X86ISelLowering.cpp revision 1a979d9eab68b353208cdff87b09ff703d5bf15d
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86TargetMachine.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Function.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/ADT/BitVector.h"
27#include "llvm/ADT/VectorExtras.h"
28#include "llvm/Analysis/ScalarEvolutionExpressions.h"
29#include "llvm/CodeGen/CallingConvLower.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineModuleInfo.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/CodeGen/PseudoSourceValue.h"
36#include "llvm/CodeGen/SelectionDAG.h"
37#include "llvm/Support/MathExtras.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Target/TargetOptions.h"
40#include "llvm/ADT/SmallSet.h"
41#include "llvm/ADT/StringExtras.h"
42using namespace llvm;
43
44X86TargetLowering::X86TargetLowering(TargetMachine &TM)
45  : TargetLowering(TM) {
46  Subtarget = &TM.getSubtarget<X86Subtarget>();
47  X86ScalarSSEf64 = Subtarget->hasSSE2();
48  X86ScalarSSEf32 = Subtarget->hasSSE1();
49  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
50
51  bool Fast = false;
52
53  RegInfo = TM.getRegisterInfo();
54
55  // Set up the TargetLowering object.
56
57  // X86 is weird, it always uses i8 for shift amounts and setcc results.
58  setShiftAmountType(MVT::i8);
59  setSetCCResultContents(ZeroOrOneSetCCResult);
60  setSchedulingPreference(SchedulingForRegPressure);
61  setShiftAmountFlavor(Mask);   // shl X, 32 == shl X, 0
62  setStackPointerRegisterToSaveRestore(X86StackPtr);
63
64  if (Subtarget->isTargetDarwin()) {
65    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
66    setUseUnderscoreSetJmp(false);
67    setUseUnderscoreLongJmp(false);
68  } else if (Subtarget->isTargetMingw()) {
69    // MS runtime is weird: it exports _setjmp, but longjmp!
70    setUseUnderscoreSetJmp(true);
71    setUseUnderscoreLongJmp(false);
72  } else {
73    setUseUnderscoreSetJmp(true);
74    setUseUnderscoreLongJmp(true);
75  }
76
77  // Set up the register classes.
78  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
79  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
80  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
81  if (Subtarget->is64Bit())
82    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
83
84  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Promote);
85
86  // We don't accept any truncstore of integer registers.
87  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
88  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
89  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
90  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
91  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
92  setTruncStoreAction(MVT::i16, MVT::i8, Expand);
93
94  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
95  // operation.
96  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
97  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
98  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
99
100  if (Subtarget->is64Bit()) {
101    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
102    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
103  } else {
104    if (X86ScalarSSEf64)
105      // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
106      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Expand);
107    else
108      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Promote);
109  }
110
111  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
112  // this operation.
113  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
114  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
115  // SSE has no i16 to fp conversion, only i32
116  if (X86ScalarSSEf32) {
117    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
118    // f32 and f64 cases are Legal, f80 case is not
119    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
120  } else {
121    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
122    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
123  }
124
125  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
126  // are Legal, f80 is custom lowered.
127  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
128  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
129
130  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
131  // this operation.
132  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
133  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
134
135  if (X86ScalarSSEf32) {
136    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
137    // f32 and f64 cases are Legal, f80 case is not
138    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
139  } else {
140    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
141    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
142  }
143
144  // Handle FP_TO_UINT by promoting the destination to a larger signed
145  // conversion.
146  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
147  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
148  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
149
150  if (Subtarget->is64Bit()) {
151    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
152    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
153  } else {
154    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
155      // Expand FP_TO_UINT into a select.
156      // FIXME: We would like to use a Custom expander here eventually to do
157      // the optimal thing for SSE vs. the default expansion in the legalizer.
158      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
159    else
160      // With SSE3 we can use fisttpll to convert to a signed i64.
161      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Promote);
162  }
163
164  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
165  if (!X86ScalarSSEf64) {
166    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
167    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
168  }
169
170  // Scalar integer divide and remainder are lowered to use operations that
171  // produce two results, to match the available instructions. This exposes
172  // the two-result form to trivial CSE, which is able to combine x/y and x%y
173  // into a single instruction.
174  //
175  // Scalar integer multiply-high is also lowered to use two-result
176  // operations, to match the available instructions. However, plain multiply
177  // (low) operations are left as Legal, as there are single-result
178  // instructions for this in x86. Using the two-result multiply instructions
179  // when both high and low results are needed must be arranged by dagcombine.
180  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
181  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
182  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
183  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
184  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
185  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
186  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
187  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
188  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
189  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
190  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
191  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
192  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
193  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
194  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
195  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
196  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
197  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
198  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
199  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
200  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
201  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
202  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
203  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
204
205  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
206  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
207  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
208  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
209  setOperationAction(ISD::MEMMOVE          , MVT::Other, Expand);
210  if (Subtarget->is64Bit())
211    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
212  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
213  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
214  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
215  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
216  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
217  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
218  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
219  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
220
221  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
222  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
223  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
224  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
225  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
226  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
227  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
228  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
229  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
230  if (Subtarget->is64Bit()) {
231    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
232    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
233    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
234  }
235
236  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
237  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
238
239  // These should be promoted to a larger select which is supported.
240  setOperationAction(ISD::SELECT           , MVT::i1   , Promote);
241  setOperationAction(ISD::SELECT           , MVT::i8   , Promote);
242  // X86 wants to expand cmov itself.
243  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
244  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
245  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
246  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
247  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
248  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
249  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
250  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
251  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
252  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
253  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
254  if (Subtarget->is64Bit()) {
255    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
256    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
257  }
258  // X86 ret instruction may pop stack.
259  setOperationAction(ISD::RET             , MVT::Other, Custom);
260  if (!Subtarget->is64Bit())
261    setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
262
263  // Darwin ABI issue.
264  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
265  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
266  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
267  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
268  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
269  if (Subtarget->is64Bit()) {
270    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
271    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
272    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
273    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
274  }
275  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
276  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
277  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
278  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
279  if (Subtarget->is64Bit()) {
280    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
281    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
282    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
283  }
284  // X86 wants to expand memset / memcpy itself.
285  setOperationAction(ISD::MEMSET          , MVT::Other, Custom);
286  setOperationAction(ISD::MEMCPY          , MVT::Other, Custom);
287
288  if (Subtarget->hasSSE1())
289    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
290
291  if (!Subtarget->hasSSE2())
292    setOperationAction(ISD::MEMBARRIER    , MVT::Other, Expand);
293
294  setOperationAction(ISD::ATOMIC_LCS     , MVT::i8, Custom);
295  setOperationAction(ISD::ATOMIC_LCS     , MVT::i16, Custom);
296  setOperationAction(ISD::ATOMIC_LCS     , MVT::i32, Custom);
297  setOperationAction(ISD::ATOMIC_LCS     , MVT::i64, Custom);
298
299  // Use the default ISD::LOCATION, ISD::DECLARE expansion.
300  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
301  // FIXME - use subtarget debug flags
302  if (!Subtarget->isTargetDarwin() &&
303      !Subtarget->isTargetELF() &&
304      !Subtarget->isTargetCygMing())
305    setOperationAction(ISD::LABEL, MVT::Other, Expand);
306
307  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
308  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
309  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
310  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
311  if (Subtarget->is64Bit()) {
312    // FIXME: Verify
313    setExceptionPointerRegister(X86::RAX);
314    setExceptionSelectorRegister(X86::RDX);
315  } else {
316    setExceptionPointerRegister(X86::EAX);
317    setExceptionSelectorRegister(X86::EDX);
318  }
319  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
320
321  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
322
323  setOperationAction(ISD::TRAP, MVT::Other, Legal);
324
325  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
326  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
327  setOperationAction(ISD::VAARG             , MVT::Other, Expand);
328  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
329  if (Subtarget->is64Bit())
330    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
331  else
332    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
333
334  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
335  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
336  if (Subtarget->is64Bit())
337    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
338  if (Subtarget->isTargetCygMing())
339    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
340  else
341    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
342
343  if (X86ScalarSSEf64) {
344    // f32 and f64 use SSE.
345    // Set up the FP register classes.
346    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
347    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
348
349    // Use ANDPD to simulate FABS.
350    setOperationAction(ISD::FABS , MVT::f64, Custom);
351    setOperationAction(ISD::FABS , MVT::f32, Custom);
352
353    // Use XORP to simulate FNEG.
354    setOperationAction(ISD::FNEG , MVT::f64, Custom);
355    setOperationAction(ISD::FNEG , MVT::f32, Custom);
356
357    // Use ANDPD and ORPD to simulate FCOPYSIGN.
358    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
359    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
360
361    // We don't support sin/cos/fmod
362    setOperationAction(ISD::FSIN , MVT::f64, Expand);
363    setOperationAction(ISD::FCOS , MVT::f64, Expand);
364    setOperationAction(ISD::FSIN , MVT::f32, Expand);
365    setOperationAction(ISD::FCOS , MVT::f32, Expand);
366
367    // Expand FP immediates into loads from the stack, except for the special
368    // cases we handle.
369    addLegalFPImmediate(APFloat(+0.0)); // xorpd
370    addLegalFPImmediate(APFloat(+0.0f)); // xorps
371
372    // Floating truncations from f80 and extensions to f80 go through memory.
373    // If optimizing, we lie about this though and handle it in
374    // InstructionSelectPreprocess so that dagcombine2 can hack on these.
375    if (Fast) {
376      setConvertAction(MVT::f32, MVT::f80, Expand);
377      setConvertAction(MVT::f64, MVT::f80, Expand);
378      setConvertAction(MVT::f80, MVT::f32, Expand);
379      setConvertAction(MVT::f80, MVT::f64, Expand);
380    }
381  } else if (X86ScalarSSEf32) {
382    // Use SSE for f32, x87 for f64.
383    // Set up the FP register classes.
384    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
385    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
386
387    // Use ANDPS to simulate FABS.
388    setOperationAction(ISD::FABS , MVT::f32, Custom);
389
390    // Use XORP to simulate FNEG.
391    setOperationAction(ISD::FNEG , MVT::f32, Custom);
392
393    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
394
395    // Use ANDPS and ORPS to simulate FCOPYSIGN.
396    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
397    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
398
399    // We don't support sin/cos/fmod
400    setOperationAction(ISD::FSIN , MVT::f32, Expand);
401    setOperationAction(ISD::FCOS , MVT::f32, Expand);
402
403    // Special cases we handle for FP constants.
404    addLegalFPImmediate(APFloat(+0.0f)); // xorps
405    addLegalFPImmediate(APFloat(+0.0)); // FLD0
406    addLegalFPImmediate(APFloat(+1.0)); // FLD1
407    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
408    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
409
410    // SSE <-> X87 conversions go through memory.  If optimizing, we lie about
411    // this though and handle it in InstructionSelectPreprocess so that
412    // dagcombine2 can hack on these.
413    if (Fast) {
414      setConvertAction(MVT::f32, MVT::f64, Expand);
415      setConvertAction(MVT::f32, MVT::f80, Expand);
416      setConvertAction(MVT::f80, MVT::f32, Expand);
417      setConvertAction(MVT::f64, MVT::f32, Expand);
418      // And x87->x87 truncations also.
419      setConvertAction(MVT::f80, MVT::f64, Expand);
420    }
421
422    if (!UnsafeFPMath) {
423      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
424      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
425    }
426  } else {
427    // f32 and f64 in x87.
428    // Set up the FP register classes.
429    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
430    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
431
432    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
433    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
434    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
435    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
436
437    // Floating truncations go through memory.  If optimizing, we lie about
438    // this though and handle it in InstructionSelectPreprocess so that
439    // dagcombine2 can hack on these.
440    if (Fast) {
441      setConvertAction(MVT::f80, MVT::f32, Expand);
442      setConvertAction(MVT::f64, MVT::f32, Expand);
443      setConvertAction(MVT::f80, MVT::f64, Expand);
444    }
445
446    if (!UnsafeFPMath) {
447      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
448      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
449    }
450    addLegalFPImmediate(APFloat(+0.0)); // FLD0
451    addLegalFPImmediate(APFloat(+1.0)); // FLD1
452    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
453    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
454    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
455    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
456    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
457    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
458  }
459
460  // Long double always uses X87.
461  addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
462  setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
463  setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
464  {
465    APFloat TmpFlt(+0.0);
466    TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven);
467    addLegalFPImmediate(TmpFlt);  // FLD0
468    TmpFlt.changeSign();
469    addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
470    APFloat TmpFlt2(+1.0);
471    TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven);
472    addLegalFPImmediate(TmpFlt2);  // FLD1
473    TmpFlt2.changeSign();
474    addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
475  }
476
477  if (!UnsafeFPMath) {
478    setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
479    setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
480  }
481
482  // Always use a library call for pow.
483  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
484  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
485  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
486
487  // First set operation action for all vector types to expand. Then we
488  // will selectively turn on ones that can be effectively codegen'd.
489  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
490       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
491    setOperationAction(ISD::ADD , (MVT::ValueType)VT, Expand);
492    setOperationAction(ISD::SUB , (MVT::ValueType)VT, Expand);
493    setOperationAction(ISD::FADD, (MVT::ValueType)VT, Expand);
494    setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand);
495    setOperationAction(ISD::FSUB, (MVT::ValueType)VT, Expand);
496    setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
497    setOperationAction(ISD::FMUL, (MVT::ValueType)VT, Expand);
498    setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
499    setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
500    setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
501    setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
502    setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
503    setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Expand);
504    setOperationAction(ISD::VECTOR_SHUFFLE,     (MVT::ValueType)VT, Expand);
505    setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
506    setOperationAction(ISD::INSERT_VECTOR_ELT,  (MVT::ValueType)VT, Expand);
507    setOperationAction(ISD::FABS, (MVT::ValueType)VT, Expand);
508    setOperationAction(ISD::FSIN, (MVT::ValueType)VT, Expand);
509    setOperationAction(ISD::FCOS, (MVT::ValueType)VT, Expand);
510    setOperationAction(ISD::FREM, (MVT::ValueType)VT, Expand);
511    setOperationAction(ISD::FPOWI, (MVT::ValueType)VT, Expand);
512    setOperationAction(ISD::FSQRT, (MVT::ValueType)VT, Expand);
513    setOperationAction(ISD::FCOPYSIGN, (MVT::ValueType)VT, Expand);
514    setOperationAction(ISD::SMUL_LOHI, (MVT::ValueType)VT, Expand);
515    setOperationAction(ISD::UMUL_LOHI, (MVT::ValueType)VT, Expand);
516    setOperationAction(ISD::SDIVREM, (MVT::ValueType)VT, Expand);
517    setOperationAction(ISD::UDIVREM, (MVT::ValueType)VT, Expand);
518    setOperationAction(ISD::FPOW, (MVT::ValueType)VT, Expand);
519    setOperationAction(ISD::CTPOP, (MVT::ValueType)VT, Expand);
520    setOperationAction(ISD::CTTZ, (MVT::ValueType)VT, Expand);
521    setOperationAction(ISD::CTLZ, (MVT::ValueType)VT, Expand);
522    setOperationAction(ISD::SHL, (MVT::ValueType)VT, Expand);
523    setOperationAction(ISD::SRA, (MVT::ValueType)VT, Expand);
524    setOperationAction(ISD::SRL, (MVT::ValueType)VT, Expand);
525    setOperationAction(ISD::ROTL, (MVT::ValueType)VT, Expand);
526    setOperationAction(ISD::ROTR, (MVT::ValueType)VT, Expand);
527    setOperationAction(ISD::BSWAP, (MVT::ValueType)VT, Expand);
528  }
529
530  if (Subtarget->hasMMX()) {
531    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
532    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
533    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
534    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
535
536    // FIXME: add MMX packed arithmetics
537
538    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
539    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
540    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
541    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
542
543    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
544    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
545    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
546    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
547
548    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
549    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
550
551    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
552    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
553    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
554    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
555    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
556    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
557    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
558
559    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
560    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
561    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
562    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
563    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
564    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
565    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
566
567    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
568    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
569    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
570    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
571    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
572    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
573    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
574
575    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
576    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
577    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
578    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
579    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
580    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
581    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
582
583    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
584    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
585    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
586    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
587
588    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
589    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
590    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
591    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
592
593    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
594    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
595    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
596  }
597
598  if (Subtarget->hasSSE1()) {
599    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
600
601    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
602    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
603    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
604    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
605    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
606    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
607    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
608    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
609    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
610    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
611    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
612  }
613
614  if (Subtarget->hasSSE2()) {
615    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
616    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
617    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
618    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
619    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
620
621    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
622    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
623    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
624    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
625    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
626    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
627    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
628    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
629    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
630    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
631    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
632    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
633    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
634    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
635    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
636
637    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
638    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
639    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
640    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
641    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
642
643    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
644    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
645      // Do not attempt to custom lower non-power-of-2 vectors
646      if (!isPowerOf2_32(MVT::getVectorNumElements(VT)))
647        continue;
648      setOperationAction(ISD::BUILD_VECTOR,        (MVT::ValueType)VT, Custom);
649      setOperationAction(ISD::VECTOR_SHUFFLE,      (MVT::ValueType)VT, Custom);
650      setOperationAction(ISD::EXTRACT_VECTOR_ELT,  (MVT::ValueType)VT, Custom);
651    }
652    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
653    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
654    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
655    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
656    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
657    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
658    if (Subtarget->is64Bit()) {
659      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
660      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
661    }
662
663    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
664    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
665      setOperationAction(ISD::AND,    (MVT::ValueType)VT, Promote);
666      AddPromotedToType (ISD::AND,    (MVT::ValueType)VT, MVT::v2i64);
667      setOperationAction(ISD::OR,     (MVT::ValueType)VT, Promote);
668      AddPromotedToType (ISD::OR,     (MVT::ValueType)VT, MVT::v2i64);
669      setOperationAction(ISD::XOR,    (MVT::ValueType)VT, Promote);
670      AddPromotedToType (ISD::XOR,    (MVT::ValueType)VT, MVT::v2i64);
671      setOperationAction(ISD::LOAD,   (MVT::ValueType)VT, Promote);
672      AddPromotedToType (ISD::LOAD,   (MVT::ValueType)VT, MVT::v2i64);
673      setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
674      AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v2i64);
675    }
676
677    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
678
679    // Custom lower v2i64 and v2f64 selects.
680    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
681    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
682    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
683    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
684  }
685
686  if (Subtarget->hasSSE41()) {
687    // FIXME: Do we need to handle scalar-to-vector here?
688    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
689
690    // i8 and i16 vectors are custom , because the source register and source
691    // source memory operand types are not the same width.  f32 vectors are
692    // custom since the immediate controlling the insert encodes additional
693    // information.
694    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
695    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
696    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Legal);
697    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
698
699    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
700    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
701    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
702    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
703
704    if (Subtarget->is64Bit()) {
705      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
706      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
707    }
708  }
709
710  // We want to custom lower some of our intrinsics.
711  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
712
713  // We have target-specific dag combine patterns for the following nodes:
714  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
715  setTargetDAGCombine(ISD::SELECT);
716  setTargetDAGCombine(ISD::STORE);
717
718  computeRegisterProperties();
719
720  // FIXME: These should be based on subtarget info. Plus, the values should
721  // be smaller when we are in optimizing for size mode.
722  maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores
723  maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores
724  maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores
725  allowUnalignedMemoryAccesses = true; // x86 supports it!
726  setPrefLoopAlignment(16);
727}
728
729
730MVT::ValueType
731X86TargetLowering::getSetCCResultType(const SDOperand &) const {
732  return MVT::i8;
733}
734
735
736/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
737/// the desired ByVal argument alignment.
738static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
739  if (MaxAlign == 16)
740    return;
741  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
742    if (VTy->getBitWidth() == 128)
743      MaxAlign = 16;
744  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
745    unsigned EltAlign = 0;
746    getMaxByValAlign(ATy->getElementType(), EltAlign);
747    if (EltAlign > MaxAlign)
748      MaxAlign = EltAlign;
749  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
750    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
751      unsigned EltAlign = 0;
752      getMaxByValAlign(STy->getElementType(i), EltAlign);
753      if (EltAlign > MaxAlign)
754        MaxAlign = EltAlign;
755      if (MaxAlign == 16)
756        break;
757    }
758  }
759  return;
760}
761
762/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
763/// function arguments in the caller parameter area. For X86, aggregates
764/// that contain SSE vectors are placed at 16-byte boundaries while the rest
765/// are at 4-byte boundaries.
766unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
767  if (Subtarget->is64Bit())
768    return getTargetData()->getABITypeAlignment(Ty);
769  unsigned Align = 4;
770  if (Subtarget->hasSSE1())
771    getMaxByValAlign(Ty, Align);
772  return Align;
773}
774
775/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
776/// jumptable.
777SDOperand X86TargetLowering::getPICJumpTableRelocBase(SDOperand Table,
778                                                      SelectionDAG &DAG) const {
779  if (usesGlobalOffsetTable())
780    return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy());
781  if (!Subtarget->isPICStyleRIPRel())
782    return DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy());
783  return Table;
784}
785
786//===----------------------------------------------------------------------===//
787//               Return Value Calling Convention Implementation
788//===----------------------------------------------------------------------===//
789
790#include "X86GenCallingConv.inc"
791
792/// GetPossiblePreceedingTailCall - Get preceeding X86ISD::TAILCALL node if it
793/// exists skip possible ISD:TokenFactor.
794static SDOperand GetPossiblePreceedingTailCall(SDOperand Chain) {
795  if (Chain.getOpcode() == X86ISD::TAILCALL) {
796    return Chain;
797  } else if (Chain.getOpcode() == ISD::TokenFactor) {
798    if (Chain.getNumOperands() &&
799        Chain.getOperand(0).getOpcode() == X86ISD::TAILCALL)
800      return Chain.getOperand(0);
801  }
802  return Chain;
803}
804
805/// LowerRET - Lower an ISD::RET node.
806SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) {
807  assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
808
809  SmallVector<CCValAssign, 16> RVLocs;
810  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
811  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
812  CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
813  CCInfo.AnalyzeReturn(Op.Val, RetCC_X86);
814
815  // If this is the first return lowered for this function, add the regs to the
816  // liveout set for the function.
817  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
818    for (unsigned i = 0; i != RVLocs.size(); ++i)
819      if (RVLocs[i].isRegLoc())
820        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
821  }
822  SDOperand Chain = Op.getOperand(0);
823
824  // Handle tail call return.
825  Chain = GetPossiblePreceedingTailCall(Chain);
826  if (Chain.getOpcode() == X86ISD::TAILCALL) {
827    SDOperand TailCall = Chain;
828    SDOperand TargetAddress = TailCall.getOperand(1);
829    SDOperand StackAdjustment = TailCall.getOperand(2);
830    assert(((TargetAddress.getOpcode() == ISD::Register &&
831               (cast<RegisterSDNode>(TargetAddress)->getReg() == X86::ECX ||
832                cast<RegisterSDNode>(TargetAddress)->getReg() == X86::R9)) ||
833              TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
834              TargetAddress.getOpcode() == ISD::TargetGlobalAddress) &&
835             "Expecting an global address, external symbol, or register");
836    assert(StackAdjustment.getOpcode() == ISD::Constant &&
837           "Expecting a const value");
838
839    SmallVector<SDOperand,8> Operands;
840    Operands.push_back(Chain.getOperand(0));
841    Operands.push_back(TargetAddress);
842    Operands.push_back(StackAdjustment);
843    // Copy registers used by the call. Last operand is a flag so it is not
844    // copied.
845    for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) {
846      Operands.push_back(Chain.getOperand(i));
847    }
848    return DAG.getNode(X86ISD::TC_RETURN, MVT::Other, &Operands[0],
849                       Operands.size());
850  }
851
852  // Regular return.
853  SDOperand Flag;
854
855  SmallVector<SDOperand, 6> RetOps;
856  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
857  // Operand #1 = Bytes To Pop
858  RetOps.push_back(DAG.getConstant(getBytesToPopOnReturn(), MVT::i16));
859
860  // Copy the result values into the output registers.
861  for (unsigned i = 0; i != RVLocs.size(); ++i) {
862    CCValAssign &VA = RVLocs[i];
863    assert(VA.isRegLoc() && "Can only return in registers!");
864    SDOperand ValToCopy = Op.getOperand(i*2+1);
865
866    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
867    // the RET instruction and handled by the FP Stackifier.
868    if (RVLocs[i].getLocReg() == X86::ST0 ||
869        RVLocs[i].getLocReg() == X86::ST1) {
870      // If this is a copy from an xmm register to ST(0), use an FPExtend to
871      // change the value to the FP stack register class.
872      if (isScalarFPTypeInSSEReg(RVLocs[i].getValVT()))
873        ValToCopy = DAG.getNode(ISD::FP_EXTEND, MVT::f80, ValToCopy);
874      RetOps.push_back(ValToCopy);
875      // Don't emit a copytoreg.
876      continue;
877    }
878
879    Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), ValToCopy, Flag);
880    Flag = Chain.getValue(1);
881  }
882
883  RetOps[0] = Chain;  // Update chain.
884
885  // Add the flag if we have it.
886  if (Flag.Val)
887    RetOps.push_back(Flag);
888
889  return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, &RetOps[0], RetOps.size());
890}
891
892
893/// LowerCallResult - Lower the result values of an ISD::CALL into the
894/// appropriate copies out of appropriate physical registers.  This assumes that
895/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
896/// being lowered.  The returns a SDNode with the same number of values as the
897/// ISD::CALL.
898SDNode *X86TargetLowering::
899LowerCallResult(SDOperand Chain, SDOperand InFlag, SDNode *TheCall,
900                unsigned CallingConv, SelectionDAG &DAG) {
901
902  // Assign locations to each value returned by this call.
903  SmallVector<CCValAssign, 16> RVLocs;
904  bool isVarArg = cast<ConstantSDNode>(TheCall->getOperand(2))->getValue() != 0;
905  CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
906  CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
907
908  SmallVector<SDOperand, 8> ResultVals;
909
910  // Copy all of the result registers out of their specified physreg.
911  for (unsigned i = 0; i != RVLocs.size(); ++i) {
912    MVT::ValueType CopyVT = RVLocs[i].getValVT();
913
914    // If this is a call to a function that returns an fp value on the floating
915    // point stack, but where we prefer to use the value in xmm registers, copy
916    // it out as F80 and use a truncate to move it from fp stack reg to xmm reg.
917    if (RVLocs[i].getLocReg() == X86::ST0 &&
918        isScalarFPTypeInSSEReg(RVLocs[i].getValVT())) {
919      CopyVT = MVT::f80;
920    }
921
922    Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(),
923                               CopyVT, InFlag).getValue(1);
924    SDOperand Val = Chain.getValue(0);
925    InFlag = Chain.getValue(2);
926
927    if (CopyVT != RVLocs[i].getValVT()) {
928      // Round the F80 the right size, which also moves to the appropriate xmm
929      // register.
930      Val = DAG.getNode(ISD::FP_ROUND, RVLocs[i].getValVT(), Val,
931                        // This truncation won't change the value.
932                        DAG.getIntPtrConstant(1));
933    }
934
935    ResultVals.push_back(Val);
936  }
937
938  // Merge everything together with a MERGE_VALUES node.
939  ResultVals.push_back(Chain);
940  return DAG.getNode(ISD::MERGE_VALUES, TheCall->getVTList(),
941                     &ResultVals[0], ResultVals.size()).Val;
942}
943
944
945//===----------------------------------------------------------------------===//
946//                C & StdCall & Fast Calling Convention implementation
947//===----------------------------------------------------------------------===//
948//  StdCall calling convention seems to be standard for many Windows' API
949//  routines and around. It differs from C calling convention just a little:
950//  callee should clean up the stack, not caller. Symbols should be also
951//  decorated in some fancy way :) It doesn't support any vector arguments.
952//  For info on fast calling convention see Fast Calling Convention (tail call)
953//  implementation LowerX86_32FastCCCallTo.
954
955/// AddLiveIn - This helper function adds the specified physical register to the
956/// MachineFunction as a live in value.  It also creates a corresponding virtual
957/// register for it.
958static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
959                          const TargetRegisterClass *RC) {
960  assert(RC->contains(PReg) && "Not the correct regclass!");
961  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
962  MF.getRegInfo().addLiveIn(PReg, VReg);
963  return VReg;
964}
965
966/// CallIsStructReturn - Determines whether a CALL node uses struct return
967/// semantics.
968static bool CallIsStructReturn(SDOperand Op) {
969  unsigned NumOps = (Op.getNumOperands() - 5) / 2;
970  if (!NumOps)
971    return false;
972
973  return cast<ARG_FLAGSSDNode>(Op.getOperand(6))->getArgFlags().isSRet();
974}
975
976/// ArgsAreStructReturn - Determines whether a FORMAL_ARGUMENTS node uses struct
977/// return semantics.
978static bool ArgsAreStructReturn(SDOperand Op) {
979  unsigned NumArgs = Op.Val->getNumValues() - 1;
980  if (!NumArgs)
981    return false;
982
983  return cast<ARG_FLAGSSDNode>(Op.getOperand(3))->getArgFlags().isSRet();
984}
985
986/// IsCalleePop - Determines whether a CALL or FORMAL_ARGUMENTS node requires the
987/// callee to pop its own arguments. Callee pop is necessary to support tail
988/// calls.
989bool X86TargetLowering::IsCalleePop(SDOperand Op) {
990  bool IsVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
991  if (IsVarArg)
992    return false;
993
994  switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
995  default:
996    return false;
997  case CallingConv::X86_StdCall:
998    return !Subtarget->is64Bit();
999  case CallingConv::X86_FastCall:
1000    return !Subtarget->is64Bit();
1001  case CallingConv::Fast:
1002    return PerformTailCallOpt;
1003  }
1004}
1005
1006/// CCAssignFnForNode - Selects the correct CCAssignFn for a CALL or
1007/// FORMAL_ARGUMENTS node.
1008CCAssignFn *X86TargetLowering::CCAssignFnForNode(SDOperand Op) const {
1009  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
1010
1011  if (Subtarget->is64Bit()) {
1012    if (Subtarget->isTargetWin64())
1013      return CC_X86_Win64_C;
1014    else {
1015      if (CC == CallingConv::Fast && PerformTailCallOpt)
1016        return CC_X86_64_TailCall;
1017      else
1018        return CC_X86_64_C;
1019    }
1020  }
1021
1022  if (CC == CallingConv::X86_FastCall)
1023    return CC_X86_32_FastCall;
1024  else if (CC == CallingConv::Fast && PerformTailCallOpt)
1025    return CC_X86_32_TailCall;
1026  else
1027    return CC_X86_32_C;
1028}
1029
1030/// NameDecorationForFORMAL_ARGUMENTS - Selects the appropriate decoration to
1031/// apply to a MachineFunction containing a given FORMAL_ARGUMENTS node.
1032NameDecorationStyle
1033X86TargetLowering::NameDecorationForFORMAL_ARGUMENTS(SDOperand Op) {
1034  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
1035  if (CC == CallingConv::X86_FastCall)
1036    return FastCall;
1037  else if (CC == CallingConv::X86_StdCall)
1038    return StdCall;
1039  return None;
1040}
1041
1042/// IsPossiblyOverwrittenArgumentOfTailCall - Check if the operand could
1043/// possibly be overwritten when lowering the outgoing arguments in a tail
1044/// call. Currently the implementation of this call is very conservative and
1045/// assumes all arguments sourcing from FORMAL_ARGUMENTS or a CopyFromReg with
1046/// virtual registers would be overwritten by direct lowering.
1047static bool IsPossiblyOverwrittenArgumentOfTailCall(SDOperand Op,
1048                                                    MachineFrameInfo * MFI) {
1049  RegisterSDNode * OpReg = NULL;
1050  FrameIndexSDNode * FrameIdxNode = NULL;
1051  int FrameIdx = 0;
1052  if (Op.getOpcode() == ISD::FORMAL_ARGUMENTS ||
1053      (Op.getOpcode()== ISD::CopyFromReg &&
1054       (OpReg = dyn_cast<RegisterSDNode>(Op.getOperand(1))) &&
1055       (OpReg->getReg() >= TargetRegisterInfo::FirstVirtualRegister)) ||
1056      (Op.getOpcode() == ISD::LOAD &&
1057       (FrameIdxNode = dyn_cast<FrameIndexSDNode>(Op.getOperand(1))) &&
1058       (MFI->isFixedObjectIndex((FrameIdx = FrameIdxNode->getIndex()))) &&
1059       (MFI->getObjectOffset(FrameIdx) >= 0)))
1060    return true;
1061  return false;
1062}
1063
1064/// CallRequiresGOTInRegister - Check whether the call requires the GOT pointer
1065/// in a register before calling.
1066bool X86TargetLowering::CallRequiresGOTPtrInReg(bool Is64Bit, bool IsTailCall) {
1067  return !IsTailCall && !Is64Bit &&
1068    getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1069    Subtarget->isPICStyleGOT();
1070}
1071
1072
1073/// CallRequiresFnAddressInReg - Check whether the call requires the function
1074/// address to be loaded in a register.
1075bool
1076X86TargetLowering::CallRequiresFnAddressInReg(bool Is64Bit, bool IsTailCall) {
1077  return !Is64Bit && IsTailCall &&
1078    getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1079    Subtarget->isPICStyleGOT();
1080}
1081
1082/// CopyTailCallClobberedArgumentsToVRegs - Create virtual registers for all
1083/// arguments to force loading and guarantee that arguments sourcing from
1084/// incomming parameters are not overwriting each other.
1085static SDOperand
1086CopyTailCallClobberedArgumentsToVRegs(SDOperand Chain,
1087     SmallVector<std::pair<unsigned, SDOperand>, 8> &TailCallClobberedVRegs,
1088                                      SelectionDAG &DAG,
1089                                      MachineFunction &MF,
1090                                      const TargetLowering * TL) {
1091
1092  SDOperand InFlag;
1093  for (unsigned i = 0, e = TailCallClobberedVRegs.size(); i != e; i++) {
1094    SDOperand Arg = TailCallClobberedVRegs[i].second;
1095    unsigned Idx = TailCallClobberedVRegs[i].first;
1096    unsigned VReg =
1097      MF.getRegInfo().
1098      createVirtualRegister(TL->getRegClassFor(Arg.getValueType()));
1099    Chain = DAG.getCopyToReg(Chain, VReg, Arg, InFlag);
1100    InFlag = Chain.getValue(1);
1101    Arg = DAG.getCopyFromReg(Chain, VReg, Arg.getValueType(), InFlag);
1102    TailCallClobberedVRegs[i] = std::make_pair(Idx, Arg);
1103    Chain = Arg.getValue(1);
1104    InFlag = Arg.getValue(2);
1105  }
1106  return Chain;
1107}
1108
1109/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1110/// by "Src" to address "Dst" with size and alignment information specified by
1111/// the specific parameter attribute. The copy will be passed as a byval function
1112/// parameter.
1113static SDOperand
1114CreateCopyOfByValArgument(SDOperand Src, SDOperand Dst, SDOperand Chain,
1115                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG) {
1116  SDOperand AlignNode    = DAG.getConstant(Flags.getByValAlign(), MVT::i32);
1117  SDOperand SizeNode     = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1118  SDOperand AlwaysInline = DAG.getConstant(1, MVT::i32);
1119  return DAG.getMemcpy(Chain, Dst, Src, SizeNode, AlignNode, AlwaysInline);
1120}
1121
1122SDOperand X86TargetLowering::LowerMemArgument(SDOperand Op, SelectionDAG &DAG,
1123                                              const CCValAssign &VA,
1124                                              MachineFrameInfo *MFI,
1125                                              unsigned CC,
1126                                              SDOperand Root, unsigned i) {
1127  // Create the nodes corresponding to a load from this parameter slot.
1128  ISD::ArgFlagsTy Flags =
1129    cast<ARG_FLAGSSDNode>(Op.getOperand(3 + i))->getArgFlags();
1130  bool AlwaysUseMutable = (CC==CallingConv::Fast) && PerformTailCallOpt;
1131  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1132
1133  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1134  // changed with more analysis.
1135  // In case of tail call optimization mark all arguments mutable. Since they
1136  // could be overwritten by lowering of arguments in case of a tail call.
1137  int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
1138                                  VA.getLocMemOffset(), isImmutable);
1139  SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
1140  if (Flags.isByVal())
1141    return FIN;
1142  return DAG.getLoad(VA.getValVT(), Root, FIN,
1143                     PseudoSourceValue::getFixedStack(), FI);
1144}
1145
1146SDOperand
1147X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) {
1148  MachineFunction &MF = DAG.getMachineFunction();
1149  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1150
1151  const Function* Fn = MF.getFunction();
1152  if (Fn->hasExternalLinkage() &&
1153      Subtarget->isTargetCygMing() &&
1154      Fn->getName() == "main")
1155    FuncInfo->setForceFramePointer(true);
1156
1157  // Decorate the function name.
1158  FuncInfo->setDecorationStyle(NameDecorationForFORMAL_ARGUMENTS(Op));
1159
1160  MachineFrameInfo *MFI = MF.getFrameInfo();
1161  SDOperand Root = Op.getOperand(0);
1162  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1163  unsigned CC = MF.getFunction()->getCallingConv();
1164  bool Is64Bit = Subtarget->is64Bit();
1165
1166  assert(!(isVarArg && CC == CallingConv::Fast) &&
1167         "Var args not supported with calling convention fastcc");
1168
1169  // Assign locations to all of the incoming arguments.
1170  SmallVector<CCValAssign, 16> ArgLocs;
1171  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1172  CCInfo.AnalyzeFormalArguments(Op.Val, CCAssignFnForNode(Op));
1173
1174  SmallVector<SDOperand, 8> ArgValues;
1175  unsigned LastVal = ~0U;
1176  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1177    CCValAssign &VA = ArgLocs[i];
1178    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1179    // places.
1180    assert(VA.getValNo() != LastVal &&
1181           "Don't support value assigned to multiple locs yet");
1182    LastVal = VA.getValNo();
1183
1184    if (VA.isRegLoc()) {
1185      MVT::ValueType RegVT = VA.getLocVT();
1186      TargetRegisterClass *RC;
1187      if (RegVT == MVT::i32)
1188        RC = X86::GR32RegisterClass;
1189      else if (Is64Bit && RegVT == MVT::i64)
1190        RC = X86::GR64RegisterClass;
1191      else if (RegVT == MVT::f32)
1192        RC = X86::FR32RegisterClass;
1193      else if (RegVT == MVT::f64)
1194        RC = X86::FR64RegisterClass;
1195      else {
1196        assert(MVT::isVector(RegVT));
1197        if (Is64Bit && MVT::getSizeInBits(RegVT) == 64) {
1198          RC = X86::GR64RegisterClass;       // MMX values are passed in GPRs.
1199          RegVT = MVT::i64;
1200        } else
1201          RC = X86::VR128RegisterClass;
1202      }
1203
1204      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1205      SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1206
1207      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1208      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1209      // right size.
1210      if (VA.getLocInfo() == CCValAssign::SExt)
1211        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1212                               DAG.getValueType(VA.getValVT()));
1213      else if (VA.getLocInfo() == CCValAssign::ZExt)
1214        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1215                               DAG.getValueType(VA.getValVT()));
1216
1217      if (VA.getLocInfo() != CCValAssign::Full)
1218        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1219
1220      // Handle MMX values passed in GPRs.
1221      if (Is64Bit && RegVT != VA.getLocVT() && RC == X86::GR64RegisterClass &&
1222          MVT::getSizeInBits(RegVT) == 64)
1223        ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
1224
1225      ArgValues.push_back(ArgValue);
1226    } else {
1227      assert(VA.isMemLoc());
1228      ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, CC, Root, i));
1229    }
1230  }
1231
1232  unsigned StackSize = CCInfo.getNextStackOffset();
1233  // align stack specially for tail calls
1234  if (CC == CallingConv::Fast)
1235    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1236
1237  // If the function takes variable number of arguments, make a frame index for
1238  // the start of the first vararg value... for expansion of llvm.va_start.
1239  if (isVarArg) {
1240    if (Is64Bit || CC != CallingConv::X86_FastCall) {
1241      VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1242    }
1243    if (Is64Bit) {
1244      static const unsigned GPR64ArgRegs[] = {
1245        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8,  X86::R9
1246      };
1247      static const unsigned XMMArgRegs[] = {
1248        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1249        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1250      };
1251
1252      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs, 6);
1253      unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1254
1255      // For X86-64, if there are vararg parameters that are passed via
1256      // registers, then we must store them to their spots on the stack so they
1257      // may be loaded by deferencing the result of va_next.
1258      VarArgsGPOffset = NumIntRegs * 8;
1259      VarArgsFPOffset = 6 * 8 + NumXMMRegs * 16;
1260      RegSaveFrameIndex = MFI->CreateStackObject(6 * 8 + 8 * 16, 16);
1261
1262      // Store the integer parameter registers.
1263      SmallVector<SDOperand, 8> MemOps;
1264      SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1265      SDOperand FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1266                                  DAG.getIntPtrConstant(VarArgsGPOffset));
1267      for (; NumIntRegs != 6; ++NumIntRegs) {
1268        unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
1269                                  X86::GR64RegisterClass);
1270        SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1271        SDOperand Store =
1272          DAG.getStore(Val.getValue(1), Val, FIN,
1273                       PseudoSourceValue::getFixedStack(),
1274                       RegSaveFrameIndex);
1275        MemOps.push_back(Store);
1276        FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1277                          DAG.getIntPtrConstant(8));
1278      }
1279
1280      // Now store the XMM (fp + vector) parameter registers.
1281      FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1282                        DAG.getIntPtrConstant(VarArgsFPOffset));
1283      for (; NumXMMRegs != 8; ++NumXMMRegs) {
1284        unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
1285                                  X86::VR128RegisterClass);
1286        SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
1287        SDOperand Store =
1288          DAG.getStore(Val.getValue(1), Val, FIN,
1289                       PseudoSourceValue::getFixedStack(),
1290                       RegSaveFrameIndex);
1291        MemOps.push_back(Store);
1292        FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1293                          DAG.getIntPtrConstant(16));
1294      }
1295      if (!MemOps.empty())
1296          Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
1297                             &MemOps[0], MemOps.size());
1298    }
1299  }
1300
1301  // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1302  // arguments and the arguments after the retaddr has been pushed are
1303  // aligned.
1304  if (!Is64Bit && CC == CallingConv::X86_FastCall &&
1305      !Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows() &&
1306      (StackSize & 7) == 0)
1307    StackSize += 4;
1308
1309  ArgValues.push_back(Root);
1310
1311  // Some CCs need callee pop.
1312  if (IsCalleePop(Op)) {
1313    BytesToPopOnReturn  = StackSize; // Callee pops everything.
1314    BytesCallerReserves = 0;
1315  } else {
1316    BytesToPopOnReturn  = 0; // Callee pops nothing.
1317    // If this is an sret function, the return should pop the hidden pointer.
1318    if (!Is64Bit && ArgsAreStructReturn(Op))
1319      BytesToPopOnReturn = 4;
1320    BytesCallerReserves = StackSize;
1321  }
1322
1323  if (!Is64Bit) {
1324    RegSaveFrameIndex = 0xAAAAAAA;   // RegSaveFrameIndex is X86-64 only.
1325    if (CC == CallingConv::X86_FastCall)
1326      VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1327  }
1328
1329  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1330
1331  // Return the new list of results.
1332  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1333                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1334}
1335
1336SDOperand
1337X86TargetLowering::LowerMemOpCallTo(SDOperand Op, SelectionDAG &DAG,
1338                                    const SDOperand &StackPtr,
1339                                    const CCValAssign &VA,
1340                                    SDOperand Chain,
1341                                    SDOperand Arg) {
1342  unsigned LocMemOffset = VA.getLocMemOffset();
1343  SDOperand PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1344  PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1345  ISD::ArgFlagsTy Flags =
1346    cast<ARG_FLAGSSDNode>(Op.getOperand(6+2*VA.getValNo()))->getArgFlags();
1347  if (Flags.isByVal()) {
1348    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG);
1349  }
1350  return DAG.getStore(Chain, Arg, PtrOff,
1351                      PseudoSourceValue::getStack(), LocMemOffset);
1352}
1353
1354
1355SDOperand X86TargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) {
1356  MachineFunction &MF = DAG.getMachineFunction();
1357  MachineFrameInfo * MFI = MF.getFrameInfo();
1358  SDOperand Chain     = Op.getOperand(0);
1359  unsigned CC         = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
1360  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1361  bool IsTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0
1362                        && CC == CallingConv::Fast && PerformTailCallOpt;
1363  SDOperand Callee    = Op.getOperand(4);
1364  bool Is64Bit        = Subtarget->is64Bit();
1365  bool IsStructRet    = CallIsStructReturn(Op);
1366
1367  assert(!(isVarArg && CC == CallingConv::Fast) &&
1368         "Var args not supported with calling convention fastcc");
1369
1370  // Analyze operands of the call, assigning locations to each operand.
1371  SmallVector<CCValAssign, 16> ArgLocs;
1372  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1373  CCInfo.AnalyzeCallOperands(Op.Val, CCAssignFnForNode(Op));
1374
1375  // Get a count of how many bytes are to be pushed on the stack.
1376  unsigned NumBytes = CCInfo.getNextStackOffset();
1377  if (CC == CallingConv::Fast)
1378    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1379
1380  // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1381  // arguments and the arguments after the retaddr has been pushed are aligned.
1382  if (!Is64Bit && CC == CallingConv::X86_FastCall &&
1383      !Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows() &&
1384      (NumBytes & 7) == 0)
1385    NumBytes += 4;
1386
1387  int FPDiff = 0;
1388  if (IsTailCall) {
1389    // Lower arguments at fp - stackoffset + fpdiff.
1390    unsigned NumBytesCallerPushed =
1391      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1392    FPDiff = NumBytesCallerPushed - NumBytes;
1393
1394    // Set the delta of movement of the returnaddr stackslot.
1395    // But only set if delta is greater than previous delta.
1396    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1397      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1398  }
1399
1400  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes));
1401
1402  SDOperand RetAddrFrIdx;
1403  if (IsTailCall) {
1404    // Adjust the Return address stack slot.
1405    if (FPDiff) {
1406      MVT::ValueType VT = Is64Bit ? MVT::i64 : MVT::i32;
1407      RetAddrFrIdx = getReturnAddressFrameIndex(DAG);
1408      // Load the "old" Return address.
1409      RetAddrFrIdx =
1410        DAG.getLoad(VT, Chain,RetAddrFrIdx, NULL, 0);
1411      Chain = SDOperand(RetAddrFrIdx.Val, 1);
1412    }
1413  }
1414
1415  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1416  SmallVector<std::pair<unsigned, SDOperand>, 8> TailCallClobberedVRegs;
1417  SmallVector<SDOperand, 8> MemOpChains;
1418
1419  SDOperand StackPtr;
1420
1421  // Walk the register/memloc assignments, inserting copies/loads.  For tail
1422  // calls, remember all arguments for later special lowering.
1423  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1424    CCValAssign &VA = ArgLocs[i];
1425    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1426
1427    // Promote the value if needed.
1428    switch (VA.getLocInfo()) {
1429    default: assert(0 && "Unknown loc info!");
1430    case CCValAssign::Full: break;
1431    case CCValAssign::SExt:
1432      Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1433      break;
1434    case CCValAssign::ZExt:
1435      Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1436      break;
1437    case CCValAssign::AExt:
1438      Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1439      break;
1440    }
1441
1442    if (VA.isRegLoc()) {
1443      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1444    } else {
1445      if (!IsTailCall) {
1446        assert(VA.isMemLoc());
1447        if (StackPtr.Val == 0)
1448          StackPtr = DAG.getCopyFromReg(Chain, X86StackPtr, getPointerTy());
1449
1450        MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1451                                               Arg));
1452      } else if (IsPossiblyOverwrittenArgumentOfTailCall(Arg, MFI)) {
1453        TailCallClobberedVRegs.push_back(std::make_pair(i,Arg));
1454      }
1455    }
1456  }
1457
1458  if (!MemOpChains.empty())
1459    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1460                        &MemOpChains[0], MemOpChains.size());
1461
1462  // Build a sequence of copy-to-reg nodes chained together with token chain
1463  // and flag operands which copy the outgoing args into registers.
1464  SDOperand InFlag;
1465  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1466    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1467                             InFlag);
1468    InFlag = Chain.getValue(1);
1469  }
1470
1471  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1472  // GOT pointer.
1473  if (CallRequiresGOTPtrInReg(Is64Bit, IsTailCall)) {
1474    Chain = DAG.getCopyToReg(Chain, X86::EBX,
1475                             DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1476                             InFlag);
1477    InFlag = Chain.getValue(1);
1478  }
1479  // If we are tail calling and generating PIC/GOT style code load the address
1480  // of the callee into ecx. The value in ecx is used as target of the tail
1481  // jump. This is done to circumvent the ebx/callee-saved problem for tail
1482  // calls on PIC/GOT architectures. Normally we would just put the address of
1483  // GOT into ebx and then call target@PLT. But for tail callss ebx would be
1484  // restored (since ebx is callee saved) before jumping to the target@PLT.
1485  if (CallRequiresFnAddressInReg(Is64Bit, IsTailCall)) {
1486    // Note: The actual moving to ecx is done further down.
1487    GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
1488    if (G &&  !G->getGlobal()->hasHiddenVisibility() &&
1489        !G->getGlobal()->hasProtectedVisibility())
1490      Callee =  LowerGlobalAddress(Callee, DAG);
1491    else if (isa<ExternalSymbolSDNode>(Callee))
1492      Callee = LowerExternalSymbol(Callee,DAG);
1493  }
1494
1495  if (Is64Bit && isVarArg) {
1496    // From AMD64 ABI document:
1497    // For calls that may call functions that use varargs or stdargs
1498    // (prototype-less calls or calls to functions containing ellipsis (...) in
1499    // the declaration) %al is used as hidden argument to specify the number
1500    // of SSE registers used. The contents of %al do not need to match exactly
1501    // the number of registers, but must be an ubound on the number of SSE
1502    // registers used and is in the range 0 - 8 inclusive.
1503
1504    // Count the number of XMM registers allocated.
1505    static const unsigned XMMArgRegs[] = {
1506      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1507      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1508    };
1509    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1510
1511    Chain = DAG.getCopyToReg(Chain, X86::AL,
1512                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1513    InFlag = Chain.getValue(1);
1514  }
1515
1516
1517  // For tail calls lower the arguments to the 'real' stack slot.
1518  if (IsTailCall) {
1519    SmallVector<SDOperand, 8> MemOpChains2;
1520    SDOperand FIN;
1521    int FI = 0;
1522    // Do not flag preceeding copytoreg stuff together with the following stuff.
1523    InFlag = SDOperand();
1524
1525    Chain = CopyTailCallClobberedArgumentsToVRegs(Chain, TailCallClobberedVRegs,
1526                                                  DAG, MF, this);
1527
1528    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1529      CCValAssign &VA = ArgLocs[i];
1530      if (!VA.isRegLoc()) {
1531        assert(VA.isMemLoc());
1532        SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1533        SDOperand FlagsOp = Op.getOperand(6+2*VA.getValNo());
1534        ISD::ArgFlagsTy Flags =
1535          cast<ARG_FLAGSSDNode>(FlagsOp)->getArgFlags();
1536        // Create frame index.
1537        int32_t Offset = VA.getLocMemOffset()+FPDiff;
1538        uint32_t OpSize = (MVT::getSizeInBits(VA.getLocVT())+7)/8;
1539        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
1540        FIN = DAG.getFrameIndex(FI, MVT::i32);
1541
1542        // Find virtual register for this argument.
1543        bool Found=false;
1544        for (unsigned idx=0, e= TailCallClobberedVRegs.size(); idx < e; idx++)
1545          if (TailCallClobberedVRegs[idx].first==i) {
1546            Arg = TailCallClobberedVRegs[idx].second;
1547            Found=true;
1548            break;
1549          }
1550        assert(IsPossiblyOverwrittenArgumentOfTailCall(Arg, MFI)==false ||
1551          (Found==true && "No corresponding Argument was found"));
1552
1553        if (Flags.isByVal()) {
1554          // Copy relative to framepointer.
1555          MemOpChains2.push_back(CreateCopyOfByValArgument(Arg, FIN, Chain,
1556                                                           Flags, DAG));
1557        } else {
1558          // Store relative to framepointer.
1559          MemOpChains2.push_back(
1560            DAG.getStore(Chain, Arg, FIN,
1561                         PseudoSourceValue::getFixedStack(), FI));
1562        }
1563      }
1564    }
1565
1566    if (!MemOpChains2.empty())
1567      Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1568                          &MemOpChains2[0], MemOpChains2.size());
1569
1570    // Store the return address to the appropriate stack slot.
1571    if (FPDiff) {
1572      // Calculate the new stack slot for the return address.
1573      int SlotSize = Is64Bit ? 8 : 4;
1574      int NewReturnAddrFI =
1575        MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize);
1576      MVT::ValueType VT = Is64Bit ? MVT::i64 : MVT::i32;
1577      SDOperand NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1578      Chain = DAG.getStore(Chain, RetAddrFrIdx, NewRetAddrFrIdx,
1579                           PseudoSourceValue::getFixedStack(), NewReturnAddrFI);
1580    }
1581  }
1582
1583  // If the callee is a GlobalAddress node (quite common, every direct call is)
1584  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1585  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1586    // We should use extra load for direct calls to dllimported functions in
1587    // non-JIT mode.
1588    if ((IsTailCall || !Is64Bit ||
1589         getTargetMachine().getCodeModel() != CodeModel::Large)
1590        && !Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1591                                           getTargetMachine(), true))
1592      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1593  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1594    if (IsTailCall || !Is64Bit ||
1595        getTargetMachine().getCodeModel() != CodeModel::Large)
1596      Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1597  } else if (IsTailCall) {
1598    unsigned Opc = Is64Bit ? X86::R9 : X86::ECX;
1599
1600    Chain = DAG.getCopyToReg(Chain,
1601                             DAG.getRegister(Opc, getPointerTy()),
1602                             Callee,InFlag);
1603    Callee = DAG.getRegister(Opc, getPointerTy());
1604    // Add register as live out.
1605    DAG.getMachineFunction().getRegInfo().addLiveOut(Opc);
1606  }
1607
1608  // Returns a chain & a flag for retval copy to use.
1609  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1610  SmallVector<SDOperand, 8> Ops;
1611
1612  if (IsTailCall) {
1613    Ops.push_back(Chain);
1614    Ops.push_back(DAG.getIntPtrConstant(NumBytes));
1615    Ops.push_back(DAG.getIntPtrConstant(0));
1616    if (InFlag.Val)
1617      Ops.push_back(InFlag);
1618    Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1619    InFlag = Chain.getValue(1);
1620
1621    // Returns a chain & a flag for retval copy to use.
1622    NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1623    Ops.clear();
1624  }
1625
1626  Ops.push_back(Chain);
1627  Ops.push_back(Callee);
1628
1629  if (IsTailCall)
1630    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
1631
1632  // Add argument registers to the end of the list so that they are known live
1633  // into the call.
1634  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1635    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1636                                  RegsToPass[i].second.getValueType()));
1637
1638  // Add an implicit use GOT pointer in EBX.
1639  if (!IsTailCall && !Is64Bit &&
1640      getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1641      Subtarget->isPICStyleGOT())
1642    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1643
1644  // Add an implicit use of AL for x86 vararg functions.
1645  if (Is64Bit && isVarArg)
1646    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
1647
1648  if (InFlag.Val)
1649    Ops.push_back(InFlag);
1650
1651  if (IsTailCall) {
1652    assert(InFlag.Val &&
1653           "Flag must be set. Depend on flag being set in LowerRET");
1654    Chain = DAG.getNode(X86ISD::TAILCALL,
1655                        Op.Val->getVTList(), &Ops[0], Ops.size());
1656
1657    return SDOperand(Chain.Val, Op.ResNo);
1658  }
1659
1660  Chain = DAG.getNode(X86ISD::CALL, NodeTys, &Ops[0], Ops.size());
1661  InFlag = Chain.getValue(1);
1662
1663  // Create the CALLSEQ_END node.
1664  unsigned NumBytesForCalleeToPush;
1665  if (IsCalleePop(Op))
1666    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
1667  else if (!Is64Bit && IsStructRet)
1668    // If this is is a call to a struct-return function, the callee
1669    // pops the hidden struct pointer, so we have to push it back.
1670    // This is common for Darwin/X86, Linux & Mingw32 targets.
1671    NumBytesForCalleeToPush = 4;
1672  else
1673    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
1674
1675  // Returns a flag for retval copy to use.
1676  Chain = DAG.getCALLSEQ_END(Chain,
1677                             DAG.getIntPtrConstant(NumBytes),
1678                             DAG.getIntPtrConstant(NumBytesForCalleeToPush),
1679                             InFlag);
1680  InFlag = Chain.getValue(1);
1681
1682  // Handle result values, copying them out of physregs into vregs that we
1683  // return.
1684  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1685}
1686
1687
1688//===----------------------------------------------------------------------===//
1689//                Fast Calling Convention (tail call) implementation
1690//===----------------------------------------------------------------------===//
1691
1692//  Like std call, callee cleans arguments, convention except that ECX is
1693//  reserved for storing the tail called function address. Only 2 registers are
1694//  free for argument passing (inreg). Tail call optimization is performed
1695//  provided:
1696//                * tailcallopt is enabled
1697//                * caller/callee are fastcc
1698//  On X86_64 architecture with GOT-style position independent code only local
1699//  (within module) calls are supported at the moment.
1700//  To keep the stack aligned according to platform abi the function
1701//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
1702//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
1703//  If a tail called function callee has more arguments than the caller the
1704//  caller needs to make sure that there is room to move the RETADDR to. This is
1705//  achieved by reserving an area the size of the argument delta right after the
1706//  original REtADDR, but before the saved framepointer or the spilled registers
1707//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
1708//  stack layout:
1709//    arg1
1710//    arg2
1711//    RETADDR
1712//    [ new RETADDR
1713//      move area ]
1714//    (possible EBP)
1715//    ESI
1716//    EDI
1717//    local1 ..
1718
1719/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
1720/// for a 16 byte align requirement.
1721unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
1722                                                        SelectionDAG& DAG) {
1723  if (PerformTailCallOpt) {
1724    MachineFunction &MF = DAG.getMachineFunction();
1725    const TargetMachine &TM = MF.getTarget();
1726    const TargetFrameInfo &TFI = *TM.getFrameInfo();
1727    unsigned StackAlignment = TFI.getStackAlignment();
1728    uint64_t AlignMask = StackAlignment - 1;
1729    int64_t Offset = StackSize;
1730    unsigned SlotSize = Subtarget->is64Bit() ? 8 : 4;
1731    if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
1732      // Number smaller than 12 so just add the difference.
1733      Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
1734    } else {
1735      // Mask out lower bits, add stackalignment once plus the 12 bytes.
1736      Offset = ((~AlignMask) & Offset) + StackAlignment +
1737        (StackAlignment-SlotSize);
1738    }
1739    StackSize = Offset;
1740  }
1741  return StackSize;
1742}
1743
1744/// IsEligibleForTailCallElimination - Check to see whether the next instruction
1745/// following the call is a return. A function is eligible if caller/callee
1746/// calling conventions match, currently only fastcc supports tail calls, and
1747/// the function CALL is immediatly followed by a RET.
1748bool X86TargetLowering::IsEligibleForTailCallOptimization(SDOperand Call,
1749                                                      SDOperand Ret,
1750                                                      SelectionDAG& DAG) const {
1751  if (!PerformTailCallOpt)
1752    return false;
1753
1754  // Check whether CALL node immediatly preceeds the RET node and whether the
1755  // return uses the result of the node or is a void return.
1756  unsigned NumOps = Ret.getNumOperands();
1757  if ((NumOps == 1 &&
1758       (Ret.getOperand(0) == SDOperand(Call.Val,1) ||
1759        Ret.getOperand(0) == SDOperand(Call.Val,0))) ||
1760      (NumOps > 1 &&
1761       Ret.getOperand(0) == SDOperand(Call.Val,Call.Val->getNumValues()-1) &&
1762       Ret.getOperand(1) == SDOperand(Call.Val,0))) {
1763    MachineFunction &MF = DAG.getMachineFunction();
1764    unsigned CallerCC = MF.getFunction()->getCallingConv();
1765    unsigned CalleeCC = cast<ConstantSDNode>(Call.getOperand(1))->getValue();
1766    if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
1767      SDOperand Callee = Call.getOperand(4);
1768      // On x86/32Bit PIC/GOT  tail calls are supported.
1769      if (getTargetMachine().getRelocationModel() != Reloc::PIC_ ||
1770          !Subtarget->isPICStyleGOT()|| !Subtarget->is64Bit())
1771        return true;
1772
1773      // Can only do local tail calls (in same module, hidden or protected) on
1774      // x86_64 PIC/GOT at the moment.
1775      if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1776        return G->getGlobal()->hasHiddenVisibility()
1777            || G->getGlobal()->hasProtectedVisibility();
1778    }
1779  }
1780
1781  return false;
1782}
1783
1784//===----------------------------------------------------------------------===//
1785//                           Other Lowering Hooks
1786//===----------------------------------------------------------------------===//
1787
1788
1789SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
1790  MachineFunction &MF = DAG.getMachineFunction();
1791  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1792  int ReturnAddrIndex = FuncInfo->getRAIndex();
1793
1794  if (ReturnAddrIndex == 0) {
1795    // Set up a frame object for the return address.
1796    if (Subtarget->is64Bit())
1797      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(8, -8);
1798    else
1799      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4);
1800
1801    FuncInfo->setRAIndex(ReturnAddrIndex);
1802  }
1803
1804  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
1805}
1806
1807
1808
1809/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
1810/// specific condition code. It returns a false if it cannot do a direct
1811/// translation. X86CC is the translated CondCode.  LHS/RHS are modified as
1812/// needed.
1813static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
1814                           unsigned &X86CC, SDOperand &LHS, SDOperand &RHS,
1815                           SelectionDAG &DAG) {
1816  X86CC = X86::COND_INVALID;
1817  if (!isFP) {
1818    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
1819      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
1820        // X > -1   -> X == 0, jump !sign.
1821        RHS = DAG.getConstant(0, RHS.getValueType());
1822        X86CC = X86::COND_NS;
1823        return true;
1824      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
1825        // X < 0   -> X == 0, jump on sign.
1826        X86CC = X86::COND_S;
1827        return true;
1828      } else if (SetCCOpcode == ISD::SETLT && RHSC->getValue() == 1) {
1829        // X < 1   -> X <= 0
1830        RHS = DAG.getConstant(0, RHS.getValueType());
1831        X86CC = X86::COND_LE;
1832        return true;
1833      }
1834    }
1835
1836    switch (SetCCOpcode) {
1837    default: break;
1838    case ISD::SETEQ:  X86CC = X86::COND_E;  break;
1839    case ISD::SETGT:  X86CC = X86::COND_G;  break;
1840    case ISD::SETGE:  X86CC = X86::COND_GE; break;
1841    case ISD::SETLT:  X86CC = X86::COND_L;  break;
1842    case ISD::SETLE:  X86CC = X86::COND_LE; break;
1843    case ISD::SETNE:  X86CC = X86::COND_NE; break;
1844    case ISD::SETULT: X86CC = X86::COND_B;  break;
1845    case ISD::SETUGT: X86CC = X86::COND_A;  break;
1846    case ISD::SETULE: X86CC = X86::COND_BE; break;
1847    case ISD::SETUGE: X86CC = X86::COND_AE; break;
1848    }
1849  } else {
1850    // On a floating point condition, the flags are set as follows:
1851    // ZF  PF  CF   op
1852    //  0 | 0 | 0 | X > Y
1853    //  0 | 0 | 1 | X < Y
1854    //  1 | 0 | 0 | X == Y
1855    //  1 | 1 | 1 | unordered
1856    bool Flip = false;
1857    switch (SetCCOpcode) {
1858    default: break;
1859    case ISD::SETUEQ:
1860    case ISD::SETEQ: X86CC = X86::COND_E;  break;
1861    case ISD::SETOLT: Flip = true; // Fallthrough
1862    case ISD::SETOGT:
1863    case ISD::SETGT: X86CC = X86::COND_A;  break;
1864    case ISD::SETOLE: Flip = true; // Fallthrough
1865    case ISD::SETOGE:
1866    case ISD::SETGE: X86CC = X86::COND_AE; break;
1867    case ISD::SETUGT: Flip = true; // Fallthrough
1868    case ISD::SETULT:
1869    case ISD::SETLT: X86CC = X86::COND_B;  break;
1870    case ISD::SETUGE: Flip = true; // Fallthrough
1871    case ISD::SETULE:
1872    case ISD::SETLE: X86CC = X86::COND_BE; break;
1873    case ISD::SETONE:
1874    case ISD::SETNE: X86CC = X86::COND_NE; break;
1875    case ISD::SETUO: X86CC = X86::COND_P;  break;
1876    case ISD::SETO:  X86CC = X86::COND_NP; break;
1877    }
1878    if (Flip)
1879      std::swap(LHS, RHS);
1880  }
1881
1882  return X86CC != X86::COND_INVALID;
1883}
1884
1885/// hasFPCMov - is there a floating point cmov for the specific X86 condition
1886/// code. Current x86 isa includes the following FP cmov instructions:
1887/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
1888static bool hasFPCMov(unsigned X86CC) {
1889  switch (X86CC) {
1890  default:
1891    return false;
1892  case X86::COND_B:
1893  case X86::COND_BE:
1894  case X86::COND_E:
1895  case X86::COND_P:
1896  case X86::COND_A:
1897  case X86::COND_AE:
1898  case X86::COND_NE:
1899  case X86::COND_NP:
1900    return true;
1901  }
1902}
1903
1904/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode.  Return
1905/// true if Op is undef or if its value falls within the specified range (L, H].
1906static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) {
1907  if (Op.getOpcode() == ISD::UNDEF)
1908    return true;
1909
1910  unsigned Val = cast<ConstantSDNode>(Op)->getValue();
1911  return (Val >= Low && Val < Hi);
1912}
1913
1914/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode.  Return
1915/// true if Op is undef or if its value equal to the specified value.
1916static bool isUndefOrEqual(SDOperand Op, unsigned Val) {
1917  if (Op.getOpcode() == ISD::UNDEF)
1918    return true;
1919  return cast<ConstantSDNode>(Op)->getValue() == Val;
1920}
1921
1922/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
1923/// specifies a shuffle of elements that is suitable for input to PSHUFD.
1924bool X86::isPSHUFDMask(SDNode *N) {
1925  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1926
1927  if (N->getNumOperands() != 2 && N->getNumOperands() != 4)
1928    return false;
1929
1930  // Check if the value doesn't reference the second vector.
1931  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1932    SDOperand Arg = N->getOperand(i);
1933    if (Arg.getOpcode() == ISD::UNDEF) continue;
1934    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1935    if (cast<ConstantSDNode>(Arg)->getValue() >= e)
1936      return false;
1937  }
1938
1939  return true;
1940}
1941
1942/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
1943/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
1944bool X86::isPSHUFHWMask(SDNode *N) {
1945  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1946
1947  if (N->getNumOperands() != 8)
1948    return false;
1949
1950  // Lower quadword copied in order.
1951  for (unsigned i = 0; i != 4; ++i) {
1952    SDOperand Arg = N->getOperand(i);
1953    if (Arg.getOpcode() == ISD::UNDEF) continue;
1954    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1955    if (cast<ConstantSDNode>(Arg)->getValue() != i)
1956      return false;
1957  }
1958
1959  // Upper quadword shuffled.
1960  for (unsigned i = 4; i != 8; ++i) {
1961    SDOperand Arg = N->getOperand(i);
1962    if (Arg.getOpcode() == ISD::UNDEF) continue;
1963    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1964    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
1965    if (Val < 4 || Val > 7)
1966      return false;
1967  }
1968
1969  return true;
1970}
1971
1972/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
1973/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
1974bool X86::isPSHUFLWMask(SDNode *N) {
1975  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1976
1977  if (N->getNumOperands() != 8)
1978    return false;
1979
1980  // Upper quadword copied in order.
1981  for (unsigned i = 4; i != 8; ++i)
1982    if (!isUndefOrEqual(N->getOperand(i), i))
1983      return false;
1984
1985  // Lower quadword shuffled.
1986  for (unsigned i = 0; i != 4; ++i)
1987    if (!isUndefOrInRange(N->getOperand(i), 0, 4))
1988      return false;
1989
1990  return true;
1991}
1992
1993/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
1994/// specifies a shuffle of elements that is suitable for input to SHUFP*.
1995static bool isSHUFPMask(const SDOperand *Elems, unsigned NumElems) {
1996  if (NumElems != 2 && NumElems != 4) return false;
1997
1998  unsigned Half = NumElems / 2;
1999  for (unsigned i = 0; i < Half; ++i)
2000    if (!isUndefOrInRange(Elems[i], 0, NumElems))
2001      return false;
2002  for (unsigned i = Half; i < NumElems; ++i)
2003    if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2))
2004      return false;
2005
2006  return true;
2007}
2008
2009bool X86::isSHUFPMask(SDNode *N) {
2010  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2011  return ::isSHUFPMask(N->op_begin(), N->getNumOperands());
2012}
2013
2014/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2015/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2016/// half elements to come from vector 1 (which would equal the dest.) and
2017/// the upper half to come from vector 2.
2018static bool isCommutedSHUFP(const SDOperand *Ops, unsigned NumOps) {
2019  if (NumOps != 2 && NumOps != 4) return false;
2020
2021  unsigned Half = NumOps / 2;
2022  for (unsigned i = 0; i < Half; ++i)
2023    if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2))
2024      return false;
2025  for (unsigned i = Half; i < NumOps; ++i)
2026    if (!isUndefOrInRange(Ops[i], 0, NumOps))
2027      return false;
2028  return true;
2029}
2030
2031static bool isCommutedSHUFP(SDNode *N) {
2032  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2033  return isCommutedSHUFP(N->op_begin(), N->getNumOperands());
2034}
2035
2036/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2037/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2038bool X86::isMOVHLPSMask(SDNode *N) {
2039  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2040
2041  if (N->getNumOperands() != 4)
2042    return false;
2043
2044  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2045  return isUndefOrEqual(N->getOperand(0), 6) &&
2046         isUndefOrEqual(N->getOperand(1), 7) &&
2047         isUndefOrEqual(N->getOperand(2), 2) &&
2048         isUndefOrEqual(N->getOperand(3), 3);
2049}
2050
2051/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2052/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2053/// <2, 3, 2, 3>
2054bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
2055  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2056
2057  if (N->getNumOperands() != 4)
2058    return false;
2059
2060  // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
2061  return isUndefOrEqual(N->getOperand(0), 2) &&
2062         isUndefOrEqual(N->getOperand(1), 3) &&
2063         isUndefOrEqual(N->getOperand(2), 2) &&
2064         isUndefOrEqual(N->getOperand(3), 3);
2065}
2066
2067/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2068/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2069bool X86::isMOVLPMask(SDNode *N) {
2070  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2071
2072  unsigned NumElems = N->getNumOperands();
2073  if (NumElems != 2 && NumElems != 4)
2074    return false;
2075
2076  for (unsigned i = 0; i < NumElems/2; ++i)
2077    if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
2078      return false;
2079
2080  for (unsigned i = NumElems/2; i < NumElems; ++i)
2081    if (!isUndefOrEqual(N->getOperand(i), i))
2082      return false;
2083
2084  return true;
2085}
2086
2087/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
2088/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
2089/// and MOVLHPS.
2090bool X86::isMOVHPMask(SDNode *N) {
2091  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2092
2093  unsigned NumElems = N->getNumOperands();
2094  if (NumElems != 2 && NumElems != 4)
2095    return false;
2096
2097  for (unsigned i = 0; i < NumElems/2; ++i)
2098    if (!isUndefOrEqual(N->getOperand(i), i))
2099      return false;
2100
2101  for (unsigned i = 0; i < NumElems/2; ++i) {
2102    SDOperand Arg = N->getOperand(i + NumElems/2);
2103    if (!isUndefOrEqual(Arg, i + NumElems))
2104      return false;
2105  }
2106
2107  return true;
2108}
2109
2110/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2111/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2112bool static isUNPCKLMask(const SDOperand *Elts, unsigned NumElts,
2113                         bool V2IsSplat = false) {
2114  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2115    return false;
2116
2117  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2118    SDOperand BitI  = Elts[i];
2119    SDOperand BitI1 = Elts[i+1];
2120    if (!isUndefOrEqual(BitI, j))
2121      return false;
2122    if (V2IsSplat) {
2123      if (isUndefOrEqual(BitI1, NumElts))
2124        return false;
2125    } else {
2126      if (!isUndefOrEqual(BitI1, j + NumElts))
2127        return false;
2128    }
2129  }
2130
2131  return true;
2132}
2133
2134bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
2135  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2136  return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2137}
2138
2139/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2140/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2141bool static isUNPCKHMask(const SDOperand *Elts, unsigned NumElts,
2142                         bool V2IsSplat = false) {
2143  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2144    return false;
2145
2146  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2147    SDOperand BitI  = Elts[i];
2148    SDOperand BitI1 = Elts[i+1];
2149    if (!isUndefOrEqual(BitI, j + NumElts/2))
2150      return false;
2151    if (V2IsSplat) {
2152      if (isUndefOrEqual(BitI1, NumElts))
2153        return false;
2154    } else {
2155      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2156        return false;
2157    }
2158  }
2159
2160  return true;
2161}
2162
2163bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
2164  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2165  return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2166}
2167
2168/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2169/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2170/// <0, 0, 1, 1>
2171bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
2172  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2173
2174  unsigned NumElems = N->getNumOperands();
2175  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2176    return false;
2177
2178  for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
2179    SDOperand BitI  = N->getOperand(i);
2180    SDOperand BitI1 = N->getOperand(i+1);
2181
2182    if (!isUndefOrEqual(BitI, j))
2183      return false;
2184    if (!isUndefOrEqual(BitI1, j))
2185      return false;
2186  }
2187
2188  return true;
2189}
2190
2191/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2192/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2193/// <2, 2, 3, 3>
2194bool X86::isUNPCKH_v_undef_Mask(SDNode *N) {
2195  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2196
2197  unsigned NumElems = N->getNumOperands();
2198  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2199    return false;
2200
2201  for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2202    SDOperand BitI  = N->getOperand(i);
2203    SDOperand BitI1 = N->getOperand(i + 1);
2204
2205    if (!isUndefOrEqual(BitI, j))
2206      return false;
2207    if (!isUndefOrEqual(BitI1, j))
2208      return false;
2209  }
2210
2211  return true;
2212}
2213
2214/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2215/// specifies a shuffle of elements that is suitable for input to MOVSS,
2216/// MOVSD, and MOVD, i.e. setting the lowest element.
2217static bool isMOVLMask(const SDOperand *Elts, unsigned NumElts) {
2218  if (NumElts != 2 && NumElts != 4)
2219    return false;
2220
2221  if (!isUndefOrEqual(Elts[0], NumElts))
2222    return false;
2223
2224  for (unsigned i = 1; i < NumElts; ++i) {
2225    if (!isUndefOrEqual(Elts[i], i))
2226      return false;
2227  }
2228
2229  return true;
2230}
2231
2232bool X86::isMOVLMask(SDNode *N) {
2233  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2234  return ::isMOVLMask(N->op_begin(), N->getNumOperands());
2235}
2236
2237/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2238/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
2239/// element of vector 2 and the other elements to come from vector 1 in order.
2240static bool isCommutedMOVL(const SDOperand *Ops, unsigned NumOps,
2241                           bool V2IsSplat = false,
2242                           bool V2IsUndef = false) {
2243  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2244    return false;
2245
2246  if (!isUndefOrEqual(Ops[0], 0))
2247    return false;
2248
2249  for (unsigned i = 1; i < NumOps; ++i) {
2250    SDOperand Arg = Ops[i];
2251    if (!(isUndefOrEqual(Arg, i+NumOps) ||
2252          (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) ||
2253          (V2IsSplat && isUndefOrEqual(Arg, NumOps))))
2254      return false;
2255  }
2256
2257  return true;
2258}
2259
2260static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
2261                           bool V2IsUndef = false) {
2262  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2263  return isCommutedMOVL(N->op_begin(), N->getNumOperands(),
2264                        V2IsSplat, V2IsUndef);
2265}
2266
2267/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2268/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2269bool X86::isMOVSHDUPMask(SDNode *N) {
2270  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2271
2272  if (N->getNumOperands() != 4)
2273    return false;
2274
2275  // Expect 1, 1, 3, 3
2276  for (unsigned i = 0; i < 2; ++i) {
2277    SDOperand Arg = N->getOperand(i);
2278    if (Arg.getOpcode() == ISD::UNDEF) continue;
2279    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2280    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2281    if (Val != 1) return false;
2282  }
2283
2284  bool HasHi = false;
2285  for (unsigned i = 2; i < 4; ++i) {
2286    SDOperand Arg = N->getOperand(i);
2287    if (Arg.getOpcode() == ISD::UNDEF) continue;
2288    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2289    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2290    if (Val != 3) return false;
2291    HasHi = true;
2292  }
2293
2294  // Don't use movshdup if it can be done with a shufps.
2295  return HasHi;
2296}
2297
2298/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2299/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2300bool X86::isMOVSLDUPMask(SDNode *N) {
2301  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2302
2303  if (N->getNumOperands() != 4)
2304    return false;
2305
2306  // Expect 0, 0, 2, 2
2307  for (unsigned i = 0; i < 2; ++i) {
2308    SDOperand Arg = N->getOperand(i);
2309    if (Arg.getOpcode() == ISD::UNDEF) continue;
2310    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2311    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2312    if (Val != 0) return false;
2313  }
2314
2315  bool HasHi = false;
2316  for (unsigned i = 2; i < 4; ++i) {
2317    SDOperand Arg = N->getOperand(i);
2318    if (Arg.getOpcode() == ISD::UNDEF) continue;
2319    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2320    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2321    if (Val != 2) return false;
2322    HasHi = true;
2323  }
2324
2325  // Don't use movshdup if it can be done with a shufps.
2326  return HasHi;
2327}
2328
2329/// isIdentityMask - Return true if the specified VECTOR_SHUFFLE operand
2330/// specifies a identity operation on the LHS or RHS.
2331static bool isIdentityMask(SDNode *N, bool RHS = false) {
2332  unsigned NumElems = N->getNumOperands();
2333  for (unsigned i = 0; i < NumElems; ++i)
2334    if (!isUndefOrEqual(N->getOperand(i), i + (RHS ? NumElems : 0)))
2335      return false;
2336  return true;
2337}
2338
2339/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2340/// a splat of a single element.
2341static bool isSplatMask(SDNode *N) {
2342  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2343
2344  // This is a splat operation if each element of the permute is the same, and
2345  // if the value doesn't reference the second vector.
2346  unsigned NumElems = N->getNumOperands();
2347  SDOperand ElementBase;
2348  unsigned i = 0;
2349  for (; i != NumElems; ++i) {
2350    SDOperand Elt = N->getOperand(i);
2351    if (isa<ConstantSDNode>(Elt)) {
2352      ElementBase = Elt;
2353      break;
2354    }
2355  }
2356
2357  if (!ElementBase.Val)
2358    return false;
2359
2360  for (; i != NumElems; ++i) {
2361    SDOperand Arg = N->getOperand(i);
2362    if (Arg.getOpcode() == ISD::UNDEF) continue;
2363    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2364    if (Arg != ElementBase) return false;
2365  }
2366
2367  // Make sure it is a splat of the first vector operand.
2368  return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems;
2369}
2370
2371/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2372/// a splat of a single element and it's a 2 or 4 element mask.
2373bool X86::isSplatMask(SDNode *N) {
2374  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2375
2376  // We can only splat 64-bit, and 32-bit quantities with a single instruction.
2377  if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
2378    return false;
2379  return ::isSplatMask(N);
2380}
2381
2382/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
2383/// specifies a splat of zero element.
2384bool X86::isSplatLoMask(SDNode *N) {
2385  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2386
2387  for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
2388    if (!isUndefOrEqual(N->getOperand(i), 0))
2389      return false;
2390  return true;
2391}
2392
2393/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2394/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2395/// instructions.
2396unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2397  unsigned NumOperands = N->getNumOperands();
2398  unsigned Shift = (NumOperands == 4) ? 2 : 1;
2399  unsigned Mask = 0;
2400  for (unsigned i = 0; i < NumOperands; ++i) {
2401    unsigned Val = 0;
2402    SDOperand Arg = N->getOperand(NumOperands-i-1);
2403    if (Arg.getOpcode() != ISD::UNDEF)
2404      Val = cast<ConstantSDNode>(Arg)->getValue();
2405    if (Val >= NumOperands) Val -= NumOperands;
2406    Mask |= Val;
2407    if (i != NumOperands - 1)
2408      Mask <<= Shift;
2409  }
2410
2411  return Mask;
2412}
2413
2414/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2415/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2416/// instructions.
2417unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2418  unsigned Mask = 0;
2419  // 8 nodes, but we only care about the last 4.
2420  for (unsigned i = 7; i >= 4; --i) {
2421    unsigned Val = 0;
2422    SDOperand Arg = N->getOperand(i);
2423    if (Arg.getOpcode() != ISD::UNDEF)
2424      Val = cast<ConstantSDNode>(Arg)->getValue();
2425    Mask |= (Val - 4);
2426    if (i != 4)
2427      Mask <<= 2;
2428  }
2429
2430  return Mask;
2431}
2432
2433/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2434/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2435/// instructions.
2436unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2437  unsigned Mask = 0;
2438  // 8 nodes, but we only care about the first 4.
2439  for (int i = 3; i >= 0; --i) {
2440    unsigned Val = 0;
2441    SDOperand Arg = N->getOperand(i);
2442    if (Arg.getOpcode() != ISD::UNDEF)
2443      Val = cast<ConstantSDNode>(Arg)->getValue();
2444    Mask |= Val;
2445    if (i != 0)
2446      Mask <<= 2;
2447  }
2448
2449  return Mask;
2450}
2451
2452/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
2453/// specifies a 8 element shuffle that can be broken into a pair of
2454/// PSHUFHW and PSHUFLW.
2455static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
2456  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2457
2458  if (N->getNumOperands() != 8)
2459    return false;
2460
2461  // Lower quadword shuffled.
2462  for (unsigned i = 0; i != 4; ++i) {
2463    SDOperand Arg = N->getOperand(i);
2464    if (Arg.getOpcode() == ISD::UNDEF) continue;
2465    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2466    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2467    if (Val >= 4)
2468      return false;
2469  }
2470
2471  // Upper quadword shuffled.
2472  for (unsigned i = 4; i != 8; ++i) {
2473    SDOperand Arg = N->getOperand(i);
2474    if (Arg.getOpcode() == ISD::UNDEF) continue;
2475    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2476    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2477    if (Val < 4 || Val > 7)
2478      return false;
2479  }
2480
2481  return true;
2482}
2483
2484/// CommuteVectorShuffle - Swap vector_shuffle operands as well as
2485/// values in ther permute mask.
2486static SDOperand CommuteVectorShuffle(SDOperand Op, SDOperand &V1,
2487                                      SDOperand &V2, SDOperand &Mask,
2488                                      SelectionDAG &DAG) {
2489  MVT::ValueType VT = Op.getValueType();
2490  MVT::ValueType MaskVT = Mask.getValueType();
2491  MVT::ValueType EltVT = MVT::getVectorElementType(MaskVT);
2492  unsigned NumElems = Mask.getNumOperands();
2493  SmallVector<SDOperand, 8> MaskVec;
2494
2495  for (unsigned i = 0; i != NumElems; ++i) {
2496    SDOperand Arg = Mask.getOperand(i);
2497    if (Arg.getOpcode() == ISD::UNDEF) {
2498      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2499      continue;
2500    }
2501    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2502    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2503    if (Val < NumElems)
2504      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2505    else
2506      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2507  }
2508
2509  std::swap(V1, V2);
2510  Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], NumElems);
2511  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2512}
2513
2514/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
2515/// the two vector operands have swapped position.
2516static
2517SDOperand CommuteVectorShuffleMask(SDOperand Mask, SelectionDAG &DAG) {
2518  MVT::ValueType MaskVT = Mask.getValueType();
2519  MVT::ValueType EltVT = MVT::getVectorElementType(MaskVT);
2520  unsigned NumElems = Mask.getNumOperands();
2521  SmallVector<SDOperand, 8> MaskVec;
2522  for (unsigned i = 0; i != NumElems; ++i) {
2523    SDOperand Arg = Mask.getOperand(i);
2524    if (Arg.getOpcode() == ISD::UNDEF) {
2525      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2526      continue;
2527    }
2528    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2529    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2530    if (Val < NumElems)
2531      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2532    else
2533      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2534  }
2535  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], NumElems);
2536}
2537
2538
2539/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2540/// match movhlps. The lower half elements should come from upper half of
2541/// V1 (and in order), and the upper half elements should come from the upper
2542/// half of V2 (and in order).
2543static bool ShouldXformToMOVHLPS(SDNode *Mask) {
2544  unsigned NumElems = Mask->getNumOperands();
2545  if (NumElems != 4)
2546    return false;
2547  for (unsigned i = 0, e = 2; i != e; ++i)
2548    if (!isUndefOrEqual(Mask->getOperand(i), i+2))
2549      return false;
2550  for (unsigned i = 2; i != 4; ++i)
2551    if (!isUndefOrEqual(Mask->getOperand(i), i+4))
2552      return false;
2553  return true;
2554}
2555
2556/// isScalarLoadToVector - Returns true if the node is a scalar load that
2557/// is promoted to a vector.
2558static inline bool isScalarLoadToVector(SDNode *N) {
2559  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) {
2560    N = N->getOperand(0).Val;
2561    return ISD::isNON_EXTLoad(N);
2562  }
2563  return false;
2564}
2565
2566/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2567/// match movlp{s|d}. The lower half elements should come from lower half of
2568/// V1 (and in order), and the upper half elements should come from the upper
2569/// half of V2 (and in order). And since V1 will become the source of the
2570/// MOVLP, it must be either a vector load or a scalar load to vector.
2571static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
2572  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2573    return false;
2574  // Is V2 is a vector load, don't do this transformation. We will try to use
2575  // load folding shufps op.
2576  if (ISD::isNON_EXTLoad(V2))
2577    return false;
2578
2579  unsigned NumElems = Mask->getNumOperands();
2580  if (NumElems != 2 && NumElems != 4)
2581    return false;
2582  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2583    if (!isUndefOrEqual(Mask->getOperand(i), i))
2584      return false;
2585  for (unsigned i = NumElems/2; i != NumElems; ++i)
2586    if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
2587      return false;
2588  return true;
2589}
2590
2591/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2592/// all the same.
2593static bool isSplatVector(SDNode *N) {
2594  if (N->getOpcode() != ISD::BUILD_VECTOR)
2595    return false;
2596
2597  SDOperand SplatValue = N->getOperand(0);
2598  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2599    if (N->getOperand(i) != SplatValue)
2600      return false;
2601  return true;
2602}
2603
2604/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2605/// to an undef.
2606static bool isUndefShuffle(SDNode *N) {
2607  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2608    return false;
2609
2610  SDOperand V1 = N->getOperand(0);
2611  SDOperand V2 = N->getOperand(1);
2612  SDOperand Mask = N->getOperand(2);
2613  unsigned NumElems = Mask.getNumOperands();
2614  for (unsigned i = 0; i != NumElems; ++i) {
2615    SDOperand Arg = Mask.getOperand(i);
2616    if (Arg.getOpcode() != ISD::UNDEF) {
2617      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2618      if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
2619        return false;
2620      else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
2621        return false;
2622    }
2623  }
2624  return true;
2625}
2626
2627/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2628/// constant +0.0.
2629static inline bool isZeroNode(SDOperand Elt) {
2630  return ((isa<ConstantSDNode>(Elt) &&
2631           cast<ConstantSDNode>(Elt)->getValue() == 0) ||
2632          (isa<ConstantFPSDNode>(Elt) &&
2633           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
2634}
2635
2636/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2637/// to an zero vector.
2638static bool isZeroShuffle(SDNode *N) {
2639  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2640    return false;
2641
2642  SDOperand V1 = N->getOperand(0);
2643  SDOperand V2 = N->getOperand(1);
2644  SDOperand Mask = N->getOperand(2);
2645  unsigned NumElems = Mask.getNumOperands();
2646  for (unsigned i = 0; i != NumElems; ++i) {
2647    SDOperand Arg = Mask.getOperand(i);
2648    if (Arg.getOpcode() == ISD::UNDEF)
2649      continue;
2650
2651    unsigned Idx = cast<ConstantSDNode>(Arg)->getValue();
2652    if (Idx < NumElems) {
2653      unsigned Opc = V1.Val->getOpcode();
2654      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.Val))
2655        continue;
2656      if (Opc != ISD::BUILD_VECTOR ||
2657          !isZeroNode(V1.Val->getOperand(Idx)))
2658        return false;
2659    } else if (Idx >= NumElems) {
2660      unsigned Opc = V2.Val->getOpcode();
2661      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.Val))
2662        continue;
2663      if (Opc != ISD::BUILD_VECTOR ||
2664          !isZeroNode(V2.Val->getOperand(Idx - NumElems)))
2665        return false;
2666    }
2667  }
2668  return true;
2669}
2670
2671/// getZeroVector - Returns a vector of specified type with all zero elements.
2672///
2673static SDOperand getZeroVector(MVT::ValueType VT, SelectionDAG &DAG) {
2674  assert(MVT::isVector(VT) && "Expected a vector type");
2675
2676  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2677  // type.  This ensures they get CSE'd.
2678  SDOperand Cst = DAG.getTargetConstant(0, MVT::i32);
2679  SDOperand Vec;
2680  if (MVT::getSizeInBits(VT) == 64)  // MMX
2681    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst);
2682  else                                              // SSE
2683    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst);
2684  return DAG.getNode(ISD::BIT_CONVERT, VT, Vec);
2685}
2686
2687/// getOnesVector - Returns a vector of specified type with all bits set.
2688///
2689static SDOperand getOnesVector(MVT::ValueType VT, SelectionDAG &DAG) {
2690  assert(MVT::isVector(VT) && "Expected a vector type");
2691
2692  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2693  // type.  This ensures they get CSE'd.
2694  SDOperand Cst = DAG.getTargetConstant(~0U, MVT::i32);
2695  SDOperand Vec;
2696  if (MVT::getSizeInBits(VT) == 64)  // MMX
2697    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst);
2698  else                                              // SSE
2699    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst);
2700  return DAG.getNode(ISD::BIT_CONVERT, VT, Vec);
2701}
2702
2703
2704/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2705/// that point to V2 points to its first element.
2706static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) {
2707  assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
2708
2709  bool Changed = false;
2710  SmallVector<SDOperand, 8> MaskVec;
2711  unsigned NumElems = Mask.getNumOperands();
2712  for (unsigned i = 0; i != NumElems; ++i) {
2713    SDOperand Arg = Mask.getOperand(i);
2714    if (Arg.getOpcode() != ISD::UNDEF) {
2715      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2716      if (Val > NumElems) {
2717        Arg = DAG.getConstant(NumElems, Arg.getValueType());
2718        Changed = true;
2719      }
2720    }
2721    MaskVec.push_back(Arg);
2722  }
2723
2724  if (Changed)
2725    Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
2726                       &MaskVec[0], MaskVec.size());
2727  return Mask;
2728}
2729
2730/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2731/// operation of specified width.
2732static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
2733  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2734  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2735
2736  SmallVector<SDOperand, 8> MaskVec;
2737  MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
2738  for (unsigned i = 1; i != NumElems; ++i)
2739    MaskVec.push_back(DAG.getConstant(i, BaseVT));
2740  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2741}
2742
2743/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
2744/// of specified width.
2745static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
2746  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2747  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2748  SmallVector<SDOperand, 8> MaskVec;
2749  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
2750    MaskVec.push_back(DAG.getConstant(i,            BaseVT));
2751    MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
2752  }
2753  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2754}
2755
2756/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
2757/// of specified width.
2758static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
2759  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2760  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2761  unsigned Half = NumElems/2;
2762  SmallVector<SDOperand, 8> MaskVec;
2763  for (unsigned i = 0; i != Half; ++i) {
2764    MaskVec.push_back(DAG.getConstant(i + Half,            BaseVT));
2765    MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
2766  }
2767  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2768}
2769
2770/// getSwapEltZeroMask - Returns a vector_shuffle mask for a shuffle that swaps
2771/// element #0 of a vector with the specified index, leaving the rest of the
2772/// elements in place.
2773static SDOperand getSwapEltZeroMask(unsigned NumElems, unsigned DestElt,
2774                                   SelectionDAG &DAG) {
2775  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2776  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2777  SmallVector<SDOperand, 8> MaskVec;
2778  // Element #0 of the result gets the elt we are replacing.
2779  MaskVec.push_back(DAG.getConstant(DestElt, BaseVT));
2780  for (unsigned i = 1; i != NumElems; ++i)
2781    MaskVec.push_back(DAG.getConstant(i == DestElt ? 0 : i, BaseVT));
2782  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2783}
2784
2785/// PromoteSplat - Promote a splat of v8i16 or v16i8 to v4i32.
2786///
2787static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG) {
2788  SDOperand V1 = Op.getOperand(0);
2789  SDOperand Mask = Op.getOperand(2);
2790  MVT::ValueType VT = Op.getValueType();
2791  unsigned NumElems = Mask.getNumOperands();
2792  Mask = getUnpacklMask(NumElems, DAG);
2793  while (NumElems != 4) {
2794    V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
2795    NumElems >>= 1;
2796  }
2797  V1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, V1);
2798
2799  Mask = getZeroVector(MVT::v4i32, DAG);
2800  SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32, V1,
2801                                  DAG.getNode(ISD::UNDEF, MVT::v4i32), Mask);
2802  return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
2803}
2804
2805/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
2806/// vector of zero or undef vector.  This produces a shuffle where the low
2807/// element of V2 is swizzled into the zero/undef vector, landing at element
2808/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
2809static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, unsigned Idx,
2810                                             bool isZero, SelectionDAG &DAG) {
2811  MVT::ValueType VT = V2.getValueType();
2812  SDOperand V1 = isZero ? getZeroVector(VT, DAG) : DAG.getNode(ISD::UNDEF, VT);
2813  unsigned NumElems = MVT::getVectorNumElements(V2.getValueType());
2814  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2815  MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
2816  SmallVector<SDOperand, 16> MaskVec;
2817  for (unsigned i = 0; i != NumElems; ++i)
2818    if (i == Idx)  // If this is the insertion idx, put the low elt of V2 here.
2819      MaskVec.push_back(DAG.getConstant(NumElems, EVT));
2820    else
2821      MaskVec.push_back(DAG.getConstant(i, EVT));
2822  SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2823                               &MaskVec[0], MaskVec.size());
2824  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2825}
2826
2827/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
2828///
2829static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros,
2830                                       unsigned NumNonZero, unsigned NumZero,
2831                                       SelectionDAG &DAG, TargetLowering &TLI) {
2832  if (NumNonZero > 8)
2833    return SDOperand();
2834
2835  SDOperand V(0, 0);
2836  bool First = true;
2837  for (unsigned i = 0; i < 16; ++i) {
2838    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
2839    if (ThisIsNonZero && First) {
2840      if (NumZero)
2841        V = getZeroVector(MVT::v8i16, DAG);
2842      else
2843        V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2844      First = false;
2845    }
2846
2847    if ((i & 1) != 0) {
2848      SDOperand ThisElt(0, 0), LastElt(0, 0);
2849      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
2850      if (LastIsNonZero) {
2851        LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
2852      }
2853      if (ThisIsNonZero) {
2854        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
2855        ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
2856                              ThisElt, DAG.getConstant(8, MVT::i8));
2857        if (LastIsNonZero)
2858          ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
2859      } else
2860        ThisElt = LastElt;
2861
2862      if (ThisElt.Val)
2863        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
2864                        DAG.getIntPtrConstant(i/2));
2865    }
2866  }
2867
2868  return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
2869}
2870
2871/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
2872///
2873static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros,
2874                                       unsigned NumNonZero, unsigned NumZero,
2875                                       SelectionDAG &DAG, TargetLowering &TLI) {
2876  if (NumNonZero > 4)
2877    return SDOperand();
2878
2879  SDOperand V(0, 0);
2880  bool First = true;
2881  for (unsigned i = 0; i < 8; ++i) {
2882    bool isNonZero = (NonZeros & (1 << i)) != 0;
2883    if (isNonZero) {
2884      if (First) {
2885        if (NumZero)
2886          V = getZeroVector(MVT::v8i16, DAG);
2887        else
2888          V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2889        First = false;
2890      }
2891      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
2892                      DAG.getIntPtrConstant(i));
2893    }
2894  }
2895
2896  return V;
2897}
2898
2899SDOperand
2900X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2901  // All zero's are handled with pxor, all one's are handled with pcmpeqd.
2902  if (ISD::isBuildVectorAllZeros(Op.Val) || ISD::isBuildVectorAllOnes(Op.Val)) {
2903    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
2904    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
2905    // eliminated on x86-32 hosts.
2906    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
2907      return Op;
2908
2909    if (ISD::isBuildVectorAllOnes(Op.Val))
2910      return getOnesVector(Op.getValueType(), DAG);
2911    return getZeroVector(Op.getValueType(), DAG);
2912  }
2913
2914  MVT::ValueType VT = Op.getValueType();
2915  MVT::ValueType EVT = MVT::getVectorElementType(VT);
2916  unsigned EVTBits = MVT::getSizeInBits(EVT);
2917
2918  unsigned NumElems = Op.getNumOperands();
2919  unsigned NumZero  = 0;
2920  unsigned NumNonZero = 0;
2921  unsigned NonZeros = 0;
2922  bool IsAllConstants = true;
2923  SmallSet<SDOperand, 8> Values;
2924  for (unsigned i = 0; i < NumElems; ++i) {
2925    SDOperand Elt = Op.getOperand(i);
2926    if (Elt.getOpcode() == ISD::UNDEF)
2927      continue;
2928    Values.insert(Elt);
2929    if (Elt.getOpcode() != ISD::Constant &&
2930        Elt.getOpcode() != ISD::ConstantFP)
2931      IsAllConstants = false;
2932    if (isZeroNode(Elt))
2933      NumZero++;
2934    else {
2935      NonZeros |= (1 << i);
2936      NumNonZero++;
2937    }
2938  }
2939
2940  if (NumNonZero == 0) {
2941    // All undef vector. Return an UNDEF.  All zero vectors were handled above.
2942    return DAG.getNode(ISD::UNDEF, VT);
2943  }
2944
2945  // Special case for single non-zero, non-undef, element.
2946  if (NumNonZero == 1 && NumElems <= 4) {
2947    unsigned Idx = CountTrailingZeros_32(NonZeros);
2948    SDOperand Item = Op.getOperand(Idx);
2949
2950    // If this is an insertion of an i64 value on x86-32, and if the top bits of
2951    // the value are obviously zero, truncate the value to i32 and do the
2952    // insertion that way.  Only do this if the value is non-constant or if the
2953    // value is a constant being inserted into element 0.  It is cheaper to do
2954    // a constant pool load than it is to do a movd + shuffle.
2955    if (EVT == MVT::i64 && !Subtarget->is64Bit() &&
2956        (!IsAllConstants || Idx == 0)) {
2957      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
2958        // Handle MMX and SSE both.
2959        MVT::ValueType VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
2960        MVT::ValueType VecElts = VT == MVT::v2i64 ? 4 : 2;
2961
2962        // Truncate the value (which may itself be a constant) to i32, and
2963        // convert it to a vector with movd (S2V+shuffle to zero extend).
2964        Item = DAG.getNode(ISD::TRUNCATE, MVT::i32, Item);
2965        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VecVT, Item);
2966        Item = getShuffleVectorZeroOrUndef(Item, 0, true, DAG);
2967
2968        // Now we have our 32-bit value zero extended in the low element of
2969        // a vector.  If Idx != 0, swizzle it into place.
2970        if (Idx != 0) {
2971          SDOperand Ops[] = {
2972            Item, DAG.getNode(ISD::UNDEF, Item.getValueType()),
2973            getSwapEltZeroMask(VecElts, Idx, DAG)
2974          };
2975          Item = DAG.getNode(ISD::VECTOR_SHUFFLE, VecVT, Ops, 3);
2976        }
2977        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Item);
2978      }
2979    }
2980
2981    // If we have a constant or non-constant insertion into the low element of
2982    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
2983    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
2984    // depending on what the source datatype is.  Because we can only get here
2985    // when NumElems <= 4, this only needs to handle i32/f32/i64/f64.
2986    if (Idx == 0 &&
2987        // Don't do this for i64 values on x86-32.
2988        (EVT != MVT::i64 || Subtarget->is64Bit())) {
2989      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
2990      // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
2991      return getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, DAG);
2992    }
2993
2994    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
2995      return SDOperand();
2996
2997    // Otherwise, if this is a vector with i32 or f32 elements, and the element
2998    // is a non-constant being inserted into an element other than the low one,
2999    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
3000    // movd/movss) to move this into the low element, then shuffle it into
3001    // place.
3002    if (EVTBits == 32) {
3003      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
3004
3005      // Turn it into a shuffle of zero and zero-extended scalar to vector.
3006      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, DAG);
3007      MVT::ValueType MaskVT  = MVT::getIntVectorWithNumElements(NumElems);
3008      MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
3009      SmallVector<SDOperand, 8> MaskVec;
3010      for (unsigned i = 0; i < NumElems; i++)
3011        MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
3012      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3013                                   &MaskVec[0], MaskVec.size());
3014      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
3015                         DAG.getNode(ISD::UNDEF, VT), Mask);
3016    }
3017  }
3018
3019  // Splat is obviously ok. Let legalizer expand it to a shuffle.
3020  if (Values.size() == 1)
3021    return SDOperand();
3022
3023  // A vector full of immediates; various special cases are already
3024  // handled, so this is best done with a single constant-pool load.
3025  if (IsAllConstants)
3026    return SDOperand();
3027
3028  // Let legalizer expand 2-wide build_vectors.
3029  if (EVTBits == 64)
3030    return SDOperand();
3031
3032  // If element VT is < 32 bits, convert it to inserts into a zero vector.
3033  if (EVTBits == 8 && NumElems == 16) {
3034    SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3035                                        *this);
3036    if (V.Val) return V;
3037  }
3038
3039  if (EVTBits == 16 && NumElems == 8) {
3040    SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3041                                        *this);
3042    if (V.Val) return V;
3043  }
3044
3045  // If element VT is == 32 bits, turn it into a number of shuffles.
3046  SmallVector<SDOperand, 8> V;
3047  V.resize(NumElems);
3048  if (NumElems == 4 && NumZero > 0) {
3049    for (unsigned i = 0; i < 4; ++i) {
3050      bool isZero = !(NonZeros & (1 << i));
3051      if (isZero)
3052        V[i] = getZeroVector(VT, DAG);
3053      else
3054        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3055    }
3056
3057    for (unsigned i = 0; i < 2; ++i) {
3058      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3059        default: break;
3060        case 0:
3061          V[i] = V[i*2];  // Must be a zero vector.
3062          break;
3063        case 1:
3064          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
3065                             getMOVLMask(NumElems, DAG));
3066          break;
3067        case 2:
3068          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3069                             getMOVLMask(NumElems, DAG));
3070          break;
3071        case 3:
3072          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3073                             getUnpacklMask(NumElems, DAG));
3074          break;
3075      }
3076    }
3077
3078    // Take advantage of the fact GR32 to VR128 scalar_to_vector (i.e. movd)
3079    // clears the upper bits.
3080    // FIXME: we can do the same for v4f32 case when we know both parts of
3081    // the lower half come from scalar_to_vector (loadf32). We should do
3082    // that in post legalizer dag combiner with target specific hooks.
3083    if (MVT::isInteger(EVT) && (NonZeros & (0x3 << 2)) == 0)
3084      return V[0];
3085    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3086    MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
3087    SmallVector<SDOperand, 8> MaskVec;
3088    bool Reverse = (NonZeros & 0x3) == 2;
3089    for (unsigned i = 0; i < 2; ++i)
3090      if (Reverse)
3091        MaskVec.push_back(DAG.getConstant(1-i, EVT));
3092      else
3093        MaskVec.push_back(DAG.getConstant(i, EVT));
3094    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3095    for (unsigned i = 0; i < 2; ++i)
3096      if (Reverse)
3097        MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
3098      else
3099        MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
3100    SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3101                                     &MaskVec[0], MaskVec.size());
3102    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
3103  }
3104
3105  if (Values.size() > 2) {
3106    // Expand into a number of unpckl*.
3107    // e.g. for v4f32
3108    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3109    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3110    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
3111    SDOperand UnpckMask = getUnpacklMask(NumElems, DAG);
3112    for (unsigned i = 0; i < NumElems; ++i)
3113      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3114    NumElems >>= 1;
3115    while (NumElems != 0) {
3116      for (unsigned i = 0; i < NumElems; ++i)
3117        V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
3118                           UnpckMask);
3119      NumElems >>= 1;
3120    }
3121    return V[0];
3122  }
3123
3124  return SDOperand();
3125}
3126
3127static
3128SDOperand LowerVECTOR_SHUFFLEv8i16(SDOperand V1, SDOperand V2,
3129                                   SDOperand PermMask, SelectionDAG &DAG,
3130                                   TargetLowering &TLI) {
3131  SDOperand NewV;
3132  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(8);
3133  MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
3134  MVT::ValueType PtrVT = TLI.getPointerTy();
3135  SmallVector<SDOperand, 8> MaskElts(PermMask.Val->op_begin(),
3136                                     PermMask.Val->op_end());
3137
3138  // First record which half of which vector the low elements come from.
3139  SmallVector<unsigned, 4> LowQuad(4);
3140  for (unsigned i = 0; i < 4; ++i) {
3141    SDOperand Elt = MaskElts[i];
3142    if (Elt.getOpcode() == ISD::UNDEF)
3143      continue;
3144    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3145    int QuadIdx = EltIdx / 4;
3146    ++LowQuad[QuadIdx];
3147  }
3148  int BestLowQuad = -1;
3149  unsigned MaxQuad = 1;
3150  for (unsigned i = 0; i < 4; ++i) {
3151    if (LowQuad[i] > MaxQuad) {
3152      BestLowQuad = i;
3153      MaxQuad = LowQuad[i];
3154    }
3155  }
3156
3157  // Record which half of which vector the high elements come from.
3158  SmallVector<unsigned, 4> HighQuad(4);
3159  for (unsigned i = 4; i < 8; ++i) {
3160    SDOperand Elt = MaskElts[i];
3161    if (Elt.getOpcode() == ISD::UNDEF)
3162      continue;
3163    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3164    int QuadIdx = EltIdx / 4;
3165    ++HighQuad[QuadIdx];
3166  }
3167  int BestHighQuad = -1;
3168  MaxQuad = 1;
3169  for (unsigned i = 0; i < 4; ++i) {
3170    if (HighQuad[i] > MaxQuad) {
3171      BestHighQuad = i;
3172      MaxQuad = HighQuad[i];
3173    }
3174  }
3175
3176  // If it's possible to sort parts of either half with PSHUF{H|L}W, then do it.
3177  if (BestLowQuad != -1 || BestHighQuad != -1) {
3178    // First sort the 4 chunks in order using shufpd.
3179    SmallVector<SDOperand, 8> MaskVec;
3180    if (BestLowQuad != -1)
3181      MaskVec.push_back(DAG.getConstant(BestLowQuad, MVT::i32));
3182    else
3183      MaskVec.push_back(DAG.getConstant(0, MVT::i32));
3184    if (BestHighQuad != -1)
3185      MaskVec.push_back(DAG.getConstant(BestHighQuad, MVT::i32));
3186    else
3187      MaskVec.push_back(DAG.getConstant(1, MVT::i32));
3188    SDOperand Mask= DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, &MaskVec[0],2);
3189    NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v2i64,
3190                       DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, V1),
3191                       DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, V2), Mask);
3192    NewV = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, NewV);
3193
3194    // Now sort high and low parts separately.
3195    BitVector InOrder(8);
3196    if (BestLowQuad != -1) {
3197      // Sort lower half in order using PSHUFLW.
3198      MaskVec.clear();
3199      bool AnyOutOrder = false;
3200      for (unsigned i = 0; i != 4; ++i) {
3201        SDOperand Elt = MaskElts[i];
3202        if (Elt.getOpcode() == ISD::UNDEF) {
3203          MaskVec.push_back(Elt);
3204          InOrder.set(i);
3205        } else {
3206          unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3207          if (EltIdx != i)
3208            AnyOutOrder = true;
3209          MaskVec.push_back(DAG.getConstant(EltIdx % 4, MaskEVT));
3210          // If this element is in the right place after this shuffle, then
3211          // remember it.
3212          if ((int)(EltIdx / 4) == BestLowQuad)
3213            InOrder.set(i);
3214        }
3215      }
3216      if (AnyOutOrder) {
3217        for (unsigned i = 4; i != 8; ++i)
3218          MaskVec.push_back(DAG.getConstant(i, MaskEVT));
3219        SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3220        NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, NewV, NewV, Mask);
3221      }
3222    }
3223
3224    if (BestHighQuad != -1) {
3225      // Sort high half in order using PSHUFHW if possible.
3226      MaskVec.clear();
3227      for (unsigned i = 0; i != 4; ++i)
3228        MaskVec.push_back(DAG.getConstant(i, MaskEVT));
3229      bool AnyOutOrder = false;
3230      for (unsigned i = 4; i != 8; ++i) {
3231        SDOperand Elt = MaskElts[i];
3232        if (Elt.getOpcode() == ISD::UNDEF) {
3233          MaskVec.push_back(Elt);
3234          InOrder.set(i);
3235        } else {
3236          unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3237          if (EltIdx != i)
3238            AnyOutOrder = true;
3239          MaskVec.push_back(DAG.getConstant((EltIdx % 4) + 4, MaskEVT));
3240          // If this element is in the right place after this shuffle, then
3241          // remember it.
3242          if ((int)(EltIdx / 4) == BestHighQuad)
3243            InOrder.set(i);
3244        }
3245      }
3246      if (AnyOutOrder) {
3247        SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3248        NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, NewV, NewV, Mask);
3249      }
3250    }
3251
3252    // The other elements are put in the right place using pextrw and pinsrw.
3253    for (unsigned i = 0; i != 8; ++i) {
3254      if (InOrder[i])
3255        continue;
3256      SDOperand Elt = MaskElts[i];
3257      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3258      if (EltIdx == i)
3259        continue;
3260      SDOperand ExtOp = (EltIdx < 8)
3261        ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V1,
3262                      DAG.getConstant(EltIdx, PtrVT))
3263        : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V2,
3264                      DAG.getConstant(EltIdx - 8, PtrVT));
3265      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3266                         DAG.getConstant(i, PtrVT));
3267    }
3268    return NewV;
3269  }
3270
3271  // PSHUF{H|L}W are not used. Lower into extracts and inserts but try to use
3272  ///as few as possible.
3273  // First, let's find out how many elements are already in the right order.
3274  unsigned V1InOrder = 0;
3275  unsigned V1FromV1 = 0;
3276  unsigned V2InOrder = 0;
3277  unsigned V2FromV2 = 0;
3278  SmallVector<SDOperand, 8> V1Elts;
3279  SmallVector<SDOperand, 8> V2Elts;
3280  for (unsigned i = 0; i < 8; ++i) {
3281    SDOperand Elt = MaskElts[i];
3282    if (Elt.getOpcode() == ISD::UNDEF) {
3283      V1Elts.push_back(Elt);
3284      V2Elts.push_back(Elt);
3285      ++V1InOrder;
3286      ++V2InOrder;
3287      continue;
3288    }
3289    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3290    if (EltIdx == i) {
3291      V1Elts.push_back(Elt);
3292      V2Elts.push_back(DAG.getConstant(i+8, MaskEVT));
3293      ++V1InOrder;
3294    } else if (EltIdx == i+8) {
3295      V1Elts.push_back(Elt);
3296      V2Elts.push_back(DAG.getConstant(i, MaskEVT));
3297      ++V2InOrder;
3298    } else if (EltIdx < 8) {
3299      V1Elts.push_back(Elt);
3300      ++V1FromV1;
3301    } else {
3302      V2Elts.push_back(DAG.getConstant(EltIdx-8, MaskEVT));
3303      ++V2FromV2;
3304    }
3305  }
3306
3307  if (V2InOrder > V1InOrder) {
3308    PermMask = CommuteVectorShuffleMask(PermMask, DAG);
3309    std::swap(V1, V2);
3310    std::swap(V1Elts, V2Elts);
3311    std::swap(V1FromV1, V2FromV2);
3312  }
3313
3314  if ((V1FromV1 + V1InOrder) != 8) {
3315    // Some elements are from V2.
3316    if (V1FromV1) {
3317      // If there are elements that are from V1 but out of place,
3318      // then first sort them in place
3319      SmallVector<SDOperand, 8> MaskVec;
3320      for (unsigned i = 0; i < 8; ++i) {
3321        SDOperand Elt = V1Elts[i];
3322        if (Elt.getOpcode() == ISD::UNDEF) {
3323          MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3324          continue;
3325        }
3326        unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3327        if (EltIdx >= 8)
3328          MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3329        else
3330          MaskVec.push_back(DAG.getConstant(EltIdx, MaskEVT));
3331      }
3332      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3333      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, V1, V1, Mask);
3334    }
3335
3336    NewV = V1;
3337    for (unsigned i = 0; i < 8; ++i) {
3338      SDOperand Elt = V1Elts[i];
3339      if (Elt.getOpcode() == ISD::UNDEF)
3340        continue;
3341      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3342      if (EltIdx < 8)
3343        continue;
3344      SDOperand ExtOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V2,
3345                                    DAG.getConstant(EltIdx - 8, PtrVT));
3346      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3347                         DAG.getConstant(i, PtrVT));
3348    }
3349    return NewV;
3350  } else {
3351    // All elements are from V1.
3352    NewV = V1;
3353    for (unsigned i = 0; i < 8; ++i) {
3354      SDOperand Elt = V1Elts[i];
3355      if (Elt.getOpcode() == ISD::UNDEF)
3356        continue;
3357      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3358      SDOperand ExtOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V1,
3359                                    DAG.getConstant(EltIdx, PtrVT));
3360      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3361                         DAG.getConstant(i, PtrVT));
3362    }
3363    return NewV;
3364  }
3365}
3366
3367/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
3368/// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
3369/// done when every pair / quad of shuffle mask elements point to elements in
3370/// the right sequence. e.g.
3371/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
3372static
3373SDOperand RewriteAsNarrowerShuffle(SDOperand V1, SDOperand V2,
3374                                MVT::ValueType VT,
3375                                SDOperand PermMask, SelectionDAG &DAG,
3376                                TargetLowering &TLI) {
3377  unsigned NumElems = PermMask.getNumOperands();
3378  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
3379  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
3380  MVT::ValueType NewVT = MaskVT;
3381  switch (VT) {
3382  case MVT::v4f32: NewVT = MVT::v2f64; break;
3383  case MVT::v4i32: NewVT = MVT::v2i64; break;
3384  case MVT::v8i16: NewVT = MVT::v4i32; break;
3385  case MVT::v16i8: NewVT = MVT::v4i32; break;
3386  default: assert(false && "Unexpected!");
3387  }
3388
3389  if (NewWidth == 2) {
3390    if (MVT::isInteger(VT))
3391      NewVT = MVT::v2i64;
3392    else
3393      NewVT = MVT::v2f64;
3394  }
3395  unsigned Scale = NumElems / NewWidth;
3396  SmallVector<SDOperand, 8> MaskVec;
3397  for (unsigned i = 0; i < NumElems; i += Scale) {
3398    unsigned StartIdx = ~0U;
3399    for (unsigned j = 0; j < Scale; ++j) {
3400      SDOperand Elt = PermMask.getOperand(i+j);
3401      if (Elt.getOpcode() == ISD::UNDEF)
3402        continue;
3403      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3404      if (StartIdx == ~0U)
3405        StartIdx = EltIdx - (EltIdx % Scale);
3406      if (EltIdx != StartIdx + j)
3407        return SDOperand();
3408    }
3409    if (StartIdx == ~0U)
3410      MaskVec.push_back(DAG.getNode(ISD::UNDEF, MVT::i32));
3411    else
3412      MaskVec.push_back(DAG.getConstant(StartIdx / Scale, MVT::i32));
3413  }
3414
3415  V1 = DAG.getNode(ISD::BIT_CONVERT, NewVT, V1);
3416  V2 = DAG.getNode(ISD::BIT_CONVERT, NewVT, V2);
3417  return DAG.getNode(ISD::VECTOR_SHUFFLE, NewVT, V1, V2,
3418                     DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3419                                 &MaskVec[0], MaskVec.size()));
3420}
3421
3422SDOperand
3423X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
3424  SDOperand V1 = Op.getOperand(0);
3425  SDOperand V2 = Op.getOperand(1);
3426  SDOperand PermMask = Op.getOperand(2);
3427  MVT::ValueType VT = Op.getValueType();
3428  unsigned NumElems = PermMask.getNumOperands();
3429  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
3430  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
3431  bool V1IsSplat = false;
3432  bool V2IsSplat = false;
3433
3434  if (isUndefShuffle(Op.Val))
3435    return DAG.getNode(ISD::UNDEF, VT);
3436
3437  if (isZeroShuffle(Op.Val))
3438    return getZeroVector(VT, DAG);
3439
3440  if (isIdentityMask(PermMask.Val))
3441    return V1;
3442  else if (isIdentityMask(PermMask.Val, true))
3443    return V2;
3444
3445  if (isSplatMask(PermMask.Val)) {
3446    if (NumElems <= 4) return Op;
3447    // Promote it to a v4i32 splat.
3448    return PromoteSplat(Op, DAG);
3449  }
3450
3451  // If the shuffle can be profitably rewritten as a narrower shuffle, then
3452  // do it!
3453  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
3454    SDOperand NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask, DAG, *this);
3455    if (NewOp.Val)
3456      return DAG.getNode(ISD::BIT_CONVERT, VT, LowerVECTOR_SHUFFLE(NewOp, DAG));
3457  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
3458    // FIXME: Figure out a cleaner way to do this.
3459    // Try to make use of movq to zero out the top part.
3460    if (ISD::isBuildVectorAllZeros(V2.Val)) {
3461      SDOperand NewOp = RewriteAsNarrowerShuffle(V1, V2, VT, PermMask, DAG, *this);
3462      if (NewOp.Val) {
3463        SDOperand NewV1 = NewOp.getOperand(0);
3464        SDOperand NewV2 = NewOp.getOperand(1);
3465        SDOperand NewMask = NewOp.getOperand(2);
3466        if (isCommutedMOVL(NewMask.Val, true, false)) {
3467          NewOp = CommuteVectorShuffle(NewOp, NewV1, NewV2, NewMask, DAG);
3468          NewOp = DAG.getNode(ISD::VECTOR_SHUFFLE, NewOp.getValueType(),
3469                              NewV1, NewV2, getMOVLMask(2, DAG));
3470          return DAG.getNode(ISD::BIT_CONVERT, VT, LowerVECTOR_SHUFFLE(NewOp, DAG));
3471        }
3472      }
3473    } else if (ISD::isBuildVectorAllZeros(V1.Val)) {
3474      SDOperand NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask, DAG, *this);
3475      if (NewOp.Val && X86::isMOVLMask(NewOp.getOperand(2).Val))
3476        return DAG.getNode(ISD::BIT_CONVERT, VT, LowerVECTOR_SHUFFLE(NewOp, DAG));
3477    }
3478  }
3479
3480  if (X86::isMOVLMask(PermMask.Val))
3481    return (V1IsUndef) ? V2 : Op;
3482
3483  if (X86::isMOVSHDUPMask(PermMask.Val) ||
3484      X86::isMOVSLDUPMask(PermMask.Val) ||
3485      X86::isMOVHLPSMask(PermMask.Val) ||
3486      X86::isMOVHPMask(PermMask.Val) ||
3487      X86::isMOVLPMask(PermMask.Val))
3488    return Op;
3489
3490  if (ShouldXformToMOVHLPS(PermMask.Val) ||
3491      ShouldXformToMOVLP(V1.Val, V2.Val, PermMask.Val))
3492    return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3493
3494  bool Commuted = false;
3495  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
3496  // 1,1,1,1 -> v8i16 though.
3497  V1IsSplat = isSplatVector(V1.Val);
3498  V2IsSplat = isSplatVector(V2.Val);
3499
3500  // Canonicalize the splat or undef, if present, to be on the RHS.
3501  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
3502    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3503    std::swap(V1IsSplat, V2IsSplat);
3504    std::swap(V1IsUndef, V2IsUndef);
3505    Commuted = true;
3506  }
3507
3508  // FIXME: Figure out a cleaner way to do this.
3509  if (isCommutedMOVL(PermMask.Val, V2IsSplat, V2IsUndef)) {
3510    if (V2IsUndef) return V1;
3511    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3512    if (V2IsSplat) {
3513      // V2 is a splat, so the mask may be malformed. That is, it may point
3514      // to any V2 element. The instruction selectior won't like this. Get
3515      // a corrected mask and commute to form a proper MOVS{S|D}.
3516      SDOperand NewMask = getMOVLMask(NumElems, DAG);
3517      if (NewMask.Val != PermMask.Val)
3518        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3519    }
3520    return Op;
3521  }
3522
3523  if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
3524      X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
3525      X86::isUNPCKLMask(PermMask.Val) ||
3526      X86::isUNPCKHMask(PermMask.Val))
3527    return Op;
3528
3529  if (V2IsSplat) {
3530    // Normalize mask so all entries that point to V2 points to its first
3531    // element then try to match unpck{h|l} again. If match, return a
3532    // new vector_shuffle with the corrected mask.
3533    SDOperand NewMask = NormalizeMask(PermMask, DAG);
3534    if (NewMask.Val != PermMask.Val) {
3535      if (X86::isUNPCKLMask(PermMask.Val, true)) {
3536        SDOperand NewMask = getUnpacklMask(NumElems, DAG);
3537        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3538      } else if (X86::isUNPCKHMask(PermMask.Val, true)) {
3539        SDOperand NewMask = getUnpackhMask(NumElems, DAG);
3540        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3541      }
3542    }
3543  }
3544
3545  // Normalize the node to match x86 shuffle ops if needed
3546  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.Val))
3547      Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3548
3549  if (Commuted) {
3550    // Commute is back and try unpck* again.
3551    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3552    if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
3553        X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
3554        X86::isUNPCKLMask(PermMask.Val) ||
3555        X86::isUNPCKHMask(PermMask.Val))
3556      return Op;
3557  }
3558
3559  // If VT is integer, try PSHUF* first, then SHUFP*.
3560  if (MVT::isInteger(VT)) {
3561    // MMX doesn't have PSHUFD; it does have PSHUFW. While it's theoretically
3562    // possible to shuffle a v2i32 using PSHUFW, that's not yet implemented.
3563    if (((MVT::getSizeInBits(VT) != 64 || NumElems == 4) &&
3564         X86::isPSHUFDMask(PermMask.Val)) ||
3565        X86::isPSHUFHWMask(PermMask.Val) ||
3566        X86::isPSHUFLWMask(PermMask.Val)) {
3567      if (V2.getOpcode() != ISD::UNDEF)
3568        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
3569                           DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
3570      return Op;
3571    }
3572
3573    if (X86::isSHUFPMask(PermMask.Val) &&
3574        MVT::getSizeInBits(VT) != 64)    // Don't do this for MMX.
3575      return Op;
3576  } else {
3577    // Floating point cases in the other order.
3578    if (X86::isSHUFPMask(PermMask.Val))
3579      return Op;
3580    if (X86::isPSHUFDMask(PermMask.Val) ||
3581        X86::isPSHUFHWMask(PermMask.Val) ||
3582        X86::isPSHUFLWMask(PermMask.Val)) {
3583      if (V2.getOpcode() != ISD::UNDEF)
3584        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
3585                           DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
3586      return Op;
3587    }
3588  }
3589
3590  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
3591  if (VT == MVT::v8i16) {
3592    SDOperand NewOp = LowerVECTOR_SHUFFLEv8i16(V1, V2, PermMask, DAG, *this);
3593    if (NewOp.Val)
3594      return NewOp;
3595  }
3596
3597  // Handle all 4 wide cases with a number of shuffles.
3598  if (NumElems == 4 && MVT::getSizeInBits(VT) != 64) {
3599    // Don't do this for MMX.
3600    MVT::ValueType MaskVT = PermMask.getValueType();
3601    MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
3602    SmallVector<std::pair<int, int>, 8> Locs;
3603    Locs.reserve(NumElems);
3604    SmallVector<SDOperand, 8> Mask1(NumElems,
3605                                    DAG.getNode(ISD::UNDEF, MaskEVT));
3606    SmallVector<SDOperand, 8> Mask2(NumElems,
3607                                    DAG.getNode(ISD::UNDEF, MaskEVT));
3608    unsigned NumHi = 0;
3609    unsigned NumLo = 0;
3610    // If no more than two elements come from either vector. This can be
3611    // implemented with two shuffles. First shuffle gather the elements.
3612    // The second shuffle, which takes the first shuffle as both of its
3613    // vector operands, put the elements into the right order.
3614    for (unsigned i = 0; i != NumElems; ++i) {
3615      SDOperand Elt = PermMask.getOperand(i);
3616      if (Elt.getOpcode() == ISD::UNDEF) {
3617        Locs[i] = std::make_pair(-1, -1);
3618      } else {
3619        unsigned Val = cast<ConstantSDNode>(Elt)->getValue();
3620        if (Val < NumElems) {
3621          Locs[i] = std::make_pair(0, NumLo);
3622          Mask1[NumLo] = Elt;
3623          NumLo++;
3624        } else {
3625          Locs[i] = std::make_pair(1, NumHi);
3626          if (2+NumHi < NumElems)
3627            Mask1[2+NumHi] = Elt;
3628          NumHi++;
3629        }
3630      }
3631    }
3632    if (NumLo <= 2 && NumHi <= 2) {
3633      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3634                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3635                                   &Mask1[0], Mask1.size()));
3636      for (unsigned i = 0; i != NumElems; ++i) {
3637        if (Locs[i].first == -1)
3638          continue;
3639        else {
3640          unsigned Idx = (i < NumElems/2) ? 0 : NumElems;
3641          Idx += Locs[i].first * (NumElems/2) + Locs[i].second;
3642          Mask2[i] = DAG.getConstant(Idx, MaskEVT);
3643        }
3644      }
3645
3646      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
3647                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3648                                     &Mask2[0], Mask2.size()));
3649    }
3650
3651    // Break it into (shuffle shuffle_hi, shuffle_lo).
3652    Locs.clear();
3653    SmallVector<SDOperand,8> LoMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3654    SmallVector<SDOperand,8> HiMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3655    SmallVector<SDOperand,8> *MaskPtr = &LoMask;
3656    unsigned MaskIdx = 0;
3657    unsigned LoIdx = 0;
3658    unsigned HiIdx = NumElems/2;
3659    for (unsigned i = 0; i != NumElems; ++i) {
3660      if (i == NumElems/2) {
3661        MaskPtr = &HiMask;
3662        MaskIdx = 1;
3663        LoIdx = 0;
3664        HiIdx = NumElems/2;
3665      }
3666      SDOperand Elt = PermMask.getOperand(i);
3667      if (Elt.getOpcode() == ISD::UNDEF) {
3668        Locs[i] = std::make_pair(-1, -1);
3669      } else if (cast<ConstantSDNode>(Elt)->getValue() < NumElems) {
3670        Locs[i] = std::make_pair(MaskIdx, LoIdx);
3671        (*MaskPtr)[LoIdx] = Elt;
3672        LoIdx++;
3673      } else {
3674        Locs[i] = std::make_pair(MaskIdx, HiIdx);
3675        (*MaskPtr)[HiIdx] = Elt;
3676        HiIdx++;
3677      }
3678    }
3679
3680    SDOperand LoShuffle =
3681      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3682                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3683                              &LoMask[0], LoMask.size()));
3684    SDOperand HiShuffle =
3685      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3686                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3687                              &HiMask[0], HiMask.size()));
3688    SmallVector<SDOperand, 8> MaskOps;
3689    for (unsigned i = 0; i != NumElems; ++i) {
3690      if (Locs[i].first == -1) {
3691        MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3692      } else {
3693        unsigned Idx = Locs[i].first * NumElems + Locs[i].second;
3694        MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
3695      }
3696    }
3697    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
3698                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3699                                   &MaskOps[0], MaskOps.size()));
3700  }
3701
3702  return SDOperand();
3703}
3704
3705SDOperand
3706X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDOperand Op,
3707                                                SelectionDAG &DAG) {
3708  MVT::ValueType VT = Op.getValueType();
3709  if (MVT::getSizeInBits(VT) == 8) {
3710    SDOperand Extract = DAG.getNode(X86ISD::PEXTRB, MVT::i32,
3711                                    Op.getOperand(0), Op.getOperand(1));
3712    SDOperand Assert  = DAG.getNode(ISD::AssertZext, MVT::i32, Extract,
3713                                    DAG.getValueType(VT));
3714    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
3715  } else if (MVT::getSizeInBits(VT) == 16) {
3716    SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, MVT::i32,
3717                                    Op.getOperand(0), Op.getOperand(1));
3718    SDOperand Assert  = DAG.getNode(ISD::AssertZext, MVT::i32, Extract,
3719                                    DAG.getValueType(VT));
3720    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
3721  }
3722  return SDOperand();
3723}
3724
3725
3726SDOperand
3727X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3728  if (!isa<ConstantSDNode>(Op.getOperand(1)))
3729    return SDOperand();
3730
3731  if (Subtarget->hasSSE41())
3732    return LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
3733
3734  MVT::ValueType VT = Op.getValueType();
3735  // TODO: handle v16i8.
3736  if (MVT::getSizeInBits(VT) == 16) {
3737    SDOperand Vec = Op.getOperand(0);
3738    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3739    if (Idx == 0)
3740      return DAG.getNode(ISD::TRUNCATE, MVT::i16,
3741                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32,
3742                                 DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, Vec),
3743                                     Op.getOperand(1)));
3744    // Transform it so it match pextrw which produces a 32-bit result.
3745    MVT::ValueType EVT = (MVT::ValueType)(VT+1);
3746    SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
3747                                    Op.getOperand(0), Op.getOperand(1));
3748    SDOperand Assert  = DAG.getNode(ISD::AssertZext, EVT, Extract,
3749                                    DAG.getValueType(VT));
3750    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
3751  } else if (MVT::getSizeInBits(VT) == 32) {
3752    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3753    if (Idx == 0)
3754      return Op;
3755    // SHUFPS the element to the lowest double word, then movss.
3756    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3757    SmallVector<SDOperand, 8> IdxVec;
3758    IdxVec.
3759      push_back(DAG.getConstant(Idx, MVT::getVectorElementType(MaskVT)));
3760    IdxVec.
3761      push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3762    IdxVec.
3763      push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3764    IdxVec.
3765      push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3766    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3767                                 &IdxVec[0], IdxVec.size());
3768    SDOperand Vec = Op.getOperand(0);
3769    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3770                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3771    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3772                       DAG.getIntPtrConstant(0));
3773  } else if (MVT::getSizeInBits(VT) == 64) {
3774    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
3775    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
3776    //        to match extract_elt for f64.
3777    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3778    if (Idx == 0)
3779      return Op;
3780
3781    // UNPCKHPD the element to the lowest double word, then movsd.
3782    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
3783    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
3784    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3785    SmallVector<SDOperand, 8> IdxVec;
3786    IdxVec.push_back(DAG.getConstant(1, MVT::getVectorElementType(MaskVT)));
3787    IdxVec.
3788      push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3789    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3790                                 &IdxVec[0], IdxVec.size());
3791    SDOperand Vec = Op.getOperand(0);
3792    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3793                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3794    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3795                       DAG.getIntPtrConstant(0));
3796  }
3797
3798  return SDOperand();
3799}
3800
3801SDOperand
3802X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDOperand Op, SelectionDAG &DAG){
3803  MVT::ValueType VT = Op.getValueType();
3804  MVT::ValueType EVT = MVT::getVectorElementType(VT);
3805
3806  SDOperand N0 = Op.getOperand(0);
3807  SDOperand N1 = Op.getOperand(1);
3808  SDOperand N2 = Op.getOperand(2);
3809
3810  if ((MVT::getSizeInBits(EVT) == 8) || (MVT::getSizeInBits(EVT) == 16)) {
3811    unsigned Opc = (MVT::getSizeInBits(EVT) == 8) ? X86ISD::PINSRB
3812                                                  : X86ISD::PINSRW;
3813    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
3814    // argument.
3815    if (N1.getValueType() != MVT::i32)
3816      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
3817    if (N2.getValueType() != MVT::i32)
3818      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getValue());
3819    return DAG.getNode(Opc, VT, N0, N1, N2);
3820  } else if (EVT == MVT::f32) {
3821    // Bits [7:6] of the constant are the source select.  This will always be
3822    //  zero here.  The DAG Combiner may combine an extract_elt index into these
3823    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
3824    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
3825    // Bits [5:4] of the constant are the destination select.  This is the
3826    //  value of the incoming immediate.
3827    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
3828    //   combine either bitwise AND or insert of float 0.0 to set these bits.
3829    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getValue() << 4);
3830    return DAG.getNode(X86ISD::INSERTPS, VT, N0, N1, N2);
3831  }
3832  return SDOperand();
3833}
3834
3835SDOperand
3836X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3837  MVT::ValueType VT = Op.getValueType();
3838  MVT::ValueType EVT = MVT::getVectorElementType(VT);
3839
3840  if (Subtarget->hasSSE41())
3841    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
3842
3843  if (EVT == MVT::i8)
3844    return SDOperand();
3845
3846  SDOperand N0 = Op.getOperand(0);
3847  SDOperand N1 = Op.getOperand(1);
3848  SDOperand N2 = Op.getOperand(2);
3849
3850  if (MVT::getSizeInBits(EVT) == 16) {
3851    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
3852    // as its second argument.
3853    if (N1.getValueType() != MVT::i32)
3854      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
3855    if (N2.getValueType() != MVT::i32)
3856      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getValue());
3857    return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
3858  }
3859  return SDOperand();
3860}
3861
3862SDOperand
3863X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
3864  SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
3865  MVT::ValueType VT = MVT::v2i32;
3866  switch (Op.getValueType()) {
3867  default: break;
3868  case MVT::v16i8:
3869  case MVT::v8i16:
3870    VT = MVT::v4i32;
3871    break;
3872  }
3873  return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(),
3874                     DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, AnyExt));
3875}
3876
3877// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
3878// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
3879// one of the above mentioned nodes. It has to be wrapped because otherwise
3880// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
3881// be used to form addressing mode. These wrapped nodes will be selected
3882// into MOV32ri.
3883SDOperand
3884X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
3885  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3886  SDOperand Result = DAG.getTargetConstantPool(CP->getConstVal(),
3887                                               getPointerTy(),
3888                                               CP->getAlignment());
3889  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3890  // With PIC, the address is actually $g + Offset.
3891  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3892      !Subtarget->isPICStyleRIPRel()) {
3893    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3894                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3895                         Result);
3896  }
3897
3898  return Result;
3899}
3900
3901SDOperand
3902X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
3903  GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3904  SDOperand Result = DAG.getTargetGlobalAddress(GV, getPointerTy());
3905  // If it's a debug information descriptor, don't mess with it.
3906  if (DAG.isVerifiedDebugInfoDesc(Op))
3907    return Result;
3908  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3909  // With PIC, the address is actually $g + Offset.
3910  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3911      !Subtarget->isPICStyleRIPRel()) {
3912    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3913                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3914                         Result);
3915  }
3916
3917  // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
3918  // load the value at address GV, not the value of GV itself. This means that
3919  // the GlobalAddress must be in the base or index register of the address, not
3920  // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
3921  // The same applies for external symbols during PIC codegen
3922  if (Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false))
3923    Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result,
3924                         PseudoSourceValue::getGOT(), 0);
3925
3926  return Result;
3927}
3928
3929// Lower ISD::GlobalTLSAddress using the "general dynamic" model
3930static SDOperand
3931LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
3932                              const MVT::ValueType PtrVT) {
3933  SDOperand InFlag;
3934  SDOperand Chain = DAG.getCopyToReg(DAG.getEntryNode(), X86::EBX,
3935                                     DAG.getNode(X86ISD::GlobalBaseReg,
3936                                                 PtrVT), InFlag);
3937  InFlag = Chain.getValue(1);
3938
3939  // emit leal symbol@TLSGD(,%ebx,1), %eax
3940  SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
3941  SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
3942                                             GA->getValueType(0),
3943                                             GA->getOffset());
3944  SDOperand Ops[] = { Chain,  TGA, InFlag };
3945  SDOperand Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 3);
3946  InFlag = Result.getValue(2);
3947  Chain = Result.getValue(1);
3948
3949  // call ___tls_get_addr. This function receives its argument in
3950  // the register EAX.
3951  Chain = DAG.getCopyToReg(Chain, X86::EAX, Result, InFlag);
3952  InFlag = Chain.getValue(1);
3953
3954  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
3955  SDOperand Ops1[] = { Chain,
3956                      DAG.getTargetExternalSymbol("___tls_get_addr",
3957                                                  PtrVT),
3958                      DAG.getRegister(X86::EAX, PtrVT),
3959                      DAG.getRegister(X86::EBX, PtrVT),
3960                      InFlag };
3961  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 5);
3962  InFlag = Chain.getValue(1);
3963
3964  return DAG.getCopyFromReg(Chain, X86::EAX, PtrVT, InFlag);
3965}
3966
3967// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
3968// "local exec" model.
3969static SDOperand
3970LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
3971                         const MVT::ValueType PtrVT) {
3972  // Get the Thread Pointer
3973  SDOperand ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER, PtrVT);
3974  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
3975  // exec)
3976  SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
3977                                             GA->getValueType(0),
3978                                             GA->getOffset());
3979  SDOperand Offset = DAG.getNode(X86ISD::Wrapper, PtrVT, TGA);
3980
3981  if (GA->getGlobal()->isDeclaration()) // initial exec TLS model
3982    Offset = DAG.getLoad(PtrVT, DAG.getEntryNode(), Offset,
3983                         PseudoSourceValue::getGOT(), 0);
3984
3985  // The address of the thread local variable is the add of the thread
3986  // pointer with the offset of the variable.
3987  return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset);
3988}
3989
3990SDOperand
3991X86TargetLowering::LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) {
3992  // TODO: implement the "local dynamic" model
3993  // TODO: implement the "initial exec"model for pic executables
3994  assert(!Subtarget->is64Bit() && Subtarget->isTargetELF() &&
3995         "TLS not implemented for non-ELF and 64-bit targets");
3996  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3997  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
3998  // otherwise use the "Local Exec"TLS Model
3999  if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
4000    return LowerToTLSGeneralDynamicModel(GA, DAG, getPointerTy());
4001  else
4002    return LowerToTLSExecModel(GA, DAG, getPointerTy());
4003}
4004
4005SDOperand
4006X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) {
4007  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
4008  SDOperand Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
4009  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4010  // With PIC, the address is actually $g + Offset.
4011  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4012      !Subtarget->isPICStyleRIPRel()) {
4013    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4014                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4015                         Result);
4016  }
4017
4018  return Result;
4019}
4020
4021SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
4022  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
4023  SDOperand Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
4024  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4025  // With PIC, the address is actually $g + Offset.
4026  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4027      !Subtarget->isPICStyleRIPRel()) {
4028    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4029                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4030                         Result);
4031  }
4032
4033  return Result;
4034}
4035
4036/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
4037/// take a 2 x i32 value to shift plus a shift amount.
4038SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) {
4039  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4040  MVT::ValueType VT = Op.getValueType();
4041  unsigned VTBits = MVT::getSizeInBits(VT);
4042  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
4043  SDOperand ShOpLo = Op.getOperand(0);
4044  SDOperand ShOpHi = Op.getOperand(1);
4045  SDOperand ShAmt  = Op.getOperand(2);
4046  SDOperand Tmp1 = isSRA ?
4047    DAG.getNode(ISD::SRA, VT, ShOpHi, DAG.getConstant(VTBits - 1, MVT::i8)) :
4048    DAG.getConstant(0, VT);
4049
4050  SDOperand Tmp2, Tmp3;
4051  if (Op.getOpcode() == ISD::SHL_PARTS) {
4052    Tmp2 = DAG.getNode(X86ISD::SHLD, VT, ShOpHi, ShOpLo, ShAmt);
4053    Tmp3 = DAG.getNode(ISD::SHL, VT, ShOpLo, ShAmt);
4054  } else {
4055    Tmp2 = DAG.getNode(X86ISD::SHRD, VT, ShOpLo, ShOpHi, ShAmt);
4056    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, VT, ShOpHi, ShAmt);
4057  }
4058
4059  const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
4060  SDOperand AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
4061                                  DAG.getConstant(VTBits, MVT::i8));
4062  SDOperand Cond = DAG.getNode(X86ISD::CMP, VT,
4063                               AndNode, DAG.getConstant(0, MVT::i8));
4064
4065  SDOperand Hi, Lo;
4066  SDOperand CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4067  VTs = DAG.getNodeValueTypes(VT, MVT::Flag);
4068  SmallVector<SDOperand, 4> Ops;
4069  if (Op.getOpcode() == ISD::SHL_PARTS) {
4070    Ops.push_back(Tmp2);
4071    Ops.push_back(Tmp3);
4072    Ops.push_back(CC);
4073    Ops.push_back(Cond);
4074    Hi = DAG.getNode(X86ISD::CMOV, VT, &Ops[0], Ops.size());
4075
4076    Ops.clear();
4077    Ops.push_back(Tmp3);
4078    Ops.push_back(Tmp1);
4079    Ops.push_back(CC);
4080    Ops.push_back(Cond);
4081    Lo = DAG.getNode(X86ISD::CMOV, VT, &Ops[0], Ops.size());
4082  } else {
4083    Ops.push_back(Tmp2);
4084    Ops.push_back(Tmp3);
4085    Ops.push_back(CC);
4086    Ops.push_back(Cond);
4087    Lo = DAG.getNode(X86ISD::CMOV, VT, &Ops[0], Ops.size());
4088
4089    Ops.clear();
4090    Ops.push_back(Tmp3);
4091    Ops.push_back(Tmp1);
4092    Ops.push_back(CC);
4093    Ops.push_back(Cond);
4094    Hi = DAG.getNode(X86ISD::CMOV, VT, &Ops[0], Ops.size());
4095  }
4096
4097  VTs = DAG.getNodeValueTypes(VT, VT);
4098  Ops.clear();
4099  Ops.push_back(Lo);
4100  Ops.push_back(Hi);
4101  return DAG.getNode(ISD::MERGE_VALUES, VTs, 2, &Ops[0], Ops.size());
4102}
4103
4104SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
4105  MVT::ValueType SrcVT = Op.getOperand(0).getValueType();
4106  assert(SrcVT <= MVT::i64 && SrcVT >= MVT::i16 &&
4107         "Unknown SINT_TO_FP to lower!");
4108
4109  // These are really Legal; caller falls through into that case.
4110  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
4111    return SDOperand();
4112  if (SrcVT == MVT::i64 && Op.getValueType() != MVT::f80 &&
4113      Subtarget->is64Bit())
4114    return SDOperand();
4115
4116  unsigned Size = MVT::getSizeInBits(SrcVT)/8;
4117  MachineFunction &MF = DAG.getMachineFunction();
4118  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
4119  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4120  SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
4121                                 StackSlot,
4122                                 PseudoSourceValue::getFixedStack(),
4123                                 SSFI);
4124
4125  // Build the FILD
4126  SDVTList Tys;
4127  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
4128  if (useSSE)
4129    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
4130  else
4131    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
4132  SmallVector<SDOperand, 8> Ops;
4133  Ops.push_back(Chain);
4134  Ops.push_back(StackSlot);
4135  Ops.push_back(DAG.getValueType(SrcVT));
4136  SDOperand Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD,
4137                                 Tys, &Ops[0], Ops.size());
4138
4139  if (useSSE) {
4140    Chain = Result.getValue(1);
4141    SDOperand InFlag = Result.getValue(2);
4142
4143    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
4144    // shouldn't be necessary except that RFP cannot be live across
4145    // multiple blocks. When stackifier is fixed, they can be uncoupled.
4146    MachineFunction &MF = DAG.getMachineFunction();
4147    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
4148    SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4149    Tys = DAG.getVTList(MVT::Other);
4150    SmallVector<SDOperand, 8> Ops;
4151    Ops.push_back(Chain);
4152    Ops.push_back(Result);
4153    Ops.push_back(StackSlot);
4154    Ops.push_back(DAG.getValueType(Op.getValueType()));
4155    Ops.push_back(InFlag);
4156    Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
4157    Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot,
4158                         PseudoSourceValue::getFixedStack(), SSFI);
4159  }
4160
4161  return Result;
4162}
4163
4164std::pair<SDOperand,SDOperand> X86TargetLowering::
4165FP_TO_SINTHelper(SDOperand Op, SelectionDAG &DAG) {
4166  assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 &&
4167         "Unknown FP_TO_SINT to lower!");
4168
4169  // These are really Legal.
4170  if (Op.getValueType() == MVT::i32 &&
4171      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
4172    return std::make_pair(SDOperand(), SDOperand());
4173  if (Subtarget->is64Bit() &&
4174      Op.getValueType() == MVT::i64 &&
4175      Op.getOperand(0).getValueType() != MVT::f80)
4176    return std::make_pair(SDOperand(), SDOperand());
4177
4178  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
4179  // stack slot.
4180  MachineFunction &MF = DAG.getMachineFunction();
4181  unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8;
4182  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
4183  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4184  unsigned Opc;
4185  switch (Op.getValueType()) {
4186  default: assert(0 && "Invalid FP_TO_SINT to lower!");
4187  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
4188  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
4189  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
4190  }
4191
4192  SDOperand Chain = DAG.getEntryNode();
4193  SDOperand Value = Op.getOperand(0);
4194  if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
4195    assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
4196    Chain = DAG.getStore(Chain, Value, StackSlot,
4197                         PseudoSourceValue::getFixedStack(), SSFI);
4198    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
4199    SDOperand Ops[] = {
4200      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
4201    };
4202    Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
4203    Chain = Value.getValue(1);
4204    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
4205    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4206  }
4207
4208  // Build the FP_TO_INT*_IN_MEM
4209  SDOperand Ops[] = { Chain, Value, StackSlot };
4210  SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops, 3);
4211
4212  return std::make_pair(FIST, StackSlot);
4213}
4214
4215SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
4216  std::pair<SDOperand,SDOperand> Vals = FP_TO_SINTHelper(Op, DAG);
4217  SDOperand FIST = Vals.first, StackSlot = Vals.second;
4218  if (FIST.Val == 0) return SDOperand();
4219
4220  // Load the result.
4221  return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
4222}
4223
4224SDNode *X86TargetLowering::ExpandFP_TO_SINT(SDNode *N, SelectionDAG &DAG) {
4225  std::pair<SDOperand,SDOperand> Vals = FP_TO_SINTHelper(SDOperand(N, 0), DAG);
4226  SDOperand FIST = Vals.first, StackSlot = Vals.second;
4227  if (FIST.Val == 0) return 0;
4228
4229  // Return an i64 load from the stack slot.
4230  SDOperand Res = DAG.getLoad(MVT::i64, FIST, StackSlot, NULL, 0);
4231
4232  // Use a MERGE_VALUES node to drop the chain result value.
4233  return DAG.getNode(ISD::MERGE_VALUES, MVT::i64, Res).Val;
4234}
4235
4236SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) {
4237  MVT::ValueType VT = Op.getValueType();
4238  MVT::ValueType EltVT = VT;
4239  if (MVT::isVector(VT))
4240    EltVT = MVT::getVectorElementType(VT);
4241  const Type *OpNTy =  MVT::getTypeForValueType(EltVT);
4242  std::vector<Constant*> CV;
4243  if (EltVT == MVT::f64) {
4244    Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(64, ~(1ULL << 63))));
4245    CV.push_back(C);
4246    CV.push_back(C);
4247  } else {
4248    Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(32, ~(1U << 31))));
4249    CV.push_back(C);
4250    CV.push_back(C);
4251    CV.push_back(C);
4252    CV.push_back(C);
4253  }
4254  Constant *C = ConstantVector::get(CV);
4255  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4256  SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
4257                               PseudoSourceValue::getConstantPool(), 0,
4258                               false, 16);
4259  return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
4260}
4261
4262SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) {
4263  MVT::ValueType VT = Op.getValueType();
4264  MVT::ValueType EltVT = VT;
4265  unsigned EltNum = 1;
4266  if (MVT::isVector(VT)) {
4267    EltVT = MVT::getVectorElementType(VT);
4268    EltNum = MVT::getVectorNumElements(VT);
4269  }
4270  const Type *OpNTy =  MVT::getTypeForValueType(EltVT);
4271  std::vector<Constant*> CV;
4272  if (EltVT == MVT::f64) {
4273    Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(64, 1ULL << 63)));
4274    CV.push_back(C);
4275    CV.push_back(C);
4276  } else {
4277    Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(32, 1U << 31)));
4278    CV.push_back(C);
4279    CV.push_back(C);
4280    CV.push_back(C);
4281    CV.push_back(C);
4282  }
4283  Constant *C = ConstantVector::get(CV);
4284  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4285  SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
4286                               PseudoSourceValue::getConstantPool(), 0,
4287                               false, 16);
4288  if (MVT::isVector(VT)) {
4289    return DAG.getNode(ISD::BIT_CONVERT, VT,
4290                       DAG.getNode(ISD::XOR, MVT::v2i64,
4291                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Op.getOperand(0)),
4292                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Mask)));
4293  } else {
4294    return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
4295  }
4296}
4297
4298SDOperand X86TargetLowering::LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) {
4299  SDOperand Op0 = Op.getOperand(0);
4300  SDOperand Op1 = Op.getOperand(1);
4301  MVT::ValueType VT = Op.getValueType();
4302  MVT::ValueType SrcVT = Op1.getValueType();
4303  const Type *SrcTy =  MVT::getTypeForValueType(SrcVT);
4304
4305  // If second operand is smaller, extend it first.
4306  if (MVT::getSizeInBits(SrcVT) < MVT::getSizeInBits(VT)) {
4307    Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1);
4308    SrcVT = VT;
4309    SrcTy = MVT::getTypeForValueType(SrcVT);
4310  }
4311  // And if it is bigger, shrink it first.
4312  if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) {
4313    Op1 = DAG.getNode(ISD::FP_ROUND, VT, Op1, DAG.getIntPtrConstant(1));
4314    SrcVT = VT;
4315    SrcTy = MVT::getTypeForValueType(SrcVT);
4316  }
4317
4318  // At this point the operands and the result should have the same
4319  // type, and that won't be f80 since that is not custom lowered.
4320
4321  // First get the sign bit of second operand.
4322  std::vector<Constant*> CV;
4323  if (SrcVT == MVT::f64) {
4324    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 1ULL << 63))));
4325    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 0))));
4326  } else {
4327    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 1U << 31))));
4328    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4329    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4330    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4331  }
4332  Constant *C = ConstantVector::get(CV);
4333  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4334  SDOperand Mask1 = DAG.getLoad(SrcVT, DAG.getEntryNode(), CPIdx,
4335                                PseudoSourceValue::getConstantPool(), 0,
4336                                false, 16);
4337  SDOperand SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1);
4338
4339  // Shift sign bit right or left if the two operands have different types.
4340  if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) {
4341    // Op0 is MVT::f32, Op1 is MVT::f64.
4342    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit);
4343    SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit,
4344                          DAG.getConstant(32, MVT::i32));
4345    SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit);
4346    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit,
4347                          DAG.getIntPtrConstant(0));
4348  }
4349
4350  // Clear first operand sign bit.
4351  CV.clear();
4352  if (VT == MVT::f64) {
4353    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, ~(1ULL << 63)))));
4354    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 0))));
4355  } else {
4356    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, ~(1U << 31)))));
4357    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4358    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4359    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4360  }
4361  C = ConstantVector::get(CV);
4362  CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4363  SDOperand Mask2 = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
4364                                PseudoSourceValue::getConstantPool(), 0,
4365                                false, 16);
4366  SDOperand Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2);
4367
4368  // Or the value with the sign bit.
4369  return DAG.getNode(X86ISD::FOR, VT, Val, SignBit);
4370}
4371
4372SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
4373  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
4374  SDOperand Cond;
4375  SDOperand Op0 = Op.getOperand(0);
4376  SDOperand Op1 = Op.getOperand(1);
4377  SDOperand CC = Op.getOperand(2);
4378  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
4379  bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType());
4380  unsigned X86CC;
4381
4382  if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
4383                     Op0, Op1, DAG)) {
4384    Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
4385    return DAG.getNode(X86ISD::SETCC, MVT::i8,
4386                       DAG.getConstant(X86CC, MVT::i8), Cond);
4387  }
4388
4389  assert(isFP && "Illegal integer SetCC!");
4390
4391  Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
4392  switch (SetCCOpcode) {
4393  default: assert(false && "Illegal floating point SetCC!");
4394  case ISD::SETOEQ: {  // !PF & ZF
4395    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4396                                 DAG.getConstant(X86::COND_NP, MVT::i8), Cond);
4397    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4398                                 DAG.getConstant(X86::COND_E, MVT::i8), Cond);
4399    return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
4400  }
4401  case ISD::SETUNE: {  // PF | !ZF
4402    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4403                                 DAG.getConstant(X86::COND_P, MVT::i8), Cond);
4404    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4405                                 DAG.getConstant(X86::COND_NE, MVT::i8), Cond);
4406    return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
4407  }
4408  }
4409}
4410
4411
4412SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) {
4413  bool addTest = true;
4414  SDOperand Cond  = Op.getOperand(0);
4415  SDOperand CC;
4416
4417  if (Cond.getOpcode() == ISD::SETCC)
4418    Cond = LowerSETCC(Cond, DAG);
4419
4420  // If condition flag is set by a X86ISD::CMP, then use it as the condition
4421  // setting operand in place of the X86ISD::SETCC.
4422  if (Cond.getOpcode() == X86ISD::SETCC) {
4423    CC = Cond.getOperand(0);
4424
4425    SDOperand Cmp = Cond.getOperand(1);
4426    unsigned Opc = Cmp.getOpcode();
4427    MVT::ValueType VT = Op.getValueType();
4428
4429    bool IllegalFPCMov = false;
4430    if (MVT::isFloatingPoint(VT) && !MVT::isVector(VT) &&
4431        !isScalarFPTypeInSSEReg(VT))  // FPStack?
4432      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
4433
4434    if ((Opc == X86ISD::CMP ||
4435         Opc == X86ISD::COMI ||
4436         Opc == X86ISD::UCOMI) && !IllegalFPCMov) {
4437      Cond = Cmp;
4438      addTest = false;
4439    }
4440  }
4441
4442  if (addTest) {
4443    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4444    Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
4445  }
4446
4447  const MVT::ValueType *VTs = DAG.getNodeValueTypes(Op.getValueType(),
4448                                                    MVT::Flag);
4449  SmallVector<SDOperand, 4> Ops;
4450  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
4451  // condition is true.
4452  Ops.push_back(Op.getOperand(2));
4453  Ops.push_back(Op.getOperand(1));
4454  Ops.push_back(CC);
4455  Ops.push_back(Cond);
4456  return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
4457}
4458
4459SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) {
4460  bool addTest = true;
4461  SDOperand Chain = Op.getOperand(0);
4462  SDOperand Cond  = Op.getOperand(1);
4463  SDOperand Dest  = Op.getOperand(2);
4464  SDOperand CC;
4465
4466  if (Cond.getOpcode() == ISD::SETCC)
4467    Cond = LowerSETCC(Cond, DAG);
4468
4469  // If condition flag is set by a X86ISD::CMP, then use it as the condition
4470  // setting operand in place of the X86ISD::SETCC.
4471  if (Cond.getOpcode() == X86ISD::SETCC) {
4472    CC = Cond.getOperand(0);
4473
4474    SDOperand Cmp = Cond.getOperand(1);
4475    unsigned Opc = Cmp.getOpcode();
4476    if (Opc == X86ISD::CMP ||
4477        Opc == X86ISD::COMI ||
4478        Opc == X86ISD::UCOMI) {
4479      Cond = Cmp;
4480      addTest = false;
4481    }
4482  }
4483
4484  if (addTest) {
4485    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4486    Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
4487  }
4488  return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
4489                     Chain, Op.getOperand(2), CC, Cond);
4490}
4491
4492
4493// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
4494// Calls to _alloca is needed to probe the stack when allocating more than 4k
4495// bytes in one go. Touching the stack at 4K increments is necessary to ensure
4496// that the guard pages used by the OS virtual memory manager are allocated in
4497// correct sequence.
4498SDOperand
4499X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDOperand Op,
4500                                           SelectionDAG &DAG) {
4501  assert(Subtarget->isTargetCygMing() &&
4502         "This should be used only on Cygwin/Mingw targets");
4503
4504  // Get the inputs.
4505  SDOperand Chain = Op.getOperand(0);
4506  SDOperand Size  = Op.getOperand(1);
4507  // FIXME: Ensure alignment here
4508
4509  SDOperand Flag;
4510
4511  MVT::ValueType IntPtr = getPointerTy();
4512  MVT::ValueType SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
4513
4514  Chain = DAG.getCopyToReg(Chain, X86::EAX, Size, Flag);
4515  Flag = Chain.getValue(1);
4516
4517  SDVTList  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4518  SDOperand Ops[] = { Chain,
4519                      DAG.getTargetExternalSymbol("_alloca", IntPtr),
4520                      DAG.getRegister(X86::EAX, IntPtr),
4521                      Flag };
4522  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops, 4);
4523  Flag = Chain.getValue(1);
4524
4525  Chain = DAG.getCopyFromReg(Chain, X86StackPtr, SPTy).getValue(1);
4526
4527  std::vector<MVT::ValueType> Tys;
4528  Tys.push_back(SPTy);
4529  Tys.push_back(MVT::Other);
4530  SDOperand Ops1[2] = { Chain.getValue(0), Chain };
4531  return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops1, 2);
4532}
4533
4534SDOperand X86TargetLowering::LowerMEMSET(SDOperand Op, SelectionDAG &DAG) {
4535  SDOperand InFlag(0, 0);
4536  SDOperand Chain = Op.getOperand(0);
4537  unsigned Align =
4538    (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
4539  if (Align == 0) Align = 1;
4540
4541  ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
4542  // If not DWORD aligned or size is more than the threshold, call memset.
4543  // The libc version is likely to be faster for these cases. It can use the
4544  // address value and run time information about the CPU.
4545  if ((Align & 3) != 0 ||
4546      (I && I->getValue() > Subtarget->getMaxInlineSizeThreshold())) {
4547    MVT::ValueType IntPtr = getPointerTy();
4548    const Type *IntPtrTy = getTargetData()->getIntPtrType();
4549    TargetLowering::ArgListTy Args;
4550    TargetLowering::ArgListEntry Entry;
4551    Entry.Node = Op.getOperand(1);
4552    Entry.Ty = IntPtrTy;
4553    Args.push_back(Entry);
4554    // Extend the unsigned i8 argument to be an int value for the call.
4555    Entry.Node = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2));
4556    Entry.Ty = IntPtrTy;
4557    Args.push_back(Entry);
4558    Entry.Node = Op.getOperand(3);
4559    Args.push_back(Entry);
4560    std::pair<SDOperand,SDOperand> CallResult =
4561      LowerCallTo(Chain, Type::VoidTy, false, false, false, CallingConv::C,
4562                  false, DAG.getExternalSymbol("memset", IntPtr), Args, DAG);
4563    return CallResult.second;
4564  }
4565
4566  MVT::ValueType AVT;
4567  SDOperand Count;
4568  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4569  unsigned BytesLeft = 0;
4570  bool TwoRepStos = false;
4571  if (ValC) {
4572    unsigned ValReg;
4573    uint64_t Val = ValC->getValue() & 255;
4574
4575    // If the value is a constant, then we can potentially use larger sets.
4576    switch (Align & 3) {
4577      case 2:   // WORD aligned
4578        AVT = MVT::i16;
4579        ValReg = X86::AX;
4580        Val = (Val << 8) | Val;
4581        break;
4582      case 0:  // DWORD aligned
4583        AVT = MVT::i32;
4584        ValReg = X86::EAX;
4585        Val = (Val << 8)  | Val;
4586        Val = (Val << 16) | Val;
4587        if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) {  // QWORD aligned
4588          AVT = MVT::i64;
4589          ValReg = X86::RAX;
4590          Val = (Val << 32) | Val;
4591        }
4592        break;
4593      default:  // Byte aligned
4594        AVT = MVT::i8;
4595        ValReg = X86::AL;
4596        Count = Op.getOperand(3);
4597        break;
4598    }
4599
4600    if (AVT > MVT::i8) {
4601      if (I) {
4602        unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
4603        Count = DAG.getIntPtrConstant(I->getValue() / UBytes);
4604        BytesLeft = I->getValue() % UBytes;
4605      } else {
4606        assert(AVT >= MVT::i32 &&
4607               "Do not use rep;stos if not at least DWORD aligned");
4608        Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
4609                            Op.getOperand(3), DAG.getConstant(2, MVT::i8));
4610        TwoRepStos = true;
4611      }
4612    }
4613
4614    Chain  = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
4615                              InFlag);
4616    InFlag = Chain.getValue(1);
4617  } else {
4618    AVT = MVT::i8;
4619    Count  = Op.getOperand(3);
4620    Chain  = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag);
4621    InFlag = Chain.getValue(1);
4622  }
4623
4624  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4625                            Count, InFlag);
4626  InFlag = Chain.getValue(1);
4627  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
4628                            Op.getOperand(1), InFlag);
4629  InFlag = Chain.getValue(1);
4630
4631  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4632  SmallVector<SDOperand, 8> Ops;
4633  Ops.push_back(Chain);
4634  Ops.push_back(DAG.getValueType(AVT));
4635  Ops.push_back(InFlag);
4636  Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
4637
4638  if (TwoRepStos) {
4639    InFlag = Chain.getValue(1);
4640    Count = Op.getOperand(3);
4641    MVT::ValueType CVT = Count.getValueType();
4642    SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
4643                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
4644    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
4645                              Left, InFlag);
4646    InFlag = Chain.getValue(1);
4647    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4648    Ops.clear();
4649    Ops.push_back(Chain);
4650    Ops.push_back(DAG.getValueType(MVT::i8));
4651    Ops.push_back(InFlag);
4652    Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
4653  } else if (BytesLeft) {
4654    // Issue stores for the last 1 - 7 bytes.
4655    SDOperand Value;
4656    unsigned Val = ValC->getValue() & 255;
4657    unsigned Offset = I->getValue() - BytesLeft;
4658    SDOperand DstAddr = Op.getOperand(1);
4659    MVT::ValueType AddrVT = DstAddr.getValueType();
4660    if (BytesLeft >= 4) {
4661      Val = (Val << 8)  | Val;
4662      Val = (Val << 16) | Val;
4663      Value = DAG.getConstant(Val, MVT::i32);
4664      Chain = DAG.getStore(Chain, Value,
4665                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4666                                       DAG.getConstant(Offset, AddrVT)),
4667                           NULL, 0);
4668      BytesLeft -= 4;
4669      Offset += 4;
4670    }
4671    if (BytesLeft >= 2) {
4672      Value = DAG.getConstant((Val << 8) | Val, MVT::i16);
4673      Chain = DAG.getStore(Chain, Value,
4674                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4675                                       DAG.getConstant(Offset, AddrVT)),
4676                           NULL, 0);
4677      BytesLeft -= 2;
4678      Offset += 2;
4679    }
4680    if (BytesLeft == 1) {
4681      Value = DAG.getConstant(Val, MVT::i8);
4682      Chain = DAG.getStore(Chain, Value,
4683                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4684                                       DAG.getConstant(Offset, AddrVT)),
4685                           NULL, 0);
4686    }
4687  }
4688
4689  return Chain;
4690}
4691
4692SDOperand X86TargetLowering::LowerMEMCPYInline(SDOperand Chain,
4693                                               SDOperand Dest,
4694                                               SDOperand Source,
4695                                               unsigned Size,
4696                                               unsigned Align,
4697                                               SelectionDAG &DAG) {
4698  MVT::ValueType AVT;
4699  unsigned BytesLeft = 0;
4700  switch (Align & 3) {
4701    case 2:   // WORD aligned
4702      AVT = MVT::i16;
4703      break;
4704    case 0:  // DWORD aligned
4705      AVT = MVT::i32;
4706      if (Subtarget->is64Bit() && ((Align & 0xF) == 0))  // QWORD aligned
4707        AVT = MVT::i64;
4708      break;
4709    default:  // Byte aligned
4710      AVT = MVT::i8;
4711      break;
4712  }
4713
4714  unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
4715  SDOperand Count = DAG.getIntPtrConstant(Size / UBytes);
4716  BytesLeft = Size % UBytes;
4717
4718  SDOperand InFlag(0, 0);
4719  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4720                            Count, InFlag);
4721  InFlag = Chain.getValue(1);
4722  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
4723                            Dest, InFlag);
4724  InFlag = Chain.getValue(1);
4725  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
4726                            Source, InFlag);
4727  InFlag = Chain.getValue(1);
4728
4729  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4730  SmallVector<SDOperand, 8> Ops;
4731  Ops.push_back(Chain);
4732  Ops.push_back(DAG.getValueType(AVT));
4733  Ops.push_back(InFlag);
4734  Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
4735
4736  if (BytesLeft) {
4737    // Issue loads and stores for the last 1 - 7 bytes.
4738    unsigned Offset = Size - BytesLeft;
4739    SDOperand DstAddr = Dest;
4740    MVT::ValueType DstVT = DstAddr.getValueType();
4741    SDOperand SrcAddr = Source;
4742    MVT::ValueType SrcVT = SrcAddr.getValueType();
4743    SDOperand Value;
4744    if (BytesLeft >= 4) {
4745      Value = DAG.getLoad(MVT::i32, Chain,
4746                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4747                                      DAG.getConstant(Offset, SrcVT)),
4748                          NULL, 0);
4749      Chain = Value.getValue(1);
4750      Chain = DAG.getStore(Chain, Value,
4751                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4752                                       DAG.getConstant(Offset, DstVT)),
4753                           NULL, 0);
4754      BytesLeft -= 4;
4755      Offset += 4;
4756    }
4757    if (BytesLeft >= 2) {
4758      Value = DAG.getLoad(MVT::i16, Chain,
4759                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4760                                      DAG.getConstant(Offset, SrcVT)),
4761                          NULL, 0);
4762      Chain = Value.getValue(1);
4763      Chain = DAG.getStore(Chain, Value,
4764                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4765                                       DAG.getConstant(Offset, DstVT)),
4766                           NULL, 0);
4767      BytesLeft -= 2;
4768      Offset += 2;
4769    }
4770
4771    if (BytesLeft == 1) {
4772      Value = DAG.getLoad(MVT::i8, Chain,
4773                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4774                                      DAG.getConstant(Offset, SrcVT)),
4775                          NULL, 0);
4776      Chain = Value.getValue(1);
4777      Chain = DAG.getStore(Chain, Value,
4778                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4779                                       DAG.getConstant(Offset, DstVT)),
4780                           NULL, 0);
4781    }
4782  }
4783
4784  return Chain;
4785}
4786
4787/// Expand the result of: i64,outchain = READCYCLECOUNTER inchain
4788SDNode *X86TargetLowering::ExpandREADCYCLECOUNTER(SDNode *N, SelectionDAG &DAG){
4789  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4790  SDOperand TheChain = N->getOperand(0);
4791  SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheChain, 1);
4792  if (Subtarget->is64Bit()) {
4793    SDOperand rax = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
4794    SDOperand rdx = DAG.getCopyFromReg(rax.getValue(1), X86::RDX,
4795                                       MVT::i64, rax.getValue(2));
4796    SDOperand Tmp = DAG.getNode(ISD::SHL, MVT::i64, rdx,
4797                                DAG.getConstant(32, MVT::i8));
4798    SDOperand Ops[] = {
4799      DAG.getNode(ISD::OR, MVT::i64, rax, Tmp), rdx.getValue(1)
4800    };
4801
4802    Tys = DAG.getVTList(MVT::i64, MVT::Other);
4803    return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2).Val;
4804  }
4805
4806  SDOperand eax = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
4807  SDOperand edx = DAG.getCopyFromReg(eax.getValue(1), X86::EDX,
4808                                       MVT::i32, eax.getValue(2));
4809  // Use a buildpair to merge the two 32-bit values into a 64-bit one.
4810  SDOperand Ops[] = { eax, edx };
4811  Ops[0] = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Ops, 2);
4812
4813  // Use a MERGE_VALUES to return the value and chain.
4814  Ops[1] = edx.getValue(1);
4815  Tys = DAG.getVTList(MVT::i64, MVT::Other);
4816  return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2).Val;
4817}
4818
4819SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) {
4820  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4821
4822  if (!Subtarget->is64Bit()) {
4823    // vastart just stores the address of the VarArgsFrameIndex slot into the
4824    // memory location argument.
4825    SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4826    return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV, 0);
4827  }
4828
4829  // __va_list_tag:
4830  //   gp_offset         (0 - 6 * 8)
4831  //   fp_offset         (48 - 48 + 8 * 16)
4832  //   overflow_arg_area (point to parameters coming in memory).
4833  //   reg_save_area
4834  SmallVector<SDOperand, 8> MemOps;
4835  SDOperand FIN = Op.getOperand(1);
4836  // Store gp_offset
4837  SDOperand Store = DAG.getStore(Op.getOperand(0),
4838                                 DAG.getConstant(VarArgsGPOffset, MVT::i32),
4839                                 FIN, SV, 0);
4840  MemOps.push_back(Store);
4841
4842  // Store fp_offset
4843  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(4));
4844  Store = DAG.getStore(Op.getOperand(0),
4845                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
4846                       FIN, SV, 0);
4847  MemOps.push_back(Store);
4848
4849  // Store ptr to overflow_arg_area
4850  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(4));
4851  SDOperand OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4852  Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV, 0);
4853  MemOps.push_back(Store);
4854
4855  // Store ptr to reg_save_area.
4856  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(8));
4857  SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
4858  Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV, 0);
4859  MemOps.push_back(Store);
4860  return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
4861}
4862
4863SDOperand X86TargetLowering::LowerVACOPY(SDOperand Op, SelectionDAG &DAG) {
4864  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
4865  SDOperand Chain = Op.getOperand(0);
4866  SDOperand DstPtr = Op.getOperand(1);
4867  SDOperand SrcPtr = Op.getOperand(2);
4868  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
4869  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
4870
4871  SrcPtr = DAG.getLoad(getPointerTy(), Chain, SrcPtr, SrcSV, 0);
4872  Chain = SrcPtr.getValue(1);
4873  for (unsigned i = 0; i < 3; ++i) {
4874    SDOperand Val = DAG.getLoad(MVT::i64, Chain, SrcPtr, SrcSV, 0);
4875    Chain = Val.getValue(1);
4876    Chain = DAG.getStore(Chain, Val, DstPtr, DstSV, 0);
4877    if (i == 2)
4878      break;
4879    SrcPtr = DAG.getNode(ISD::ADD, getPointerTy(), SrcPtr,
4880                         DAG.getIntPtrConstant(8));
4881    DstPtr = DAG.getNode(ISD::ADD, getPointerTy(), DstPtr,
4882                         DAG.getIntPtrConstant(8));
4883  }
4884  return Chain;
4885}
4886
4887SDOperand
4888X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
4889  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
4890  switch (IntNo) {
4891  default: return SDOperand();    // Don't custom lower most intrinsics.
4892    // Comparison intrinsics.
4893  case Intrinsic::x86_sse_comieq_ss:
4894  case Intrinsic::x86_sse_comilt_ss:
4895  case Intrinsic::x86_sse_comile_ss:
4896  case Intrinsic::x86_sse_comigt_ss:
4897  case Intrinsic::x86_sse_comige_ss:
4898  case Intrinsic::x86_sse_comineq_ss:
4899  case Intrinsic::x86_sse_ucomieq_ss:
4900  case Intrinsic::x86_sse_ucomilt_ss:
4901  case Intrinsic::x86_sse_ucomile_ss:
4902  case Intrinsic::x86_sse_ucomigt_ss:
4903  case Intrinsic::x86_sse_ucomige_ss:
4904  case Intrinsic::x86_sse_ucomineq_ss:
4905  case Intrinsic::x86_sse2_comieq_sd:
4906  case Intrinsic::x86_sse2_comilt_sd:
4907  case Intrinsic::x86_sse2_comile_sd:
4908  case Intrinsic::x86_sse2_comigt_sd:
4909  case Intrinsic::x86_sse2_comige_sd:
4910  case Intrinsic::x86_sse2_comineq_sd:
4911  case Intrinsic::x86_sse2_ucomieq_sd:
4912  case Intrinsic::x86_sse2_ucomilt_sd:
4913  case Intrinsic::x86_sse2_ucomile_sd:
4914  case Intrinsic::x86_sse2_ucomigt_sd:
4915  case Intrinsic::x86_sse2_ucomige_sd:
4916  case Intrinsic::x86_sse2_ucomineq_sd: {
4917    unsigned Opc = 0;
4918    ISD::CondCode CC = ISD::SETCC_INVALID;
4919    switch (IntNo) {
4920    default: break;
4921    case Intrinsic::x86_sse_comieq_ss:
4922    case Intrinsic::x86_sse2_comieq_sd:
4923      Opc = X86ISD::COMI;
4924      CC = ISD::SETEQ;
4925      break;
4926    case Intrinsic::x86_sse_comilt_ss:
4927    case Intrinsic::x86_sse2_comilt_sd:
4928      Opc = X86ISD::COMI;
4929      CC = ISD::SETLT;
4930      break;
4931    case Intrinsic::x86_sse_comile_ss:
4932    case Intrinsic::x86_sse2_comile_sd:
4933      Opc = X86ISD::COMI;
4934      CC = ISD::SETLE;
4935      break;
4936    case Intrinsic::x86_sse_comigt_ss:
4937    case Intrinsic::x86_sse2_comigt_sd:
4938      Opc = X86ISD::COMI;
4939      CC = ISD::SETGT;
4940      break;
4941    case Intrinsic::x86_sse_comige_ss:
4942    case Intrinsic::x86_sse2_comige_sd:
4943      Opc = X86ISD::COMI;
4944      CC = ISD::SETGE;
4945      break;
4946    case Intrinsic::x86_sse_comineq_ss:
4947    case Intrinsic::x86_sse2_comineq_sd:
4948      Opc = X86ISD::COMI;
4949      CC = ISD::SETNE;
4950      break;
4951    case Intrinsic::x86_sse_ucomieq_ss:
4952    case Intrinsic::x86_sse2_ucomieq_sd:
4953      Opc = X86ISD::UCOMI;
4954      CC = ISD::SETEQ;
4955      break;
4956    case Intrinsic::x86_sse_ucomilt_ss:
4957    case Intrinsic::x86_sse2_ucomilt_sd:
4958      Opc = X86ISD::UCOMI;
4959      CC = ISD::SETLT;
4960      break;
4961    case Intrinsic::x86_sse_ucomile_ss:
4962    case Intrinsic::x86_sse2_ucomile_sd:
4963      Opc = X86ISD::UCOMI;
4964      CC = ISD::SETLE;
4965      break;
4966    case Intrinsic::x86_sse_ucomigt_ss:
4967    case Intrinsic::x86_sse2_ucomigt_sd:
4968      Opc = X86ISD::UCOMI;
4969      CC = ISD::SETGT;
4970      break;
4971    case Intrinsic::x86_sse_ucomige_ss:
4972    case Intrinsic::x86_sse2_ucomige_sd:
4973      Opc = X86ISD::UCOMI;
4974      CC = ISD::SETGE;
4975      break;
4976    case Intrinsic::x86_sse_ucomineq_ss:
4977    case Intrinsic::x86_sse2_ucomineq_sd:
4978      Opc = X86ISD::UCOMI;
4979      CC = ISD::SETNE;
4980      break;
4981    }
4982
4983    unsigned X86CC;
4984    SDOperand LHS = Op.getOperand(1);
4985    SDOperand RHS = Op.getOperand(2);
4986    translateX86CC(CC, true, X86CC, LHS, RHS, DAG);
4987
4988    SDOperand Cond = DAG.getNode(Opc, MVT::i32, LHS, RHS);
4989    SDOperand SetCC = DAG.getNode(X86ISD::SETCC, MVT::i8,
4990                                  DAG.getConstant(X86CC, MVT::i8), Cond);
4991    return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC);
4992  }
4993  }
4994}
4995
4996SDOperand X86TargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
4997  // Depths > 0 not supported yet!
4998  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4999    return SDOperand();
5000
5001  // Just load the return address
5002  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
5003  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
5004}
5005
5006SDOperand X86TargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
5007  // Depths > 0 not supported yet!
5008  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
5009    return SDOperand();
5010
5011  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
5012  return DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI,
5013                     DAG.getIntPtrConstant(4));
5014}
5015
5016SDOperand X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDOperand Op,
5017                                                       SelectionDAG &DAG) {
5018  // Is not yet supported on x86-64
5019  if (Subtarget->is64Bit())
5020    return SDOperand();
5021
5022  return DAG.getIntPtrConstant(8);
5023}
5024
5025SDOperand X86TargetLowering::LowerEH_RETURN(SDOperand Op, SelectionDAG &DAG)
5026{
5027  assert(!Subtarget->is64Bit() &&
5028         "Lowering of eh_return builtin is not supported yet on x86-64");
5029
5030  MachineFunction &MF = DAG.getMachineFunction();
5031  SDOperand Chain     = Op.getOperand(0);
5032  SDOperand Offset    = Op.getOperand(1);
5033  SDOperand Handler   = Op.getOperand(2);
5034
5035  SDOperand Frame = DAG.getRegister(RegInfo->getFrameRegister(MF),
5036                                    getPointerTy());
5037
5038  SDOperand StoreAddr = DAG.getNode(ISD::SUB, getPointerTy(), Frame,
5039                                    DAG.getIntPtrConstant(-4UL));
5040  StoreAddr = DAG.getNode(ISD::ADD, getPointerTy(), StoreAddr, Offset);
5041  Chain = DAG.getStore(Chain, Handler, StoreAddr, NULL, 0);
5042  Chain = DAG.getCopyToReg(Chain, X86::ECX, StoreAddr);
5043  MF.getRegInfo().addLiveOut(X86::ECX);
5044
5045  return DAG.getNode(X86ISD::EH_RETURN, MVT::Other,
5046                     Chain, DAG.getRegister(X86::ECX, getPointerTy()));
5047}
5048
5049SDOperand X86TargetLowering::LowerTRAMPOLINE(SDOperand Op,
5050                                             SelectionDAG &DAG) {
5051  SDOperand Root = Op.getOperand(0);
5052  SDOperand Trmp = Op.getOperand(1); // trampoline
5053  SDOperand FPtr = Op.getOperand(2); // nested function
5054  SDOperand Nest = Op.getOperand(3); // 'nest' parameter value
5055
5056  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
5057
5058  const X86InstrInfo *TII =
5059    ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
5060
5061  if (Subtarget->is64Bit()) {
5062    SDOperand OutChains[6];
5063
5064    // Large code-model.
5065
5066    const unsigned char JMP64r  = TII->getBaseOpcodeFor(X86::JMP64r);
5067    const unsigned char MOV64ri = TII->getBaseOpcodeFor(X86::MOV64ri);
5068
5069    const unsigned char N86R10 =
5070      ((const X86RegisterInfo*)RegInfo)->getX86RegNum(X86::R10);
5071    const unsigned char N86R11 =
5072      ((const X86RegisterInfo*)RegInfo)->getX86RegNum(X86::R11);
5073
5074    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
5075
5076    // Load the pointer to the nested function into R11.
5077    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
5078    SDOperand Addr = Trmp;
5079    OutChains[0] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
5080                                TrmpAddr, 0);
5081
5082    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(2, MVT::i64));
5083    OutChains[1] = DAG.getStore(Root, FPtr, Addr, TrmpAddr, 2, false, 2);
5084
5085    // Load the 'nest' parameter value into R10.
5086    // R10 is specified in X86CallingConv.td
5087    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
5088    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(10, MVT::i64));
5089    OutChains[2] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
5090                                TrmpAddr, 10);
5091
5092    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(12, MVT::i64));
5093    OutChains[3] = DAG.getStore(Root, Nest, Addr, TrmpAddr, 12, false, 2);
5094
5095    // Jump to the nested function.
5096    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
5097    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(20, MVT::i64));
5098    OutChains[4] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
5099                                TrmpAddr, 20);
5100
5101    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
5102    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(22, MVT::i64));
5103    OutChains[5] = DAG.getStore(Root, DAG.getConstant(ModRM, MVT::i8), Addr,
5104                                TrmpAddr, 22);
5105
5106    SDOperand Ops[] =
5107      { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 6) };
5108    return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(), Ops, 2);
5109  } else {
5110    const Function *Func =
5111      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
5112    unsigned CC = Func->getCallingConv();
5113    unsigned NestReg;
5114
5115    switch (CC) {
5116    default:
5117      assert(0 && "Unsupported calling convention");
5118    case CallingConv::C:
5119    case CallingConv::X86_StdCall: {
5120      // Pass 'nest' parameter in ECX.
5121      // Must be kept in sync with X86CallingConv.td
5122      NestReg = X86::ECX;
5123
5124      // Check that ECX wasn't needed by an 'inreg' parameter.
5125      const FunctionType *FTy = Func->getFunctionType();
5126      const PAListPtr &Attrs = Func->getParamAttrs();
5127
5128      if (!Attrs.isEmpty() && !Func->isVarArg()) {
5129        unsigned InRegCount = 0;
5130        unsigned Idx = 1;
5131
5132        for (FunctionType::param_iterator I = FTy->param_begin(),
5133             E = FTy->param_end(); I != E; ++I, ++Idx)
5134          if (Attrs.paramHasAttr(Idx, ParamAttr::InReg))
5135            // FIXME: should only count parameters that are lowered to integers.
5136            InRegCount += (getTargetData()->getTypeSizeInBits(*I) + 31) / 32;
5137
5138        if (InRegCount > 2) {
5139          cerr << "Nest register in use - reduce number of inreg parameters!\n";
5140          abort();
5141        }
5142      }
5143      break;
5144    }
5145    case CallingConv::X86_FastCall:
5146      // Pass 'nest' parameter in EAX.
5147      // Must be kept in sync with X86CallingConv.td
5148      NestReg = X86::EAX;
5149      break;
5150    }
5151
5152    SDOperand OutChains[4];
5153    SDOperand Addr, Disp;
5154
5155    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(10, MVT::i32));
5156    Disp = DAG.getNode(ISD::SUB, MVT::i32, FPtr, Addr);
5157
5158    const unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
5159    const unsigned char N86Reg =
5160      ((const X86RegisterInfo*)RegInfo)->getX86RegNum(NestReg);
5161    OutChains[0] = DAG.getStore(Root, DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
5162                                Trmp, TrmpAddr, 0);
5163
5164    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(1, MVT::i32));
5165    OutChains[1] = DAG.getStore(Root, Nest, Addr, TrmpAddr, 1, false, 1);
5166
5167    const unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
5168    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(5, MVT::i32));
5169    OutChains[2] = DAG.getStore(Root, DAG.getConstant(JMP, MVT::i8), Addr,
5170                                TrmpAddr, 5, false, 1);
5171
5172    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(6, MVT::i32));
5173    OutChains[3] = DAG.getStore(Root, Disp, Addr, TrmpAddr, 6, false, 1);
5174
5175    SDOperand Ops[] =
5176      { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 4) };
5177    return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(), Ops, 2);
5178  }
5179}
5180
5181SDOperand X86TargetLowering::LowerFLT_ROUNDS_(SDOperand Op, SelectionDAG &DAG) {
5182  /*
5183   The rounding mode is in bits 11:10 of FPSR, and has the following
5184   settings:
5185     00 Round to nearest
5186     01 Round to -inf
5187     10 Round to +inf
5188     11 Round to 0
5189
5190  FLT_ROUNDS, on the other hand, expects the following:
5191    -1 Undefined
5192     0 Round to 0
5193     1 Round to nearest
5194     2 Round to +inf
5195     3 Round to -inf
5196
5197  To perform the conversion, we do:
5198    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
5199  */
5200
5201  MachineFunction &MF = DAG.getMachineFunction();
5202  const TargetMachine &TM = MF.getTarget();
5203  const TargetFrameInfo &TFI = *TM.getFrameInfo();
5204  unsigned StackAlignment = TFI.getStackAlignment();
5205  MVT::ValueType VT = Op.getValueType();
5206
5207  // Save FP Control Word to stack slot
5208  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment);
5209  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5210
5211  SDOperand Chain = DAG.getNode(X86ISD::FNSTCW16m, MVT::Other,
5212                                DAG.getEntryNode(), StackSlot);
5213
5214  // Load FP Control Word from stack slot
5215  SDOperand CWD = DAG.getLoad(MVT::i16, Chain, StackSlot, NULL, 0);
5216
5217  // Transform as necessary
5218  SDOperand CWD1 =
5219    DAG.getNode(ISD::SRL, MVT::i16,
5220                DAG.getNode(ISD::AND, MVT::i16,
5221                            CWD, DAG.getConstant(0x800, MVT::i16)),
5222                DAG.getConstant(11, MVT::i8));
5223  SDOperand CWD2 =
5224    DAG.getNode(ISD::SRL, MVT::i16,
5225                DAG.getNode(ISD::AND, MVT::i16,
5226                            CWD, DAG.getConstant(0x400, MVT::i16)),
5227                DAG.getConstant(9, MVT::i8));
5228
5229  SDOperand RetVal =
5230    DAG.getNode(ISD::AND, MVT::i16,
5231                DAG.getNode(ISD::ADD, MVT::i16,
5232                            DAG.getNode(ISD::OR, MVT::i16, CWD1, CWD2),
5233                            DAG.getConstant(1, MVT::i16)),
5234                DAG.getConstant(3, MVT::i16));
5235
5236
5237  return DAG.getNode((MVT::getSizeInBits(VT) < 16 ?
5238                      ISD::TRUNCATE : ISD::ZERO_EXTEND), VT, RetVal);
5239}
5240
5241SDOperand X86TargetLowering::LowerCTLZ(SDOperand Op, SelectionDAG &DAG) {
5242  MVT::ValueType VT = Op.getValueType();
5243  MVT::ValueType OpVT = VT;
5244  unsigned NumBits = MVT::getSizeInBits(VT);
5245
5246  Op = Op.getOperand(0);
5247  if (VT == MVT::i8) {
5248    // Zero extend to i32 since there is not an i8 bsr.
5249    OpVT = MVT::i32;
5250    Op = DAG.getNode(ISD::ZERO_EXTEND, OpVT, Op);
5251  }
5252
5253  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
5254  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
5255  Op = DAG.getNode(X86ISD::BSR, VTs, Op);
5256
5257  // If src is zero (i.e. bsr sets ZF), returns NumBits.
5258  SmallVector<SDOperand, 4> Ops;
5259  Ops.push_back(Op);
5260  Ops.push_back(DAG.getConstant(NumBits+NumBits-1, OpVT));
5261  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
5262  Ops.push_back(Op.getValue(1));
5263  Op = DAG.getNode(X86ISD::CMOV, OpVT, &Ops[0], 4);
5264
5265  // Finally xor with NumBits-1.
5266  Op = DAG.getNode(ISD::XOR, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
5267
5268  if (VT == MVT::i8)
5269    Op = DAG.getNode(ISD::TRUNCATE, MVT::i8, Op);
5270  return Op;
5271}
5272
5273SDOperand X86TargetLowering::LowerCTTZ(SDOperand Op, SelectionDAG &DAG) {
5274  MVT::ValueType VT = Op.getValueType();
5275  MVT::ValueType OpVT = VT;
5276  unsigned NumBits = MVT::getSizeInBits(VT);
5277
5278  Op = Op.getOperand(0);
5279  if (VT == MVT::i8) {
5280    OpVT = MVT::i32;
5281    Op = DAG.getNode(ISD::ZERO_EXTEND, OpVT, Op);
5282  }
5283
5284  // Issue a bsf (scan bits forward) which also sets EFLAGS.
5285  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
5286  Op = DAG.getNode(X86ISD::BSF, VTs, Op);
5287
5288  // If src is zero (i.e. bsf sets ZF), returns NumBits.
5289  SmallVector<SDOperand, 4> Ops;
5290  Ops.push_back(Op);
5291  Ops.push_back(DAG.getConstant(NumBits, OpVT));
5292  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
5293  Ops.push_back(Op.getValue(1));
5294  Op = DAG.getNode(X86ISD::CMOV, OpVT, &Ops[0], 4);
5295
5296  if (VT == MVT::i8)
5297    Op = DAG.getNode(ISD::TRUNCATE, MVT::i8, Op);
5298  return Op;
5299}
5300
5301SDOperand X86TargetLowering::LowerLCS(SDOperand Op, SelectionDAG &DAG) {
5302  MVT::ValueType T = cast<AtomicSDNode>(Op.Val)->getVT();
5303  unsigned Reg = 0;
5304  unsigned size = 0;
5305  switch(T) {
5306  case MVT::i8:  Reg = X86::AL;  size = 1; break;
5307  case MVT::i16: Reg = X86::AX;  size = 2; break;
5308  case MVT::i32: Reg = X86::EAX; size = 4; break;
5309  case MVT::i64:
5310    if (Subtarget->is64Bit()) {
5311      Reg = X86::RAX; size = 8;
5312    } else //Should go away when LowerType stuff lands
5313      return SDOperand(ExpandATOMIC_LCS(Op.Val, DAG), 0);
5314    break;
5315  };
5316  SDOperand cpIn = DAG.getCopyToReg(Op.getOperand(0), Reg,
5317                                    Op.getOperand(3), SDOperand());
5318  SDOperand Ops[] = { cpIn.getValue(0),
5319                      Op.getOperand(1),
5320                      Op.getOperand(2),
5321                      DAG.getTargetConstant(size, MVT::i8),
5322                      cpIn.getValue(1) };
5323  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5324  SDOperand Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, Tys, Ops, 5);
5325  SDOperand cpOut =
5326    DAG.getCopyFromReg(Result.getValue(0), Reg, T, Result.getValue(1));
5327  return cpOut;
5328}
5329
5330SDNode* X86TargetLowering::ExpandATOMIC_LCS(SDNode* Op, SelectionDAG &DAG) {
5331  MVT::ValueType T = cast<AtomicSDNode>(Op)->getVT();
5332  assert (T == MVT::i64 && "Only know how to expand i64 CAS");
5333  SDOperand cpInL, cpInH;
5334  cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(3),
5335                      DAG.getConstant(0, MVT::i32));
5336  cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(3),
5337                      DAG.getConstant(1, MVT::i32));
5338  cpInL = DAG.getCopyToReg(Op->getOperand(0), X86::EAX,
5339                           cpInL, SDOperand());
5340  cpInH = DAG.getCopyToReg(cpInL.getValue(0), X86::EDX,
5341                           cpInH, cpInL.getValue(1));
5342  SDOperand swapInL, swapInH;
5343  swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(2),
5344                        DAG.getConstant(0, MVT::i32));
5345  swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(2),
5346                        DAG.getConstant(1, MVT::i32));
5347  swapInL = DAG.getCopyToReg(cpInH.getValue(0), X86::EBX,
5348                             swapInL, cpInH.getValue(1));
5349  swapInH = DAG.getCopyToReg(swapInL.getValue(0), X86::ECX,
5350                             swapInH, swapInL.getValue(1));
5351  SDOperand Ops[] = { swapInH.getValue(0),
5352                      Op->getOperand(1),
5353                      swapInH.getValue(1)};
5354  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5355  SDOperand Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, Tys, Ops, 3);
5356  SDOperand cpOutL = DAG.getCopyFromReg(Result.getValue(0), X86::EAX, MVT::i32,
5357                                        Result.getValue(1));
5358  SDOperand cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), X86::EDX, MVT::i32,
5359                                        cpOutL.getValue(2));
5360  SDOperand OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
5361  SDOperand ResultVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OpsF, 2);
5362  Tys = DAG.getVTList(MVT::i64, MVT::Other);
5363  return DAG.getNode(ISD::MERGE_VALUES, Tys, ResultVal, cpOutH.getValue(1)).Val;
5364}
5365
5366/// LowerOperation - Provide custom lowering hooks for some operations.
5367///
5368SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
5369  switch (Op.getOpcode()) {
5370  default: assert(0 && "Should not custom lower this!");
5371  case ISD::ATOMIC_LCS:         return LowerLCS(Op,DAG);
5372  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
5373  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
5374  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
5375  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
5376  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
5377  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
5378  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
5379  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
5380  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
5381  case ISD::SHL_PARTS:
5382  case ISD::SRA_PARTS:
5383  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
5384  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
5385  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
5386  case ISD::FABS:               return LowerFABS(Op, DAG);
5387  case ISD::FNEG:               return LowerFNEG(Op, DAG);
5388  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
5389  case ISD::SETCC:              return LowerSETCC(Op, DAG);
5390  case ISD::SELECT:             return LowerSELECT(Op, DAG);
5391  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
5392  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
5393  case ISD::CALL:               return LowerCALL(Op, DAG);
5394  case ISD::RET:                return LowerRET(Op, DAG);
5395  case ISD::FORMAL_ARGUMENTS:   return LowerFORMAL_ARGUMENTS(Op, DAG);
5396  case ISD::MEMSET:             return LowerMEMSET(Op, DAG);
5397  case ISD::MEMCPY:             return LowerMEMCPY(Op, DAG);
5398  case ISD::VASTART:            return LowerVASTART(Op, DAG);
5399  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
5400  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
5401  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
5402  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
5403  case ISD::FRAME_TO_ARGS_OFFSET:
5404                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
5405  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
5406  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
5407  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
5408  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
5409  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
5410  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
5411
5412  // FIXME: REMOVE THIS WHEN LegalizeDAGTypes lands.
5413  case ISD::READCYCLECOUNTER:
5414    return SDOperand(ExpandREADCYCLECOUNTER(Op.Val, DAG), 0);
5415  }
5416}
5417
5418/// ExpandOperation - Provide custom lowering hooks for expanding operations.
5419SDNode *X86TargetLowering::ExpandOperationResult(SDNode *N, SelectionDAG &DAG) {
5420  switch (N->getOpcode()) {
5421  default: assert(0 && "Should not custom lower this!");
5422  case ISD::FP_TO_SINT:         return ExpandFP_TO_SINT(N, DAG);
5423  case ISD::READCYCLECOUNTER:   return ExpandREADCYCLECOUNTER(N, DAG);
5424  case ISD::ATOMIC_LCS:         return ExpandATOMIC_LCS(N, DAG);
5425  }
5426}
5427
5428const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
5429  switch (Opcode) {
5430  default: return NULL;
5431  case X86ISD::BSF:                return "X86ISD::BSF";
5432  case X86ISD::BSR:                return "X86ISD::BSR";
5433  case X86ISD::SHLD:               return "X86ISD::SHLD";
5434  case X86ISD::SHRD:               return "X86ISD::SHRD";
5435  case X86ISD::FAND:               return "X86ISD::FAND";
5436  case X86ISD::FOR:                return "X86ISD::FOR";
5437  case X86ISD::FXOR:               return "X86ISD::FXOR";
5438  case X86ISD::FSRL:               return "X86ISD::FSRL";
5439  case X86ISD::FILD:               return "X86ISD::FILD";
5440  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
5441  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
5442  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
5443  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
5444  case X86ISD::FLD:                return "X86ISD::FLD";
5445  case X86ISD::FST:                return "X86ISD::FST";
5446  case X86ISD::CALL:               return "X86ISD::CALL";
5447  case X86ISD::TAILCALL:           return "X86ISD::TAILCALL";
5448  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
5449  case X86ISD::CMP:                return "X86ISD::CMP";
5450  case X86ISD::COMI:               return "X86ISD::COMI";
5451  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
5452  case X86ISD::SETCC:              return "X86ISD::SETCC";
5453  case X86ISD::CMOV:               return "X86ISD::CMOV";
5454  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
5455  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
5456  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
5457  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
5458  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
5459  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
5460  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
5461  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
5462  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
5463  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
5464  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
5465  case X86ISD::FMAX:               return "X86ISD::FMAX";
5466  case X86ISD::FMIN:               return "X86ISD::FMIN";
5467  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
5468  case X86ISD::FRCP:               return "X86ISD::FRCP";
5469  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
5470  case X86ISD::THREAD_POINTER:     return "X86ISD::THREAD_POINTER";
5471  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
5472  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
5473  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
5474  case X86ISD::LCMPXCHG_DAG:       return "x86ISD::LCMPXCHG_DAG";
5475  case X86ISD::LCMPXCHG8_DAG:      return "x86ISD::LCMPXCHG8_DAG";
5476  }
5477}
5478
5479// isLegalAddressingMode - Return true if the addressing mode represented
5480// by AM is legal for this target, for a load/store of the specified type.
5481bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
5482                                              const Type *Ty) const {
5483  // X86 supports extremely general addressing modes.
5484
5485  // X86 allows a sign-extended 32-bit immediate field as a displacement.
5486  if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
5487    return false;
5488
5489  if (AM.BaseGV) {
5490    // We can only fold this if we don't need an extra load.
5491    if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
5492      return false;
5493
5494    // X86-64 only supports addr of globals in small code model.
5495    if (Subtarget->is64Bit()) {
5496      if (getTargetMachine().getCodeModel() != CodeModel::Small)
5497        return false;
5498      // If lower 4G is not available, then we must use rip-relative addressing.
5499      if (AM.BaseOffs || AM.Scale > 1)
5500        return false;
5501    }
5502  }
5503
5504  switch (AM.Scale) {
5505  case 0:
5506  case 1:
5507  case 2:
5508  case 4:
5509  case 8:
5510    // These scales always work.
5511    break;
5512  case 3:
5513  case 5:
5514  case 9:
5515    // These scales are formed with basereg+scalereg.  Only accept if there is
5516    // no basereg yet.
5517    if (AM.HasBaseReg)
5518      return false;
5519    break;
5520  default:  // Other stuff never works.
5521    return false;
5522  }
5523
5524  return true;
5525}
5526
5527
5528bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
5529  if (!Ty1->isInteger() || !Ty2->isInteger())
5530    return false;
5531  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
5532  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
5533  if (NumBits1 <= NumBits2)
5534    return false;
5535  return Subtarget->is64Bit() || NumBits1 < 64;
5536}
5537
5538bool X86TargetLowering::isTruncateFree(MVT::ValueType VT1,
5539                                       MVT::ValueType VT2) const {
5540  if (!MVT::isInteger(VT1) || !MVT::isInteger(VT2))
5541    return false;
5542  unsigned NumBits1 = MVT::getSizeInBits(VT1);
5543  unsigned NumBits2 = MVT::getSizeInBits(VT2);
5544  if (NumBits1 <= NumBits2)
5545    return false;
5546  return Subtarget->is64Bit() || NumBits1 < 64;
5547}
5548
5549/// isShuffleMaskLegal - Targets can use this to indicate that they only
5550/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
5551/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
5552/// are assumed to be legal.
5553bool
5554X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
5555  // Only do shuffles on 128-bit vector types for now.
5556  if (MVT::getSizeInBits(VT) == 64) return false;
5557  return (Mask.Val->getNumOperands() <= 4 ||
5558          isIdentityMask(Mask.Val) ||
5559          isIdentityMask(Mask.Val, true) ||
5560          isSplatMask(Mask.Val)  ||
5561          isPSHUFHW_PSHUFLWMask(Mask.Val) ||
5562          X86::isUNPCKLMask(Mask.Val) ||
5563          X86::isUNPCKHMask(Mask.Val) ||
5564          X86::isUNPCKL_v_undef_Mask(Mask.Val) ||
5565          X86::isUNPCKH_v_undef_Mask(Mask.Val));
5566}
5567
5568bool X86TargetLowering::isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
5569                                               MVT::ValueType EVT,
5570                                               SelectionDAG &DAG) const {
5571  unsigned NumElts = BVOps.size();
5572  // Only do shuffles on 128-bit vector types for now.
5573  if (MVT::getSizeInBits(EVT) * NumElts == 64) return false;
5574  if (NumElts == 2) return true;
5575  if (NumElts == 4) {
5576    return (isMOVLMask(&BVOps[0], 4)  ||
5577            isCommutedMOVL(&BVOps[0], 4, true) ||
5578            isSHUFPMask(&BVOps[0], 4) ||
5579            isCommutedSHUFP(&BVOps[0], 4));
5580  }
5581  return false;
5582}
5583
5584//===----------------------------------------------------------------------===//
5585//                           X86 Scheduler Hooks
5586//===----------------------------------------------------------------------===//
5587
5588MachineBasicBlock *
5589X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
5590                                               MachineBasicBlock *BB) {
5591  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5592  switch (MI->getOpcode()) {
5593  default: assert(false && "Unexpected instr type to insert");
5594  case X86::CMOV_FR32:
5595  case X86::CMOV_FR64:
5596  case X86::CMOV_V4F32:
5597  case X86::CMOV_V2F64:
5598  case X86::CMOV_V2I64: {
5599    // To "insert" a SELECT_CC instruction, we actually have to insert the
5600    // diamond control-flow pattern.  The incoming instruction knows the
5601    // destination vreg to set, the condition code register to branch on, the
5602    // true/false values to select between, and a branch opcode to use.
5603    const BasicBlock *LLVM_BB = BB->getBasicBlock();
5604    ilist<MachineBasicBlock>::iterator It = BB;
5605    ++It;
5606
5607    //  thisMBB:
5608    //  ...
5609    //   TrueVal = ...
5610    //   cmpTY ccX, r1, r2
5611    //   bCC copy1MBB
5612    //   fallthrough --> copy0MBB
5613    MachineBasicBlock *thisMBB = BB;
5614    MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
5615    MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
5616    unsigned Opc =
5617      X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
5618    BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
5619    MachineFunction *F = BB->getParent();
5620    F->getBasicBlockList().insert(It, copy0MBB);
5621    F->getBasicBlockList().insert(It, sinkMBB);
5622    // Update machine-CFG edges by first adding all successors of the current
5623    // block to the new block which will contain the Phi node for the select.
5624    for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
5625        e = BB->succ_end(); i != e; ++i)
5626      sinkMBB->addSuccessor(*i);
5627    // Next, remove all successors of the current block, and add the true
5628    // and fallthrough blocks as its successors.
5629    while(!BB->succ_empty())
5630      BB->removeSuccessor(BB->succ_begin());
5631    BB->addSuccessor(copy0MBB);
5632    BB->addSuccessor(sinkMBB);
5633
5634    //  copy0MBB:
5635    //   %FalseValue = ...
5636    //   # fallthrough to sinkMBB
5637    BB = copy0MBB;
5638
5639    // Update machine-CFG edges
5640    BB->addSuccessor(sinkMBB);
5641
5642    //  sinkMBB:
5643    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
5644    //  ...
5645    BB = sinkMBB;
5646    BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
5647      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
5648      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
5649
5650    delete MI;   // The pseudo instruction is gone now.
5651    return BB;
5652  }
5653
5654  case X86::FP32_TO_INT16_IN_MEM:
5655  case X86::FP32_TO_INT32_IN_MEM:
5656  case X86::FP32_TO_INT64_IN_MEM:
5657  case X86::FP64_TO_INT16_IN_MEM:
5658  case X86::FP64_TO_INT32_IN_MEM:
5659  case X86::FP64_TO_INT64_IN_MEM:
5660  case X86::FP80_TO_INT16_IN_MEM:
5661  case X86::FP80_TO_INT32_IN_MEM:
5662  case X86::FP80_TO_INT64_IN_MEM: {
5663    // Change the floating point control register to use "round towards zero"
5664    // mode when truncating to an integer value.
5665    MachineFunction *F = BB->getParent();
5666    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
5667    addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
5668
5669    // Load the old value of the high byte of the control word...
5670    unsigned OldCW =
5671      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
5672    addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);
5673
5674    // Set the high part to be round to zero...
5675    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
5676      .addImm(0xC7F);
5677
5678    // Reload the modified control word now...
5679    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
5680
5681    // Restore the memory image of control word to original value
5682    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
5683      .addReg(OldCW);
5684
5685    // Get the X86 opcode to use.
5686    unsigned Opc;
5687    switch (MI->getOpcode()) {
5688    default: assert(0 && "illegal opcode!");
5689    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
5690    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
5691    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
5692    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
5693    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
5694    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
5695    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
5696    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
5697    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
5698    }
5699
5700    X86AddressMode AM;
5701    MachineOperand &Op = MI->getOperand(0);
5702    if (Op.isRegister()) {
5703      AM.BaseType = X86AddressMode::RegBase;
5704      AM.Base.Reg = Op.getReg();
5705    } else {
5706      AM.BaseType = X86AddressMode::FrameIndexBase;
5707      AM.Base.FrameIndex = Op.getIndex();
5708    }
5709    Op = MI->getOperand(1);
5710    if (Op.isImmediate())
5711      AM.Scale = Op.getImm();
5712    Op = MI->getOperand(2);
5713    if (Op.isImmediate())
5714      AM.IndexReg = Op.getImm();
5715    Op = MI->getOperand(3);
5716    if (Op.isGlobalAddress()) {
5717      AM.GV = Op.getGlobal();
5718    } else {
5719      AM.Disp = Op.getImm();
5720    }
5721    addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
5722                      .addReg(MI->getOperand(4).getReg());
5723
5724    // Reload the original control word now.
5725    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
5726
5727    delete MI;   // The pseudo instruction is gone now.
5728    return BB;
5729  }
5730  }
5731}
5732
5733//===----------------------------------------------------------------------===//
5734//                           X86 Optimization Hooks
5735//===----------------------------------------------------------------------===//
5736
5737void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
5738                                                       const APInt &Mask,
5739                                                       APInt &KnownZero,
5740                                                       APInt &KnownOne,
5741                                                       const SelectionDAG &DAG,
5742                                                       unsigned Depth) const {
5743  unsigned Opc = Op.getOpcode();
5744  assert((Opc >= ISD::BUILTIN_OP_END ||
5745          Opc == ISD::INTRINSIC_WO_CHAIN ||
5746          Opc == ISD::INTRINSIC_W_CHAIN ||
5747          Opc == ISD::INTRINSIC_VOID) &&
5748         "Should use MaskedValueIsZero if you don't know whether Op"
5749         " is a target node!");
5750
5751  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
5752  switch (Opc) {
5753  default: break;
5754  case X86ISD::SETCC:
5755    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
5756                                       Mask.getBitWidth() - 1);
5757    break;
5758  }
5759}
5760
5761/// getShuffleScalarElt - Returns the scalar element that will make up the ith
5762/// element of the result of the vector shuffle.
5763static SDOperand getShuffleScalarElt(SDNode *N, unsigned i, SelectionDAG &DAG) {
5764  MVT::ValueType VT = N->getValueType(0);
5765  SDOperand PermMask = N->getOperand(2);
5766  unsigned NumElems = PermMask.getNumOperands();
5767  SDOperand V = (i < NumElems) ? N->getOperand(0) : N->getOperand(1);
5768  i %= NumElems;
5769  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5770    return (i == 0)
5771     ? V.getOperand(0) : DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
5772  } else if (V.getOpcode() == ISD::VECTOR_SHUFFLE) {
5773    SDOperand Idx = PermMask.getOperand(i);
5774    if (Idx.getOpcode() == ISD::UNDEF)
5775      return DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
5776    return getShuffleScalarElt(V.Val,cast<ConstantSDNode>(Idx)->getValue(),DAG);
5777  }
5778  return SDOperand();
5779}
5780
5781/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
5782/// node is a GlobalAddress + an offset.
5783static bool isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) {
5784  unsigned Opc = N->getOpcode();
5785  if (Opc == X86ISD::Wrapper) {
5786    if (dyn_cast<GlobalAddressSDNode>(N->getOperand(0))) {
5787      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
5788      return true;
5789    }
5790  } else if (Opc == ISD::ADD) {
5791    SDOperand N1 = N->getOperand(0);
5792    SDOperand N2 = N->getOperand(1);
5793    if (isGAPlusOffset(N1.Val, GA, Offset)) {
5794      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
5795      if (V) {
5796        Offset += V->getSignExtended();
5797        return true;
5798      }
5799    } else if (isGAPlusOffset(N2.Val, GA, Offset)) {
5800      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
5801      if (V) {
5802        Offset += V->getSignExtended();
5803        return true;
5804      }
5805    }
5806  }
5807  return false;
5808}
5809
5810/// isConsecutiveLoad - Returns true if N is loading from an address of Base
5811/// + Dist * Size.
5812static bool isConsecutiveLoad(SDNode *N, SDNode *Base, int Dist, int Size,
5813                              MachineFrameInfo *MFI) {
5814  if (N->getOperand(0).Val != Base->getOperand(0).Val)
5815    return false;
5816
5817  SDOperand Loc = N->getOperand(1);
5818  SDOperand BaseLoc = Base->getOperand(1);
5819  if (Loc.getOpcode() == ISD::FrameIndex) {
5820    if (BaseLoc.getOpcode() != ISD::FrameIndex)
5821      return false;
5822    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
5823    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
5824    int FS  = MFI->getObjectSize(FI);
5825    int BFS = MFI->getObjectSize(BFI);
5826    if (FS != BFS || FS != Size) return false;
5827    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Size);
5828  } else {
5829    GlobalValue *GV1 = NULL;
5830    GlobalValue *GV2 = NULL;
5831    int64_t Offset1 = 0;
5832    int64_t Offset2 = 0;
5833    bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1);
5834    bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2);
5835    if (isGA1 && isGA2 && GV1 == GV2)
5836      return Offset1 == (Offset2 + Dist*Size);
5837  }
5838
5839  return false;
5840}
5841
5842static bool isBaseAlignment16(SDNode *Base, MachineFrameInfo *MFI,
5843                              const X86Subtarget *Subtarget) {
5844  GlobalValue *GV;
5845  int64_t Offset = 0;
5846  if (isGAPlusOffset(Base, GV, Offset))
5847    return (GV->getAlignment() >= 16 && (Offset % 16) == 0);
5848  // DAG combine handles the stack object case.
5849  return false;
5850}
5851
5852
5853/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
5854/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
5855/// if the load addresses are consecutive, non-overlapping, and in the right
5856/// order.
5857static SDOperand PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
5858                                       const X86Subtarget *Subtarget) {
5859  MachineFunction &MF = DAG.getMachineFunction();
5860  MachineFrameInfo *MFI = MF.getFrameInfo();
5861  MVT::ValueType VT = N->getValueType(0);
5862  MVT::ValueType EVT = MVT::getVectorElementType(VT);
5863  SDOperand PermMask = N->getOperand(2);
5864  int NumElems = (int)PermMask.getNumOperands();
5865  SDNode *Base = NULL;
5866  for (int i = 0; i < NumElems; ++i) {
5867    SDOperand Idx = PermMask.getOperand(i);
5868    if (Idx.getOpcode() == ISD::UNDEF) {
5869      if (!Base) return SDOperand();
5870    } else {
5871      SDOperand Arg =
5872        getShuffleScalarElt(N, cast<ConstantSDNode>(Idx)->getValue(), DAG);
5873      if (!Arg.Val || !ISD::isNON_EXTLoad(Arg.Val))
5874        return SDOperand();
5875      if (!Base)
5876        Base = Arg.Val;
5877      else if (!isConsecutiveLoad(Arg.Val, Base,
5878                                  i, MVT::getSizeInBits(EVT)/8,MFI))
5879        return SDOperand();
5880    }
5881  }
5882
5883  bool isAlign16 = isBaseAlignment16(Base->getOperand(1).Val, MFI, Subtarget);
5884  LoadSDNode *LD = cast<LoadSDNode>(Base);
5885  if (isAlign16) {
5886    return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
5887                       LD->getSrcValueOffset(), LD->isVolatile());
5888  } else {
5889    return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
5890                       LD->getSrcValueOffset(), LD->isVolatile(),
5891                       LD->getAlignment());
5892  }
5893}
5894
5895/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
5896static SDOperand PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
5897                                      const X86Subtarget *Subtarget) {
5898  SDOperand Cond = N->getOperand(0);
5899
5900  // If we have SSE[12] support, try to form min/max nodes.
5901  if (Subtarget->hasSSE2() &&
5902      (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
5903    if (Cond.getOpcode() == ISD::SETCC) {
5904      // Get the LHS/RHS of the select.
5905      SDOperand LHS = N->getOperand(1);
5906      SDOperand RHS = N->getOperand(2);
5907      ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
5908
5909      unsigned Opcode = 0;
5910      if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
5911        switch (CC) {
5912        default: break;
5913        case ISD::SETOLE: // (X <= Y) ? X : Y -> min
5914        case ISD::SETULE:
5915        case ISD::SETLE:
5916          if (!UnsafeFPMath) break;
5917          // FALL THROUGH.
5918        case ISD::SETOLT:  // (X olt/lt Y) ? X : Y -> min
5919        case ISD::SETLT:
5920          Opcode = X86ISD::FMIN;
5921          break;
5922
5923        case ISD::SETOGT: // (X > Y) ? X : Y -> max
5924        case ISD::SETUGT:
5925        case ISD::SETGT:
5926          if (!UnsafeFPMath) break;
5927          // FALL THROUGH.
5928        case ISD::SETUGE:  // (X uge/ge Y) ? X : Y -> max
5929        case ISD::SETGE:
5930          Opcode = X86ISD::FMAX;
5931          break;
5932        }
5933      } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
5934        switch (CC) {
5935        default: break;
5936        case ISD::SETOGT: // (X > Y) ? Y : X -> min
5937        case ISD::SETUGT:
5938        case ISD::SETGT:
5939          if (!UnsafeFPMath) break;
5940          // FALL THROUGH.
5941        case ISD::SETUGE:  // (X uge/ge Y) ? Y : X -> min
5942        case ISD::SETGE:
5943          Opcode = X86ISD::FMIN;
5944          break;
5945
5946        case ISD::SETOLE:   // (X <= Y) ? Y : X -> max
5947        case ISD::SETULE:
5948        case ISD::SETLE:
5949          if (!UnsafeFPMath) break;
5950          // FALL THROUGH.
5951        case ISD::SETOLT:   // (X olt/lt Y) ? Y : X -> max
5952        case ISD::SETLT:
5953          Opcode = X86ISD::FMAX;
5954          break;
5955        }
5956      }
5957
5958      if (Opcode)
5959        return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS);
5960    }
5961
5962  }
5963
5964  return SDOperand();
5965}
5966
5967/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
5968static SDOperand PerformSTORECombine(StoreSDNode *St, SelectionDAG &DAG,
5969                                     const X86Subtarget *Subtarget) {
5970  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
5971  // the FP state in cases where an emms may be missing.
5972  // A preferable solution to the general problem is to figure out the right
5973  // places to insert EMMS.  This qualifies as a quick hack.
5974  if (MVT::isVector(St->getValue().getValueType()) &&
5975      MVT::getSizeInBits(St->getValue().getValueType()) == 64 &&
5976      isa<LoadSDNode>(St->getValue()) &&
5977      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
5978      St->getChain().hasOneUse() && !St->isVolatile()) {
5979    SDNode* LdVal = St->getValue().Val;
5980    LoadSDNode *Ld = 0;
5981    int TokenFactorIndex = -1;
5982    SmallVector<SDOperand, 8> Ops;
5983    SDNode* ChainVal = St->getChain().Val;
5984    // Must be a store of a load.  We currently handle two cases:  the load
5985    // is a direct child, and it's under an intervening TokenFactor.  It is
5986    // possible to dig deeper under nested TokenFactors.
5987    if (ChainVal == LdVal)
5988      Ld = cast<LoadSDNode>(St->getChain());
5989    else if (St->getValue().hasOneUse() &&
5990             ChainVal->getOpcode() == ISD::TokenFactor) {
5991      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
5992        if (ChainVal->getOperand(i).Val == LdVal) {
5993          TokenFactorIndex = i;
5994          Ld = cast<LoadSDNode>(St->getValue());
5995        } else
5996          Ops.push_back(ChainVal->getOperand(i));
5997      }
5998    }
5999    if (Ld) {
6000      // If we are a 64-bit capable x86, lower to a single movq load/store pair.
6001      if (Subtarget->is64Bit()) {
6002        SDOperand NewLd = DAG.getLoad(MVT::i64, Ld->getChain(),
6003                                      Ld->getBasePtr(), Ld->getSrcValue(),
6004                                      Ld->getSrcValueOffset(), Ld->isVolatile(),
6005                                      Ld->getAlignment());
6006        SDOperand NewChain = NewLd.getValue(1);
6007        if (TokenFactorIndex != -1) {
6008          Ops.push_back(NewLd);
6009          NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0],
6010                                 Ops.size());
6011        }
6012        return DAG.getStore(NewChain, NewLd, St->getBasePtr(),
6013                            St->getSrcValue(), St->getSrcValueOffset(),
6014                            St->isVolatile(), St->getAlignment());
6015      }
6016
6017      // Otherwise, lower to two 32-bit copies.
6018      SDOperand LoAddr = Ld->getBasePtr();
6019      SDOperand HiAddr = DAG.getNode(ISD::ADD, MVT::i32, LoAddr,
6020                                     DAG.getConstant(MVT::i32, 4));
6021
6022      SDOperand LoLd = DAG.getLoad(MVT::i32, Ld->getChain(), LoAddr,
6023                                   Ld->getSrcValue(), Ld->getSrcValueOffset(),
6024                                   Ld->isVolatile(), Ld->getAlignment());
6025      SDOperand HiLd = DAG.getLoad(MVT::i32, Ld->getChain(), HiAddr,
6026                                   Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
6027                                   Ld->isVolatile(),
6028                                   MinAlign(Ld->getAlignment(), 4));
6029
6030      SDOperand NewChain = LoLd.getValue(1);
6031      if (TokenFactorIndex != -1) {
6032        Ops.push_back(LoLd);
6033        Ops.push_back(HiLd);
6034        NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0],
6035                               Ops.size());
6036      }
6037
6038      LoAddr = St->getBasePtr();
6039      HiAddr = DAG.getNode(ISD::ADD, MVT::i32, LoAddr,
6040                           DAG.getConstant(MVT::i32, 4));
6041
6042      SDOperand LoSt = DAG.getStore(NewChain, LoLd, LoAddr,
6043                          St->getSrcValue(), St->getSrcValueOffset(),
6044                          St->isVolatile(), St->getAlignment());
6045      SDOperand HiSt = DAG.getStore(NewChain, HiLd, HiAddr,
6046                                    St->getSrcValue(), St->getSrcValueOffset()+4,
6047                                    St->isVolatile(),
6048                                    MinAlign(St->getAlignment(), 4));
6049      return DAG.getNode(ISD::TokenFactor, MVT::Other, LoSt, HiSt);
6050    }
6051  }
6052  return SDOperand();
6053}
6054
6055/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
6056/// X86ISD::FXOR nodes.
6057static SDOperand PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
6058  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
6059  // F[X]OR(0.0, x) -> x
6060  // F[X]OR(x, 0.0) -> x
6061  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
6062    if (C->getValueAPF().isPosZero())
6063      return N->getOperand(1);
6064  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
6065    if (C->getValueAPF().isPosZero())
6066      return N->getOperand(0);
6067  return SDOperand();
6068}
6069
6070/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
6071static SDOperand PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
6072  // FAND(0.0, x) -> 0.0
6073  // FAND(x, 0.0) -> 0.0
6074  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
6075    if (C->getValueAPF().isPosZero())
6076      return N->getOperand(0);
6077  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
6078    if (C->getValueAPF().isPosZero())
6079      return N->getOperand(1);
6080  return SDOperand();
6081}
6082
6083
6084SDOperand X86TargetLowering::PerformDAGCombine(SDNode *N,
6085                                               DAGCombinerInfo &DCI) const {
6086  SelectionDAG &DAG = DCI.DAG;
6087  switch (N->getOpcode()) {
6088  default: break;
6089  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, Subtarget);
6090  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
6091  case ISD::STORE:
6092      return PerformSTORECombine(cast<StoreSDNode>(N), DAG, Subtarget);
6093  case X86ISD::FXOR:
6094  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
6095  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
6096  }
6097
6098  return SDOperand();
6099}
6100
6101//===----------------------------------------------------------------------===//
6102//                           X86 Inline Assembly Support
6103//===----------------------------------------------------------------------===//
6104
6105/// getConstraintType - Given a constraint letter, return the type of
6106/// constraint it is for this target.
6107X86TargetLowering::ConstraintType
6108X86TargetLowering::getConstraintType(const std::string &Constraint) const {
6109  if (Constraint.size() == 1) {
6110    switch (Constraint[0]) {
6111    case 'A':
6112    case 'f':
6113    case 'r':
6114    case 'R':
6115    case 'l':
6116    case 'q':
6117    case 'Q':
6118    case 'x':
6119    case 'Y':
6120      return C_RegisterClass;
6121    default:
6122      break;
6123    }
6124  }
6125  return TargetLowering::getConstraintType(Constraint);
6126}
6127
6128/// LowerXConstraint - try to replace an X constraint, which matches anything,
6129/// with another that has more specific requirements based on the type of the
6130/// corresponding operand.
6131void X86TargetLowering::lowerXConstraint(MVT::ValueType ConstraintVT,
6132                                         std::string& s) const {
6133  if (MVT::isFloatingPoint(ConstraintVT)) {
6134    if (Subtarget->hasSSE2())
6135      s = "Y";
6136    else if (Subtarget->hasSSE1())
6137      s = "x";
6138    else
6139      s = "f";
6140  } else
6141    return TargetLowering::lowerXConstraint(ConstraintVT, s);
6142}
6143
6144/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
6145/// vector.  If it is invalid, don't add anything to Ops.
6146void X86TargetLowering::LowerAsmOperandForConstraint(SDOperand Op,
6147                                                     char Constraint,
6148                                                     std::vector<SDOperand>&Ops,
6149                                                     SelectionDAG &DAG) {
6150  SDOperand Result(0, 0);
6151
6152  switch (Constraint) {
6153  default: break;
6154  case 'I':
6155    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
6156      if (C->getValue() <= 31) {
6157        Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
6158        break;
6159      }
6160    }
6161    return;
6162  case 'N':
6163    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
6164      if (C->getValue() <= 255) {
6165        Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
6166        break;
6167      }
6168    }
6169    return;
6170  case 'i': {
6171    // Literal immediates are always ok.
6172    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
6173      Result = DAG.getTargetConstant(CST->getValue(), Op.getValueType());
6174      break;
6175    }
6176
6177    // If we are in non-pic codegen mode, we allow the address of a global (with
6178    // an optional displacement) to be used with 'i'.
6179    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
6180    int64_t Offset = 0;
6181
6182    // Match either (GA) or (GA+C)
6183    if (GA) {
6184      Offset = GA->getOffset();
6185    } else if (Op.getOpcode() == ISD::ADD) {
6186      ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6187      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
6188      if (C && GA) {
6189        Offset = GA->getOffset()+C->getValue();
6190      } else {
6191        C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6192        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
6193        if (C && GA)
6194          Offset = GA->getOffset()+C->getValue();
6195        else
6196          C = 0, GA = 0;
6197      }
6198    }
6199
6200    if (GA) {
6201      // If addressing this global requires a load (e.g. in PIC mode), we can't
6202      // match.
6203      if (Subtarget->GVRequiresExtraLoad(GA->getGlobal(), getTargetMachine(),
6204                                         false))
6205        return;
6206
6207      Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
6208                                      Offset);
6209      Result = Op;
6210      break;
6211    }
6212
6213    // Otherwise, not valid for this mode.
6214    return;
6215  }
6216  }
6217
6218  if (Result.Val) {
6219    Ops.push_back(Result);
6220    return;
6221  }
6222  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
6223}
6224
6225std::vector<unsigned> X86TargetLowering::
6226getRegClassForInlineAsmConstraint(const std::string &Constraint,
6227                                  MVT::ValueType VT) const {
6228  if (Constraint.size() == 1) {
6229    // FIXME: not handling fp-stack yet!
6230    switch (Constraint[0]) {      // GCC X86 Constraint Letters
6231    default: break;  // Unknown constraint letter
6232    case 'A':   // EAX/EDX
6233      if (VT == MVT::i32 || VT == MVT::i64)
6234        return make_vector<unsigned>(X86::EAX, X86::EDX, 0);
6235      break;
6236    case 'q':   // Q_REGS (GENERAL_REGS in 64-bit mode)
6237    case 'Q':   // Q_REGS
6238      if (VT == MVT::i32)
6239        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
6240      else if (VT == MVT::i16)
6241        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
6242      else if (VT == MVT::i8)
6243        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
6244      else if (VT == MVT::i64)
6245        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
6246      break;
6247    }
6248  }
6249
6250  return std::vector<unsigned>();
6251}
6252
6253std::pair<unsigned, const TargetRegisterClass*>
6254X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
6255                                                MVT::ValueType VT) const {
6256  // First, see if this is a constraint that directly corresponds to an LLVM
6257  // register class.
6258  if (Constraint.size() == 1) {
6259    // GCC Constraint Letters
6260    switch (Constraint[0]) {
6261    default: break;
6262    case 'r':   // GENERAL_REGS
6263    case 'R':   // LEGACY_REGS
6264    case 'l':   // INDEX_REGS
6265      if (VT == MVT::i64 && Subtarget->is64Bit())
6266        return std::make_pair(0U, X86::GR64RegisterClass);
6267      if (VT == MVT::i32)
6268        return std::make_pair(0U, X86::GR32RegisterClass);
6269      else if (VT == MVT::i16)
6270        return std::make_pair(0U, X86::GR16RegisterClass);
6271      else if (VT == MVT::i8)
6272        return std::make_pair(0U, X86::GR8RegisterClass);
6273      break;
6274    case 'f':  // FP Stack registers.
6275      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
6276      // value to the correct fpstack register class.
6277      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
6278        return std::make_pair(0U, X86::RFP32RegisterClass);
6279      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
6280        return std::make_pair(0U, X86::RFP64RegisterClass);
6281      return std::make_pair(0U, X86::RFP80RegisterClass);
6282    case 'y':   // MMX_REGS if MMX allowed.
6283      if (!Subtarget->hasMMX()) break;
6284      return std::make_pair(0U, X86::VR64RegisterClass);
6285      break;
6286    case 'Y':   // SSE_REGS if SSE2 allowed
6287      if (!Subtarget->hasSSE2()) break;
6288      // FALL THROUGH.
6289    case 'x':   // SSE_REGS if SSE1 allowed
6290      if (!Subtarget->hasSSE1()) break;
6291
6292      switch (VT) {
6293      default: break;
6294      // Scalar SSE types.
6295      case MVT::f32:
6296      case MVT::i32:
6297        return std::make_pair(0U, X86::FR32RegisterClass);
6298      case MVT::f64:
6299      case MVT::i64:
6300        return std::make_pair(0U, X86::FR64RegisterClass);
6301      // Vector types.
6302      case MVT::v16i8:
6303      case MVT::v8i16:
6304      case MVT::v4i32:
6305      case MVT::v2i64:
6306      case MVT::v4f32:
6307      case MVT::v2f64:
6308        return std::make_pair(0U, X86::VR128RegisterClass);
6309      }
6310      break;
6311    }
6312  }
6313
6314  // Use the default implementation in TargetLowering to convert the register
6315  // constraint into a member of a register class.
6316  std::pair<unsigned, const TargetRegisterClass*> Res;
6317  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
6318
6319  // Not found as a standard register?
6320  if (Res.second == 0) {
6321    // GCC calls "st(0)" just plain "st".
6322    if (StringsEqualNoCase("{st}", Constraint)) {
6323      Res.first = X86::ST0;
6324      Res.second = X86::RFP80RegisterClass;
6325    }
6326
6327    return Res;
6328  }
6329
6330  // Otherwise, check to see if this is a register class of the wrong value
6331  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
6332  // turn into {ax},{dx}.
6333  if (Res.second->hasType(VT))
6334    return Res;   // Correct type already, nothing to do.
6335
6336  // All of the single-register GCC register classes map their values onto
6337  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
6338  // really want an 8-bit or 32-bit register, map to the appropriate register
6339  // class and return the appropriate register.
6340  if (Res.second != X86::GR16RegisterClass)
6341    return Res;
6342
6343  if (VT == MVT::i8) {
6344    unsigned DestReg = 0;
6345    switch (Res.first) {
6346    default: break;
6347    case X86::AX: DestReg = X86::AL; break;
6348    case X86::DX: DestReg = X86::DL; break;
6349    case X86::CX: DestReg = X86::CL; break;
6350    case X86::BX: DestReg = X86::BL; break;
6351    }
6352    if (DestReg) {
6353      Res.first = DestReg;
6354      Res.second = Res.second = X86::GR8RegisterClass;
6355    }
6356  } else if (VT == MVT::i32) {
6357    unsigned DestReg = 0;
6358    switch (Res.first) {
6359    default: break;
6360    case X86::AX: DestReg = X86::EAX; break;
6361    case X86::DX: DestReg = X86::EDX; break;
6362    case X86::CX: DestReg = X86::ECX; break;
6363    case X86::BX: DestReg = X86::EBX; break;
6364    case X86::SI: DestReg = X86::ESI; break;
6365    case X86::DI: DestReg = X86::EDI; break;
6366    case X86::BP: DestReg = X86::EBP; break;
6367    case X86::SP: DestReg = X86::ESP; break;
6368    }
6369    if (DestReg) {
6370      Res.first = DestReg;
6371      Res.second = Res.second = X86::GR32RegisterClass;
6372    }
6373  } else if (VT == MVT::i64) {
6374    unsigned DestReg = 0;
6375    switch (Res.first) {
6376    default: break;
6377    case X86::AX: DestReg = X86::RAX; break;
6378    case X86::DX: DestReg = X86::RDX; break;
6379    case X86::CX: DestReg = X86::RCX; break;
6380    case X86::BX: DestReg = X86::RBX; break;
6381    case X86::SI: DestReg = X86::RSI; break;
6382    case X86::DI: DestReg = X86::RDI; break;
6383    case X86::BP: DestReg = X86::RBP; break;
6384    case X86::SP: DestReg = X86::RSP; break;
6385    }
6386    if (DestReg) {
6387      Res.first = DestReg;
6388      Res.second = Res.second = X86::GR64RegisterClass;
6389    }
6390  }
6391
6392  return Res;
6393}
6394