case X86::ATOMOR64:
11106    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
11107                                               X86::OR64ri32, X86::MOV64rm,
11108                                               X86::LCMPXCHG64,
11109                                               X86::NOT64r, X86::RAX,
11110                                               X86::GR64RegisterClass);
11111  case X86::ATOMXOR64:
11112    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
11113                                               X86::XOR64ri32, X86::MOV64rm,
11114                                               X86::LCMPXCHG64,
11115                                               X86::NOT64r, X86::RAX,
11116                                               X86::GR64RegisterClass);
11117  case X86::ATOMNAND64:
11118    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
11119                                               X86::AND64ri32, X86::MOV64rm,
11120                                               X86::LCMPXCHG64,
11121                                               X86::NOT64r, X86::RAX,
11122                                               X86::GR64RegisterClass, true);
11123  case X86::ATOMMIN64:
11124    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
11125  case X86::ATOMMAX64:
11126    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
11127  case X86::ATOMUMIN64:
11128    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
11129  case X86::ATOMUMAX64:
11130    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
11131
11132  // This group does 64-bit operations on a 32-bit host.
11133  case X86::ATOMAND6432:
11134    return EmitAtomicBit6432WithCustomInserter(MI, BB,
11135                                               X86::AND32rr, X86::AND32rr,
11136                                               X86::AND32ri, X86::AND32ri,
11137                                               false);
11138  case X86::ATOMOR6432:
11139    return EmitAtomicBit6432WithCustomInserter(MI, BB,
11140                                               X86::OR32rr, X86::OR32rr,
11141                                               X86::OR32ri, X86::OR32ri,
11142                                               false);
11143  case X86::ATOMXOR6432:
11144    return EmitAtomicBit6432WithCustomInserter(MI, BB,
11145                                               X86::XOR32rr, X86::XOR32rr,
11146                                               X86::XOR32ri, X86::XOR32ri,
11147                                               false);
11148  case X86::ATOMNAND6432:
11149    return EmitAtomicBit6432WithCustomInserter(MI, BB,
11150                                               X86::AND32rr, X86::AND32rr,
11151                                               X86::AND32ri, X86::AND32ri,
11152                                               true);
11153  case X86::ATOMADD6432:
11154    return EmitAtomicBit6432WithCustomInserter(MI, BB,
11155                                               X86::ADD32rr, X86::ADC32rr,
11156                                               X86::ADD32ri, X86::ADC32ri,
11157                                               false);
11158  case X86::ATOMSUB6432:
11159    return EmitAtomicBit6432WithCustomInserter(MI, BB,
11160                                               X86::SUB32rr, X86::SBB32rr,
11161                                               X86::SUB32ri, X86::SBB32ri,
11162                                               false);
11163  case X86::ATOMSWAP6432:
11164    return EmitAtomicBit6432WithCustomInserter(MI, BB,
11165                                               X86::MOV32rr, X86::MOV32rr,
11166                                               X86::MOV32ri, X86::MOV32ri,
11167                                               false);
11168  case X86::VASTART_SAVE_XMM_REGS:
11169    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
11170
11171  case X86::VAARG_64:
11172    return EmitVAARG64WithCustomInserter(MI, BB);
11173  }
11174}
11175
11176//===----------------------------------------------------------------------===//
11177//                           X86 Optimization Hooks
11178//===----------------------------------------------------------------------===//
11179
11180void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
11181                                                       const APInt &Mask,
11182                                                       APInt &KnownZero,
11183                                                       APInt &KnownOne,
11184                                                       const SelectionDAG &DAG,
11185                                                       unsigned Depth) const {
11186  unsigned Opc = Op.getOpcode();
11187  assert((Opc >= ISD::BUILTIN_OP_END ||
11188          Opc == ISD::INTRINSIC_WO_CHAIN ||
11189          Opc == ISD::INTRINSIC_W_CHAIN ||
11190          Opc == ISD::INTRINSIC_VOID) &&
11191         "Should use MaskedValueIsZero if you don't know whether Op"
11192         " is a target node!");
11193
11194  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
11195  switch (Opc) {
11196  default: break;
11197  case X86ISD::ADD:
11198  case X86ISD::SUB:
11199  case X86ISD::ADC:
11200  case X86ISD::SBB:
11201  case X86ISD::SMUL:
11202  case X86ISD::UMUL:
11203  case X86ISD::INC:
11204  case X86ISD::DEC:
11205  case X86ISD::OR:
11206  case X86ISD::XOR:
11207  case X86ISD::AND:
11208    // These nodes' second result is a boolean.
11209    if (Op.getResNo() == 0)
11210      break;
11211    // Fallthrough
11212  case X86ISD::SETCC:
11213    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
11214                                       Mask.getBitWidth() - 1);
11215    break;
11216  }
11217}
11218
11219unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
11220                                                         unsigned Depth) const {
11221  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
11222  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
11223    return Op.getValueType().getScalarType().getSizeInBits();
11224
11225  // Fallback case.
11226  return 1;
11227}
11228
11229/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
11230/// node is a GlobalAddress + offset.
11231bool X86TargetLowering::isGAPlusOffset(SDNode *N,
11232                                       const GlobalValue* &GA,
11233                                       int64_t &Offset) const {
11234  if (N->getOpcode() == X86ISD::Wrapper) {
11235    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
11236      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
11237      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
11238      return true;
11239    }
11240  }
11241  return TargetLowering::isGAPlusOffset(N, GA, Offset);
11242}
11243
11244/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
11245static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
11246                                        TargetLowering::DAGCombinerInfo &DCI) {
11247  DebugLoc dl = N->getDebugLoc();
11248  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
11249  SDValue V1 = SVOp->getOperand(0);
11250  SDValue V2 = SVOp->getOperand(1);
11251  EVT VT = SVOp->getValueType(0);
11252
11253  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
11254      V2.getOpcode() == ISD::CONCAT_VECTORS) {
11255    //
11256    //                   0,0,0,...
11257    //                      |
11258    //    V      UNDEF    BUILD_VECTOR    UNDEF
11259    //     \      /           \           /
11260    //  CONCAT_VECTOR         CONCAT_VECTOR
11261    //         \                  /
11262    //          \                /
11263    //          RESULT: V + zero extended
11264    //
11265    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
11266        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
11267        V1.getOperand(1).getOpcode() != ISD::UNDEF)
11268      return SDValue();
11269
11270    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
11271      return SDValue();
11272
11273    // To match the shuffle mask, the first half of the mask should
11274    // be exactly the first vector, and all the rest a splat with the
11275    // first element of the second one.
11276    int NumElems = VT.getVectorNumElements();
11277    for (int i = 0; i < NumElems/2; ++i)
11278      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
11279          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
11280        return SDValue();
11281
11282    // Emit a zeroed vector and insert the desired subvector on its
11283    // first half.
11284    SDValue Zeros = getZeroVector(VT, true /* HasSSE2 */, DAG, dl);
11285    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0),
11286                         DAG.getConstant(0, MVT::i32), DAG, dl);
11287    return DCI.CombineTo(N, InsV);
11288  }
11289
11290  return SDValue();
11291}
11292
11293/// PerformShuffleCombine - Performs several different shuffle combines.
11294static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
11295                                     TargetLowering::DAGCombinerInfo &DCI) {
11296  DebugLoc dl = N->getDebugLoc();
11297  EVT VT = N->getValueType(0);
11298
11299  // Don't create instructions with illegal types after legalize types has run.
11300  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11301  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
11302    return SDValue();
11303
11304  // Only handle pure VECTOR_SHUFFLE nodes.
11305  if (VT.getSizeInBits() == 256 && N->getOpcode() == ISD::VECTOR_SHUFFLE)
11306    return PerformShuffleCombine256(N, DAG, DCI);
11307
11308  // Only handle 128 wide vector from here on.
11309  if (VT.getSizeInBits() != 128)
11310    return SDValue();
11311
11312  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
11313  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
11314  // consecutive, non-overlapping, and in the right order.
11315  SmallVector<SDValue, 16> Elts;
11316  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
11317    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
11318
11319  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
11320}
11321
11322/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
11323/// generation and convert it from being a bunch of shuffles and extracts
11324/// to a simple store and scalar loads to extract the elements.
11325static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
11326                                                const TargetLowering &TLI) {
11327  SDValue InputVector = N->getOperand(0);
11328
11329  // Only operate on vectors of 4 elements, where the alternative shuffling
11330  // gets to be more expensive.
11331  if (InputVector.getValueType() != MVT::v4i32)
11332    return SDValue();
11333
11334  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
11335  // single use which is a sign-extend or zero-extend, and all elements are
11336  // used.
11337  SmallVector<SDNode *, 4> Uses;
11338  unsigned ExtractedElements = 0;
11339  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
11340       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
11341    if (UI.getUse().getResNo() != InputVector.getResNo())
11342      return SDValue();
11343
11344    SDNode *Extract = *UI;
11345    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
11346      return SDValue();
11347
11348    if (Extract->getValueType(0) != MVT::i32)
11349      return SDValue();
11350    if (!Extract->hasOneUse())
11351      return SDValue();
11352    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
11353        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
11354      return SDValue();
11355    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
11356      return SDValue();
11357
11358    // Record which element was extracted.
11359    ExtractedElements |=
11360      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
11361
11362    Uses.push_back(Extract);
11363  }
11364
11365  // If not all the elements were used, this may not be worthwhile.
11366  if (ExtractedElements != 15)
11367    return SDValue();
11368
11369  // Ok, we've now decided to do the transformation.
11370  DebugLoc dl = InputVector.getDebugLoc();
11371
11372  // Store the value to a temporary stack slot.
11373  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
11374  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
11375                            MachinePointerInfo(), false, false, 0);
11376
11377  // Replace each use (extract) with a load of the appropriate element.
11378  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
11379       UE = Uses.end(); UI != UE; ++UI) {
11380    SDNode *Extract = *UI;
11381
11382    // cOMpute the element's address.
11383    SDValue Idx = Extract->getOperand(1);
11384    unsigned EltSize =
11385        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
11386    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
11387    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
11388
11389    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
11390                                     StackPtr, OffsetVal);
11391
11392    // Load the scalar.
11393    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
11394                                     ScalarAddr, MachinePointerInfo(),
11395                                     false, false, 0);
11396
11397    // Replace the exact with the load.
11398    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
11399  }
11400
11401  // The replacement was made in place; don't return anything.
11402  return SDValue();
11403}
11404
11405/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
11406static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
11407                                    const X86Subtarget *Subtarget) {
11408  DebugLoc DL = N->getDebugLoc();
11409  SDValue Cond = N->getOperand(0);
11410  // Get the LHS/RHS of the select.
11411  SDValue LHS = N->getOperand(1);
11412  SDValue RHS = N->getOperand(2);
11413
11414  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
11415  // instructions match the semantics of the common C idiom x<y?x:y but not
11416  // x<=y?x:y, because of how they handle negative zero (which can be
11417  // ignored in unsafe-math mode).
11418  if (Subtarget->hasSSE2() &&
11419      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
11420      Cond.getOpcode() == ISD::SETCC) {
11421    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
11422
11423    unsigned Opcode = 0;
11424    // Check for x CC y ? x : y.
11425    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
11426        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
11427      switch (CC) {
11428      default: break;
11429      case ISD::SETULT:
11430        // Converting this to a min would handle NaNs incorrectly, and swapping
11431        // the operands would cause it to handle comparisons between positive
11432        // and negative zero incorrectly.
11433        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
11434          if (!UnsafeFPMath &&
11435              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
11436            break;
11437          std::swap(LHS, RHS);
11438        }
11439        Opcode = X86ISD::FMIN;
11440        break;
11441      case ISD::SETOLE:
11442        // Converting this to a min would handle comparisons between positive
11443        // and negative zero incorrectly.
11444        if (!UnsafeFPMath &&
11445            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
11446          break;
11447        Opcode = X86ISD::FMIN;
11448        break;
11449      case ISD::SETULE:
11450        // Converting this to a min would handle both negative zeros and NaNs
11451        // incorrectly, but we can swap the operands to fix both.
11452        std::swap(LHS, RHS);
11453      case ISD::SETOLT:
11454      case ISD::SETLT:
11455      case ISD::SETLE:
11456        Opcode = X86ISD::FMIN;
11457        break;
11458
11459      case ISD::SETOGE:
11460        // Converting this to a max would handle comparisons between positive
11461        // and negative zero incorrectly.
11462        if (!UnsafeFPMath &&
11463            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(LHS))
11464          break;
11465        Opcode = X86ISD::FMAX;
11466        break;
11467      case ISD::SETUGT:
11468        // Converting this to a max would handle NaNs incorrectly, and swapping
11469        // the operands would cause it to handle comparisons between positive
11470        // and negative zero incorrectly.
11471        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
11472          if (!UnsafeFPMath &&
11473              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
11474            break;
11475          std::swap(LHS, RHS);
11476        }
11477        Opcode = X86ISD::FMAX;
11478        break;
11479      case ISD::SETUGE:
11480        // Converting this to a max would handle both negative zeros and NaNs
11481        // incorrectly, but we can swap the operands to fix both.
11482        std::swap(LHS, RHS);
11483      case ISD::SETOGT:
11484      case ISD::SETGT:
11485      case ISD::SETGE:
11486        Opcode = X86ISD::FMAX;
11487        break;
11488      }
11489    // Check for x CC y ? y : x -- a min/max with reversed arms.
11490    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
11491               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
11492      switch (CC) {
11493      default: break;
11494      case ISD::SETOGE:
11495        // Converting this to a min would handle comparisons between positive
11496        // and negative zero incorrectly, and swapping the operands would
11497        // cause it to handle NaNs incorrectly.
11498        if (!UnsafeFPMath &&
11499            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
11500          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
11501            break;
11502          std::swap(LHS, RHS);
11503        }
11504        Opcode = X86ISD::FMIN;
11505        break;
11506      case ISD::SETUGT:
11507        // Converting this to a min would handle NaNs incorrectly.
11508        if (!UnsafeFPMath &&
11509            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
11510          break;
11511        Opcode = X86ISD::FMIN;
11512        break;
11513      case ISD::SETUGE:
11514        // Converting this to a min would handle both negative zeros and NaNs
11515        // incorrectly, but we can swap the operands to fix both.
11516        std::swap(LHS, RHS);
11517      case ISD::SETOGT:
11518      case ISD::SETGT:
11519      case ISD::SETGE:
11520        Opcode = X86ISD::FMIN;
11521        break;
11522
11523      case ISD::SETULT:
11524        // Converting this to a max would handle NaNs incorrectly.
11525        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
11526          break;
11527        Opcode = X86ISD::FMAX;
11528        break;
11529      case ISD::SETOLE:
11530        // Converting this to a max would handle comparisons between positive
11531        // and negative zero incorrectly, and swapping the operands would
11532        // cause it to handle NaNs incorrectly.
11533        if (!UnsafeFPMath &&
11534            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
11535          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
11536            break;
11537          std::swap(LHS, RHS);
11538        }
11539        Opcode = X86ISD::FMAX;
11540        break;
11541      case ISD::SETULE:
11542        // Converting this to a max would handle both negative zeros and NaNs
11543        // incorrectly, but we can swap the operands to fix both.
11544        std::swap(LHS, RHS);
11545      case ISD::SETOLT:
11546      case ISD::SETLT:
11547      case ISD::SETLE:
11548        Opcode = X86ISD::FMAX;
11549        break;
11550      }
11551    }
11552
11553    if (Opcode)
11554      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
11555  }
11556
11557  // If this is a select between two integer constants, try to do some
11558  // optimizations.
11559  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
11560    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
11561      // Don't do this for crazy integer types.
11562      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
11563        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
11564        // so that TrueC (the true value) is larger than FalseC.
11565        bool NeedsCondInvert = false;
11566
11567        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
11568            // Efficiently invertible.
11569            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
11570             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
11571              isa<ConstantSDNode>(Cond.getOperand(1))))) {
11572          NeedsCondInvert = true;
11573          std::swap(TrueC, FalseC);
11574        }
11575
11576        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
11577        if (FalseC->getAPIntValue() == 0 &&
11578            TrueC->getAPIntValue().isPowerOf2()) {
11579          if (NeedsCondInvert) // Invert the condition if needed.
11580            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
11581                               DAG.getConstant(1, Cond.getValueType()));
11582
11583          // Zero extend the condition if needed.
11584          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
11585
11586          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
11587          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
11588                             DAG.getConstant(ShAmt, MVT::i8));
11589        }
11590
11591        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
11592        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
11593          if (NeedsCondInvert) // Invert the condition if needed.
11594            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
11595                               DAG.getConstant(1, Cond.getValueType()));
11596
11597          // Zero extend the condition if needed.
11598          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
11599                             FalseC->getValueType(0), Cond);
11600          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
11601                             SDValue(FalseC, 0));
11602        }
11603
11604        // Optimize cases that will turn into an LEA instruction.  This requires
11605        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
11606        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
11607          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
11608          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
11609
11610          bool isFastMultiplier = false;
11611          if (Diff < 10) {
11612            switch ((unsigned char)Diff) {
11613              default: break;
11614              case 1:  // result = add base, cond
11615              case 2:  // result = lea base(    , cond*2)
11616              case 3:  // result = lea base(cond, cond*2)
11617              case 4:  // result = lea base(    , cond*4)
11618              case 5:  // result = lea base(cond, cond*4)
11619              case 8:  // result = lea base(    , cond*8)
11620              case 9:  // result = lea base(cond, cond*8)
11621                isFastMultiplier = true;
11622                break;
11623            }
11624          }
11625
11626          if (isFastMultiplier) {
11627            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
11628            if (NeedsCondInvert) // Invert the condition if needed.
11629              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
11630                                 DAG.getConstant(1, Cond.getValueType()));
11631
11632            // Zero extend the condition if needed.
11633            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
11634                               Cond);
11635            // Scale the condition by the difference.
11636            if (Diff != 1)
11637              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
11638                                 DAG.getConstant(Diff, Cond.getValueType()));
11639
11640            // Add the base if non-zero.
11641            if (FalseC->getAPIntValue() != 0)
11642              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
11643                                 SDValue(FalseC, 0));
11644            return Cond;
11645          }
11646        }
11647      }
11648  }
11649
11650  return SDValue();
11651}
11652
11653/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
11654static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
11655                                  TargetLowering::DAGCombinerInfo &DCI) {
11656  DebugLoc DL = N->getDebugLoc();
11657
11658  // If the flag operand isn't dead, don't touch this CMOV.
11659  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
11660    return SDValue();
11661
11662  SDValue FalseOp = N->getOperand(0);
11663  SDValue TrueOp = N->getOperand(1);
11664  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
11665  SDValue Cond = N->getOperand(3);
11666  if (CC == X86::COND_E || CC == X86::COND_NE) {
11667    switch (Cond.getOpcode()) {
11668    default: break;
11669    case X86ISD::BSR:
11670    case X86ISD::BSF:
11671      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
11672      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
11673        return (CC == X86::COND_E) ? FalseOp : TrueOp;
11674    }
11675  }
11676
11677  // If this is a select between two integer constants, try to do some
11678  // optimizations.  Note that the operands are ordered the opposite of SELECT
11679  // operands.
11680  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
11681    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
11682      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
11683      // larger than FalseC (the false value).
11684      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
11685        CC = X86::GetOppositeBranchCondition(CC);
11686        std::swap(TrueC, FalseC);
11687      }
11688
11689      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
11690      // This is efficient for any integer data type (including i8/i16) and
11691      // shift amount.
11692      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
11693        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
11694                           DAG.getConstant(CC, MVT::i8), Cond);
11695
11696        // Zero extend the condition if needed.
11697        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
11698
11699        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
11700        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
11701                           DAG.getConstant(ShAmt, MVT::i8));
11702        if (N->getNumValues() == 2)  // Dead flag value?
11703          return DCI.CombineTo(N, Cond, SDValue());
11704        return Cond;
11705      }
11706
11707      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
11708      // for any integer data type, including i8/i16.
11709      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
11710        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
11711                           DAG.getConstant(CC, MVT::i8), Cond);
11712
11713        // Zero extend the condition if needed.
11714        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
11715                           FalseC->getValueType(0), Cond);
11716        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
11717                           SDValue(FalseC, 0));
11718
11719        if (N->getNumValues() == 2)  // Dead flag value?
11720          return DCI.CombineTo(N, Cond, SDValue());
11721        return Cond;
11722      }
11723
11724      // Optimize cases that will turn into an LEA instruction.  This requires
11725      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
11726      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
11727        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
11728        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
11729
11730        bool isFastMultiplier = false;
11731        if (Diff < 10) {
11732          switch ((unsigned char)Diff) {
11733          default: break;
11734          case 1:  // result = add base, cond
11735          case 2:  // result = lea base(    , cond*2)
11736          case 3:  // result = lea base(cond, cond*2)
11737          case 4:  // result = lea base(    , cond*4)
11738          case 5:  // result = lea base(cond, cond*4)
11739          case 8:  // result = lea base(    , cond*8)
11740          case 9:  // result = lea base(cond, cond*8)
11741            isFastMultiplier = true;
11742            break;
11743          }
11744        }
11745
11746        if (isFastMultiplier) {
11747          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
11748          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
11749                             DAG.getConstant(CC, MVT::i8), Cond);
11750          // Zero extend the condition if needed.
11751          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
11752                             Cond);
11753          // Scale the condition by the difference.
11754          if (Diff != 1)
11755            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
11756                               DAG.getConstant(Diff, Cond.getValueType()));
11757
11758          // Add the base if non-zero.
11759          if (FalseC->getAPIntValue() != 0)
11760            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
11761                               SDValue(FalseC, 0));
11762          if (N->getNumValues() == 2)  // Dead flag value?
11763            return DCI.CombineTo(N, Cond, SDValue());
11764          return Cond;
11765        }
11766      }
11767    }
11768  }
11769  return SDValue();
11770}
11771
11772
11773/// PerformMulCombine - Optimize a single multiply with constant into two
11774/// in order to implement it with two cheaper instructions, e.g.
11775/// LEA + SHL, LEA + LEA.
11776static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
11777                                 TargetLowering::DAGCombinerInfo &DCI) {
11778  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
11779    return SDValue();
11780
11781  EVT VT = N->getValueType(0);
11782  if (VT != MVT::i64)
11783    return SDValue();
11784
11785  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
11786  if (!C)
11787    return SDValue();
11788  uint64_t MulAmt = C->getZExtValue();
11789  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
11790    return SDValue();
11791
11792  uint64_t MulAmt1 = 0;
11793  uint64_t MulAmt2 = 0;
11794  if ((MulAmt % 9) == 0) {
11795    MulAmt1 = 9;
11796    MulAmt2 = MulAmt / 9;
11797  } else if ((MulAmt % 5) == 0) {
11798    MulAmt1 = 5;
11799    MulAmt2 = MulAmt / 5;
11800  } else if ((MulAmt % 3) == 0) {
11801    MulAmt1 = 3;
11802    MulAmt2 = MulAmt / 3;
11803  }
11804  if (MulAmt2 &&
11805      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
11806    DebugLoc DL = N->getDebugLoc();
11807
11808    if (isPowerOf2_64(MulAmt2) &&
11809        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
11810      // If second multiplifer is pow2, issue it first. We want the multiply by
11811      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
11812      // is an add.
11813      std::swap(MulAmt1, MulAmt2);
11814
11815    SDValue NewMul;
11816    if (isPowerOf2_64(MulAmt1))
11817      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
11818                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
11819    else
11820      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
11821                           DAG.getConstant(MulAmt1, VT));
11822
11823    if (isPowerOf2_64(MulAmt2))
11824      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
11825                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
11826    else
11827      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
11828                           DAG.getConstant(MulAmt2, VT));
11829
11830    // Do not add new nodes to DAG combiner worklist.
11831    DCI.CombineTo(N, NewMul, false);
11832  }
11833  return SDValue();
11834}
11835
11836static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
11837  SDValue N0 = N->getOperand(0);
11838  SDValue N1 = N->getOperand(1);
11839  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
11840  EVT VT = N0.getValueType();
11841
11842  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
11843  // since the result of setcc_c is all zero's or all ones.
11844  if (N1C && N0.getOpcode() == ISD::AND &&
11845      N0.getOperand(1).getOpcode() == ISD::Constant) {
11846    SDValue N00 = N0.getOperand(0);
11847    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
11848        ((N00.getOpcode() == ISD::ANY_EXTEND ||
11849          N00.getOpcode() == ISD::ZERO_EXTEND) &&
11850         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
11851      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
11852      APInt ShAmt = N1C->getAPIntValue();
11853      Mask = Mask.shl(ShAmt);
11854      if (Mask != 0)
11855        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
11856                           N00, DAG.getConstant(Mask, VT));
11857    }
11858  }
11859
11860  return SDValue();
11861}
11862
11863/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
11864///                       when possible.
11865static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
11866                                   const X86Subtarget *Subtarget) {
11867  EVT VT = N->getValueType(0);
11868  if (!VT.isVector() && VT.isInteger() &&
11869      N->getOpcode() == ISD::SHL)
11870    return PerformSHLCombine(N, DAG);
11871
11872  // On X86 with SSE2 support, we can transform this to a vector shift if
11873  // all elements are shifted by the same amount.  We can't do this in legalize
11874  // because the a constant vector is typically transformed to a constant pool
11875  // so we have no knowledge of the shift amount.
11876  if (!Subtarget->hasSSE2())
11877    return SDValue();
11878
11879  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
11880    return SDValue();
11881
11882  SDValue ShAmtOp = N->getOperand(1);
11883  EVT EltVT = VT.getVectorElementType();
11884  DebugLoc DL = N->getDebugLoc();
11885  SDValue BaseShAmt = SDValue();
11886  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
11887    unsigned NumElts = VT.getVectorNumElements();
11888    unsigned i = 0;
11889    for (; i != NumElts; ++i) {
11890      SDValue Arg = ShAmtOp.getOperand(i);
11891      if (Arg.getOpcode() == ISD::UNDEF) continue;
11892      BaseShAmt = Arg;
11893      break;
11894    }
11895    for (; i != NumElts; ++i) {
11896      SDValue Arg = ShAmtOp.getOperand(i);
11897      if (Arg.getOpcode() == ISD::UNDEF) continue;
11898      if (Arg != BaseShAmt) {
11899        return SDValue();
11900      }
11901    }
11902  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
11903             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
11904    SDValue InVec = ShAmtOp.getOperand(0);
11905    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
11906      unsigned NumElts = InVec.getValueType().getVectorNumElements();
11907      unsigned i = 0;
11908      for (; i != NumElts; ++i) {
11909        SDValue Arg = InVec.getOperand(i);
11910        if (Arg.getOpcode() == ISD::UNDEF) continue;
11911        BaseShAmt = Arg;
11912        break;
11913      }
11914    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
11915       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
11916         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
11917         if (C->getZExtValue() == SplatIdx)
11918           BaseShAmt = InVec.getOperand(1);
11919       }
11920    }
11921    if (BaseShAmt.getNode() == 0)
11922      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
11923                              DAG.getIntPtrConstant(0));
11924  } else
11925    return SDValue();
11926
11927  // The shift amount is an i32.
11928  if (EltVT.bitsGT(MVT::i32))
11929    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
11930  else if (EltVT.bitsLT(MVT::i32))
11931    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
11932
11933  // The shift amount is identical so we can do a vector shift.
11934  SDValue  ValOp = N->getOperand(0);
11935  switch (N->getOpcode()) {
11936  default:
11937    llvm_unreachable("Unknown shift opcode!");
11938    break;
11939  case ISD::SHL:
11940    if (VT == MVT::v2i64)
11941      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11942                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
11943                         ValOp, BaseShAmt);
11944    if (VT == MVT::v4i32)
11945      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11946                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
11947                         ValOp, BaseShAmt);
11948    if (VT == MVT::v8i16)
11949      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11950                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
11951                         ValOp, BaseShAmt);
11952    break;
11953  case ISD::SRA:
11954    if (VT == MVT::v4i32)
11955      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11956                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
11957                         ValOp, BaseShAmt);
11958    if (VT == MVT::v8i16)
11959      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11960                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
11961                         ValOp, BaseShAmt);
11962    break;
11963  case ISD::SRL:
11964    if (VT == MVT::v2i64)
11965      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11966                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
11967                         ValOp, BaseShAmt);
11968    if (VT == MVT::v4i32)
11969      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11970                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
11971                         ValOp, BaseShAmt);
11972    if (VT ==  MVT::v8i16)
11973      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11974                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
11975                         ValOp, BaseShAmt);
11976    break;
11977  }
11978  return SDValue();
11979}
11980
11981
11982// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
11983// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
11984// and friends.  Likewise for OR -> CMPNEQSS.
11985static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
11986                            TargetLowering::DAGCombinerInfo &DCI,
11987                            const X86Subtarget *Subtarget) {
11988  unsigned opcode;
11989
11990  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
11991  // we're requiring SSE2 for both.
11992  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
11993    SDValue N0 = N->getOperand(0);
11994    SDValue N1 = N->getOperand(1);
11995    SDValue CMP0 = N0->getOperand(1);
11996    SDValue CMP1 = N1->getOperand(1);
11997    DebugLoc DL = N->getDebugLoc();
11998
11999    // The SETCCs should both refer to the same CMP.
12000    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
12001      return SDValue();
12002
12003    SDValue CMP00 = CMP0->getOperand(0);
12004    SDValue CMP01 = CMP0->getOperand(1);
12005    EVT     VT    = CMP00.getValueType();
12006
12007    if (VT == MVT::f32 || VT == MVT::f64) {
12008      bool ExpectingFlags = false;
12009      // Check for any users that want flags:
12010      for (SDNode::use_iterator UI = N->use_begin(),
12011             UE = N->use_end();
12012           !ExpectingFlags && UI != UE; ++UI)
12013        switch (UI->getOpcode()) {
12014        default:
12015        case ISD::BR_CC:
12016        case ISD::BRCOND:
12017        case ISD::SELECT:
12018          ExpectingFlags = true;
12019          break;
12020        case ISD::CopyToReg:
12021        case ISD::SIGN_EXTEND:
12022        case ISD::ZERO_EXTEND:
12023        case ISD::ANY_EXTEND:
12024          break;
12025        }
12026
12027      if (!ExpectingFlags) {
12028        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
12029        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
12030
12031        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
12032          X86::CondCode tmp = cc0;
12033          cc0 = cc1;
12034          cc1 = tmp;
12035        }
12036
12037        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
12038            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
12039          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
12040          X86ISD::NodeType NTOperator = is64BitFP ?
12041            X86ISD::FSETCCsd : X86ISD::FSETCCss;
12042          // FIXME: need symbolic constants for these magic numbers.
12043          // See X86ATTInstPrinter.cpp:printSSECC().
12044          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
12045          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
12046                                              DAG.getConstant(x86cc, MVT::i8));
12047          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
12048                                              OnesOrZeroesF);
12049          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
12050                                      DAG.getConstant(1, MVT::i32));
12051          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
12052          return OneBitOfTruth;
12053        }
12054      }
12055    }
12056  }
12057  return SDValue();
12058}
12059
12060/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
12061/// so it can be folded inside ANDNP.
12062static bool CanFoldXORWithAllOnes(const SDNode *N) {
12063  EVT VT = N->getValueType(0);
12064
12065  // Match direct AllOnes for 128 and 256-bit vectors
12066  if (ISD::isBuildVectorAllOnes(N))
12067    return true;
12068
12069  // Look through a bit convert.
12070  if (N->getOpcode() == ISD::BITCAST)
12071    N = N->getOperand(0).getNode();
12072
12073  // Sometimes the operand may come from a insert_subvector building a 256-bit
12074  // allones vector
12075  SDValue V1 = N->getOperand(0);
12076  SDValue V2 = N->getOperand(1);
12077
12078  if (VT.getSizeInBits() == 256 &&
12079      N->getOpcode() == ISD::INSERT_SUBVECTOR &&
12080      V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
12081      V1.getOperand(0).getOpcode() == ISD::UNDEF &&
12082      ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
12083      ISD::isBuildVectorAllOnes(V2.getNode()))
12084    return true;
12085
12086  return false;
12087}
12088
12089static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
12090                                 TargetLowering::DAGCombinerInfo &DCI,
12091                                 const X86Subtarget *Subtarget) {
12092  if (DCI.isBeforeLegalizeOps())
12093    return SDValue();
12094
12095  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
12096  if (R.getNode())
12097    return R;
12098
12099  // Want to form ANDNP nodes:
12100  // 1) In the hopes of then easily combining them with OR and AND nodes
12101  //    to form PBLEND/PSIGN.
12102  // 2) To match ANDN packed intrinsics
12103  EVT VT = N->getValueType(0);
12104  if (VT != MVT::v2i64 && VT != MVT::v4i64)
12105    return SDValue();
12106
12107  SDValue N0 = N->getOperand(0);
12108  SDValue N1 = N->getOperand(1);
12109  DebugLoc DL = N->getDebugLoc();
12110
12111  // Check LHS for vnot
12112  if (N0.getOpcode() == ISD::XOR &&
12113      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
12114      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
12115    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
12116
12117  // Check RHS for vnot
12118  if (N1.getOpcode() == ISD::XOR &&
12119      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
12120      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
12121    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
12122
12123  return SDValue();
12124}
12125
12126static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
12127                                TargetLowering::DAGCombinerInfo &DCI,
12128                                const X86Subtarget *Subtarget) {
12129  if (DCI.isBeforeLegalizeOps())
12130    return SDValue();
12131
12132  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
12133  if (R.getNode())
12134    return R;
12135
12136  EVT VT = N->getValueType(0);
12137  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64 && VT != MVT::v2i64)
12138    return SDValue();
12139
12140  SDValue N0 = N->getOperand(0);
12141  SDValue N1 = N->getOperand(1);
12142
12143  // look for psign/blend
12144  if (Subtarget->hasSSSE3()) {
12145    if (VT == MVT::v2i64) {
12146      // Canonicalize pandn to RHS
12147      if (N0.getOpcode() == X86ISD::ANDNP)
12148        std::swap(N0, N1);
12149      // or (and (m, x), (pandn m, y))
12150      if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
12151        SDValue Mask = N1.getOperand(0);
12152        SDValue X    = N1.getOperand(1);
12153        SDValue Y;
12154        if (N0.getOperand(0) == Mask)
12155          Y = N0.getOperand(1);
12156        if (N0.getOperand(1) == Mask)
12157          Y = N0.getOperand(0);
12158
12159        // Check to see if the mask appeared in both the AND and ANDNP and
12160        if (!Y.getNode())
12161          return SDValue();
12162
12163        // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
12164        if (Mask.getOpcode() != ISD::BITCAST ||
12165            X.getOpcode() != ISD::BITCAST ||
12166            Y.getOpcode() != ISD::BITCAST)
12167          return SDValue();
12168
12169        // Look through mask bitcast.
12170        Mask = Mask.getOperand(0);
12171        EVT MaskVT = Mask.getValueType();
12172
12173        // Validate that the Mask operand is a vector sra node.  The sra node
12174        // will be an intrinsic.
12175        if (Mask.getOpcode() != ISD::INTRINSIC_WO_CHAIN)
12176          return SDValue();
12177
12178        // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
12179        // there is no psrai.b
12180        switch (cast<ConstantSDNode>(Mask.getOperand(0))->getZExtValue()) {
12181        case Intrinsic::x86_sse2_psrai_w:
12182        case Intrinsic::x86_sse2_psrai_d:
12183          break;
12184        default: return SDValue();
12185        }
12186
12187        // Check that the SRA is all signbits.
12188        SDValue SraC = Mask.getOperand(2);
12189        unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
12190        unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
12191        if ((SraAmt + 1) != EltBits)
12192          return SDValue();
12193
12194        DebugLoc DL = N->getDebugLoc();
12195
12196        // Now we know we at least have a plendvb with the mask val.  See if
12197        // we can form a psignb/w/d.
12198        // psign = x.type == y.type == mask.type && y = sub(0, x);
12199        X = X.getOperand(0);
12200        Y = Y.getOperand(0);
12201        if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
12202            ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
12203            X.getValueType() == MaskVT && X.getValueType() == Y.getValueType()){
12204          unsigned Opc = 0;
12205          switch (EltBits) {
12206          case 8: Opc = X86ISD::PSIGNB; break;
12207          case 16: Opc = X86ISD::PSIGNW; break;
12208          case 32: Opc = X86ISD::PSIGND; break;
12209          default: break;
12210          }
12211          if (Opc) {
12212            SDValue Sign = DAG.getNode(Opc, DL, MaskVT, X, Mask.getOperand(1));
12213            return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Sign);
12214          }
12215        }
12216        // PBLENDVB only available on SSE 4.1
12217        if (!Subtarget->hasSSE41())
12218          return SDValue();
12219
12220        X = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, X);
12221        Y = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Y);
12222        Mask = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Mask);
12223        Mask = DAG.getNode(X86ISD::PBLENDVB, DL, MVT::v16i8, X, Y, Mask);
12224        return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Mask);
12225      }
12226    }
12227  }
12228
12229  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
12230  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
12231    std::swap(N0, N1);
12232  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
12233    return SDValue();
12234  if (!N0.hasOneUse() || !N1.hasOneUse())
12235    return SDValue();
12236
12237  SDValue ShAmt0 = N0.getOperand(1);
12238  if (ShAmt0.getValueType() != MVT::i8)
12239    return SDValue();
12240  SDValue ShAmt1 = N1.getOperand(1);
12241  if (ShAmt1.getValueType() != MVT::i8)
12242    return SDValue();
12243  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
12244    ShAmt0 = ShAmt0.getOperand(0);
12245  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
12246    ShAmt1 = ShAmt1.getOperand(0);
12247
12248  DebugLoc DL = N->getDebugLoc();
12249  unsigned Opc = X86ISD::SHLD;
12250  SDValue Op0 = N0.getOperand(0);
12251  SDValue Op1 = N1.getOperand(0);
12252  if (ShAmt0.getOpcode() == ISD::SUB) {
12253    Opc = X86ISD::SHRD;
12254    std::swap(Op0, Op1);
12255    std::swap(ShAmt0, ShAmt1);
12256  }
12257
12258  unsigned Bits = VT.getSizeInBits();
12259  if (ShAmt1.getOpcode() == ISD::SUB) {
12260    SDValue Sum = ShAmt1.getOperand(0);
12261    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
12262      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
12263      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
12264        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
12265      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
12266        return DAG.getNode(Opc, DL, VT,
12267                           Op0, Op1,
12268                           DAG.getNode(ISD::TRUNCATE, DL,
12269                                       MVT::i8, ShAmt0));
12270    }
12271  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
12272    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
12273    if (ShAmt0C &&
12274        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
12275      return DAG.getNode(Opc, DL, VT,
12276                         N0.getOperand(0), N1.getOperand(0),
12277                         DAG.getNode(ISD::TRUNCATE, DL,
12278                                       MVT::i8, ShAmt0));
12279  }
12280
12281  return SDValue();
12282}
12283
12284/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
12285static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
12286                                   const X86Subtarget *Subtarget) {
12287  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
12288  // the FP state in cases where an emms may be missing.
12289  // A preferable solution to the general problem is to figure out the right
12290  // places to insert EMMS.  This qualifies as a quick hack.
12291
12292  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
12293  StoreSDNode *St = cast<StoreSDNode>(N);
12294  EVT VT = St->getValue().getValueType();
12295  if (VT.getSizeInBits() != 64)
12296    return SDValue();
12297
12298  const Function *F = DAG.getMachineFunction().getFunction();
12299  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
12300  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
12301    && Subtarget->hasSSE2();
12302  if ((VT.isVector() ||
12303       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
12304      isa<LoadSDNode>(St->getValue()) &&
12305      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
12306      St->getChain().hasOneUse() && !St->isVolatile()) {
12307    SDNode* LdVal = St->getValue().getNode();
12308    LoadSDNode *Ld = 0;
12309    int TokenFactorIndex = -1;
12310    SmallVector<SDValue, 8> Ops;
12311    SDNode* ChainVal = St->getChain().getNode();
12312    // Must be a store of a load.  We currently handle two cases:  the load
12313    // is a direct child, and it's under an intervening TokenFactor.  It is
12314    // possible to dig deeper under nested TokenFactors.
12315    if (ChainVal == LdVal)
12316      Ld = cast<LoadSDNode>(St->getChain());
12317    else if (St->getValue().hasOneUse() &&
12318             ChainVal->getOpcode() == ISD::TokenFactor) {
12319      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
12320        if (ChainVal->getOperand(i).getNode() == LdVal) {
12321          TokenFactorIndex = i;
12322          Ld = cast<LoadSDNode>(St->getValue());
12323        } else
12324          Ops.push_back(ChainVal->getOperand(i));
12325      }
12326    }
12327
12328    if (!Ld || !ISD::isNormalLoad(Ld))
12329      return SDValue();
12330
12331    // If this is not the MMX case, i.e. we are just turning i64 load/store
12332    // into f64 load/store, avoid the transformation if there are multiple
12333    // uses of the loaded value.
12334    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
12335      return SDValue();
12336
12337    DebugLoc LdDL = Ld->getDebugLoc();
12338    DebugLoc StDL = N->getDebugLoc();
12339    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
12340    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
12341    // pair instead.
12342    if (Subtarget->is64Bit() || F64IsLegal) {
12343      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
12344      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
12345                                  Ld->getPointerInfo(), Ld->isVolatile(),
12346                                  Ld->isNonTemporal(), Ld->getAlignment());
12347      SDValue NewChain = NewLd.getValue(1);
12348      if (TokenFactorIndex != -1) {
12349        Ops.push_back(NewChain);
12350        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
12351                               Ops.size());
12352      }
12353      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
12354                          St->getPointerInfo(),
12355                          St->isVolatile(), St->isNonTemporal(),
12356                          St->getAlignment());
12357    }
12358
12359    // Otherwise, lower to two pairs of 32-bit loads / stores.
12360    SDValue LoAddr = Ld->getBasePtr();
12361    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
12362                                 DAG.getConstant(4, MVT::i32));
12363
12364    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
12365                               Ld->getPointerInfo(),
12366                               Ld->isVolatile(), Ld->isNonTemporal(),
12367                               Ld->getAlignment());
12368    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
12369                               Ld->getPointerInfo().getWithOffset(4),
12370                               Ld->isVolatile(), Ld->isNonTemporal(),
12371                               MinAlign(Ld->getAlignment(), 4));
12372
12373    SDValue NewChain = LoLd.getValue(1);
12374    if (TokenFactorIndex != -1) {
12375      Ops.push_back(LoLd);
12376      Ops.push_back(HiLd);
12377      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
12378                             Ops.size());
12379    }
12380
12381    LoAddr = St->getBasePtr();
12382    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
12383                         DAG.getConstant(4, MVT::i32));
12384
12385    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
12386                                St->getPointerInfo(),
12387                                St->isVolatile(), St->isNonTemporal(),
12388                                St->getAlignment());
12389    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
12390                                St->getPointerInfo().getWithOffset(4),
12391                                St->isVolatile(),
12392                                St->isNonTemporal(),
12393                                MinAlign(St->getAlignment(), 4));
12394    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
12395  }
12396  return SDValue();
12397}
12398
12399/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
12400/// X86ISD::FXOR nodes.
12401static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
12402  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
12403  // F[X]OR(0.0, x) -> x
12404  // F[X]OR(x, 0.0) -> x
12405  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
12406    if (C->getValueAPF().isPosZero())
12407      return N->getOperand(1);
12408  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
12409    if (C->getValueAPF().isPosZero())
12410      return N->getOperand(0);
12411  return SDValue();
12412}
12413
12414/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
12415static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
12416  // FAND(0.0, x) -> 0.0
12417  // FAND(x, 0.0) -> 0.0
12418  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
12419    if (C->getValueAPF().isPosZero())
12420      return N->getOperand(0);
12421  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
12422    if (C->getValueAPF().isPosZero())
12423      return N->getOperand(1);
12424  return SDValue();
12425}
12426
12427static SDValue PerformBTCombine(SDNode *N,
12428                                SelectionDAG &DAG,
12429                                TargetLowering::DAGCombinerInfo &DCI) {
12430  // BT ignores high bits in the bit index operand.
12431  SDValue Op1 = N->getOperand(1);
12432  if (Op1.hasOneUse()) {
12433    unsigned BitWidth = Op1.getValueSizeInBits();
12434    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
12435    APInt KnownZero, KnownOne;
12436    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
12437                                          !DCI.isBeforeLegalizeOps());
12438    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12439    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
12440        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
12441      DCI.CommitTargetLoweringOpt(TLO);
12442  }
12443  return SDValue();
12444}
12445
12446static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
12447  SDValue Op = N->getOperand(0);
12448  if (Op.getOpcode() == ISD::BITCAST)
12449    Op = Op.getOperand(0);
12450  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
12451  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
12452      VT.getVectorElementType().getSizeInBits() ==
12453      OpVT.getVectorElementType().getSizeInBits()) {
12454    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
12455  }
12456  return SDValue();
12457}
12458
12459static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
12460  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
12461  //           (and (i32 x86isd::setcc_carry), 1)
12462  // This eliminates the zext. This transformation is necessary because
12463  // ISD::SETCC is always legalized to i8.
12464  DebugLoc dl = N->getDebugLoc();
12465  SDValue N0 = N->getOperand(0);
12466  EVT VT = N->getValueType(0);
12467  if (N0.getOpcode() == ISD::AND &&
12468      N0.hasOneUse() &&
12469      N0.getOperand(0).hasOneUse()) {
12470    SDValue N00 = N0.getOperand(0);
12471    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
12472      return SDValue();
12473    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
12474    if (!C || C->getZExtValue() != 1)
12475      return SDValue();
12476    return DAG.getNode(ISD::AND, dl, VT,
12477                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
12478                                   N00.getOperand(0), N00.getOperand(1)),
12479                       DAG.getConstant(1, VT));
12480  }
12481
12482  return SDValue();
12483}
12484
12485// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
12486static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
12487  unsigned X86CC = N->getConstantOperandVal(0);
12488  SDValue EFLAG = N->getOperand(1);
12489  DebugLoc DL = N->getDebugLoc();
12490
12491  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
12492  // a zext and produces an all-ones bit which is more useful than 0/1 in some
12493  // cases.
12494  if (X86CC == X86::COND_B)
12495    return DAG.getNode(ISD::AND, DL, MVT::i8,
12496                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
12497                                   DAG.getConstant(X86CC, MVT::i8), EFLAG),
12498                       DAG.getConstant(1, MVT::i8));
12499
12500  return SDValue();
12501}
12502
12503static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
12504                                        const X86TargetLowering *XTLI) {
12505  SDValue Op0 = N->getOperand(0);
12506  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
12507  // a 32-bit target where SSE doesn't support i64->FP operations.
12508  if (Op0.getOpcode() == ISD::LOAD) {
12509    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
12510    EVT VT = Ld->getValueType(0);
12511    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
12512        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
12513        !XTLI->getSubtarget()->is64Bit() &&
12514        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
12515      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
12516                                          Ld->getChain(), Op0, DAG);
12517      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
12518      return FILDChain;
12519    }
12520  }
12521  return SDValue();
12522}
12523
12524// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
12525static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
12526                                 X86TargetLowering::DAGCombinerInfo &DCI) {
12527  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
12528  // the result is either zero or one (depending on the input carry bit).
12529  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
12530  if (X86::isZeroNode(N->getOperand(0)) &&
12531      X86::isZeroNode(N->getOperand(1)) &&
12532      // We don't have a good way to replace an EFLAGS use, so only do this when
12533      // dead right now.
12534      SDValue(N, 1).use_empty()) {
12535    DebugLoc DL = N->getDebugLoc();
12536    EVT VT = N->getValueType(0);
12537    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
12538    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
12539                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
12540                                           DAG.getConstant(X86::COND_B,MVT::i8),
12541                                           N->getOperand(2)),
12542                               DAG.getConstant(1, VT));
12543    return DCI.CombineTo(N, Res1, CarryOut);
12544  }
12545
12546  return SDValue();
12547}
12548
12549// fold (add Y, (sete  X, 0)) -> adc  0, Y
12550//      (add Y, (setne X, 0)) -> sbb -1, Y
12551//      (sub (sete  X, 0), Y) -> sbb  0, Y
12552//      (sub (setne X, 0), Y) -> adc -1, Y
12553static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
12554  DebugLoc DL = N->getDebugLoc();
12555
12556  // Look through ZExts.
12557  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
12558  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
12559    return SDValue();
12560
12561  SDValue SetCC = Ext.getOperand(0);
12562  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
12563    return SDValue();
12564
12565  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
12566  if (CC != X86::COND_E && CC != X86::COND_NE)
12567    return SDValue();
12568
12569  SDValue Cmp = SetCC.getOperand(1);
12570  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
12571      !X86::isZeroNode(Cmp.getOperand(1)) ||
12572      !Cmp.getOperand(0).getValueType().isInteger())
12573    return SDValue();
12574
12575  SDValue CmpOp0 = Cmp.getOperand(0);
12576  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
12577                               DAG.getConstant(1, CmpOp0.getValueType()));
12578
12579  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
12580  if (CC == X86::COND_NE)
12581    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
12582                       DL, OtherVal.getValueType(), OtherVal,
12583                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
12584  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
12585                     DL, OtherVal.getValueType(), OtherVal,
12586                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
12587}
12588
12589static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG) {
12590  SDValue Op0 = N->getOperand(0);
12591  SDValue Op1 = N->getOperand(1);
12592
12593  // X86 can't encode an immediate LHS of a sub. See if we can push the
12594  // negation into a preceding instruction.
12595  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
12596    uint64_t Op0C = C->getSExtValue();
12597
12598    // If the RHS of the sub is a XOR with one use and a constant, invert the
12599    // immediate. Then add one to the LHS of the sub so we can turn
12600    // X-Y -> X+~Y+1, saving one register.
12601    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
12602        isa<ConstantSDNode>(Op1.getOperand(1))) {
12603      uint64_t XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getSExtValue();
12604      EVT VT = Op0.getValueType();
12605      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
12606                                   Op1.getOperand(0),
12607                                   DAG.getConstant(~XorC, VT));
12608      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
12609                         DAG.getConstant(Op0C+1, VT));
12610    }
12611  }
12612
12613  return OptimizeConditionalInDecrement(N, DAG);
12614}
12615
12616SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
12617                                             DAGCombinerInfo &DCI) const {
12618  SelectionDAG &DAG = DCI.DAG;
12619  switch (N->getOpcode()) {
12620  default: break;
12621  case ISD::EXTRACT_VECTOR_ELT:
12622    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
12623  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
12624  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
12625  case ISD::ADD:            return OptimizeConditionalInDecrement(N, DAG);
12626  case ISD::SUB:            return PerformSubCombine(N, DAG);
12627  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
12628  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
12629  case ISD::SHL:
12630  case ISD::SRA:
12631  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
12632  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
12633  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
12634  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
12635  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
12636  case X86ISD::FXOR:
12637  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
12638  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
12639  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
12640  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
12641  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
12642  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
12643  case X86ISD::SHUFPS:      // Handle all target specific shuffles
12644  case X86ISD::SHUFPD:
12645  case X86ISD::PALIGN:
12646  case X86ISD::PUNPCKHBW:
12647  case X86ISD::PUNPCKHWD:
12648  case X86ISD::PUNPCKHDQ:
12649  case X86ISD::PUNPCKHQDQ:
12650  case X86ISD::UNPCKHPS:
12651  case X86ISD::UNPCKHPD:
12652  case X86ISD::VUNPCKHPSY:
12653  case X86ISD::VUNPCKHPDY:
12654  case X86ISD::PUNPCKLBW:
12655  case X86ISD::PUNPCKLWD:
12656  case X86ISD::PUNPCKLDQ:
12657  case X86ISD::PUNPCKLQDQ:
12658  case X86ISD::UNPCKLPS:
12659  case X86ISD::UNPCKLPD:
12660  case X86ISD::VUNPCKLPSY:
12661  case X86ISD::VUNPCKLPDY:
12662  case X86ISD::MOVHLPS:
12663  case X86ISD::MOVLHPS:
12664  case X86ISD::PSHUFD:
12665  case X86ISD::PSHUFHW:
12666  case X86ISD::PSHUFLW:
12667  case X86ISD::MOVSS:
12668  case X86ISD::MOVSD:
12669  case X86ISD::VPERMIL:
12670  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI);
12671  }
12672
12673  return SDValue();
12674}
12675
12676/// isTypeDesirableForOp - Return true if the target has native support for
12677/// the specified value type and it is 'desirable' to use the type for the
12678/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
12679/// instruction encodings are longer and some i16 instructions are slow.
12680bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
12681  if (!isTypeLegal(VT))
12682    return false;
12683  if (VT != MVT::i16)
12684    return true;
12685
12686  switch (Opc) {
12687  default:
12688    return true;
12689  case ISD::LOAD:
12690  case ISD::SIGN_EXTEND:
12691  case ISD::ZERO_EXTEND:
12692  case ISD::ANY_EXTEND:
12693  case ISD::SHL:
12694  case ISD::SRL:
12695  case ISD::SUB:
12696  case ISD::ADD:
12697  case ISD::MUL:
12698  case ISD::AND:
12699  case ISD::OR:
12700  case ISD::XOR:
12701    return false;
12702  }
12703}
12704
12705/// IsDesirableToPromoteOp - This method query the target whether it is
12706/// beneficial for dag combiner to promote the specified node. If true, it
12707/// should return the desired promotion type by reference.
12708bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
12709  EVT VT = Op.getValueType();
12710  if (VT != MVT::i16)
12711    return false;
12712
12713  bool Promote = false;
12714  bool Commute = false;
12715  switch (Op.getOpcode()) {
12716  default: break;
12717  case ISD::LOAD: {
12718    LoadSDNode *LD = cast<LoadSDNode>(Op);
12719    // If the non-extending load has a single use and it's not live out, then it
12720    // might be folded.
12721    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
12722                                                     Op.hasOneUse()*/) {
12723      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
12724             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
12725        // The only case where we'd want to promote LOAD (rather then it being
12726        // promoted as an operand is when it's only use is liveout.
12727        if (UI->getOpcode() != ISD::CopyToReg)
12728          return false;
12729      }
12730    }
12731    Promote = true;
12732    break;
12733  }
12734  case ISD::SIGN_EXTEND:
12735  case ISD::ZERO_EXTEND:
12736  case ISD::ANY_EXTEND:
12737    Promote = true;
12738    break;
12739  case ISD::SHL:
12740  case ISD::SRL: {
12741    SDValue N0 = Op.getOperand(0);
12742    // Look out for (store (shl (load), x)).
12743    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
12744      return false;
12745    Promote = true;
12746    break;
12747  }
12748  case ISD::ADD:
12749  case ISD::MUL:
12750  case ISD::AND:
12751  case ISD::OR:
12752  case ISD::XOR:
12753    Commute = true;
12754    // fallthrough
12755  case ISD::SUB: {
12756    SDValue N0 = Op.getOperand(0);
12757    SDValue N1 = Op.getOperand(1);
12758    if (!Commute && MayFoldLoad(N1))
12759      return false;
12760    // Avoid disabling potential load folding opportunities.
12761    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
12762      return false;
12763    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
12764      return false;
12765    Promote = true;
12766  }
12767  }
12768
12769  PVT = MVT::i32;
12770  return Promote;
12771}
12772
12773//===----------------------------------------------------------------------===//
12774//                           X86 Inline Assembly Support
12775//===----------------------------------------------------------------------===//
12776
12777bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
12778  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
12779
12780  std::string AsmStr = IA->getAsmString();
12781
12782  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
12783  SmallVector<StringRef, 4> AsmPieces;
12784  SplitString(AsmStr, AsmPieces, ";\n");
12785
12786  switch (AsmPieces.size()) {
12787  default: return false;
12788  case 1:
12789    AsmStr = AsmPieces[0];
12790    AsmPieces.clear();
12791    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
12792
12793    // FIXME: this should verify that we are targeting a 486 or better.  If not,
12794    // we will turn this bswap into something that will be lowered to logical ops
12795    // instead of emitting the bswap asm.  For now, we don't support 486 or lower
12796    // so don't worry about this.
12797    // bswap $0
12798    if (AsmPieces.size() == 2 &&
12799        (AsmPieces[0] == "bswap" ||
12800         AsmPieces[0] == "bswapq" ||
12801         AsmPieces[0] == "bswapl") &&
12802        (AsmPieces[1] == "$0" ||
12803         AsmPieces[1] == "${0:q}")) {
12804      // No need to check constraints, nothing other than the equivalent of
12805      // "=r,0" would be valid here.
12806      IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
12807      if (!Ty || Ty->getBitWidth() % 16 != 0)
12808        return false;
12809      return IntrinsicLowering::LowerToByteSwap(CI);
12810    }
12811    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
12812    if (CI->getType()->isIntegerTy(16) &&
12813        AsmPieces.size() == 3 &&
12814        (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
12815        AsmPieces[1] == "$$8," &&
12816        AsmPieces[2] == "${0:w}" &&
12817        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
12818      AsmPieces.clear();
12819      const std::string &ConstraintsStr = IA->getConstraintString();
12820      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
12821      std::sort(AsmPieces.begin(), AsmPieces.end());
12822      if (AsmPieces.size() == 4 &&
12823          AsmPieces[0] == "~{cc}" &&
12824          AsmPieces[1] == "~{dirflag}" &&
12825          AsmPieces[2] == "~{flags}" &&
12826          AsmPieces[3] == "~{fpsr}") {
12827        IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
12828        if (!Ty || Ty->getBitWidth() % 16 != 0)
12829          return false;
12830        return IntrinsicLowering::LowerToByteSwap(CI);
12831      }
12832    }
12833    break;
12834  case 3:
12835    if (CI->getType()->isIntegerTy(32) &&
12836        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
12837      SmallVector<StringRef, 4> Words;
12838      SplitString(AsmPieces[0], Words, " \t,");
12839      if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
12840          Words[2] == "${0:w}") {
12841        Words.clear();
12842        SplitString(AsmPieces[1], Words, " \t,");
12843        if (Words.size() == 3 && Words[0] == "rorl" && Words[1] == "$$16" &&
12844            Words[2] == "$0") {
12845          Words.clear();
12846          SplitString(AsmPieces[2], Words, " \t,");
12847          if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
12848              Words[2] == "${0:w}") {
12849            AsmPieces.clear();
12850            const std::string &ConstraintsStr = IA->getConstraintString();
12851            SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
12852            std::sort(AsmPieces.begin(), AsmPieces.end());
12853            if (AsmPieces.size() == 4 &&
12854                AsmPieces[0] == "~{cc}" &&
12855                AsmPieces[1] == "~{dirflag}" &&
12856                AsmPieces[2] == "~{flags}" &&
12857                AsmPieces[3] == "~{fpsr}") {
12858              IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
12859              if (!Ty || Ty->getBitWidth() % 16 != 0)
12860                return false;
12861              return IntrinsicLowering::LowerToByteSwap(CI);
12862            }
12863          }
12864        }
12865      }
12866    }
12867
12868    if (CI->getType()->isIntegerTy(64)) {
12869      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
12870      if (Constraints.size() >= 2 &&
12871          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
12872          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
12873        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
12874        SmallVector<StringRef, 4> Words;
12875        SplitString(AsmPieces[0], Words, " \t");
12876        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
12877          Words.clear();
12878          SplitString(AsmPieces[1], Words, " \t");
12879          if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
12880            Words.clear();
12881            SplitString(AsmPieces[2], Words, " \t,");
12882            if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
12883                Words[2] == "%edx") {
12884              IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
12885              if (!Ty || Ty->getBitWidth() % 16 != 0)
12886                return false;
12887              return IntrinsicLowering::LowerToByteSwap(CI);
12888            }
12889          }
12890        }
12891      }
12892    }
12893    break;
12894  }
12895  return false;
12896}
12897
12898
12899
12900/// getConstraintType - Given a constraint letter, return the type of
12901/// constraint it is for this target.
12902X86TargetLowering::ConstraintType
12903X86TargetLowering::getConstraintType(const std::string &Constraint) const {
12904  if (Constraint.size() == 1) {
12905    switch (Constraint[0]) {
12906    case 'R':
12907    case 'q':
12908    case 'Q':
12909    case 'f':
12910    case 't':
12911    case 'u':
12912    case 'y':
12913    case 'x':
12914    case 'Y':
12915    case 'l':
12916      return C_RegisterClass;
12917    case 'a':
12918    case 'b':
12919    case 'c':
12920    case 'd':
12921    case 'S':
12922    case 'D':
12923    case 'A':
12924      return C_Register;
12925    case 'I':
12926    case 'J':
12927    case 'K':
12928    case 'L':
12929    case 'M':
12930    case 'N':
12931    case 'G':
12932    case 'C':
12933    case 'e':
12934    case 'Z':
12935      return C_Other;
12936    default:
12937      break;
12938    }
12939  }
12940  return TargetLowering::getConstraintType(Constraint);
12941}
12942
12943/// Examine constraint type and operand type and determine a weight value.
12944/// This object must already have been set up with the operand type
12945/// and the current alternative constraint selected.
12946TargetLowering::ConstraintWeight
12947  X86TargetLowering::getSingleConstraintMatchWeight(
12948    AsmOperandInfo &info, const char *constraint) const {
12949  ConstraintWeight weight = CW_Invalid;
12950  Value *CallOperandVal = info.CallOperandVal;
12951    // If we don't have a value, we can't do a match,
12952    // but allow it at the lowest weight.
12953  if (CallOperandVal == NULL)
12954    return CW_Default;
12955  Type *type = CallOperandVal->getType();
12956  // Look at the constraint type.
12957  switch (*constraint) {
12958  default:
12959    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
12960  case 'R':
12961  case 'q':
12962  case 'Q':
12963  case 'a':
12964  case 'b':
12965  case 'c':
12966  case 'd':
12967  case 'S':
12968  case 'D':
12969  case 'A':
12970    if (CallOperandVal->getType()->isIntegerTy())
12971      weight = CW_SpecificReg;
12972    break;
12973  case 'f':
12974  case 't':
12975  case 'u':
12976      if (type->isFloatingPointTy())
12977        weight = CW_SpecificReg;
12978      break;
12979  case 'y':
12980      if (type->isX86_MMXTy() && Subtarget->hasMMX())
12981        weight = CW_SpecificReg;
12982      break;
12983  case 'x':
12984  case 'Y':
12985    if ((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasXMM())
12986      weight = CW_Register;
12987    break;
12988  case 'I':
12989    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
12990      if (C->getZExtValue() <= 31)
12991        weight = CW_Constant;
12992    }
12993    break;
12994  case 'J':
12995    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12996      if (C->getZExtValue() <= 63)
12997        weight = CW_Constant;
12998    }
12999    break;
13000  case 'K':
13001    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
13002      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
13003        weight = CW_Constant;
13004    }
13005    break;
13006  case 'L':
13007    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
13008      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
13009        weight = CW_Constant;
13010    }
13011    break;
13012  case 'M':
13013    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
13014      if (C->getZExtValue() <= 3)
13015        weight = CW_Constant;
13016    }
13017    break;
13018  case 'N':
13019    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
13020      if (C->getZExtValue() <= 0xff)
13021        weight = CW_Constant;
13022    }
13023    break;
13024  case 'G':
13025  case 'C':
13026    if (dyn_cast<ConstantFP>(CallOperandVal)) {
13027      weight = CW_Constant;
13028    }
13029    break;
13030  case 'e':
13031    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
13032      if ((C->getSExtValue() >= -0x80000000LL) &&
13033          (C->getSExtValue() <= 0x7fffffffLL))
13034        weight = CW_Constant;
13035    }
13036    break;
13037  case 'Z':
13038    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
13039      if (C->getZExtValue() <= 0xffffffff)
13040        weight = CW_Constant;
13041    }
13042    break;
13043  }
13044  return weight;
13045}
13046
13047/// LowerXConstraint - try to replace an X constraint, which matches anything,
13048/// with another that has more specific requirements based on the type of the
13049/// corresponding operand.
13050const char *X86TargetLowering::
13051LowerXConstraint(EVT ConstraintVT) const {
13052  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
13053  // 'f' like normal targets.
13054  if (ConstraintVT.isFloatingPoint()) {
13055    if (Subtarget->hasXMMInt())
13056      return "Y";
13057    if (Subtarget->hasXMM())
13058      return "x";
13059  }
13060
13061  return TargetLowering::LowerXConstraint(ConstraintVT);
13062}
13063
13064/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
13065/// vector.  If it is invalid, don't add anything to Ops.
13066void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
13067                                                     std::string &Constraint,
13068                                                     std::vector<SDValue>&Ops,
13069                                                     SelectionDAG &DAG) const {
13070  SDValue Result(0, 0);
13071
13072  // Only support length 1 constraints for now.
13073  if (Constraint.length() > 1) return;
13074
13075  char ConstraintLetter = Constraint[0];
13076  switch (ConstraintLetter) {
13077  default: break;
13078  case 'I':
13079    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
13080      if (C->getZExtValue() <= 31) {
13081        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
13082        break;
13083      }
13084    }
13085    return;
13086  case 'J':
13087    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
13088      if (C->getZExtValue() <= 63) {
13089        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
13090        break;
13091      }
13092    }
13093    return;
13094  case 'K':
13095    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
13096      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
13097        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
13098        break;
13099      }
13100    }
13101    return;
13102  case 'N':
13103    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
13104      if (C->getZExtValue() <= 255) {
13105        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
13106        break;
13107      }
13108    }
13109    return;
13110  case 'e': {
13111    // 32-bit signed value
13112    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
13113      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
13114                                           C->getSExtValue())) {
13115        // Widen to 64 bits here to get it sign extended.
13116        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
13117        break;
13118      }
13119    // FIXME gcc accepts some relocatable values here too, but only in certain
13120    // memory models; it's complicated.
13121    }
13122    return;
13123  }
13124  case 'Z': {
13125    // 32-bit unsigned value
13126    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
13127      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
13128                                           C->getZExtValue())) {
13129        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
13130        break;
13131      }
13132    }
13133    // FIXME gcc accepts some relocatable values here too, but only in certain
13134    // memory models; it's complicated.
13135    return;
13136  }
13137  case 'i': {
13138    // Literal immediates are always ok.
13139    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
13140      // Widen to 64 bits here to get it sign extended.
13141      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
13142      break;
13143    }
13144
13145    // In any sort of PIC mode addresses need to be computed at runtime by
13146    // adding in a register or some sort of table lookup.  These can't
13147    // be used as immediates.
13148    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
13149      return;
13150
13151    // If we are in non-pic codegen mode, we allow the address of a global (with
13152    // an optional displacement) to be used with 'i'.
13153    GlobalAddressSDNode *GA = 0;
13154    int64_t Offset = 0;
13155
13156    // Match either (GA), (GA+C), (GA+C1+C2), etc.
13157    while (1) {
13158      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
13159        Offset += GA->getOffset();
13160        break;
13161      } else if (Op.getOpcode() == ISD::ADD) {
13162        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
13163          Offset += C->getZExtValue();
13164          Op = Op.getOperand(0);
13165          continue;
13166        }
13167      } else if (Op.getOpcode() == ISD::SUB) {
13168        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
13169          Offset += -C->getZExtValue();
13170          Op = Op.getOperand(0);
13171          continue;
13172        }
13173      }
13174
13175      // Otherwise, this isn't something we can handle, reject it.
13176      return;
13177    }
13178
13179    const GlobalValue *GV = GA->getGlobal();
13180    // If we require an extra load to get this address, as in PIC mode, we
13181    // can't accept it.
13182    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
13183                                                        getTargetMachine())))
13184      return;
13185
13186    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
13187                                        GA->getValueType(0), Offset);
13188    break;
13189  }
13190  }
13191
13192  if (Result.getNode()) {
13193    Ops.push_back(Result);
13194    return;
13195  }
13196  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
13197}
13198
13199std::pair<unsigned, const TargetRegisterClass*>
13200X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
13201                                                EVT VT) const {
13202  // First, see if this is a constraint that directly corresponds to an LLVM
13203  // register class.
13204  if (Constraint.size() == 1) {
13205    // GCC Constraint Letters
13206    switch (Constraint[0]) {
13207    default: break;
13208      // TODO: Slight differences here in allocation order and leaving
13209      // RIP in the class. Do they matter any more here than they do
13210      // in the normal allocation?
13211    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
13212      if (Subtarget->is64Bit()) {
13213	if (VT == MVT::i32 || VT == MVT::f32)
13214	  return std::make_pair(0U, X86::GR32RegisterClass);
13215	else if (VT == MVT::i16)
13216	  return std::make_pair(0U, X86::GR16RegisterClass);
13217	else if (VT == MVT::i8 || VT == MVT::i1)
13218	  return std::make_pair(0U, X86::GR8RegisterClass);
13219	else if (VT == MVT::i64 || VT == MVT::f64)
13220	  return std::make_pair(0U, X86::GR64RegisterClass);
13221	break;
13222      }
13223      // 32-bit fallthrough
13224    case 'Q':   // Q_REGS
13225      if (VT == MVT::i32 || VT == MVT::f32)
13226	return std::make_pair(0U, X86::GR32_ABCDRegisterClass);
13227      else if (VT == MVT::i16)
13228	return std::make_pair(0U, X86::GR16_ABCDRegisterClass);
13229      else if (VT == MVT::i8 || VT == MVT::i1)
13230	return std::make_pair(0U, X86::GR8_ABCD_LRegisterClass);
13231      else if (VT == MVT::i64)
13232	return std::make_pair(0U, X86::GR64_ABCDRegisterClass);
13233      break;
13234    case 'r':   // GENERAL_REGS
13235    case 'l':   // INDEX_REGS
13236      if (VT == MVT::i8 || VT == MVT::i1)
13237        return std::make_pair(0U, X86::GR8RegisterClass);
13238      if (VT == MVT::i16)
13239        return std::make_pair(0U, X86::GR16RegisterClass);
13240      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
13241        return std::make_pair(0U, X86::GR32RegisterClass);
13242      return std::make_pair(0U, X86::GR64RegisterClass);
13243    case 'R':   // LEGACY_REGS
13244      if (VT == MVT::i8 || VT == MVT::i1)
13245        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
13246      if (VT == MVT::i16)
13247        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
13248      if (VT == MVT::i32 || !Subtarget->is64Bit())
13249        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
13250      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
13251    case 'f':  // FP Stack registers.
13252      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
13253      // value to the correct fpstack register class.
13254      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
13255        return std::make_pair(0U, X86::RFP32RegisterClass);
13256      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
13257        return std::make_pair(0U, X86::RFP64RegisterClass);
13258      return std::make_pair(0U, X86::RFP80RegisterClass);
13259    case 'y':   // MMX_REGS if MMX allowed.
13260      if (!Subtarget->hasMMX()) break;
13261      return std::make_pair(0U, X86::VR64RegisterClass);
13262    case 'Y':   // SSE_REGS if SSE2 allowed
13263      if (!Subtarget->hasXMMInt()) break;
13264      // FALL THROUGH.
13265    case 'x':   // SSE_REGS if SSE1 allowed
13266      if (!Subtarget->hasXMM()) break;
13267
13268      switch (VT.getSimpleVT().SimpleTy) {
13269      default: break;
13270      // Scalar SSE types.
13271      case MVT::f32:
13272      case MVT::i32:
13273        return std::make_pair(0U, X86::FR32RegisterClass);
13274      case MVT::f64:
13275      case MVT::i64:
13276        return std::make_pair(0U, X86::FR64RegisterClass);
13277      // Vector types.
13278      case MVT::v16i8:
13279      case MVT::v8i16:
13280      case MVT::v4i32:
13281      case MVT::v2i64:
13282      case MVT::v4f32:
13283      case MVT::v2f64:
13284        return std::make_pair(0U, X86::VR128RegisterClass);
13285      }
13286      break;
13287    }
13288  }
13289
13290  // Use the default implementation in TargetLowering to convert the register
13291  // constraint into a member of a register class.
13292  std::pair<unsigned, const TargetRegisterClass*> Res;
13293  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
13294
13295  // Not found as a standard register?
13296  if (Res.second == 0) {
13297    // Map st(0) -> st(7) -> ST0
13298    if (Constraint.size() == 7 && Constraint[0] == '{' &&
13299        tolower(Constraint[1]) == 's' &&
13300        tolower(Constraint[2]) == 't' &&
13301        Constraint[3] == '(' &&
13302        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
13303        Constraint[5] == ')' &&
13304        Constraint[6] == '}') {
13305
13306      Res.first = X86::ST0+Constraint[4]-'0';
13307      Res.second = X86::RFP80RegisterClass;
13308      return Res;
13309    }
13310
13311    // GCC allows "st(0)" to be called just plain "st".
13312    if (StringRef("{st}").equals_lower(Constraint)) {
13313      Res.first = X86::ST0;
13314      Res.second = X86::RFP80RegisterClass;
13315      return Res;
13316    }
13317
13318    // flags -> EFLAGS
13319    if (StringRef("{flags}").equals_lower(Constraint)) {
13320      Res.first = X86::EFLAGS;
13321      Res.second = X86::CCRRegisterClass;
13322      return Res;
13323    }
13324
13325    // 'A' means EAX + EDX.
13326    if (Constraint == "A") {
13327      Res.first = X86::EAX;
13328      Res.second = X86::GR32_ADRegisterClass;
13329      return Res;
13330    }
13331    return Res;
13332  }
13333
13334  // Otherwise, check to see if this is a register class of the wrong value
13335  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
13336  // turn into {ax},{dx}.
13337  if (Res.second->hasType(VT))
13338    return Res;   // Correct type already, nothing to do.
13339
13340  // All of the single-register GCC register classes map their values onto
13341  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
13342  // really want an 8-bit or 32-bit register, map to the appropriate register
13343  // class and return the appropriate register.
13344  if (Res.second == X86::GR16RegisterClass) {
13345    if (VT == MVT::i8) {
13346      unsigned DestReg = 0;
13347      switch (Res.first) {
13348      default: break;
13349      case X86::AX: DestReg = X86::AL; break;
13350      case X86::DX: DestReg = X86::DL; break;
13351      case X86::CX: DestReg = X86::CL; break;
13352      case X86::BX: DestReg = X86::BL; break;
13353      }
13354      if (DestReg) {
13355        Res.first = DestReg;
13356        Res.second = X86::GR8RegisterClass;
13357      }
13358    } else if (VT == MVT::i32) {
13359      unsigned DestReg = 0;
13360      switch (Res.first) {
13361      default: break;
13362      case X86::AX: DestReg = X86::EAX; break;
13363      case X86::DX: DestReg = X86::EDX; break;
13364      case X86::CX: DestReg = X86::ECX; break;
13365      case X86::BX: DestReg = X86::EBX; break;
13366      case X86::SI: DestReg = X86::ESI; break;
13367      case X86::DI: DestReg = X86::EDI; break;
13368      case X86::BP: DestReg = X86::EBP; break;
13369      case X86::SP: DestReg = X86::ESP; break;
13370      }
13371      if (DestReg) {
13372        Res.first = DestReg;
13373        Res.second = X86::GR32RegisterClass;
13374      }
13375    } else if (VT == MVT::i64) {
13376      unsigned DestReg = 0;
13377      switch (Res.first) {
13378      default: break;
13379      case X86::AX: DestReg = X86::RAX; break;
13380      case X86::DX: DestReg = X86::RDX; break;
13381      case X86::CX: DestReg = X86::RCX; break;
13382      case X86::BX: DestReg = X86::RBX; break;
13383      case X86::SI: DestReg = X86::RSI; break;
13384      case X86::DI: DestReg = X86::RDI; break;
13385      case X86::BP: DestReg = X86::RBP; break;
13386      case X86::SP: DestReg = X86::RSP; break;
13387      }
13388      if (DestReg) {
13389        Res.first = DestReg;
13390        Res.second = X86::GR64RegisterClass;
13391      }
13392    }
13393  } else if (Res.second == X86::FR32RegisterClass ||
13394             Res.second == X86::FR64RegisterClass ||
13395             Res.second == X86::VR128RegisterClass) {
13396    // Handle references to XMM physical registers that got mapped into the
13397    // wrong class.  This can happen with constraints like {xmm0} where the
13398    // target independent register mapper will just pick the first match it can
13399    // find, ignoring the required type.
13400    if (VT == MVT::f32)
13401      Res.second = X86::FR32RegisterClass;
13402    else if (VT == MVT::f64)
13403      Res.second = X86::FR64RegisterClass;
13404    else if (X86::VR128RegisterClass->hasType(VT))
13405      Res.second = X86::VR128RegisterClass;
13406  }
13407
13408  return Res;
13409}
13410