X86ISelLowering.cpp revision 1c39d4cfaa80addcf8ef4e298be63fc5831b8efe
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86TargetMachine.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Function.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/ADT/BitVector.h"
27#include "llvm/ADT/VectorExtras.h"
28#include "llvm/CodeGen/CallingConvLower.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/MachineModuleInfo.h"
33#include "llvm/CodeGen/MachineRegisterInfo.h"
34#include "llvm/CodeGen/PseudoSourceValue.h"
35#include "llvm/CodeGen/SelectionDAG.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Target/TargetOptions.h"
39#include "llvm/ADT/SmallSet.h"
40#include "llvm/ADT/StringExtras.h"
41#include "llvm/Support/CommandLine.h"
42using namespace llvm;
43
44static cl::opt<bool>
45DisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX"));
46
47// Forward declarations.
48static SDValue getMOVLMask(unsigned NumElems, SelectionDAG &DAG);
49
50X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
51  : TargetLowering(TM) {
52  Subtarget = &TM.getSubtarget<X86Subtarget>();
53  X86ScalarSSEf64 = Subtarget->hasSSE2();
54  X86ScalarSSEf32 = Subtarget->hasSSE1();
55  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
56
57  bool Fast = false;
58
59  RegInfo = TM.getRegisterInfo();
60  TD = getTargetData();
61
62  // Set up the TargetLowering object.
63
64  // X86 is weird, it always uses i8 for shift amounts and setcc results.
65  setShiftAmountType(MVT::i8);
66  setBooleanContents(ZeroOrOneBooleanContent);
67  setSchedulingPreference(SchedulingForRegPressure);
68  setShiftAmountFlavor(Mask);   // shl X, 32 == shl X, 0
69  setStackPointerRegisterToSaveRestore(X86StackPtr);
70
71  if (Subtarget->isTargetDarwin()) {
72    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
73    setUseUnderscoreSetJmp(false);
74    setUseUnderscoreLongJmp(false);
75  } else if (Subtarget->isTargetMingw()) {
76    // MS runtime is weird: it exports _setjmp, but longjmp!
77    setUseUnderscoreSetJmp(true);
78    setUseUnderscoreLongJmp(false);
79  } else {
80    setUseUnderscoreSetJmp(true);
81    setUseUnderscoreLongJmp(true);
82  }
83
84  // Set up the register classes.
85  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
86  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
87  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
88  if (Subtarget->is64Bit())
89    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
90
91  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
92
93  // We don't accept any truncstore of integer registers.
94  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
95  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
96  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
97  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
98  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
99  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
100
101  // SETOEQ and SETUNE require checking two conditions.
102  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
103  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
104  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
105  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
106  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
107  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
108
109  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
110  // operation.
111  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
112  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
113  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
114
115  if (Subtarget->is64Bit()) {
116    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
117    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
118  } else {
119    if (X86ScalarSSEf64) {
120      // We have an impenetrably clever algorithm for ui64->double only.
121      setOperationAction(ISD::UINT_TO_FP   , MVT::i64  , Custom);
122      // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
123      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Expand);
124    } else
125      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Promote);
126  }
127
128  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
129  // this operation.
130  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
131  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
132  // SSE has no i16 to fp conversion, only i32
133  if (X86ScalarSSEf32) {
134    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
135    // f32 and f64 cases are Legal, f80 case is not
136    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
137  } else {
138    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
139    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
140  }
141
142  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
143  // are Legal, f80 is custom lowered.
144  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
145  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
146
147  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
148  // this operation.
149  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
150  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
151
152  if (X86ScalarSSEf32) {
153    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
154    // f32 and f64 cases are Legal, f80 case is not
155    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
156  } else {
157    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
158    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
159  }
160
161  // Handle FP_TO_UINT by promoting the destination to a larger signed
162  // conversion.
163  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
164  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
165  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
166
167  if (Subtarget->is64Bit()) {
168    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
169    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
170  } else {
171    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
172      // Expand FP_TO_UINT into a select.
173      // FIXME: We would like to use a Custom expander here eventually to do
174      // the optimal thing for SSE vs. the default expansion in the legalizer.
175      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
176    else
177      // With SSE3 we can use fisttpll to convert to a signed i64.
178      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Promote);
179  }
180
181  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
182  if (!X86ScalarSSEf64) {
183    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
184    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
185  }
186
187  // Scalar integer divide and remainder are lowered to use operations that
188  // produce two results, to match the available instructions. This exposes
189  // the two-result form to trivial CSE, which is able to combine x/y and x%y
190  // into a single instruction.
191  //
192  // Scalar integer multiply-high is also lowered to use two-result
193  // operations, to match the available instructions. However, plain multiply
194  // (low) operations are left as Legal, as there are single-result
195  // instructions for this in x86. Using the two-result multiply instructions
196  // when both high and low results are needed must be arranged by dagcombine.
197  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
198  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
199  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
200  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
201  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
202  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
203  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
204  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
205  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
206  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
207  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
208  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
209  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
210  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
211  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
212  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
213  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
214  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
215  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
216  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
217  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
218  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
219  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
220  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
221
222  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
223  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
224  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
225  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
226  if (Subtarget->is64Bit())
227    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
228  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
229  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
230  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
231  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
232  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
233  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
234  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
235  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
236
237  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
238  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
239  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
240  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
241  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
242  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
243  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
244  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
245  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
246  if (Subtarget->is64Bit()) {
247    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
248    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
249    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
250  }
251
252  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
253  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
254
255  // These should be promoted to a larger select which is supported.
256  setOperationAction(ISD::SELECT           , MVT::i1   , Promote);
257  setOperationAction(ISD::SELECT           , MVT::i8   , Promote);
258  // X86 wants to expand cmov itself.
259  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
260  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
261  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
262  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
263  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
264  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
265  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
266  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
267  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
268  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
269  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
270  if (Subtarget->is64Bit()) {
271    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
272    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
273  }
274  // X86 ret instruction may pop stack.
275  setOperationAction(ISD::RET             , MVT::Other, Custom);
276  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
277
278  // Darwin ABI issue.
279  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
280  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
281  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
282  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
283  if (Subtarget->is64Bit())
284    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
285  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
286  if (Subtarget->is64Bit()) {
287    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
288    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
289    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
290    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
291  }
292  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
293  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
294  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
295  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
296  if (Subtarget->is64Bit()) {
297    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
298    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
299    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
300  }
301
302  if (Subtarget->hasSSE1())
303    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
304
305  if (!Subtarget->hasSSE2())
306    setOperationAction(ISD::MEMBARRIER    , MVT::Other, Expand);
307
308  // Expand certain atomics
309  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom);
310  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom);
311  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
312  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
313
314  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom);
315  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom);
316  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
317  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
318
319  if (!Subtarget->is64Bit()) {
320    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
321    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
322    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
323    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
324    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
325    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
326    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
327  }
328
329  // Use the default ISD::DBG_STOPPOINT, ISD::DECLARE expansion.
330  setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
331  // FIXME - use subtarget debug flags
332  if (!Subtarget->isTargetDarwin() &&
333      !Subtarget->isTargetELF() &&
334      !Subtarget->isTargetCygMing()) {
335    setOperationAction(ISD::DBG_LABEL, MVT::Other, Expand);
336    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
337  }
338
339  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
340  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
341  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
342  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
343  if (Subtarget->is64Bit()) {
344    setExceptionPointerRegister(X86::RAX);
345    setExceptionSelectorRegister(X86::RDX);
346  } else {
347    setExceptionPointerRegister(X86::EAX);
348    setExceptionSelectorRegister(X86::EDX);
349  }
350  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
351  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
352
353  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
354
355  setOperationAction(ISD::TRAP, MVT::Other, Legal);
356
357  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
358  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
359  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
360  if (Subtarget->is64Bit()) {
361    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
362    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
363  } else {
364    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
365    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
366  }
367
368  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
369  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
370  if (Subtarget->is64Bit())
371    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
372  if (Subtarget->isTargetCygMing())
373    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
374  else
375    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
376
377  if (X86ScalarSSEf64) {
378    // f32 and f64 use SSE.
379    // Set up the FP register classes.
380    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
381    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
382
383    // Use ANDPD to simulate FABS.
384    setOperationAction(ISD::FABS , MVT::f64, Custom);
385    setOperationAction(ISD::FABS , MVT::f32, Custom);
386
387    // Use XORP to simulate FNEG.
388    setOperationAction(ISD::FNEG , MVT::f64, Custom);
389    setOperationAction(ISD::FNEG , MVT::f32, Custom);
390
391    // Use ANDPD and ORPD to simulate FCOPYSIGN.
392    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
393    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
394
395    // We don't support sin/cos/fmod
396    setOperationAction(ISD::FSIN , MVT::f64, Expand);
397    setOperationAction(ISD::FCOS , MVT::f64, Expand);
398    setOperationAction(ISD::FSIN , MVT::f32, Expand);
399    setOperationAction(ISD::FCOS , MVT::f32, Expand);
400
401    // Expand FP immediates into loads from the stack, except for the special
402    // cases we handle.
403    addLegalFPImmediate(APFloat(+0.0)); // xorpd
404    addLegalFPImmediate(APFloat(+0.0f)); // xorps
405
406    // Floating truncations from f80 and extensions to f80 go through memory.
407    // If optimizing, we lie about this though and handle it in
408    // InstructionSelectPreprocess so that dagcombine2 can hack on these.
409    if (Fast) {
410      setConvertAction(MVT::f32, MVT::f80, Expand);
411      setConvertAction(MVT::f64, MVT::f80, Expand);
412      setConvertAction(MVT::f80, MVT::f32, Expand);
413      setConvertAction(MVT::f80, MVT::f64, Expand);
414    }
415  } else if (X86ScalarSSEf32) {
416    // Use SSE for f32, x87 for f64.
417    // Set up the FP register classes.
418    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
419    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
420
421    // Use ANDPS to simulate FABS.
422    setOperationAction(ISD::FABS , MVT::f32, Custom);
423
424    // Use XORP to simulate FNEG.
425    setOperationAction(ISD::FNEG , MVT::f32, Custom);
426
427    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
428
429    // Use ANDPS and ORPS to simulate FCOPYSIGN.
430    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
431    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
432
433    // We don't support sin/cos/fmod
434    setOperationAction(ISD::FSIN , MVT::f32, Expand);
435    setOperationAction(ISD::FCOS , MVT::f32, Expand);
436
437    // Special cases we handle for FP constants.
438    addLegalFPImmediate(APFloat(+0.0f)); // xorps
439    addLegalFPImmediate(APFloat(+0.0)); // FLD0
440    addLegalFPImmediate(APFloat(+1.0)); // FLD1
441    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
442    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
443
444    // SSE <-> X87 conversions go through memory.  If optimizing, we lie about
445    // this though and handle it in InstructionSelectPreprocess so that
446    // dagcombine2 can hack on these.
447    if (Fast) {
448      setConvertAction(MVT::f32, MVT::f64, Expand);
449      setConvertAction(MVT::f32, MVT::f80, Expand);
450      setConvertAction(MVT::f80, MVT::f32, Expand);
451      setConvertAction(MVT::f64, MVT::f32, Expand);
452      // And x87->x87 truncations also.
453      setConvertAction(MVT::f80, MVT::f64, Expand);
454    }
455
456    if (!UnsafeFPMath) {
457      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
458      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
459    }
460  } else {
461    // f32 and f64 in x87.
462    // Set up the FP register classes.
463    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
464    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
465
466    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
467    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
468    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
469    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
470
471    // Floating truncations go through memory.  If optimizing, we lie about
472    // this though and handle it in InstructionSelectPreprocess so that
473    // dagcombine2 can hack on these.
474    if (Fast) {
475      setConvertAction(MVT::f80, MVT::f32, Expand);
476      setConvertAction(MVT::f64, MVT::f32, Expand);
477      setConvertAction(MVT::f80, MVT::f64, Expand);
478    }
479
480    if (!UnsafeFPMath) {
481      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
482      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
483    }
484    addLegalFPImmediate(APFloat(+0.0)); // FLD0
485    addLegalFPImmediate(APFloat(+1.0)); // FLD1
486    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
487    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
488    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
489    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
490    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
491    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
492  }
493
494  // Long double always uses X87.
495  addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
496  setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
497  setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
498  {
499    bool ignored;
500    APFloat TmpFlt(+0.0);
501    TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
502                   &ignored);
503    addLegalFPImmediate(TmpFlt);  // FLD0
504    TmpFlt.changeSign();
505    addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
506    APFloat TmpFlt2(+1.0);
507    TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
508                    &ignored);
509    addLegalFPImmediate(TmpFlt2);  // FLD1
510    TmpFlt2.changeSign();
511    addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
512  }
513
514  if (!UnsafeFPMath) {
515    setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
516    setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
517  }
518
519  // Always use a library call for pow.
520  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
521  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
522  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
523
524  setOperationAction(ISD::FLOG, MVT::f80, Expand);
525  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
526  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
527  setOperationAction(ISD::FEXP, MVT::f80, Expand);
528  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
529
530  // First set operation action for all vector types to either promote
531  // (for widening) or expand (for scalarization). Then we will selectively
532  // turn on ones that can be effectively codegen'd.
533  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
534       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
535    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
536    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
537    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
538    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
539    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
540    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
541    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
542    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
543    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
544    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
545    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
546    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
547    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
548    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
549    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
550    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
551    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
552    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
553    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
554    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
555    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
556    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
557    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
558    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
559    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
560    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
561    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
562    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
563    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
564    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
565    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
566    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
567    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
568    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
569    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
570    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
571    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
572    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
573    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
574    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
575    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
576    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
577    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
578  }
579
580  if (!DisableMMX && Subtarget->hasMMX()) {
581    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
582    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
583    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
584    addRegisterClass(MVT::v2f32, X86::VR64RegisterClass);
585    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
586
587    // FIXME: add MMX packed arithmetics
588
589    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
590    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
591    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
592    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
593
594    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
595    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
596    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
597    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
598
599    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
600    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
601
602    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
603    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
604    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
605    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
606    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
607    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
608    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
609
610    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
611    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
612    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
613    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
614    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
615    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
616    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
617
618    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
619    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
620    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
621    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
622    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
623    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
624    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
625
626    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
627    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
628    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
629    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
630    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
631    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
632    setOperationAction(ISD::LOAD,               MVT::v2f32, Promote);
633    AddPromotedToType (ISD::LOAD,               MVT::v2f32, MVT::v1i64);
634    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
635
636    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
637    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
638    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
639    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f32, Custom);
640    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
641
642    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
643    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
644    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
645    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
646
647    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2f32, Custom);
648    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
649    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
650    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
651
652    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i16, Custom);
653
654    setTruncStoreAction(MVT::v8i16, MVT::v8i8, Expand);
655    setOperationAction(ISD::TRUNCATE,           MVT::v8i8, Expand);
656    setOperationAction(ISD::SELECT,             MVT::v8i8, Promote);
657    setOperationAction(ISD::SELECT,             MVT::v4i16, Promote);
658    setOperationAction(ISD::SELECT,             MVT::v2i32, Promote);
659    setOperationAction(ISD::SELECT,             MVT::v1i64, Custom);
660  }
661
662  if (Subtarget->hasSSE1()) {
663    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
664
665    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
666    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
667    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
668    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
669    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
670    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
671    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
672    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
673    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
674    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
675    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
676    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
677  }
678
679  if (Subtarget->hasSSE2()) {
680    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
681    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
682    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
683    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
684    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
685
686    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
687    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
688    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
689    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
690    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
691    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
692    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
693    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
694    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
695    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
696    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
697    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
698    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
699    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
700    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
701    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
702
703    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
704    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
705    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
706    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
707
708    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
709    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
710    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
711    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
712    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
713
714    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
715    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
716      MVT VT = (MVT::SimpleValueType)i;
717      // Do not attempt to custom lower non-power-of-2 vectors
718      if (!isPowerOf2_32(VT.getVectorNumElements()))
719        continue;
720      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
721      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
722      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
723    }
724    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
725    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
726    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
727    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
728    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
729    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
730    if (Subtarget->is64Bit()) {
731      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
732      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
733    }
734
735    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
736    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
737      setOperationAction(ISD::AND,    (MVT::SimpleValueType)VT, Promote);
738      AddPromotedToType (ISD::AND,    (MVT::SimpleValueType)VT, MVT::v2i64);
739      setOperationAction(ISD::OR,     (MVT::SimpleValueType)VT, Promote);
740      AddPromotedToType (ISD::OR,     (MVT::SimpleValueType)VT, MVT::v2i64);
741      setOperationAction(ISD::XOR,    (MVT::SimpleValueType)VT, Promote);
742      AddPromotedToType (ISD::XOR,    (MVT::SimpleValueType)VT, MVT::v2i64);
743      setOperationAction(ISD::LOAD,   (MVT::SimpleValueType)VT, Promote);
744      AddPromotedToType (ISD::LOAD,   (MVT::SimpleValueType)VT, MVT::v2i64);
745      setOperationAction(ISD::SELECT, (MVT::SimpleValueType)VT, Promote);
746      AddPromotedToType (ISD::SELECT, (MVT::SimpleValueType)VT, MVT::v2i64);
747    }
748
749    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
750
751    // Custom lower v2i64 and v2f64 selects.
752    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
753    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
754    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
755    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
756
757  }
758
759  if (Subtarget->hasSSE41()) {
760    // FIXME: Do we need to handle scalar-to-vector here?
761    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
762
763    // i8 and i16 vectors are custom , because the source register and source
764    // source memory operand types are not the same width.  f32 vectors are
765    // custom since the immediate controlling the insert encodes additional
766    // information.
767    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
768    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
769    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Legal);
770    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
771
772    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
773    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
774    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
775    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
776
777    if (Subtarget->is64Bit()) {
778      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
779      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
780    }
781  }
782
783  if (Subtarget->hasSSE42()) {
784    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
785  }
786
787  // We want to custom lower some of our intrinsics.
788  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
789
790  // Add/Sub/Mul with overflow operations are custom lowered.
791  setOperationAction(ISD::SADDO, MVT::i32, Custom);
792  setOperationAction(ISD::SADDO, MVT::i64, Custom);
793  setOperationAction(ISD::UADDO, MVT::i32, Custom);
794  setOperationAction(ISD::UADDO, MVT::i64, Custom);
795  setOperationAction(ISD::SSUBO, MVT::i32, Custom);
796  setOperationAction(ISD::SSUBO, MVT::i64, Custom);
797  setOperationAction(ISD::USUBO, MVT::i32, Custom);
798  setOperationAction(ISD::USUBO, MVT::i64, Custom);
799  setOperationAction(ISD::SMULO, MVT::i32, Custom);
800  setOperationAction(ISD::SMULO, MVT::i64, Custom);
801  setOperationAction(ISD::UMULO, MVT::i32, Custom);
802  setOperationAction(ISD::UMULO, MVT::i64, Custom);
803
804  // We have target-specific dag combine patterns for the following nodes:
805  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
806  setTargetDAGCombine(ISD::BUILD_VECTOR);
807  setTargetDAGCombine(ISD::SELECT);
808  setTargetDAGCombine(ISD::STORE);
809
810  computeRegisterProperties();
811
812  // FIXME: These should be based on subtarget info. Plus, the values should
813  // be smaller when we are in optimizing for size mode.
814  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
815  maxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores
816  maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
817  allowUnalignedMemoryAccesses = true; // x86 supports it!
818  setPrefLoopAlignment(16);
819}
820
821
822MVT X86TargetLowering::getSetCCResultType(const SDValue &) const {
823  return MVT::i8;
824}
825
826
827/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
828/// the desired ByVal argument alignment.
829static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
830  if (MaxAlign == 16)
831    return;
832  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
833    if (VTy->getBitWidth() == 128)
834      MaxAlign = 16;
835  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
836    unsigned EltAlign = 0;
837    getMaxByValAlign(ATy->getElementType(), EltAlign);
838    if (EltAlign > MaxAlign)
839      MaxAlign = EltAlign;
840  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
841    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
842      unsigned EltAlign = 0;
843      getMaxByValAlign(STy->getElementType(i), EltAlign);
844      if (EltAlign > MaxAlign)
845        MaxAlign = EltAlign;
846      if (MaxAlign == 16)
847        break;
848    }
849  }
850  return;
851}
852
853/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
854/// function arguments in the caller parameter area. For X86, aggregates
855/// that contain SSE vectors are placed at 16-byte boundaries while the rest
856/// are at 4-byte boundaries.
857unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
858  if (Subtarget->is64Bit()) {
859    // Max of 8 and alignment of type.
860    unsigned TyAlign = TD->getABITypeAlignment(Ty);
861    if (TyAlign > 8)
862      return TyAlign;
863    return 8;
864  }
865
866  unsigned Align = 4;
867  if (Subtarget->hasSSE1())
868    getMaxByValAlign(Ty, Align);
869  return Align;
870}
871
872/// getOptimalMemOpType - Returns the target specific optimal type for load
873/// and store operations as a result of memset, memcpy, and memmove
874/// lowering. It returns MVT::iAny if SelectionDAG should be responsible for
875/// determining it.
876MVT
877X86TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align,
878                                       bool isSrcConst, bool isSrcStr) const {
879  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
880  // linux.  This is because the stack realignment code can't handle certain
881  // cases like PR2962.  This should be removed when PR2962 is fixed.
882  if (Subtarget->getStackAlignment() >= 16) {
883    if ((isSrcConst || isSrcStr) && Subtarget->hasSSE2() && Size >= 16)
884      return MVT::v4i32;
885    if ((isSrcConst || isSrcStr) && Subtarget->hasSSE1() && Size >= 16)
886      return MVT::v4f32;
887  }
888  if (Subtarget->is64Bit() && Size >= 8)
889    return MVT::i64;
890  return MVT::i32;
891}
892
893
894/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
895/// jumptable.
896SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
897                                                      SelectionDAG &DAG) const {
898  if (usesGlobalOffsetTable())
899    return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy());
900  if (!Subtarget->isPICStyleRIPRel())
901    return DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy());
902  return Table;
903}
904
905//===----------------------------------------------------------------------===//
906//               Return Value Calling Convention Implementation
907//===----------------------------------------------------------------------===//
908
909#include "X86GenCallingConv.inc"
910
911/// LowerRET - Lower an ISD::RET node.
912SDValue X86TargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG) {
913  assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
914
915  SmallVector<CCValAssign, 16> RVLocs;
916  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
917  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
918  CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
919  CCInfo.AnalyzeReturn(Op.getNode(), RetCC_X86);
920
921  // If this is the first return lowered for this function, add the regs to the
922  // liveout set for the function.
923  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
924    for (unsigned i = 0; i != RVLocs.size(); ++i)
925      if (RVLocs[i].isRegLoc())
926        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
927  }
928  SDValue Chain = Op.getOperand(0);
929
930  // Handle tail call return.
931  Chain = GetPossiblePreceedingTailCall(Chain, X86ISD::TAILCALL);
932  if (Chain.getOpcode() == X86ISD::TAILCALL) {
933    SDValue TailCall = Chain;
934    SDValue TargetAddress = TailCall.getOperand(1);
935    SDValue StackAdjustment = TailCall.getOperand(2);
936    assert(((TargetAddress.getOpcode() == ISD::Register &&
937               (cast<RegisterSDNode>(TargetAddress)->getReg() == X86::EAX ||
938                cast<RegisterSDNode>(TargetAddress)->getReg() == X86::R9)) ||
939              TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
940              TargetAddress.getOpcode() == ISD::TargetGlobalAddress) &&
941             "Expecting an global address, external symbol, or register");
942    assert(StackAdjustment.getOpcode() == ISD::Constant &&
943           "Expecting a const value");
944
945    SmallVector<SDValue,8> Operands;
946    Operands.push_back(Chain.getOperand(0));
947    Operands.push_back(TargetAddress);
948    Operands.push_back(StackAdjustment);
949    // Copy registers used by the call. Last operand is a flag so it is not
950    // copied.
951    for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) {
952      Operands.push_back(Chain.getOperand(i));
953    }
954    return DAG.getNode(X86ISD::TC_RETURN, MVT::Other, &Operands[0],
955                       Operands.size());
956  }
957
958  // Regular return.
959  SDValue Flag;
960
961  SmallVector<SDValue, 6> RetOps;
962  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
963  // Operand #1 = Bytes To Pop
964  RetOps.push_back(DAG.getConstant(getBytesToPopOnReturn(), MVT::i16));
965
966  // Copy the result values into the output registers.
967  for (unsigned i = 0; i != RVLocs.size(); ++i) {
968    CCValAssign &VA = RVLocs[i];
969    assert(VA.isRegLoc() && "Can only return in registers!");
970    SDValue ValToCopy = Op.getOperand(i*2+1);
971
972    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
973    // the RET instruction and handled by the FP Stackifier.
974    if (RVLocs[i].getLocReg() == X86::ST0 ||
975        RVLocs[i].getLocReg() == X86::ST1) {
976      // If this is a copy from an xmm register to ST(0), use an FPExtend to
977      // change the value to the FP stack register class.
978      if (isScalarFPTypeInSSEReg(RVLocs[i].getValVT()))
979        ValToCopy = DAG.getNode(ISD::FP_EXTEND, MVT::f80, ValToCopy);
980      RetOps.push_back(ValToCopy);
981      // Don't emit a copytoreg.
982      continue;
983    }
984
985    Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), ValToCopy, Flag);
986    Flag = Chain.getValue(1);
987  }
988
989  // The x86-64 ABI for returning structs by value requires that we copy
990  // the sret argument into %rax for the return. We saved the argument into
991  // a virtual register in the entry block, so now we copy the value out
992  // and into %rax.
993  if (Subtarget->is64Bit() &&
994      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
995    MachineFunction &MF = DAG.getMachineFunction();
996    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
997    unsigned Reg = FuncInfo->getSRetReturnReg();
998    if (!Reg) {
999      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1000      FuncInfo->setSRetReturnReg(Reg);
1001    }
1002    SDValue Val = DAG.getCopyFromReg(Chain, Reg, getPointerTy());
1003
1004    Chain = DAG.getCopyToReg(Chain, X86::RAX, Val, Flag);
1005    Flag = Chain.getValue(1);
1006  }
1007
1008  RetOps[0] = Chain;  // Update chain.
1009
1010  // Add the flag if we have it.
1011  if (Flag.getNode())
1012    RetOps.push_back(Flag);
1013
1014  return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, &RetOps[0], RetOps.size());
1015}
1016
1017
1018/// LowerCallResult - Lower the result values of an ISD::CALL into the
1019/// appropriate copies out of appropriate physical registers.  This assumes that
1020/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
1021/// being lowered.  The returns a SDNode with the same number of values as the
1022/// ISD::CALL.
1023SDNode *X86TargetLowering::
1024LowerCallResult(SDValue Chain, SDValue InFlag, CallSDNode *TheCall,
1025                unsigned CallingConv, SelectionDAG &DAG) {
1026
1027  // Assign locations to each value returned by this call.
1028  SmallVector<CCValAssign, 16> RVLocs;
1029  bool isVarArg = TheCall->isVarArg();
1030  CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
1031  CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
1032
1033  SmallVector<SDValue, 8> ResultVals;
1034
1035  // Copy all of the result registers out of their specified physreg.
1036  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1037    MVT CopyVT = RVLocs[i].getValVT();
1038
1039    // If this is a call to a function that returns an fp value on the floating
1040    // point stack, but where we prefer to use the value in xmm registers, copy
1041    // it out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1042    if ((RVLocs[i].getLocReg() == X86::ST0 ||
1043         RVLocs[i].getLocReg() == X86::ST1) &&
1044        isScalarFPTypeInSSEReg(RVLocs[i].getValVT())) {
1045      CopyVT = MVT::f80;
1046    }
1047
1048    Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(),
1049                               CopyVT, InFlag).getValue(1);
1050    SDValue Val = Chain.getValue(0);
1051    InFlag = Chain.getValue(2);
1052
1053    if (CopyVT != RVLocs[i].getValVT()) {
1054      // Round the F80 the right size, which also moves to the appropriate xmm
1055      // register.
1056      Val = DAG.getNode(ISD::FP_ROUND, RVLocs[i].getValVT(), Val,
1057                        // This truncation won't change the value.
1058                        DAG.getIntPtrConstant(1));
1059    }
1060
1061    ResultVals.push_back(Val);
1062  }
1063
1064  // Merge everything together with a MERGE_VALUES node.
1065  ResultVals.push_back(Chain);
1066  return DAG.getNode(ISD::MERGE_VALUES, TheCall->getVTList(), &ResultVals[0],
1067                     ResultVals.size()).getNode();
1068}
1069
1070
1071//===----------------------------------------------------------------------===//
1072//                C & StdCall & Fast Calling Convention implementation
1073//===----------------------------------------------------------------------===//
1074//  StdCall calling convention seems to be standard for many Windows' API
1075//  routines and around. It differs from C calling convention just a little:
1076//  callee should clean up the stack, not caller. Symbols should be also
1077//  decorated in some fancy way :) It doesn't support any vector arguments.
1078//  For info on fast calling convention see Fast Calling Convention (tail call)
1079//  implementation LowerX86_32FastCCCallTo.
1080
1081/// AddLiveIn - This helper function adds the specified physical register to the
1082/// MachineFunction as a live in value.  It also creates a corresponding virtual
1083/// register for it.
1084static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
1085                          const TargetRegisterClass *RC) {
1086  assert(RC->contains(PReg) && "Not the correct regclass!");
1087  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
1088  MF.getRegInfo().addLiveIn(PReg, VReg);
1089  return VReg;
1090}
1091
1092/// CallIsStructReturn - Determines whether a CALL node uses struct return
1093/// semantics.
1094static bool CallIsStructReturn(CallSDNode *TheCall) {
1095  unsigned NumOps = TheCall->getNumArgs();
1096  if (!NumOps)
1097    return false;
1098
1099  return TheCall->getArgFlags(0).isSRet();
1100}
1101
1102/// ArgsAreStructReturn - Determines whether a FORMAL_ARGUMENTS node uses struct
1103/// return semantics.
1104static bool ArgsAreStructReturn(SDValue Op) {
1105  unsigned NumArgs = Op.getNode()->getNumValues() - 1;
1106  if (!NumArgs)
1107    return false;
1108
1109  return cast<ARG_FLAGSSDNode>(Op.getOperand(3))->getArgFlags().isSRet();
1110}
1111
1112/// IsCalleePop - Determines whether a CALL or FORMAL_ARGUMENTS node requires
1113/// the callee to pop its own arguments. Callee pop is necessary to support tail
1114/// calls.
1115bool X86TargetLowering::IsCalleePop(bool IsVarArg, unsigned CallingConv) {
1116  if (IsVarArg)
1117    return false;
1118
1119  switch (CallingConv) {
1120  default:
1121    return false;
1122  case CallingConv::X86_StdCall:
1123    return !Subtarget->is64Bit();
1124  case CallingConv::X86_FastCall:
1125    return !Subtarget->is64Bit();
1126  case CallingConv::Fast:
1127    return PerformTailCallOpt;
1128  }
1129}
1130
1131/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1132/// given CallingConvention value.
1133CCAssignFn *X86TargetLowering::CCAssignFnForNode(unsigned CC) const {
1134  if (Subtarget->is64Bit()) {
1135    if (Subtarget->isTargetWin64())
1136      return CC_X86_Win64_C;
1137    else if (CC == CallingConv::Fast && PerformTailCallOpt)
1138      return CC_X86_64_TailCall;
1139    else
1140      return CC_X86_64_C;
1141  }
1142
1143  if (CC == CallingConv::X86_FastCall)
1144    return CC_X86_32_FastCall;
1145  else if (CC == CallingConv::Fast)
1146    return CC_X86_32_FastCC;
1147  else
1148    return CC_X86_32_C;
1149}
1150
1151/// NameDecorationForFORMAL_ARGUMENTS - Selects the appropriate decoration to
1152/// apply to a MachineFunction containing a given FORMAL_ARGUMENTS node.
1153NameDecorationStyle
1154X86TargetLowering::NameDecorationForFORMAL_ARGUMENTS(SDValue Op) {
1155  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1156  if (CC == CallingConv::X86_FastCall)
1157    return FastCall;
1158  else if (CC == CallingConv::X86_StdCall)
1159    return StdCall;
1160  return None;
1161}
1162
1163
1164/// CallRequiresGOTInRegister - Check whether the call requires the GOT pointer
1165/// in a register before calling.
1166bool X86TargetLowering::CallRequiresGOTPtrInReg(bool Is64Bit, bool IsTailCall) {
1167  return !IsTailCall && !Is64Bit &&
1168    getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1169    Subtarget->isPICStyleGOT();
1170}
1171
1172/// CallRequiresFnAddressInReg - Check whether the call requires the function
1173/// address to be loaded in a register.
1174bool
1175X86TargetLowering::CallRequiresFnAddressInReg(bool Is64Bit, bool IsTailCall) {
1176  return !Is64Bit && IsTailCall &&
1177    getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1178    Subtarget->isPICStyleGOT();
1179}
1180
1181/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1182/// by "Src" to address "Dst" with size and alignment information specified by
1183/// the specific parameter attribute. The copy will be passed as a byval
1184/// function parameter.
1185static SDValue
1186CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1187                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG) {
1188  SDValue SizeNode     = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1189  return DAG.getMemcpy(Chain, Dst, Src, SizeNode, Flags.getByValAlign(),
1190                       /*AlwaysInline=*/true, NULL, 0, NULL, 0);
1191}
1192
1193SDValue X86TargetLowering::LowerMemArgument(SDValue Op, SelectionDAG &DAG,
1194                                              const CCValAssign &VA,
1195                                              MachineFrameInfo *MFI,
1196                                              unsigned CC,
1197                                              SDValue Root, unsigned i) {
1198  // Create the nodes corresponding to a load from this parameter slot.
1199  ISD::ArgFlagsTy Flags =
1200    cast<ARG_FLAGSSDNode>(Op.getOperand(3 + i))->getArgFlags();
1201  bool AlwaysUseMutable = (CC==CallingConv::Fast) && PerformTailCallOpt;
1202  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1203
1204  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1205  // changed with more analysis.
1206  // In case of tail call optimization mark all arguments mutable. Since they
1207  // could be overwritten by lowering of arguments in case of a tail call.
1208  int FI = MFI->CreateFixedObject(VA.getValVT().getSizeInBits()/8,
1209                                  VA.getLocMemOffset(), isImmutable);
1210  SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1211  if (Flags.isByVal())
1212    return FIN;
1213  return DAG.getLoad(VA.getValVT(), Root, FIN,
1214                     PseudoSourceValue::getFixedStack(FI), 0);
1215}
1216
1217SDValue
1218X86TargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG) {
1219  MachineFunction &MF = DAG.getMachineFunction();
1220  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1221
1222  const Function* Fn = MF.getFunction();
1223  if (Fn->hasExternalLinkage() &&
1224      Subtarget->isTargetCygMing() &&
1225      Fn->getName() == "main")
1226    FuncInfo->setForceFramePointer(true);
1227
1228  // Decorate the function name.
1229  FuncInfo->setDecorationStyle(NameDecorationForFORMAL_ARGUMENTS(Op));
1230
1231  MachineFrameInfo *MFI = MF.getFrameInfo();
1232  SDValue Root = Op.getOperand(0);
1233  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() != 0;
1234  unsigned CC = MF.getFunction()->getCallingConv();
1235  bool Is64Bit = Subtarget->is64Bit();
1236  bool IsWin64 = Subtarget->isTargetWin64();
1237
1238  assert(!(isVarArg && CC == CallingConv::Fast) &&
1239         "Var args not supported with calling convention fastcc");
1240
1241  // Assign locations to all of the incoming arguments.
1242  SmallVector<CCValAssign, 16> ArgLocs;
1243  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1244  CCInfo.AnalyzeFormalArguments(Op.getNode(), CCAssignFnForNode(CC));
1245
1246  SmallVector<SDValue, 8> ArgValues;
1247  unsigned LastVal = ~0U;
1248  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1249    CCValAssign &VA = ArgLocs[i];
1250    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1251    // places.
1252    assert(VA.getValNo() != LastVal &&
1253           "Don't support value assigned to multiple locs yet");
1254    LastVal = VA.getValNo();
1255
1256    if (VA.isRegLoc()) {
1257      MVT RegVT = VA.getLocVT();
1258      TargetRegisterClass *RC;
1259      if (RegVT == MVT::i32)
1260        RC = X86::GR32RegisterClass;
1261      else if (Is64Bit && RegVT == MVT::i64)
1262        RC = X86::GR64RegisterClass;
1263      else if (RegVT == MVT::f32)
1264        RC = X86::FR32RegisterClass;
1265      else if (RegVT == MVT::f64)
1266        RC = X86::FR64RegisterClass;
1267      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1268        RC = X86::VR128RegisterClass;
1269      else if (RegVT.isVector()) {
1270        assert(RegVT.getSizeInBits() == 64);
1271        if (!Is64Bit)
1272          RC = X86::VR64RegisterClass;     // MMX values are passed in MMXs.
1273        else {
1274          // Darwin calling convention passes MMX values in either GPRs or
1275          // XMMs in x86-64. Other targets pass them in memory.
1276          if (RegVT != MVT::v1i64 && Subtarget->hasSSE2()) {
1277            RC = X86::VR128RegisterClass;  // MMX values are passed in XMMs.
1278            RegVT = MVT::v2i64;
1279          } else {
1280            RC = X86::GR64RegisterClass;   // v1i64 values are passed in GPRs.
1281            RegVT = MVT::i64;
1282          }
1283        }
1284      } else {
1285        assert(0 && "Unknown argument type!");
1286      }
1287
1288      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1289      SDValue ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1290
1291      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1292      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1293      // right size.
1294      if (VA.getLocInfo() == CCValAssign::SExt)
1295        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1296                               DAG.getValueType(VA.getValVT()));
1297      else if (VA.getLocInfo() == CCValAssign::ZExt)
1298        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1299                               DAG.getValueType(VA.getValVT()));
1300
1301      if (VA.getLocInfo() != CCValAssign::Full)
1302        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1303
1304      // Handle MMX values passed in GPRs.
1305      if (Is64Bit && RegVT != VA.getLocVT()) {
1306        if (RegVT.getSizeInBits() == 64 && RC == X86::GR64RegisterClass)
1307          ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
1308        else if (RC == X86::VR128RegisterClass) {
1309          ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i64, ArgValue,
1310                                 DAG.getConstant(0, MVT::i64));
1311          ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
1312        }
1313      }
1314
1315      ArgValues.push_back(ArgValue);
1316    } else {
1317      assert(VA.isMemLoc());
1318      ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, CC, Root, i));
1319    }
1320  }
1321
1322  // The x86-64 ABI for returning structs by value requires that we copy
1323  // the sret argument into %rax for the return. Save the argument into
1324  // a virtual register so that we can access it from the return points.
1325  if (Is64Bit && DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1326    MachineFunction &MF = DAG.getMachineFunction();
1327    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1328    unsigned Reg = FuncInfo->getSRetReturnReg();
1329    if (!Reg) {
1330      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1331      FuncInfo->setSRetReturnReg(Reg);
1332    }
1333    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), Reg, ArgValues[0]);
1334    Root = DAG.getNode(ISD::TokenFactor, MVT::Other, Copy, Root);
1335  }
1336
1337  unsigned StackSize = CCInfo.getNextStackOffset();
1338  // align stack specially for tail calls
1339  if (PerformTailCallOpt && CC == CallingConv::Fast)
1340    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1341
1342  // If the function takes variable number of arguments, make a frame index for
1343  // the start of the first vararg value... for expansion of llvm.va_start.
1344  if (isVarArg) {
1345    if (Is64Bit || CC != CallingConv::X86_FastCall) {
1346      VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1347    }
1348    if (Is64Bit) {
1349      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1350
1351      // FIXME: We should really autogenerate these arrays
1352      static const unsigned GPR64ArgRegsWin64[] = {
1353        X86::RCX, X86::RDX, X86::R8,  X86::R9
1354      };
1355      static const unsigned XMMArgRegsWin64[] = {
1356        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1357      };
1358      static const unsigned GPR64ArgRegs64Bit[] = {
1359        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1360      };
1361      static const unsigned XMMArgRegs64Bit[] = {
1362        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1363        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1364      };
1365      const unsigned *GPR64ArgRegs, *XMMArgRegs;
1366
1367      if (IsWin64) {
1368        TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
1369        GPR64ArgRegs = GPR64ArgRegsWin64;
1370        XMMArgRegs = XMMArgRegsWin64;
1371      } else {
1372        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1373        GPR64ArgRegs = GPR64ArgRegs64Bit;
1374        XMMArgRegs = XMMArgRegs64Bit;
1375      }
1376      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1377                                                       TotalNumIntRegs);
1378      unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
1379                                                       TotalNumXMMRegs);
1380
1381      // For X86-64, if there are vararg parameters that are passed via
1382      // registers, then we must store them to their spots on the stack so they
1383      // may be loaded by deferencing the result of va_next.
1384      VarArgsGPOffset = NumIntRegs * 8;
1385      VarArgsFPOffset = TotalNumIntRegs * 8 + NumXMMRegs * 16;
1386      RegSaveFrameIndex = MFI->CreateStackObject(TotalNumIntRegs * 8 +
1387                                                 TotalNumXMMRegs * 16, 16);
1388
1389      // Store the integer parameter registers.
1390      SmallVector<SDValue, 8> MemOps;
1391      SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1392      SDValue FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1393                                  DAG.getIntPtrConstant(VarArgsGPOffset));
1394      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1395        unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
1396                                  X86::GR64RegisterClass);
1397        SDValue Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1398        SDValue Store =
1399          DAG.getStore(Val.getValue(1), Val, FIN,
1400                       PseudoSourceValue::getFixedStack(RegSaveFrameIndex), 0);
1401        MemOps.push_back(Store);
1402        FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1403                          DAG.getIntPtrConstant(8));
1404      }
1405
1406      // Now store the XMM (fp + vector) parameter registers.
1407      FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1408                        DAG.getIntPtrConstant(VarArgsFPOffset));
1409      for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1410        unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
1411                                  X86::VR128RegisterClass);
1412        SDValue Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
1413        SDValue Store =
1414          DAG.getStore(Val.getValue(1), Val, FIN,
1415                       PseudoSourceValue::getFixedStack(RegSaveFrameIndex), 0);
1416        MemOps.push_back(Store);
1417        FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1418                          DAG.getIntPtrConstant(16));
1419      }
1420      if (!MemOps.empty())
1421          Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
1422                             &MemOps[0], MemOps.size());
1423    }
1424  }
1425
1426  ArgValues.push_back(Root);
1427
1428  // Some CCs need callee pop.
1429  if (IsCalleePop(isVarArg, CC)) {
1430    BytesToPopOnReturn  = StackSize; // Callee pops everything.
1431    BytesCallerReserves = 0;
1432  } else {
1433    BytesToPopOnReturn  = 0; // Callee pops nothing.
1434    // If this is an sret function, the return should pop the hidden pointer.
1435    if (!Is64Bit && CC != CallingConv::Fast && ArgsAreStructReturn(Op))
1436      BytesToPopOnReturn = 4;
1437    BytesCallerReserves = StackSize;
1438  }
1439
1440  if (!Is64Bit) {
1441    RegSaveFrameIndex = 0xAAAAAAA;   // RegSaveFrameIndex is X86-64 only.
1442    if (CC == CallingConv::X86_FastCall)
1443      VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1444  }
1445
1446  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1447
1448  // Return the new list of results.
1449  return DAG.getNode(ISD::MERGE_VALUES, Op.getNode()->getVTList(),
1450                     &ArgValues[0], ArgValues.size()).getValue(Op.getResNo());
1451}
1452
1453SDValue
1454X86TargetLowering::LowerMemOpCallTo(CallSDNode *TheCall, SelectionDAG &DAG,
1455                                    const SDValue &StackPtr,
1456                                    const CCValAssign &VA,
1457                                    SDValue Chain,
1458                                    SDValue Arg, ISD::ArgFlagsTy Flags) {
1459  unsigned LocMemOffset = VA.getLocMemOffset();
1460  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1461  PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1462  if (Flags.isByVal()) {
1463    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG);
1464  }
1465  return DAG.getStore(Chain, Arg, PtrOff,
1466                      PseudoSourceValue::getStack(), LocMemOffset);
1467}
1468
1469/// EmitTailCallLoadRetAddr - Emit a load of return adress if tail call
1470/// optimization is performed and it is required.
1471SDValue
1472X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1473                                           SDValue &OutRetAddr,
1474                                           SDValue Chain,
1475                                           bool IsTailCall,
1476                                           bool Is64Bit,
1477                                           int FPDiff) {
1478  if (!IsTailCall || FPDiff==0) return Chain;
1479
1480  // Adjust the Return address stack slot.
1481  MVT VT = getPointerTy();
1482  OutRetAddr = getReturnAddressFrameIndex(DAG);
1483  // Load the "old" Return address.
1484  OutRetAddr = DAG.getLoad(VT, Chain,OutRetAddr, NULL, 0);
1485  return SDValue(OutRetAddr.getNode(), 1);
1486}
1487
1488/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1489/// optimization is performed and it is required (FPDiff!=0).
1490static SDValue
1491EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1492                         SDValue Chain, SDValue RetAddrFrIdx,
1493                         bool Is64Bit, int FPDiff) {
1494  // Store the return address to the appropriate stack slot.
1495  if (!FPDiff) return Chain;
1496  // Calculate the new stack slot for the return address.
1497  int SlotSize = Is64Bit ? 8 : 4;
1498  int NewReturnAddrFI =
1499    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize);
1500  MVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1501  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1502  Chain = DAG.getStore(Chain, RetAddrFrIdx, NewRetAddrFrIdx,
1503                       PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0);
1504  return Chain;
1505}
1506
1507SDValue X86TargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) {
1508  MachineFunction &MF = DAG.getMachineFunction();
1509  CallSDNode *TheCall = cast<CallSDNode>(Op.getNode());
1510  SDValue Chain       = TheCall->getChain();
1511  unsigned CC         = TheCall->getCallingConv();
1512  bool isVarArg       = TheCall->isVarArg();
1513  bool IsTailCall     = TheCall->isTailCall() &&
1514                        CC == CallingConv::Fast && PerformTailCallOpt;
1515  SDValue Callee      = TheCall->getCallee();
1516  bool Is64Bit        = Subtarget->is64Bit();
1517  bool IsStructRet    = CallIsStructReturn(TheCall);
1518
1519  assert(!(isVarArg && CC == CallingConv::Fast) &&
1520         "Var args not supported with calling convention fastcc");
1521
1522  // Analyze operands of the call, assigning locations to each operand.
1523  SmallVector<CCValAssign, 16> ArgLocs;
1524  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1525  CCInfo.AnalyzeCallOperands(TheCall, CCAssignFnForNode(CC));
1526
1527  // Get a count of how many bytes are to be pushed on the stack.
1528  unsigned NumBytes = CCInfo.getNextStackOffset();
1529  if (PerformTailCallOpt && CC == CallingConv::Fast)
1530    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1531
1532  int FPDiff = 0;
1533  if (IsTailCall) {
1534    // Lower arguments at fp - stackoffset + fpdiff.
1535    unsigned NumBytesCallerPushed =
1536      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1537    FPDiff = NumBytesCallerPushed - NumBytes;
1538
1539    // Set the delta of movement of the returnaddr stackslot.
1540    // But only set if delta is greater than previous delta.
1541    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1542      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1543  }
1544
1545  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1546
1547  SDValue RetAddrFrIdx;
1548  // Load return adress for tail calls.
1549  Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, IsTailCall, Is64Bit,
1550                                  FPDiff);
1551
1552  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1553  SmallVector<SDValue, 8> MemOpChains;
1554  SDValue StackPtr;
1555
1556  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1557  // of tail call optimization arguments are handle later.
1558  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1559    CCValAssign &VA = ArgLocs[i];
1560    SDValue Arg = TheCall->getArg(i);
1561    ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
1562    bool isByVal = Flags.isByVal();
1563
1564    // Promote the value if needed.
1565    switch (VA.getLocInfo()) {
1566    default: assert(0 && "Unknown loc info!");
1567    case CCValAssign::Full: break;
1568    case CCValAssign::SExt:
1569      Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1570      break;
1571    case CCValAssign::ZExt:
1572      Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1573      break;
1574    case CCValAssign::AExt:
1575      Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1576      break;
1577    }
1578
1579    if (VA.isRegLoc()) {
1580      if (Is64Bit) {
1581        MVT RegVT = VA.getLocVT();
1582        if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
1583          switch (VA.getLocReg()) {
1584          default:
1585            break;
1586          case X86::RDI: case X86::RSI: case X86::RDX: case X86::RCX:
1587          case X86::R8: {
1588            // Special case: passing MMX values in GPR registers.
1589            Arg = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Arg);
1590            break;
1591          }
1592          case X86::XMM0: case X86::XMM1: case X86::XMM2: case X86::XMM3:
1593          case X86::XMM4: case X86::XMM5: case X86::XMM6: case X86::XMM7: {
1594            // Special case: passing MMX values in XMM registers.
1595            Arg = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Arg);
1596            Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Arg);
1597            Arg = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v2i64,
1598                              DAG.getNode(ISD::UNDEF, MVT::v2i64), Arg,
1599                              getMOVLMask(2, DAG));
1600            break;
1601          }
1602          }
1603      }
1604      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1605    } else {
1606      if (!IsTailCall || (IsTailCall && isByVal)) {
1607        assert(VA.isMemLoc());
1608        if (StackPtr.getNode() == 0)
1609          StackPtr = DAG.getCopyFromReg(Chain, X86StackPtr, getPointerTy());
1610
1611        MemOpChains.push_back(LowerMemOpCallTo(TheCall, DAG, StackPtr, VA,
1612                                               Chain, Arg, Flags));
1613      }
1614    }
1615  }
1616
1617  if (!MemOpChains.empty())
1618    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1619                        &MemOpChains[0], MemOpChains.size());
1620
1621  // Build a sequence of copy-to-reg nodes chained together with token chain
1622  // and flag operands which copy the outgoing args into registers.
1623  SDValue InFlag;
1624  // Tail call byval lowering might overwrite argument registers so in case of
1625  // tail call optimization the copies to registers are lowered later.
1626  if (!IsTailCall)
1627    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1628      Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1629                               InFlag);
1630      InFlag = Chain.getValue(1);
1631    }
1632
1633  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1634  // GOT pointer.
1635  if (CallRequiresGOTPtrInReg(Is64Bit, IsTailCall)) {
1636    Chain = DAG.getCopyToReg(Chain, X86::EBX,
1637                             DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1638                             InFlag);
1639    InFlag = Chain.getValue(1);
1640  }
1641  // If we are tail calling and generating PIC/GOT style code load the address
1642  // of the callee into ecx. The value in ecx is used as target of the tail
1643  // jump. This is done to circumvent the ebx/callee-saved problem for tail
1644  // calls on PIC/GOT architectures. Normally we would just put the address of
1645  // GOT into ebx and then call target@PLT. But for tail callss ebx would be
1646  // restored (since ebx is callee saved) before jumping to the target@PLT.
1647  if (CallRequiresFnAddressInReg(Is64Bit, IsTailCall)) {
1648    // Note: The actual moving to ecx is done further down.
1649    GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
1650    if (G && !G->getGlobal()->hasHiddenVisibility() &&
1651        !G->getGlobal()->hasProtectedVisibility())
1652      Callee =  LowerGlobalAddress(Callee, DAG);
1653    else if (isa<ExternalSymbolSDNode>(Callee))
1654      Callee = LowerExternalSymbol(Callee,DAG);
1655  }
1656
1657  if (Is64Bit && isVarArg) {
1658    // From AMD64 ABI document:
1659    // For calls that may call functions that use varargs or stdargs
1660    // (prototype-less calls or calls to functions containing ellipsis (...) in
1661    // the declaration) %al is used as hidden argument to specify the number
1662    // of SSE registers used. The contents of %al do not need to match exactly
1663    // the number of registers, but must be an ubound on the number of SSE
1664    // registers used and is in the range 0 - 8 inclusive.
1665
1666    // FIXME: Verify this on Win64
1667    // Count the number of XMM registers allocated.
1668    static const unsigned XMMArgRegs[] = {
1669      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1670      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1671    };
1672    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1673
1674    Chain = DAG.getCopyToReg(Chain, X86::AL,
1675                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1676    InFlag = Chain.getValue(1);
1677  }
1678
1679
1680  // For tail calls lower the arguments to the 'real' stack slot.
1681  if (IsTailCall) {
1682    SmallVector<SDValue, 8> MemOpChains2;
1683    SDValue FIN;
1684    int FI = 0;
1685    // Do not flag preceeding copytoreg stuff together with the following stuff.
1686    InFlag = SDValue();
1687    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1688      CCValAssign &VA = ArgLocs[i];
1689      if (!VA.isRegLoc()) {
1690        assert(VA.isMemLoc());
1691        SDValue Arg = TheCall->getArg(i);
1692        ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
1693        // Create frame index.
1694        int32_t Offset = VA.getLocMemOffset()+FPDiff;
1695        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
1696        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
1697        FIN = DAG.getFrameIndex(FI, getPointerTy());
1698
1699        if (Flags.isByVal()) {
1700          // Copy relative to framepointer.
1701          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
1702          if (StackPtr.getNode() == 0)
1703            StackPtr = DAG.getCopyFromReg(Chain, X86StackPtr, getPointerTy());
1704          Source = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, Source);
1705
1706          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN, Chain,
1707                                                           Flags, DAG));
1708        } else {
1709          // Store relative to framepointer.
1710          MemOpChains2.push_back(
1711            DAG.getStore(Chain, Arg, FIN,
1712                         PseudoSourceValue::getFixedStack(FI), 0));
1713        }
1714      }
1715    }
1716
1717    if (!MemOpChains2.empty())
1718      Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1719                          &MemOpChains2[0], MemOpChains2.size());
1720
1721    // Copy arguments to their registers.
1722    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1723      Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1724                               InFlag);
1725      InFlag = Chain.getValue(1);
1726    }
1727    InFlag =SDValue();
1728
1729    // Store the return address to the appropriate stack slot.
1730    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
1731                                     FPDiff);
1732  }
1733
1734  // If the callee is a GlobalAddress node (quite common, every direct call is)
1735  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1736  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1737    // We should use extra load for direct calls to dllimported functions in
1738    // non-JIT mode.
1739    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1740                                        getTargetMachine(), true))
1741      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy(),
1742                                          G->getOffset());
1743  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1744    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1745  } else if (IsTailCall) {
1746    unsigned Opc = Is64Bit ? X86::R9 : X86::EAX;
1747
1748    Chain = DAG.getCopyToReg(Chain,
1749                             DAG.getRegister(Opc, getPointerTy()),
1750                             Callee,InFlag);
1751    Callee = DAG.getRegister(Opc, getPointerTy());
1752    // Add register as live out.
1753    DAG.getMachineFunction().getRegInfo().addLiveOut(Opc);
1754  }
1755
1756  // Returns a chain & a flag for retval copy to use.
1757  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1758  SmallVector<SDValue, 8> Ops;
1759
1760  if (IsTailCall) {
1761    Ops.push_back(Chain);
1762    Ops.push_back(DAG.getIntPtrConstant(NumBytes, true));
1763    Ops.push_back(DAG.getIntPtrConstant(0, true));
1764    if (InFlag.getNode())
1765      Ops.push_back(InFlag);
1766    Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1767    InFlag = Chain.getValue(1);
1768
1769    // Returns a chain & a flag for retval copy to use.
1770    NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1771    Ops.clear();
1772  }
1773
1774  Ops.push_back(Chain);
1775  Ops.push_back(Callee);
1776
1777  if (IsTailCall)
1778    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
1779
1780  // Add argument registers to the end of the list so that they are known live
1781  // into the call.
1782  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1783    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1784                                  RegsToPass[i].second.getValueType()));
1785
1786  // Add an implicit use GOT pointer in EBX.
1787  if (!IsTailCall && !Is64Bit &&
1788      getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1789      Subtarget->isPICStyleGOT())
1790    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1791
1792  // Add an implicit use of AL for x86 vararg functions.
1793  if (Is64Bit && isVarArg)
1794    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
1795
1796  if (InFlag.getNode())
1797    Ops.push_back(InFlag);
1798
1799  if (IsTailCall) {
1800    assert(InFlag.getNode() &&
1801           "Flag must be set. Depend on flag being set in LowerRET");
1802    Chain = DAG.getNode(X86ISD::TAILCALL,
1803                        TheCall->getVTList(), &Ops[0], Ops.size());
1804
1805    return SDValue(Chain.getNode(), Op.getResNo());
1806  }
1807
1808  Chain = DAG.getNode(X86ISD::CALL, NodeTys, &Ops[0], Ops.size());
1809  InFlag = Chain.getValue(1);
1810
1811  // Create the CALLSEQ_END node.
1812  unsigned NumBytesForCalleeToPush;
1813  if (IsCalleePop(isVarArg, CC))
1814    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
1815  else if (!Is64Bit && CC != CallingConv::Fast && IsStructRet)
1816    // If this is is a call to a struct-return function, the callee
1817    // pops the hidden struct pointer, so we have to push it back.
1818    // This is common for Darwin/X86, Linux & Mingw32 targets.
1819    NumBytesForCalleeToPush = 4;
1820  else
1821    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
1822
1823  // Returns a flag for retval copy to use.
1824  Chain = DAG.getCALLSEQ_END(Chain,
1825                             DAG.getIntPtrConstant(NumBytes, true),
1826                             DAG.getIntPtrConstant(NumBytesForCalleeToPush,
1827                                                   true),
1828                             InFlag);
1829  InFlag = Chain.getValue(1);
1830
1831  // Handle result values, copying them out of physregs into vregs that we
1832  // return.
1833  return SDValue(LowerCallResult(Chain, InFlag, TheCall, CC, DAG),
1834                 Op.getResNo());
1835}
1836
1837
1838//===----------------------------------------------------------------------===//
1839//                Fast Calling Convention (tail call) implementation
1840//===----------------------------------------------------------------------===//
1841
1842//  Like std call, callee cleans arguments, convention except that ECX is
1843//  reserved for storing the tail called function address. Only 2 registers are
1844//  free for argument passing (inreg). Tail call optimization is performed
1845//  provided:
1846//                * tailcallopt is enabled
1847//                * caller/callee are fastcc
1848//  On X86_64 architecture with GOT-style position independent code only local
1849//  (within module) calls are supported at the moment.
1850//  To keep the stack aligned according to platform abi the function
1851//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
1852//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
1853//  If a tail called function callee has more arguments than the caller the
1854//  caller needs to make sure that there is room to move the RETADDR to. This is
1855//  achieved by reserving an area the size of the argument delta right after the
1856//  original REtADDR, but before the saved framepointer or the spilled registers
1857//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
1858//  stack layout:
1859//    arg1
1860//    arg2
1861//    RETADDR
1862//    [ new RETADDR
1863//      move area ]
1864//    (possible EBP)
1865//    ESI
1866//    EDI
1867//    local1 ..
1868
1869/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
1870/// for a 16 byte align requirement.
1871unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
1872                                                        SelectionDAG& DAG) {
1873  MachineFunction &MF = DAG.getMachineFunction();
1874  const TargetMachine &TM = MF.getTarget();
1875  const TargetFrameInfo &TFI = *TM.getFrameInfo();
1876  unsigned StackAlignment = TFI.getStackAlignment();
1877  uint64_t AlignMask = StackAlignment - 1;
1878  int64_t Offset = StackSize;
1879  uint64_t SlotSize = TD->getPointerSize();
1880  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
1881    // Number smaller than 12 so just add the difference.
1882    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
1883  } else {
1884    // Mask out lower bits, add stackalignment once plus the 12 bytes.
1885    Offset = ((~AlignMask) & Offset) + StackAlignment +
1886      (StackAlignment-SlotSize);
1887  }
1888  return Offset;
1889}
1890
1891/// IsEligibleForTailCallElimination - Check to see whether the next instruction
1892/// following the call is a return. A function is eligible if caller/callee
1893/// calling conventions match, currently only fastcc supports tail calls, and
1894/// the function CALL is immediatly followed by a RET.
1895bool X86TargetLowering::IsEligibleForTailCallOptimization(CallSDNode *TheCall,
1896                                                      SDValue Ret,
1897                                                      SelectionDAG& DAG) const {
1898  if (!PerformTailCallOpt)
1899    return false;
1900
1901  if (CheckTailCallReturnConstraints(TheCall, Ret)) {
1902    MachineFunction &MF = DAG.getMachineFunction();
1903    unsigned CallerCC = MF.getFunction()->getCallingConv();
1904    unsigned CalleeCC= TheCall->getCallingConv();
1905    if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
1906      SDValue Callee = TheCall->getCallee();
1907      // On x86/32Bit PIC/GOT  tail calls are supported.
1908      if (getTargetMachine().getRelocationModel() != Reloc::PIC_ ||
1909          !Subtarget->isPICStyleGOT()|| !Subtarget->is64Bit())
1910        return true;
1911
1912      // Can only do local tail calls (in same module, hidden or protected) on
1913      // x86_64 PIC/GOT at the moment.
1914      if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1915        return G->getGlobal()->hasHiddenVisibility()
1916            || G->getGlobal()->hasProtectedVisibility();
1917    }
1918  }
1919
1920  return false;
1921}
1922
1923FastISel *
1924X86TargetLowering::createFastISel(MachineFunction &mf,
1925                                  MachineModuleInfo *mmo,
1926                                  DenseMap<const Value *, unsigned> &vm,
1927                                  DenseMap<const BasicBlock *,
1928                                           MachineBasicBlock *> &bm,
1929                                  DenseMap<const AllocaInst *, int> &am
1930#ifndef NDEBUG
1931                                  , SmallSet<Instruction*, 8> &cil
1932#endif
1933                                  ) {
1934  return X86::createFastISel(mf, mmo, vm, bm, am
1935#ifndef NDEBUG
1936                             , cil
1937#endif
1938                             );
1939}
1940
1941
1942//===----------------------------------------------------------------------===//
1943//                           Other Lowering Hooks
1944//===----------------------------------------------------------------------===//
1945
1946
1947SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
1948  MachineFunction &MF = DAG.getMachineFunction();
1949  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1950  int ReturnAddrIndex = FuncInfo->getRAIndex();
1951  uint64_t SlotSize = TD->getPointerSize();
1952
1953  if (ReturnAddrIndex == 0) {
1954    // Set up a frame object for the return address.
1955    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize);
1956    FuncInfo->setRAIndex(ReturnAddrIndex);
1957  }
1958
1959  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
1960}
1961
1962
1963/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
1964/// specific condition code, returning the condition code and the LHS/RHS of the
1965/// comparison to make.
1966static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
1967                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
1968  if (!isFP) {
1969    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
1970      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
1971        // X > -1   -> X == 0, jump !sign.
1972        RHS = DAG.getConstant(0, RHS.getValueType());
1973        return X86::COND_NS;
1974      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
1975        // X < 0   -> X == 0, jump on sign.
1976        return X86::COND_S;
1977      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
1978        // X < 1   -> X <= 0
1979        RHS = DAG.getConstant(0, RHS.getValueType());
1980        return X86::COND_LE;
1981      }
1982    }
1983
1984    switch (SetCCOpcode) {
1985    default: assert(0 && "Invalid integer condition!");
1986    case ISD::SETEQ:  return X86::COND_E;
1987    case ISD::SETGT:  return X86::COND_G;
1988    case ISD::SETGE:  return X86::COND_GE;
1989    case ISD::SETLT:  return X86::COND_L;
1990    case ISD::SETLE:  return X86::COND_LE;
1991    case ISD::SETNE:  return X86::COND_NE;
1992    case ISD::SETULT: return X86::COND_B;
1993    case ISD::SETUGT: return X86::COND_A;
1994    case ISD::SETULE: return X86::COND_BE;
1995    case ISD::SETUGE: return X86::COND_AE;
1996    }
1997  }
1998
1999  // First determine if it is required or is profitable to flip the operands.
2000
2001  // If LHS is a foldable load, but RHS is not, flip the condition.
2002  if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
2003      !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
2004    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2005    std::swap(LHS, RHS);
2006  }
2007
2008  switch (SetCCOpcode) {
2009  default: break;
2010  case ISD::SETOLT:
2011  case ISD::SETOLE:
2012  case ISD::SETUGT:
2013  case ISD::SETUGE:
2014    std::swap(LHS, RHS);
2015    break;
2016  }
2017
2018  // On a floating point condition, the flags are set as follows:
2019  // ZF  PF  CF   op
2020  //  0 | 0 | 0 | X > Y
2021  //  0 | 0 | 1 | X < Y
2022  //  1 | 0 | 0 | X == Y
2023  //  1 | 1 | 1 | unordered
2024  switch (SetCCOpcode) {
2025  default: assert(0 && "Condcode should be pre-legalized away");
2026  case ISD::SETUEQ:
2027  case ISD::SETEQ:   return X86::COND_E;
2028  case ISD::SETOLT:              // flipped
2029  case ISD::SETOGT:
2030  case ISD::SETGT:   return X86::COND_A;
2031  case ISD::SETOLE:              // flipped
2032  case ISD::SETOGE:
2033  case ISD::SETGE:   return X86::COND_AE;
2034  case ISD::SETUGT:              // flipped
2035  case ISD::SETULT:
2036  case ISD::SETLT:   return X86::COND_B;
2037  case ISD::SETUGE:              // flipped
2038  case ISD::SETULE:
2039  case ISD::SETLE:   return X86::COND_BE;
2040  case ISD::SETONE:
2041  case ISD::SETNE:   return X86::COND_NE;
2042  case ISD::SETUO:   return X86::COND_P;
2043  case ISD::SETO:    return X86::COND_NP;
2044  }
2045}
2046
2047/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2048/// code. Current x86 isa includes the following FP cmov instructions:
2049/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2050static bool hasFPCMov(unsigned X86CC) {
2051  switch (X86CC) {
2052  default:
2053    return false;
2054  case X86::COND_B:
2055  case X86::COND_BE:
2056  case X86::COND_E:
2057  case X86::COND_P:
2058  case X86::COND_A:
2059  case X86::COND_AE:
2060  case X86::COND_NE:
2061  case X86::COND_NP:
2062    return true;
2063  }
2064}
2065
2066/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode.  Return
2067/// true if Op is undef or if its value falls within the specified range (L, H].
2068static bool isUndefOrInRange(SDValue Op, unsigned Low, unsigned Hi) {
2069  if (Op.getOpcode() == ISD::UNDEF)
2070    return true;
2071
2072  unsigned Val = cast<ConstantSDNode>(Op)->getZExtValue();
2073  return (Val >= Low && Val < Hi);
2074}
2075
2076/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode.  Return
2077/// true if Op is undef or if its value equal to the specified value.
2078static bool isUndefOrEqual(SDValue Op, unsigned Val) {
2079  if (Op.getOpcode() == ISD::UNDEF)
2080    return true;
2081  return cast<ConstantSDNode>(Op)->getZExtValue() == Val;
2082}
2083
2084/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
2085/// specifies a shuffle of elements that is suitable for input to PSHUFD.
2086bool X86::isPSHUFDMask(SDNode *N) {
2087  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2088
2089  if (N->getNumOperands() != 2 && N->getNumOperands() != 4)
2090    return false;
2091
2092  // Check if the value doesn't reference the second vector.
2093  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2094    SDValue Arg = N->getOperand(i);
2095    if (Arg.getOpcode() == ISD::UNDEF) continue;
2096    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2097    if (cast<ConstantSDNode>(Arg)->getZExtValue() >= e)
2098      return false;
2099  }
2100
2101  return true;
2102}
2103
2104/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
2105/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
2106bool X86::isPSHUFHWMask(SDNode *N) {
2107  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2108
2109  if (N->getNumOperands() != 8)
2110    return false;
2111
2112  // Lower quadword copied in order.
2113  for (unsigned i = 0; i != 4; ++i) {
2114    SDValue Arg = N->getOperand(i);
2115    if (Arg.getOpcode() == ISD::UNDEF) continue;
2116    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2117    if (cast<ConstantSDNode>(Arg)->getZExtValue() != i)
2118      return false;
2119  }
2120
2121  // Upper quadword shuffled.
2122  for (unsigned i = 4; i != 8; ++i) {
2123    SDValue Arg = N->getOperand(i);
2124    if (Arg.getOpcode() == ISD::UNDEF) continue;
2125    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2126    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2127    if (Val < 4 || Val > 7)
2128      return false;
2129  }
2130
2131  return true;
2132}
2133
2134/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
2135/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
2136bool X86::isPSHUFLWMask(SDNode *N) {
2137  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2138
2139  if (N->getNumOperands() != 8)
2140    return false;
2141
2142  // Upper quadword copied in order.
2143  for (unsigned i = 4; i != 8; ++i)
2144    if (!isUndefOrEqual(N->getOperand(i), i))
2145      return false;
2146
2147  // Lower quadword shuffled.
2148  for (unsigned i = 0; i != 4; ++i)
2149    if (!isUndefOrInRange(N->getOperand(i), 0, 4))
2150      return false;
2151
2152  return true;
2153}
2154
2155/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2156/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2157static bool isSHUFPMask(SDOperandPtr Elems, unsigned NumElems) {
2158  if (NumElems != 2 && NumElems != 4) return false;
2159
2160  unsigned Half = NumElems / 2;
2161  for (unsigned i = 0; i < Half; ++i)
2162    if (!isUndefOrInRange(Elems[i], 0, NumElems))
2163      return false;
2164  for (unsigned i = Half; i < NumElems; ++i)
2165    if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2))
2166      return false;
2167
2168  return true;
2169}
2170
2171bool X86::isSHUFPMask(SDNode *N) {
2172  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2173  return ::isSHUFPMask(N->op_begin(), N->getNumOperands());
2174}
2175
2176/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2177/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2178/// half elements to come from vector 1 (which would equal the dest.) and
2179/// the upper half to come from vector 2.
2180static bool isCommutedSHUFP(SDOperandPtr Ops, unsigned NumOps) {
2181  if (NumOps != 2 && NumOps != 4) return false;
2182
2183  unsigned Half = NumOps / 2;
2184  for (unsigned i = 0; i < Half; ++i)
2185    if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2))
2186      return false;
2187  for (unsigned i = Half; i < NumOps; ++i)
2188    if (!isUndefOrInRange(Ops[i], 0, NumOps))
2189      return false;
2190  return true;
2191}
2192
2193static bool isCommutedSHUFP(SDNode *N) {
2194  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2195  return isCommutedSHUFP(N->op_begin(), N->getNumOperands());
2196}
2197
2198/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2199/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2200bool X86::isMOVHLPSMask(SDNode *N) {
2201  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2202
2203  if (N->getNumOperands() != 4)
2204    return false;
2205
2206  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2207  return isUndefOrEqual(N->getOperand(0), 6) &&
2208         isUndefOrEqual(N->getOperand(1), 7) &&
2209         isUndefOrEqual(N->getOperand(2), 2) &&
2210         isUndefOrEqual(N->getOperand(3), 3);
2211}
2212
2213/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2214/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2215/// <2, 3, 2, 3>
2216bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
2217  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2218
2219  if (N->getNumOperands() != 4)
2220    return false;
2221
2222  // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
2223  return isUndefOrEqual(N->getOperand(0), 2) &&
2224         isUndefOrEqual(N->getOperand(1), 3) &&
2225         isUndefOrEqual(N->getOperand(2), 2) &&
2226         isUndefOrEqual(N->getOperand(3), 3);
2227}
2228
2229/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2230/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2231bool X86::isMOVLPMask(SDNode *N) {
2232  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2233
2234  unsigned NumElems = N->getNumOperands();
2235  if (NumElems != 2 && NumElems != 4)
2236    return false;
2237
2238  for (unsigned i = 0; i < NumElems/2; ++i)
2239    if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
2240      return false;
2241
2242  for (unsigned i = NumElems/2; i < NumElems; ++i)
2243    if (!isUndefOrEqual(N->getOperand(i), i))
2244      return false;
2245
2246  return true;
2247}
2248
2249/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
2250/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
2251/// and MOVLHPS.
2252bool X86::isMOVHPMask(SDNode *N) {
2253  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2254
2255  unsigned NumElems = N->getNumOperands();
2256  if (NumElems != 2 && NumElems != 4)
2257    return false;
2258
2259  for (unsigned i = 0; i < NumElems/2; ++i)
2260    if (!isUndefOrEqual(N->getOperand(i), i))
2261      return false;
2262
2263  for (unsigned i = 0; i < NumElems/2; ++i) {
2264    SDValue Arg = N->getOperand(i + NumElems/2);
2265    if (!isUndefOrEqual(Arg, i + NumElems))
2266      return false;
2267  }
2268
2269  return true;
2270}
2271
2272/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2273/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2274bool static isUNPCKLMask(SDOperandPtr Elts, unsigned NumElts,
2275                         bool V2IsSplat = false) {
2276  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2277    return false;
2278
2279  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2280    SDValue BitI  = Elts[i];
2281    SDValue BitI1 = Elts[i+1];
2282    if (!isUndefOrEqual(BitI, j))
2283      return false;
2284    if (V2IsSplat) {
2285      if (isUndefOrEqual(BitI1, NumElts))
2286        return false;
2287    } else {
2288      if (!isUndefOrEqual(BitI1, j + NumElts))
2289        return false;
2290    }
2291  }
2292
2293  return true;
2294}
2295
2296bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
2297  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2298  return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2299}
2300
2301/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2302/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2303bool static isUNPCKHMask(SDOperandPtr Elts, unsigned NumElts,
2304                         bool V2IsSplat = false) {
2305  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2306    return false;
2307
2308  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2309    SDValue BitI  = Elts[i];
2310    SDValue BitI1 = Elts[i+1];
2311    if (!isUndefOrEqual(BitI, j + NumElts/2))
2312      return false;
2313    if (V2IsSplat) {
2314      if (isUndefOrEqual(BitI1, NumElts))
2315        return false;
2316    } else {
2317      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2318        return false;
2319    }
2320  }
2321
2322  return true;
2323}
2324
2325bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
2326  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2327  return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2328}
2329
2330/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2331/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2332/// <0, 0, 1, 1>
2333bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
2334  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2335
2336  unsigned NumElems = N->getNumOperands();
2337  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2338    return false;
2339
2340  for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
2341    SDValue BitI  = N->getOperand(i);
2342    SDValue BitI1 = N->getOperand(i+1);
2343
2344    if (!isUndefOrEqual(BitI, j))
2345      return false;
2346    if (!isUndefOrEqual(BitI1, j))
2347      return false;
2348  }
2349
2350  return true;
2351}
2352
2353/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2354/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2355/// <2, 2, 3, 3>
2356bool X86::isUNPCKH_v_undef_Mask(SDNode *N) {
2357  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2358
2359  unsigned NumElems = N->getNumOperands();
2360  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2361    return false;
2362
2363  for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2364    SDValue BitI  = N->getOperand(i);
2365    SDValue BitI1 = N->getOperand(i + 1);
2366
2367    if (!isUndefOrEqual(BitI, j))
2368      return false;
2369    if (!isUndefOrEqual(BitI1, j))
2370      return false;
2371  }
2372
2373  return true;
2374}
2375
2376/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2377/// specifies a shuffle of elements that is suitable for input to MOVSS,
2378/// MOVSD, and MOVD, i.e. setting the lowest element.
2379static bool isMOVLMask(SDOperandPtr Elts, unsigned NumElts) {
2380  if (NumElts != 2 && NumElts != 4)
2381    return false;
2382
2383  if (!isUndefOrEqual(Elts[0], NumElts))
2384    return false;
2385
2386  for (unsigned i = 1; i < NumElts; ++i) {
2387    if (!isUndefOrEqual(Elts[i], i))
2388      return false;
2389  }
2390
2391  return true;
2392}
2393
2394bool X86::isMOVLMask(SDNode *N) {
2395  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2396  return ::isMOVLMask(N->op_begin(), N->getNumOperands());
2397}
2398
2399/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2400/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
2401/// element of vector 2 and the other elements to come from vector 1 in order.
2402static bool isCommutedMOVL(SDOperandPtr Ops, unsigned NumOps,
2403                           bool V2IsSplat = false,
2404                           bool V2IsUndef = false) {
2405  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2406    return false;
2407
2408  if (!isUndefOrEqual(Ops[0], 0))
2409    return false;
2410
2411  for (unsigned i = 1; i < NumOps; ++i) {
2412    SDValue Arg = Ops[i];
2413    if (!(isUndefOrEqual(Arg, i+NumOps) ||
2414          (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) ||
2415          (V2IsSplat && isUndefOrEqual(Arg, NumOps))))
2416      return false;
2417  }
2418
2419  return true;
2420}
2421
2422static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
2423                           bool V2IsUndef = false) {
2424  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2425  return isCommutedMOVL(N->op_begin(), N->getNumOperands(),
2426                        V2IsSplat, V2IsUndef);
2427}
2428
2429/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2430/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2431bool X86::isMOVSHDUPMask(SDNode *N) {
2432  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2433
2434  if (N->getNumOperands() != 4)
2435    return false;
2436
2437  // Expect 1, 1, 3, 3
2438  for (unsigned i = 0; i < 2; ++i) {
2439    SDValue Arg = N->getOperand(i);
2440    if (Arg.getOpcode() == ISD::UNDEF) continue;
2441    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2442    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2443    if (Val != 1) return false;
2444  }
2445
2446  bool HasHi = false;
2447  for (unsigned i = 2; i < 4; ++i) {
2448    SDValue Arg = N->getOperand(i);
2449    if (Arg.getOpcode() == ISD::UNDEF) continue;
2450    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2451    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2452    if (Val != 3) return false;
2453    HasHi = true;
2454  }
2455
2456  // Don't use movshdup if it can be done with a shufps.
2457  return HasHi;
2458}
2459
2460/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2461/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2462bool X86::isMOVSLDUPMask(SDNode *N) {
2463  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2464
2465  if (N->getNumOperands() != 4)
2466    return false;
2467
2468  // Expect 0, 0, 2, 2
2469  for (unsigned i = 0; i < 2; ++i) {
2470    SDValue Arg = N->getOperand(i);
2471    if (Arg.getOpcode() == ISD::UNDEF) continue;
2472    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2473    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2474    if (Val != 0) return false;
2475  }
2476
2477  bool HasHi = false;
2478  for (unsigned i = 2; i < 4; ++i) {
2479    SDValue Arg = N->getOperand(i);
2480    if (Arg.getOpcode() == ISD::UNDEF) continue;
2481    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2482    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2483    if (Val != 2) return false;
2484    HasHi = true;
2485  }
2486
2487  // Don't use movshdup if it can be done with a shufps.
2488  return HasHi;
2489}
2490
2491/// isIdentityMask - Return true if the specified VECTOR_SHUFFLE operand
2492/// specifies a identity operation on the LHS or RHS.
2493static bool isIdentityMask(SDNode *N, bool RHS = false) {
2494  unsigned NumElems = N->getNumOperands();
2495  for (unsigned i = 0; i < NumElems; ++i)
2496    if (!isUndefOrEqual(N->getOperand(i), i + (RHS ? NumElems : 0)))
2497      return false;
2498  return true;
2499}
2500
2501/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2502/// a splat of a single element.
2503static bool isSplatMask(SDNode *N) {
2504  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2505
2506  // This is a splat operation if each element of the permute is the same, and
2507  // if the value doesn't reference the second vector.
2508  unsigned NumElems = N->getNumOperands();
2509  SDValue ElementBase;
2510  unsigned i = 0;
2511  for (; i != NumElems; ++i) {
2512    SDValue Elt = N->getOperand(i);
2513    if (isa<ConstantSDNode>(Elt)) {
2514      ElementBase = Elt;
2515      break;
2516    }
2517  }
2518
2519  if (!ElementBase.getNode())
2520    return false;
2521
2522  for (; i != NumElems; ++i) {
2523    SDValue Arg = N->getOperand(i);
2524    if (Arg.getOpcode() == ISD::UNDEF) continue;
2525    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2526    if (Arg != ElementBase) return false;
2527  }
2528
2529  // Make sure it is a splat of the first vector operand.
2530  return cast<ConstantSDNode>(ElementBase)->getZExtValue() < NumElems;
2531}
2532
2533/// getSplatMaskEltNo - Given a splat mask, return the index to the element
2534/// we want to splat.
2535static SDValue getSplatMaskEltNo(SDNode *N) {
2536  assert(isSplatMask(N) && "Not a splat mask");
2537  unsigned NumElems = N->getNumOperands();
2538  SDValue ElementBase;
2539  unsigned i = 0;
2540  for (; i != NumElems; ++i) {
2541    SDValue Elt = N->getOperand(i);
2542    if (isa<ConstantSDNode>(Elt))
2543      return Elt;
2544  }
2545  assert(0 && " No splat value found!");
2546  return SDValue();
2547}
2548
2549
2550/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2551/// a splat of a single element and it's a 2 or 4 element mask.
2552bool X86::isSplatMask(SDNode *N) {
2553  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2554
2555  // We can only splat 64-bit, and 32-bit quantities with a single instruction.
2556  if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
2557    return false;
2558  return ::isSplatMask(N);
2559}
2560
2561/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
2562/// specifies a splat of zero element.
2563bool X86::isSplatLoMask(SDNode *N) {
2564  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2565
2566  for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
2567    if (!isUndefOrEqual(N->getOperand(i), 0))
2568      return false;
2569  return true;
2570}
2571
2572/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2573/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
2574bool X86::isMOVDDUPMask(SDNode *N) {
2575  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2576
2577  unsigned e = N->getNumOperands() / 2;
2578  for (unsigned i = 0; i < e; ++i)
2579    if (!isUndefOrEqual(N->getOperand(i), i))
2580      return false;
2581  for (unsigned i = 0; i < e; ++i)
2582    if (!isUndefOrEqual(N->getOperand(e+i), i))
2583      return false;
2584  return true;
2585}
2586
2587/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2588/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2589/// instructions.
2590unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2591  unsigned NumOperands = N->getNumOperands();
2592  unsigned Shift = (NumOperands == 4) ? 2 : 1;
2593  unsigned Mask = 0;
2594  for (unsigned i = 0; i < NumOperands; ++i) {
2595    unsigned Val = 0;
2596    SDValue Arg = N->getOperand(NumOperands-i-1);
2597    if (Arg.getOpcode() != ISD::UNDEF)
2598      Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2599    if (Val >= NumOperands) Val -= NumOperands;
2600    Mask |= Val;
2601    if (i != NumOperands - 1)
2602      Mask <<= Shift;
2603  }
2604
2605  return Mask;
2606}
2607
2608/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2609/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2610/// instructions.
2611unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2612  unsigned Mask = 0;
2613  // 8 nodes, but we only care about the last 4.
2614  for (unsigned i = 7; i >= 4; --i) {
2615    unsigned Val = 0;
2616    SDValue Arg = N->getOperand(i);
2617    if (Arg.getOpcode() != ISD::UNDEF)
2618      Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2619    Mask |= (Val - 4);
2620    if (i != 4)
2621      Mask <<= 2;
2622  }
2623
2624  return Mask;
2625}
2626
2627/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2628/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2629/// instructions.
2630unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2631  unsigned Mask = 0;
2632  // 8 nodes, but we only care about the first 4.
2633  for (int i = 3; i >= 0; --i) {
2634    unsigned Val = 0;
2635    SDValue Arg = N->getOperand(i);
2636    if (Arg.getOpcode() != ISD::UNDEF)
2637      Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2638    Mask |= Val;
2639    if (i != 0)
2640      Mask <<= 2;
2641  }
2642
2643  return Mask;
2644}
2645
2646/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
2647/// specifies a 8 element shuffle that can be broken into a pair of
2648/// PSHUFHW and PSHUFLW.
2649static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
2650  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2651
2652  if (N->getNumOperands() != 8)
2653    return false;
2654
2655  // Lower quadword shuffled.
2656  for (unsigned i = 0; i != 4; ++i) {
2657    SDValue Arg = N->getOperand(i);
2658    if (Arg.getOpcode() == ISD::UNDEF) continue;
2659    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2660    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2661    if (Val >= 4)
2662      return false;
2663  }
2664
2665  // Upper quadword shuffled.
2666  for (unsigned i = 4; i != 8; ++i) {
2667    SDValue Arg = N->getOperand(i);
2668    if (Arg.getOpcode() == ISD::UNDEF) continue;
2669    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2670    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2671    if (Val < 4 || Val > 7)
2672      return false;
2673  }
2674
2675  return true;
2676}
2677
2678/// CommuteVectorShuffle - Swap vector_shuffle operands as well as
2679/// values in ther permute mask.
2680static SDValue CommuteVectorShuffle(SDValue Op, SDValue &V1,
2681                                      SDValue &V2, SDValue &Mask,
2682                                      SelectionDAG &DAG) {
2683  MVT VT = Op.getValueType();
2684  MVT MaskVT = Mask.getValueType();
2685  MVT EltVT = MaskVT.getVectorElementType();
2686  unsigned NumElems = Mask.getNumOperands();
2687  SmallVector<SDValue, 8> MaskVec;
2688
2689  for (unsigned i = 0; i != NumElems; ++i) {
2690    SDValue Arg = Mask.getOperand(i);
2691    if (Arg.getOpcode() == ISD::UNDEF) {
2692      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2693      continue;
2694    }
2695    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2696    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2697    if (Val < NumElems)
2698      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2699    else
2700      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2701  }
2702
2703  std::swap(V1, V2);
2704  Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], NumElems);
2705  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2706}
2707
2708/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
2709/// the two vector operands have swapped position.
2710static
2711SDValue CommuteVectorShuffleMask(SDValue Mask, SelectionDAG &DAG) {
2712  MVT MaskVT = Mask.getValueType();
2713  MVT EltVT = MaskVT.getVectorElementType();
2714  unsigned NumElems = Mask.getNumOperands();
2715  SmallVector<SDValue, 8> MaskVec;
2716  for (unsigned i = 0; i != NumElems; ++i) {
2717    SDValue Arg = Mask.getOperand(i);
2718    if (Arg.getOpcode() == ISD::UNDEF) {
2719      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2720      continue;
2721    }
2722    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2723    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2724    if (Val < NumElems)
2725      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2726    else
2727      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2728  }
2729  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], NumElems);
2730}
2731
2732
2733/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2734/// match movhlps. The lower half elements should come from upper half of
2735/// V1 (and in order), and the upper half elements should come from the upper
2736/// half of V2 (and in order).
2737static bool ShouldXformToMOVHLPS(SDNode *Mask) {
2738  unsigned NumElems = Mask->getNumOperands();
2739  if (NumElems != 4)
2740    return false;
2741  for (unsigned i = 0, e = 2; i != e; ++i)
2742    if (!isUndefOrEqual(Mask->getOperand(i), i+2))
2743      return false;
2744  for (unsigned i = 2; i != 4; ++i)
2745    if (!isUndefOrEqual(Mask->getOperand(i), i+4))
2746      return false;
2747  return true;
2748}
2749
2750/// isScalarLoadToVector - Returns true if the node is a scalar load that
2751/// is promoted to a vector. It also returns the LoadSDNode by reference if
2752/// required.
2753static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
2754  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
2755    return false;
2756  N = N->getOperand(0).getNode();
2757  if (!ISD::isNON_EXTLoad(N))
2758    return false;
2759  if (LD)
2760    *LD = cast<LoadSDNode>(N);
2761  return true;
2762}
2763
2764/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2765/// match movlp{s|d}. The lower half elements should come from lower half of
2766/// V1 (and in order), and the upper half elements should come from the upper
2767/// half of V2 (and in order). And since V1 will become the source of the
2768/// MOVLP, it must be either a vector load or a scalar load to vector.
2769static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
2770  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2771    return false;
2772  // Is V2 is a vector load, don't do this transformation. We will try to use
2773  // load folding shufps op.
2774  if (ISD::isNON_EXTLoad(V2))
2775    return false;
2776
2777  unsigned NumElems = Mask->getNumOperands();
2778  if (NumElems != 2 && NumElems != 4)
2779    return false;
2780  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2781    if (!isUndefOrEqual(Mask->getOperand(i), i))
2782      return false;
2783  for (unsigned i = NumElems/2; i != NumElems; ++i)
2784    if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
2785      return false;
2786  return true;
2787}
2788
2789/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2790/// all the same.
2791static bool isSplatVector(SDNode *N) {
2792  if (N->getOpcode() != ISD::BUILD_VECTOR)
2793    return false;
2794
2795  SDValue SplatValue = N->getOperand(0);
2796  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2797    if (N->getOperand(i) != SplatValue)
2798      return false;
2799  return true;
2800}
2801
2802/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2803/// to an undef.
2804static bool isUndefShuffle(SDNode *N) {
2805  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2806    return false;
2807
2808  SDValue V1 = N->getOperand(0);
2809  SDValue V2 = N->getOperand(1);
2810  SDValue Mask = N->getOperand(2);
2811  unsigned NumElems = Mask.getNumOperands();
2812  for (unsigned i = 0; i != NumElems; ++i) {
2813    SDValue Arg = Mask.getOperand(i);
2814    if (Arg.getOpcode() != ISD::UNDEF) {
2815      unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2816      if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
2817        return false;
2818      else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
2819        return false;
2820    }
2821  }
2822  return true;
2823}
2824
2825/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2826/// constant +0.0.
2827static inline bool isZeroNode(SDValue Elt) {
2828  return ((isa<ConstantSDNode>(Elt) &&
2829           cast<ConstantSDNode>(Elt)->getZExtValue() == 0) ||
2830          (isa<ConstantFPSDNode>(Elt) &&
2831           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
2832}
2833
2834/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2835/// to an zero vector.
2836static bool isZeroShuffle(SDNode *N) {
2837  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2838    return false;
2839
2840  SDValue V1 = N->getOperand(0);
2841  SDValue V2 = N->getOperand(1);
2842  SDValue Mask = N->getOperand(2);
2843  unsigned NumElems = Mask.getNumOperands();
2844  for (unsigned i = 0; i != NumElems; ++i) {
2845    SDValue Arg = Mask.getOperand(i);
2846    if (Arg.getOpcode() == ISD::UNDEF)
2847      continue;
2848
2849    unsigned Idx = cast<ConstantSDNode>(Arg)->getZExtValue();
2850    if (Idx < NumElems) {
2851      unsigned Opc = V1.getNode()->getOpcode();
2852      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
2853        continue;
2854      if (Opc != ISD::BUILD_VECTOR ||
2855          !isZeroNode(V1.getNode()->getOperand(Idx)))
2856        return false;
2857    } else if (Idx >= NumElems) {
2858      unsigned Opc = V2.getNode()->getOpcode();
2859      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
2860        continue;
2861      if (Opc != ISD::BUILD_VECTOR ||
2862          !isZeroNode(V2.getNode()->getOperand(Idx - NumElems)))
2863        return false;
2864    }
2865  }
2866  return true;
2867}
2868
2869/// getZeroVector - Returns a vector of specified type with all zero elements.
2870///
2871static SDValue getZeroVector(MVT VT, bool HasSSE2, SelectionDAG &DAG) {
2872  assert(VT.isVector() && "Expected a vector type");
2873
2874  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2875  // type.  This ensures they get CSE'd.
2876  SDValue Vec;
2877  if (VT.getSizeInBits() == 64) { // MMX
2878    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
2879    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst);
2880  } else if (HasSSE2) {  // SSE2
2881    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
2882    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst);
2883  } else { // SSE1
2884    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
2885    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4f32, Cst, Cst, Cst, Cst);
2886  }
2887  return DAG.getNode(ISD::BIT_CONVERT, VT, Vec);
2888}
2889
2890/// getOnesVector - Returns a vector of specified type with all bits set.
2891///
2892static SDValue getOnesVector(MVT VT, SelectionDAG &DAG) {
2893  assert(VT.isVector() && "Expected a vector type");
2894
2895  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2896  // type.  This ensures they get CSE'd.
2897  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
2898  SDValue Vec;
2899  if (VT.getSizeInBits() == 64)  // MMX
2900    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst);
2901  else                                              // SSE
2902    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst);
2903  return DAG.getNode(ISD::BIT_CONVERT, VT, Vec);
2904}
2905
2906
2907/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2908/// that point to V2 points to its first element.
2909static SDValue NormalizeMask(SDValue Mask, SelectionDAG &DAG) {
2910  assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
2911
2912  bool Changed = false;
2913  SmallVector<SDValue, 8> MaskVec;
2914  unsigned NumElems = Mask.getNumOperands();
2915  for (unsigned i = 0; i != NumElems; ++i) {
2916    SDValue Arg = Mask.getOperand(i);
2917    if (Arg.getOpcode() != ISD::UNDEF) {
2918      unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2919      if (Val > NumElems) {
2920        Arg = DAG.getConstant(NumElems, Arg.getValueType());
2921        Changed = true;
2922      }
2923    }
2924    MaskVec.push_back(Arg);
2925  }
2926
2927  if (Changed)
2928    Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
2929                       &MaskVec[0], MaskVec.size());
2930  return Mask;
2931}
2932
2933/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2934/// operation of specified width.
2935static SDValue getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
2936  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2937  MVT BaseVT = MaskVT.getVectorElementType();
2938
2939  SmallVector<SDValue, 8> MaskVec;
2940  MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
2941  for (unsigned i = 1; i != NumElems; ++i)
2942    MaskVec.push_back(DAG.getConstant(i, BaseVT));
2943  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2944}
2945
2946/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
2947/// of specified width.
2948static SDValue getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
2949  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2950  MVT BaseVT = MaskVT.getVectorElementType();
2951  SmallVector<SDValue, 8> MaskVec;
2952  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
2953    MaskVec.push_back(DAG.getConstant(i,            BaseVT));
2954    MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
2955  }
2956  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2957}
2958
2959/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
2960/// of specified width.
2961static SDValue getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
2962  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2963  MVT BaseVT = MaskVT.getVectorElementType();
2964  unsigned Half = NumElems/2;
2965  SmallVector<SDValue, 8> MaskVec;
2966  for (unsigned i = 0; i != Half; ++i) {
2967    MaskVec.push_back(DAG.getConstant(i + Half,            BaseVT));
2968    MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
2969  }
2970  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2971}
2972
2973/// getSwapEltZeroMask - Returns a vector_shuffle mask for a shuffle that swaps
2974/// element #0 of a vector with the specified index, leaving the rest of the
2975/// elements in place.
2976static SDValue getSwapEltZeroMask(unsigned NumElems, unsigned DestElt,
2977                                   SelectionDAG &DAG) {
2978  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2979  MVT BaseVT = MaskVT.getVectorElementType();
2980  SmallVector<SDValue, 8> MaskVec;
2981  // Element #0 of the result gets the elt we are replacing.
2982  MaskVec.push_back(DAG.getConstant(DestElt, BaseVT));
2983  for (unsigned i = 1; i != NumElems; ++i)
2984    MaskVec.push_back(DAG.getConstant(i == DestElt ? 0 : i, BaseVT));
2985  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2986}
2987
2988/// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32.
2989static SDValue PromoteSplat(SDValue Op, SelectionDAG &DAG, bool HasSSE2) {
2990  MVT PVT = HasSSE2 ? MVT::v4i32 : MVT::v4f32;
2991  MVT VT = Op.getValueType();
2992  if (PVT == VT)
2993    return Op;
2994  SDValue V1 = Op.getOperand(0);
2995  SDValue Mask = Op.getOperand(2);
2996  unsigned MaskNumElems = Mask.getNumOperands();
2997  unsigned NumElems = MaskNumElems;
2998  // Special handling of v4f32 -> v4i32.
2999  if (VT != MVT::v4f32) {
3000    // Find which element we want to splat.
3001    SDNode* EltNoNode = getSplatMaskEltNo(Mask.getNode()).getNode();
3002    unsigned EltNo = cast<ConstantSDNode>(EltNoNode)->getZExtValue();
3003    // unpack elements to the correct location
3004    while (NumElems > 4) {
3005      if (EltNo < NumElems/2) {
3006        Mask = getUnpacklMask(MaskNumElems, DAG);
3007      } else {
3008        Mask = getUnpackhMask(MaskNumElems, DAG);
3009        EltNo -= NumElems/2;
3010      }
3011      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
3012      NumElems >>= 1;
3013    }
3014    SDValue Cst = DAG.getConstant(EltNo, MVT::i32);
3015    Mask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst);
3016  }
3017
3018  V1 = DAG.getNode(ISD::BIT_CONVERT, PVT, V1);
3019  SDValue Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, PVT, V1,
3020                                  DAG.getNode(ISD::UNDEF, PVT), Mask);
3021  return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
3022}
3023
3024/// isVectorLoad - Returns true if the node is a vector load, a scalar
3025/// load that's promoted to vector, or a load bitcasted.
3026static bool isVectorLoad(SDValue Op) {
3027  assert(Op.getValueType().isVector() && "Expected a vector type");
3028  if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR ||
3029      Op.getOpcode() == ISD::BIT_CONVERT) {
3030    return isa<LoadSDNode>(Op.getOperand(0));
3031  }
3032  return isa<LoadSDNode>(Op);
3033}
3034
3035
3036/// CanonicalizeMovddup - Cannonicalize movddup shuffle to v2f64.
3037///
3038static SDValue CanonicalizeMovddup(SDValue Op, SDValue V1, SDValue Mask,
3039                                   SelectionDAG &DAG, bool HasSSE3) {
3040  // If we have sse3 and shuffle has more than one use or input is a load, then
3041  // use movddup. Otherwise, use movlhps.
3042  bool UseMovddup = HasSSE3 && (!Op.hasOneUse() || isVectorLoad(V1));
3043  MVT PVT = UseMovddup ? MVT::v2f64 : MVT::v4f32;
3044  MVT VT = Op.getValueType();
3045  if (VT == PVT)
3046    return Op;
3047  unsigned NumElems = PVT.getVectorNumElements();
3048  if (NumElems == 2) {
3049    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3050    Mask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst);
3051  } else {
3052    assert(NumElems == 4);
3053    SDValue Cst0 = DAG.getTargetConstant(0, MVT::i32);
3054    SDValue Cst1 = DAG.getTargetConstant(1, MVT::i32);
3055    Mask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst0, Cst1, Cst0, Cst1);
3056  }
3057
3058  V1 = DAG.getNode(ISD::BIT_CONVERT, PVT, V1);
3059  SDValue Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, PVT, V1,
3060                                DAG.getNode(ISD::UNDEF, PVT), Mask);
3061  return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
3062}
3063
3064/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3065/// vector of zero or undef vector.  This produces a shuffle where the low
3066/// element of V2 is swizzled into the zero/undef vector, landing at element
3067/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
3068static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3069                                             bool isZero, bool HasSSE2,
3070                                             SelectionDAG &DAG) {
3071  MVT VT = V2.getValueType();
3072  SDValue V1 = isZero
3073    ? getZeroVector(VT, HasSSE2, DAG) : DAG.getNode(ISD::UNDEF, VT);
3074  unsigned NumElems = V2.getValueType().getVectorNumElements();
3075  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3076  MVT EVT = MaskVT.getVectorElementType();
3077  SmallVector<SDValue, 16> MaskVec;
3078  for (unsigned i = 0; i != NumElems; ++i)
3079    if (i == Idx)  // If this is the insertion idx, put the low elt of V2 here.
3080      MaskVec.push_back(DAG.getConstant(NumElems, EVT));
3081    else
3082      MaskVec.push_back(DAG.getConstant(i, EVT));
3083  SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3084                               &MaskVec[0], MaskVec.size());
3085  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
3086}
3087
3088/// getNumOfConsecutiveZeros - Return the number of elements in a result of
3089/// a shuffle that is zero.
3090static
3091unsigned getNumOfConsecutiveZeros(SDValue Op, SDValue Mask,
3092                                  unsigned NumElems, bool Low,
3093                                  SelectionDAG &DAG) {
3094  unsigned NumZeros = 0;
3095  for (unsigned i = 0; i < NumElems; ++i) {
3096    unsigned Index = Low ? i : NumElems-i-1;
3097    SDValue Idx = Mask.getOperand(Index);
3098    if (Idx.getOpcode() == ISD::UNDEF) {
3099      ++NumZeros;
3100      continue;
3101    }
3102    SDValue Elt = DAG.getShuffleScalarElt(Op.getNode(), Index);
3103    if (Elt.getNode() && isZeroNode(Elt))
3104      ++NumZeros;
3105    else
3106      break;
3107  }
3108  return NumZeros;
3109}
3110
3111/// isVectorShift - Returns true if the shuffle can be implemented as a
3112/// logical left or right shift of a vector.
3113static bool isVectorShift(SDValue Op, SDValue Mask, SelectionDAG &DAG,
3114                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3115  unsigned NumElems = Mask.getNumOperands();
3116
3117  isLeft = true;
3118  unsigned NumZeros= getNumOfConsecutiveZeros(Op, Mask, NumElems, true, DAG);
3119  if (!NumZeros) {
3120    isLeft = false;
3121    NumZeros = getNumOfConsecutiveZeros(Op, Mask, NumElems, false, DAG);
3122    if (!NumZeros)
3123      return false;
3124  }
3125
3126  bool SeenV1 = false;
3127  bool SeenV2 = false;
3128  for (unsigned i = NumZeros; i < NumElems; ++i) {
3129    unsigned Val = isLeft ? (i - NumZeros) : i;
3130    SDValue Idx = Mask.getOperand(isLeft ? i : (i - NumZeros));
3131    if (Idx.getOpcode() == ISD::UNDEF)
3132      continue;
3133    unsigned Index = cast<ConstantSDNode>(Idx)->getZExtValue();
3134    if (Index < NumElems)
3135      SeenV1 = true;
3136    else {
3137      Index -= NumElems;
3138      SeenV2 = true;
3139    }
3140    if (Index != Val)
3141      return false;
3142  }
3143  if (SeenV1 && SeenV2)
3144    return false;
3145
3146  ShVal = SeenV1 ? Op.getOperand(0) : Op.getOperand(1);
3147  ShAmt = NumZeros;
3148  return true;
3149}
3150
3151
3152/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3153///
3154static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
3155                                       unsigned NumNonZero, unsigned NumZero,
3156                                       SelectionDAG &DAG, TargetLowering &TLI) {
3157  if (NumNonZero > 8)
3158    return SDValue();
3159
3160  SDValue V(0, 0);
3161  bool First = true;
3162  for (unsigned i = 0; i < 16; ++i) {
3163    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3164    if (ThisIsNonZero && First) {
3165      if (NumZero)
3166        V = getZeroVector(MVT::v8i16, true, DAG);
3167      else
3168        V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
3169      First = false;
3170    }
3171
3172    if ((i & 1) != 0) {
3173      SDValue ThisElt(0, 0), LastElt(0, 0);
3174      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3175      if (LastIsNonZero) {
3176        LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
3177      }
3178      if (ThisIsNonZero) {
3179        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
3180        ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
3181                              ThisElt, DAG.getConstant(8, MVT::i8));
3182        if (LastIsNonZero)
3183          ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
3184      } else
3185        ThisElt = LastElt;
3186
3187      if (ThisElt.getNode())
3188        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
3189                        DAG.getIntPtrConstant(i/2));
3190    }
3191  }
3192
3193  return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
3194}
3195
3196/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3197///
3198static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
3199                                       unsigned NumNonZero, unsigned NumZero,
3200                                       SelectionDAG &DAG, TargetLowering &TLI) {
3201  if (NumNonZero > 4)
3202    return SDValue();
3203
3204  SDValue V(0, 0);
3205  bool First = true;
3206  for (unsigned i = 0; i < 8; ++i) {
3207    bool isNonZero = (NonZeros & (1 << i)) != 0;
3208    if (isNonZero) {
3209      if (First) {
3210        if (NumZero)
3211          V = getZeroVector(MVT::v8i16, true, DAG);
3212        else
3213          V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
3214        First = false;
3215      }
3216      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
3217                      DAG.getIntPtrConstant(i));
3218    }
3219  }
3220
3221  return V;
3222}
3223
3224/// getVShift - Return a vector logical shift node.
3225///
3226static SDValue getVShift(bool isLeft, MVT VT, SDValue SrcOp,
3227                           unsigned NumBits, SelectionDAG &DAG,
3228                           const TargetLowering &TLI) {
3229  bool isMMX = VT.getSizeInBits() == 64;
3230  MVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
3231  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3232  SrcOp = DAG.getNode(ISD::BIT_CONVERT, ShVT, SrcOp);
3233  return DAG.getNode(ISD::BIT_CONVERT, VT,
3234                     DAG.getNode(Opc, ShVT, SrcOp,
3235                             DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3236}
3237
3238SDValue
3239X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
3240  // All zero's are handled with pxor, all one's are handled with pcmpeqd.
3241  if (ISD::isBuildVectorAllZeros(Op.getNode())
3242      || ISD::isBuildVectorAllOnes(Op.getNode())) {
3243    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3244    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3245    // eliminated on x86-32 hosts.
3246    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
3247      return Op;
3248
3249    if (ISD::isBuildVectorAllOnes(Op.getNode()))
3250      return getOnesVector(Op.getValueType(), DAG);
3251    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG);
3252  }
3253
3254  MVT VT = Op.getValueType();
3255  MVT EVT = VT.getVectorElementType();
3256  unsigned EVTBits = EVT.getSizeInBits();
3257
3258  unsigned NumElems = Op.getNumOperands();
3259  unsigned NumZero  = 0;
3260  unsigned NumNonZero = 0;
3261  unsigned NonZeros = 0;
3262  bool IsAllConstants = true;
3263  SmallSet<SDValue, 8> Values;
3264  for (unsigned i = 0; i < NumElems; ++i) {
3265    SDValue Elt = Op.getOperand(i);
3266    if (Elt.getOpcode() == ISD::UNDEF)
3267      continue;
3268    Values.insert(Elt);
3269    if (Elt.getOpcode() != ISD::Constant &&
3270        Elt.getOpcode() != ISD::ConstantFP)
3271      IsAllConstants = false;
3272    if (isZeroNode(Elt))
3273      NumZero++;
3274    else {
3275      NonZeros |= (1 << i);
3276      NumNonZero++;
3277    }
3278  }
3279
3280  if (NumNonZero == 0) {
3281    // All undef vector. Return an UNDEF.  All zero vectors were handled above.
3282    return DAG.getNode(ISD::UNDEF, VT);
3283  }
3284
3285  // Special case for single non-zero, non-undef, element.
3286  if (NumNonZero == 1 && NumElems <= 4) {
3287    unsigned Idx = CountTrailingZeros_32(NonZeros);
3288    SDValue Item = Op.getOperand(Idx);
3289
3290    // If this is an insertion of an i64 value on x86-32, and if the top bits of
3291    // the value are obviously zero, truncate the value to i32 and do the
3292    // insertion that way.  Only do this if the value is non-constant or if the
3293    // value is a constant being inserted into element 0.  It is cheaper to do
3294    // a constant pool load than it is to do a movd + shuffle.
3295    if (EVT == MVT::i64 && !Subtarget->is64Bit() &&
3296        (!IsAllConstants || Idx == 0)) {
3297      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
3298        // Handle MMX and SSE both.
3299        MVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
3300        unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
3301
3302        // Truncate the value (which may itself be a constant) to i32, and
3303        // convert it to a vector with movd (S2V+shuffle to zero extend).
3304        Item = DAG.getNode(ISD::TRUNCATE, MVT::i32, Item);
3305        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VecVT, Item);
3306        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3307                                           Subtarget->hasSSE2(), DAG);
3308
3309        // Now we have our 32-bit value zero extended in the low element of
3310        // a vector.  If Idx != 0, swizzle it into place.
3311        if (Idx != 0) {
3312          SDValue Ops[] = {
3313            Item, DAG.getNode(ISD::UNDEF, Item.getValueType()),
3314            getSwapEltZeroMask(VecElts, Idx, DAG)
3315          };
3316          Item = DAG.getNode(ISD::VECTOR_SHUFFLE, VecVT, Ops, 3);
3317        }
3318        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Item);
3319      }
3320    }
3321
3322    // If we have a constant or non-constant insertion into the low element of
3323    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3324    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
3325    // depending on what the source datatype is.  Because we can only get here
3326    // when NumElems <= 4, this only needs to handle i32/f32/i64/f64.
3327    if (Idx == 0 &&
3328        // Don't do this for i64 values on x86-32.
3329        (EVT != MVT::i64 || Subtarget->is64Bit())) {
3330      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
3331      // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3332      return getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3333                                         Subtarget->hasSSE2(), DAG);
3334    }
3335
3336    // Is it a vector logical left shift?
3337    if (NumElems == 2 && Idx == 1 &&
3338        isZeroNode(Op.getOperand(0)) && !isZeroNode(Op.getOperand(1))) {
3339      unsigned NumBits = VT.getSizeInBits();
3340      return getVShift(true, VT,
3341                       DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(1)),
3342                       NumBits/2, DAG, *this);
3343    }
3344
3345    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
3346      return SDValue();
3347
3348    // Otherwise, if this is a vector with i32 or f32 elements, and the element
3349    // is a non-constant being inserted into an element other than the low one,
3350    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
3351    // movd/movss) to move this into the low element, then shuffle it into
3352    // place.
3353    if (EVTBits == 32) {
3354      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
3355
3356      // Turn it into a shuffle of zero and zero-extended scalar to vector.
3357      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3358                                         Subtarget->hasSSE2(), DAG);
3359      MVT MaskVT  = MVT::getIntVectorWithNumElements(NumElems);
3360      MVT MaskEVT = MaskVT.getVectorElementType();
3361      SmallVector<SDValue, 8> MaskVec;
3362      for (unsigned i = 0; i < NumElems; i++)
3363        MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
3364      SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3365                                   &MaskVec[0], MaskVec.size());
3366      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
3367                         DAG.getNode(ISD::UNDEF, VT), Mask);
3368    }
3369  }
3370
3371  // Splat is obviously ok. Let legalizer expand it to a shuffle.
3372  if (Values.size() == 1)
3373    return SDValue();
3374
3375  // A vector full of immediates; various special cases are already
3376  // handled, so this is best done with a single constant-pool load.
3377  if (IsAllConstants)
3378    return SDValue();
3379
3380  // Let legalizer expand 2-wide build_vectors.
3381  if (EVTBits == 64) {
3382    if (NumNonZero == 1) {
3383      // One half is zero or undef.
3384      unsigned Idx = CountTrailingZeros_32(NonZeros);
3385      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT,
3386                                 Op.getOperand(Idx));
3387      return getShuffleVectorZeroOrUndef(V2, Idx, true,
3388                                         Subtarget->hasSSE2(), DAG);
3389    }
3390    return SDValue();
3391  }
3392
3393  // If element VT is < 32 bits, convert it to inserts into a zero vector.
3394  if (EVTBits == 8 && NumElems == 16) {
3395    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3396                                        *this);
3397    if (V.getNode()) return V;
3398  }
3399
3400  if (EVTBits == 16 && NumElems == 8) {
3401    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3402                                        *this);
3403    if (V.getNode()) return V;
3404  }
3405
3406  // If element VT is == 32 bits, turn it into a number of shuffles.
3407  SmallVector<SDValue, 8> V;
3408  V.resize(NumElems);
3409  if (NumElems == 4 && NumZero > 0) {
3410    for (unsigned i = 0; i < 4; ++i) {
3411      bool isZero = !(NonZeros & (1 << i));
3412      if (isZero)
3413        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG);
3414      else
3415        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3416    }
3417
3418    for (unsigned i = 0; i < 2; ++i) {
3419      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3420        default: break;
3421        case 0:
3422          V[i] = V[i*2];  // Must be a zero vector.
3423          break;
3424        case 1:
3425          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
3426                             getMOVLMask(NumElems, DAG));
3427          break;
3428        case 2:
3429          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3430                             getMOVLMask(NumElems, DAG));
3431          break;
3432        case 3:
3433          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3434                             getUnpacklMask(NumElems, DAG));
3435          break;
3436      }
3437    }
3438
3439    MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3440    MVT EVT = MaskVT.getVectorElementType();
3441    SmallVector<SDValue, 8> MaskVec;
3442    bool Reverse = (NonZeros & 0x3) == 2;
3443    for (unsigned i = 0; i < 2; ++i)
3444      if (Reverse)
3445        MaskVec.push_back(DAG.getConstant(1-i, EVT));
3446      else
3447        MaskVec.push_back(DAG.getConstant(i, EVT));
3448    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3449    for (unsigned i = 0; i < 2; ++i)
3450      if (Reverse)
3451        MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
3452      else
3453        MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
3454    SDValue ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3455                                     &MaskVec[0], MaskVec.size());
3456    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
3457  }
3458
3459  if (Values.size() > 2) {
3460    // Expand into a number of unpckl*.
3461    // e.g. for v4f32
3462    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3463    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3464    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
3465    SDValue UnpckMask = getUnpacklMask(NumElems, DAG);
3466    for (unsigned i = 0; i < NumElems; ++i)
3467      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3468    NumElems >>= 1;
3469    while (NumElems != 0) {
3470      for (unsigned i = 0; i < NumElems; ++i)
3471        V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
3472                           UnpckMask);
3473      NumElems >>= 1;
3474    }
3475    return V[0];
3476  }
3477
3478  return SDValue();
3479}
3480
3481static
3482SDValue LowerVECTOR_SHUFFLEv8i16(SDValue V1, SDValue V2,
3483                                 SDValue PermMask, SelectionDAG &DAG,
3484                                 TargetLowering &TLI) {
3485  SDValue NewV;
3486  MVT MaskVT = MVT::getIntVectorWithNumElements(8);
3487  MVT MaskEVT = MaskVT.getVectorElementType();
3488  MVT PtrVT = TLI.getPointerTy();
3489  SmallVector<SDValue, 8> MaskElts(PermMask.getNode()->op_begin(),
3490                                   PermMask.getNode()->op_end());
3491
3492  // First record which half of which vector the low elements come from.
3493  SmallVector<unsigned, 4> LowQuad(4);
3494  for (unsigned i = 0; i < 4; ++i) {
3495    SDValue Elt = MaskElts[i];
3496    if (Elt.getOpcode() == ISD::UNDEF)
3497      continue;
3498    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3499    int QuadIdx = EltIdx / 4;
3500    ++LowQuad[QuadIdx];
3501  }
3502
3503  int BestLowQuad = -1;
3504  unsigned MaxQuad = 1;
3505  for (unsigned i = 0; i < 4; ++i) {
3506    if (LowQuad[i] > MaxQuad) {
3507      BestLowQuad = i;
3508      MaxQuad = LowQuad[i];
3509    }
3510  }
3511
3512  // Record which half of which vector the high elements come from.
3513  SmallVector<unsigned, 4> HighQuad(4);
3514  for (unsigned i = 4; i < 8; ++i) {
3515    SDValue Elt = MaskElts[i];
3516    if (Elt.getOpcode() == ISD::UNDEF)
3517      continue;
3518    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3519    int QuadIdx = EltIdx / 4;
3520    ++HighQuad[QuadIdx];
3521  }
3522
3523  int BestHighQuad = -1;
3524  MaxQuad = 1;
3525  for (unsigned i = 0; i < 4; ++i) {
3526    if (HighQuad[i] > MaxQuad) {
3527      BestHighQuad = i;
3528      MaxQuad = HighQuad[i];
3529    }
3530  }
3531
3532  // If it's possible to sort parts of either half with PSHUF{H|L}W, then do it.
3533  if (BestLowQuad != -1 || BestHighQuad != -1) {
3534    // First sort the 4 chunks in order using shufpd.
3535    SmallVector<SDValue, 8> MaskVec;
3536
3537    if (BestLowQuad != -1)
3538      MaskVec.push_back(DAG.getConstant(BestLowQuad, MVT::i32));
3539    else
3540      MaskVec.push_back(DAG.getConstant(0, MVT::i32));
3541
3542    if (BestHighQuad != -1)
3543      MaskVec.push_back(DAG.getConstant(BestHighQuad, MVT::i32));
3544    else
3545      MaskVec.push_back(DAG.getConstant(1, MVT::i32));
3546
3547    SDValue Mask= DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, &MaskVec[0],2);
3548    NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v2i64,
3549                       DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, V1),
3550                       DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, V2), Mask);
3551    NewV = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, NewV);
3552
3553    // Now sort high and low parts separately.
3554    BitVector InOrder(8);
3555    if (BestLowQuad != -1) {
3556      // Sort lower half in order using PSHUFLW.
3557      MaskVec.clear();
3558      bool AnyOutOrder = false;
3559
3560      for (unsigned i = 0; i != 4; ++i) {
3561        SDValue Elt = MaskElts[i];
3562        if (Elt.getOpcode() == ISD::UNDEF) {
3563          MaskVec.push_back(Elt);
3564          InOrder.set(i);
3565        } else {
3566          unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3567          if (EltIdx != i)
3568            AnyOutOrder = true;
3569
3570          MaskVec.push_back(DAG.getConstant(EltIdx % 4, MaskEVT));
3571
3572          // If this element is in the right place after this shuffle, then
3573          // remember it.
3574          if ((int)(EltIdx / 4) == BestLowQuad)
3575            InOrder.set(i);
3576        }
3577      }
3578      if (AnyOutOrder) {
3579        for (unsigned i = 4; i != 8; ++i)
3580          MaskVec.push_back(DAG.getConstant(i, MaskEVT));
3581        SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3582        NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, NewV, NewV, Mask);
3583      }
3584    }
3585
3586    if (BestHighQuad != -1) {
3587      // Sort high half in order using PSHUFHW if possible.
3588      MaskVec.clear();
3589
3590      for (unsigned i = 0; i != 4; ++i)
3591        MaskVec.push_back(DAG.getConstant(i, MaskEVT));
3592
3593      bool AnyOutOrder = false;
3594      for (unsigned i = 4; i != 8; ++i) {
3595        SDValue Elt = MaskElts[i];
3596        if (Elt.getOpcode() == ISD::UNDEF) {
3597          MaskVec.push_back(Elt);
3598          InOrder.set(i);
3599        } else {
3600          unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3601          if (EltIdx != i)
3602            AnyOutOrder = true;
3603
3604          MaskVec.push_back(DAG.getConstant((EltIdx % 4) + 4, MaskEVT));
3605
3606          // If this element is in the right place after this shuffle, then
3607          // remember it.
3608          if ((int)(EltIdx / 4) == BestHighQuad)
3609            InOrder.set(i);
3610        }
3611      }
3612
3613      if (AnyOutOrder) {
3614        SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3615        NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, NewV, NewV, Mask);
3616      }
3617    }
3618
3619    // The other elements are put in the right place using pextrw and pinsrw.
3620    for (unsigned i = 0; i != 8; ++i) {
3621      if (InOrder[i])
3622        continue;
3623      SDValue Elt = MaskElts[i];
3624      if (Elt.getOpcode() == ISD::UNDEF)
3625        continue;
3626      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3627      SDValue ExtOp = (EltIdx < 8)
3628        ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V1,
3629                      DAG.getConstant(EltIdx, PtrVT))
3630        : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V2,
3631                      DAG.getConstant(EltIdx - 8, PtrVT));
3632      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3633                         DAG.getConstant(i, PtrVT));
3634    }
3635
3636    return NewV;
3637  }
3638
3639  // PSHUF{H|L}W are not used. Lower into extracts and inserts but try to use as
3640  // few as possible. First, let's find out how many elements are already in the
3641  // right order.
3642  unsigned V1InOrder = 0;
3643  unsigned V1FromV1 = 0;
3644  unsigned V2InOrder = 0;
3645  unsigned V2FromV2 = 0;
3646  SmallVector<SDValue, 8> V1Elts;
3647  SmallVector<SDValue, 8> V2Elts;
3648  for (unsigned i = 0; i < 8; ++i) {
3649    SDValue Elt = MaskElts[i];
3650    if (Elt.getOpcode() == ISD::UNDEF) {
3651      V1Elts.push_back(Elt);
3652      V2Elts.push_back(Elt);
3653      ++V1InOrder;
3654      ++V2InOrder;
3655      continue;
3656    }
3657    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3658    if (EltIdx == i) {
3659      V1Elts.push_back(Elt);
3660      V2Elts.push_back(DAG.getConstant(i+8, MaskEVT));
3661      ++V1InOrder;
3662    } else if (EltIdx == i+8) {
3663      V1Elts.push_back(Elt);
3664      V2Elts.push_back(DAG.getConstant(i, MaskEVT));
3665      ++V2InOrder;
3666    } else if (EltIdx < 8) {
3667      V1Elts.push_back(Elt);
3668      V2Elts.push_back(DAG.getConstant(i+8, MaskEVT));
3669      ++V1FromV1;
3670    } else {
3671      V1Elts.push_back(Elt);
3672      V2Elts.push_back(DAG.getConstant(EltIdx-8, MaskEVT));
3673      ++V2FromV2;
3674    }
3675  }
3676
3677  if (V2InOrder > V1InOrder) {
3678    PermMask = CommuteVectorShuffleMask(PermMask, DAG);
3679    std::swap(V1, V2);
3680    std::swap(V1Elts, V2Elts);
3681    std::swap(V1FromV1, V2FromV2);
3682  }
3683
3684  if ((V1FromV1 + V1InOrder) != 8) {
3685    // Some elements are from V2.
3686    if (V1FromV1) {
3687      // If there are elements that are from V1 but out of place,
3688      // then first sort them in place
3689      SmallVector<SDValue, 8> MaskVec;
3690      for (unsigned i = 0; i < 8; ++i) {
3691        SDValue Elt = V1Elts[i];
3692        if (Elt.getOpcode() == ISD::UNDEF) {
3693          MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3694          continue;
3695        }
3696        unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3697        if (EltIdx >= 8)
3698          MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3699        else
3700          MaskVec.push_back(DAG.getConstant(EltIdx, MaskEVT));
3701      }
3702      SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3703      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, V1, V1, Mask);
3704    }
3705
3706    NewV = V1;
3707    for (unsigned i = 0; i < 8; ++i) {
3708      SDValue Elt = V1Elts[i];
3709      if (Elt.getOpcode() == ISD::UNDEF)
3710        continue;
3711      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3712      if (EltIdx < 8)
3713        continue;
3714      SDValue ExtOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V2,
3715                                    DAG.getConstant(EltIdx - 8, PtrVT));
3716      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3717                         DAG.getConstant(i, PtrVT));
3718    }
3719    return NewV;
3720  } else {
3721    // All elements are from V1.
3722    NewV = V1;
3723    for (unsigned i = 0; i < 8; ++i) {
3724      SDValue Elt = V1Elts[i];
3725      if (Elt.getOpcode() == ISD::UNDEF)
3726        continue;
3727      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3728      SDValue ExtOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V1,
3729                                    DAG.getConstant(EltIdx, PtrVT));
3730      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3731                         DAG.getConstant(i, PtrVT));
3732    }
3733    return NewV;
3734  }
3735}
3736
3737/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
3738/// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
3739/// done when every pair / quad of shuffle mask elements point to elements in
3740/// the right sequence. e.g.
3741/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
3742static
3743SDValue RewriteAsNarrowerShuffle(SDValue V1, SDValue V2,
3744                                MVT VT,
3745                                SDValue PermMask, SelectionDAG &DAG,
3746                                TargetLowering &TLI) {
3747  unsigned NumElems = PermMask.getNumOperands();
3748  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
3749  MVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
3750  MVT MaskEltVT = MaskVT.getVectorElementType();
3751  MVT NewVT = MaskVT;
3752  switch (VT.getSimpleVT()) {
3753  default: assert(false && "Unexpected!");
3754  case MVT::v4f32: NewVT = MVT::v2f64; break;
3755  case MVT::v4i32: NewVT = MVT::v2i64; break;
3756  case MVT::v8i16: NewVT = MVT::v4i32; break;
3757  case MVT::v16i8: NewVT = MVT::v4i32; break;
3758  }
3759
3760  if (NewWidth == 2) {
3761    if (VT.isInteger())
3762      NewVT = MVT::v2i64;
3763    else
3764      NewVT = MVT::v2f64;
3765  }
3766  unsigned Scale = NumElems / NewWidth;
3767  SmallVector<SDValue, 8> MaskVec;
3768  for (unsigned i = 0; i < NumElems; i += Scale) {
3769    unsigned StartIdx = ~0U;
3770    for (unsigned j = 0; j < Scale; ++j) {
3771      SDValue Elt = PermMask.getOperand(i+j);
3772      if (Elt.getOpcode() == ISD::UNDEF)
3773        continue;
3774      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3775      if (StartIdx == ~0U)
3776        StartIdx = EltIdx - (EltIdx % Scale);
3777      if (EltIdx != StartIdx + j)
3778        return SDValue();
3779    }
3780    if (StartIdx == ~0U)
3781      MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEltVT));
3782    else
3783      MaskVec.push_back(DAG.getConstant(StartIdx / Scale, MaskEltVT));
3784  }
3785
3786  V1 = DAG.getNode(ISD::BIT_CONVERT, NewVT, V1);
3787  V2 = DAG.getNode(ISD::BIT_CONVERT, NewVT, V2);
3788  return DAG.getNode(ISD::VECTOR_SHUFFLE, NewVT, V1, V2,
3789                     DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3790                                 &MaskVec[0], MaskVec.size()));
3791}
3792
3793/// getVZextMovL - Return a zero-extending vector move low node.
3794///
3795static SDValue getVZextMovL(MVT VT, MVT OpVT,
3796                              SDValue SrcOp, SelectionDAG &DAG,
3797                              const X86Subtarget *Subtarget) {
3798  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
3799    LoadSDNode *LD = NULL;
3800    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
3801      LD = dyn_cast<LoadSDNode>(SrcOp);
3802    if (!LD) {
3803      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
3804      // instead.
3805      MVT EVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
3806      if ((EVT != MVT::i64 || Subtarget->is64Bit()) &&
3807          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
3808          SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
3809          SrcOp.getOperand(0).getOperand(0).getValueType() == EVT) {
3810        // PR2108
3811        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
3812        return DAG.getNode(ISD::BIT_CONVERT, VT,
3813                           DAG.getNode(X86ISD::VZEXT_MOVL, OpVT,
3814                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, OpVT,
3815                                                   SrcOp.getOperand(0)
3816                                                          .getOperand(0))));
3817      }
3818    }
3819  }
3820
3821  return DAG.getNode(ISD::BIT_CONVERT, VT,
3822                     DAG.getNode(X86ISD::VZEXT_MOVL, OpVT,
3823                                 DAG.getNode(ISD::BIT_CONVERT, OpVT, SrcOp)));
3824}
3825
3826/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
3827/// shuffles.
3828static SDValue
3829LowerVECTOR_SHUFFLE_4wide(SDValue V1, SDValue V2,
3830                          SDValue PermMask, MVT VT, SelectionDAG &DAG) {
3831  MVT MaskVT = PermMask.getValueType();
3832  MVT MaskEVT = MaskVT.getVectorElementType();
3833  SmallVector<std::pair<int, int>, 8> Locs;
3834  Locs.resize(4);
3835  SmallVector<SDValue, 8> Mask1(4, DAG.getNode(ISD::UNDEF, MaskEVT));
3836  unsigned NumHi = 0;
3837  unsigned NumLo = 0;
3838  for (unsigned i = 0; i != 4; ++i) {
3839    SDValue Elt = PermMask.getOperand(i);
3840    if (Elt.getOpcode() == ISD::UNDEF) {
3841      Locs[i] = std::make_pair(-1, -1);
3842    } else {
3843      unsigned Val = cast<ConstantSDNode>(Elt)->getZExtValue();
3844      assert(Val < 8 && "Invalid VECTOR_SHUFFLE index!");
3845      if (Val < 4) {
3846        Locs[i] = std::make_pair(0, NumLo);
3847        Mask1[NumLo] = Elt;
3848        NumLo++;
3849      } else {
3850        Locs[i] = std::make_pair(1, NumHi);
3851        if (2+NumHi < 4)
3852          Mask1[2+NumHi] = Elt;
3853        NumHi++;
3854      }
3855    }
3856  }
3857
3858  if (NumLo <= 2 && NumHi <= 2) {
3859    // If no more than two elements come from either vector. This can be
3860    // implemented with two shuffles. First shuffle gather the elements.
3861    // The second shuffle, which takes the first shuffle as both of its
3862    // vector operands, put the elements into the right order.
3863    V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3864                     DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3865                                 &Mask1[0], Mask1.size()));
3866
3867    SmallVector<SDValue, 8> Mask2(4, DAG.getNode(ISD::UNDEF, MaskEVT));
3868    for (unsigned i = 0; i != 4; ++i) {
3869      if (Locs[i].first == -1)
3870        continue;
3871      else {
3872        unsigned Idx = (i < 2) ? 0 : 4;
3873        Idx += Locs[i].first * 2 + Locs[i].second;
3874        Mask2[i] = DAG.getConstant(Idx, MaskEVT);
3875      }
3876    }
3877
3878    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
3879                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3880                                   &Mask2[0], Mask2.size()));
3881  } else if (NumLo == 3 || NumHi == 3) {
3882    // Otherwise, we must have three elements from one vector, call it X, and
3883    // one element from the other, call it Y.  First, use a shufps to build an
3884    // intermediate vector with the one element from Y and the element from X
3885    // that will be in the same half in the final destination (the indexes don't
3886    // matter). Then, use a shufps to build the final vector, taking the half
3887    // containing the element from Y from the intermediate, and the other half
3888    // from X.
3889    if (NumHi == 3) {
3890      // Normalize it so the 3 elements come from V1.
3891      PermMask = CommuteVectorShuffleMask(PermMask, DAG);
3892      std::swap(V1, V2);
3893    }
3894
3895    // Find the element from V2.
3896    unsigned HiIndex;
3897    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
3898      SDValue Elt = PermMask.getOperand(HiIndex);
3899      if (Elt.getOpcode() == ISD::UNDEF)
3900        continue;
3901      unsigned Val = cast<ConstantSDNode>(Elt)->getZExtValue();
3902      if (Val >= 4)
3903        break;
3904    }
3905
3906    Mask1[0] = PermMask.getOperand(HiIndex);
3907    Mask1[1] = DAG.getNode(ISD::UNDEF, MaskEVT);
3908    Mask1[2] = PermMask.getOperand(HiIndex^1);
3909    Mask1[3] = DAG.getNode(ISD::UNDEF, MaskEVT);
3910    V2 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3911                     DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &Mask1[0], 4));
3912
3913    if (HiIndex >= 2) {
3914      Mask1[0] = PermMask.getOperand(0);
3915      Mask1[1] = PermMask.getOperand(1);
3916      Mask1[2] = DAG.getConstant(HiIndex & 1 ? 6 : 4, MaskEVT);
3917      Mask1[3] = DAG.getConstant(HiIndex & 1 ? 4 : 6, MaskEVT);
3918      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3919                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &Mask1[0], 4));
3920    } else {
3921      Mask1[0] = DAG.getConstant(HiIndex & 1 ? 2 : 0, MaskEVT);
3922      Mask1[1] = DAG.getConstant(HiIndex & 1 ? 0 : 2, MaskEVT);
3923      Mask1[2] = PermMask.getOperand(2);
3924      Mask1[3] = PermMask.getOperand(3);
3925      if (Mask1[2].getOpcode() != ISD::UNDEF)
3926        Mask1[2] =
3927          DAG.getConstant(cast<ConstantSDNode>(Mask1[2])->getZExtValue()+4,
3928                          MaskEVT);
3929      if (Mask1[3].getOpcode() != ISD::UNDEF)
3930        Mask1[3] =
3931          DAG.getConstant(cast<ConstantSDNode>(Mask1[3])->getZExtValue()+4,
3932                          MaskEVT);
3933      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V2, V1,
3934                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &Mask1[0], 4));
3935    }
3936  }
3937
3938  // Break it into (shuffle shuffle_hi, shuffle_lo).
3939  Locs.clear();
3940  SmallVector<SDValue,8> LoMask(4, DAG.getNode(ISD::UNDEF, MaskEVT));
3941  SmallVector<SDValue,8> HiMask(4, DAG.getNode(ISD::UNDEF, MaskEVT));
3942  SmallVector<SDValue,8> *MaskPtr = &LoMask;
3943  unsigned MaskIdx = 0;
3944  unsigned LoIdx = 0;
3945  unsigned HiIdx = 2;
3946  for (unsigned i = 0; i != 4; ++i) {
3947    if (i == 2) {
3948      MaskPtr = &HiMask;
3949      MaskIdx = 1;
3950      LoIdx = 0;
3951      HiIdx = 2;
3952    }
3953    SDValue Elt = PermMask.getOperand(i);
3954    if (Elt.getOpcode() == ISD::UNDEF) {
3955      Locs[i] = std::make_pair(-1, -1);
3956    } else if (cast<ConstantSDNode>(Elt)->getZExtValue() < 4) {
3957      Locs[i] = std::make_pair(MaskIdx, LoIdx);
3958      (*MaskPtr)[LoIdx] = Elt;
3959      LoIdx++;
3960    } else {
3961      Locs[i] = std::make_pair(MaskIdx, HiIdx);
3962      (*MaskPtr)[HiIdx] = Elt;
3963      HiIdx++;
3964    }
3965  }
3966
3967  SDValue LoShuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3968                                    DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3969                                                &LoMask[0], LoMask.size()));
3970  SDValue HiShuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3971                                    DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3972                                                &HiMask[0], HiMask.size()));
3973  SmallVector<SDValue, 8> MaskOps;
3974  for (unsigned i = 0; i != 4; ++i) {
3975    if (Locs[i].first == -1) {
3976      MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3977    } else {
3978      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
3979      MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
3980    }
3981  }
3982  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
3983                     DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3984                                 &MaskOps[0], MaskOps.size()));
3985}
3986
3987SDValue
3988X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
3989  SDValue V1 = Op.getOperand(0);
3990  SDValue V2 = Op.getOperand(1);
3991  SDValue PermMask = Op.getOperand(2);
3992  MVT VT = Op.getValueType();
3993  unsigned NumElems = PermMask.getNumOperands();
3994  bool isMMX = VT.getSizeInBits() == 64;
3995  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
3996  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
3997  bool V1IsSplat = false;
3998  bool V2IsSplat = false;
3999
4000  if (isUndefShuffle(Op.getNode()))
4001    return DAG.getNode(ISD::UNDEF, VT);
4002
4003  if (isZeroShuffle(Op.getNode()))
4004    return getZeroVector(VT, Subtarget->hasSSE2(), DAG);
4005
4006  if (isIdentityMask(PermMask.getNode()))
4007    return V1;
4008  else if (isIdentityMask(PermMask.getNode(), true))
4009    return V2;
4010
4011  // Canonicalize movddup shuffles.
4012  if (V2IsUndef && Subtarget->hasSSE2() &&
4013      VT.getSizeInBits() == 128 &&
4014      X86::isMOVDDUPMask(PermMask.getNode()))
4015    return CanonicalizeMovddup(Op, V1, PermMask, DAG, Subtarget->hasSSE3());
4016
4017  if (isSplatMask(PermMask.getNode())) {
4018    if (isMMX || NumElems < 4) return Op;
4019    // Promote it to a v4{if}32 splat.
4020    return PromoteSplat(Op, DAG, Subtarget->hasSSE2());
4021  }
4022
4023  // If the shuffle can be profitably rewritten as a narrower shuffle, then
4024  // do it!
4025  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
4026    SDValue NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask, DAG, *this);
4027    if (NewOp.getNode())
4028      return DAG.getNode(ISD::BIT_CONVERT, VT, LowerVECTOR_SHUFFLE(NewOp, DAG));
4029  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
4030    // FIXME: Figure out a cleaner way to do this.
4031    // Try to make use of movq to zero out the top part.
4032    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
4033      SDValue NewOp = RewriteAsNarrowerShuffle(V1, V2, VT, PermMask,
4034                                                 DAG, *this);
4035      if (NewOp.getNode()) {
4036        SDValue NewV1 = NewOp.getOperand(0);
4037        SDValue NewV2 = NewOp.getOperand(1);
4038        SDValue NewMask = NewOp.getOperand(2);
4039        if (isCommutedMOVL(NewMask.getNode(), true, false)) {
4040          NewOp = CommuteVectorShuffle(NewOp, NewV1, NewV2, NewMask, DAG);
4041          return getVZextMovL(VT, NewOp.getValueType(), NewV2, DAG, Subtarget);
4042        }
4043      }
4044    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
4045      SDValue NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask,
4046                                                DAG, *this);
4047      if (NewOp.getNode() && X86::isMOVLMask(NewOp.getOperand(2).getNode()))
4048        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
4049                             DAG, Subtarget);
4050    }
4051  }
4052
4053  // Check if this can be converted into a logical shift.
4054  bool isLeft = false;
4055  unsigned ShAmt = 0;
4056  SDValue ShVal;
4057  bool isShift = isVectorShift(Op, PermMask, DAG, isLeft, ShVal, ShAmt);
4058  if (isShift && ShVal.hasOneUse()) {
4059    // If the shifted value has multiple uses, it may be cheaper to use
4060    // v_set0 + movlhps or movhlps, etc.
4061    MVT EVT = VT.getVectorElementType();
4062    ShAmt *= EVT.getSizeInBits();
4063    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this);
4064  }
4065
4066  if (X86::isMOVLMask(PermMask.getNode())) {
4067    if (V1IsUndef)
4068      return V2;
4069    if (ISD::isBuildVectorAllZeros(V1.getNode()))
4070      return getVZextMovL(VT, VT, V2, DAG, Subtarget);
4071    if (!isMMX)
4072      return Op;
4073  }
4074
4075  if (!isMMX && (X86::isMOVSHDUPMask(PermMask.getNode()) ||
4076                 X86::isMOVSLDUPMask(PermMask.getNode()) ||
4077                 X86::isMOVHLPSMask(PermMask.getNode()) ||
4078                 X86::isMOVHPMask(PermMask.getNode()) ||
4079                 X86::isMOVLPMask(PermMask.getNode())))
4080    return Op;
4081
4082  if (ShouldXformToMOVHLPS(PermMask.getNode()) ||
4083      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), PermMask.getNode()))
4084    return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
4085
4086  if (isShift) {
4087    // No better options. Use a vshl / vsrl.
4088    MVT EVT = VT.getVectorElementType();
4089    ShAmt *= EVT.getSizeInBits();
4090    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this);
4091  }
4092
4093  bool Commuted = false;
4094  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
4095  // 1,1,1,1 -> v8i16 though.
4096  V1IsSplat = isSplatVector(V1.getNode());
4097  V2IsSplat = isSplatVector(V2.getNode());
4098
4099  // Canonicalize the splat or undef, if present, to be on the RHS.
4100  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
4101    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
4102    std::swap(V1IsSplat, V2IsSplat);
4103    std::swap(V1IsUndef, V2IsUndef);
4104    Commuted = true;
4105  }
4106
4107  // FIXME: Figure out a cleaner way to do this.
4108  if (isCommutedMOVL(PermMask.getNode(), V2IsSplat, V2IsUndef)) {
4109    if (V2IsUndef) return V1;
4110    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
4111    if (V2IsSplat) {
4112      // V2 is a splat, so the mask may be malformed. That is, it may point
4113      // to any V2 element. The instruction selectior won't like this. Get
4114      // a corrected mask and commute to form a proper MOVS{S|D}.
4115      SDValue NewMask = getMOVLMask(NumElems, DAG);
4116      if (NewMask.getNode() != PermMask.getNode())
4117        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
4118    }
4119    return Op;
4120  }
4121
4122  if (X86::isUNPCKL_v_undef_Mask(PermMask.getNode()) ||
4123      X86::isUNPCKH_v_undef_Mask(PermMask.getNode()) ||
4124      X86::isUNPCKLMask(PermMask.getNode()) ||
4125      X86::isUNPCKHMask(PermMask.getNode()))
4126    return Op;
4127
4128  if (V2IsSplat) {
4129    // Normalize mask so all entries that point to V2 points to its first
4130    // element then try to match unpck{h|l} again. If match, return a
4131    // new vector_shuffle with the corrected mask.
4132    SDValue NewMask = NormalizeMask(PermMask, DAG);
4133    if (NewMask.getNode() != PermMask.getNode()) {
4134      if (X86::isUNPCKLMask(PermMask.getNode(), true)) {
4135        SDValue NewMask = getUnpacklMask(NumElems, DAG);
4136        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
4137      } else if (X86::isUNPCKHMask(PermMask.getNode(), true)) {
4138        SDValue NewMask = getUnpackhMask(NumElems, DAG);
4139        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
4140      }
4141    }
4142  }
4143
4144  // Normalize the node to match x86 shuffle ops if needed
4145  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.getNode()))
4146      Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
4147
4148  if (Commuted) {
4149    // Commute is back and try unpck* again.
4150    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
4151    if (X86::isUNPCKL_v_undef_Mask(PermMask.getNode()) ||
4152        X86::isUNPCKH_v_undef_Mask(PermMask.getNode()) ||
4153        X86::isUNPCKLMask(PermMask.getNode()) ||
4154        X86::isUNPCKHMask(PermMask.getNode()))
4155      return Op;
4156  }
4157
4158  // Try PSHUF* first, then SHUFP*.
4159  // MMX doesn't have PSHUFD but it does have PSHUFW. While it's theoretically
4160  // possible to shuffle a v2i32 using PSHUFW, that's not yet implemented.
4161  if (isMMX && NumElems == 4 && X86::isPSHUFDMask(PermMask.getNode())) {
4162    if (V2.getOpcode() != ISD::UNDEF)
4163      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
4164                         DAG.getNode(ISD::UNDEF, VT), PermMask);
4165    return Op;
4166  }
4167
4168  if (!isMMX) {
4169    if (Subtarget->hasSSE2() &&
4170        (X86::isPSHUFDMask(PermMask.getNode()) ||
4171         X86::isPSHUFHWMask(PermMask.getNode()) ||
4172         X86::isPSHUFLWMask(PermMask.getNode()))) {
4173      MVT RVT = VT;
4174      if (VT == MVT::v4f32) {
4175        RVT = MVT::v4i32;
4176        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, RVT,
4177                         DAG.getNode(ISD::BIT_CONVERT, RVT, V1),
4178                         DAG.getNode(ISD::UNDEF, RVT), PermMask);
4179      } else if (V2.getOpcode() != ISD::UNDEF)
4180        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, RVT, V1,
4181                         DAG.getNode(ISD::UNDEF, RVT), PermMask);
4182      if (RVT != VT)
4183        Op = DAG.getNode(ISD::BIT_CONVERT, VT, Op);
4184      return Op;
4185    }
4186
4187    // Binary or unary shufps.
4188    if (X86::isSHUFPMask(PermMask.getNode()) ||
4189        (V2.getOpcode() == ISD::UNDEF && X86::isPSHUFDMask(PermMask.getNode())))
4190      return Op;
4191  }
4192
4193  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
4194  if (VT == MVT::v8i16) {
4195    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(V1, V2, PermMask, DAG, *this);
4196    if (NewOp.getNode())
4197      return NewOp;
4198  }
4199
4200  // Handle all 4 wide cases with a number of shuffles except for MMX.
4201  if (NumElems == 4 && !isMMX)
4202    return LowerVECTOR_SHUFFLE_4wide(V1, V2, PermMask, VT, DAG);
4203
4204  return SDValue();
4205}
4206
4207SDValue
4208X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
4209                                                SelectionDAG &DAG) {
4210  MVT VT = Op.getValueType();
4211  if (VT.getSizeInBits() == 8) {
4212    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, MVT::i32,
4213                                    Op.getOperand(0), Op.getOperand(1));
4214    SDValue Assert  = DAG.getNode(ISD::AssertZext, MVT::i32, Extract,
4215                                    DAG.getValueType(VT));
4216    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
4217  } else if (VT.getSizeInBits() == 16) {
4218    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, MVT::i32,
4219                                    Op.getOperand(0), Op.getOperand(1));
4220    SDValue Assert  = DAG.getNode(ISD::AssertZext, MVT::i32, Extract,
4221                                    DAG.getValueType(VT));
4222    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
4223  } else if (VT == MVT::f32) {
4224    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
4225    // the result back to FR32 register. It's only worth matching if the
4226    // result has a single use which is a store or a bitcast to i32.  And in
4227    // the case of a store, it's not worth it if the index is a constant 0,
4228    // because a MOVSSmr can be used instead, which is smaller and faster.
4229    if (!Op.hasOneUse())
4230      return SDValue();
4231    SDNode *User = *Op.getNode()->use_begin();
4232    if ((User->getOpcode() != ISD::STORE ||
4233         (isa<ConstantSDNode>(Op.getOperand(1)) &&
4234          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
4235        (User->getOpcode() != ISD::BIT_CONVERT ||
4236         User->getValueType(0) != MVT::i32))
4237      return SDValue();
4238    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32,
4239                    DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, Op.getOperand(0)),
4240                                    Op.getOperand(1));
4241    return DAG.getNode(ISD::BIT_CONVERT, MVT::f32, Extract);
4242  }
4243  return SDValue();
4244}
4245
4246
4247SDValue
4248X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4249  if (!isa<ConstantSDNode>(Op.getOperand(1)))
4250    return SDValue();
4251
4252  if (Subtarget->hasSSE41()) {
4253    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
4254    if (Res.getNode())
4255      return Res;
4256  }
4257
4258  MVT VT = Op.getValueType();
4259  // TODO: handle v16i8.
4260  if (VT.getSizeInBits() == 16) {
4261    SDValue Vec = Op.getOperand(0);
4262    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4263    if (Idx == 0)
4264      return DAG.getNode(ISD::TRUNCATE, MVT::i16,
4265                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32,
4266                                 DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, Vec),
4267                                     Op.getOperand(1)));
4268    // Transform it so it match pextrw which produces a 32-bit result.
4269    MVT EVT = (MVT::SimpleValueType)(VT.getSimpleVT()+1);
4270    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
4271                                    Op.getOperand(0), Op.getOperand(1));
4272    SDValue Assert  = DAG.getNode(ISD::AssertZext, EVT, Extract,
4273                                    DAG.getValueType(VT));
4274    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
4275  } else if (VT.getSizeInBits() == 32) {
4276    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4277    if (Idx == 0)
4278      return Op;
4279    // SHUFPS the element to the lowest double word, then movss.
4280    MVT MaskVT = MVT::getIntVectorWithNumElements(4);
4281    SmallVector<SDValue, 8> IdxVec;
4282    IdxVec.
4283      push_back(DAG.getConstant(Idx, MaskVT.getVectorElementType()));
4284    IdxVec.
4285      push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType()));
4286    IdxVec.
4287      push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType()));
4288    IdxVec.
4289      push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType()));
4290    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
4291                                 &IdxVec[0], IdxVec.size());
4292    SDValue Vec = Op.getOperand(0);
4293    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
4294                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
4295    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
4296                       DAG.getIntPtrConstant(0));
4297  } else if (VT.getSizeInBits() == 64) {
4298    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
4299    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
4300    //        to match extract_elt for f64.
4301    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4302    if (Idx == 0)
4303      return Op;
4304
4305    // UNPCKHPD the element to the lowest double word, then movsd.
4306    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
4307    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
4308    MVT MaskVT = MVT::getIntVectorWithNumElements(2);
4309    SmallVector<SDValue, 8> IdxVec;
4310    IdxVec.push_back(DAG.getConstant(1, MaskVT.getVectorElementType()));
4311    IdxVec.
4312      push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType()));
4313    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
4314                                 &IdxVec[0], IdxVec.size());
4315    SDValue Vec = Op.getOperand(0);
4316    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
4317                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
4318    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
4319                       DAG.getIntPtrConstant(0));
4320  }
4321
4322  return SDValue();
4323}
4324
4325SDValue
4326X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG){
4327  MVT VT = Op.getValueType();
4328  MVT EVT = VT.getVectorElementType();
4329
4330  SDValue N0 = Op.getOperand(0);
4331  SDValue N1 = Op.getOperand(1);
4332  SDValue N2 = Op.getOperand(2);
4333
4334  if ((EVT.getSizeInBits() == 8 || EVT.getSizeInBits() == 16) &&
4335      isa<ConstantSDNode>(N2)) {
4336    unsigned Opc = (EVT.getSizeInBits() == 8) ? X86ISD::PINSRB
4337                                                  : X86ISD::PINSRW;
4338    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
4339    // argument.
4340    if (N1.getValueType() != MVT::i32)
4341      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
4342    if (N2.getValueType() != MVT::i32)
4343      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4344    return DAG.getNode(Opc, VT, N0, N1, N2);
4345  } else if (EVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
4346    // Bits [7:6] of the constant are the source select.  This will always be
4347    //  zero here.  The DAG Combiner may combine an extract_elt index into these
4348    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
4349    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
4350    // Bits [5:4] of the constant are the destination select.  This is the
4351    //  value of the incoming immediate.
4352    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
4353    //   combine either bitwise AND or insert of float 0.0 to set these bits.
4354    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
4355    return DAG.getNode(X86ISD::INSERTPS, VT, N0, N1, N2);
4356  }
4357  return SDValue();
4358}
4359
4360SDValue
4361X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4362  MVT VT = Op.getValueType();
4363  MVT EVT = VT.getVectorElementType();
4364
4365  if (Subtarget->hasSSE41())
4366    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
4367
4368  if (EVT == MVT::i8)
4369    return SDValue();
4370
4371  SDValue N0 = Op.getOperand(0);
4372  SDValue N1 = Op.getOperand(1);
4373  SDValue N2 = Op.getOperand(2);
4374
4375  if (EVT.getSizeInBits() == 16) {
4376    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
4377    // as its second argument.
4378    if (N1.getValueType() != MVT::i32)
4379      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
4380    if (N2.getValueType() != MVT::i32)
4381      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4382    return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
4383  }
4384  return SDValue();
4385}
4386
4387SDValue
4388X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
4389  if (Op.getValueType() == MVT::v2f32)
4390    return DAG.getNode(ISD::BIT_CONVERT, MVT::v2f32,
4391                       DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2i32,
4392                                   DAG.getNode(ISD::BIT_CONVERT, MVT::i32,
4393                                               Op.getOperand(0))));
4394
4395  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
4396  MVT VT = MVT::v2i32;
4397  switch (Op.getValueType().getSimpleVT()) {
4398  default: break;
4399  case MVT::v16i8:
4400  case MVT::v8i16:
4401    VT = MVT::v4i32;
4402    break;
4403  }
4404  return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(),
4405                     DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, AnyExt));
4406}
4407
4408// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
4409// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
4410// one of the above mentioned nodes. It has to be wrapped because otherwise
4411// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
4412// be used to form addressing mode. These wrapped nodes will be selected
4413// into MOV32ri.
4414SDValue
4415X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
4416  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
4417  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(),
4418                                               getPointerTy(),
4419                                               CP->getAlignment());
4420  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4421  // With PIC, the address is actually $g + Offset.
4422  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4423      !Subtarget->isPICStyleRIPRel()) {
4424    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4425                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4426                         Result);
4427  }
4428
4429  return Result;
4430}
4431
4432SDValue
4433X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV,
4434                                      int64_t Offset,
4435                                      SelectionDAG &DAG) const {
4436  bool IsPic = getTargetMachine().getRelocationModel() == Reloc::PIC_;
4437  bool ExtraLoadRequired =
4438    Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false);
4439
4440  // Create the TargetGlobalAddress node, folding in the constant
4441  // offset if it is legal.
4442  SDValue Result;
4443  if (!IsPic && !ExtraLoadRequired && isInt32(Offset)) {
4444    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), Offset);
4445    Offset = 0;
4446  } else
4447    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), 0);
4448  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4449
4450  // With PIC, the address is actually $g + Offset.
4451  if (IsPic && !Subtarget->isPICStyleRIPRel()) {
4452    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4453                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4454                         Result);
4455  }
4456
4457  // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
4458  // load the value at address GV, not the value of GV itself. This means that
4459  // the GlobalAddress must be in the base or index register of the address, not
4460  // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
4461  // The same applies for external symbols during PIC codegen
4462  if (ExtraLoadRequired)
4463    Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result,
4464                         PseudoSourceValue::getGOT(), 0);
4465
4466  // If there was a non-zero offset that we didn't fold, create an explicit
4467  // addition for it.
4468  if (Offset != 0)
4469    Result = DAG.getNode(ISD::ADD, getPointerTy(), Result,
4470                         DAG.getConstant(Offset, getPointerTy()));
4471
4472  return Result;
4473}
4474
4475SDValue
4476X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) {
4477  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
4478  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
4479  return LowerGlobalAddress(GV, Offset, DAG);
4480}
4481
4482// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
4483static SDValue
4484LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4485                                const MVT PtrVT) {
4486  SDValue InFlag;
4487  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), X86::EBX,
4488                                     DAG.getNode(X86ISD::GlobalBaseReg,
4489                                                 PtrVT), InFlag);
4490  InFlag = Chain.getValue(1);
4491
4492  // emit leal symbol@TLSGD(,%ebx,1), %eax
4493  SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
4494  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4495                                             GA->getValueType(0),
4496                                             GA->getOffset());
4497  SDValue Ops[] = { Chain,  TGA, InFlag };
4498  SDValue Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 3);
4499  InFlag = Result.getValue(2);
4500  Chain = Result.getValue(1);
4501
4502  // call ___tls_get_addr. This function receives its argument in
4503  // the register EAX.
4504  Chain = DAG.getCopyToReg(Chain, X86::EAX, Result, InFlag);
4505  InFlag = Chain.getValue(1);
4506
4507  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4508  SDValue Ops1[] = { Chain,
4509                      DAG.getTargetExternalSymbol("___tls_get_addr",
4510                                                  PtrVT),
4511                      DAG.getRegister(X86::EAX, PtrVT),
4512                      DAG.getRegister(X86::EBX, PtrVT),
4513                      InFlag };
4514  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 5);
4515  InFlag = Chain.getValue(1);
4516
4517  return DAG.getCopyFromReg(Chain, X86::EAX, PtrVT, InFlag);
4518}
4519
4520// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
4521static SDValue
4522LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4523                                const MVT PtrVT) {
4524  SDValue InFlag, Chain;
4525
4526  // emit leaq symbol@TLSGD(%rip), %rdi
4527  SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
4528  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4529                                             GA->getValueType(0),
4530                                             GA->getOffset());
4531  SDValue Ops[]  = { DAG.getEntryNode(), TGA};
4532  SDValue Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 2);
4533  Chain  = Result.getValue(1);
4534  InFlag = Result.getValue(2);
4535
4536  // call __tls_get_addr. This function receives its argument in
4537  // the register RDI.
4538  Chain = DAG.getCopyToReg(Chain, X86::RDI, Result, InFlag);
4539  InFlag = Chain.getValue(1);
4540
4541  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4542  SDValue Ops1[] = { Chain,
4543                      DAG.getTargetExternalSymbol("__tls_get_addr",
4544                                                  PtrVT),
4545                      DAG.getRegister(X86::RDI, PtrVT),
4546                      InFlag };
4547  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 4);
4548  InFlag = Chain.getValue(1);
4549
4550  return DAG.getCopyFromReg(Chain, X86::RAX, PtrVT, InFlag);
4551}
4552
4553// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
4554// "local exec" model.
4555static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4556                                     const MVT PtrVT) {
4557  // Get the Thread Pointer
4558  SDValue ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER, PtrVT);
4559  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
4560  // exec)
4561  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4562                                             GA->getValueType(0),
4563                                             GA->getOffset());
4564  SDValue Offset = DAG.getNode(X86ISD::Wrapper, PtrVT, TGA);
4565
4566  if (GA->getGlobal()->isDeclaration()) // initial exec TLS model
4567    Offset = DAG.getLoad(PtrVT, DAG.getEntryNode(), Offset,
4568                         PseudoSourceValue::getGOT(), 0);
4569
4570  // The address of the thread local variable is the add of the thread
4571  // pointer with the offset of the variable.
4572  return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset);
4573}
4574
4575SDValue
4576X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
4577  // TODO: implement the "local dynamic" model
4578  // TODO: implement the "initial exec"model for pic executables
4579  assert(Subtarget->isTargetELF() &&
4580         "TLS not implemented for non-ELF targets");
4581  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
4582  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
4583  // otherwise use the "Local Exec"TLS Model
4584  if (Subtarget->is64Bit()) {
4585    return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
4586  } else {
4587    if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
4588      return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
4589    else
4590      return LowerToTLSExecModel(GA, DAG, getPointerTy());
4591  }
4592}
4593
4594SDValue
4595X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) {
4596  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
4597  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
4598  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4599  // With PIC, the address is actually $g + Offset.
4600  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4601      !Subtarget->isPICStyleRIPRel()) {
4602    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4603                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4604                         Result);
4605  }
4606
4607  return Result;
4608}
4609
4610SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
4611  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
4612  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
4613  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4614  // With PIC, the address is actually $g + Offset.
4615  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4616      !Subtarget->isPICStyleRIPRel()) {
4617    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4618                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4619                         Result);
4620  }
4621
4622  return Result;
4623}
4624
4625/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
4626/// take a 2 x i32 value to shift plus a shift amount.
4627SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) {
4628  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4629  MVT VT = Op.getValueType();
4630  unsigned VTBits = VT.getSizeInBits();
4631  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
4632  SDValue ShOpLo = Op.getOperand(0);
4633  SDValue ShOpHi = Op.getOperand(1);
4634  SDValue ShAmt  = Op.getOperand(2);
4635  SDValue Tmp1 = isSRA ?
4636    DAG.getNode(ISD::SRA, VT, ShOpHi, DAG.getConstant(VTBits - 1, MVT::i8)) :
4637    DAG.getConstant(0, VT);
4638
4639  SDValue Tmp2, Tmp3;
4640  if (Op.getOpcode() == ISD::SHL_PARTS) {
4641    Tmp2 = DAG.getNode(X86ISD::SHLD, VT, ShOpHi, ShOpLo, ShAmt);
4642    Tmp3 = DAG.getNode(ISD::SHL, VT, ShOpLo, ShAmt);
4643  } else {
4644    Tmp2 = DAG.getNode(X86ISD::SHRD, VT, ShOpLo, ShOpHi, ShAmt);
4645    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, VT, ShOpHi, ShAmt);
4646  }
4647
4648  SDValue AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
4649                                  DAG.getConstant(VTBits, MVT::i8));
4650  SDValue Cond = DAG.getNode(X86ISD::CMP, VT,
4651                               AndNode, DAG.getConstant(0, MVT::i8));
4652
4653  SDValue Hi, Lo;
4654  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4655  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
4656  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
4657
4658  if (Op.getOpcode() == ISD::SHL_PARTS) {
4659    Hi = DAG.getNode(X86ISD::CMOV, VT, Ops0, 4);
4660    Lo = DAG.getNode(X86ISD::CMOV, VT, Ops1, 4);
4661  } else {
4662    Lo = DAG.getNode(X86ISD::CMOV, VT, Ops0, 4);
4663    Hi = DAG.getNode(X86ISD::CMOV, VT, Ops1, 4);
4664  }
4665
4666  SDValue Ops[2] = { Lo, Hi };
4667  return DAG.getMergeValues(Ops, 2);
4668}
4669
4670SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
4671  MVT SrcVT = Op.getOperand(0).getValueType();
4672  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
4673         "Unknown SINT_TO_FP to lower!");
4674
4675  // These are really Legal; caller falls through into that case.
4676  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
4677    return SDValue();
4678  if (SrcVT == MVT::i64 && Op.getValueType() != MVT::f80 &&
4679      Subtarget->is64Bit())
4680    return SDValue();
4681
4682  unsigned Size = SrcVT.getSizeInBits()/8;
4683  MachineFunction &MF = DAG.getMachineFunction();
4684  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
4685  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4686  SDValue Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
4687                                 StackSlot,
4688                                 PseudoSourceValue::getFixedStack(SSFI), 0);
4689
4690  // Build the FILD
4691  SDVTList Tys;
4692  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
4693  if (useSSE)
4694    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
4695  else
4696    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
4697  SmallVector<SDValue, 8> Ops;
4698  Ops.push_back(Chain);
4699  Ops.push_back(StackSlot);
4700  Ops.push_back(DAG.getValueType(SrcVT));
4701  SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD,
4702                                 Tys, &Ops[0], Ops.size());
4703
4704  if (useSSE) {
4705    Chain = Result.getValue(1);
4706    SDValue InFlag = Result.getValue(2);
4707
4708    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
4709    // shouldn't be necessary except that RFP cannot be live across
4710    // multiple blocks. When stackifier is fixed, they can be uncoupled.
4711    MachineFunction &MF = DAG.getMachineFunction();
4712    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
4713    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4714    Tys = DAG.getVTList(MVT::Other);
4715    SmallVector<SDValue, 8> Ops;
4716    Ops.push_back(Chain);
4717    Ops.push_back(Result);
4718    Ops.push_back(StackSlot);
4719    Ops.push_back(DAG.getValueType(Op.getValueType()));
4720    Ops.push_back(InFlag);
4721    Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
4722    Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot,
4723                         PseudoSourceValue::getFixedStack(SSFI), 0);
4724  }
4725
4726  return Result;
4727}
4728
4729SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
4730  MVT SrcVT = Op.getOperand(0).getValueType();
4731  assert(SrcVT.getSimpleVT() == MVT::i64 && "Unknown UINT_TO_FP to lower!");
4732
4733  // We only handle SSE2 f64 target here; caller can handle the rest.
4734  if (Op.getValueType() != MVT::f64 || !X86ScalarSSEf64)
4735    return SDValue();
4736
4737  // This algorithm is not obvious.  Here it is in C code, more or less:
4738/*
4739 double uint64_to_double( uint32_t hi, uint32_t lo )
4740  {
4741    static const __m128i exp = { 0x4330000045300000ULL, 0 };
4742    static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
4743
4744    // copy ints to xmm registers
4745    __m128i xh = _mm_cvtsi32_si128( hi );
4746    __m128i xl = _mm_cvtsi32_si128( lo );
4747
4748    // combine into low half of a single xmm register
4749    __m128i x = _mm_unpacklo_epi32( xh, xl );
4750    __m128d d;
4751    double sd;
4752
4753    // merge in appropriate exponents to give the integer bits the
4754    // right magnitude
4755    x = _mm_unpacklo_epi32( x, exp );
4756
4757    // subtract away the biases to deal with the IEEE-754 double precision
4758    // implicit 1
4759    d = _mm_sub_pd( (__m128d) x, bias );
4760
4761    // All conversions up to here are exact. The correctly rounded result is
4762    // calculated using the
4763    // current rounding mode using the following horizontal add.
4764    d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
4765    _mm_store_sd( &sd, d );   //since we are returning doubles in XMM, this
4766    // store doesn't really need to be here (except maybe to zero the other
4767    // double)
4768    return sd;
4769  }
4770*/
4771
4772  // Build some magic constants.
4773  std::vector<Constant*>CV0;
4774  CV0.push_back(ConstantInt::get(APInt(32, 0x45300000)));
4775  CV0.push_back(ConstantInt::get(APInt(32, 0x43300000)));
4776  CV0.push_back(ConstantInt::get(APInt(32, 0)));
4777  CV0.push_back(ConstantInt::get(APInt(32, 0)));
4778  Constant *C0 = ConstantVector::get(CV0);
4779  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 4);
4780
4781  std::vector<Constant*>CV1;
4782  CV1.push_back(ConstantFP::get(APFloat(APInt(64, 0x4530000000000000ULL))));
4783  CV1.push_back(ConstantFP::get(APFloat(APInt(64, 0x4330000000000000ULL))));
4784  Constant *C1 = ConstantVector::get(CV1);
4785  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 4);
4786
4787  SmallVector<SDValue, 4> MaskVec;
4788  MaskVec.push_back(DAG.getConstant(0, MVT::i32));
4789  MaskVec.push_back(DAG.getConstant(4, MVT::i32));
4790  MaskVec.push_back(DAG.getConstant(1, MVT::i32));
4791  MaskVec.push_back(DAG.getConstant(5, MVT::i32));
4792  SDValue UnpcklMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, &MaskVec[0],
4793                                   MaskVec.size());
4794  SmallVector<SDValue, 4> MaskVec2;
4795  MaskVec2.push_back(DAG.getConstant(1, MVT::i32));
4796  MaskVec2.push_back(DAG.getConstant(0, MVT::i32));
4797  SDValue ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, &MaskVec2[0],
4798                                 MaskVec2.size());
4799
4800  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4i32,
4801                            DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
4802                                        Op.getOperand(0),
4803                                        DAG.getIntPtrConstant(1)));
4804  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4i32,
4805                            DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
4806                                        Op.getOperand(0),
4807                                        DAG.getIntPtrConstant(0)));
4808  SDValue Unpck1 = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32,
4809                                XR1, XR2, UnpcklMask);
4810  SDValue CLod0 = DAG.getLoad(MVT::v4i32, DAG.getEntryNode(), CPIdx0,
4811                         PseudoSourceValue::getConstantPool(), 0, false, 16);
4812  SDValue Unpck2 = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32,
4813                                Unpck1, CLod0, UnpcklMask);
4814  SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, MVT::v2f64, Unpck2);
4815  SDValue CLod1 = DAG.getLoad(MVT::v2f64, CLod0.getValue(1), CPIdx1,
4816                         PseudoSourceValue::getConstantPool(), 0, false, 16);
4817  SDValue Sub = DAG.getNode(ISD::FSUB, MVT::v2f64, XR2F, CLod1);
4818  // Add the halves; easiest way is to swap them into another reg first.
4819  SDValue Shuf = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v2f64,
4820                             Sub, Sub, ShufMask);
4821  SDValue Add = DAG.getNode(ISD::FADD, MVT::v2f64, Shuf, Sub);
4822  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f64, Add,
4823                     DAG.getIntPtrConstant(0));
4824}
4825
4826std::pair<SDValue,SDValue> X86TargetLowering::
4827FP_TO_SINTHelper(SDValue Op, SelectionDAG &DAG) {
4828  assert(Op.getValueType().getSimpleVT() <= MVT::i64 &&
4829         Op.getValueType().getSimpleVT() >= MVT::i16 &&
4830         "Unknown FP_TO_SINT to lower!");
4831
4832  // These are really Legal.
4833  if (Op.getValueType() == MVT::i32 &&
4834      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
4835    return std::make_pair(SDValue(), SDValue());
4836  if (Subtarget->is64Bit() &&
4837      Op.getValueType() == MVT::i64 &&
4838      Op.getOperand(0).getValueType() != MVT::f80)
4839    return std::make_pair(SDValue(), SDValue());
4840
4841  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
4842  // stack slot.
4843  MachineFunction &MF = DAG.getMachineFunction();
4844  unsigned MemSize = Op.getValueType().getSizeInBits()/8;
4845  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
4846  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4847  unsigned Opc;
4848  switch (Op.getValueType().getSimpleVT()) {
4849  default: assert(0 && "Invalid FP_TO_SINT to lower!");
4850  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
4851  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
4852  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
4853  }
4854
4855  SDValue Chain = DAG.getEntryNode();
4856  SDValue Value = Op.getOperand(0);
4857  if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
4858    assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
4859    Chain = DAG.getStore(Chain, Value, StackSlot,
4860                         PseudoSourceValue::getFixedStack(SSFI), 0);
4861    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
4862    SDValue Ops[] = {
4863      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
4864    };
4865    Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
4866    Chain = Value.getValue(1);
4867    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
4868    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4869  }
4870
4871  // Build the FP_TO_INT*_IN_MEM
4872  SDValue Ops[] = { Chain, Value, StackSlot };
4873  SDValue FIST = DAG.getNode(Opc, MVT::Other, Ops, 3);
4874
4875  return std::make_pair(FIST, StackSlot);
4876}
4877
4878SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
4879  std::pair<SDValue,SDValue> Vals = FP_TO_SINTHelper(Op, DAG);
4880  SDValue FIST = Vals.first, StackSlot = Vals.second;
4881  if (FIST.getNode() == 0) return SDValue();
4882
4883  // Load the result.
4884  return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
4885}
4886
4887SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) {
4888  MVT VT = Op.getValueType();
4889  MVT EltVT = VT;
4890  if (VT.isVector())
4891    EltVT = VT.getVectorElementType();
4892  std::vector<Constant*> CV;
4893  if (EltVT == MVT::f64) {
4894    Constant *C = ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63))));
4895    CV.push_back(C);
4896    CV.push_back(C);
4897  } else {
4898    Constant *C = ConstantFP::get(APFloat(APInt(32, ~(1U << 31))));
4899    CV.push_back(C);
4900    CV.push_back(C);
4901    CV.push_back(C);
4902    CV.push_back(C);
4903  }
4904  Constant *C = ConstantVector::get(CV);
4905  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4906  SDValue Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
4907                               PseudoSourceValue::getConstantPool(), 0,
4908                               false, 16);
4909  return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
4910}
4911
4912SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) {
4913  MVT VT = Op.getValueType();
4914  MVT EltVT = VT;
4915  unsigned EltNum = 1;
4916  if (VT.isVector()) {
4917    EltVT = VT.getVectorElementType();
4918    EltNum = VT.getVectorNumElements();
4919  }
4920  std::vector<Constant*> CV;
4921  if (EltVT == MVT::f64) {
4922    Constant *C = ConstantFP::get(APFloat(APInt(64, 1ULL << 63)));
4923    CV.push_back(C);
4924    CV.push_back(C);
4925  } else {
4926    Constant *C = ConstantFP::get(APFloat(APInt(32, 1U << 31)));
4927    CV.push_back(C);
4928    CV.push_back(C);
4929    CV.push_back(C);
4930    CV.push_back(C);
4931  }
4932  Constant *C = ConstantVector::get(CV);
4933  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4934  SDValue Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
4935                               PseudoSourceValue::getConstantPool(), 0,
4936                               false, 16);
4937  if (VT.isVector()) {
4938    return DAG.getNode(ISD::BIT_CONVERT, VT,
4939                       DAG.getNode(ISD::XOR, MVT::v2i64,
4940                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Op.getOperand(0)),
4941                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Mask)));
4942  } else {
4943    return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
4944  }
4945}
4946
4947SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
4948  SDValue Op0 = Op.getOperand(0);
4949  SDValue Op1 = Op.getOperand(1);
4950  MVT VT = Op.getValueType();
4951  MVT SrcVT = Op1.getValueType();
4952
4953  // If second operand is smaller, extend it first.
4954  if (SrcVT.bitsLT(VT)) {
4955    Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1);
4956    SrcVT = VT;
4957  }
4958  // And if it is bigger, shrink it first.
4959  if (SrcVT.bitsGT(VT)) {
4960    Op1 = DAG.getNode(ISD::FP_ROUND, VT, Op1, DAG.getIntPtrConstant(1));
4961    SrcVT = VT;
4962  }
4963
4964  // At this point the operands and the result should have the same
4965  // type, and that won't be f80 since that is not custom lowered.
4966
4967  // First get the sign bit of second operand.
4968  std::vector<Constant*> CV;
4969  if (SrcVT == MVT::f64) {
4970    CV.push_back(ConstantFP::get(APFloat(APInt(64, 1ULL << 63))));
4971    CV.push_back(ConstantFP::get(APFloat(APInt(64, 0))));
4972  } else {
4973    CV.push_back(ConstantFP::get(APFloat(APInt(32, 1U << 31))));
4974    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4975    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4976    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4977  }
4978  Constant *C = ConstantVector::get(CV);
4979  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4980  SDValue Mask1 = DAG.getLoad(SrcVT, DAG.getEntryNode(), CPIdx,
4981                                PseudoSourceValue::getConstantPool(), 0,
4982                                false, 16);
4983  SDValue SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1);
4984
4985  // Shift sign bit right or left if the two operands have different types.
4986  if (SrcVT.bitsGT(VT)) {
4987    // Op0 is MVT::f32, Op1 is MVT::f64.
4988    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit);
4989    SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit,
4990                          DAG.getConstant(32, MVT::i32));
4991    SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit);
4992    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit,
4993                          DAG.getIntPtrConstant(0));
4994  }
4995
4996  // Clear first operand sign bit.
4997  CV.clear();
4998  if (VT == MVT::f64) {
4999    CV.push_back(ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63)))));
5000    CV.push_back(ConstantFP::get(APFloat(APInt(64, 0))));
5001  } else {
5002    CV.push_back(ConstantFP::get(APFloat(APInt(32, ~(1U << 31)))));
5003    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
5004    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
5005    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
5006  }
5007  C = ConstantVector::get(CV);
5008  CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
5009  SDValue Mask2 = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
5010                                PseudoSourceValue::getConstantPool(), 0,
5011                                false, 16);
5012  SDValue Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2);
5013
5014  // Or the value with the sign bit.
5015  return DAG.getNode(X86ISD::FOR, VT, Val, SignBit);
5016}
5017
5018SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
5019  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
5020  SDValue Cond;
5021  SDValue Op0 = Op.getOperand(0);
5022  SDValue Op1 = Op.getOperand(1);
5023  SDValue CC = Op.getOperand(2);
5024  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
5025
5026  unsigned X86CC = TranslateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP,
5027                                  Op0, Op1, DAG);
5028
5029  Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
5030  return DAG.getNode(X86ISD::SETCC, MVT::i8,
5031                     DAG.getConstant(X86CC, MVT::i8), Cond);
5032}
5033
5034SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
5035  SDValue Cond;
5036  SDValue Op0 = Op.getOperand(0);
5037  SDValue Op1 = Op.getOperand(1);
5038  SDValue CC = Op.getOperand(2);
5039  MVT VT = Op.getValueType();
5040  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
5041  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
5042
5043  if (isFP) {
5044    unsigned SSECC = 8;
5045    MVT VT0 = Op0.getValueType();
5046    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
5047    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
5048    bool Swap = false;
5049
5050    switch (SetCCOpcode) {
5051    default: break;
5052    case ISD::SETOEQ:
5053    case ISD::SETEQ:  SSECC = 0; break;
5054    case ISD::SETOGT:
5055    case ISD::SETGT: Swap = true; // Fallthrough
5056    case ISD::SETLT:
5057    case ISD::SETOLT: SSECC = 1; break;
5058    case ISD::SETOGE:
5059    case ISD::SETGE: Swap = true; // Fallthrough
5060    case ISD::SETLE:
5061    case ISD::SETOLE: SSECC = 2; break;
5062    case ISD::SETUO:  SSECC = 3; break;
5063    case ISD::SETUNE:
5064    case ISD::SETNE:  SSECC = 4; break;
5065    case ISD::SETULE: Swap = true;
5066    case ISD::SETUGE: SSECC = 5; break;
5067    case ISD::SETULT: Swap = true;
5068    case ISD::SETUGT: SSECC = 6; break;
5069    case ISD::SETO:   SSECC = 7; break;
5070    }
5071    if (Swap)
5072      std::swap(Op0, Op1);
5073
5074    // In the two special cases we can't handle, emit two comparisons.
5075    if (SSECC == 8) {
5076      if (SetCCOpcode == ISD::SETUEQ) {
5077        SDValue UNORD, EQ;
5078        UNORD = DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
5079        EQ = DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
5080        return DAG.getNode(ISD::OR, VT, UNORD, EQ);
5081      }
5082      else if (SetCCOpcode == ISD::SETONE) {
5083        SDValue ORD, NEQ;
5084        ORD = DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
5085        NEQ = DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
5086        return DAG.getNode(ISD::AND, VT, ORD, NEQ);
5087      }
5088      assert(0 && "Illegal FP comparison");
5089    }
5090    // Handle all other FP comparisons here.
5091    return DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
5092  }
5093
5094  // We are handling one of the integer comparisons here.  Since SSE only has
5095  // GT and EQ comparisons for integer, swapping operands and multiple
5096  // operations may be required for some comparisons.
5097  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
5098  bool Swap = false, Invert = false, FlipSigns = false;
5099
5100  switch (VT.getSimpleVT()) {
5101  default: break;
5102  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
5103  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
5104  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
5105  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
5106  }
5107
5108  switch (SetCCOpcode) {
5109  default: break;
5110  case ISD::SETNE:  Invert = true;
5111  case ISD::SETEQ:  Opc = EQOpc; break;
5112  case ISD::SETLT:  Swap = true;
5113  case ISD::SETGT:  Opc = GTOpc; break;
5114  case ISD::SETGE:  Swap = true;
5115  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
5116  case ISD::SETULT: Swap = true;
5117  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
5118  case ISD::SETUGE: Swap = true;
5119  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
5120  }
5121  if (Swap)
5122    std::swap(Op0, Op1);
5123
5124  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
5125  // bits of the inputs before performing those operations.
5126  if (FlipSigns) {
5127    MVT EltVT = VT.getVectorElementType();
5128    SDValue SignBit = DAG.getConstant(EltVT.getIntegerVTSignBit(), EltVT);
5129    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
5130    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, VT, &SignBits[0],
5131                                    SignBits.size());
5132    Op0 = DAG.getNode(ISD::XOR, VT, Op0, SignVec);
5133    Op1 = DAG.getNode(ISD::XOR, VT, Op1, SignVec);
5134  }
5135
5136  SDValue Result = DAG.getNode(Opc, VT, Op0, Op1);
5137
5138  // If the logical-not of the result is required, perform that now.
5139  if (Invert) {
5140    MVT EltVT = VT.getVectorElementType();
5141    SDValue NegOne = DAG.getConstant(EltVT.getIntegerVTBitMask(), EltVT);
5142    std::vector<SDValue> NegOnes(VT.getVectorNumElements(), NegOne);
5143    SDValue NegOneV = DAG.getNode(ISD::BUILD_VECTOR, VT, &NegOnes[0],
5144                                    NegOnes.size());
5145    Result = DAG.getNode(ISD::XOR, VT, Result, NegOneV);
5146  }
5147  return Result;
5148}
5149
5150// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
5151static bool isX86LogicalCmp(unsigned Opc) {
5152  return Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI;
5153}
5154
5155SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) {
5156  bool addTest = true;
5157  SDValue Cond  = Op.getOperand(0);
5158  SDValue CC;
5159
5160  if (Cond.getOpcode() == ISD::SETCC)
5161    Cond = LowerSETCC(Cond, DAG);
5162
5163  // If condition flag is set by a X86ISD::CMP, then use it as the condition
5164  // setting operand in place of the X86ISD::SETCC.
5165  if (Cond.getOpcode() == X86ISD::SETCC) {
5166    CC = Cond.getOperand(0);
5167
5168    SDValue Cmp = Cond.getOperand(1);
5169    unsigned Opc = Cmp.getOpcode();
5170    MVT VT = Op.getValueType();
5171
5172    bool IllegalFPCMov = false;
5173    if (VT.isFloatingPoint() && !VT.isVector() &&
5174        !isScalarFPTypeInSSEReg(VT))  // FPStack?
5175      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
5176
5177    if (isX86LogicalCmp(Opc) && !IllegalFPCMov) {
5178      Cond = Cmp;
5179      addTest = false;
5180    }
5181  }
5182
5183  if (addTest) {
5184    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5185    Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
5186  }
5187
5188  const MVT *VTs = DAG.getNodeValueTypes(Op.getValueType(),
5189                                                    MVT::Flag);
5190  SmallVector<SDValue, 4> Ops;
5191  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
5192  // condition is true.
5193  Ops.push_back(Op.getOperand(2));
5194  Ops.push_back(Op.getOperand(1));
5195  Ops.push_back(CC);
5196  Ops.push_back(Cond);
5197  return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
5198}
5199
5200// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
5201// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
5202// from the AND / OR.
5203static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
5204  Opc = Op.getOpcode();
5205  if (Opc != ISD::OR && Opc != ISD::AND)
5206    return false;
5207  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
5208          Op.getOperand(0).hasOneUse() &&
5209          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
5210          Op.getOperand(1).hasOneUse());
5211}
5212
5213SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) {
5214  bool addTest = true;
5215  SDValue Chain = Op.getOperand(0);
5216  SDValue Cond  = Op.getOperand(1);
5217  SDValue Dest  = Op.getOperand(2);
5218  SDValue CC;
5219
5220  if (Cond.getOpcode() == ISD::SETCC)
5221    Cond = LowerSETCC(Cond, DAG);
5222  else if (Cond.getOpcode() == X86ISD::ADD  ||
5223           Cond.getOpcode() == X86ISD::SUB  ||
5224           Cond.getOpcode() == X86ISD::SMUL ||
5225           Cond.getOpcode() == X86ISD::UMUL)
5226    Cond = LowerXALUO(Cond, DAG);
5227
5228  // If condition flag is set by a X86ISD::CMP, then use it as the condition
5229  // setting operand in place of the X86ISD::SETCC.
5230  if (Cond.getOpcode() == X86ISD::SETCC) {
5231    CC = Cond.getOperand(0);
5232
5233    SDValue Cmp = Cond.getOperand(1);
5234    unsigned Opc = Cmp.getOpcode();
5235    if (isX86LogicalCmp(Opc)) {
5236      Cond = Cmp;
5237      addTest = false;
5238    } else {
5239      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
5240      default: break;
5241      case X86::COND_O:
5242      case X86::COND_C:
5243        // These can only come from an arithmetic instruction with overflow, e.g.
5244        // SADDO, UADDO.
5245        Cond = Cond.getNode()->getOperand(1);
5246        addTest = false;
5247        break;
5248      }
5249    }
5250  } else {
5251    unsigned CondOpc;
5252    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
5253      SDValue Cmp = Cond.getOperand(0).getOperand(1);
5254      unsigned Opc = Cmp.getOpcode();
5255      if (CondOpc == ISD::OR) {
5256        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
5257        // two branches instead of an explicit OR instruction with a
5258        // separate test.
5259        if (Cmp == Cond.getOperand(1).getOperand(1) &&
5260            isX86LogicalCmp(Opc)) {
5261          CC = Cond.getOperand(0).getOperand(0);
5262          Chain = DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
5263                              Chain, Dest, CC, Cmp);
5264          CC = Cond.getOperand(1).getOperand(0);
5265          Cond = Cmp;
5266          addTest = false;
5267        }
5268      } else { // ISD::AND
5269        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
5270        // two branches instead of an explicit AND instruction with a
5271        // separate test. However, we only do this if this block doesn't
5272        // have a fall-through edge, because this requires an explicit
5273        // jmp when the condition is false.
5274        if (Cmp == Cond.getOperand(1).getOperand(1) &&
5275            isX86LogicalCmp(Opc) &&
5276            Op.getNode()->hasOneUse()) {
5277          X86::CondCode CCode =
5278            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
5279          CCode = X86::GetOppositeBranchCondition(CCode);
5280          CC = DAG.getConstant(CCode, MVT::i8);
5281          SDValue User = SDValue(*Op.getNode()->use_begin(), 0);
5282          // Look for an unconditional branch following this conditional branch.
5283          // We need this because we need to reverse the successors in order
5284          // to implement FCMP_OEQ.
5285          if (User.getOpcode() == ISD::BR) {
5286            SDValue FalseBB = User.getOperand(1);
5287            SDValue NewBR =
5288              DAG.UpdateNodeOperands(User, User.getOperand(0), Dest);
5289            assert(NewBR == User);
5290            Dest = FalseBB;
5291
5292            Chain = DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
5293                                Chain, Dest, CC, Cmp);
5294            X86::CondCode CCode =
5295              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
5296            CCode = X86::GetOppositeBranchCondition(CCode);
5297            CC = DAG.getConstant(CCode, MVT::i8);
5298            Cond = Cmp;
5299            addTest = false;
5300          }
5301        }
5302      }
5303    }
5304  }
5305
5306  if (addTest) {
5307    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5308    Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
5309  }
5310  return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
5311                     Chain, Dest, CC, Cond);
5312}
5313
5314
5315// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
5316// Calls to _alloca is needed to probe the stack when allocating more than 4k
5317// bytes in one go. Touching the stack at 4K increments is necessary to ensure
5318// that the guard pages used by the OS virtual memory manager are allocated in
5319// correct sequence.
5320SDValue
5321X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
5322                                           SelectionDAG &DAG) {
5323  assert(Subtarget->isTargetCygMing() &&
5324         "This should be used only on Cygwin/Mingw targets");
5325
5326  // Get the inputs.
5327  SDValue Chain = Op.getOperand(0);
5328  SDValue Size  = Op.getOperand(1);
5329  // FIXME: Ensure alignment here
5330
5331  SDValue Flag;
5332
5333  MVT IntPtr = getPointerTy();
5334  MVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
5335
5336  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
5337
5338  Chain = DAG.getCopyToReg(Chain, X86::EAX, Size, Flag);
5339  Flag = Chain.getValue(1);
5340
5341  SDVTList  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
5342  SDValue Ops[] = { Chain,
5343                      DAG.getTargetExternalSymbol("_alloca", IntPtr),
5344                      DAG.getRegister(X86::EAX, IntPtr),
5345                      DAG.getRegister(X86StackPtr, SPTy),
5346                      Flag };
5347  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops, 5);
5348  Flag = Chain.getValue(1);
5349
5350  Chain = DAG.getCALLSEQ_END(Chain,
5351                             DAG.getIntPtrConstant(0, true),
5352                             DAG.getIntPtrConstant(0, true),
5353                             Flag);
5354
5355  Chain = DAG.getCopyFromReg(Chain, X86StackPtr, SPTy).getValue(1);
5356
5357  SDValue Ops1[2] = { Chain.getValue(0), Chain };
5358  return DAG.getMergeValues(Ops1, 2);
5359}
5360
5361SDValue
5362X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG &DAG,
5363                                           SDValue Chain,
5364                                           SDValue Dst, SDValue Src,
5365                                           SDValue Size, unsigned Align,
5366                                           const Value *DstSV,
5367                                           uint64_t DstSVOff) {
5368  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5369
5370  // If not DWORD aligned or size is more than the threshold, call the library.
5371  // The libc version is likely to be faster for these cases. It can use the
5372  // address value and run time information about the CPU.
5373  if ((Align & 3) != 0 ||
5374      !ConstantSize ||
5375      ConstantSize->getZExtValue() >
5376        getSubtarget()->getMaxInlineSizeThreshold()) {
5377    SDValue InFlag(0, 0);
5378
5379    // Check to see if there is a specialized entry-point for memory zeroing.
5380    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src);
5381
5382    if (const char *bzeroEntry =  V &&
5383        V->isNullValue() ? Subtarget->getBZeroEntry() : 0) {
5384      MVT IntPtr = getPointerTy();
5385      const Type *IntPtrTy = TD->getIntPtrType();
5386      TargetLowering::ArgListTy Args;
5387      TargetLowering::ArgListEntry Entry;
5388      Entry.Node = Dst;
5389      Entry.Ty = IntPtrTy;
5390      Args.push_back(Entry);
5391      Entry.Node = Size;
5392      Args.push_back(Entry);
5393      std::pair<SDValue,SDValue> CallResult =
5394        LowerCallTo(Chain, Type::VoidTy, false, false, false, false,
5395                    CallingConv::C, false,
5396                    DAG.getExternalSymbol(bzeroEntry, IntPtr), Args, DAG);
5397      return CallResult.second;
5398    }
5399
5400    // Otherwise have the target-independent code call memset.
5401    return SDValue();
5402  }
5403
5404  uint64_t SizeVal = ConstantSize->getZExtValue();
5405  SDValue InFlag(0, 0);
5406  MVT AVT;
5407  SDValue Count;
5408  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src);
5409  unsigned BytesLeft = 0;
5410  bool TwoRepStos = false;
5411  if (ValC) {
5412    unsigned ValReg;
5413    uint64_t Val = ValC->getZExtValue() & 255;
5414
5415    // If the value is a constant, then we can potentially use larger sets.
5416    switch (Align & 3) {
5417    case 2:   // WORD aligned
5418      AVT = MVT::i16;
5419      ValReg = X86::AX;
5420      Val = (Val << 8) | Val;
5421      break;
5422    case 0:  // DWORD aligned
5423      AVT = MVT::i32;
5424      ValReg = X86::EAX;
5425      Val = (Val << 8)  | Val;
5426      Val = (Val << 16) | Val;
5427      if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) {  // QWORD aligned
5428        AVT = MVT::i64;
5429        ValReg = X86::RAX;
5430        Val = (Val << 32) | Val;
5431      }
5432      break;
5433    default:  // Byte aligned
5434      AVT = MVT::i8;
5435      ValReg = X86::AL;
5436      Count = DAG.getIntPtrConstant(SizeVal);
5437      break;
5438    }
5439
5440    if (AVT.bitsGT(MVT::i8)) {
5441      unsigned UBytes = AVT.getSizeInBits() / 8;
5442      Count = DAG.getIntPtrConstant(SizeVal / UBytes);
5443      BytesLeft = SizeVal % UBytes;
5444    }
5445
5446    Chain  = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
5447                              InFlag);
5448    InFlag = Chain.getValue(1);
5449  } else {
5450    AVT = MVT::i8;
5451    Count  = DAG.getIntPtrConstant(SizeVal);
5452    Chain  = DAG.getCopyToReg(Chain, X86::AL, Src, InFlag);
5453    InFlag = Chain.getValue(1);
5454  }
5455
5456  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
5457                            Count, InFlag);
5458  InFlag = Chain.getValue(1);
5459  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
5460                            Dst, InFlag);
5461  InFlag = Chain.getValue(1);
5462
5463  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5464  SmallVector<SDValue, 8> Ops;
5465  Ops.push_back(Chain);
5466  Ops.push_back(DAG.getValueType(AVT));
5467  Ops.push_back(InFlag);
5468  Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
5469
5470  if (TwoRepStos) {
5471    InFlag = Chain.getValue(1);
5472    Count  = Size;
5473    MVT CVT = Count.getValueType();
5474    SDValue Left = DAG.getNode(ISD::AND, CVT, Count,
5475                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
5476    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
5477                              Left, InFlag);
5478    InFlag = Chain.getValue(1);
5479    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5480    Ops.clear();
5481    Ops.push_back(Chain);
5482    Ops.push_back(DAG.getValueType(MVT::i8));
5483    Ops.push_back(InFlag);
5484    Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
5485  } else if (BytesLeft) {
5486    // Handle the last 1 - 7 bytes.
5487    unsigned Offset = SizeVal - BytesLeft;
5488    MVT AddrVT = Dst.getValueType();
5489    MVT SizeVT = Size.getValueType();
5490
5491    Chain = DAG.getMemset(Chain,
5492                          DAG.getNode(ISD::ADD, AddrVT, Dst,
5493                                      DAG.getConstant(Offset, AddrVT)),
5494                          Src,
5495                          DAG.getConstant(BytesLeft, SizeVT),
5496                          Align, DstSV, DstSVOff + Offset);
5497  }
5498
5499  // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
5500  return Chain;
5501}
5502
5503SDValue
5504X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG,
5505                                      SDValue Chain, SDValue Dst, SDValue Src,
5506                                      SDValue Size, unsigned Align,
5507                                      bool AlwaysInline,
5508                                      const Value *DstSV, uint64_t DstSVOff,
5509                                      const Value *SrcSV, uint64_t SrcSVOff) {
5510  // This requires the copy size to be a constant, preferrably
5511  // within a subtarget-specific limit.
5512  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5513  if (!ConstantSize)
5514    return SDValue();
5515  uint64_t SizeVal = ConstantSize->getZExtValue();
5516  if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
5517    return SDValue();
5518
5519  /// If not DWORD aligned, call the library.
5520  if ((Align & 3) != 0)
5521    return SDValue();
5522
5523  // DWORD aligned
5524  MVT AVT = MVT::i32;
5525  if (Subtarget->is64Bit() && ((Align & 0x7) == 0))  // QWORD aligned
5526    AVT = MVT::i64;
5527
5528  unsigned UBytes = AVT.getSizeInBits() / 8;
5529  unsigned CountVal = SizeVal / UBytes;
5530  SDValue Count = DAG.getIntPtrConstant(CountVal);
5531  unsigned BytesLeft = SizeVal % UBytes;
5532
5533  SDValue InFlag(0, 0);
5534  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
5535                            Count, InFlag);
5536  InFlag = Chain.getValue(1);
5537  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
5538                            Dst, InFlag);
5539  InFlag = Chain.getValue(1);
5540  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
5541                            Src, InFlag);
5542  InFlag = Chain.getValue(1);
5543
5544  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5545  SmallVector<SDValue, 8> Ops;
5546  Ops.push_back(Chain);
5547  Ops.push_back(DAG.getValueType(AVT));
5548  Ops.push_back(InFlag);
5549  SDValue RepMovs = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
5550
5551  SmallVector<SDValue, 4> Results;
5552  Results.push_back(RepMovs);
5553  if (BytesLeft) {
5554    // Handle the last 1 - 7 bytes.
5555    unsigned Offset = SizeVal - BytesLeft;
5556    MVT DstVT = Dst.getValueType();
5557    MVT SrcVT = Src.getValueType();
5558    MVT SizeVT = Size.getValueType();
5559    Results.push_back(DAG.getMemcpy(Chain,
5560                                    DAG.getNode(ISD::ADD, DstVT, Dst,
5561                                                DAG.getConstant(Offset, DstVT)),
5562                                    DAG.getNode(ISD::ADD, SrcVT, Src,
5563                                                DAG.getConstant(Offset, SrcVT)),
5564                                    DAG.getConstant(BytesLeft, SizeVT),
5565                                    Align, AlwaysInline,
5566                                    DstSV, DstSVOff + Offset,
5567                                    SrcSV, SrcSVOff + Offset));
5568  }
5569
5570  return DAG.getNode(ISD::TokenFactor, MVT::Other, &Results[0], Results.size());
5571}
5572
5573SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) {
5574  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
5575
5576  if (!Subtarget->is64Bit()) {
5577    // vastart just stores the address of the VarArgsFrameIndex slot into the
5578    // memory location argument.
5579    SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
5580    return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV, 0);
5581  }
5582
5583  // __va_list_tag:
5584  //   gp_offset         (0 - 6 * 8)
5585  //   fp_offset         (48 - 48 + 8 * 16)
5586  //   overflow_arg_area (point to parameters coming in memory).
5587  //   reg_save_area
5588  SmallVector<SDValue, 8> MemOps;
5589  SDValue FIN = Op.getOperand(1);
5590  // Store gp_offset
5591  SDValue Store = DAG.getStore(Op.getOperand(0),
5592                                 DAG.getConstant(VarArgsGPOffset, MVT::i32),
5593                                 FIN, SV, 0);
5594  MemOps.push_back(Store);
5595
5596  // Store fp_offset
5597  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(4));
5598  Store = DAG.getStore(Op.getOperand(0),
5599                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
5600                       FIN, SV, 0);
5601  MemOps.push_back(Store);
5602
5603  // Store ptr to overflow_arg_area
5604  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(4));
5605  SDValue OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
5606  Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV, 0);
5607  MemOps.push_back(Store);
5608
5609  // Store ptr to reg_save_area.
5610  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(8));
5611  SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
5612  Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV, 0);
5613  MemOps.push_back(Store);
5614  return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
5615}
5616
5617SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) {
5618  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
5619  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
5620  SDValue Chain = Op.getOperand(0);
5621  SDValue SrcPtr = Op.getOperand(1);
5622  SDValue SrcSV = Op.getOperand(2);
5623
5624  assert(0 && "VAArgInst is not yet implemented for x86-64!");
5625  abort();
5626  return SDValue();
5627}
5628
5629SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) {
5630  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
5631  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
5632  SDValue Chain = Op.getOperand(0);
5633  SDValue DstPtr = Op.getOperand(1);
5634  SDValue SrcPtr = Op.getOperand(2);
5635  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
5636  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
5637
5638  return DAG.getMemcpy(Chain, DstPtr, SrcPtr,
5639                       DAG.getIntPtrConstant(24), 8, false,
5640                       DstSV, 0, SrcSV, 0);
5641}
5642
5643SDValue
5644X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
5645  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5646  switch (IntNo) {
5647  default: return SDValue();    // Don't custom lower most intrinsics.
5648  // Comparison intrinsics.
5649  case Intrinsic::x86_sse_comieq_ss:
5650  case Intrinsic::x86_sse_comilt_ss:
5651  case Intrinsic::x86_sse_comile_ss:
5652  case Intrinsic::x86_sse_comigt_ss:
5653  case Intrinsic::x86_sse_comige_ss:
5654  case Intrinsic::x86_sse_comineq_ss:
5655  case Intrinsic::x86_sse_ucomieq_ss:
5656  case Intrinsic::x86_sse_ucomilt_ss:
5657  case Intrinsic::x86_sse_ucomile_ss:
5658  case Intrinsic::x86_sse_ucomigt_ss:
5659  case Intrinsic::x86_sse_ucomige_ss:
5660  case Intrinsic::x86_sse_ucomineq_ss:
5661  case Intrinsic::x86_sse2_comieq_sd:
5662  case Intrinsic::x86_sse2_comilt_sd:
5663  case Intrinsic::x86_sse2_comile_sd:
5664  case Intrinsic::x86_sse2_comigt_sd:
5665  case Intrinsic::x86_sse2_comige_sd:
5666  case Intrinsic::x86_sse2_comineq_sd:
5667  case Intrinsic::x86_sse2_ucomieq_sd:
5668  case Intrinsic::x86_sse2_ucomilt_sd:
5669  case Intrinsic::x86_sse2_ucomile_sd:
5670  case Intrinsic::x86_sse2_ucomigt_sd:
5671  case Intrinsic::x86_sse2_ucomige_sd:
5672  case Intrinsic::x86_sse2_ucomineq_sd: {
5673    unsigned Opc = 0;
5674    ISD::CondCode CC = ISD::SETCC_INVALID;
5675    switch (IntNo) {
5676    default: break;
5677    case Intrinsic::x86_sse_comieq_ss:
5678    case Intrinsic::x86_sse2_comieq_sd:
5679      Opc = X86ISD::COMI;
5680      CC = ISD::SETEQ;
5681      break;
5682    case Intrinsic::x86_sse_comilt_ss:
5683    case Intrinsic::x86_sse2_comilt_sd:
5684      Opc = X86ISD::COMI;
5685      CC = ISD::SETLT;
5686      break;
5687    case Intrinsic::x86_sse_comile_ss:
5688    case Intrinsic::x86_sse2_comile_sd:
5689      Opc = X86ISD::COMI;
5690      CC = ISD::SETLE;
5691      break;
5692    case Intrinsic::x86_sse_comigt_ss:
5693    case Intrinsic::x86_sse2_comigt_sd:
5694      Opc = X86ISD::COMI;
5695      CC = ISD::SETGT;
5696      break;
5697    case Intrinsic::x86_sse_comige_ss:
5698    case Intrinsic::x86_sse2_comige_sd:
5699      Opc = X86ISD::COMI;
5700      CC = ISD::SETGE;
5701      break;
5702    case Intrinsic::x86_sse_comineq_ss:
5703    case Intrinsic::x86_sse2_comineq_sd:
5704      Opc = X86ISD::COMI;
5705      CC = ISD::SETNE;
5706      break;
5707    case Intrinsic::x86_sse_ucomieq_ss:
5708    case Intrinsic::x86_sse2_ucomieq_sd:
5709      Opc = X86ISD::UCOMI;
5710      CC = ISD::SETEQ;
5711      break;
5712    case Intrinsic::x86_sse_ucomilt_ss:
5713    case Intrinsic::x86_sse2_ucomilt_sd:
5714      Opc = X86ISD::UCOMI;
5715      CC = ISD::SETLT;
5716      break;
5717    case Intrinsic::x86_sse_ucomile_ss:
5718    case Intrinsic::x86_sse2_ucomile_sd:
5719      Opc = X86ISD::UCOMI;
5720      CC = ISD::SETLE;
5721      break;
5722    case Intrinsic::x86_sse_ucomigt_ss:
5723    case Intrinsic::x86_sse2_ucomigt_sd:
5724      Opc = X86ISD::UCOMI;
5725      CC = ISD::SETGT;
5726      break;
5727    case Intrinsic::x86_sse_ucomige_ss:
5728    case Intrinsic::x86_sse2_ucomige_sd:
5729      Opc = X86ISD::UCOMI;
5730      CC = ISD::SETGE;
5731      break;
5732    case Intrinsic::x86_sse_ucomineq_ss:
5733    case Intrinsic::x86_sse2_ucomineq_sd:
5734      Opc = X86ISD::UCOMI;
5735      CC = ISD::SETNE;
5736      break;
5737    }
5738
5739    SDValue LHS = Op.getOperand(1);
5740    SDValue RHS = Op.getOperand(2);
5741    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
5742    SDValue Cond = DAG.getNode(Opc, MVT::i32, LHS, RHS);
5743    SDValue SetCC = DAG.getNode(X86ISD::SETCC, MVT::i8,
5744                                DAG.getConstant(X86CC, MVT::i8), Cond);
5745    return DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, SetCC);
5746  }
5747
5748  // Fix vector shift instructions where the last operand is a non-immediate
5749  // i32 value.
5750  case Intrinsic::x86_sse2_pslli_w:
5751  case Intrinsic::x86_sse2_pslli_d:
5752  case Intrinsic::x86_sse2_pslli_q:
5753  case Intrinsic::x86_sse2_psrli_w:
5754  case Intrinsic::x86_sse2_psrli_d:
5755  case Intrinsic::x86_sse2_psrli_q:
5756  case Intrinsic::x86_sse2_psrai_w:
5757  case Intrinsic::x86_sse2_psrai_d:
5758  case Intrinsic::x86_mmx_pslli_w:
5759  case Intrinsic::x86_mmx_pslli_d:
5760  case Intrinsic::x86_mmx_pslli_q:
5761  case Intrinsic::x86_mmx_psrli_w:
5762  case Intrinsic::x86_mmx_psrli_d:
5763  case Intrinsic::x86_mmx_psrli_q:
5764  case Intrinsic::x86_mmx_psrai_w:
5765  case Intrinsic::x86_mmx_psrai_d: {
5766    SDValue ShAmt = Op.getOperand(2);
5767    if (isa<ConstantSDNode>(ShAmt))
5768      return SDValue();
5769
5770    unsigned NewIntNo = 0;
5771    MVT ShAmtVT = MVT::v4i32;
5772    switch (IntNo) {
5773    case Intrinsic::x86_sse2_pslli_w:
5774      NewIntNo = Intrinsic::x86_sse2_psll_w;
5775      break;
5776    case Intrinsic::x86_sse2_pslli_d:
5777      NewIntNo = Intrinsic::x86_sse2_psll_d;
5778      break;
5779    case Intrinsic::x86_sse2_pslli_q:
5780      NewIntNo = Intrinsic::x86_sse2_psll_q;
5781      break;
5782    case Intrinsic::x86_sse2_psrli_w:
5783      NewIntNo = Intrinsic::x86_sse2_psrl_w;
5784      break;
5785    case Intrinsic::x86_sse2_psrli_d:
5786      NewIntNo = Intrinsic::x86_sse2_psrl_d;
5787      break;
5788    case Intrinsic::x86_sse2_psrli_q:
5789      NewIntNo = Intrinsic::x86_sse2_psrl_q;
5790      break;
5791    case Intrinsic::x86_sse2_psrai_w:
5792      NewIntNo = Intrinsic::x86_sse2_psra_w;
5793      break;
5794    case Intrinsic::x86_sse2_psrai_d:
5795      NewIntNo = Intrinsic::x86_sse2_psra_d;
5796      break;
5797    default: {
5798      ShAmtVT = MVT::v2i32;
5799      switch (IntNo) {
5800      case Intrinsic::x86_mmx_pslli_w:
5801        NewIntNo = Intrinsic::x86_mmx_psll_w;
5802        break;
5803      case Intrinsic::x86_mmx_pslli_d:
5804        NewIntNo = Intrinsic::x86_mmx_psll_d;
5805        break;
5806      case Intrinsic::x86_mmx_pslli_q:
5807        NewIntNo = Intrinsic::x86_mmx_psll_q;
5808        break;
5809      case Intrinsic::x86_mmx_psrli_w:
5810        NewIntNo = Intrinsic::x86_mmx_psrl_w;
5811        break;
5812      case Intrinsic::x86_mmx_psrli_d:
5813        NewIntNo = Intrinsic::x86_mmx_psrl_d;
5814        break;
5815      case Intrinsic::x86_mmx_psrli_q:
5816        NewIntNo = Intrinsic::x86_mmx_psrl_q;
5817        break;
5818      case Intrinsic::x86_mmx_psrai_w:
5819        NewIntNo = Intrinsic::x86_mmx_psra_w;
5820        break;
5821      case Intrinsic::x86_mmx_psrai_d:
5822        NewIntNo = Intrinsic::x86_mmx_psra_d;
5823        break;
5824      default: abort();  // Can't reach here.
5825      }
5826      break;
5827    }
5828    }
5829    MVT VT = Op.getValueType();
5830    ShAmt = DAG.getNode(ISD::BIT_CONVERT, VT,
5831                        DAG.getNode(ISD::SCALAR_TO_VECTOR, ShAmtVT, ShAmt));
5832    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VT,
5833                       DAG.getConstant(NewIntNo, MVT::i32),
5834                       Op.getOperand(1), ShAmt);
5835  }
5836  }
5837}
5838
5839SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
5840  // Depths > 0 not supported yet!
5841  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
5842    return SDValue();
5843
5844  // Just load the return address
5845  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
5846  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
5847}
5848
5849SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
5850  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5851  MFI->setFrameAddressIsTaken(true);
5852  MVT VT = Op.getValueType();
5853  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5854  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
5855  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), FrameReg, VT);
5856  while (Depth--)
5857    FrameAddr = DAG.getLoad(VT, DAG.getEntryNode(), FrameAddr, NULL, 0);
5858  return FrameAddr;
5859}
5860
5861SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
5862                                                     SelectionDAG &DAG) {
5863  return DAG.getIntPtrConstant(2*TD->getPointerSize());
5864}
5865
5866SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
5867{
5868  MachineFunction &MF = DAG.getMachineFunction();
5869  SDValue Chain     = Op.getOperand(0);
5870  SDValue Offset    = Op.getOperand(1);
5871  SDValue Handler   = Op.getOperand(2);
5872
5873  SDValue Frame = DAG.getRegister(Subtarget->is64Bit() ? X86::RBP : X86::EBP,
5874                                  getPointerTy());
5875  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
5876
5877  SDValue StoreAddr = DAG.getNode(ISD::SUB, getPointerTy(), Frame,
5878                                  DAG.getIntPtrConstant(-TD->getPointerSize()));
5879  StoreAddr = DAG.getNode(ISD::ADD, getPointerTy(), StoreAddr, Offset);
5880  Chain = DAG.getStore(Chain, Handler, StoreAddr, NULL, 0);
5881  Chain = DAG.getCopyToReg(Chain, StoreAddrReg, StoreAddr);
5882  MF.getRegInfo().addLiveOut(StoreAddrReg);
5883
5884  return DAG.getNode(X86ISD::EH_RETURN,
5885                     MVT::Other,
5886                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
5887}
5888
5889SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
5890                                             SelectionDAG &DAG) {
5891  SDValue Root = Op.getOperand(0);
5892  SDValue Trmp = Op.getOperand(1); // trampoline
5893  SDValue FPtr = Op.getOperand(2); // nested function
5894  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
5895
5896  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
5897
5898  const X86InstrInfo *TII =
5899    ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
5900
5901  if (Subtarget->is64Bit()) {
5902    SDValue OutChains[6];
5903
5904    // Large code-model.
5905
5906    const unsigned char JMP64r  = TII->getBaseOpcodeFor(X86::JMP64r);
5907    const unsigned char MOV64ri = TII->getBaseOpcodeFor(X86::MOV64ri);
5908
5909    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
5910    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
5911
5912    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
5913
5914    // Load the pointer to the nested function into R11.
5915    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
5916    SDValue Addr = Trmp;
5917    OutChains[0] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
5918                                TrmpAddr, 0);
5919
5920    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(2, MVT::i64));
5921    OutChains[1] = DAG.getStore(Root, FPtr, Addr, TrmpAddr, 2, false, 2);
5922
5923    // Load the 'nest' parameter value into R10.
5924    // R10 is specified in X86CallingConv.td
5925    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
5926    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(10, MVT::i64));
5927    OutChains[2] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
5928                                TrmpAddr, 10);
5929
5930    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(12, MVT::i64));
5931    OutChains[3] = DAG.getStore(Root, Nest, Addr, TrmpAddr, 12, false, 2);
5932
5933    // Jump to the nested function.
5934    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
5935    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(20, MVT::i64));
5936    OutChains[4] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
5937                                TrmpAddr, 20);
5938
5939    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
5940    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(22, MVT::i64));
5941    OutChains[5] = DAG.getStore(Root, DAG.getConstant(ModRM, MVT::i8), Addr,
5942                                TrmpAddr, 22);
5943
5944    SDValue Ops[] =
5945      { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 6) };
5946    return DAG.getMergeValues(Ops, 2);
5947  } else {
5948    const Function *Func =
5949      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
5950    unsigned CC = Func->getCallingConv();
5951    unsigned NestReg;
5952
5953    switch (CC) {
5954    default:
5955      assert(0 && "Unsupported calling convention");
5956    case CallingConv::C:
5957    case CallingConv::X86_StdCall: {
5958      // Pass 'nest' parameter in ECX.
5959      // Must be kept in sync with X86CallingConv.td
5960      NestReg = X86::ECX;
5961
5962      // Check that ECX wasn't needed by an 'inreg' parameter.
5963      const FunctionType *FTy = Func->getFunctionType();
5964      const AttrListPtr &Attrs = Func->getAttributes();
5965
5966      if (!Attrs.isEmpty() && !Func->isVarArg()) {
5967        unsigned InRegCount = 0;
5968        unsigned Idx = 1;
5969
5970        for (FunctionType::param_iterator I = FTy->param_begin(),
5971             E = FTy->param_end(); I != E; ++I, ++Idx)
5972          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
5973            // FIXME: should only count parameters that are lowered to integers.
5974            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
5975
5976        if (InRegCount > 2) {
5977          cerr << "Nest register in use - reduce number of inreg parameters!\n";
5978          abort();
5979        }
5980      }
5981      break;
5982    }
5983    case CallingConv::X86_FastCall:
5984    case CallingConv::Fast:
5985      // Pass 'nest' parameter in EAX.
5986      // Must be kept in sync with X86CallingConv.td
5987      NestReg = X86::EAX;
5988      break;
5989    }
5990
5991    SDValue OutChains[4];
5992    SDValue Addr, Disp;
5993
5994    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(10, MVT::i32));
5995    Disp = DAG.getNode(ISD::SUB, MVT::i32, FPtr, Addr);
5996
5997    const unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
5998    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
5999    OutChains[0] = DAG.getStore(Root, DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
6000                                Trmp, TrmpAddr, 0);
6001
6002    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(1, MVT::i32));
6003    OutChains[1] = DAG.getStore(Root, Nest, Addr, TrmpAddr, 1, false, 1);
6004
6005    const unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
6006    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(5, MVT::i32));
6007    OutChains[2] = DAG.getStore(Root, DAG.getConstant(JMP, MVT::i8), Addr,
6008                                TrmpAddr, 5, false, 1);
6009
6010    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(6, MVT::i32));
6011    OutChains[3] = DAG.getStore(Root, Disp, Addr, TrmpAddr, 6, false, 1);
6012
6013    SDValue Ops[] =
6014      { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 4) };
6015    return DAG.getMergeValues(Ops, 2);
6016  }
6017}
6018
6019SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
6020  /*
6021   The rounding mode is in bits 11:10 of FPSR, and has the following
6022   settings:
6023     00 Round to nearest
6024     01 Round to -inf
6025     10 Round to +inf
6026     11 Round to 0
6027
6028  FLT_ROUNDS, on the other hand, expects the following:
6029    -1 Undefined
6030     0 Round to 0
6031     1 Round to nearest
6032     2 Round to +inf
6033     3 Round to -inf
6034
6035  To perform the conversion, we do:
6036    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
6037  */
6038
6039  MachineFunction &MF = DAG.getMachineFunction();
6040  const TargetMachine &TM = MF.getTarget();
6041  const TargetFrameInfo &TFI = *TM.getFrameInfo();
6042  unsigned StackAlignment = TFI.getStackAlignment();
6043  MVT VT = Op.getValueType();
6044
6045  // Save FP Control Word to stack slot
6046  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment);
6047  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6048
6049  SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, MVT::Other,
6050                              DAG.getEntryNode(), StackSlot);
6051
6052  // Load FP Control Word from stack slot
6053  SDValue CWD = DAG.getLoad(MVT::i16, Chain, StackSlot, NULL, 0);
6054
6055  // Transform as necessary
6056  SDValue CWD1 =
6057    DAG.getNode(ISD::SRL, MVT::i16,
6058                DAG.getNode(ISD::AND, MVT::i16,
6059                            CWD, DAG.getConstant(0x800, MVT::i16)),
6060                DAG.getConstant(11, MVT::i8));
6061  SDValue CWD2 =
6062    DAG.getNode(ISD::SRL, MVT::i16,
6063                DAG.getNode(ISD::AND, MVT::i16,
6064                            CWD, DAG.getConstant(0x400, MVT::i16)),
6065                DAG.getConstant(9, MVT::i8));
6066
6067  SDValue RetVal =
6068    DAG.getNode(ISD::AND, MVT::i16,
6069                DAG.getNode(ISD::ADD, MVT::i16,
6070                            DAG.getNode(ISD::OR, MVT::i16, CWD1, CWD2),
6071                            DAG.getConstant(1, MVT::i16)),
6072                DAG.getConstant(3, MVT::i16));
6073
6074
6075  return DAG.getNode((VT.getSizeInBits() < 16 ?
6076                      ISD::TRUNCATE : ISD::ZERO_EXTEND), VT, RetVal);
6077}
6078
6079SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
6080  MVT VT = Op.getValueType();
6081  MVT OpVT = VT;
6082  unsigned NumBits = VT.getSizeInBits();
6083
6084  Op = Op.getOperand(0);
6085  if (VT == MVT::i8) {
6086    // Zero extend to i32 since there is not an i8 bsr.
6087    OpVT = MVT::i32;
6088    Op = DAG.getNode(ISD::ZERO_EXTEND, OpVT, Op);
6089  }
6090
6091  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
6092  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
6093  Op = DAG.getNode(X86ISD::BSR, VTs, Op);
6094
6095  // If src is zero (i.e. bsr sets ZF), returns NumBits.
6096  SmallVector<SDValue, 4> Ops;
6097  Ops.push_back(Op);
6098  Ops.push_back(DAG.getConstant(NumBits+NumBits-1, OpVT));
6099  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
6100  Ops.push_back(Op.getValue(1));
6101  Op = DAG.getNode(X86ISD::CMOV, OpVT, &Ops[0], 4);
6102
6103  // Finally xor with NumBits-1.
6104  Op = DAG.getNode(ISD::XOR, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
6105
6106  if (VT == MVT::i8)
6107    Op = DAG.getNode(ISD::TRUNCATE, MVT::i8, Op);
6108  return Op;
6109}
6110
6111SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
6112  MVT VT = Op.getValueType();
6113  MVT OpVT = VT;
6114  unsigned NumBits = VT.getSizeInBits();
6115
6116  Op = Op.getOperand(0);
6117  if (VT == MVT::i8) {
6118    OpVT = MVT::i32;
6119    Op = DAG.getNode(ISD::ZERO_EXTEND, OpVT, Op);
6120  }
6121
6122  // Issue a bsf (scan bits forward) which also sets EFLAGS.
6123  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
6124  Op = DAG.getNode(X86ISD::BSF, VTs, Op);
6125
6126  // If src is zero (i.e. bsf sets ZF), returns NumBits.
6127  SmallVector<SDValue, 4> Ops;
6128  Ops.push_back(Op);
6129  Ops.push_back(DAG.getConstant(NumBits, OpVT));
6130  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
6131  Ops.push_back(Op.getValue(1));
6132  Op = DAG.getNode(X86ISD::CMOV, OpVT, &Ops[0], 4);
6133
6134  if (VT == MVT::i8)
6135    Op = DAG.getNode(ISD::TRUNCATE, MVT::i8, Op);
6136  return Op;
6137}
6138
6139SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) {
6140  MVT VT = Op.getValueType();
6141  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
6142
6143  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
6144  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
6145  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
6146  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
6147  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
6148  //
6149  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
6150  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
6151  //  return AloBlo + AloBhi + AhiBlo;
6152
6153  SDValue A = Op.getOperand(0);
6154  SDValue B = Op.getOperand(1);
6155
6156  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VT,
6157                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
6158                       A, DAG.getConstant(32, MVT::i32));
6159  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VT,
6160                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
6161                       B, DAG.getConstant(32, MVT::i32));
6162  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VT,
6163                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6164                       A, B);
6165  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VT,
6166                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6167                       A, Bhi);
6168  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VT,
6169                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6170                       Ahi, B);
6171  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VT,
6172                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
6173                       AloBhi, DAG.getConstant(32, MVT::i32));
6174  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VT,
6175                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
6176                       AhiBlo, DAG.getConstant(32, MVT::i32));
6177  SDValue Res = DAG.getNode(ISD::ADD, VT, AloBlo, AloBhi);
6178  Res = DAG.getNode(ISD::ADD, VT, Res, AhiBlo);
6179  return Res;
6180}
6181
6182
6183SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) {
6184  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
6185  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
6186  // looks for this combo and may remove the "setcc" instruction if the "setcc"
6187  // has only one use.
6188  SDNode *N = Op.getNode();
6189  SDValue LHS = N->getOperand(0);
6190  SDValue RHS = N->getOperand(1);
6191  unsigned BaseOp = 0;
6192  unsigned Cond = 0;
6193
6194  switch (Op.getOpcode()) {
6195  default: assert(0 && "Unknown ovf instruction!");
6196  case ISD::SADDO:
6197    BaseOp = X86ISD::ADD;
6198    Cond = X86::COND_O;
6199    break;
6200  case ISD::UADDO:
6201    BaseOp = X86ISD::ADD;
6202    Cond = X86::COND_C;
6203    break;
6204  case ISD::SSUBO:
6205    BaseOp = X86ISD::SUB;
6206    Cond = X86::COND_O;
6207    break;
6208  case ISD::USUBO:
6209    BaseOp = X86ISD::SUB;
6210    Cond = X86::COND_C;
6211    break;
6212  case ISD::SMULO:
6213    BaseOp = X86ISD::SMUL;
6214    Cond = X86::COND_O;
6215    break;
6216  case ISD::UMULO:
6217    BaseOp = X86ISD::UMUL;
6218    Cond = X86::COND_C;
6219    break;
6220  }
6221
6222  // Also sets EFLAGS.
6223  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
6224  SDValue Sum = DAG.getNode(BaseOp, VTs, LHS, RHS);
6225
6226  SDValue SetCC =
6227    DAG.getNode(X86ISD::SETCC, N->getValueType(1),
6228                DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1));
6229
6230  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
6231  return Sum;
6232}
6233
6234SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) {
6235  MVT T = Op.getValueType();
6236  unsigned Reg = 0;
6237  unsigned size = 0;
6238  switch(T.getSimpleVT()) {
6239  default:
6240    assert(false && "Invalid value type!");
6241  case MVT::i8:  Reg = X86::AL;  size = 1; break;
6242  case MVT::i16: Reg = X86::AX;  size = 2; break;
6243  case MVT::i32: Reg = X86::EAX; size = 4; break;
6244  case MVT::i64:
6245    assert(Subtarget->is64Bit() && "Node not type legal!");
6246    Reg = X86::RAX; size = 8;
6247    break;
6248  }
6249  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), Reg,
6250                                    Op.getOperand(2), SDValue());
6251  SDValue Ops[] = { cpIn.getValue(0),
6252                    Op.getOperand(1),
6253                    Op.getOperand(3),
6254                    DAG.getTargetConstant(size, MVT::i8),
6255                    cpIn.getValue(1) };
6256  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6257  SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, Tys, Ops, 5);
6258  SDValue cpOut =
6259    DAG.getCopyFromReg(Result.getValue(0), Reg, T, Result.getValue(1));
6260  return cpOut;
6261}
6262
6263SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
6264                                                 SelectionDAG &DAG) {
6265  assert(Subtarget->is64Bit() && "Result not type legalized?");
6266  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6267  SDValue TheChain = Op.getOperand(0);
6268  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheChain, 1);
6269  SDValue rax = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
6270  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), X86::RDX, MVT::i64,
6271                                   rax.getValue(2));
6272  SDValue Tmp = DAG.getNode(ISD::SHL, MVT::i64, rdx,
6273                            DAG.getConstant(32, MVT::i8));
6274  SDValue Ops[] = {
6275    DAG.getNode(ISD::OR, MVT::i64, rax, Tmp),
6276    rdx.getValue(1)
6277  };
6278  return DAG.getMergeValues(Ops, 2);
6279}
6280
6281SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
6282  SDNode *Node = Op.getNode();
6283  MVT T = Node->getValueType(0);
6284  SDValue negOp = DAG.getNode(ISD::SUB, T,
6285                                DAG.getConstant(0, T), Node->getOperand(2));
6286  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD,
6287                       cast<AtomicSDNode>(Node)->getMemoryVT(),
6288                       Node->getOperand(0),
6289                       Node->getOperand(1), negOp,
6290                       cast<AtomicSDNode>(Node)->getSrcValue(),
6291                       cast<AtomicSDNode>(Node)->getAlignment());
6292}
6293
6294/// LowerOperation - Provide custom lowering hooks for some operations.
6295///
6296SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
6297  switch (Op.getOpcode()) {
6298  default: assert(0 && "Should not custom lower this!");
6299  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
6300  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
6301  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
6302  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
6303  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
6304  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
6305  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
6306  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
6307  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
6308  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
6309  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
6310  case ISD::SHL_PARTS:
6311  case ISD::SRA_PARTS:
6312  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
6313  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
6314  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
6315  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
6316  case ISD::FABS:               return LowerFABS(Op, DAG);
6317  case ISD::FNEG:               return LowerFNEG(Op, DAG);
6318  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
6319  case ISD::SETCC:              return LowerSETCC(Op, DAG);
6320  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
6321  case ISD::SELECT:             return LowerSELECT(Op, DAG);
6322  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
6323  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
6324  case ISD::CALL:               return LowerCALL(Op, DAG);
6325  case ISD::RET:                return LowerRET(Op, DAG);
6326  case ISD::FORMAL_ARGUMENTS:   return LowerFORMAL_ARGUMENTS(Op, DAG);
6327  case ISD::VASTART:            return LowerVASTART(Op, DAG);
6328  case ISD::VAARG:              return LowerVAARG(Op, DAG);
6329  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
6330  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
6331  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
6332  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
6333  case ISD::FRAME_TO_ARGS_OFFSET:
6334                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
6335  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
6336  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
6337  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
6338  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
6339  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
6340  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
6341  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
6342  case ISD::SADDO:
6343  case ISD::UADDO:
6344  case ISD::SSUBO:
6345  case ISD::USUBO:
6346  case ISD::SMULO:
6347  case ISD::UMULO:              return LowerXALUO(Op, DAG);
6348  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
6349  }
6350}
6351
6352void X86TargetLowering::
6353ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
6354                        SelectionDAG &DAG, unsigned NewOp) {
6355  MVT T = Node->getValueType(0);
6356  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
6357
6358  SDValue Chain = Node->getOperand(0);
6359  SDValue In1 = Node->getOperand(1);
6360  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
6361                             Node->getOperand(2), DAG.getIntPtrConstant(0));
6362  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
6363                             Node->getOperand(2), DAG.getIntPtrConstant(1));
6364  // This is a generalized SDNode, not an AtomicSDNode, so it doesn't
6365  // have a MemOperand.  Pass the info through as a normal operand.
6366  SDValue LSI = DAG.getMemOperand(cast<MemSDNode>(Node)->getMemOperand());
6367  SDValue Ops[] = { Chain, In1, In2L, In2H, LSI };
6368  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
6369  SDValue Result = DAG.getNode(NewOp, Tys, Ops, 5);
6370  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
6371  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OpsF, 2));
6372  Results.push_back(Result.getValue(2));
6373}
6374
6375/// ReplaceNodeResults - Replace a node with an illegal result type
6376/// with a new node built out of custom code.
6377void X86TargetLowering::ReplaceNodeResults(SDNode *N,
6378                                           SmallVectorImpl<SDValue>&Results,
6379                                           SelectionDAG &DAG) {
6380  switch (N->getOpcode()) {
6381  default:
6382    assert(false && "Do not know how to custom type legalize this operation!");
6383    return;
6384  case ISD::FP_TO_SINT: {
6385    std::pair<SDValue,SDValue> Vals = FP_TO_SINTHelper(SDValue(N, 0), DAG);
6386    SDValue FIST = Vals.first, StackSlot = Vals.second;
6387    if (FIST.getNode() != 0) {
6388      MVT VT = N->getValueType(0);
6389      // Return a load from the stack slot.
6390      Results.push_back(DAG.getLoad(VT, FIST, StackSlot, NULL, 0));
6391    }
6392    return;
6393  }
6394  case ISD::READCYCLECOUNTER: {
6395    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6396    SDValue TheChain = N->getOperand(0);
6397    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheChain, 1);
6398    SDValue eax = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
6399    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), X86::EDX, MVT::i32,
6400                                     eax.getValue(2));
6401    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
6402    SDValue Ops[] = { eax, edx };
6403    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Ops, 2));
6404    Results.push_back(edx.getValue(1));
6405    return;
6406  }
6407  case ISD::ATOMIC_CMP_SWAP: {
6408    MVT T = N->getValueType(0);
6409    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
6410    SDValue cpInL, cpInH;
6411    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, N->getOperand(2),
6412                        DAG.getConstant(0, MVT::i32));
6413    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, N->getOperand(2),
6414                        DAG.getConstant(1, MVT::i32));
6415    cpInL = DAG.getCopyToReg(N->getOperand(0), X86::EAX, cpInL, SDValue());
6416    cpInH = DAG.getCopyToReg(cpInL.getValue(0), X86::EDX, cpInH,
6417                             cpInL.getValue(1));
6418    SDValue swapInL, swapInH;
6419    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, N->getOperand(3),
6420                          DAG.getConstant(0, MVT::i32));
6421    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, N->getOperand(3),
6422                          DAG.getConstant(1, MVT::i32));
6423    swapInL = DAG.getCopyToReg(cpInH.getValue(0), X86::EBX, swapInL,
6424                               cpInH.getValue(1));
6425    swapInH = DAG.getCopyToReg(swapInL.getValue(0), X86::ECX, swapInH,
6426                               swapInL.getValue(1));
6427    SDValue Ops[] = { swapInH.getValue(0),
6428                      N->getOperand(1),
6429                      swapInH.getValue(1) };
6430    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6431    SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, Tys, Ops, 3);
6432    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), X86::EAX, MVT::i32,
6433                                        Result.getValue(1));
6434    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), X86::EDX, MVT::i32,
6435                                        cpOutL.getValue(2));
6436    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
6437    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OpsF, 2));
6438    Results.push_back(cpOutH.getValue(1));
6439    return;
6440  }
6441  case ISD::ATOMIC_LOAD_ADD:
6442    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
6443    return;
6444  case ISD::ATOMIC_LOAD_AND:
6445    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
6446    return;
6447  case ISD::ATOMIC_LOAD_NAND:
6448    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
6449    return;
6450  case ISD::ATOMIC_LOAD_OR:
6451    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
6452    return;
6453  case ISD::ATOMIC_LOAD_SUB:
6454    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
6455    return;
6456  case ISD::ATOMIC_LOAD_XOR:
6457    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
6458    return;
6459  case ISD::ATOMIC_SWAP:
6460    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
6461    return;
6462  }
6463}
6464
6465const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
6466  switch (Opcode) {
6467  default: return NULL;
6468  case X86ISD::BSF:                return "X86ISD::BSF";
6469  case X86ISD::BSR:                return "X86ISD::BSR";
6470  case X86ISD::SHLD:               return "X86ISD::SHLD";
6471  case X86ISD::SHRD:               return "X86ISD::SHRD";
6472  case X86ISD::FAND:               return "X86ISD::FAND";
6473  case X86ISD::FOR:                return "X86ISD::FOR";
6474  case X86ISD::FXOR:               return "X86ISD::FXOR";
6475  case X86ISD::FSRL:               return "X86ISD::FSRL";
6476  case X86ISD::FILD:               return "X86ISD::FILD";
6477  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
6478  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
6479  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
6480  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
6481  case X86ISD::FLD:                return "X86ISD::FLD";
6482  case X86ISD::FST:                return "X86ISD::FST";
6483  case X86ISD::CALL:               return "X86ISD::CALL";
6484  case X86ISD::TAILCALL:           return "X86ISD::TAILCALL";
6485  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
6486  case X86ISD::BT:                 return "X86ISD::BT";
6487  case X86ISD::CMP:                return "X86ISD::CMP";
6488  case X86ISD::COMI:               return "X86ISD::COMI";
6489  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
6490  case X86ISD::SETCC:              return "X86ISD::SETCC";
6491  case X86ISD::CMOV:               return "X86ISD::CMOV";
6492  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
6493  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
6494  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
6495  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
6496  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
6497  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
6498  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
6499  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
6500  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
6501  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
6502  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
6503  case X86ISD::FMAX:               return "X86ISD::FMAX";
6504  case X86ISD::FMIN:               return "X86ISD::FMIN";
6505  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
6506  case X86ISD::FRCP:               return "X86ISD::FRCP";
6507  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
6508  case X86ISD::THREAD_POINTER:     return "X86ISD::THREAD_POINTER";
6509  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
6510  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
6511  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
6512  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
6513  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
6514  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
6515  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
6516  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
6517  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
6518  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
6519  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
6520  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
6521  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
6522  case X86ISD::VSHL:               return "X86ISD::VSHL";
6523  case X86ISD::VSRL:               return "X86ISD::VSRL";
6524  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
6525  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
6526  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
6527  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
6528  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
6529  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
6530  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
6531  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
6532  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
6533  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
6534  case X86ISD::ADD:                return "X86ISD::ADD";
6535  case X86ISD::SUB:                return "X86ISD::SUB";
6536  case X86ISD::SMUL:               return "X86ISD::SMUL";
6537  case X86ISD::UMUL:               return "X86ISD::UMUL";
6538  }
6539}
6540
6541// isLegalAddressingMode - Return true if the addressing mode represented
6542// by AM is legal for this target, for a load/store of the specified type.
6543bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
6544                                              const Type *Ty) const {
6545  // X86 supports extremely general addressing modes.
6546
6547  // X86 allows a sign-extended 32-bit immediate field as a displacement.
6548  if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
6549    return false;
6550
6551  if (AM.BaseGV) {
6552    // We can only fold this if we don't need an extra load.
6553    if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
6554      return false;
6555    // If BaseGV requires a register, we cannot also have a BaseReg.
6556    if (Subtarget->GVRequiresRegister(AM.BaseGV, getTargetMachine(), false) &&
6557        AM.HasBaseReg)
6558      return false;
6559
6560    // X86-64 only supports addr of globals in small code model.
6561    if (Subtarget->is64Bit()) {
6562      if (getTargetMachine().getCodeModel() != CodeModel::Small)
6563        return false;
6564      // If lower 4G is not available, then we must use rip-relative addressing.
6565      if (AM.BaseOffs || AM.Scale > 1)
6566        return false;
6567    }
6568  }
6569
6570  switch (AM.Scale) {
6571  case 0:
6572  case 1:
6573  case 2:
6574  case 4:
6575  case 8:
6576    // These scales always work.
6577    break;
6578  case 3:
6579  case 5:
6580  case 9:
6581    // These scales are formed with basereg+scalereg.  Only accept if there is
6582    // no basereg yet.
6583    if (AM.HasBaseReg)
6584      return false;
6585    break;
6586  default:  // Other stuff never works.
6587    return false;
6588  }
6589
6590  return true;
6591}
6592
6593
6594bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
6595  if (!Ty1->isInteger() || !Ty2->isInteger())
6596    return false;
6597  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
6598  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
6599  if (NumBits1 <= NumBits2)
6600    return false;
6601  return Subtarget->is64Bit() || NumBits1 < 64;
6602}
6603
6604bool X86TargetLowering::isTruncateFree(MVT VT1, MVT VT2) const {
6605  if (!VT1.isInteger() || !VT2.isInteger())
6606    return false;
6607  unsigned NumBits1 = VT1.getSizeInBits();
6608  unsigned NumBits2 = VT2.getSizeInBits();
6609  if (NumBits1 <= NumBits2)
6610    return false;
6611  return Subtarget->is64Bit() || NumBits1 < 64;
6612}
6613
6614/// isShuffleMaskLegal - Targets can use this to indicate that they only
6615/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
6616/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
6617/// are assumed to be legal.
6618bool
6619X86TargetLowering::isShuffleMaskLegal(SDValue Mask, MVT VT) const {
6620  // Only do shuffles on 128-bit vector types for now.
6621  if (VT.getSizeInBits() == 64) return false;
6622  return (Mask.getNode()->getNumOperands() <= 4 ||
6623          isIdentityMask(Mask.getNode()) ||
6624          isIdentityMask(Mask.getNode(), true) ||
6625          isSplatMask(Mask.getNode())  ||
6626          isPSHUFHW_PSHUFLWMask(Mask.getNode()) ||
6627          X86::isUNPCKLMask(Mask.getNode()) ||
6628          X86::isUNPCKHMask(Mask.getNode()) ||
6629          X86::isUNPCKL_v_undef_Mask(Mask.getNode()) ||
6630          X86::isUNPCKH_v_undef_Mask(Mask.getNode()));
6631}
6632
6633bool
6634X86TargetLowering::isVectorClearMaskLegal(const std::vector<SDValue> &BVOps,
6635                                          MVT EVT, SelectionDAG &DAG) const {
6636  unsigned NumElts = BVOps.size();
6637  // Only do shuffles on 128-bit vector types for now.
6638  if (EVT.getSizeInBits() * NumElts == 64) return false;
6639  if (NumElts == 2) return true;
6640  if (NumElts == 4) {
6641    return (isMOVLMask(&BVOps[0], 4)  ||
6642            isCommutedMOVL(&BVOps[0], 4, true) ||
6643            isSHUFPMask(&BVOps[0], 4) ||
6644            isCommutedSHUFP(&BVOps[0], 4));
6645  }
6646  return false;
6647}
6648
6649//===----------------------------------------------------------------------===//
6650//                           X86 Scheduler Hooks
6651//===----------------------------------------------------------------------===//
6652
6653// private utility function
6654MachineBasicBlock *
6655X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
6656                                                       MachineBasicBlock *MBB,
6657                                                       unsigned regOpc,
6658                                                       unsigned immOpc,
6659                                                       unsigned LoadOpc,
6660                                                       unsigned CXchgOpc,
6661                                                       unsigned copyOpc,
6662                                                       unsigned notOpc,
6663                                                       unsigned EAXreg,
6664                                                       TargetRegisterClass *RC,
6665                                                       bool invSrc) {
6666  // For the atomic bitwise operator, we generate
6667  //   thisMBB:
6668  //   newMBB:
6669  //     ld  t1 = [bitinstr.addr]
6670  //     op  t2 = t1, [bitinstr.val]
6671  //     mov EAX = t1
6672  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
6673  //     bz  newMBB
6674  //     fallthrough -->nextMBB
6675  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6676  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
6677  MachineFunction::iterator MBBIter = MBB;
6678  ++MBBIter;
6679
6680  /// First build the CFG
6681  MachineFunction *F = MBB->getParent();
6682  MachineBasicBlock *thisMBB = MBB;
6683  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
6684  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
6685  F->insert(MBBIter, newMBB);
6686  F->insert(MBBIter, nextMBB);
6687
6688  // Move all successors to thisMBB to nextMBB
6689  nextMBB->transferSuccessors(thisMBB);
6690
6691  // Update thisMBB to fall through to newMBB
6692  thisMBB->addSuccessor(newMBB);
6693
6694  // newMBB jumps to itself and fall through to nextMBB
6695  newMBB->addSuccessor(nextMBB);
6696  newMBB->addSuccessor(newMBB);
6697
6698  // Insert instructions into newMBB based on incoming instruction
6699  assert(bInstr->getNumOperands() < 8 && "unexpected number of operands");
6700  MachineOperand& destOper = bInstr->getOperand(0);
6701  MachineOperand* argOpers[6];
6702  int numArgs = bInstr->getNumOperands() - 1;
6703  for (int i=0; i < numArgs; ++i)
6704    argOpers[i] = &bInstr->getOperand(i+1);
6705
6706  // x86 address has 4 operands: base, index, scale, and displacement
6707  int lastAddrIndx = 3; // [0,3]
6708  int valArgIndx = 4;
6709
6710  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
6711  MachineInstrBuilder MIB = BuildMI(newMBB, TII->get(LoadOpc), t1);
6712  for (int i=0; i <= lastAddrIndx; ++i)
6713    (*MIB).addOperand(*argOpers[i]);
6714
6715  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
6716  if (invSrc) {
6717    MIB = BuildMI(newMBB, TII->get(notOpc), tt).addReg(t1);
6718  }
6719  else
6720    tt = t1;
6721
6722  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
6723  assert((argOpers[valArgIndx]->isReg() ||
6724          argOpers[valArgIndx]->isImm()) &&
6725         "invalid operand");
6726  if (argOpers[valArgIndx]->isReg())
6727    MIB = BuildMI(newMBB, TII->get(regOpc), t2);
6728  else
6729    MIB = BuildMI(newMBB, TII->get(immOpc), t2);
6730  MIB.addReg(tt);
6731  (*MIB).addOperand(*argOpers[valArgIndx]);
6732
6733  MIB = BuildMI(newMBB, TII->get(copyOpc), EAXreg);
6734  MIB.addReg(t1);
6735
6736  MIB = BuildMI(newMBB, TII->get(CXchgOpc));
6737  for (int i=0; i <= lastAddrIndx; ++i)
6738    (*MIB).addOperand(*argOpers[i]);
6739  MIB.addReg(t2);
6740  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
6741  (*MIB).addMemOperand(*F, *bInstr->memoperands_begin());
6742
6743  MIB = BuildMI(newMBB, TII->get(copyOpc), destOper.getReg());
6744  MIB.addReg(EAXreg);
6745
6746  // insert branch
6747  BuildMI(newMBB, TII->get(X86::JNE)).addMBB(newMBB);
6748
6749  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
6750  return nextMBB;
6751}
6752
6753// private utility function:  64 bit atomics on 32 bit host.
6754MachineBasicBlock *
6755X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
6756                                                       MachineBasicBlock *MBB,
6757                                                       unsigned regOpcL,
6758                                                       unsigned regOpcH,
6759                                                       unsigned immOpcL,
6760                                                       unsigned immOpcH,
6761                                                       bool invSrc) {
6762  // For the atomic bitwise operator, we generate
6763  //   thisMBB (instructions are in pairs, except cmpxchg8b)
6764  //     ld t1,t2 = [bitinstr.addr]
6765  //   newMBB:
6766  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
6767  //     op  t5, t6 <- out1, out2, [bitinstr.val]
6768  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
6769  //     mov ECX, EBX <- t5, t6
6770  //     mov EAX, EDX <- t1, t2
6771  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
6772  //     mov t3, t4 <- EAX, EDX
6773  //     bz  newMBB
6774  //     result in out1, out2
6775  //     fallthrough -->nextMBB
6776
6777  const TargetRegisterClass *RC = X86::GR32RegisterClass;
6778  const unsigned LoadOpc = X86::MOV32rm;
6779  const unsigned copyOpc = X86::MOV32rr;
6780  const unsigned NotOpc = X86::NOT32r;
6781  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6782  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
6783  MachineFunction::iterator MBBIter = MBB;
6784  ++MBBIter;
6785
6786  /// First build the CFG
6787  MachineFunction *F = MBB->getParent();
6788  MachineBasicBlock *thisMBB = MBB;
6789  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
6790  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
6791  F->insert(MBBIter, newMBB);
6792  F->insert(MBBIter, nextMBB);
6793
6794  // Move all successors to thisMBB to nextMBB
6795  nextMBB->transferSuccessors(thisMBB);
6796
6797  // Update thisMBB to fall through to newMBB
6798  thisMBB->addSuccessor(newMBB);
6799
6800  // newMBB jumps to itself and fall through to nextMBB
6801  newMBB->addSuccessor(nextMBB);
6802  newMBB->addSuccessor(newMBB);
6803
6804  // Insert instructions into newMBB based on incoming instruction
6805  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
6806  assert(bInstr->getNumOperands() < 18 && "unexpected number of operands");
6807  MachineOperand& dest1Oper = bInstr->getOperand(0);
6808  MachineOperand& dest2Oper = bInstr->getOperand(1);
6809  MachineOperand* argOpers[6];
6810  for (int i=0; i < 6; ++i)
6811    argOpers[i] = &bInstr->getOperand(i+2);
6812
6813  // x86 address has 4 operands: base, index, scale, and displacement
6814  int lastAddrIndx = 3; // [0,3]
6815
6816  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
6817  MachineInstrBuilder MIB = BuildMI(thisMBB, TII->get(LoadOpc), t1);
6818  for (int i=0; i <= lastAddrIndx; ++i)
6819    (*MIB).addOperand(*argOpers[i]);
6820  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
6821  MIB = BuildMI(thisMBB, TII->get(LoadOpc), t2);
6822  // add 4 to displacement.
6823  for (int i=0; i <= lastAddrIndx-1; ++i)
6824    (*MIB).addOperand(*argOpers[i]);
6825  MachineOperand newOp3 = *(argOpers[3]);
6826  if (newOp3.isImm())
6827    newOp3.setImm(newOp3.getImm()+4);
6828  else
6829    newOp3.setOffset(newOp3.getOffset()+4);
6830  (*MIB).addOperand(newOp3);
6831
6832  // t3/4 are defined later, at the bottom of the loop
6833  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
6834  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
6835  BuildMI(newMBB, TII->get(X86::PHI), dest1Oper.getReg())
6836    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
6837  BuildMI(newMBB, TII->get(X86::PHI), dest2Oper.getReg())
6838    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
6839
6840  unsigned tt1 = F->getRegInfo().createVirtualRegister(RC);
6841  unsigned tt2 = F->getRegInfo().createVirtualRegister(RC);
6842  if (invSrc) {
6843    MIB = BuildMI(newMBB, TII->get(NotOpc), tt1).addReg(t1);
6844    MIB = BuildMI(newMBB, TII->get(NotOpc), tt2).addReg(t2);
6845  } else {
6846    tt1 = t1;
6847    tt2 = t2;
6848  }
6849
6850  assert((argOpers[4]->isReg() || argOpers[4]->isImm()) &&
6851         "invalid operand");
6852  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
6853  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
6854  if (argOpers[4]->isReg())
6855    MIB = BuildMI(newMBB, TII->get(regOpcL), t5);
6856  else
6857    MIB = BuildMI(newMBB, TII->get(immOpcL), t5);
6858  if (regOpcL != X86::MOV32rr)
6859    MIB.addReg(tt1);
6860  (*MIB).addOperand(*argOpers[4]);
6861  assert(argOpers[5]->isReg() == argOpers[4]->isReg());
6862  assert(argOpers[5]->isImm() == argOpers[4]->isImm());
6863  if (argOpers[5]->isReg())
6864    MIB = BuildMI(newMBB, TII->get(regOpcH), t6);
6865  else
6866    MIB = BuildMI(newMBB, TII->get(immOpcH), t6);
6867  if (regOpcH != X86::MOV32rr)
6868    MIB.addReg(tt2);
6869  (*MIB).addOperand(*argOpers[5]);
6870
6871  MIB = BuildMI(newMBB, TII->get(copyOpc), X86::EAX);
6872  MIB.addReg(t1);
6873  MIB = BuildMI(newMBB, TII->get(copyOpc), X86::EDX);
6874  MIB.addReg(t2);
6875
6876  MIB = BuildMI(newMBB, TII->get(copyOpc), X86::EBX);
6877  MIB.addReg(t5);
6878  MIB = BuildMI(newMBB, TII->get(copyOpc), X86::ECX);
6879  MIB.addReg(t6);
6880
6881  MIB = BuildMI(newMBB, TII->get(X86::LCMPXCHG8B));
6882  for (int i=0; i <= lastAddrIndx; ++i)
6883    (*MIB).addOperand(*argOpers[i]);
6884
6885  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
6886  (*MIB).addMemOperand(*F, *bInstr->memoperands_begin());
6887
6888  MIB = BuildMI(newMBB, TII->get(copyOpc), t3);
6889  MIB.addReg(X86::EAX);
6890  MIB = BuildMI(newMBB, TII->get(copyOpc), t4);
6891  MIB.addReg(X86::EDX);
6892
6893  // insert branch
6894  BuildMI(newMBB, TII->get(X86::JNE)).addMBB(newMBB);
6895
6896  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
6897  return nextMBB;
6898}
6899
6900// private utility function
6901MachineBasicBlock *
6902X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
6903                                                      MachineBasicBlock *MBB,
6904                                                      unsigned cmovOpc) {
6905  // For the atomic min/max operator, we generate
6906  //   thisMBB:
6907  //   newMBB:
6908  //     ld t1 = [min/max.addr]
6909  //     mov t2 = [min/max.val]
6910  //     cmp  t1, t2
6911  //     cmov[cond] t2 = t1
6912  //     mov EAX = t1
6913  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
6914  //     bz   newMBB
6915  //     fallthrough -->nextMBB
6916  //
6917  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6918  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
6919  MachineFunction::iterator MBBIter = MBB;
6920  ++MBBIter;
6921
6922  /// First build the CFG
6923  MachineFunction *F = MBB->getParent();
6924  MachineBasicBlock *thisMBB = MBB;
6925  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
6926  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
6927  F->insert(MBBIter, newMBB);
6928  F->insert(MBBIter, nextMBB);
6929
6930  // Move all successors to thisMBB to nextMBB
6931  nextMBB->transferSuccessors(thisMBB);
6932
6933  // Update thisMBB to fall through to newMBB
6934  thisMBB->addSuccessor(newMBB);
6935
6936  // newMBB jumps to newMBB and fall through to nextMBB
6937  newMBB->addSuccessor(nextMBB);
6938  newMBB->addSuccessor(newMBB);
6939
6940  // Insert instructions into newMBB based on incoming instruction
6941  assert(mInstr->getNumOperands() < 8 && "unexpected number of operands");
6942  MachineOperand& destOper = mInstr->getOperand(0);
6943  MachineOperand* argOpers[6];
6944  int numArgs = mInstr->getNumOperands() - 1;
6945  for (int i=0; i < numArgs; ++i)
6946    argOpers[i] = &mInstr->getOperand(i+1);
6947
6948  // x86 address has 4 operands: base, index, scale, and displacement
6949  int lastAddrIndx = 3; // [0,3]
6950  int valArgIndx = 4;
6951
6952  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
6953  MachineInstrBuilder MIB = BuildMI(newMBB, TII->get(X86::MOV32rm), t1);
6954  for (int i=0; i <= lastAddrIndx; ++i)
6955    (*MIB).addOperand(*argOpers[i]);
6956
6957  // We only support register and immediate values
6958  assert((argOpers[valArgIndx]->isReg() ||
6959          argOpers[valArgIndx]->isImm()) &&
6960         "invalid operand");
6961
6962  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
6963  if (argOpers[valArgIndx]->isReg())
6964    MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), t2);
6965  else
6966    MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), t2);
6967  (*MIB).addOperand(*argOpers[valArgIndx]);
6968
6969  MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), X86::EAX);
6970  MIB.addReg(t1);
6971
6972  MIB = BuildMI(newMBB, TII->get(X86::CMP32rr));
6973  MIB.addReg(t1);
6974  MIB.addReg(t2);
6975
6976  // Generate movc
6977  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
6978  MIB = BuildMI(newMBB, TII->get(cmovOpc),t3);
6979  MIB.addReg(t2);
6980  MIB.addReg(t1);
6981
6982  // Cmp and exchange if none has modified the memory location
6983  MIB = BuildMI(newMBB, TII->get(X86::LCMPXCHG32));
6984  for (int i=0; i <= lastAddrIndx; ++i)
6985    (*MIB).addOperand(*argOpers[i]);
6986  MIB.addReg(t3);
6987  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
6988  (*MIB).addMemOperand(*F, *mInstr->memoperands_begin());
6989
6990  MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), destOper.getReg());
6991  MIB.addReg(X86::EAX);
6992
6993  // insert branch
6994  BuildMI(newMBB, TII->get(X86::JNE)).addMBB(newMBB);
6995
6996  F->DeleteMachineInstr(mInstr);   // The pseudo instruction is gone now.
6997  return nextMBB;
6998}
6999
7000
7001MachineBasicBlock *
7002X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
7003                                               MachineBasicBlock *BB) {
7004  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7005  switch (MI->getOpcode()) {
7006  default: assert(false && "Unexpected instr type to insert");
7007  case X86::CMOV_V1I64:
7008  case X86::CMOV_FR32:
7009  case X86::CMOV_FR64:
7010  case X86::CMOV_V4F32:
7011  case X86::CMOV_V2F64:
7012  case X86::CMOV_V2I64: {
7013    // To "insert" a SELECT_CC instruction, we actually have to insert the
7014    // diamond control-flow pattern.  The incoming instruction knows the
7015    // destination vreg to set, the condition code register to branch on, the
7016    // true/false values to select between, and a branch opcode to use.
7017    const BasicBlock *LLVM_BB = BB->getBasicBlock();
7018    MachineFunction::iterator It = BB;
7019    ++It;
7020
7021    //  thisMBB:
7022    //  ...
7023    //   TrueVal = ...
7024    //   cmpTY ccX, r1, r2
7025    //   bCC copy1MBB
7026    //   fallthrough --> copy0MBB
7027    MachineBasicBlock *thisMBB = BB;
7028    MachineFunction *F = BB->getParent();
7029    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
7030    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
7031    unsigned Opc =
7032      X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
7033    BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
7034    F->insert(It, copy0MBB);
7035    F->insert(It, sinkMBB);
7036    // Update machine-CFG edges by transferring all successors of the current
7037    // block to the new block which will contain the Phi node for the select.
7038    sinkMBB->transferSuccessors(BB);
7039
7040    // Add the true and fallthrough blocks as its successors.
7041    BB->addSuccessor(copy0MBB);
7042    BB->addSuccessor(sinkMBB);
7043
7044    //  copy0MBB:
7045    //   %FalseValue = ...
7046    //   # fallthrough to sinkMBB
7047    BB = copy0MBB;
7048
7049    // Update machine-CFG edges
7050    BB->addSuccessor(sinkMBB);
7051
7052    //  sinkMBB:
7053    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
7054    //  ...
7055    BB = sinkMBB;
7056    BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
7057      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
7058      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
7059
7060    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
7061    return BB;
7062  }
7063
7064  case X86::FP32_TO_INT16_IN_MEM:
7065  case X86::FP32_TO_INT32_IN_MEM:
7066  case X86::FP32_TO_INT64_IN_MEM:
7067  case X86::FP64_TO_INT16_IN_MEM:
7068  case X86::FP64_TO_INT32_IN_MEM:
7069  case X86::FP64_TO_INT64_IN_MEM:
7070  case X86::FP80_TO_INT16_IN_MEM:
7071  case X86::FP80_TO_INT32_IN_MEM:
7072  case X86::FP80_TO_INT64_IN_MEM: {
7073    // Change the floating point control register to use "round towards zero"
7074    // mode when truncating to an integer value.
7075    MachineFunction *F = BB->getParent();
7076    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
7077    addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
7078
7079    // Load the old value of the high byte of the control word...
7080    unsigned OldCW =
7081      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
7082    addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);
7083
7084    // Set the high part to be round to zero...
7085    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
7086      .addImm(0xC7F);
7087
7088    // Reload the modified control word now...
7089    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
7090
7091    // Restore the memory image of control word to original value
7092    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
7093      .addReg(OldCW);
7094
7095    // Get the X86 opcode to use.
7096    unsigned Opc;
7097    switch (MI->getOpcode()) {
7098    default: assert(0 && "illegal opcode!");
7099    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
7100    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
7101    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
7102    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
7103    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
7104    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
7105    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
7106    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
7107    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
7108    }
7109
7110    X86AddressMode AM;
7111    MachineOperand &Op = MI->getOperand(0);
7112    if (Op.isReg()) {
7113      AM.BaseType = X86AddressMode::RegBase;
7114      AM.Base.Reg = Op.getReg();
7115    } else {
7116      AM.BaseType = X86AddressMode::FrameIndexBase;
7117      AM.Base.FrameIndex = Op.getIndex();
7118    }
7119    Op = MI->getOperand(1);
7120    if (Op.isImm())
7121      AM.Scale = Op.getImm();
7122    Op = MI->getOperand(2);
7123    if (Op.isImm())
7124      AM.IndexReg = Op.getImm();
7125    Op = MI->getOperand(3);
7126    if (Op.isGlobal()) {
7127      AM.GV = Op.getGlobal();
7128    } else {
7129      AM.Disp = Op.getImm();
7130    }
7131    addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
7132                      .addReg(MI->getOperand(4).getReg());
7133
7134    // Reload the original control word now.
7135    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
7136
7137    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
7138    return BB;
7139  }
7140  case X86::ATOMAND32:
7141    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
7142                                               X86::AND32ri, X86::MOV32rm,
7143                                               X86::LCMPXCHG32, X86::MOV32rr,
7144                                               X86::NOT32r, X86::EAX,
7145                                               X86::GR32RegisterClass);
7146  case X86::ATOMOR32:
7147    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
7148                                               X86::OR32ri, X86::MOV32rm,
7149                                               X86::LCMPXCHG32, X86::MOV32rr,
7150                                               X86::NOT32r, X86::EAX,
7151                                               X86::GR32RegisterClass);
7152  case X86::ATOMXOR32:
7153    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
7154                                               X86::XOR32ri, X86::MOV32rm,
7155                                               X86::LCMPXCHG32, X86::MOV32rr,
7156                                               X86::NOT32r, X86::EAX,
7157                                               X86::GR32RegisterClass);
7158  case X86::ATOMNAND32:
7159    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
7160                                               X86::AND32ri, X86::MOV32rm,
7161                                               X86::LCMPXCHG32, X86::MOV32rr,
7162                                               X86::NOT32r, X86::EAX,
7163                                               X86::GR32RegisterClass, true);
7164  case X86::ATOMMIN32:
7165    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
7166  case X86::ATOMMAX32:
7167    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
7168  case X86::ATOMUMIN32:
7169    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
7170  case X86::ATOMUMAX32:
7171    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
7172
7173  case X86::ATOMAND16:
7174    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
7175                                               X86::AND16ri, X86::MOV16rm,
7176                                               X86::LCMPXCHG16, X86::MOV16rr,
7177                                               X86::NOT16r, X86::AX,
7178                                               X86::GR16RegisterClass);
7179  case X86::ATOMOR16:
7180    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
7181                                               X86::OR16ri, X86::MOV16rm,
7182                                               X86::LCMPXCHG16, X86::MOV16rr,
7183                                               X86::NOT16r, X86::AX,
7184                                               X86::GR16RegisterClass);
7185  case X86::ATOMXOR16:
7186    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
7187                                               X86::XOR16ri, X86::MOV16rm,
7188                                               X86::LCMPXCHG16, X86::MOV16rr,
7189                                               X86::NOT16r, X86::AX,
7190                                               X86::GR16RegisterClass);
7191  case X86::ATOMNAND16:
7192    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
7193                                               X86::AND16ri, X86::MOV16rm,
7194                                               X86::LCMPXCHG16, X86::MOV16rr,
7195                                               X86::NOT16r, X86::AX,
7196                                               X86::GR16RegisterClass, true);
7197  case X86::ATOMMIN16:
7198    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
7199  case X86::ATOMMAX16:
7200    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
7201  case X86::ATOMUMIN16:
7202    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
7203  case X86::ATOMUMAX16:
7204    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
7205
7206  case X86::ATOMAND8:
7207    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
7208                                               X86::AND8ri, X86::MOV8rm,
7209                                               X86::LCMPXCHG8, X86::MOV8rr,
7210                                               X86::NOT8r, X86::AL,
7211                                               X86::GR8RegisterClass);
7212  case X86::ATOMOR8:
7213    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
7214                                               X86::OR8ri, X86::MOV8rm,
7215                                               X86::LCMPXCHG8, X86::MOV8rr,
7216                                               X86::NOT8r, X86::AL,
7217                                               X86::GR8RegisterClass);
7218  case X86::ATOMXOR8:
7219    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
7220                                               X86::XOR8ri, X86::MOV8rm,
7221                                               X86::LCMPXCHG8, X86::MOV8rr,
7222                                               X86::NOT8r, X86::AL,
7223                                               X86::GR8RegisterClass);
7224  case X86::ATOMNAND8:
7225    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
7226                                               X86::AND8ri, X86::MOV8rm,
7227                                               X86::LCMPXCHG8, X86::MOV8rr,
7228                                               X86::NOT8r, X86::AL,
7229                                               X86::GR8RegisterClass, true);
7230  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
7231  // This group is for 64-bit host.
7232  case X86::ATOMAND64:
7233    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
7234                                               X86::AND64ri32, X86::MOV64rm,
7235                                               X86::LCMPXCHG64, X86::MOV64rr,
7236                                               X86::NOT64r, X86::RAX,
7237                                               X86::GR64RegisterClass);
7238  case X86::ATOMOR64:
7239    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
7240                                               X86::OR64ri32, X86::MOV64rm,
7241                                               X86::LCMPXCHG64, X86::MOV64rr,
7242                                               X86::NOT64r, X86::RAX,
7243                                               X86::GR64RegisterClass);
7244  case X86::ATOMXOR64:
7245    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
7246                                               X86::XOR64ri32, X86::MOV64rm,
7247                                               X86::LCMPXCHG64, X86::MOV64rr,
7248                                               X86::NOT64r, X86::RAX,
7249                                               X86::GR64RegisterClass);
7250  case X86::ATOMNAND64:
7251    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
7252                                               X86::AND64ri32, X86::MOV64rm,
7253                                               X86::LCMPXCHG64, X86::MOV64rr,
7254                                               X86::NOT64r, X86::RAX,
7255                                               X86::GR64RegisterClass, true);
7256  case X86::ATOMMIN64:
7257    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
7258  case X86::ATOMMAX64:
7259    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
7260  case X86::ATOMUMIN64:
7261    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
7262  case X86::ATOMUMAX64:
7263    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
7264
7265  // This group does 64-bit operations on a 32-bit host.
7266  case X86::ATOMAND6432:
7267    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7268                                               X86::AND32rr, X86::AND32rr,
7269                                               X86::AND32ri, X86::AND32ri,
7270                                               false);
7271  case X86::ATOMOR6432:
7272    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7273                                               X86::OR32rr, X86::OR32rr,
7274                                               X86::OR32ri, X86::OR32ri,
7275                                               false);
7276  case X86::ATOMXOR6432:
7277    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7278                                               X86::XOR32rr, X86::XOR32rr,
7279                                               X86::XOR32ri, X86::XOR32ri,
7280                                               false);
7281  case X86::ATOMNAND6432:
7282    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7283                                               X86::AND32rr, X86::AND32rr,
7284                                               X86::AND32ri, X86::AND32ri,
7285                                               true);
7286  case X86::ATOMADD6432:
7287    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7288                                               X86::ADD32rr, X86::ADC32rr,
7289                                               X86::ADD32ri, X86::ADC32ri,
7290                                               false);
7291  case X86::ATOMSUB6432:
7292    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7293                                               X86::SUB32rr, X86::SBB32rr,
7294                                               X86::SUB32ri, X86::SBB32ri,
7295                                               false);
7296  case X86::ATOMSWAP6432:
7297    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7298                                               X86::MOV32rr, X86::MOV32rr,
7299                                               X86::MOV32ri, X86::MOV32ri,
7300                                               false);
7301  }
7302}
7303
7304//===----------------------------------------------------------------------===//
7305//                           X86 Optimization Hooks
7306//===----------------------------------------------------------------------===//
7307
7308void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
7309                                                       const APInt &Mask,
7310                                                       APInt &KnownZero,
7311                                                       APInt &KnownOne,
7312                                                       const SelectionDAG &DAG,
7313                                                       unsigned Depth) const {
7314  unsigned Opc = Op.getOpcode();
7315  assert((Opc >= ISD::BUILTIN_OP_END ||
7316          Opc == ISD::INTRINSIC_WO_CHAIN ||
7317          Opc == ISD::INTRINSIC_W_CHAIN ||
7318          Opc == ISD::INTRINSIC_VOID) &&
7319         "Should use MaskedValueIsZero if you don't know whether Op"
7320         " is a target node!");
7321
7322  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
7323  switch (Opc) {
7324  default: break;
7325  case X86ISD::SETCC:
7326    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
7327                                       Mask.getBitWidth() - 1);
7328    break;
7329  }
7330}
7331
7332/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
7333/// node is a GlobalAddress + offset.
7334bool X86TargetLowering::isGAPlusOffset(SDNode *N,
7335                                       GlobalValue* &GA, int64_t &Offset) const{
7336  if (N->getOpcode() == X86ISD::Wrapper) {
7337    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
7338      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
7339      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
7340      return true;
7341    }
7342  }
7343  return TargetLowering::isGAPlusOffset(N, GA, Offset);
7344}
7345
7346static bool isBaseAlignmentOfN(unsigned N, SDNode *Base,
7347                               const TargetLowering &TLI) {
7348  GlobalValue *GV;
7349  int64_t Offset = 0;
7350  if (TLI.isGAPlusOffset(Base, GV, Offset))
7351    return (GV->getAlignment() >= N && (Offset % N) == 0);
7352  // DAG combine handles the stack object case.
7353  return false;
7354}
7355
7356static bool EltsFromConsecutiveLoads(SDNode *N, SDValue PermMask,
7357                                     unsigned NumElems, MVT EVT,
7358                                     SDNode *&Base,
7359                                     SelectionDAG &DAG, MachineFrameInfo *MFI,
7360                                     const TargetLowering &TLI) {
7361  Base = NULL;
7362  for (unsigned i = 0; i < NumElems; ++i) {
7363    SDValue Idx = PermMask.getOperand(i);
7364    if (Idx.getOpcode() == ISD::UNDEF) {
7365      if (!Base)
7366        return false;
7367      continue;
7368    }
7369
7370    SDValue Elt = DAG.getShuffleScalarElt(N, i);
7371    if (!Elt.getNode() ||
7372        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
7373      return false;
7374    if (!Base) {
7375      Base = Elt.getNode();
7376      if (Base->getOpcode() == ISD::UNDEF)
7377        return false;
7378      continue;
7379    }
7380    if (Elt.getOpcode() == ISD::UNDEF)
7381      continue;
7382
7383    if (!TLI.isConsecutiveLoad(Elt.getNode(), Base,
7384                               EVT.getSizeInBits()/8, i, MFI))
7385      return false;
7386  }
7387  return true;
7388}
7389
7390/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
7391/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
7392/// if the load addresses are consecutive, non-overlapping, and in the right
7393/// order.
7394static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
7395                                       const TargetLowering &TLI) {
7396  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7397  MVT VT = N->getValueType(0);
7398  MVT EVT = VT.getVectorElementType();
7399  SDValue PermMask = N->getOperand(2);
7400  unsigned NumElems = PermMask.getNumOperands();
7401  SDNode *Base = NULL;
7402  if (!EltsFromConsecutiveLoads(N, PermMask, NumElems, EVT, Base,
7403                                DAG, MFI, TLI))
7404    return SDValue();
7405
7406  LoadSDNode *LD = cast<LoadSDNode>(Base);
7407  if (isBaseAlignmentOfN(16, Base->getOperand(1).getNode(), TLI))
7408    return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
7409                       LD->getSrcValueOffset(), LD->isVolatile());
7410  return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
7411                     LD->getSrcValueOffset(), LD->isVolatile(),
7412                     LD->getAlignment());
7413}
7414
7415/// PerformBuildVectorCombine - build_vector 0,(load i64 / f64) -> movq / movsd.
7416static SDValue PerformBuildVectorCombine(SDNode *N, SelectionDAG &DAG,
7417                                         const X86Subtarget *Subtarget,
7418                                         const TargetLowering &TLI) {
7419  unsigned NumOps = N->getNumOperands();
7420
7421  // Ignore single operand BUILD_VECTOR.
7422  if (NumOps == 1)
7423    return SDValue();
7424
7425  MVT VT = N->getValueType(0);
7426  MVT EVT = VT.getVectorElementType();
7427  if ((EVT != MVT::i64 && EVT != MVT::f64) || Subtarget->is64Bit())
7428    // We are looking for load i64 and zero extend. We want to transform
7429    // it before legalizer has a chance to expand it. Also look for i64
7430    // BUILD_PAIR bit casted to f64.
7431    return SDValue();
7432  // This must be an insertion into a zero vector.
7433  SDValue HighElt = N->getOperand(1);
7434  if (!isZeroNode(HighElt))
7435    return SDValue();
7436
7437  // Value must be a load.
7438  SDNode *Base = N->getOperand(0).getNode();
7439  if (!isa<LoadSDNode>(Base)) {
7440    if (Base->getOpcode() != ISD::BIT_CONVERT)
7441      return SDValue();
7442    Base = Base->getOperand(0).getNode();
7443    if (!isa<LoadSDNode>(Base))
7444      return SDValue();
7445  }
7446
7447  // Transform it into VZEXT_LOAD addr.
7448  LoadSDNode *LD = cast<LoadSDNode>(Base);
7449
7450  // Load must not be an extload.
7451  if (LD->getExtensionType() != ISD::NON_EXTLOAD)
7452    return SDValue();
7453
7454  SDVTList Tys = DAG.getVTList(VT, MVT::Other);
7455  SDValue Ops[] = { LD->getChain(), LD->getBasePtr() };
7456  SDValue ResNode = DAG.getNode(X86ISD::VZEXT_LOAD, Tys, Ops, 2);
7457  DAG.ReplaceAllUsesOfValueWith(SDValue(Base, 1), ResNode.getValue(1));
7458  return ResNode;
7459}
7460
7461/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
7462static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
7463                                      const X86Subtarget *Subtarget) {
7464  SDValue Cond = N->getOperand(0);
7465
7466  // If we have SSE[12] support, try to form min/max nodes.
7467  if (Subtarget->hasSSE2() &&
7468      (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
7469    if (Cond.getOpcode() == ISD::SETCC) {
7470      // Get the LHS/RHS of the select.
7471      SDValue LHS = N->getOperand(1);
7472      SDValue RHS = N->getOperand(2);
7473      ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
7474
7475      unsigned Opcode = 0;
7476      if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
7477        switch (CC) {
7478        default: break;
7479        case ISD::SETOLE: // (X <= Y) ? X : Y -> min
7480        case ISD::SETULE:
7481        case ISD::SETLE:
7482          if (!UnsafeFPMath) break;
7483          // FALL THROUGH.
7484        case ISD::SETOLT:  // (X olt/lt Y) ? X : Y -> min
7485        case ISD::SETLT:
7486          Opcode = X86ISD::FMIN;
7487          break;
7488
7489        case ISD::SETOGT: // (X > Y) ? X : Y -> max
7490        case ISD::SETUGT:
7491        case ISD::SETGT:
7492          if (!UnsafeFPMath) break;
7493          // FALL THROUGH.
7494        case ISD::SETUGE:  // (X uge/ge Y) ? X : Y -> max
7495        case ISD::SETGE:
7496          Opcode = X86ISD::FMAX;
7497          break;
7498        }
7499      } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
7500        switch (CC) {
7501        default: break;
7502        case ISD::SETOGT: // (X > Y) ? Y : X -> min
7503        case ISD::SETUGT:
7504        case ISD::SETGT:
7505          if (!UnsafeFPMath) break;
7506          // FALL THROUGH.
7507        case ISD::SETUGE:  // (X uge/ge Y) ? Y : X -> min
7508        case ISD::SETGE:
7509          Opcode = X86ISD::FMIN;
7510          break;
7511
7512        case ISD::SETOLE:   // (X <= Y) ? Y : X -> max
7513        case ISD::SETULE:
7514        case ISD::SETLE:
7515          if (!UnsafeFPMath) break;
7516          // FALL THROUGH.
7517        case ISD::SETOLT:   // (X olt/lt Y) ? Y : X -> max
7518        case ISD::SETLT:
7519          Opcode = X86ISD::FMAX;
7520          break;
7521        }
7522      }
7523
7524      if (Opcode)
7525        return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS);
7526    }
7527
7528  }
7529
7530  return SDValue();
7531}
7532
7533/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
7534static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
7535                                     const X86Subtarget *Subtarget) {
7536  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
7537  // the FP state in cases where an emms may be missing.
7538  // A preferable solution to the general problem is to figure out the right
7539  // places to insert EMMS.  This qualifies as a quick hack.
7540  StoreSDNode *St = cast<StoreSDNode>(N);
7541  if (St->getValue().getValueType().isVector() &&
7542      St->getValue().getValueType().getSizeInBits() == 64 &&
7543      isa<LoadSDNode>(St->getValue()) &&
7544      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
7545      St->getChain().hasOneUse() && !St->isVolatile()) {
7546    SDNode* LdVal = St->getValue().getNode();
7547    LoadSDNode *Ld = 0;
7548    int TokenFactorIndex = -1;
7549    SmallVector<SDValue, 8> Ops;
7550    SDNode* ChainVal = St->getChain().getNode();
7551    // Must be a store of a load.  We currently handle two cases:  the load
7552    // is a direct child, and it's under an intervening TokenFactor.  It is
7553    // possible to dig deeper under nested TokenFactors.
7554    if (ChainVal == LdVal)
7555      Ld = cast<LoadSDNode>(St->getChain());
7556    else if (St->getValue().hasOneUse() &&
7557             ChainVal->getOpcode() == ISD::TokenFactor) {
7558      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
7559        if (ChainVal->getOperand(i).getNode() == LdVal) {
7560          TokenFactorIndex = i;
7561          Ld = cast<LoadSDNode>(St->getValue());
7562        } else
7563          Ops.push_back(ChainVal->getOperand(i));
7564      }
7565    }
7566    if (Ld) {
7567      // If we are a 64-bit capable x86, lower to a single movq load/store pair.
7568      if (Subtarget->is64Bit()) {
7569        SDValue NewLd = DAG.getLoad(MVT::i64, Ld->getChain(),
7570                                      Ld->getBasePtr(), Ld->getSrcValue(),
7571                                      Ld->getSrcValueOffset(), Ld->isVolatile(),
7572                                      Ld->getAlignment());
7573        SDValue NewChain = NewLd.getValue(1);
7574        if (TokenFactorIndex != -1) {
7575          Ops.push_back(NewChain);
7576          NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0],
7577                                 Ops.size());
7578        }
7579        return DAG.getStore(NewChain, NewLd, St->getBasePtr(),
7580                            St->getSrcValue(), St->getSrcValueOffset(),
7581                            St->isVolatile(), St->getAlignment());
7582      }
7583
7584      // Otherwise, lower to two 32-bit copies.
7585      SDValue LoAddr = Ld->getBasePtr();
7586      SDValue HiAddr = DAG.getNode(ISD::ADD, MVT::i32, LoAddr,
7587                                     DAG.getConstant(4, MVT::i32));
7588
7589      SDValue LoLd = DAG.getLoad(MVT::i32, Ld->getChain(), LoAddr,
7590                                   Ld->getSrcValue(), Ld->getSrcValueOffset(),
7591                                   Ld->isVolatile(), Ld->getAlignment());
7592      SDValue HiLd = DAG.getLoad(MVT::i32, Ld->getChain(), HiAddr,
7593                                   Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
7594                                   Ld->isVolatile(),
7595                                   MinAlign(Ld->getAlignment(), 4));
7596
7597      SDValue NewChain = LoLd.getValue(1);
7598      if (TokenFactorIndex != -1) {
7599        Ops.push_back(LoLd);
7600        Ops.push_back(HiLd);
7601        NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0],
7602                               Ops.size());
7603      }
7604
7605      LoAddr = St->getBasePtr();
7606      HiAddr = DAG.getNode(ISD::ADD, MVT::i32, LoAddr,
7607                           DAG.getConstant(4, MVT::i32));
7608
7609      SDValue LoSt = DAG.getStore(NewChain, LoLd, LoAddr,
7610                          St->getSrcValue(), St->getSrcValueOffset(),
7611                          St->isVolatile(), St->getAlignment());
7612      SDValue HiSt = DAG.getStore(NewChain, HiLd, HiAddr,
7613                                    St->getSrcValue(),
7614                                    St->getSrcValueOffset() + 4,
7615                                    St->isVolatile(),
7616                                    MinAlign(St->getAlignment(), 4));
7617      return DAG.getNode(ISD::TokenFactor, MVT::Other, LoSt, HiSt);
7618    }
7619  }
7620  return SDValue();
7621}
7622
7623/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
7624/// X86ISD::FXOR nodes.
7625static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
7626  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
7627  // F[X]OR(0.0, x) -> x
7628  // F[X]OR(x, 0.0) -> x
7629  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
7630    if (C->getValueAPF().isPosZero())
7631      return N->getOperand(1);
7632  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
7633    if (C->getValueAPF().isPosZero())
7634      return N->getOperand(0);
7635  return SDValue();
7636}
7637
7638/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
7639static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
7640  // FAND(0.0, x) -> 0.0
7641  // FAND(x, 0.0) -> 0.0
7642  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
7643    if (C->getValueAPF().isPosZero())
7644      return N->getOperand(0);
7645  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
7646    if (C->getValueAPF().isPosZero())
7647      return N->getOperand(1);
7648  return SDValue();
7649}
7650
7651
7652SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
7653                                             DAGCombinerInfo &DCI) const {
7654  SelectionDAG &DAG = DCI.DAG;
7655  switch (N->getOpcode()) {
7656  default: break;
7657  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
7658  case ISD::BUILD_VECTOR:
7659    return PerformBuildVectorCombine(N, DAG, Subtarget, *this);
7660  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
7661  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
7662  case X86ISD::FXOR:
7663  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
7664  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
7665  }
7666
7667  return SDValue();
7668}
7669
7670//===----------------------------------------------------------------------===//
7671//                           X86 Inline Assembly Support
7672//===----------------------------------------------------------------------===//
7673
7674/// getConstraintType - Given a constraint letter, return the type of
7675/// constraint it is for this target.
7676X86TargetLowering::ConstraintType
7677X86TargetLowering::getConstraintType(const std::string &Constraint) const {
7678  if (Constraint.size() == 1) {
7679    switch (Constraint[0]) {
7680    case 'A':
7681      return C_Register;
7682    case 'f':
7683    case 'r':
7684    case 'R':
7685    case 'l':
7686    case 'q':
7687    case 'Q':
7688    case 'x':
7689    case 'y':
7690    case 'Y':
7691      return C_RegisterClass;
7692    default:
7693      break;
7694    }
7695  }
7696  return TargetLowering::getConstraintType(Constraint);
7697}
7698
7699/// LowerXConstraint - try to replace an X constraint, which matches anything,
7700/// with another that has more specific requirements based on the type of the
7701/// corresponding operand.
7702const char *X86TargetLowering::
7703LowerXConstraint(MVT ConstraintVT) const {
7704  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
7705  // 'f' like normal targets.
7706  if (ConstraintVT.isFloatingPoint()) {
7707    if (Subtarget->hasSSE2())
7708      return "Y";
7709    if (Subtarget->hasSSE1())
7710      return "x";
7711  }
7712
7713  return TargetLowering::LowerXConstraint(ConstraintVT);
7714}
7715
7716/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
7717/// vector.  If it is invalid, don't add anything to Ops.
7718void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
7719                                                     char Constraint,
7720                                                     bool hasMemory,
7721                                                     std::vector<SDValue>&Ops,
7722                                                     SelectionDAG &DAG) const {
7723  SDValue Result(0, 0);
7724
7725  switch (Constraint) {
7726  default: break;
7727  case 'I':
7728    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
7729      if (C->getZExtValue() <= 31) {
7730        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
7731        break;
7732      }
7733    }
7734    return;
7735  case 'J':
7736    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
7737      if (C->getZExtValue() <= 63) {
7738        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
7739        break;
7740      }
7741    }
7742    return;
7743  case 'N':
7744    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
7745      if (C->getZExtValue() <= 255) {
7746        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
7747        break;
7748      }
7749    }
7750    return;
7751  case 'i': {
7752    // Literal immediates are always ok.
7753    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
7754      Result = DAG.getTargetConstant(CST->getZExtValue(), Op.getValueType());
7755      break;
7756    }
7757
7758    // If we are in non-pic codegen mode, we allow the address of a global (with
7759    // an optional displacement) to be used with 'i'.
7760    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
7761    int64_t Offset = 0;
7762
7763    // Match either (GA) or (GA+C)
7764    if (GA) {
7765      Offset = GA->getOffset();
7766    } else if (Op.getOpcode() == ISD::ADD) {
7767      ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7768      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
7769      if (C && GA) {
7770        Offset = GA->getOffset()+C->getZExtValue();
7771      } else {
7772        C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7773        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
7774        if (C && GA)
7775          Offset = GA->getOffset()+C->getZExtValue();
7776        else
7777          C = 0, GA = 0;
7778      }
7779    }
7780
7781    if (GA) {
7782      if (hasMemory)
7783        Op = LowerGlobalAddress(GA->getGlobal(), Offset, DAG);
7784      else
7785        Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
7786                                        Offset);
7787      Result = Op;
7788      break;
7789    }
7790
7791    // Otherwise, not valid for this mode.
7792    return;
7793  }
7794  }
7795
7796  if (Result.getNode()) {
7797    Ops.push_back(Result);
7798    return;
7799  }
7800  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory,
7801                                                      Ops, DAG);
7802}
7803
7804std::vector<unsigned> X86TargetLowering::
7805getRegClassForInlineAsmConstraint(const std::string &Constraint,
7806                                  MVT VT) const {
7807  if (Constraint.size() == 1) {
7808    // FIXME: not handling fp-stack yet!
7809    switch (Constraint[0]) {      // GCC X86 Constraint Letters
7810    default: break;  // Unknown constraint letter
7811    case 'q':   // Q_REGS (GENERAL_REGS in 64-bit mode)
7812    case 'Q':   // Q_REGS
7813      if (VT == MVT::i32)
7814        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
7815      else if (VT == MVT::i16)
7816        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
7817      else if (VT == MVT::i8)
7818        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
7819      else if (VT == MVT::i64)
7820        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
7821      break;
7822    }
7823  }
7824
7825  return std::vector<unsigned>();
7826}
7827
7828std::pair<unsigned, const TargetRegisterClass*>
7829X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
7830                                                MVT VT) const {
7831  // First, see if this is a constraint that directly corresponds to an LLVM
7832  // register class.
7833  if (Constraint.size() == 1) {
7834    // GCC Constraint Letters
7835    switch (Constraint[0]) {
7836    default: break;
7837    case 'r':   // GENERAL_REGS
7838    case 'R':   // LEGACY_REGS
7839    case 'l':   // INDEX_REGS
7840      if (VT == MVT::i8)
7841        return std::make_pair(0U, X86::GR8RegisterClass);
7842      if (VT == MVT::i16)
7843        return std::make_pair(0U, X86::GR16RegisterClass);
7844      if (VT == MVT::i32 || !Subtarget->is64Bit())
7845        return std::make_pair(0U, X86::GR32RegisterClass);
7846      return std::make_pair(0U, X86::GR64RegisterClass);
7847    case 'f':  // FP Stack registers.
7848      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
7849      // value to the correct fpstack register class.
7850      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
7851        return std::make_pair(0U, X86::RFP32RegisterClass);
7852      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
7853        return std::make_pair(0U, X86::RFP64RegisterClass);
7854      return std::make_pair(0U, X86::RFP80RegisterClass);
7855    case 'y':   // MMX_REGS if MMX allowed.
7856      if (!Subtarget->hasMMX()) break;
7857      return std::make_pair(0U, X86::VR64RegisterClass);
7858    case 'Y':   // SSE_REGS if SSE2 allowed
7859      if (!Subtarget->hasSSE2()) break;
7860      // FALL THROUGH.
7861    case 'x':   // SSE_REGS if SSE1 allowed
7862      if (!Subtarget->hasSSE1()) break;
7863
7864      switch (VT.getSimpleVT()) {
7865      default: break;
7866      // Scalar SSE types.
7867      case MVT::f32:
7868      case MVT::i32:
7869        return std::make_pair(0U, X86::FR32RegisterClass);
7870      case MVT::f64:
7871      case MVT::i64:
7872        return std::make_pair(0U, X86::FR64RegisterClass);
7873      // Vector types.
7874      case MVT::v16i8:
7875      case MVT::v8i16:
7876      case MVT::v4i32:
7877      case MVT::v2i64:
7878      case MVT::v4f32:
7879      case MVT::v2f64:
7880        return std::make_pair(0U, X86::VR128RegisterClass);
7881      }
7882      break;
7883    }
7884  }
7885
7886  // Use the default implementation in TargetLowering to convert the register
7887  // constraint into a member of a register class.
7888  std::pair<unsigned, const TargetRegisterClass*> Res;
7889  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
7890
7891  // Not found as a standard register?
7892  if (Res.second == 0) {
7893    // GCC calls "st(0)" just plain "st".
7894    if (StringsEqualNoCase("{st}", Constraint)) {
7895      Res.first = X86::ST0;
7896      Res.second = X86::RFP80RegisterClass;
7897    }
7898    // 'A' means EAX + EDX.
7899    if (Constraint == "A") {
7900      Res.first = X86::EAX;
7901      Res.second = X86::GRADRegisterClass;
7902    }
7903    return Res;
7904  }
7905
7906  // Otherwise, check to see if this is a register class of the wrong value
7907  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
7908  // turn into {ax},{dx}.
7909  if (Res.second->hasType(VT))
7910    return Res;   // Correct type already, nothing to do.
7911
7912  // All of the single-register GCC register classes map their values onto
7913  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
7914  // really want an 8-bit or 32-bit register, map to the appropriate register
7915  // class and return the appropriate register.
7916  if (Res.second == X86::GR16RegisterClass) {
7917    if (VT == MVT::i8) {
7918      unsigned DestReg = 0;
7919      switch (Res.first) {
7920      default: break;
7921      case X86::AX: DestReg = X86::AL; break;
7922      case X86::DX: DestReg = X86::DL; break;
7923      case X86::CX: DestReg = X86::CL; break;
7924      case X86::BX: DestReg = X86::BL; break;
7925      }
7926      if (DestReg) {
7927        Res.first = DestReg;
7928        Res.second = Res.second = X86::GR8RegisterClass;
7929      }
7930    } else if (VT == MVT::i32) {
7931      unsigned DestReg = 0;
7932      switch (Res.first) {
7933      default: break;
7934      case X86::AX: DestReg = X86::EAX; break;
7935      case X86::DX: DestReg = X86::EDX; break;
7936      case X86::CX: DestReg = X86::ECX; break;
7937      case X86::BX: DestReg = X86::EBX; break;
7938      case X86::SI: DestReg = X86::ESI; break;
7939      case X86::DI: DestReg = X86::EDI; break;
7940      case X86::BP: DestReg = X86::EBP; break;
7941      case X86::SP: DestReg = X86::ESP; break;
7942      }
7943      if (DestReg) {
7944        Res.first = DestReg;
7945        Res.second = Res.second = X86::GR32RegisterClass;
7946      }
7947    } else if (VT == MVT::i64) {
7948      unsigned DestReg = 0;
7949      switch (Res.first) {
7950      default: break;
7951      case X86::AX: DestReg = X86::RAX; break;
7952      case X86::DX: DestReg = X86::RDX; break;
7953      case X86::CX: DestReg = X86::RCX; break;
7954      case X86::BX: DestReg = X86::RBX; break;
7955      case X86::SI: DestReg = X86::RSI; break;
7956      case X86::DI: DestReg = X86::RDI; break;
7957      case X86::BP: DestReg = X86::RBP; break;
7958      case X86::SP: DestReg = X86::RSP; break;
7959      }
7960      if (DestReg) {
7961        Res.first = DestReg;
7962        Res.second = Res.second = X86::GR64RegisterClass;
7963      }
7964    }
7965  } else if (Res.second == X86::FR32RegisterClass ||
7966             Res.second == X86::FR64RegisterClass ||
7967             Res.second == X86::VR128RegisterClass) {
7968    // Handle references to XMM physical registers that got mapped into the
7969    // wrong class.  This can happen with constraints like {xmm0} where the
7970    // target independent register mapper will just pick the first match it can
7971    // find, ignoring the required type.
7972    if (VT == MVT::f32)
7973      Res.second = X86::FR32RegisterClass;
7974    else if (VT == MVT::f64)
7975      Res.second = X86::FR64RegisterClass;
7976    else if (X86::VR128RegisterClass->hasType(VT))
7977      Res.second = X86::VR128RegisterClass;
7978  }
7979
7980  return Res;
7981}
7982
7983//===----------------------------------------------------------------------===//
7984//                           X86 Widen vector type
7985//===----------------------------------------------------------------------===//
7986
7987/// getWidenVectorType: given a vector type, returns the type to widen
7988/// to (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
7989/// If there is no vector type that we want to widen to, returns MVT::Other
7990/// When and where to widen is target dependent based on the cost of
7991/// scalarizing vs using the wider vector type.
7992
7993MVT X86TargetLowering::getWidenVectorType(MVT VT) {
7994  assert(VT.isVector());
7995  if (isTypeLegal(VT))
7996    return VT;
7997
7998  // TODO: In computeRegisterProperty, we can compute the list of legal vector
7999  //       type based on element type.  This would speed up our search (though
8000  //       it may not be worth it since the size of the list is relatively
8001  //       small).
8002  MVT EltVT = VT.getVectorElementType();
8003  unsigned NElts = VT.getVectorNumElements();
8004
8005  // On X86, it make sense to widen any vector wider than 1
8006  if (NElts <= 1)
8007    return MVT::Other;
8008
8009  for (unsigned nVT = MVT::FIRST_VECTOR_VALUETYPE;
8010       nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
8011    MVT SVT = (MVT::SimpleValueType)nVT;
8012
8013    if (isTypeLegal(SVT) &&
8014        SVT.getVectorElementType() == EltVT &&
8015        SVT.getVectorNumElements() > NElts)
8016      return SVT;
8017  }
8018  return MVT::Other;
8019}
8020