X86ISelLowering.cpp revision 1e1ca0b56da1acaa6f6515d14df4ba6e6c0a9a9e
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86ShuffleDecode.h"
20#include "X86TargetMachine.h"
21#include "X86TargetObjectFile.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineFunction.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/MachineJumpTableInfo.h"
35#include "llvm/CodeGen/MachineModuleInfo.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/PseudoSourceValue.h"
38#include "llvm/MC/MCAsmInfo.h"
39#include "llvm/MC/MCContext.h"
40#include "llvm/MC/MCExpr.h"
41#include "llvm/MC/MCSymbol.h"
42#include "llvm/ADT/BitVector.h"
43#include "llvm/ADT/SmallSet.h"
44#include "llvm/ADT/Statistic.h"
45#include "llvm/ADT/StringExtras.h"
46#include "llvm/ADT/VectorExtras.h"
47#include "llvm/Support/CommandLine.h"
48#include "llvm/Support/Debug.h"
49#include "llvm/Support/Dwarf.h"
50#include "llvm/Support/ErrorHandling.h"
51#include "llvm/Support/MathExtras.h"
52#include "llvm/Support/raw_ostream.h"
53using namespace llvm;
54using namespace dwarf;
55
56STATISTIC(NumTailCalls, "Number of tail calls");
57
58static cl::opt<bool>
59DisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX"));
60
61// Forward declarations.
62static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
63                       SDValue V2);
64
65static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
66
67  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
68
69  if (TM.getSubtarget<X86Subtarget>().isTargetDarwin()) {
70    if (is64Bit) return new X8664_MachoTargetObjectFile();
71    return new TargetLoweringObjectFileMachO();
72  } else if (TM.getSubtarget<X86Subtarget>().isTargetELF() ){
73    if (is64Bit) return new X8664_ELFTargetObjectFile(TM);
74    return new X8632_ELFTargetObjectFile(TM);
75  } else if (TM.getSubtarget<X86Subtarget>().isTargetCOFF()) {
76    return new TargetLoweringObjectFileCOFF();
77  }
78  llvm_unreachable("unknown subtarget type");
79}
80
81X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
82  : TargetLowering(TM, createTLOF(TM)) {
83  Subtarget = &TM.getSubtarget<X86Subtarget>();
84  X86ScalarSSEf64 = Subtarget->hasSSE2();
85  X86ScalarSSEf32 = Subtarget->hasSSE1();
86  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
87
88  RegInfo = TM.getRegisterInfo();
89  TD = getTargetData();
90
91  // Set up the TargetLowering object.
92
93  // X86 is weird, it always uses i8 for shift amounts and setcc results.
94  setShiftAmountType(MVT::i8);
95  setBooleanContents(ZeroOrOneBooleanContent);
96  setSchedulingPreference(Sched::RegPressure);
97  setStackPointerRegisterToSaveRestore(X86StackPtr);
98
99  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
100    // Setup Windows compiler runtime calls.
101    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
102    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
103    setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2");
104    setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2");
105    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
106    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
107    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::X86_StdCall);
108    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::X86_StdCall);
109  }
110
111  if (Subtarget->isTargetDarwin()) {
112    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
113    setUseUnderscoreSetJmp(false);
114    setUseUnderscoreLongJmp(false);
115  } else if (Subtarget->isTargetMingw()) {
116    // MS runtime is weird: it exports _setjmp, but longjmp!
117    setUseUnderscoreSetJmp(true);
118    setUseUnderscoreLongJmp(false);
119  } else {
120    setUseUnderscoreSetJmp(true);
121    setUseUnderscoreLongJmp(true);
122  }
123
124  // Set up the register classes.
125  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
126  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
127  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
128  if (Subtarget->is64Bit())
129    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
130
131  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
132
133  // We don't accept any truncstore of integer registers.
134  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
135  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
136  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
137  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
138  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
139  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
140
141  // SETOEQ and SETUNE require checking two conditions.
142  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
143  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
144  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
145  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
146  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
147  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
148
149  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
150  // operation.
151  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
152  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
153  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
154
155  if (Subtarget->is64Bit()) {
156    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
157    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
158  } else if (!UseSoftFloat) {
159    // We have an algorithm for SSE2->double, and we turn this into a
160    // 64-bit FILD followed by conditional FADD for other targets.
161    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
162    // We have an algorithm for SSE2, and we turn this into a 64-bit
163    // FILD for other targets.
164    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
165  }
166
167  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
168  // this operation.
169  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
170  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
171
172  if (!UseSoftFloat) {
173    // SSE has no i16 to fp conversion, only i32
174    if (X86ScalarSSEf32) {
175      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
176      // f32 and f64 cases are Legal, f80 case is not
177      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
178    } else {
179      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
180      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
181    }
182  } else {
183    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
184    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
185  }
186
187  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
188  // are Legal, f80 is custom lowered.
189  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
190  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
191
192  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
193  // this operation.
194  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
195  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
196
197  if (X86ScalarSSEf32) {
198    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
199    // f32 and f64 cases are Legal, f80 case is not
200    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
201  } else {
202    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
203    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
204  }
205
206  // Handle FP_TO_UINT by promoting the destination to a larger signed
207  // conversion.
208  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
209  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
210  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
211
212  if (Subtarget->is64Bit()) {
213    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
214    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
215  } else if (!UseSoftFloat) {
216    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
217      // Expand FP_TO_UINT into a select.
218      // FIXME: We would like to use a Custom expander here eventually to do
219      // the optimal thing for SSE vs. the default expansion in the legalizer.
220      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
221    else
222      // With SSE3 we can use fisttpll to convert to a signed i64; without
223      // SSE, we're stuck with a fistpll.
224      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
225  }
226
227  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
228  if (!X86ScalarSSEf64) {
229    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
230    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
231    if (Subtarget->is64Bit()) {
232      setOperationAction(ISD::BIT_CONVERT    , MVT::f64  , Expand);
233      // Without SSE, i64->f64 goes through memory.
234      setOperationAction(ISD::BIT_CONVERT    , MVT::i64  , Expand);
235    }
236  }
237
238  // Scalar integer divide and remainder are lowered to use operations that
239  // produce two results, to match the available instructions. This exposes
240  // the two-result form to trivial CSE, which is able to combine x/y and x%y
241  // into a single instruction.
242  //
243  // Scalar integer multiply-high is also lowered to use two-result
244  // operations, to match the available instructions. However, plain multiply
245  // (low) operations are left as Legal, as there are single-result
246  // instructions for this in x86. Using the two-result multiply instructions
247  // when both high and low results are needed must be arranged by dagcombine.
248  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
249  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
250  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
251  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
252  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
253  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
254  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
255  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
256  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
257  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
258  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
259  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
260  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
261  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
262  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
263  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
264  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
265  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
266  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
267  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
268  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
269  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
270  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
271  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
272
273  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
274  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
275  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
276  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
277  if (Subtarget->is64Bit())
278    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
279  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
280  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
281  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
282  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
283  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
284  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
285  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
286  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
287
288  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
289  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
290  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
291  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
292  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
293  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
294  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
295  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
296  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
297  if (Subtarget->is64Bit()) {
298    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
299    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
300    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
301  }
302
303  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
304  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
305
306  // These should be promoted to a larger select which is supported.
307  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
308  // X86 wants to expand cmov itself.
309  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
310  setOperationAction(ISD::SELECT        , MVT::i16  , Custom);
311  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
312  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
313  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
314  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
315  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
316  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
317  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
318  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
319  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
320  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
321  if (Subtarget->is64Bit()) {
322    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
323    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
324  }
325  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
326
327  // Darwin ABI issue.
328  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
329  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
330  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
331  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
332  if (Subtarget->is64Bit())
333    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
334  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
335  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
336  if (Subtarget->is64Bit()) {
337    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
338    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
339    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
340    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
341    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
342  }
343  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
344  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
345  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
346  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
347  if (Subtarget->is64Bit()) {
348    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
349    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
350    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
351  }
352
353  if (Subtarget->hasSSE1())
354    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
355
356  // We may not have a libcall for MEMBARRIER so we should lower this.
357  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
358
359  // On X86 and X86-64, atomic operations are lowered to locked instructions.
360  // Locked instructions, in turn, have implicit fence semantics (all memory
361  // operations are flushed before issuing the locked instruction, and they
362  // are not buffered), so we can fold away the common pattern of
363  // fence-atomic-fence.
364  setShouldFoldAtomicFences(true);
365
366  // Expand certain atomics
367  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom);
368  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom);
369  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
370  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
371
372  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom);
373  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom);
374  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
375  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
376
377  if (!Subtarget->is64Bit()) {
378    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
379    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
380    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
381    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
382    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
383    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
384    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
385  }
386
387  // FIXME - use subtarget debug flags
388  if (!Subtarget->isTargetDarwin() &&
389      !Subtarget->isTargetELF() &&
390      !Subtarget->isTargetCygMing()) {
391    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
392  }
393
394  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
395  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
396  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
397  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
398  if (Subtarget->is64Bit()) {
399    setExceptionPointerRegister(X86::RAX);
400    setExceptionSelectorRegister(X86::RDX);
401  } else {
402    setExceptionPointerRegister(X86::EAX);
403    setExceptionSelectorRegister(X86::EDX);
404  }
405  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
406  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
407
408  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
409
410  setOperationAction(ISD::TRAP, MVT::Other, Legal);
411
412  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
413  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
414  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
415  if (Subtarget->is64Bit()) {
416    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
417    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
418  } else {
419    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
420    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
421  }
422
423  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
424  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
425  if (Subtarget->is64Bit())
426    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
427  if (Subtarget->isTargetCygMing() || Subtarget->isTargetWindows())
428    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
429  else
430    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
431
432  if (!UseSoftFloat && X86ScalarSSEf64) {
433    // f32 and f64 use SSE.
434    // Set up the FP register classes.
435    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
436    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
437
438    // Use ANDPD to simulate FABS.
439    setOperationAction(ISD::FABS , MVT::f64, Custom);
440    setOperationAction(ISD::FABS , MVT::f32, Custom);
441
442    // Use XORP to simulate FNEG.
443    setOperationAction(ISD::FNEG , MVT::f64, Custom);
444    setOperationAction(ISD::FNEG , MVT::f32, Custom);
445
446    // Use ANDPD and ORPD to simulate FCOPYSIGN.
447    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
448    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
449
450    // We don't support sin/cos/fmod
451    setOperationAction(ISD::FSIN , MVT::f64, Expand);
452    setOperationAction(ISD::FCOS , MVT::f64, Expand);
453    setOperationAction(ISD::FSIN , MVT::f32, Expand);
454    setOperationAction(ISD::FCOS , MVT::f32, Expand);
455
456    // Expand FP immediates into loads from the stack, except for the special
457    // cases we handle.
458    addLegalFPImmediate(APFloat(+0.0)); // xorpd
459    addLegalFPImmediate(APFloat(+0.0f)); // xorps
460  } else if (!UseSoftFloat && X86ScalarSSEf32) {
461    // Use SSE for f32, x87 for f64.
462    // Set up the FP register classes.
463    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
464    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
465
466    // Use ANDPS to simulate FABS.
467    setOperationAction(ISD::FABS , MVT::f32, Custom);
468
469    // Use XORP to simulate FNEG.
470    setOperationAction(ISD::FNEG , MVT::f32, Custom);
471
472    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
473
474    // Use ANDPS and ORPS to simulate FCOPYSIGN.
475    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
476    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
477
478    // We don't support sin/cos/fmod
479    setOperationAction(ISD::FSIN , MVT::f32, Expand);
480    setOperationAction(ISD::FCOS , MVT::f32, Expand);
481
482    // Special cases we handle for FP constants.
483    addLegalFPImmediate(APFloat(+0.0f)); // xorps
484    addLegalFPImmediate(APFloat(+0.0)); // FLD0
485    addLegalFPImmediate(APFloat(+1.0)); // FLD1
486    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
487    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
488
489    if (!UnsafeFPMath) {
490      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
491      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
492    }
493  } else if (!UseSoftFloat) {
494    // f32 and f64 in x87.
495    // Set up the FP register classes.
496    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
497    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
498
499    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
500    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
501    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
502    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
503
504    if (!UnsafeFPMath) {
505      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
506      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
507    }
508    addLegalFPImmediate(APFloat(+0.0)); // FLD0
509    addLegalFPImmediate(APFloat(+1.0)); // FLD1
510    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
511    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
512    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
513    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
514    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
515    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
516  }
517
518  // Long double always uses X87.
519  if (!UseSoftFloat) {
520    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
521    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
522    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
523    {
524      bool ignored;
525      APFloat TmpFlt(+0.0);
526      TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
527                     &ignored);
528      addLegalFPImmediate(TmpFlt);  // FLD0
529      TmpFlt.changeSign();
530      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
531      APFloat TmpFlt2(+1.0);
532      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
533                      &ignored);
534      addLegalFPImmediate(TmpFlt2);  // FLD1
535      TmpFlt2.changeSign();
536      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
537    }
538
539    if (!UnsafeFPMath) {
540      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
541      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
542    }
543  }
544
545  // Always use a library call for pow.
546  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
547  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
548  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
549
550  setOperationAction(ISD::FLOG, MVT::f80, Expand);
551  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
552  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
553  setOperationAction(ISD::FEXP, MVT::f80, Expand);
554  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
555
556  // First set operation action for all vector types to either promote
557  // (for widening) or expand (for scalarization). Then we will selectively
558  // turn on ones that can be effectively codegen'd.
559  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
560       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
561    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
562    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
563    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
564    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
565    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
566    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
567    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
568    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
569    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
570    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
571    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
572    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
573    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
574    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
575    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
576    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
577    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
578    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
579    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
580    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
581    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
582    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
583    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
584    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
585    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
586    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
587    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
588    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
589    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
590    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
591    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
592    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
593    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
594    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
595    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
596    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
597    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
598    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
599    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
600    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
601    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
602    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
603    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
604    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
605    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
606    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
607    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
608    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
609    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
610    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
611    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
612    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
613    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
614    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
615         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
616      setTruncStoreAction((MVT::SimpleValueType)VT,
617                          (MVT::SimpleValueType)InnerVT, Expand);
618    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
619    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
620    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
621  }
622
623  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
624  // with -msoft-float, disable use of MMX as well.
625  if (!UseSoftFloat && !DisableMMX && Subtarget->hasMMX()) {
626    addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
627    // No operations on x86mmx supported, everything uses intrinsics.
628  }
629
630  // MMX-sized vectors (other than x86mmx) are expected to be expanded
631  // into smaller operations.
632  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
633  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
634  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
635  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
636  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
637  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
638  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
639  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
640  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
641  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
642  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
643  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
644  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
645  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
646  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
647  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
648  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
649  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
650  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
651  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
652  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
653  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
654  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
655  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
656  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
657  setOperationAction(ISD::BIT_CONVERT,        MVT::v8i8,  Expand);
658  setOperationAction(ISD::BIT_CONVERT,        MVT::v4i16, Expand);
659  setOperationAction(ISD::BIT_CONVERT,        MVT::v2i32, Expand);
660  setOperationAction(ISD::BIT_CONVERT,        MVT::v1i64, Expand);
661
662  if (!UseSoftFloat && Subtarget->hasSSE1()) {
663    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
664
665    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
666    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
667    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
668    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
669    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
670    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
671    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
672    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
673    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
674    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
675    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
676    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
677  }
678
679  if (!UseSoftFloat && Subtarget->hasSSE2()) {
680    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
681
682    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
683    // registers cannot be used even for integer operations.
684    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
685    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
686    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
687    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
688
689    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
690    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
691    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
692    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
693    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
694    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
695    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
696    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
697    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
698    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
699    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
700    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
701    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
702    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
703    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
704    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
705
706    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
707    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
708    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
709    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
710
711    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
712    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
713    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
714    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
715    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
716
717    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
718    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
719    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
720    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
721    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
722
723    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
724    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
725      EVT VT = (MVT::SimpleValueType)i;
726      // Do not attempt to custom lower non-power-of-2 vectors
727      if (!isPowerOf2_32(VT.getVectorNumElements()))
728        continue;
729      // Do not attempt to custom lower non-128-bit vectors
730      if (!VT.is128BitVector())
731        continue;
732      setOperationAction(ISD::BUILD_VECTOR,
733                         VT.getSimpleVT().SimpleTy, Custom);
734      setOperationAction(ISD::VECTOR_SHUFFLE,
735                         VT.getSimpleVT().SimpleTy, Custom);
736      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
737                         VT.getSimpleVT().SimpleTy, Custom);
738    }
739
740    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
741    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
742    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
743    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
744    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
745    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
746
747    if (Subtarget->is64Bit()) {
748      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
749      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
750    }
751
752    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
753    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
754      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
755      EVT VT = SVT;
756
757      // Do not attempt to promote non-128-bit vectors
758      if (!VT.is128BitVector())
759        continue;
760
761      setOperationAction(ISD::AND,    SVT, Promote);
762      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
763      setOperationAction(ISD::OR,     SVT, Promote);
764      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
765      setOperationAction(ISD::XOR,    SVT, Promote);
766      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
767      setOperationAction(ISD::LOAD,   SVT, Promote);
768      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
769      setOperationAction(ISD::SELECT, SVT, Promote);
770      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
771    }
772
773    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
774
775    // Custom lower v2i64 and v2f64 selects.
776    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
777    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
778    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
779    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
780
781    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
782    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
783  }
784
785  if (Subtarget->hasSSE41()) {
786    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
787    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
788    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
789    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
790    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
791    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
792    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
793    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
794    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
795    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
796
797    // FIXME: Do we need to handle scalar-to-vector here?
798    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
799
800    // Can turn SHL into an integer multiply.
801    setOperationAction(ISD::SHL,                MVT::v4i32, Custom);
802    setOperationAction(ISD::SHL,                MVT::v16i8, Custom);
803
804    // i8 and i16 vectors are custom , because the source register and source
805    // source memory operand types are not the same width.  f32 vectors are
806    // custom since the immediate controlling the insert encodes additional
807    // information.
808    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
809    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
810    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
811    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
812
813    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
814    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
815    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
816    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
817
818    if (Subtarget->is64Bit()) {
819      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
820      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
821    }
822  }
823
824  if (Subtarget->hasSSE42()) {
825    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
826  }
827
828  if (!UseSoftFloat && Subtarget->hasAVX()) {
829    addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
830    addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
831    addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
832    addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
833    addRegisterClass(MVT::v32i8, X86::VR256RegisterClass);
834
835    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
836    setOperationAction(ISD::LOAD,               MVT::v8i32, Legal);
837    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
838    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
839    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
840    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
841    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
842    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
843    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
844    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
845    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8f32, Custom);
846    //setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8f32, Custom);
847    //setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8f32, Custom);
848    //setOperationAction(ISD::SELECT,             MVT::v8f32, Custom);
849    //setOperationAction(ISD::VSETCC,             MVT::v8f32, Custom);
850
851    // Operations to consider commented out -v16i16 v32i8
852    //setOperationAction(ISD::ADD,                MVT::v16i16, Legal);
853    setOperationAction(ISD::ADD,                MVT::v8i32, Custom);
854    setOperationAction(ISD::ADD,                MVT::v4i64, Custom);
855    //setOperationAction(ISD::SUB,                MVT::v32i8, Legal);
856    //setOperationAction(ISD::SUB,                MVT::v16i16, Legal);
857    setOperationAction(ISD::SUB,                MVT::v8i32, Custom);
858    setOperationAction(ISD::SUB,                MVT::v4i64, Custom);
859    //setOperationAction(ISD::MUL,                MVT::v16i16, Legal);
860    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
861    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
862    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
863    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
864    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
865    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
866
867    setOperationAction(ISD::VSETCC,             MVT::v4f64, Custom);
868    // setOperationAction(ISD::VSETCC,             MVT::v32i8, Custom);
869    // setOperationAction(ISD::VSETCC,             MVT::v16i16, Custom);
870    setOperationAction(ISD::VSETCC,             MVT::v8i32, Custom);
871
872    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v32i8, Custom);
873    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i16, Custom);
874    // setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i16, Custom);
875    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i32, Custom);
876    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8f32, Custom);
877
878    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f64, Custom);
879    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i64, Custom);
880    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f64, Custom);
881    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i64, Custom);
882    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f64, Custom);
883    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f64, Custom);
884
885#if 0
886    // Not sure we want to do this since there are no 256-bit integer
887    // operations in AVX
888
889    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
890    // This includes 256-bit vectors
891    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; ++i) {
892      EVT VT = (MVT::SimpleValueType)i;
893
894      // Do not attempt to custom lower non-power-of-2 vectors
895      if (!isPowerOf2_32(VT.getVectorNumElements()))
896        continue;
897
898      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
899      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
900      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
901    }
902
903    if (Subtarget->is64Bit()) {
904      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i64, Custom);
905      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i64, Custom);
906    }
907#endif
908
909#if 0
910    // Not sure we want to do this since there are no 256-bit integer
911    // operations in AVX
912
913    // Promote v32i8, v16i16, v8i32 load, select, and, or, xor to v4i64.
914    // Including 256-bit vectors
915    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; i++) {
916      EVT VT = (MVT::SimpleValueType)i;
917
918      if (!VT.is256BitVector()) {
919        continue;
920      }
921      setOperationAction(ISD::AND,    VT, Promote);
922      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
923      setOperationAction(ISD::OR,     VT, Promote);
924      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
925      setOperationAction(ISD::XOR,    VT, Promote);
926      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
927      setOperationAction(ISD::LOAD,   VT, Promote);
928      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
929      setOperationAction(ISD::SELECT, VT, Promote);
930      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
931    }
932
933    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
934#endif
935  }
936
937  // We want to custom lower some of our intrinsics.
938  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
939
940  // Add/Sub/Mul with overflow operations are custom lowered.
941  setOperationAction(ISD::SADDO, MVT::i32, Custom);
942  setOperationAction(ISD::UADDO, MVT::i32, Custom);
943  setOperationAction(ISD::SSUBO, MVT::i32, Custom);
944  setOperationAction(ISD::USUBO, MVT::i32, Custom);
945  setOperationAction(ISD::SMULO, MVT::i32, Custom);
946
947  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
948  // handle type legalization for these operations here.
949  //
950  // FIXME: We really should do custom legalization for addition and
951  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
952  // than generic legalization for 64-bit multiplication-with-overflow, though.
953  if (Subtarget->is64Bit()) {
954    setOperationAction(ISD::SADDO, MVT::i64, Custom);
955    setOperationAction(ISD::UADDO, MVT::i64, Custom);
956    setOperationAction(ISD::SSUBO, MVT::i64, Custom);
957    setOperationAction(ISD::USUBO, MVT::i64, Custom);
958    setOperationAction(ISD::SMULO, MVT::i64, Custom);
959  }
960
961  if (!Subtarget->is64Bit()) {
962    // These libcalls are not available in 32-bit.
963    setLibcallName(RTLIB::SHL_I128, 0);
964    setLibcallName(RTLIB::SRL_I128, 0);
965    setLibcallName(RTLIB::SRA_I128, 0);
966  }
967
968  // We have target-specific dag combine patterns for the following nodes:
969  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
970  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
971  setTargetDAGCombine(ISD::BUILD_VECTOR);
972  setTargetDAGCombine(ISD::SELECT);
973  setTargetDAGCombine(ISD::SHL);
974  setTargetDAGCombine(ISD::SRA);
975  setTargetDAGCombine(ISD::SRL);
976  setTargetDAGCombine(ISD::OR);
977  setTargetDAGCombine(ISD::STORE);
978  setTargetDAGCombine(ISD::ZERO_EXTEND);
979  if (Subtarget->is64Bit())
980    setTargetDAGCombine(ISD::MUL);
981
982  computeRegisterProperties();
983
984  // FIXME: These should be based on subtarget info. Plus, the values should
985  // be smaller when we are in optimizing for size mode.
986  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
987  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
988  maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
989  setPrefLoopAlignment(16);
990  benefitFromCodePlacementOpt = true;
991}
992
993
994MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
995  return MVT::i8;
996}
997
998
999/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1000/// the desired ByVal argument alignment.
1001static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
1002  if (MaxAlign == 16)
1003    return;
1004  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1005    if (VTy->getBitWidth() == 128)
1006      MaxAlign = 16;
1007  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1008    unsigned EltAlign = 0;
1009    getMaxByValAlign(ATy->getElementType(), EltAlign);
1010    if (EltAlign > MaxAlign)
1011      MaxAlign = EltAlign;
1012  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1013    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1014      unsigned EltAlign = 0;
1015      getMaxByValAlign(STy->getElementType(i), EltAlign);
1016      if (EltAlign > MaxAlign)
1017        MaxAlign = EltAlign;
1018      if (MaxAlign == 16)
1019        break;
1020    }
1021  }
1022  return;
1023}
1024
1025/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1026/// function arguments in the caller parameter area. For X86, aggregates
1027/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1028/// are at 4-byte boundaries.
1029unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1030  if (Subtarget->is64Bit()) {
1031    // Max of 8 and alignment of type.
1032    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1033    if (TyAlign > 8)
1034      return TyAlign;
1035    return 8;
1036  }
1037
1038  unsigned Align = 4;
1039  if (Subtarget->hasSSE1())
1040    getMaxByValAlign(Ty, Align);
1041  return Align;
1042}
1043
1044/// getOptimalMemOpType - Returns the target specific optimal type for load
1045/// and store operations as a result of memset, memcpy, and memmove
1046/// lowering. If DstAlign is zero that means it's safe to destination
1047/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1048/// means there isn't a need to check it against alignment requirement,
1049/// probably because the source does not need to be loaded. If
1050/// 'NonScalarIntSafe' is true, that means it's safe to return a
1051/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1052/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1053/// constant so it does not need to be loaded.
1054/// It returns EVT::Other if the type should be determined using generic
1055/// target-independent logic.
1056EVT
1057X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1058                                       unsigned DstAlign, unsigned SrcAlign,
1059                                       bool NonScalarIntSafe,
1060                                       bool MemcpyStrSrc,
1061                                       MachineFunction &MF) const {
1062  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1063  // linux.  This is because the stack realignment code can't handle certain
1064  // cases like PR2962.  This should be removed when PR2962 is fixed.
1065  const Function *F = MF.getFunction();
1066  if (NonScalarIntSafe &&
1067      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1068    if (Size >= 16 &&
1069        (Subtarget->isUnalignedMemAccessFast() ||
1070         ((DstAlign == 0 || DstAlign >= 16) &&
1071          (SrcAlign == 0 || SrcAlign >= 16))) &&
1072        Subtarget->getStackAlignment() >= 16) {
1073      if (Subtarget->hasSSE2())
1074        return MVT::v4i32;
1075      if (Subtarget->hasSSE1())
1076        return MVT::v4f32;
1077    } else if (!MemcpyStrSrc && Size >= 8 &&
1078               !Subtarget->is64Bit() &&
1079               Subtarget->getStackAlignment() >= 8 &&
1080               Subtarget->hasSSE2()) {
1081      // Do not use f64 to lower memcpy if source is string constant. It's
1082      // better to use i32 to avoid the loads.
1083      return MVT::f64;
1084    }
1085  }
1086  if (Subtarget->is64Bit() && Size >= 8)
1087    return MVT::i64;
1088  return MVT::i32;
1089}
1090
1091/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1092/// current function.  The returned value is a member of the
1093/// MachineJumpTableInfo::JTEntryKind enum.
1094unsigned X86TargetLowering::getJumpTableEncoding() const {
1095  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1096  // symbol.
1097  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1098      Subtarget->isPICStyleGOT())
1099    return MachineJumpTableInfo::EK_Custom32;
1100
1101  // Otherwise, use the normal jump table encoding heuristics.
1102  return TargetLowering::getJumpTableEncoding();
1103}
1104
1105/// getPICBaseSymbol - Return the X86-32 PIC base.
1106MCSymbol *
1107X86TargetLowering::getPICBaseSymbol(const MachineFunction *MF,
1108                                    MCContext &Ctx) const {
1109  const MCAsmInfo &MAI = *getTargetMachine().getMCAsmInfo();
1110  return Ctx.GetOrCreateSymbol(Twine(MAI.getPrivateGlobalPrefix())+
1111                               Twine(MF->getFunctionNumber())+"$pb");
1112}
1113
1114
1115const MCExpr *
1116X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1117                                             const MachineBasicBlock *MBB,
1118                                             unsigned uid,MCContext &Ctx) const{
1119  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1120         Subtarget->isPICStyleGOT());
1121  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1122  // entries.
1123  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1124                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1125}
1126
1127/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1128/// jumptable.
1129SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1130                                                    SelectionDAG &DAG) const {
1131  if (!Subtarget->is64Bit())
1132    // This doesn't have DebugLoc associated with it, but is not really the
1133    // same as a Register.
1134    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1135  return Table;
1136}
1137
1138/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1139/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1140/// MCExpr.
1141const MCExpr *X86TargetLowering::
1142getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1143                             MCContext &Ctx) const {
1144  // X86-64 uses RIP relative addressing based on the jump table label.
1145  if (Subtarget->isPICStyleRIPRel())
1146    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1147
1148  // Otherwise, the reference is relative to the PIC base.
1149  return MCSymbolRefExpr::Create(getPICBaseSymbol(MF, Ctx), Ctx);
1150}
1151
1152/// getFunctionAlignment - Return the Log2 alignment of this function.
1153unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const {
1154  return F->hasFnAttr(Attribute::OptimizeForSize) ? 0 : 4;
1155}
1156
1157std::pair<const TargetRegisterClass*, uint8_t>
1158X86TargetLowering::findRepresentativeClass(EVT VT) const{
1159  const TargetRegisterClass *RRC = 0;
1160  uint8_t Cost = 1;
1161  switch (VT.getSimpleVT().SimpleTy) {
1162  default:
1163    return TargetLowering::findRepresentativeClass(VT);
1164  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1165    RRC = (Subtarget->is64Bit()
1166           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1167    break;
1168  case MVT::x86mmx:
1169    RRC = X86::VR64RegisterClass;
1170    break;
1171  case MVT::f32: case MVT::f64:
1172  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1173  case MVT::v4f32: case MVT::v2f64:
1174  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1175  case MVT::v4f64:
1176    RRC = X86::VR128RegisterClass;
1177    break;
1178  }
1179  return std::make_pair(RRC, Cost);
1180}
1181
1182unsigned
1183X86TargetLowering::getRegPressureLimit(const TargetRegisterClass *RC,
1184                                       MachineFunction &MF) const {
1185  unsigned FPDiff = RegInfo->hasFP(MF) ? 1 : 0;
1186  switch (RC->getID()) {
1187  default:
1188    return 0;
1189  case X86::GR32RegClassID:
1190    return 4 - FPDiff;
1191  case X86::GR64RegClassID:
1192    return 8 - FPDiff;
1193  case X86::VR128RegClassID:
1194    return Subtarget->is64Bit() ? 10 : 4;
1195  case X86::VR64RegClassID:
1196    return 4;
1197  }
1198}
1199
1200bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1201                                               unsigned &Offset) const {
1202  if (!Subtarget->isTargetLinux())
1203    return false;
1204
1205  if (Subtarget->is64Bit()) {
1206    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1207    Offset = 0x28;
1208    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1209      AddressSpace = 256;
1210    else
1211      AddressSpace = 257;
1212  } else {
1213    // %gs:0x14 on i386
1214    Offset = 0x14;
1215    AddressSpace = 256;
1216  }
1217  return true;
1218}
1219
1220
1221//===----------------------------------------------------------------------===//
1222//               Return Value Calling Convention Implementation
1223//===----------------------------------------------------------------------===//
1224
1225#include "X86GenCallingConv.inc"
1226
1227bool
1228X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1229                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1230                        LLVMContext &Context) const {
1231  SmallVector<CCValAssign, 16> RVLocs;
1232  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1233                 RVLocs, Context);
1234  return CCInfo.CheckReturn(Outs, RetCC_X86);
1235}
1236
1237SDValue
1238X86TargetLowering::LowerReturn(SDValue Chain,
1239                               CallingConv::ID CallConv, bool isVarArg,
1240                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1241                               const SmallVectorImpl<SDValue> &OutVals,
1242                               DebugLoc dl, SelectionDAG &DAG) const {
1243  MachineFunction &MF = DAG.getMachineFunction();
1244  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1245
1246  SmallVector<CCValAssign, 16> RVLocs;
1247  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1248                 RVLocs, *DAG.getContext());
1249  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1250
1251  // Add the regs to the liveout set for the function.
1252  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1253  for (unsigned i = 0; i != RVLocs.size(); ++i)
1254    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1255      MRI.addLiveOut(RVLocs[i].getLocReg());
1256
1257  SDValue Flag;
1258
1259  SmallVector<SDValue, 6> RetOps;
1260  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1261  // Operand #1 = Bytes To Pop
1262  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1263                   MVT::i16));
1264
1265  // Copy the result values into the output registers.
1266  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1267    CCValAssign &VA = RVLocs[i];
1268    assert(VA.isRegLoc() && "Can only return in registers!");
1269    SDValue ValToCopy = OutVals[i];
1270    EVT ValVT = ValToCopy.getValueType();
1271
1272    // If this is x86-64, and we disabled SSE, we can't return FP values,
1273    // or SSE or MMX vectors.
1274    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1275         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1276          (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1277      report_fatal_error("SSE register return with SSE disabled");
1278    }
1279    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1280    // llvm-gcc has never done it right and no one has noticed, so this
1281    // should be OK for now.
1282    if (ValVT == MVT::f64 &&
1283        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1284      report_fatal_error("SSE2 register return with SSE2 disabled");
1285
1286    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1287    // the RET instruction and handled by the FP Stackifier.
1288    if (VA.getLocReg() == X86::ST0 ||
1289        VA.getLocReg() == X86::ST1) {
1290      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1291      // change the value to the FP stack register class.
1292      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1293        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1294      RetOps.push_back(ValToCopy);
1295      // Don't emit a copytoreg.
1296      continue;
1297    }
1298
1299    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1300    // which is returned in RAX / RDX.
1301    if (Subtarget->is64Bit()) {
1302      if (ValVT == MVT::x86mmx) {
1303        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1304          ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, ValToCopy);
1305          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1306                                  ValToCopy);
1307          // If we don't have SSE2 available, convert to v4f32 so the generated
1308          // register is legal.
1309          if (!Subtarget->hasSSE2())
1310            ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32,ValToCopy);
1311        }
1312      }
1313    }
1314
1315    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1316    Flag = Chain.getValue(1);
1317  }
1318
1319  // The x86-64 ABI for returning structs by value requires that we copy
1320  // the sret argument into %rax for the return. We saved the argument into
1321  // a virtual register in the entry block, so now we copy the value out
1322  // and into %rax.
1323  if (Subtarget->is64Bit() &&
1324      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1325    MachineFunction &MF = DAG.getMachineFunction();
1326    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1327    unsigned Reg = FuncInfo->getSRetReturnReg();
1328    assert(Reg &&
1329           "SRetReturnReg should have been set in LowerFormalArguments().");
1330    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1331
1332    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1333    Flag = Chain.getValue(1);
1334
1335    // RAX now acts like a return value.
1336    MRI.addLiveOut(X86::RAX);
1337  }
1338
1339  RetOps[0] = Chain;  // Update chain.
1340
1341  // Add the flag if we have it.
1342  if (Flag.getNode())
1343    RetOps.push_back(Flag);
1344
1345  return DAG.getNode(X86ISD::RET_FLAG, dl,
1346                     MVT::Other, &RetOps[0], RetOps.size());
1347}
1348
1349/// LowerCallResult - Lower the result values of a call into the
1350/// appropriate copies out of appropriate physical registers.
1351///
1352SDValue
1353X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1354                                   CallingConv::ID CallConv, bool isVarArg,
1355                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1356                                   DebugLoc dl, SelectionDAG &DAG,
1357                                   SmallVectorImpl<SDValue> &InVals) const {
1358
1359  // Assign locations to each value returned by this call.
1360  SmallVector<CCValAssign, 16> RVLocs;
1361  bool Is64Bit = Subtarget->is64Bit();
1362  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1363                 RVLocs, *DAG.getContext());
1364  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1365
1366  // Copy all of the result registers out of their specified physreg.
1367  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1368    CCValAssign &VA = RVLocs[i];
1369    EVT CopyVT = VA.getValVT();
1370
1371    // If this is x86-64, and we disabled SSE, we can't return FP values
1372    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1373        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1374      report_fatal_error("SSE register return with SSE disabled");
1375    }
1376
1377    SDValue Val;
1378
1379    // If this is a call to a function that returns an fp value on the floating
1380    // point stack, we must guarantee the the value is popped from the stack, so
1381    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1382    // if the return value is not used. We use the FpGET_ST0 instructions
1383    // instead.
1384    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1385      // If we prefer to use the value in xmm registers, copy it out as f80 and
1386      // use a truncate to move it from fp stack reg to xmm reg.
1387      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1388      bool isST0 = VA.getLocReg() == X86::ST0;
1389      unsigned Opc = 0;
1390      if (CopyVT == MVT::f32) Opc = isST0 ? X86::FpGET_ST0_32:X86::FpGET_ST1_32;
1391      if (CopyVT == MVT::f64) Opc = isST0 ? X86::FpGET_ST0_64:X86::FpGET_ST1_64;
1392      if (CopyVT == MVT::f80) Opc = isST0 ? X86::FpGET_ST0_80:X86::FpGET_ST1_80;
1393      SDValue Ops[] = { Chain, InFlag };
1394      Chain = SDValue(DAG.getMachineNode(Opc, dl, CopyVT, MVT::Other, MVT::Flag,
1395                                         Ops, 2), 1);
1396      Val = Chain.getValue(0);
1397
1398      // Round the f80 to the right size, which also moves it to the appropriate
1399      // xmm register.
1400      if (CopyVT != VA.getValVT())
1401        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1402                          // This truncation won't change the value.
1403                          DAG.getIntPtrConstant(1));
1404    } else if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
1405      // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1406      if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1407        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1408                                   MVT::v2i64, InFlag).getValue(1);
1409        Val = Chain.getValue(0);
1410        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1411                          Val, DAG.getConstant(0, MVT::i64));
1412      } else {
1413        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1414                                   MVT::i64, InFlag).getValue(1);
1415        Val = Chain.getValue(0);
1416      }
1417      Val = DAG.getNode(ISD::BIT_CONVERT, dl, CopyVT, Val);
1418    } else {
1419      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1420                                 CopyVT, InFlag).getValue(1);
1421      Val = Chain.getValue(0);
1422    }
1423    InFlag = Chain.getValue(2);
1424    InVals.push_back(Val);
1425  }
1426
1427  return Chain;
1428}
1429
1430
1431//===----------------------------------------------------------------------===//
1432//                C & StdCall & Fast Calling Convention implementation
1433//===----------------------------------------------------------------------===//
1434//  StdCall calling convention seems to be standard for many Windows' API
1435//  routines and around. It differs from C calling convention just a little:
1436//  callee should clean up the stack, not caller. Symbols should be also
1437//  decorated in some fancy way :) It doesn't support any vector arguments.
1438//  For info on fast calling convention see Fast Calling Convention (tail call)
1439//  implementation LowerX86_32FastCCCallTo.
1440
1441/// CallIsStructReturn - Determines whether a call uses struct return
1442/// semantics.
1443static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1444  if (Outs.empty())
1445    return false;
1446
1447  return Outs[0].Flags.isSRet();
1448}
1449
1450/// ArgsAreStructReturn - Determines whether a function uses struct
1451/// return semantics.
1452static bool
1453ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1454  if (Ins.empty())
1455    return false;
1456
1457  return Ins[0].Flags.isSRet();
1458}
1459
1460/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1461/// given CallingConvention value.
1462CCAssignFn *X86TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const {
1463  if (Subtarget->is64Bit()) {
1464    if (CC == CallingConv::GHC)
1465      return CC_X86_64_GHC;
1466    else if (Subtarget->isTargetWin64())
1467      return CC_X86_Win64_C;
1468    else
1469      return CC_X86_64_C;
1470  }
1471
1472  if (CC == CallingConv::X86_FastCall)
1473    return CC_X86_32_FastCall;
1474  else if (CC == CallingConv::X86_ThisCall)
1475    return CC_X86_32_ThisCall;
1476  else if (CC == CallingConv::Fast)
1477    return CC_X86_32_FastCC;
1478  else if (CC == CallingConv::GHC)
1479    return CC_X86_32_GHC;
1480  else
1481    return CC_X86_32_C;
1482}
1483
1484/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1485/// by "Src" to address "Dst" with size and alignment information specified by
1486/// the specific parameter attribute. The copy will be passed as a byval
1487/// function parameter.
1488static SDValue
1489CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1490                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1491                          DebugLoc dl) {
1492  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1493
1494  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1495                       /*isVolatile*/false, /*AlwaysInline=*/true,
1496                       MachinePointerInfo(), MachinePointerInfo());
1497}
1498
1499/// IsTailCallConvention - Return true if the calling convention is one that
1500/// supports tail call optimization.
1501static bool IsTailCallConvention(CallingConv::ID CC) {
1502  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1503}
1504
1505/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1506/// a tailcall target by changing its ABI.
1507static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1508  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1509}
1510
1511SDValue
1512X86TargetLowering::LowerMemArgument(SDValue Chain,
1513                                    CallingConv::ID CallConv,
1514                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1515                                    DebugLoc dl, SelectionDAG &DAG,
1516                                    const CCValAssign &VA,
1517                                    MachineFrameInfo *MFI,
1518                                    unsigned i) const {
1519  // Create the nodes corresponding to a load from this parameter slot.
1520  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1521  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1522  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1523  EVT ValVT;
1524
1525  // If value is passed by pointer we have address passed instead of the value
1526  // itself.
1527  if (VA.getLocInfo() == CCValAssign::Indirect)
1528    ValVT = VA.getLocVT();
1529  else
1530    ValVT = VA.getValVT();
1531
1532  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1533  // changed with more analysis.
1534  // In case of tail call optimization mark all arguments mutable. Since they
1535  // could be overwritten by lowering of arguments in case of a tail call.
1536  if (Flags.isByVal()) {
1537    int FI = MFI->CreateFixedObject(Flags.getByValSize(),
1538                                    VA.getLocMemOffset(), isImmutable);
1539    return DAG.getFrameIndex(FI, getPointerTy());
1540  } else {
1541    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1542                                    VA.getLocMemOffset(), isImmutable);
1543    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1544    return DAG.getLoad(ValVT, dl, Chain, FIN,
1545                       MachinePointerInfo::getFixedStack(FI),
1546                       false, false, 0);
1547  }
1548}
1549
1550SDValue
1551X86TargetLowering::LowerFormalArguments(SDValue Chain,
1552                                        CallingConv::ID CallConv,
1553                                        bool isVarArg,
1554                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1555                                        DebugLoc dl,
1556                                        SelectionDAG &DAG,
1557                                        SmallVectorImpl<SDValue> &InVals)
1558                                          const {
1559  MachineFunction &MF = DAG.getMachineFunction();
1560  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1561
1562  const Function* Fn = MF.getFunction();
1563  if (Fn->hasExternalLinkage() &&
1564      Subtarget->isTargetCygMing() &&
1565      Fn->getName() == "main")
1566    FuncInfo->setForceFramePointer(true);
1567
1568  MachineFrameInfo *MFI = MF.getFrameInfo();
1569  bool Is64Bit = Subtarget->is64Bit();
1570  bool IsWin64 = Subtarget->isTargetWin64();
1571
1572  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1573         "Var args not supported with calling convention fastcc or ghc");
1574
1575  // Assign locations to all of the incoming arguments.
1576  SmallVector<CCValAssign, 16> ArgLocs;
1577  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1578                 ArgLocs, *DAG.getContext());
1579  CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv));
1580
1581  unsigned LastVal = ~0U;
1582  SDValue ArgValue;
1583  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1584    CCValAssign &VA = ArgLocs[i];
1585    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1586    // places.
1587    assert(VA.getValNo() != LastVal &&
1588           "Don't support value assigned to multiple locs yet");
1589    LastVal = VA.getValNo();
1590
1591    if (VA.isRegLoc()) {
1592      EVT RegVT = VA.getLocVT();
1593      TargetRegisterClass *RC = NULL;
1594      if (RegVT == MVT::i32)
1595        RC = X86::GR32RegisterClass;
1596      else if (Is64Bit && RegVT == MVT::i64)
1597        RC = X86::GR64RegisterClass;
1598      else if (RegVT == MVT::f32)
1599        RC = X86::FR32RegisterClass;
1600      else if (RegVT == MVT::f64)
1601        RC = X86::FR64RegisterClass;
1602      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1603        RC = X86::VR256RegisterClass;
1604      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1605        RC = X86::VR128RegisterClass;
1606      else if (RegVT == MVT::x86mmx)
1607        RC = X86::VR64RegisterClass;
1608      else
1609        llvm_unreachable("Unknown argument type!");
1610
1611      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1612      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1613
1614      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1615      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1616      // right size.
1617      if (VA.getLocInfo() == CCValAssign::SExt)
1618        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1619                               DAG.getValueType(VA.getValVT()));
1620      else if (VA.getLocInfo() == CCValAssign::ZExt)
1621        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1622                               DAG.getValueType(VA.getValVT()));
1623      else if (VA.getLocInfo() == CCValAssign::BCvt)
1624        ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1625
1626      if (VA.isExtInLoc()) {
1627        // Handle MMX values passed in XMM regs.
1628        if (RegVT.isVector()) {
1629          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1630                                 ArgValue);
1631        } else
1632          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1633      }
1634    } else {
1635      assert(VA.isMemLoc());
1636      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1637    }
1638
1639    // If value is passed via pointer - do a load.
1640    if (VA.getLocInfo() == CCValAssign::Indirect)
1641      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1642                             MachinePointerInfo(), false, false, 0);
1643
1644    InVals.push_back(ArgValue);
1645  }
1646
1647  // The x86-64 ABI for returning structs by value requires that we copy
1648  // the sret argument into %rax for the return. Save the argument into
1649  // a virtual register so that we can access it from the return points.
1650  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1651    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1652    unsigned Reg = FuncInfo->getSRetReturnReg();
1653    if (!Reg) {
1654      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1655      FuncInfo->setSRetReturnReg(Reg);
1656    }
1657    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1658    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1659  }
1660
1661  unsigned StackSize = CCInfo.getNextStackOffset();
1662  // Align stack specially for tail calls.
1663  if (FuncIsMadeTailCallSafe(CallConv))
1664    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1665
1666  // If the function takes variable number of arguments, make a frame index for
1667  // the start of the first vararg value... for expansion of llvm.va_start.
1668  if (isVarArg) {
1669    if (!IsWin64 && (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1670                    CallConv != CallingConv::X86_ThisCall))) {
1671      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1672    }
1673    if (Is64Bit) {
1674      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1675
1676      // FIXME: We should really autogenerate these arrays
1677      static const unsigned GPR64ArgRegsWin64[] = {
1678        X86::RCX, X86::RDX, X86::R8,  X86::R9
1679      };
1680      static const unsigned GPR64ArgRegs64Bit[] = {
1681        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1682      };
1683      static const unsigned XMMArgRegs64Bit[] = {
1684        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1685        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1686      };
1687      const unsigned *GPR64ArgRegs;
1688      unsigned NumXMMRegs = 0;
1689
1690      if (IsWin64) {
1691        // The XMM registers which might contain var arg parameters are shadowed
1692        // in their paired GPR.  So we only need to save the GPR to their home
1693        // slots.
1694        TotalNumIntRegs = 4;
1695        GPR64ArgRegs = GPR64ArgRegsWin64;
1696      } else {
1697        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1698        GPR64ArgRegs = GPR64ArgRegs64Bit;
1699
1700        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit, TotalNumXMMRegs);
1701      }
1702      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1703                                                       TotalNumIntRegs);
1704
1705      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1706      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1707             "SSE register cannot be used when SSE is disabled!");
1708      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1709             "SSE register cannot be used when SSE is disabled!");
1710      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1())
1711        // Kernel mode asks for SSE to be disabled, so don't push them
1712        // on the stack.
1713        TotalNumXMMRegs = 0;
1714
1715      if (IsWin64) {
1716        const TargetFrameInfo &TFI = *getTargetMachine().getFrameInfo();
1717        // Get to the caller-allocated home save location.  Add 8 to account
1718        // for the return address.
1719        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1720        FuncInfo->setRegSaveFrameIndex(
1721          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1722        FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1723      } else {
1724        // For X86-64, if there are vararg parameters that are passed via
1725        // registers, then we must store them to their spots on the stack so they
1726        // may be loaded by deferencing the result of va_next.
1727        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1728        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1729        FuncInfo->setRegSaveFrameIndex(
1730          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1731                               false));
1732      }
1733
1734      // Store the integer parameter registers.
1735      SmallVector<SDValue, 8> MemOps;
1736      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1737                                        getPointerTy());
1738      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1739      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1740        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1741                                  DAG.getIntPtrConstant(Offset));
1742        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1743                                     X86::GR64RegisterClass);
1744        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1745        SDValue Store =
1746          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1747                       MachinePointerInfo::getFixedStack(
1748                         FuncInfo->getRegSaveFrameIndex(), Offset),
1749                       false, false, 0);
1750        MemOps.push_back(Store);
1751        Offset += 8;
1752      }
1753
1754      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1755        // Now store the XMM (fp + vector) parameter registers.
1756        SmallVector<SDValue, 11> SaveXMMOps;
1757        SaveXMMOps.push_back(Chain);
1758
1759        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1760        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1761        SaveXMMOps.push_back(ALVal);
1762
1763        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1764                               FuncInfo->getRegSaveFrameIndex()));
1765        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1766                               FuncInfo->getVarArgsFPOffset()));
1767
1768        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1769          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
1770                                       X86::VR128RegisterClass);
1771          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1772          SaveXMMOps.push_back(Val);
1773        }
1774        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1775                                     MVT::Other,
1776                                     &SaveXMMOps[0], SaveXMMOps.size()));
1777      }
1778
1779      if (!MemOps.empty())
1780        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1781                            &MemOps[0], MemOps.size());
1782    }
1783  }
1784
1785  // Some CCs need callee pop.
1786  if (Subtarget->IsCalleePop(isVarArg, CallConv)) {
1787    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
1788  } else {
1789    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
1790    // If this is an sret function, the return should pop the hidden pointer.
1791    if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
1792      FuncInfo->setBytesToPopOnReturn(4);
1793  }
1794
1795  if (!Is64Bit) {
1796    // RegSaveFrameIndex is X86-64 only.
1797    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
1798    if (CallConv == CallingConv::X86_FastCall ||
1799        CallConv == CallingConv::X86_ThisCall)
1800      // fastcc functions can't have varargs.
1801      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
1802  }
1803
1804  return Chain;
1805}
1806
1807SDValue
1808X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1809                                    SDValue StackPtr, SDValue Arg,
1810                                    DebugLoc dl, SelectionDAG &DAG,
1811                                    const CCValAssign &VA,
1812                                    ISD::ArgFlagsTy Flags) const {
1813  const unsigned FirstStackArgOffset = (Subtarget->isTargetWin64() ? 32 : 0);
1814  unsigned LocMemOffset = FirstStackArgOffset + VA.getLocMemOffset();
1815  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1816  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1817  if (Flags.isByVal())
1818    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1819
1820  return DAG.getStore(Chain, dl, Arg, PtrOff,
1821                      MachinePointerInfo::getStack(LocMemOffset),
1822                      false, false, 0);
1823}
1824
1825/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1826/// optimization is performed and it is required.
1827SDValue
1828X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1829                                           SDValue &OutRetAddr, SDValue Chain,
1830                                           bool IsTailCall, bool Is64Bit,
1831                                           int FPDiff, DebugLoc dl) const {
1832  // Adjust the Return address stack slot.
1833  EVT VT = getPointerTy();
1834  OutRetAddr = getReturnAddressFrameIndex(DAG);
1835
1836  // Load the "old" Return address.
1837  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
1838                           false, false, 0);
1839  return SDValue(OutRetAddr.getNode(), 1);
1840}
1841
1842/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1843/// optimization is performed and it is required (FPDiff!=0).
1844static SDValue
1845EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1846                         SDValue Chain, SDValue RetAddrFrIdx,
1847                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1848  // Store the return address to the appropriate stack slot.
1849  if (!FPDiff) return Chain;
1850  // Calculate the new stack slot for the return address.
1851  int SlotSize = Is64Bit ? 8 : 4;
1852  int NewReturnAddrFI =
1853    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
1854  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1855  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1856  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1857                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
1858                       false, false, 0);
1859  return Chain;
1860}
1861
1862SDValue
1863X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1864                             CallingConv::ID CallConv, bool isVarArg,
1865                             bool &isTailCall,
1866                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1867                             const SmallVectorImpl<SDValue> &OutVals,
1868                             const SmallVectorImpl<ISD::InputArg> &Ins,
1869                             DebugLoc dl, SelectionDAG &DAG,
1870                             SmallVectorImpl<SDValue> &InVals) const {
1871  MachineFunction &MF = DAG.getMachineFunction();
1872  bool Is64Bit        = Subtarget->is64Bit();
1873  bool IsStructRet    = CallIsStructReturn(Outs);
1874  bool IsSibcall      = false;
1875
1876  if (isTailCall) {
1877    // Check if it's really possible to do a tail call.
1878    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1879                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1880                                                   Outs, OutVals, Ins, DAG);
1881
1882    // Sibcalls are automatically detected tailcalls which do not require
1883    // ABI changes.
1884    if (!GuaranteedTailCallOpt && isTailCall)
1885      IsSibcall = true;
1886
1887    if (isTailCall)
1888      ++NumTailCalls;
1889  }
1890
1891  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1892         "Var args not supported with calling convention fastcc or ghc");
1893
1894  // Analyze operands of the call, assigning locations to each operand.
1895  SmallVector<CCValAssign, 16> ArgLocs;
1896  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1897                 ArgLocs, *DAG.getContext());
1898  CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv));
1899
1900  // Get a count of how many bytes are to be pushed on the stack.
1901  unsigned NumBytes = CCInfo.getNextStackOffset();
1902  if (IsSibcall)
1903    // This is a sibcall. The memory operands are available in caller's
1904    // own caller's stack.
1905    NumBytes = 0;
1906  else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
1907    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1908
1909  int FPDiff = 0;
1910  if (isTailCall && !IsSibcall) {
1911    // Lower arguments at fp - stackoffset + fpdiff.
1912    unsigned NumBytesCallerPushed =
1913      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1914    FPDiff = NumBytesCallerPushed - NumBytes;
1915
1916    // Set the delta of movement of the returnaddr stackslot.
1917    // But only set if delta is greater than previous delta.
1918    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1919      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1920  }
1921
1922  if (!IsSibcall)
1923    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1924
1925  SDValue RetAddrFrIdx;
1926  // Load return adress for tail calls.
1927  if (isTailCall && FPDiff)
1928    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
1929                                    Is64Bit, FPDiff, dl);
1930
1931  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1932  SmallVector<SDValue, 8> MemOpChains;
1933  SDValue StackPtr;
1934
1935  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1936  // of tail call optimization arguments are handle later.
1937  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1938    CCValAssign &VA = ArgLocs[i];
1939    EVT RegVT = VA.getLocVT();
1940    SDValue Arg = OutVals[i];
1941    ISD::ArgFlagsTy Flags = Outs[i].Flags;
1942    bool isByVal = Flags.isByVal();
1943
1944    // Promote the value if needed.
1945    switch (VA.getLocInfo()) {
1946    default: llvm_unreachable("Unknown loc info!");
1947    case CCValAssign::Full: break;
1948    case CCValAssign::SExt:
1949      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
1950      break;
1951    case CCValAssign::ZExt:
1952      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
1953      break;
1954    case CCValAssign::AExt:
1955      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
1956        // Special case: passing MMX values in XMM registers.
1957        Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
1958        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
1959        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
1960      } else
1961        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
1962      break;
1963    case CCValAssign::BCvt:
1964      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, RegVT, Arg);
1965      break;
1966    case CCValAssign::Indirect: {
1967      // Store the argument.
1968      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
1969      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1970      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
1971                           MachinePointerInfo::getFixedStack(FI),
1972                           false, false, 0);
1973      Arg = SpillSlot;
1974      break;
1975    }
1976    }
1977
1978    if (VA.isRegLoc()) {
1979      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1980      if (isVarArg && Subtarget->isTargetWin64()) {
1981        // Win64 ABI requires argument XMM reg to be copied to the corresponding
1982        // shadow reg if callee is a varargs function.
1983        unsigned ShadowReg = 0;
1984        switch (VA.getLocReg()) {
1985        case X86::XMM0: ShadowReg = X86::RCX; break;
1986        case X86::XMM1: ShadowReg = X86::RDX; break;
1987        case X86::XMM2: ShadowReg = X86::R8; break;
1988        case X86::XMM3: ShadowReg = X86::R9; break;
1989        }
1990        if (ShadowReg)
1991          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
1992      }
1993    } else if (!IsSibcall && (!isTailCall || isByVal)) {
1994      assert(VA.isMemLoc());
1995      if (StackPtr.getNode() == 0)
1996        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
1997      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1998                                             dl, DAG, VA, Flags));
1999    }
2000  }
2001
2002  if (!MemOpChains.empty())
2003    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2004                        &MemOpChains[0], MemOpChains.size());
2005
2006  // Build a sequence of copy-to-reg nodes chained together with token chain
2007  // and flag operands which copy the outgoing args into registers.
2008  SDValue InFlag;
2009  // Tail call byval lowering might overwrite argument registers so in case of
2010  // tail call optimization the copies to registers are lowered later.
2011  if (!isTailCall)
2012    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2013      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2014                               RegsToPass[i].second, InFlag);
2015      InFlag = Chain.getValue(1);
2016    }
2017
2018  if (Subtarget->isPICStyleGOT()) {
2019    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2020    // GOT pointer.
2021    if (!isTailCall) {
2022      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2023                               DAG.getNode(X86ISD::GlobalBaseReg,
2024                                           DebugLoc(), getPointerTy()),
2025                               InFlag);
2026      InFlag = Chain.getValue(1);
2027    } else {
2028      // If we are tail calling and generating PIC/GOT style code load the
2029      // address of the callee into ECX. The value in ecx is used as target of
2030      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2031      // for tail calls on PIC/GOT architectures. Normally we would just put the
2032      // address of GOT into ebx and then call target@PLT. But for tail calls
2033      // ebx would be restored (since ebx is callee saved) before jumping to the
2034      // target@PLT.
2035
2036      // Note: The actual moving to ECX is done further down.
2037      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2038      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2039          !G->getGlobal()->hasProtectedVisibility())
2040        Callee = LowerGlobalAddress(Callee, DAG);
2041      else if (isa<ExternalSymbolSDNode>(Callee))
2042        Callee = LowerExternalSymbol(Callee, DAG);
2043    }
2044  }
2045
2046  if (Is64Bit && isVarArg && !Subtarget->isTargetWin64()) {
2047    // From AMD64 ABI document:
2048    // For calls that may call functions that use varargs or stdargs
2049    // (prototype-less calls or calls to functions containing ellipsis (...) in
2050    // the declaration) %al is used as hidden argument to specify the number
2051    // of SSE registers used. The contents of %al do not need to match exactly
2052    // the number of registers, but must be an ubound on the number of SSE
2053    // registers used and is in the range 0 - 8 inclusive.
2054
2055    // Count the number of XMM registers allocated.
2056    static const unsigned XMMArgRegs[] = {
2057      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2058      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2059    };
2060    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2061    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2062           && "SSE registers cannot be used when SSE is disabled");
2063
2064    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2065                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2066    InFlag = Chain.getValue(1);
2067  }
2068
2069
2070  // For tail calls lower the arguments to the 'real' stack slot.
2071  if (isTailCall) {
2072    // Force all the incoming stack arguments to be loaded from the stack
2073    // before any new outgoing arguments are stored to the stack, because the
2074    // outgoing stack slots may alias the incoming argument stack slots, and
2075    // the alias isn't otherwise explicit. This is slightly more conservative
2076    // than necessary, because it means that each store effectively depends
2077    // on every argument instead of just those arguments it would clobber.
2078    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2079
2080    SmallVector<SDValue, 8> MemOpChains2;
2081    SDValue FIN;
2082    int FI = 0;
2083    // Do not flag preceeding copytoreg stuff together with the following stuff.
2084    InFlag = SDValue();
2085    if (GuaranteedTailCallOpt) {
2086      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2087        CCValAssign &VA = ArgLocs[i];
2088        if (VA.isRegLoc())
2089          continue;
2090        assert(VA.isMemLoc());
2091        SDValue Arg = OutVals[i];
2092        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2093        // Create frame index.
2094        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2095        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2096        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2097        FIN = DAG.getFrameIndex(FI, getPointerTy());
2098
2099        if (Flags.isByVal()) {
2100          // Copy relative to framepointer.
2101          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2102          if (StackPtr.getNode() == 0)
2103            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2104                                          getPointerTy());
2105          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2106
2107          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2108                                                           ArgChain,
2109                                                           Flags, DAG, dl));
2110        } else {
2111          // Store relative to framepointer.
2112          MemOpChains2.push_back(
2113            DAG.getStore(ArgChain, dl, Arg, FIN,
2114                         MachinePointerInfo::getFixedStack(FI),
2115                         false, false, 0));
2116        }
2117      }
2118    }
2119
2120    if (!MemOpChains2.empty())
2121      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2122                          &MemOpChains2[0], MemOpChains2.size());
2123
2124    // Copy arguments to their registers.
2125    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2126      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2127                               RegsToPass[i].second, InFlag);
2128      InFlag = Chain.getValue(1);
2129    }
2130    InFlag =SDValue();
2131
2132    // Store the return address to the appropriate stack slot.
2133    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2134                                     FPDiff, dl);
2135  }
2136
2137  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2138    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2139    // In the 64-bit large code model, we have to make all calls
2140    // through a register, since the call instruction's 32-bit
2141    // pc-relative offset may not be large enough to hold the whole
2142    // address.
2143  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2144    // If the callee is a GlobalAddress node (quite common, every direct call
2145    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2146    // it.
2147
2148    // We should use extra load for direct calls to dllimported functions in
2149    // non-JIT mode.
2150    const GlobalValue *GV = G->getGlobal();
2151    if (!GV->hasDLLImportLinkage()) {
2152      unsigned char OpFlags = 0;
2153
2154      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2155      // external symbols most go through the PLT in PIC mode.  If the symbol
2156      // has hidden or protected visibility, or if it is static or local, then
2157      // we don't need to use the PLT - we can directly call it.
2158      if (Subtarget->isTargetELF() &&
2159          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2160          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2161        OpFlags = X86II::MO_PLT;
2162      } else if (Subtarget->isPICStyleStubAny() &&
2163                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2164                 Subtarget->getDarwinVers() < 9) {
2165        // PC-relative references to external symbols should go through $stub,
2166        // unless we're building with the leopard linker or later, which
2167        // automatically synthesizes these stubs.
2168        OpFlags = X86II::MO_DARWIN_STUB;
2169      }
2170
2171      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2172                                          G->getOffset(), OpFlags);
2173    }
2174  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2175    unsigned char OpFlags = 0;
2176
2177    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to external
2178    // symbols should go through the PLT.
2179    if (Subtarget->isTargetELF() &&
2180        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2181      OpFlags = X86II::MO_PLT;
2182    } else if (Subtarget->isPICStyleStubAny() &&
2183               Subtarget->getDarwinVers() < 9) {
2184      // PC-relative references to external symbols should go through $stub,
2185      // unless we're building with the leopard linker or later, which
2186      // automatically synthesizes these stubs.
2187      OpFlags = X86II::MO_DARWIN_STUB;
2188    }
2189
2190    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2191                                         OpFlags);
2192  }
2193
2194  // Returns a chain & a flag for retval copy to use.
2195  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
2196  SmallVector<SDValue, 8> Ops;
2197
2198  if (!IsSibcall && isTailCall) {
2199    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2200                           DAG.getIntPtrConstant(0, true), InFlag);
2201    InFlag = Chain.getValue(1);
2202  }
2203
2204  Ops.push_back(Chain);
2205  Ops.push_back(Callee);
2206
2207  if (isTailCall)
2208    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2209
2210  // Add argument registers to the end of the list so that they are known live
2211  // into the call.
2212  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2213    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2214                                  RegsToPass[i].second.getValueType()));
2215
2216  // Add an implicit use GOT pointer in EBX.
2217  if (!isTailCall && Subtarget->isPICStyleGOT())
2218    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2219
2220  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2221  if (Is64Bit && isVarArg && !Subtarget->isTargetWin64())
2222    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2223
2224  if (InFlag.getNode())
2225    Ops.push_back(InFlag);
2226
2227  if (isTailCall) {
2228    // We used to do:
2229    //// If this is the first return lowered for this function, add the regs
2230    //// to the liveout set for the function.
2231    // This isn't right, although it's probably harmless on x86; liveouts
2232    // should be computed from returns not tail calls.  Consider a void
2233    // function making a tail call to a function returning int.
2234    return DAG.getNode(X86ISD::TC_RETURN, dl,
2235                       NodeTys, &Ops[0], Ops.size());
2236  }
2237
2238  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2239  InFlag = Chain.getValue(1);
2240
2241  // Create the CALLSEQ_END node.
2242  unsigned NumBytesForCalleeToPush;
2243  if (Subtarget->IsCalleePop(isVarArg, CallConv))
2244    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2245  else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2246    // If this is a call to a struct-return function, the callee
2247    // pops the hidden struct pointer, so we have to push it back.
2248    // This is common for Darwin/X86, Linux & Mingw32 targets.
2249    NumBytesForCalleeToPush = 4;
2250  else
2251    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2252
2253  // Returns a flag for retval copy to use.
2254  if (!IsSibcall) {
2255    Chain = DAG.getCALLSEQ_END(Chain,
2256                               DAG.getIntPtrConstant(NumBytes, true),
2257                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2258                                                     true),
2259                               InFlag);
2260    InFlag = Chain.getValue(1);
2261  }
2262
2263  // Handle result values, copying them out of physregs into vregs that we
2264  // return.
2265  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2266                         Ins, dl, DAG, InVals);
2267}
2268
2269
2270//===----------------------------------------------------------------------===//
2271//                Fast Calling Convention (tail call) implementation
2272//===----------------------------------------------------------------------===//
2273
2274//  Like std call, callee cleans arguments, convention except that ECX is
2275//  reserved for storing the tail called function address. Only 2 registers are
2276//  free for argument passing (inreg). Tail call optimization is performed
2277//  provided:
2278//                * tailcallopt is enabled
2279//                * caller/callee are fastcc
2280//  On X86_64 architecture with GOT-style position independent code only local
2281//  (within module) calls are supported at the moment.
2282//  To keep the stack aligned according to platform abi the function
2283//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2284//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2285//  If a tail called function callee has more arguments than the caller the
2286//  caller needs to make sure that there is room to move the RETADDR to. This is
2287//  achieved by reserving an area the size of the argument delta right after the
2288//  original REtADDR, but before the saved framepointer or the spilled registers
2289//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2290//  stack layout:
2291//    arg1
2292//    arg2
2293//    RETADDR
2294//    [ new RETADDR
2295//      move area ]
2296//    (possible EBP)
2297//    ESI
2298//    EDI
2299//    local1 ..
2300
2301/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2302/// for a 16 byte align requirement.
2303unsigned
2304X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2305                                               SelectionDAG& DAG) const {
2306  MachineFunction &MF = DAG.getMachineFunction();
2307  const TargetMachine &TM = MF.getTarget();
2308  const TargetFrameInfo &TFI = *TM.getFrameInfo();
2309  unsigned StackAlignment = TFI.getStackAlignment();
2310  uint64_t AlignMask = StackAlignment - 1;
2311  int64_t Offset = StackSize;
2312  uint64_t SlotSize = TD->getPointerSize();
2313  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2314    // Number smaller than 12 so just add the difference.
2315    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2316  } else {
2317    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2318    Offset = ((~AlignMask) & Offset) + StackAlignment +
2319      (StackAlignment-SlotSize);
2320  }
2321  return Offset;
2322}
2323
2324/// MatchingStackOffset - Return true if the given stack call argument is
2325/// already available in the same position (relatively) of the caller's
2326/// incoming argument stack.
2327static
2328bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2329                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2330                         const X86InstrInfo *TII) {
2331  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2332  int FI = INT_MAX;
2333  if (Arg.getOpcode() == ISD::CopyFromReg) {
2334    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2335    if (!VR || TargetRegisterInfo::isPhysicalRegister(VR))
2336      return false;
2337    MachineInstr *Def = MRI->getVRegDef(VR);
2338    if (!Def)
2339      return false;
2340    if (!Flags.isByVal()) {
2341      if (!TII->isLoadFromStackSlot(Def, FI))
2342        return false;
2343    } else {
2344      unsigned Opcode = Def->getOpcode();
2345      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2346          Def->getOperand(1).isFI()) {
2347        FI = Def->getOperand(1).getIndex();
2348        Bytes = Flags.getByValSize();
2349      } else
2350        return false;
2351    }
2352  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2353    if (Flags.isByVal())
2354      // ByVal argument is passed in as a pointer but it's now being
2355      // dereferenced. e.g.
2356      // define @foo(%struct.X* %A) {
2357      //   tail call @bar(%struct.X* byval %A)
2358      // }
2359      return false;
2360    SDValue Ptr = Ld->getBasePtr();
2361    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2362    if (!FINode)
2363      return false;
2364    FI = FINode->getIndex();
2365  } else
2366    return false;
2367
2368  assert(FI != INT_MAX);
2369  if (!MFI->isFixedObjectIndex(FI))
2370    return false;
2371  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2372}
2373
2374/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2375/// for tail call optimization. Targets which want to do tail call
2376/// optimization should implement this function.
2377bool
2378X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2379                                                     CallingConv::ID CalleeCC,
2380                                                     bool isVarArg,
2381                                                     bool isCalleeStructRet,
2382                                                     bool isCallerStructRet,
2383                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2384                                    const SmallVectorImpl<SDValue> &OutVals,
2385                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2386                                                     SelectionDAG& DAG) const {
2387  if (!IsTailCallConvention(CalleeCC) &&
2388      CalleeCC != CallingConv::C)
2389    return false;
2390
2391  // If -tailcallopt is specified, make fastcc functions tail-callable.
2392  const MachineFunction &MF = DAG.getMachineFunction();
2393  const Function *CallerF = DAG.getMachineFunction().getFunction();
2394  CallingConv::ID CallerCC = CallerF->getCallingConv();
2395  bool CCMatch = CallerCC == CalleeCC;
2396
2397  if (GuaranteedTailCallOpt) {
2398    if (IsTailCallConvention(CalleeCC) && CCMatch)
2399      return true;
2400    return false;
2401  }
2402
2403  // Look for obvious safe cases to perform tail call optimization that do not
2404  // require ABI changes. This is what gcc calls sibcall.
2405
2406  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2407  // emit a special epilogue.
2408  if (RegInfo->needsStackRealignment(MF))
2409    return false;
2410
2411  // Do not sibcall optimize vararg calls unless the call site is not passing
2412  // any arguments.
2413  if (isVarArg && !Outs.empty())
2414    return false;
2415
2416  // Also avoid sibcall optimization if either caller or callee uses struct
2417  // return semantics.
2418  if (isCalleeStructRet || isCallerStructRet)
2419    return false;
2420
2421  // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2422  // Therefore if it's not used by the call it is not safe to optimize this into
2423  // a sibcall.
2424  bool Unused = false;
2425  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2426    if (!Ins[i].Used) {
2427      Unused = true;
2428      break;
2429    }
2430  }
2431  if (Unused) {
2432    SmallVector<CCValAssign, 16> RVLocs;
2433    CCState CCInfo(CalleeCC, false, getTargetMachine(),
2434                   RVLocs, *DAG.getContext());
2435    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2436    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2437      CCValAssign &VA = RVLocs[i];
2438      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2439        return false;
2440    }
2441  }
2442
2443  // If the calling conventions do not match, then we'd better make sure the
2444  // results are returned in the same way as what the caller expects.
2445  if (!CCMatch) {
2446    SmallVector<CCValAssign, 16> RVLocs1;
2447    CCState CCInfo1(CalleeCC, false, getTargetMachine(),
2448                    RVLocs1, *DAG.getContext());
2449    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2450
2451    SmallVector<CCValAssign, 16> RVLocs2;
2452    CCState CCInfo2(CallerCC, false, getTargetMachine(),
2453                    RVLocs2, *DAG.getContext());
2454    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2455
2456    if (RVLocs1.size() != RVLocs2.size())
2457      return false;
2458    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2459      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2460        return false;
2461      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2462        return false;
2463      if (RVLocs1[i].isRegLoc()) {
2464        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2465          return false;
2466      } else {
2467        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2468          return false;
2469      }
2470    }
2471  }
2472
2473  // If the callee takes no arguments then go on to check the results of the
2474  // call.
2475  if (!Outs.empty()) {
2476    // Check if stack adjustment is needed. For now, do not do this if any
2477    // argument is passed on the stack.
2478    SmallVector<CCValAssign, 16> ArgLocs;
2479    CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
2480                   ArgLocs, *DAG.getContext());
2481    CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC));
2482    if (CCInfo.getNextStackOffset()) {
2483      MachineFunction &MF = DAG.getMachineFunction();
2484      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2485        return false;
2486      if (Subtarget->isTargetWin64())
2487        // Win64 ABI has additional complications.
2488        return false;
2489
2490      // Check if the arguments are already laid out in the right way as
2491      // the caller's fixed stack objects.
2492      MachineFrameInfo *MFI = MF.getFrameInfo();
2493      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2494      const X86InstrInfo *TII =
2495        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2496      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2497        CCValAssign &VA = ArgLocs[i];
2498        SDValue Arg = OutVals[i];
2499        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2500        if (VA.getLocInfo() == CCValAssign::Indirect)
2501          return false;
2502        if (!VA.isRegLoc()) {
2503          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2504                                   MFI, MRI, TII))
2505            return false;
2506        }
2507      }
2508    }
2509
2510    // If the tailcall address may be in a register, then make sure it's
2511    // possible to register allocate for it. In 32-bit, the call address can
2512    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2513    // callee-saved registers are restored. These happen to be the same
2514    // registers used to pass 'inreg' arguments so watch out for those.
2515    if (!Subtarget->is64Bit() &&
2516        !isa<GlobalAddressSDNode>(Callee) &&
2517        !isa<ExternalSymbolSDNode>(Callee)) {
2518      unsigned NumInRegs = 0;
2519      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2520        CCValAssign &VA = ArgLocs[i];
2521        if (!VA.isRegLoc())
2522          continue;
2523        unsigned Reg = VA.getLocReg();
2524        switch (Reg) {
2525        default: break;
2526        case X86::EAX: case X86::EDX: case X86::ECX:
2527          if (++NumInRegs == 3)
2528            return false;
2529          break;
2530        }
2531      }
2532    }
2533  }
2534
2535  return true;
2536}
2537
2538FastISel *
2539X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2540  return X86::createFastISel(funcInfo);
2541}
2542
2543
2544//===----------------------------------------------------------------------===//
2545//                           Other Lowering Hooks
2546//===----------------------------------------------------------------------===//
2547
2548static bool MayFoldLoad(SDValue Op) {
2549  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2550}
2551
2552static bool MayFoldIntoStore(SDValue Op) {
2553  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2554}
2555
2556static bool isTargetShuffle(unsigned Opcode) {
2557  switch(Opcode) {
2558  default: return false;
2559  case X86ISD::PSHUFD:
2560  case X86ISD::PSHUFHW:
2561  case X86ISD::PSHUFLW:
2562  case X86ISD::SHUFPD:
2563  case X86ISD::PALIGN:
2564  case X86ISD::SHUFPS:
2565  case X86ISD::MOVLHPS:
2566  case X86ISD::MOVLHPD:
2567  case X86ISD::MOVHLPS:
2568  case X86ISD::MOVLPS:
2569  case X86ISD::MOVLPD:
2570  case X86ISD::MOVSHDUP:
2571  case X86ISD::MOVSLDUP:
2572  case X86ISD::MOVDDUP:
2573  case X86ISD::MOVSS:
2574  case X86ISD::MOVSD:
2575  case X86ISD::UNPCKLPS:
2576  case X86ISD::UNPCKLPD:
2577  case X86ISD::PUNPCKLWD:
2578  case X86ISD::PUNPCKLBW:
2579  case X86ISD::PUNPCKLDQ:
2580  case X86ISD::PUNPCKLQDQ:
2581  case X86ISD::UNPCKHPS:
2582  case X86ISD::UNPCKHPD:
2583  case X86ISD::PUNPCKHWD:
2584  case X86ISD::PUNPCKHBW:
2585  case X86ISD::PUNPCKHDQ:
2586  case X86ISD::PUNPCKHQDQ:
2587    return true;
2588  }
2589  return false;
2590}
2591
2592static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2593                                               SDValue V1, SelectionDAG &DAG) {
2594  switch(Opc) {
2595  default: llvm_unreachable("Unknown x86 shuffle node");
2596  case X86ISD::MOVSHDUP:
2597  case X86ISD::MOVSLDUP:
2598  case X86ISD::MOVDDUP:
2599    return DAG.getNode(Opc, dl, VT, V1);
2600  }
2601
2602  return SDValue();
2603}
2604
2605static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2606                          SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2607  switch(Opc) {
2608  default: llvm_unreachable("Unknown x86 shuffle node");
2609  case X86ISD::PSHUFD:
2610  case X86ISD::PSHUFHW:
2611  case X86ISD::PSHUFLW:
2612    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2613  }
2614
2615  return SDValue();
2616}
2617
2618static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2619               SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2620  switch(Opc) {
2621  default: llvm_unreachable("Unknown x86 shuffle node");
2622  case X86ISD::PALIGN:
2623  case X86ISD::SHUFPD:
2624  case X86ISD::SHUFPS:
2625    return DAG.getNode(Opc, dl, VT, V1, V2,
2626                       DAG.getConstant(TargetMask, MVT::i8));
2627  }
2628  return SDValue();
2629}
2630
2631static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2632                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2633  switch(Opc) {
2634  default: llvm_unreachable("Unknown x86 shuffle node");
2635  case X86ISD::MOVLHPS:
2636  case X86ISD::MOVLHPD:
2637  case X86ISD::MOVHLPS:
2638  case X86ISD::MOVLPS:
2639  case X86ISD::MOVLPD:
2640  case X86ISD::MOVSS:
2641  case X86ISD::MOVSD:
2642  case X86ISD::UNPCKLPS:
2643  case X86ISD::UNPCKLPD:
2644  case X86ISD::PUNPCKLWD:
2645  case X86ISD::PUNPCKLBW:
2646  case X86ISD::PUNPCKLDQ:
2647  case X86ISD::PUNPCKLQDQ:
2648  case X86ISD::UNPCKHPS:
2649  case X86ISD::UNPCKHPD:
2650  case X86ISD::PUNPCKHWD:
2651  case X86ISD::PUNPCKHBW:
2652  case X86ISD::PUNPCKHDQ:
2653  case X86ISD::PUNPCKHQDQ:
2654    return DAG.getNode(Opc, dl, VT, V1, V2);
2655  }
2656  return SDValue();
2657}
2658
2659SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2660  MachineFunction &MF = DAG.getMachineFunction();
2661  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2662  int ReturnAddrIndex = FuncInfo->getRAIndex();
2663
2664  if (ReturnAddrIndex == 0) {
2665    // Set up a frame object for the return address.
2666    uint64_t SlotSize = TD->getPointerSize();
2667    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2668                                                           false);
2669    FuncInfo->setRAIndex(ReturnAddrIndex);
2670  }
2671
2672  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2673}
2674
2675
2676bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2677                                       bool hasSymbolicDisplacement) {
2678  // Offset should fit into 32 bit immediate field.
2679  if (!isInt<32>(Offset))
2680    return false;
2681
2682  // If we don't have a symbolic displacement - we don't have any extra
2683  // restrictions.
2684  if (!hasSymbolicDisplacement)
2685    return true;
2686
2687  // FIXME: Some tweaks might be needed for medium code model.
2688  if (M != CodeModel::Small && M != CodeModel::Kernel)
2689    return false;
2690
2691  // For small code model we assume that latest object is 16MB before end of 31
2692  // bits boundary. We may also accept pretty large negative constants knowing
2693  // that all objects are in the positive half of address space.
2694  if (M == CodeModel::Small && Offset < 16*1024*1024)
2695    return true;
2696
2697  // For kernel code model we know that all object resist in the negative half
2698  // of 32bits address space. We may not accept negative offsets, since they may
2699  // be just off and we may accept pretty large positive ones.
2700  if (M == CodeModel::Kernel && Offset > 0)
2701    return true;
2702
2703  return false;
2704}
2705
2706/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2707/// specific condition code, returning the condition code and the LHS/RHS of the
2708/// comparison to make.
2709static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2710                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2711  if (!isFP) {
2712    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2713      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2714        // X > -1   -> X == 0, jump !sign.
2715        RHS = DAG.getConstant(0, RHS.getValueType());
2716        return X86::COND_NS;
2717      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2718        // X < 0   -> X == 0, jump on sign.
2719        return X86::COND_S;
2720      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2721        // X < 1   -> X <= 0
2722        RHS = DAG.getConstant(0, RHS.getValueType());
2723        return X86::COND_LE;
2724      }
2725    }
2726
2727    switch (SetCCOpcode) {
2728    default: llvm_unreachable("Invalid integer condition!");
2729    case ISD::SETEQ:  return X86::COND_E;
2730    case ISD::SETGT:  return X86::COND_G;
2731    case ISD::SETGE:  return X86::COND_GE;
2732    case ISD::SETLT:  return X86::COND_L;
2733    case ISD::SETLE:  return X86::COND_LE;
2734    case ISD::SETNE:  return X86::COND_NE;
2735    case ISD::SETULT: return X86::COND_B;
2736    case ISD::SETUGT: return X86::COND_A;
2737    case ISD::SETULE: return X86::COND_BE;
2738    case ISD::SETUGE: return X86::COND_AE;
2739    }
2740  }
2741
2742  // First determine if it is required or is profitable to flip the operands.
2743
2744  // If LHS is a foldable load, but RHS is not, flip the condition.
2745  if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
2746      !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
2747    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2748    std::swap(LHS, RHS);
2749  }
2750
2751  switch (SetCCOpcode) {
2752  default: break;
2753  case ISD::SETOLT:
2754  case ISD::SETOLE:
2755  case ISD::SETUGT:
2756  case ISD::SETUGE:
2757    std::swap(LHS, RHS);
2758    break;
2759  }
2760
2761  // On a floating point condition, the flags are set as follows:
2762  // ZF  PF  CF   op
2763  //  0 | 0 | 0 | X > Y
2764  //  0 | 0 | 1 | X < Y
2765  //  1 | 0 | 0 | X == Y
2766  //  1 | 1 | 1 | unordered
2767  switch (SetCCOpcode) {
2768  default: llvm_unreachable("Condcode should be pre-legalized away");
2769  case ISD::SETUEQ:
2770  case ISD::SETEQ:   return X86::COND_E;
2771  case ISD::SETOLT:              // flipped
2772  case ISD::SETOGT:
2773  case ISD::SETGT:   return X86::COND_A;
2774  case ISD::SETOLE:              // flipped
2775  case ISD::SETOGE:
2776  case ISD::SETGE:   return X86::COND_AE;
2777  case ISD::SETUGT:              // flipped
2778  case ISD::SETULT:
2779  case ISD::SETLT:   return X86::COND_B;
2780  case ISD::SETUGE:              // flipped
2781  case ISD::SETULE:
2782  case ISD::SETLE:   return X86::COND_BE;
2783  case ISD::SETONE:
2784  case ISD::SETNE:   return X86::COND_NE;
2785  case ISD::SETUO:   return X86::COND_P;
2786  case ISD::SETO:    return X86::COND_NP;
2787  case ISD::SETOEQ:
2788  case ISD::SETUNE:  return X86::COND_INVALID;
2789  }
2790}
2791
2792/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2793/// code. Current x86 isa includes the following FP cmov instructions:
2794/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2795static bool hasFPCMov(unsigned X86CC) {
2796  switch (X86CC) {
2797  default:
2798    return false;
2799  case X86::COND_B:
2800  case X86::COND_BE:
2801  case X86::COND_E:
2802  case X86::COND_P:
2803  case X86::COND_A:
2804  case X86::COND_AE:
2805  case X86::COND_NE:
2806  case X86::COND_NP:
2807    return true;
2808  }
2809}
2810
2811/// isFPImmLegal - Returns true if the target can instruction select the
2812/// specified FP immediate natively. If false, the legalizer will
2813/// materialize the FP immediate as a load from a constant pool.
2814bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
2815  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
2816    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
2817      return true;
2818  }
2819  return false;
2820}
2821
2822/// isUndefOrInRange - Return true if Val is undef or if its value falls within
2823/// the specified range (L, H].
2824static bool isUndefOrInRange(int Val, int Low, int Hi) {
2825  return (Val < 0) || (Val >= Low && Val < Hi);
2826}
2827
2828/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2829/// specified value.
2830static bool isUndefOrEqual(int Val, int CmpVal) {
2831  if (Val < 0 || Val == CmpVal)
2832    return true;
2833  return false;
2834}
2835
2836/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2837/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
2838/// the second operand.
2839static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2840  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
2841    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
2842  if (VT == MVT::v2f64 || VT == MVT::v2i64)
2843    return (Mask[0] < 2 && Mask[1] < 2);
2844  return false;
2845}
2846
2847bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
2848  SmallVector<int, 8> M;
2849  N->getMask(M);
2850  return ::isPSHUFDMask(M, N->getValueType(0));
2851}
2852
2853/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2854/// is suitable for input to PSHUFHW.
2855static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2856  if (VT != MVT::v8i16)
2857    return false;
2858
2859  // Lower quadword copied in order or undef.
2860  for (int i = 0; i != 4; ++i)
2861    if (Mask[i] >= 0 && Mask[i] != i)
2862      return false;
2863
2864  // Upper quadword shuffled.
2865  for (int i = 4; i != 8; ++i)
2866    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
2867      return false;
2868
2869  return true;
2870}
2871
2872bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
2873  SmallVector<int, 8> M;
2874  N->getMask(M);
2875  return ::isPSHUFHWMask(M, N->getValueType(0));
2876}
2877
2878/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
2879/// is suitable for input to PSHUFLW.
2880static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2881  if (VT != MVT::v8i16)
2882    return false;
2883
2884  // Upper quadword copied in order.
2885  for (int i = 4; i != 8; ++i)
2886    if (Mask[i] >= 0 && Mask[i] != i)
2887      return false;
2888
2889  // Lower quadword shuffled.
2890  for (int i = 0; i != 4; ++i)
2891    if (Mask[i] >= 4)
2892      return false;
2893
2894  return true;
2895}
2896
2897bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
2898  SmallVector<int, 8> M;
2899  N->getMask(M);
2900  return ::isPSHUFLWMask(M, N->getValueType(0));
2901}
2902
2903/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
2904/// is suitable for input to PALIGNR.
2905static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
2906                          bool hasSSSE3) {
2907  int i, e = VT.getVectorNumElements();
2908
2909  // Do not handle v2i64 / v2f64 shuffles with palignr.
2910  if (e < 4 || !hasSSSE3)
2911    return false;
2912
2913  for (i = 0; i != e; ++i)
2914    if (Mask[i] >= 0)
2915      break;
2916
2917  // All undef, not a palignr.
2918  if (i == e)
2919    return false;
2920
2921  // Determine if it's ok to perform a palignr with only the LHS, since we
2922  // don't have access to the actual shuffle elements to see if RHS is undef.
2923  bool Unary = Mask[i] < (int)e;
2924  bool NeedsUnary = false;
2925
2926  int s = Mask[i] - i;
2927
2928  // Check the rest of the elements to see if they are consecutive.
2929  for (++i; i != e; ++i) {
2930    int m = Mask[i];
2931    if (m < 0)
2932      continue;
2933
2934    Unary = Unary && (m < (int)e);
2935    NeedsUnary = NeedsUnary || (m < s);
2936
2937    if (NeedsUnary && !Unary)
2938      return false;
2939    if (Unary && m != ((s+i) & (e-1)))
2940      return false;
2941    if (!Unary && m != (s+i))
2942      return false;
2943  }
2944  return true;
2945}
2946
2947bool X86::isPALIGNRMask(ShuffleVectorSDNode *N) {
2948  SmallVector<int, 8> M;
2949  N->getMask(M);
2950  return ::isPALIGNRMask(M, N->getValueType(0), true);
2951}
2952
2953/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2954/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2955static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2956  int NumElems = VT.getVectorNumElements();
2957  if (NumElems != 2 && NumElems != 4)
2958    return false;
2959
2960  int Half = NumElems / 2;
2961  for (int i = 0; i < Half; ++i)
2962    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2963      return false;
2964  for (int i = Half; i < NumElems; ++i)
2965    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2966      return false;
2967
2968  return true;
2969}
2970
2971bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
2972  SmallVector<int, 8> M;
2973  N->getMask(M);
2974  return ::isSHUFPMask(M, N->getValueType(0));
2975}
2976
2977/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2978/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2979/// half elements to come from vector 1 (which would equal the dest.) and
2980/// the upper half to come from vector 2.
2981static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2982  int NumElems = VT.getVectorNumElements();
2983
2984  if (NumElems != 2 && NumElems != 4)
2985    return false;
2986
2987  int Half = NumElems / 2;
2988  for (int i = 0; i < Half; ++i)
2989    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2990      return false;
2991  for (int i = Half; i < NumElems; ++i)
2992    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2993      return false;
2994  return true;
2995}
2996
2997static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
2998  SmallVector<int, 8> M;
2999  N->getMask(M);
3000  return isCommutedSHUFPMask(M, N->getValueType(0));
3001}
3002
3003/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3004/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3005bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
3006  if (N->getValueType(0).getVectorNumElements() != 4)
3007    return false;
3008
3009  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3010  return isUndefOrEqual(N->getMaskElt(0), 6) &&
3011         isUndefOrEqual(N->getMaskElt(1), 7) &&
3012         isUndefOrEqual(N->getMaskElt(2), 2) &&
3013         isUndefOrEqual(N->getMaskElt(3), 3);
3014}
3015
3016/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3017/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3018/// <2, 3, 2, 3>
3019bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
3020  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3021
3022  if (NumElems != 4)
3023    return false;
3024
3025  return isUndefOrEqual(N->getMaskElt(0), 2) &&
3026  isUndefOrEqual(N->getMaskElt(1), 3) &&
3027  isUndefOrEqual(N->getMaskElt(2), 2) &&
3028  isUndefOrEqual(N->getMaskElt(3), 3);
3029}
3030
3031/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3032/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3033bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
3034  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3035
3036  if (NumElems != 2 && NumElems != 4)
3037    return false;
3038
3039  for (unsigned i = 0; i < NumElems/2; ++i)
3040    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
3041      return false;
3042
3043  for (unsigned i = NumElems/2; i < NumElems; ++i)
3044    if (!isUndefOrEqual(N->getMaskElt(i), i))
3045      return false;
3046
3047  return true;
3048}
3049
3050/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3051/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3052bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
3053  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3054
3055  if (NumElems != 2 && NumElems != 4)
3056    return false;
3057
3058  for (unsigned i = 0; i < NumElems/2; ++i)
3059    if (!isUndefOrEqual(N->getMaskElt(i), i))
3060      return false;
3061
3062  for (unsigned i = 0; i < NumElems/2; ++i)
3063    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3064      return false;
3065
3066  return true;
3067}
3068
3069/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3070/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3071static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3072                         bool V2IsSplat = false) {
3073  int NumElts = VT.getVectorNumElements();
3074  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
3075    return false;
3076
3077  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
3078    int BitI  = Mask[i];
3079    int BitI1 = Mask[i+1];
3080    if (!isUndefOrEqual(BitI, j))
3081      return false;
3082    if (V2IsSplat) {
3083      if (!isUndefOrEqual(BitI1, NumElts))
3084        return false;
3085    } else {
3086      if (!isUndefOrEqual(BitI1, j + NumElts))
3087        return false;
3088    }
3089  }
3090  return true;
3091}
3092
3093bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3094  SmallVector<int, 8> M;
3095  N->getMask(M);
3096  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
3097}
3098
3099/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3100/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3101static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
3102                         bool V2IsSplat = false) {
3103  int NumElts = VT.getVectorNumElements();
3104  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
3105    return false;
3106
3107  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
3108    int BitI  = Mask[i];
3109    int BitI1 = Mask[i+1];
3110    if (!isUndefOrEqual(BitI, j + NumElts/2))
3111      return false;
3112    if (V2IsSplat) {
3113      if (isUndefOrEqual(BitI1, NumElts))
3114        return false;
3115    } else {
3116      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
3117        return false;
3118    }
3119  }
3120  return true;
3121}
3122
3123bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3124  SmallVector<int, 8> M;
3125  N->getMask(M);
3126  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
3127}
3128
3129/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3130/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3131/// <0, 0, 1, 1>
3132static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3133  int NumElems = VT.getVectorNumElements();
3134  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3135    return false;
3136
3137  for (int i = 0, j = 0; i != NumElems; i += 2, ++j) {
3138    int BitI  = Mask[i];
3139    int BitI1 = Mask[i+1];
3140    if (!isUndefOrEqual(BitI, j))
3141      return false;
3142    if (!isUndefOrEqual(BitI1, j))
3143      return false;
3144  }
3145  return true;
3146}
3147
3148bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
3149  SmallVector<int, 8> M;
3150  N->getMask(M);
3151  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
3152}
3153
3154/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3155/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3156/// <2, 2, 3, 3>
3157static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3158  int NumElems = VT.getVectorNumElements();
3159  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3160    return false;
3161
3162  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
3163    int BitI  = Mask[i];
3164    int BitI1 = Mask[i+1];
3165    if (!isUndefOrEqual(BitI, j))
3166      return false;
3167    if (!isUndefOrEqual(BitI1, j))
3168      return false;
3169  }
3170  return true;
3171}
3172
3173bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
3174  SmallVector<int, 8> M;
3175  N->getMask(M);
3176  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
3177}
3178
3179/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3180/// specifies a shuffle of elements that is suitable for input to MOVSS,
3181/// MOVSD, and MOVD, i.e. setting the lowest element.
3182static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3183  if (VT.getVectorElementType().getSizeInBits() < 32)
3184    return false;
3185
3186  int NumElts = VT.getVectorNumElements();
3187
3188  if (!isUndefOrEqual(Mask[0], NumElts))
3189    return false;
3190
3191  for (int i = 1; i < NumElts; ++i)
3192    if (!isUndefOrEqual(Mask[i], i))
3193      return false;
3194
3195  return true;
3196}
3197
3198bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3199  SmallVector<int, 8> M;
3200  N->getMask(M);
3201  return ::isMOVLMask(M, N->getValueType(0));
3202}
3203
3204/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3205/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3206/// element of vector 2 and the other elements to come from vector 1 in order.
3207static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3208                               bool V2IsSplat = false, bool V2IsUndef = false) {
3209  int NumOps = VT.getVectorNumElements();
3210  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3211    return false;
3212
3213  if (!isUndefOrEqual(Mask[0], 0))
3214    return false;
3215
3216  for (int i = 1; i < NumOps; ++i)
3217    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3218          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3219          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3220      return false;
3221
3222  return true;
3223}
3224
3225static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3226                           bool V2IsUndef = false) {
3227  SmallVector<int, 8> M;
3228  N->getMask(M);
3229  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
3230}
3231
3232/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3233/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3234bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
3235  if (N->getValueType(0).getVectorNumElements() != 4)
3236    return false;
3237
3238  // Expect 1, 1, 3, 3
3239  for (unsigned i = 0; i < 2; ++i) {
3240    int Elt = N->getMaskElt(i);
3241    if (Elt >= 0 && Elt != 1)
3242      return false;
3243  }
3244
3245  bool HasHi = false;
3246  for (unsigned i = 2; i < 4; ++i) {
3247    int Elt = N->getMaskElt(i);
3248    if (Elt >= 0 && Elt != 3)
3249      return false;
3250    if (Elt == 3)
3251      HasHi = true;
3252  }
3253  // Don't use movshdup if it can be done with a shufps.
3254  // FIXME: verify that matching u, u, 3, 3 is what we want.
3255  return HasHi;
3256}
3257
3258/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3259/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3260bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
3261  if (N->getValueType(0).getVectorNumElements() != 4)
3262    return false;
3263
3264  // Expect 0, 0, 2, 2
3265  for (unsigned i = 0; i < 2; ++i)
3266    if (N->getMaskElt(i) > 0)
3267      return false;
3268
3269  bool HasHi = false;
3270  for (unsigned i = 2; i < 4; ++i) {
3271    int Elt = N->getMaskElt(i);
3272    if (Elt >= 0 && Elt != 2)
3273      return false;
3274    if (Elt == 2)
3275      HasHi = true;
3276  }
3277  // Don't use movsldup if it can be done with a shufps.
3278  return HasHi;
3279}
3280
3281/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3282/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
3283bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3284  int e = N->getValueType(0).getVectorNumElements() / 2;
3285
3286  for (int i = 0; i < e; ++i)
3287    if (!isUndefOrEqual(N->getMaskElt(i), i))
3288      return false;
3289  for (int i = 0; i < e; ++i)
3290    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3291      return false;
3292  return true;
3293}
3294
3295/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3296/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3297unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
3298  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3299  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
3300
3301  unsigned Shift = (NumOperands == 4) ? 2 : 1;
3302  unsigned Mask = 0;
3303  for (int i = 0; i < NumOperands; ++i) {
3304    int Val = SVOp->getMaskElt(NumOperands-i-1);
3305    if (Val < 0) Val = 0;
3306    if (Val >= NumOperands) Val -= NumOperands;
3307    Mask |= Val;
3308    if (i != NumOperands - 1)
3309      Mask <<= Shift;
3310  }
3311  return Mask;
3312}
3313
3314/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3315/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3316unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3317  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3318  unsigned Mask = 0;
3319  // 8 nodes, but we only care about the last 4.
3320  for (unsigned i = 7; i >= 4; --i) {
3321    int Val = SVOp->getMaskElt(i);
3322    if (Val >= 0)
3323      Mask |= (Val - 4);
3324    if (i != 4)
3325      Mask <<= 2;
3326  }
3327  return Mask;
3328}
3329
3330/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3331/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3332unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
3333  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3334  unsigned Mask = 0;
3335  // 8 nodes, but we only care about the first 4.
3336  for (int i = 3; i >= 0; --i) {
3337    int Val = SVOp->getMaskElt(i);
3338    if (Val >= 0)
3339      Mask |= Val;
3340    if (i != 0)
3341      Mask <<= 2;
3342  }
3343  return Mask;
3344}
3345
3346/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3347/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3348unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
3349  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3350  EVT VVT = N->getValueType(0);
3351  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
3352  int Val = 0;
3353
3354  unsigned i, e;
3355  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
3356    Val = SVOp->getMaskElt(i);
3357    if (Val >= 0)
3358      break;
3359  }
3360  return (Val - i) * EltSize;
3361}
3362
3363/// isZeroNode - Returns true if Elt is a constant zero or a floating point
3364/// constant +0.0.
3365bool X86::isZeroNode(SDValue Elt) {
3366  return ((isa<ConstantSDNode>(Elt) &&
3367           cast<ConstantSDNode>(Elt)->isNullValue()) ||
3368          (isa<ConstantFPSDNode>(Elt) &&
3369           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
3370}
3371
3372/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
3373/// their permute mask.
3374static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
3375                                    SelectionDAG &DAG) {
3376  EVT VT = SVOp->getValueType(0);
3377  unsigned NumElems = VT.getVectorNumElements();
3378  SmallVector<int, 8> MaskVec;
3379
3380  for (unsigned i = 0; i != NumElems; ++i) {
3381    int idx = SVOp->getMaskElt(i);
3382    if (idx < 0)
3383      MaskVec.push_back(idx);
3384    else if (idx < (int)NumElems)
3385      MaskVec.push_back(idx + NumElems);
3386    else
3387      MaskVec.push_back(idx - NumElems);
3388  }
3389  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
3390                              SVOp->getOperand(0), &MaskVec[0]);
3391}
3392
3393/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3394/// the two vector operands have swapped position.
3395static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
3396  unsigned NumElems = VT.getVectorNumElements();
3397  for (unsigned i = 0; i != NumElems; ++i) {
3398    int idx = Mask[i];
3399    if (idx < 0)
3400      continue;
3401    else if (idx < (int)NumElems)
3402      Mask[i] = idx + NumElems;
3403    else
3404      Mask[i] = idx - NumElems;
3405  }
3406}
3407
3408/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
3409/// match movhlps. The lower half elements should come from upper half of
3410/// V1 (and in order), and the upper half elements should come from the upper
3411/// half of V2 (and in order).
3412static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
3413  if (Op->getValueType(0).getVectorNumElements() != 4)
3414    return false;
3415  for (unsigned i = 0, e = 2; i != e; ++i)
3416    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
3417      return false;
3418  for (unsigned i = 2; i != 4; ++i)
3419    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
3420      return false;
3421  return true;
3422}
3423
3424/// isScalarLoadToVector - Returns true if the node is a scalar load that
3425/// is promoted to a vector. It also returns the LoadSDNode by reference if
3426/// required.
3427static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
3428  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
3429    return false;
3430  N = N->getOperand(0).getNode();
3431  if (!ISD::isNON_EXTLoad(N))
3432    return false;
3433  if (LD)
3434    *LD = cast<LoadSDNode>(N);
3435  return true;
3436}
3437
3438/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
3439/// match movlp{s|d}. The lower half elements should come from lower half of
3440/// V1 (and in order), and the upper half elements should come from the upper
3441/// half of V2 (and in order). And since V1 will become the source of the
3442/// MOVLP, it must be either a vector load or a scalar load to vector.
3443static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
3444                               ShuffleVectorSDNode *Op) {
3445  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
3446    return false;
3447  // Is V2 is a vector load, don't do this transformation. We will try to use
3448  // load folding shufps op.
3449  if (ISD::isNON_EXTLoad(V2))
3450    return false;
3451
3452  unsigned NumElems = Op->getValueType(0).getVectorNumElements();
3453
3454  if (NumElems != 2 && NumElems != 4)
3455    return false;
3456  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3457    if (!isUndefOrEqual(Op->getMaskElt(i), i))
3458      return false;
3459  for (unsigned i = NumElems/2; i != NumElems; ++i)
3460    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
3461      return false;
3462  return true;
3463}
3464
3465/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
3466/// all the same.
3467static bool isSplatVector(SDNode *N) {
3468  if (N->getOpcode() != ISD::BUILD_VECTOR)
3469    return false;
3470
3471  SDValue SplatValue = N->getOperand(0);
3472  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
3473    if (N->getOperand(i) != SplatValue)
3474      return false;
3475  return true;
3476}
3477
3478/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
3479/// to an zero vector.
3480/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
3481static bool isZeroShuffle(ShuffleVectorSDNode *N) {
3482  SDValue V1 = N->getOperand(0);
3483  SDValue V2 = N->getOperand(1);
3484  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3485  for (unsigned i = 0; i != NumElems; ++i) {
3486    int Idx = N->getMaskElt(i);
3487    if (Idx >= (int)NumElems) {
3488      unsigned Opc = V2.getOpcode();
3489      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
3490        continue;
3491      if (Opc != ISD::BUILD_VECTOR ||
3492          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
3493        return false;
3494    } else if (Idx >= 0) {
3495      unsigned Opc = V1.getOpcode();
3496      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
3497        continue;
3498      if (Opc != ISD::BUILD_VECTOR ||
3499          !X86::isZeroNode(V1.getOperand(Idx)))
3500        return false;
3501    }
3502  }
3503  return true;
3504}
3505
3506/// getZeroVector - Returns a vector of specified type with all zero elements.
3507///
3508static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
3509                             DebugLoc dl) {
3510  assert(VT.isVector() && "Expected a vector type");
3511
3512  // Always build SSE zero vectors as <4 x i32> bitcasted
3513  // to their dest type. This ensures they get CSE'd.
3514  SDValue Vec;
3515  if (VT.getSizeInBits() == 128) {  // SSE
3516    if (HasSSE2) {  // SSE2
3517      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3518      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3519    } else { // SSE1
3520      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3521      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
3522    }
3523  } else if (VT.getSizeInBits() == 256) { // AVX
3524    // 256-bit logic and arithmetic instructions in AVX are
3525    // all floating-point, no support for integer ops. Default
3526    // to emitting fp zeroed vectors then.
3527    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3528    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
3529    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
3530  }
3531  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3532}
3533
3534/// getOnesVector - Returns a vector of specified type with all bits set.
3535///
3536static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3537  assert(VT.isVector() && "Expected a vector type");
3538
3539  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3540  // type.  This ensures they get CSE'd.
3541  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
3542  SDValue Vec;
3543  Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3544  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3545}
3546
3547
3548/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
3549/// that point to V2 points to its first element.
3550static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3551  EVT VT = SVOp->getValueType(0);
3552  unsigned NumElems = VT.getVectorNumElements();
3553
3554  bool Changed = false;
3555  SmallVector<int, 8> MaskVec;
3556  SVOp->getMask(MaskVec);
3557
3558  for (unsigned i = 0; i != NumElems; ++i) {
3559    if (MaskVec[i] > (int)NumElems) {
3560      MaskVec[i] = NumElems;
3561      Changed = true;
3562    }
3563  }
3564  if (Changed)
3565    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
3566                                SVOp->getOperand(1), &MaskVec[0]);
3567  return SDValue(SVOp, 0);
3568}
3569
3570/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
3571/// operation of specified width.
3572static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3573                       SDValue V2) {
3574  unsigned NumElems = VT.getVectorNumElements();
3575  SmallVector<int, 8> Mask;
3576  Mask.push_back(NumElems);
3577  for (unsigned i = 1; i != NumElems; ++i)
3578    Mask.push_back(i);
3579  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3580}
3581
3582/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
3583static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3584                          SDValue V2) {
3585  unsigned NumElems = VT.getVectorNumElements();
3586  SmallVector<int, 8> Mask;
3587  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3588    Mask.push_back(i);
3589    Mask.push_back(i + NumElems);
3590  }
3591  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3592}
3593
3594/// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
3595static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3596                          SDValue V2) {
3597  unsigned NumElems = VT.getVectorNumElements();
3598  unsigned Half = NumElems/2;
3599  SmallVector<int, 8> Mask;
3600  for (unsigned i = 0; i != Half; ++i) {
3601    Mask.push_back(i + Half);
3602    Mask.push_back(i + NumElems + Half);
3603  }
3604  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3605}
3606
3607/// PromoteSplat - Promote a splat of v4i32, v8i16 or v16i8 to v4f32.
3608static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
3609  EVT PVT = MVT::v4f32;
3610  EVT VT = SV->getValueType(0);
3611  DebugLoc dl = SV->getDebugLoc();
3612  SDValue V1 = SV->getOperand(0);
3613  int NumElems = VT.getVectorNumElements();
3614  int EltNo = SV->getSplatIndex();
3615
3616  // unpack elements to the correct location
3617  while (NumElems > 4) {
3618    if (EltNo < NumElems/2) {
3619      V1 = getUnpackl(DAG, dl, VT, V1, V1);
3620    } else {
3621      V1 = getUnpackh(DAG, dl, VT, V1, V1);
3622      EltNo -= NumElems/2;
3623    }
3624    NumElems >>= 1;
3625  }
3626
3627  // Perform the splat.
3628  int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
3629  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1);
3630  V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
3631  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, V1);
3632}
3633
3634/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3635/// vector of zero or undef vector.  This produces a shuffle where the low
3636/// element of V2 is swizzled into the zero/undef vector, landing at element
3637/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
3638static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3639                                             bool isZero, bool HasSSE2,
3640                                             SelectionDAG &DAG) {
3641  EVT VT = V2.getValueType();
3642  SDValue V1 = isZero
3643    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
3644  unsigned NumElems = VT.getVectorNumElements();
3645  SmallVector<int, 16> MaskVec;
3646  for (unsigned i = 0; i != NumElems; ++i)
3647    // If this is the insertion idx, put the low elt of V2 here.
3648    MaskVec.push_back(i == Idx ? NumElems : i);
3649  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
3650}
3651
3652/// getShuffleScalarElt - Returns the scalar element that will make up the ith
3653/// element of the result of the vector shuffle.
3654SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
3655                            unsigned Depth) {
3656  if (Depth == 6)
3657    return SDValue();  // Limit search depth.
3658
3659  SDValue V = SDValue(N, 0);
3660  EVT VT = V.getValueType();
3661  unsigned Opcode = V.getOpcode();
3662
3663  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
3664  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
3665    Index = SV->getMaskElt(Index);
3666
3667    if (Index < 0)
3668      return DAG.getUNDEF(VT.getVectorElementType());
3669
3670    int NumElems = VT.getVectorNumElements();
3671    SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
3672    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
3673  }
3674
3675  // Recurse into target specific vector shuffles to find scalars.
3676  if (isTargetShuffle(Opcode)) {
3677    int NumElems = VT.getVectorNumElements();
3678    SmallVector<unsigned, 16> ShuffleMask;
3679    SDValue ImmN;
3680
3681    switch(Opcode) {
3682    case X86ISD::SHUFPS:
3683    case X86ISD::SHUFPD:
3684      ImmN = N->getOperand(N->getNumOperands()-1);
3685      DecodeSHUFPSMask(NumElems,
3686                       cast<ConstantSDNode>(ImmN)->getZExtValue(),
3687                       ShuffleMask);
3688      break;
3689    case X86ISD::PUNPCKHBW:
3690    case X86ISD::PUNPCKHWD:
3691    case X86ISD::PUNPCKHDQ:
3692    case X86ISD::PUNPCKHQDQ:
3693      DecodePUNPCKHMask(NumElems, ShuffleMask);
3694      break;
3695    case X86ISD::UNPCKHPS:
3696    case X86ISD::UNPCKHPD:
3697      DecodeUNPCKHPMask(NumElems, ShuffleMask);
3698      break;
3699    case X86ISD::PUNPCKLBW:
3700    case X86ISD::PUNPCKLWD:
3701    case X86ISD::PUNPCKLDQ:
3702    case X86ISD::PUNPCKLQDQ:
3703      DecodePUNPCKLMask(NumElems, ShuffleMask);
3704      break;
3705    case X86ISD::UNPCKLPS:
3706    case X86ISD::UNPCKLPD:
3707      DecodeUNPCKLPMask(NumElems, ShuffleMask);
3708      break;
3709    case X86ISD::MOVHLPS:
3710      DecodeMOVHLPSMask(NumElems, ShuffleMask);
3711      break;
3712    case X86ISD::MOVLHPS:
3713      DecodeMOVLHPSMask(NumElems, ShuffleMask);
3714      break;
3715    case X86ISD::PSHUFD:
3716      ImmN = N->getOperand(N->getNumOperands()-1);
3717      DecodePSHUFMask(NumElems,
3718                      cast<ConstantSDNode>(ImmN)->getZExtValue(),
3719                      ShuffleMask);
3720      break;
3721    case X86ISD::PSHUFHW:
3722      ImmN = N->getOperand(N->getNumOperands()-1);
3723      DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
3724                        ShuffleMask);
3725      break;
3726    case X86ISD::PSHUFLW:
3727      ImmN = N->getOperand(N->getNumOperands()-1);
3728      DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
3729                        ShuffleMask);
3730      break;
3731    case X86ISD::MOVSS:
3732    case X86ISD::MOVSD: {
3733      // The index 0 always comes from the first element of the second source,
3734      // this is why MOVSS and MOVSD are used in the first place. The other
3735      // elements come from the other positions of the first source vector.
3736      unsigned OpNum = (Index == 0) ? 1 : 0;
3737      return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
3738                                 Depth+1);
3739    }
3740    default:
3741      assert("not implemented for target shuffle node");
3742      return SDValue();
3743    }
3744
3745    Index = ShuffleMask[Index];
3746    if (Index < 0)
3747      return DAG.getUNDEF(VT.getVectorElementType());
3748
3749    SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
3750    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
3751                               Depth+1);
3752  }
3753
3754  // Actual nodes that may contain scalar elements
3755  if (Opcode == ISD::BIT_CONVERT) {
3756    V = V.getOperand(0);
3757    EVT SrcVT = V.getValueType();
3758    unsigned NumElems = VT.getVectorNumElements();
3759
3760    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
3761      return SDValue();
3762  }
3763
3764  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
3765    return (Index == 0) ? V.getOperand(0)
3766                          : DAG.getUNDEF(VT.getVectorElementType());
3767
3768  if (V.getOpcode() == ISD::BUILD_VECTOR)
3769    return V.getOperand(Index);
3770
3771  return SDValue();
3772}
3773
3774/// getNumOfConsecutiveZeros - Return the number of elements of a vector
3775/// shuffle operation which come from a consecutively from a zero. The
3776/// search can start in two diferent directions, from left or right.
3777static
3778unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
3779                                  bool ZerosFromLeft, SelectionDAG &DAG) {
3780  int i = 0;
3781
3782  while (i < NumElems) {
3783    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
3784    SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
3785    if (!(Elt.getNode() &&
3786         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
3787      break;
3788    ++i;
3789  }
3790
3791  return i;
3792}
3793
3794/// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
3795/// MaskE correspond consecutively to elements from one of the vector operands,
3796/// starting from its index OpIdx. Also tell OpNum which source vector operand.
3797static
3798bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
3799                              int OpIdx, int NumElems, unsigned &OpNum) {
3800  bool SeenV1 = false;
3801  bool SeenV2 = false;
3802
3803  for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
3804    int Idx = SVOp->getMaskElt(i);
3805    // Ignore undef indicies
3806    if (Idx < 0)
3807      continue;
3808
3809    if (Idx < NumElems)
3810      SeenV1 = true;
3811    else
3812      SeenV2 = true;
3813
3814    // Only accept consecutive elements from the same vector
3815    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
3816      return false;
3817  }
3818
3819  OpNum = SeenV1 ? 0 : 1;
3820  return true;
3821}
3822
3823/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
3824/// logical left shift of a vector.
3825static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3826                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3827  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
3828  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
3829              false /* check zeros from right */, DAG);
3830  unsigned OpSrc;
3831
3832  if (!NumZeros)
3833    return false;
3834
3835  // Considering the elements in the mask that are not consecutive zeros,
3836  // check if they consecutively come from only one of the source vectors.
3837  //
3838  //               V1 = {X, A, B, C}     0
3839  //                         \  \  \    /
3840  //   vector_shuffle V1, V2 <1, 2, 3, X>
3841  //
3842  if (!isShuffleMaskConsecutive(SVOp,
3843            0,                   // Mask Start Index
3844            NumElems-NumZeros-1, // Mask End Index
3845            NumZeros,            // Where to start looking in the src vector
3846            NumElems,            // Number of elements in vector
3847            OpSrc))              // Which source operand ?
3848    return false;
3849
3850  isLeft = false;
3851  ShAmt = NumZeros;
3852  ShVal = SVOp->getOperand(OpSrc);
3853  return true;
3854}
3855
3856/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
3857/// logical left shift of a vector.
3858static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3859                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3860  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
3861  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
3862              true /* check zeros from left */, DAG);
3863  unsigned OpSrc;
3864
3865  if (!NumZeros)
3866    return false;
3867
3868  // Considering the elements in the mask that are not consecutive zeros,
3869  // check if they consecutively come from only one of the source vectors.
3870  //
3871  //                           0    { A, B, X, X } = V2
3872  //                          / \    /  /
3873  //   vector_shuffle V1, V2 <X, X, 4, 5>
3874  //
3875  if (!isShuffleMaskConsecutive(SVOp,
3876            NumZeros,     // Mask Start Index
3877            NumElems-1,   // Mask End Index
3878            0,            // Where to start looking in the src vector
3879            NumElems,     // Number of elements in vector
3880            OpSrc))       // Which source operand ?
3881    return false;
3882
3883  isLeft = true;
3884  ShAmt = NumZeros;
3885  ShVal = SVOp->getOperand(OpSrc);
3886  return true;
3887}
3888
3889/// isVectorShift - Returns true if the shuffle can be implemented as a
3890/// logical left or right shift of a vector.
3891static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3892                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3893  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
3894      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
3895    return true;
3896
3897  return false;
3898}
3899
3900/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3901///
3902static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
3903                                       unsigned NumNonZero, unsigned NumZero,
3904                                       SelectionDAG &DAG,
3905                                       const TargetLowering &TLI) {
3906  if (NumNonZero > 8)
3907    return SDValue();
3908
3909  DebugLoc dl = Op.getDebugLoc();
3910  SDValue V(0, 0);
3911  bool First = true;
3912  for (unsigned i = 0; i < 16; ++i) {
3913    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3914    if (ThisIsNonZero && First) {
3915      if (NumZero)
3916        V = getZeroVector(MVT::v8i16, true, DAG, dl);
3917      else
3918        V = DAG.getUNDEF(MVT::v8i16);
3919      First = false;
3920    }
3921
3922    if ((i & 1) != 0) {
3923      SDValue ThisElt(0, 0), LastElt(0, 0);
3924      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3925      if (LastIsNonZero) {
3926        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
3927                              MVT::i16, Op.getOperand(i-1));
3928      }
3929      if (ThisIsNonZero) {
3930        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
3931        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
3932                              ThisElt, DAG.getConstant(8, MVT::i8));
3933        if (LastIsNonZero)
3934          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
3935      } else
3936        ThisElt = LastElt;
3937
3938      if (ThisElt.getNode())
3939        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
3940                        DAG.getIntPtrConstant(i/2));
3941    }
3942  }
3943
3944  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V);
3945}
3946
3947/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3948///
3949static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
3950                                     unsigned NumNonZero, unsigned NumZero,
3951                                     SelectionDAG &DAG,
3952                                     const TargetLowering &TLI) {
3953  if (NumNonZero > 4)
3954    return SDValue();
3955
3956  DebugLoc dl = Op.getDebugLoc();
3957  SDValue V(0, 0);
3958  bool First = true;
3959  for (unsigned i = 0; i < 8; ++i) {
3960    bool isNonZero = (NonZeros & (1 << i)) != 0;
3961    if (isNonZero) {
3962      if (First) {
3963        if (NumZero)
3964          V = getZeroVector(MVT::v8i16, true, DAG, dl);
3965        else
3966          V = DAG.getUNDEF(MVT::v8i16);
3967        First = false;
3968      }
3969      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
3970                      MVT::v8i16, V, Op.getOperand(i),
3971                      DAG.getIntPtrConstant(i));
3972    }
3973  }
3974
3975  return V;
3976}
3977
3978/// getVShift - Return a vector logical shift node.
3979///
3980static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
3981                         unsigned NumBits, SelectionDAG &DAG,
3982                         const TargetLowering &TLI, DebugLoc dl) {
3983  EVT ShVT = MVT::v2i64;
3984  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3985  SrcOp = DAG.getNode(ISD::BIT_CONVERT, dl, ShVT, SrcOp);
3986  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3987                     DAG.getNode(Opc, dl, ShVT, SrcOp,
3988                             DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3989}
3990
3991SDValue
3992X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
3993                                          SelectionDAG &DAG) const {
3994
3995  // Check if the scalar load can be widened into a vector load. And if
3996  // the address is "base + cst" see if the cst can be "absorbed" into
3997  // the shuffle mask.
3998  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
3999    SDValue Ptr = LD->getBasePtr();
4000    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4001      return SDValue();
4002    EVT PVT = LD->getValueType(0);
4003    if (PVT != MVT::i32 && PVT != MVT::f32)
4004      return SDValue();
4005
4006    int FI = -1;
4007    int64_t Offset = 0;
4008    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4009      FI = FINode->getIndex();
4010      Offset = 0;
4011    } else if (Ptr.getOpcode() == ISD::ADD &&
4012               isa<ConstantSDNode>(Ptr.getOperand(1)) &&
4013               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4014      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4015      Offset = Ptr.getConstantOperandVal(1);
4016      Ptr = Ptr.getOperand(0);
4017    } else {
4018      return SDValue();
4019    }
4020
4021    SDValue Chain = LD->getChain();
4022    // Make sure the stack object alignment is at least 16.
4023    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4024    if (DAG.InferPtrAlignment(Ptr) < 16) {
4025      if (MFI->isFixedObjectIndex(FI)) {
4026        // Can't change the alignment. FIXME: It's possible to compute
4027        // the exact stack offset and reference FI + adjust offset instead.
4028        // If someone *really* cares about this. That's the way to implement it.
4029        return SDValue();
4030      } else {
4031        MFI->setObjectAlignment(FI, 16);
4032      }
4033    }
4034
4035    // (Offset % 16) must be multiple of 4. Then address is then
4036    // Ptr + (Offset & ~15).
4037    if (Offset < 0)
4038      return SDValue();
4039    if ((Offset % 16) & 3)
4040      return SDValue();
4041    int64_t StartOffset = Offset & ~15;
4042    if (StartOffset)
4043      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4044                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4045
4046    int EltNo = (Offset - StartOffset) >> 2;
4047    int Mask[4] = { EltNo, EltNo, EltNo, EltNo };
4048    EVT VT = (PVT == MVT::i32) ? MVT::v4i32 : MVT::v4f32;
4049    SDValue V1 = DAG.getLoad(VT, dl, Chain, Ptr,
4050                             LD->getPointerInfo().getWithOffset(StartOffset),
4051                             false, false, 0);
4052    // Canonicalize it to a v4i32 shuffle.
4053    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32, V1);
4054    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4055                       DAG.getVectorShuffle(MVT::v4i32, dl, V1,
4056                                            DAG.getUNDEF(MVT::v4i32),&Mask[0]));
4057  }
4058
4059  return SDValue();
4060}
4061
4062/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4063/// vector of type 'VT', see if the elements can be replaced by a single large
4064/// load which has the same value as a build_vector whose operands are 'elts'.
4065///
4066/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4067///
4068/// FIXME: we'd also like to handle the case where the last elements are zero
4069/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4070/// There's even a handy isZeroNode for that purpose.
4071static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4072                                        DebugLoc &DL, SelectionDAG &DAG) {
4073  EVT EltVT = VT.getVectorElementType();
4074  unsigned NumElems = Elts.size();
4075
4076  LoadSDNode *LDBase = NULL;
4077  unsigned LastLoadedElt = -1U;
4078
4079  // For each element in the initializer, see if we've found a load or an undef.
4080  // If we don't find an initial load element, or later load elements are
4081  // non-consecutive, bail out.
4082  for (unsigned i = 0; i < NumElems; ++i) {
4083    SDValue Elt = Elts[i];
4084
4085    if (!Elt.getNode() ||
4086        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4087      return SDValue();
4088    if (!LDBase) {
4089      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4090        return SDValue();
4091      LDBase = cast<LoadSDNode>(Elt.getNode());
4092      LastLoadedElt = i;
4093      continue;
4094    }
4095    if (Elt.getOpcode() == ISD::UNDEF)
4096      continue;
4097
4098    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4099    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4100      return SDValue();
4101    LastLoadedElt = i;
4102  }
4103
4104  // If we have found an entire vector of loads and undefs, then return a large
4105  // load of the entire vector width starting at the base pointer.  If we found
4106  // consecutive loads for the low half, generate a vzext_load node.
4107  if (LastLoadedElt == NumElems - 1) {
4108    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4109      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4110                         LDBase->getPointerInfo(),
4111                         LDBase->isVolatile(), LDBase->isNonTemporal(), 0);
4112    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4113                       LDBase->getPointerInfo(),
4114                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4115                       LDBase->getAlignment());
4116  } else if (NumElems == 4 && LastLoadedElt == 1) {
4117    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4118    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4119    SDValue ResNode = DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys,
4120                                              Ops, 2, MVT::i32,
4121                                              LDBase->getMemOperand());
4122    return DAG.getNode(ISD::BIT_CONVERT, DL, VT, ResNode);
4123  }
4124  return SDValue();
4125}
4126
4127SDValue
4128X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
4129  DebugLoc dl = Op.getDebugLoc();
4130  // All zero's are handled with pxor in SSE2 and above, xorps in SSE1.
4131  // All one's are handled with pcmpeqd. In AVX, zero's are handled with
4132  // vpxor in 128-bit and xor{pd,ps} in 256-bit, but no 256 version of pcmpeqd
4133  // is present, so AllOnes is ignored.
4134  if (ISD::isBuildVectorAllZeros(Op.getNode()) ||
4135      (Op.getValueType().getSizeInBits() != 256 &&
4136       ISD::isBuildVectorAllOnes(Op.getNode()))) {
4137    // Canonicalize this to <4 x i32> (SSE) to
4138    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
4139    // eliminated on x86-32 hosts.
4140    if (Op.getValueType() == MVT::v4i32)
4141      return Op;
4142
4143    if (ISD::isBuildVectorAllOnes(Op.getNode()))
4144      return getOnesVector(Op.getValueType(), DAG, dl);
4145    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
4146  }
4147
4148  EVT VT = Op.getValueType();
4149  EVT ExtVT = VT.getVectorElementType();
4150  unsigned EVTBits = ExtVT.getSizeInBits();
4151
4152  unsigned NumElems = Op.getNumOperands();
4153  unsigned NumZero  = 0;
4154  unsigned NumNonZero = 0;
4155  unsigned NonZeros = 0;
4156  bool IsAllConstants = true;
4157  SmallSet<SDValue, 8> Values;
4158  for (unsigned i = 0; i < NumElems; ++i) {
4159    SDValue Elt = Op.getOperand(i);
4160    if (Elt.getOpcode() == ISD::UNDEF)
4161      continue;
4162    Values.insert(Elt);
4163    if (Elt.getOpcode() != ISD::Constant &&
4164        Elt.getOpcode() != ISD::ConstantFP)
4165      IsAllConstants = false;
4166    if (X86::isZeroNode(Elt))
4167      NumZero++;
4168    else {
4169      NonZeros |= (1 << i);
4170      NumNonZero++;
4171    }
4172  }
4173
4174  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
4175  if (NumNonZero == 0)
4176    return DAG.getUNDEF(VT);
4177
4178  // Special case for single non-zero, non-undef, element.
4179  if (NumNonZero == 1) {
4180    unsigned Idx = CountTrailingZeros_32(NonZeros);
4181    SDValue Item = Op.getOperand(Idx);
4182
4183    // If this is an insertion of an i64 value on x86-32, and if the top bits of
4184    // the value are obviously zero, truncate the value to i32 and do the
4185    // insertion that way.  Only do this if the value is non-constant or if the
4186    // value is a constant being inserted into element 0.  It is cheaper to do
4187    // a constant pool load than it is to do a movd + shuffle.
4188    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
4189        (!IsAllConstants || Idx == 0)) {
4190      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
4191        // Handle SSE only.
4192        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
4193        EVT VecVT = MVT::v4i32;
4194        unsigned VecElts = 4;
4195
4196        // Truncate the value (which may itself be a constant) to i32, and
4197        // convert it to a vector with movd (S2V+shuffle to zero extend).
4198        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
4199        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
4200        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
4201                                           Subtarget->hasSSE2(), DAG);
4202
4203        // Now we have our 32-bit value zero extended in the low element of
4204        // a vector.  If Idx != 0, swizzle it into place.
4205        if (Idx != 0) {
4206          SmallVector<int, 4> Mask;
4207          Mask.push_back(Idx);
4208          for (unsigned i = 1; i != VecElts; ++i)
4209            Mask.push_back(i);
4210          Item = DAG.getVectorShuffle(VecVT, dl, Item,
4211                                      DAG.getUNDEF(Item.getValueType()),
4212                                      &Mask[0]);
4213        }
4214        return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Item);
4215      }
4216    }
4217
4218    // If we have a constant or non-constant insertion into the low element of
4219    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
4220    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
4221    // depending on what the source datatype is.
4222    if (Idx == 0) {
4223      if (NumZero == 0) {
4224        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4225      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
4226          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
4227        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4228        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
4229        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
4230                                           DAG);
4231      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
4232        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
4233        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
4234        EVT MiddleVT = MVT::v4i32;
4235        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
4236        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
4237                                           Subtarget->hasSSE2(), DAG);
4238        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Item);
4239      }
4240    }
4241
4242    // Is it a vector logical left shift?
4243    if (NumElems == 2 && Idx == 1 &&
4244        X86::isZeroNode(Op.getOperand(0)) &&
4245        !X86::isZeroNode(Op.getOperand(1))) {
4246      unsigned NumBits = VT.getSizeInBits();
4247      return getVShift(true, VT,
4248                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4249                                   VT, Op.getOperand(1)),
4250                       NumBits/2, DAG, *this, dl);
4251    }
4252
4253    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
4254      return SDValue();
4255
4256    // Otherwise, if this is a vector with i32 or f32 elements, and the element
4257    // is a non-constant being inserted into an element other than the low one,
4258    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
4259    // movd/movss) to move this into the low element, then shuffle it into
4260    // place.
4261    if (EVTBits == 32) {
4262      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4263
4264      // Turn it into a shuffle of zero and zero-extended scalar to vector.
4265      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
4266                                         Subtarget->hasSSE2(), DAG);
4267      SmallVector<int, 8> MaskVec;
4268      for (unsigned i = 0; i < NumElems; i++)
4269        MaskVec.push_back(i == Idx ? 0 : 1);
4270      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
4271    }
4272  }
4273
4274  // Splat is obviously ok. Let legalizer expand it to a shuffle.
4275  if (Values.size() == 1) {
4276    if (EVTBits == 32) {
4277      // Instead of a shuffle like this:
4278      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
4279      // Check if it's possible to issue this instead.
4280      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
4281      unsigned Idx = CountTrailingZeros_32(NonZeros);
4282      SDValue Item = Op.getOperand(Idx);
4283      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
4284        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
4285    }
4286    return SDValue();
4287  }
4288
4289  // A vector full of immediates; various special cases are already
4290  // handled, so this is best done with a single constant-pool load.
4291  if (IsAllConstants)
4292    return SDValue();
4293
4294  // Let legalizer expand 2-wide build_vectors.
4295  if (EVTBits == 64) {
4296    if (NumNonZero == 1) {
4297      // One half is zero or undef.
4298      unsigned Idx = CountTrailingZeros_32(NonZeros);
4299      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
4300                                 Op.getOperand(Idx));
4301      return getShuffleVectorZeroOrUndef(V2, Idx, true,
4302                                         Subtarget->hasSSE2(), DAG);
4303    }
4304    return SDValue();
4305  }
4306
4307  // If element VT is < 32 bits, convert it to inserts into a zero vector.
4308  if (EVTBits == 8 && NumElems == 16) {
4309    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
4310                                        *this);
4311    if (V.getNode()) return V;
4312  }
4313
4314  if (EVTBits == 16 && NumElems == 8) {
4315    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
4316                                      *this);
4317    if (V.getNode()) return V;
4318  }
4319
4320  // If element VT is == 32 bits, turn it into a number of shuffles.
4321  SmallVector<SDValue, 8> V;
4322  V.resize(NumElems);
4323  if (NumElems == 4 && NumZero > 0) {
4324    for (unsigned i = 0; i < 4; ++i) {
4325      bool isZero = !(NonZeros & (1 << i));
4326      if (isZero)
4327        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4328      else
4329        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4330    }
4331
4332    for (unsigned i = 0; i < 2; ++i) {
4333      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
4334        default: break;
4335        case 0:
4336          V[i] = V[i*2];  // Must be a zero vector.
4337          break;
4338        case 1:
4339          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
4340          break;
4341        case 2:
4342          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
4343          break;
4344        case 3:
4345          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
4346          break;
4347      }
4348    }
4349
4350    SmallVector<int, 8> MaskVec;
4351    bool Reverse = (NonZeros & 0x3) == 2;
4352    for (unsigned i = 0; i < 2; ++i)
4353      MaskVec.push_back(Reverse ? 1-i : i);
4354    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
4355    for (unsigned i = 0; i < 2; ++i)
4356      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
4357    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
4358  }
4359
4360  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
4361    // Check for a build vector of consecutive loads.
4362    for (unsigned i = 0; i < NumElems; ++i)
4363      V[i] = Op.getOperand(i);
4364
4365    // Check for elements which are consecutive loads.
4366    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
4367    if (LD.getNode())
4368      return LD;
4369
4370    // For SSE 4.1, use insertps to put the high elements into the low element.
4371    if (getSubtarget()->hasSSE41()) {
4372      SDValue Result;
4373      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
4374        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
4375      else
4376        Result = DAG.getUNDEF(VT);
4377
4378      for (unsigned i = 1; i < NumElems; ++i) {
4379        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
4380        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
4381                             Op.getOperand(i), DAG.getIntPtrConstant(i));
4382      }
4383      return Result;
4384    }
4385
4386    // Otherwise, expand into a number of unpckl*, start by extending each of
4387    // our (non-undef) elements to the full vector width with the element in the
4388    // bottom slot of the vector (which generates no code for SSE).
4389    for (unsigned i = 0; i < NumElems; ++i) {
4390      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
4391        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4392      else
4393        V[i] = DAG.getUNDEF(VT);
4394    }
4395
4396    // Next, we iteratively mix elements, e.g. for v4f32:
4397    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
4398    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
4399    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
4400    unsigned EltStride = NumElems >> 1;
4401    while (EltStride != 0) {
4402      for (unsigned i = 0; i < EltStride; ++i) {
4403        // If V[i+EltStride] is undef and this is the first round of mixing,
4404        // then it is safe to just drop this shuffle: V[i] is already in the
4405        // right place, the one element (since it's the first round) being
4406        // inserted as undef can be dropped.  This isn't safe for successive
4407        // rounds because they will permute elements within both vectors.
4408        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
4409            EltStride == NumElems/2)
4410          continue;
4411
4412        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
4413      }
4414      EltStride >>= 1;
4415    }
4416    return V[0];
4417  }
4418  return SDValue();
4419}
4420
4421SDValue
4422X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
4423  // We support concatenate two MMX registers and place them in a MMX
4424  // register.  This is better than doing a stack convert.
4425  DebugLoc dl = Op.getDebugLoc();
4426  EVT ResVT = Op.getValueType();
4427  assert(Op.getNumOperands() == 2);
4428  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
4429         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
4430  int Mask[2];
4431  SDValue InVec = DAG.getNode(ISD::BIT_CONVERT,dl, MVT::v1i64, Op.getOperand(0));
4432  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4433  InVec = Op.getOperand(1);
4434  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4435    unsigned NumElts = ResVT.getVectorNumElements();
4436    VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
4437    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
4438                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
4439  } else {
4440    InVec = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v1i64, InVec);
4441    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4442    Mask[0] = 0; Mask[1] = 2;
4443    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
4444  }
4445  return DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
4446}
4447
4448// v8i16 shuffles - Prefer shuffles in the following order:
4449// 1. [all]   pshuflw, pshufhw, optional move
4450// 2. [ssse3] 1 x pshufb
4451// 3. [ssse3] 2 x pshufb + 1 x por
4452// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
4453SDValue
4454X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
4455                                            SelectionDAG &DAG) const {
4456  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4457  SDValue V1 = SVOp->getOperand(0);
4458  SDValue V2 = SVOp->getOperand(1);
4459  DebugLoc dl = SVOp->getDebugLoc();
4460  SmallVector<int, 8> MaskVals;
4461
4462  // Determine if more than 1 of the words in each of the low and high quadwords
4463  // of the result come from the same quadword of one of the two inputs.  Undef
4464  // mask values count as coming from any quadword, for better codegen.
4465  SmallVector<unsigned, 4> LoQuad(4);
4466  SmallVector<unsigned, 4> HiQuad(4);
4467  BitVector InputQuads(4);
4468  for (unsigned i = 0; i < 8; ++i) {
4469    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
4470    int EltIdx = SVOp->getMaskElt(i);
4471    MaskVals.push_back(EltIdx);
4472    if (EltIdx < 0) {
4473      ++Quad[0];
4474      ++Quad[1];
4475      ++Quad[2];
4476      ++Quad[3];
4477      continue;
4478    }
4479    ++Quad[EltIdx / 4];
4480    InputQuads.set(EltIdx / 4);
4481  }
4482
4483  int BestLoQuad = -1;
4484  unsigned MaxQuad = 1;
4485  for (unsigned i = 0; i < 4; ++i) {
4486    if (LoQuad[i] > MaxQuad) {
4487      BestLoQuad = i;
4488      MaxQuad = LoQuad[i];
4489    }
4490  }
4491
4492  int BestHiQuad = -1;
4493  MaxQuad = 1;
4494  for (unsigned i = 0; i < 4; ++i) {
4495    if (HiQuad[i] > MaxQuad) {
4496      BestHiQuad = i;
4497      MaxQuad = HiQuad[i];
4498    }
4499  }
4500
4501  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
4502  // of the two input vectors, shuffle them into one input vector so only a
4503  // single pshufb instruction is necessary. If There are more than 2 input
4504  // quads, disable the next transformation since it does not help SSSE3.
4505  bool V1Used = InputQuads[0] || InputQuads[1];
4506  bool V2Used = InputQuads[2] || InputQuads[3];
4507  if (Subtarget->hasSSSE3()) {
4508    if (InputQuads.count() == 2 && V1Used && V2Used) {
4509      BestLoQuad = InputQuads.find_first();
4510      BestHiQuad = InputQuads.find_next(BestLoQuad);
4511    }
4512    if (InputQuads.count() > 2) {
4513      BestLoQuad = -1;
4514      BestHiQuad = -1;
4515    }
4516  }
4517
4518  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
4519  // the shuffle mask.  If a quad is scored as -1, that means that it contains
4520  // words from all 4 input quadwords.
4521  SDValue NewV;
4522  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
4523    SmallVector<int, 8> MaskV;
4524    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
4525    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
4526    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
4527                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V1),
4528                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V2), &MaskV[0]);
4529    NewV = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, NewV);
4530
4531    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
4532    // source words for the shuffle, to aid later transformations.
4533    bool AllWordsInNewV = true;
4534    bool InOrder[2] = { true, true };
4535    for (unsigned i = 0; i != 8; ++i) {
4536      int idx = MaskVals[i];
4537      if (idx != (int)i)
4538        InOrder[i/4] = false;
4539      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
4540        continue;
4541      AllWordsInNewV = false;
4542      break;
4543    }
4544
4545    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
4546    if (AllWordsInNewV) {
4547      for (int i = 0; i != 8; ++i) {
4548        int idx = MaskVals[i];
4549        if (idx < 0)
4550          continue;
4551        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
4552        if ((idx != i) && idx < 4)
4553          pshufhw = false;
4554        if ((idx != i) && idx > 3)
4555          pshuflw = false;
4556      }
4557      V1 = NewV;
4558      V2Used = false;
4559      BestLoQuad = 0;
4560      BestHiQuad = 1;
4561    }
4562
4563    // If we've eliminated the use of V2, and the new mask is a pshuflw or
4564    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
4565    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
4566      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
4567      unsigned TargetMask = 0;
4568      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
4569                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
4570      TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
4571                             X86::getShufflePSHUFLWImmediate(NewV.getNode());
4572      V1 = NewV.getOperand(0);
4573      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
4574    }
4575  }
4576
4577  // If we have SSSE3, and all words of the result are from 1 input vector,
4578  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
4579  // is present, fall back to case 4.
4580  if (Subtarget->hasSSSE3()) {
4581    SmallVector<SDValue,16> pshufbMask;
4582
4583    // If we have elements from both input vectors, set the high bit of the
4584    // shuffle mask element to zero out elements that come from V2 in the V1
4585    // mask, and elements that come from V1 in the V2 mask, so that the two
4586    // results can be OR'd together.
4587    bool TwoInputs = V1Used && V2Used;
4588    for (unsigned i = 0; i != 8; ++i) {
4589      int EltIdx = MaskVals[i] * 2;
4590      if (TwoInputs && (EltIdx >= 16)) {
4591        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4592        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4593        continue;
4594      }
4595      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
4596      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
4597    }
4598    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V1);
4599    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4600                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4601                                 MVT::v16i8, &pshufbMask[0], 16));
4602    if (!TwoInputs)
4603      return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4604
4605    // Calculate the shuffle mask for the second input, shuffle it, and
4606    // OR it with the first shuffled input.
4607    pshufbMask.clear();
4608    for (unsigned i = 0; i != 8; ++i) {
4609      int EltIdx = MaskVals[i] * 2;
4610      if (EltIdx < 16) {
4611        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4612        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4613        continue;
4614      }
4615      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4616      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
4617    }
4618    V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V2);
4619    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4620                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4621                                 MVT::v16i8, &pshufbMask[0], 16));
4622    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4623    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4624  }
4625
4626  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
4627  // and update MaskVals with new element order.
4628  BitVector InOrder(8);
4629  if (BestLoQuad >= 0) {
4630    SmallVector<int, 8> MaskV;
4631    for (int i = 0; i != 4; ++i) {
4632      int idx = MaskVals[i];
4633      if (idx < 0) {
4634        MaskV.push_back(-1);
4635        InOrder.set(i);
4636      } else if ((idx / 4) == BestLoQuad) {
4637        MaskV.push_back(idx & 3);
4638        InOrder.set(i);
4639      } else {
4640        MaskV.push_back(-1);
4641      }
4642    }
4643    for (unsigned i = 4; i != 8; ++i)
4644      MaskV.push_back(i);
4645    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4646                                &MaskV[0]);
4647
4648    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
4649      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
4650                               NewV.getOperand(0),
4651                               X86::getShufflePSHUFLWImmediate(NewV.getNode()),
4652                               DAG);
4653  }
4654
4655  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
4656  // and update MaskVals with the new element order.
4657  if (BestHiQuad >= 0) {
4658    SmallVector<int, 8> MaskV;
4659    for (unsigned i = 0; i != 4; ++i)
4660      MaskV.push_back(i);
4661    for (unsigned i = 4; i != 8; ++i) {
4662      int idx = MaskVals[i];
4663      if (idx < 0) {
4664        MaskV.push_back(-1);
4665        InOrder.set(i);
4666      } else if ((idx / 4) == BestHiQuad) {
4667        MaskV.push_back((idx & 3) + 4);
4668        InOrder.set(i);
4669      } else {
4670        MaskV.push_back(-1);
4671      }
4672    }
4673    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4674                                &MaskV[0]);
4675
4676    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
4677      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
4678                              NewV.getOperand(0),
4679                              X86::getShufflePSHUFHWImmediate(NewV.getNode()),
4680                              DAG);
4681  }
4682
4683  // In case BestHi & BestLo were both -1, which means each quadword has a word
4684  // from each of the four input quadwords, calculate the InOrder bitvector now
4685  // before falling through to the insert/extract cleanup.
4686  if (BestLoQuad == -1 && BestHiQuad == -1) {
4687    NewV = V1;
4688    for (int i = 0; i != 8; ++i)
4689      if (MaskVals[i] < 0 || MaskVals[i] == i)
4690        InOrder.set(i);
4691  }
4692
4693  // The other elements are put in the right place using pextrw and pinsrw.
4694  for (unsigned i = 0; i != 8; ++i) {
4695    if (InOrder[i])
4696      continue;
4697    int EltIdx = MaskVals[i];
4698    if (EltIdx < 0)
4699      continue;
4700    SDValue ExtOp = (EltIdx < 8)
4701    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
4702                  DAG.getIntPtrConstant(EltIdx))
4703    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
4704                  DAG.getIntPtrConstant(EltIdx - 8));
4705    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
4706                       DAG.getIntPtrConstant(i));
4707  }
4708  return NewV;
4709}
4710
4711// v16i8 shuffles - Prefer shuffles in the following order:
4712// 1. [ssse3] 1 x pshufb
4713// 2. [ssse3] 2 x pshufb + 1 x por
4714// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
4715static
4716SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
4717                                 SelectionDAG &DAG,
4718                                 const X86TargetLowering &TLI) {
4719  SDValue V1 = SVOp->getOperand(0);
4720  SDValue V2 = SVOp->getOperand(1);
4721  DebugLoc dl = SVOp->getDebugLoc();
4722  SmallVector<int, 16> MaskVals;
4723  SVOp->getMask(MaskVals);
4724
4725  // If we have SSSE3, case 1 is generated when all result bytes come from
4726  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
4727  // present, fall back to case 3.
4728  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
4729  bool V1Only = true;
4730  bool V2Only = true;
4731  for (unsigned i = 0; i < 16; ++i) {
4732    int EltIdx = MaskVals[i];
4733    if (EltIdx < 0)
4734      continue;
4735    if (EltIdx < 16)
4736      V2Only = false;
4737    else
4738      V1Only = false;
4739  }
4740
4741  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
4742  if (TLI.getSubtarget()->hasSSSE3()) {
4743    SmallVector<SDValue,16> pshufbMask;
4744
4745    // If all result elements are from one input vector, then only translate
4746    // undef mask values to 0x80 (zero out result) in the pshufb mask.
4747    //
4748    // Otherwise, we have elements from both input vectors, and must zero out
4749    // elements that come from V2 in the first mask, and V1 in the second mask
4750    // so that we can OR them together.
4751    bool TwoInputs = !(V1Only || V2Only);
4752    for (unsigned i = 0; i != 16; ++i) {
4753      int EltIdx = MaskVals[i];
4754      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
4755        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4756        continue;
4757      }
4758      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
4759    }
4760    // If all the elements are from V2, assign it to V1 and return after
4761    // building the first pshufb.
4762    if (V2Only)
4763      V1 = V2;
4764    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4765                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4766                                 MVT::v16i8, &pshufbMask[0], 16));
4767    if (!TwoInputs)
4768      return V1;
4769
4770    // Calculate the shuffle mask for the second input, shuffle it, and
4771    // OR it with the first shuffled input.
4772    pshufbMask.clear();
4773    for (unsigned i = 0; i != 16; ++i) {
4774      int EltIdx = MaskVals[i];
4775      if (EltIdx < 16) {
4776        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4777        continue;
4778      }
4779      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4780    }
4781    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4782                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4783                                 MVT::v16i8, &pshufbMask[0], 16));
4784    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4785  }
4786
4787  // No SSSE3 - Calculate in place words and then fix all out of place words
4788  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
4789  // the 16 different words that comprise the two doublequadword input vectors.
4790  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4791  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V2);
4792  SDValue NewV = V2Only ? V2 : V1;
4793  for (int i = 0; i != 8; ++i) {
4794    int Elt0 = MaskVals[i*2];
4795    int Elt1 = MaskVals[i*2+1];
4796
4797    // This word of the result is all undef, skip it.
4798    if (Elt0 < 0 && Elt1 < 0)
4799      continue;
4800
4801    // This word of the result is already in the correct place, skip it.
4802    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
4803      continue;
4804    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
4805      continue;
4806
4807    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
4808    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
4809    SDValue InsElt;
4810
4811    // If Elt0 and Elt1 are defined, are consecutive, and can be load
4812    // using a single extract together, load it and store it.
4813    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
4814      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4815                           DAG.getIntPtrConstant(Elt1 / 2));
4816      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4817                        DAG.getIntPtrConstant(i));
4818      continue;
4819    }
4820
4821    // If Elt1 is defined, extract it from the appropriate source.  If the
4822    // source byte is not also odd, shift the extracted word left 8 bits
4823    // otherwise clear the bottom 8 bits if we need to do an or.
4824    if (Elt1 >= 0) {
4825      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4826                           DAG.getIntPtrConstant(Elt1 / 2));
4827      if ((Elt1 & 1) == 0)
4828        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
4829                             DAG.getConstant(8, TLI.getShiftAmountTy()));
4830      else if (Elt0 >= 0)
4831        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
4832                             DAG.getConstant(0xFF00, MVT::i16));
4833    }
4834    // If Elt0 is defined, extract it from the appropriate source.  If the
4835    // source byte is not also even, shift the extracted word right 8 bits. If
4836    // Elt1 was also defined, OR the extracted values together before
4837    // inserting them in the result.
4838    if (Elt0 >= 0) {
4839      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
4840                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
4841      if ((Elt0 & 1) != 0)
4842        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
4843                              DAG.getConstant(8, TLI.getShiftAmountTy()));
4844      else if (Elt1 >= 0)
4845        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
4846                             DAG.getConstant(0x00FF, MVT::i16));
4847      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
4848                         : InsElt0;
4849    }
4850    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4851                       DAG.getIntPtrConstant(i));
4852  }
4853  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, NewV);
4854}
4855
4856/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
4857/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
4858/// done when every pair / quad of shuffle mask elements point to elements in
4859/// the right sequence. e.g.
4860/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
4861static
4862SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
4863                                 SelectionDAG &DAG, DebugLoc dl) {
4864  EVT VT = SVOp->getValueType(0);
4865  SDValue V1 = SVOp->getOperand(0);
4866  SDValue V2 = SVOp->getOperand(1);
4867  unsigned NumElems = VT.getVectorNumElements();
4868  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
4869  EVT NewVT;
4870  switch (VT.getSimpleVT().SimpleTy) {
4871  default: assert(false && "Unexpected!");
4872  case MVT::v4f32: NewVT = MVT::v2f64; break;
4873  case MVT::v4i32: NewVT = MVT::v2i64; break;
4874  case MVT::v8i16: NewVT = MVT::v4i32; break;
4875  case MVT::v16i8: NewVT = MVT::v4i32; break;
4876  }
4877
4878  int Scale = NumElems / NewWidth;
4879  SmallVector<int, 8> MaskVec;
4880  for (unsigned i = 0; i < NumElems; i += Scale) {
4881    int StartIdx = -1;
4882    for (int j = 0; j < Scale; ++j) {
4883      int EltIdx = SVOp->getMaskElt(i+j);
4884      if (EltIdx < 0)
4885        continue;
4886      if (StartIdx == -1)
4887        StartIdx = EltIdx - (EltIdx % Scale);
4888      if (EltIdx != StartIdx + j)
4889        return SDValue();
4890    }
4891    if (StartIdx == -1)
4892      MaskVec.push_back(-1);
4893    else
4894      MaskVec.push_back(StartIdx / Scale);
4895  }
4896
4897  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V1);
4898  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V2);
4899  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
4900}
4901
4902/// getVZextMovL - Return a zero-extending vector move low node.
4903///
4904static SDValue getVZextMovL(EVT VT, EVT OpVT,
4905                            SDValue SrcOp, SelectionDAG &DAG,
4906                            const X86Subtarget *Subtarget, DebugLoc dl) {
4907  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
4908    LoadSDNode *LD = NULL;
4909    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
4910      LD = dyn_cast<LoadSDNode>(SrcOp);
4911    if (!LD) {
4912      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
4913      // instead.
4914      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
4915      if ((ExtVT.SimpleTy != MVT::i64 || Subtarget->is64Bit()) &&
4916          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
4917          SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
4918          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
4919        // PR2108
4920        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
4921        return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4922                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4923                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4924                                                   OpVT,
4925                                                   SrcOp.getOperand(0)
4926                                                          .getOperand(0))));
4927      }
4928    }
4929  }
4930
4931  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4932                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4933                                 DAG.getNode(ISD::BIT_CONVERT, dl,
4934                                             OpVT, SrcOp)));
4935}
4936
4937/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
4938/// shuffles.
4939static SDValue
4940LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4941  SDValue V1 = SVOp->getOperand(0);
4942  SDValue V2 = SVOp->getOperand(1);
4943  DebugLoc dl = SVOp->getDebugLoc();
4944  EVT VT = SVOp->getValueType(0);
4945
4946  SmallVector<std::pair<int, int>, 8> Locs;
4947  Locs.resize(4);
4948  SmallVector<int, 8> Mask1(4U, -1);
4949  SmallVector<int, 8> PermMask;
4950  SVOp->getMask(PermMask);
4951
4952  unsigned NumHi = 0;
4953  unsigned NumLo = 0;
4954  for (unsigned i = 0; i != 4; ++i) {
4955    int Idx = PermMask[i];
4956    if (Idx < 0) {
4957      Locs[i] = std::make_pair(-1, -1);
4958    } else {
4959      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
4960      if (Idx < 4) {
4961        Locs[i] = std::make_pair(0, NumLo);
4962        Mask1[NumLo] = Idx;
4963        NumLo++;
4964      } else {
4965        Locs[i] = std::make_pair(1, NumHi);
4966        if (2+NumHi < 4)
4967          Mask1[2+NumHi] = Idx;
4968        NumHi++;
4969      }
4970    }
4971  }
4972
4973  if (NumLo <= 2 && NumHi <= 2) {
4974    // If no more than two elements come from either vector. This can be
4975    // implemented with two shuffles. First shuffle gather the elements.
4976    // The second shuffle, which takes the first shuffle as both of its
4977    // vector operands, put the elements into the right order.
4978    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4979
4980    SmallVector<int, 8> Mask2(4U, -1);
4981
4982    for (unsigned i = 0; i != 4; ++i) {
4983      if (Locs[i].first == -1)
4984        continue;
4985      else {
4986        unsigned Idx = (i < 2) ? 0 : 4;
4987        Idx += Locs[i].first * 2 + Locs[i].second;
4988        Mask2[i] = Idx;
4989      }
4990    }
4991
4992    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
4993  } else if (NumLo == 3 || NumHi == 3) {
4994    // Otherwise, we must have three elements from one vector, call it X, and
4995    // one element from the other, call it Y.  First, use a shufps to build an
4996    // intermediate vector with the one element from Y and the element from X
4997    // that will be in the same half in the final destination (the indexes don't
4998    // matter). Then, use a shufps to build the final vector, taking the half
4999    // containing the element from Y from the intermediate, and the other half
5000    // from X.
5001    if (NumHi == 3) {
5002      // Normalize it so the 3 elements come from V1.
5003      CommuteVectorShuffleMask(PermMask, VT);
5004      std::swap(V1, V2);
5005    }
5006
5007    // Find the element from V2.
5008    unsigned HiIndex;
5009    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
5010      int Val = PermMask[HiIndex];
5011      if (Val < 0)
5012        continue;
5013      if (Val >= 4)
5014        break;
5015    }
5016
5017    Mask1[0] = PermMask[HiIndex];
5018    Mask1[1] = -1;
5019    Mask1[2] = PermMask[HiIndex^1];
5020    Mask1[3] = -1;
5021    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5022
5023    if (HiIndex >= 2) {
5024      Mask1[0] = PermMask[0];
5025      Mask1[1] = PermMask[1];
5026      Mask1[2] = HiIndex & 1 ? 6 : 4;
5027      Mask1[3] = HiIndex & 1 ? 4 : 6;
5028      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5029    } else {
5030      Mask1[0] = HiIndex & 1 ? 2 : 0;
5031      Mask1[1] = HiIndex & 1 ? 0 : 2;
5032      Mask1[2] = PermMask[2];
5033      Mask1[3] = PermMask[3];
5034      if (Mask1[2] >= 0)
5035        Mask1[2] += 4;
5036      if (Mask1[3] >= 0)
5037        Mask1[3] += 4;
5038      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
5039    }
5040  }
5041
5042  // Break it into (shuffle shuffle_hi, shuffle_lo).
5043  Locs.clear();
5044  SmallVector<int,8> LoMask(4U, -1);
5045  SmallVector<int,8> HiMask(4U, -1);
5046
5047  SmallVector<int,8> *MaskPtr = &LoMask;
5048  unsigned MaskIdx = 0;
5049  unsigned LoIdx = 0;
5050  unsigned HiIdx = 2;
5051  for (unsigned i = 0; i != 4; ++i) {
5052    if (i == 2) {
5053      MaskPtr = &HiMask;
5054      MaskIdx = 1;
5055      LoIdx = 0;
5056      HiIdx = 2;
5057    }
5058    int Idx = PermMask[i];
5059    if (Idx < 0) {
5060      Locs[i] = std::make_pair(-1, -1);
5061    } else if (Idx < 4) {
5062      Locs[i] = std::make_pair(MaskIdx, LoIdx);
5063      (*MaskPtr)[LoIdx] = Idx;
5064      LoIdx++;
5065    } else {
5066      Locs[i] = std::make_pair(MaskIdx, HiIdx);
5067      (*MaskPtr)[HiIdx] = Idx;
5068      HiIdx++;
5069    }
5070  }
5071
5072  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
5073  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
5074  SmallVector<int, 8> MaskOps;
5075  for (unsigned i = 0; i != 4; ++i) {
5076    if (Locs[i].first == -1) {
5077      MaskOps.push_back(-1);
5078    } else {
5079      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
5080      MaskOps.push_back(Idx);
5081    }
5082  }
5083  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
5084}
5085
5086static bool MayFoldVectorLoad(SDValue V) {
5087  if (V.hasOneUse() && V.getOpcode() == ISD::BIT_CONVERT)
5088    V = V.getOperand(0);
5089  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
5090    V = V.getOperand(0);
5091  if (MayFoldLoad(V))
5092    return true;
5093  return false;
5094}
5095
5096// FIXME: the version above should always be used. Since there's
5097// a bug where several vector shuffles can't be folded because the
5098// DAG is not updated during lowering and a node claims to have two
5099// uses while it only has one, use this version, and let isel match
5100// another instruction if the load really happens to have more than
5101// one use. Remove this version after this bug get fixed.
5102// rdar://8434668, PR8156
5103static bool RelaxedMayFoldVectorLoad(SDValue V) {
5104  if (V.hasOneUse() && V.getOpcode() == ISD::BIT_CONVERT)
5105    V = V.getOperand(0);
5106  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
5107    V = V.getOperand(0);
5108  if (ISD::isNormalLoad(V.getNode()))
5109    return true;
5110  return false;
5111}
5112
5113/// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
5114/// a vector extract, and if both can be later optimized into a single load.
5115/// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
5116/// here because otherwise a target specific shuffle node is going to be
5117/// emitted for this shuffle, and the optimization not done.
5118/// FIXME: This is probably not the best approach, but fix the problem
5119/// until the right path is decided.
5120static
5121bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
5122                                         const TargetLowering &TLI) {
5123  EVT VT = V.getValueType();
5124  ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
5125
5126  // Be sure that the vector shuffle is present in a pattern like this:
5127  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
5128  if (!V.hasOneUse())
5129    return false;
5130
5131  SDNode *N = *V.getNode()->use_begin();
5132  if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
5133    return false;
5134
5135  SDValue EltNo = N->getOperand(1);
5136  if (!isa<ConstantSDNode>(EltNo))
5137    return false;
5138
5139  // If the bit convert changed the number of elements, it is unsafe
5140  // to examine the mask.
5141  bool HasShuffleIntoBitcast = false;
5142  if (V.getOpcode() == ISD::BIT_CONVERT) {
5143    EVT SrcVT = V.getOperand(0).getValueType();
5144    if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
5145      return false;
5146    V = V.getOperand(0);
5147    HasShuffleIntoBitcast = true;
5148  }
5149
5150  // Select the input vector, guarding against out of range extract vector.
5151  unsigned NumElems = VT.getVectorNumElements();
5152  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
5153  int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
5154  V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
5155
5156  // Skip one more bit_convert if necessary
5157  if (V.getOpcode() == ISD::BIT_CONVERT)
5158    V = V.getOperand(0);
5159
5160  if (ISD::isNormalLoad(V.getNode())) {
5161    // Is the original load suitable?
5162    LoadSDNode *LN0 = cast<LoadSDNode>(V);
5163
5164    // FIXME: avoid the multi-use bug that is preventing lots of
5165    // of foldings to be detected, this is still wrong of course, but
5166    // give the temporary desired behavior, and if it happens that
5167    // the load has real more uses, during isel it will not fold, and
5168    // will generate poor code.
5169    if (!LN0 || LN0->isVolatile()) // || !LN0->hasOneUse()
5170      return false;
5171
5172    if (!HasShuffleIntoBitcast)
5173      return true;
5174
5175    // If there's a bitcast before the shuffle, check if the load type and
5176    // alignment is valid.
5177    unsigned Align = LN0->getAlignment();
5178    unsigned NewAlign =
5179      TLI.getTargetData()->getABITypeAlignment(
5180                                    VT.getTypeForEVT(*DAG.getContext()));
5181
5182    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
5183      return false;
5184  }
5185
5186  return true;
5187}
5188
5189static
5190SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
5191  EVT VT = Op.getValueType();
5192
5193  // Canonizalize to v2f64.
5194  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, V1);
5195  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
5196                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
5197                                          V1, DAG));
5198}
5199
5200static
5201SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
5202                        bool HasSSE2) {
5203  SDValue V1 = Op.getOperand(0);
5204  SDValue V2 = Op.getOperand(1);
5205  EVT VT = Op.getValueType();
5206
5207  assert(VT != MVT::v2i64 && "unsupported shuffle type");
5208
5209  if (HasSSE2 && VT == MVT::v2f64)
5210    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
5211
5212  // v4f32 or v4i32
5213  return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V2, DAG);
5214}
5215
5216static
5217SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
5218  SDValue V1 = Op.getOperand(0);
5219  SDValue V2 = Op.getOperand(1);
5220  EVT VT = Op.getValueType();
5221
5222  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
5223         "unsupported shuffle type");
5224
5225  if (V2.getOpcode() == ISD::UNDEF)
5226    V2 = V1;
5227
5228  // v4i32 or v4f32
5229  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
5230}
5231
5232static
5233SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
5234  SDValue V1 = Op.getOperand(0);
5235  SDValue V2 = Op.getOperand(1);
5236  EVT VT = Op.getValueType();
5237  unsigned NumElems = VT.getVectorNumElements();
5238
5239  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
5240  // operand of these instructions is only memory, so check if there's a
5241  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
5242  // same masks.
5243  bool CanFoldLoad = false;
5244
5245  // Trivial case, when V2 comes from a load.
5246  if (MayFoldVectorLoad(V2))
5247    CanFoldLoad = true;
5248
5249  // When V1 is a load, it can be folded later into a store in isel, example:
5250  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
5251  //    turns into:
5252  //  (MOVLPSmr addr:$src1, VR128:$src2)
5253  // So, recognize this potential and also use MOVLPS or MOVLPD
5254  if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
5255    CanFoldLoad = true;
5256
5257  if (CanFoldLoad) {
5258    if (HasSSE2 && NumElems == 2)
5259      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
5260
5261    if (NumElems == 4)
5262      return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
5263  }
5264
5265  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5266  // movl and movlp will both match v2i64, but v2i64 is never matched by
5267  // movl earlier because we make it strict to avoid messing with the movlp load
5268  // folding logic (see the code above getMOVLP call). Match it here then,
5269  // this is horrible, but will stay like this until we move all shuffle
5270  // matching to x86 specific nodes. Note that for the 1st condition all
5271  // types are matched with movsd.
5272  if ((HasSSE2 && NumElems == 2) || !X86::isMOVLMask(SVOp))
5273    return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
5274  else if (HasSSE2)
5275    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
5276
5277
5278  assert(VT != MVT::v4i32 && "unsupported shuffle type");
5279
5280  // Invert the operand order and use SHUFPS to match it.
5281  return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V2, V1,
5282                              X86::getShuffleSHUFImmediate(SVOp), DAG);
5283}
5284
5285static inline unsigned getUNPCKLOpcode(EVT VT) {
5286  switch(VT.getSimpleVT().SimpleTy) {
5287  case MVT::v4i32: return X86ISD::PUNPCKLDQ;
5288  case MVT::v2i64: return X86ISD::PUNPCKLQDQ;
5289  case MVT::v4f32: return X86ISD::UNPCKLPS;
5290  case MVT::v2f64: return X86ISD::UNPCKLPD;
5291  case MVT::v16i8: return X86ISD::PUNPCKLBW;
5292  case MVT::v8i16: return X86ISD::PUNPCKLWD;
5293  default:
5294    llvm_unreachable("Unknow type for unpckl");
5295  }
5296  return 0;
5297}
5298
5299static inline unsigned getUNPCKHOpcode(EVT VT) {
5300  switch(VT.getSimpleVT().SimpleTy) {
5301  case MVT::v4i32: return X86ISD::PUNPCKHDQ;
5302  case MVT::v2i64: return X86ISD::PUNPCKHQDQ;
5303  case MVT::v4f32: return X86ISD::UNPCKHPS;
5304  case MVT::v2f64: return X86ISD::UNPCKHPD;
5305  case MVT::v16i8: return X86ISD::PUNPCKHBW;
5306  case MVT::v8i16: return X86ISD::PUNPCKHWD;
5307  default:
5308    llvm_unreachable("Unknow type for unpckh");
5309  }
5310  return 0;
5311}
5312
5313static
5314SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
5315                               const TargetLowering &TLI,
5316                               const X86Subtarget *Subtarget) {
5317  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5318  EVT VT = Op.getValueType();
5319  DebugLoc dl = Op.getDebugLoc();
5320  SDValue V1 = Op.getOperand(0);
5321  SDValue V2 = Op.getOperand(1);
5322
5323  if (isZeroShuffle(SVOp))
5324    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
5325
5326  // Handle splat operations
5327  if (SVOp->isSplat()) {
5328    // Special case, this is the only place now where it's
5329    // allowed to return a vector_shuffle operation without
5330    // using a target specific node, because *hopefully* it
5331    // will be optimized away by the dag combiner.
5332    if (VT.getVectorNumElements() <= 4 &&
5333        CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
5334      return Op;
5335
5336    // Handle splats by matching through known masks
5337    if (VT.getVectorNumElements() <= 4)
5338      return SDValue();
5339
5340    // Canonicalize all of the remaining to v4f32.
5341    return PromoteSplat(SVOp, DAG);
5342  }
5343
5344  // If the shuffle can be profitably rewritten as a narrower shuffle, then
5345  // do it!
5346  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
5347    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5348    if (NewOp.getNode())
5349      return DAG.getNode(ISD::BIT_CONVERT, dl, VT, NewOp);
5350  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
5351    // FIXME: Figure out a cleaner way to do this.
5352    // Try to make use of movq to zero out the top part.
5353    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
5354      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5355      if (NewOp.getNode()) {
5356        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
5357          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
5358                              DAG, Subtarget, dl);
5359      }
5360    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
5361      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5362      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
5363        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
5364                            DAG, Subtarget, dl);
5365    }
5366  }
5367  return SDValue();
5368}
5369
5370SDValue
5371X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
5372  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5373  SDValue V1 = Op.getOperand(0);
5374  SDValue V2 = Op.getOperand(1);
5375  EVT VT = Op.getValueType();
5376  DebugLoc dl = Op.getDebugLoc();
5377  unsigned NumElems = VT.getVectorNumElements();
5378  bool isMMX = VT.getSizeInBits() == 64;
5379  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
5380  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
5381  bool V1IsSplat = false;
5382  bool V2IsSplat = false;
5383  bool HasSSE2 = Subtarget->hasSSE2() || Subtarget->hasAVX();
5384  bool HasSSE3 = Subtarget->hasSSE3() || Subtarget->hasAVX();
5385  bool HasSSSE3 = Subtarget->hasSSSE3() || Subtarget->hasAVX();
5386  MachineFunction &MF = DAG.getMachineFunction();
5387  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
5388
5389  // Shuffle operations on MMX not supported.
5390  if (isMMX)
5391    return Op;
5392
5393  // Vector shuffle lowering takes 3 steps:
5394  //
5395  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
5396  //    narrowing and commutation of operands should be handled.
5397  // 2) Matching of shuffles with known shuffle masks to x86 target specific
5398  //    shuffle nodes.
5399  // 3) Rewriting of unmatched masks into new generic shuffle operations,
5400  //    so the shuffle can be broken into other shuffles and the legalizer can
5401  //    try the lowering again.
5402  //
5403  // The general ideia is that no vector_shuffle operation should be left to
5404  // be matched during isel, all of them must be converted to a target specific
5405  // node here.
5406
5407  // Normalize the input vectors. Here splats, zeroed vectors, profitable
5408  // narrowing and commutation of operands should be handled. The actual code
5409  // doesn't include all of those, work in progress...
5410  SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
5411  if (NewOp.getNode())
5412    return NewOp;
5413
5414  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
5415  // unpckh_undef). Only use pshufd if speed is more important than size.
5416  if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp))
5417    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5418      return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
5419  if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp))
5420    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5421      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
5422
5423  if (X86::isMOVDDUPMask(SVOp) && HasSSE3 && V2IsUndef &&
5424      RelaxedMayFoldVectorLoad(V1))
5425    return getMOVDDup(Op, dl, V1, DAG);
5426
5427  if (X86::isMOVHLPS_v_undef_Mask(SVOp))
5428    return getMOVHighToLow(Op, dl, DAG);
5429
5430  // Use to match splats
5431  if (HasSSE2 && X86::isUNPCKHMask(SVOp) && V2IsUndef &&
5432      (VT == MVT::v2f64 || VT == MVT::v2i64))
5433    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
5434
5435  if (X86::isPSHUFDMask(SVOp)) {
5436    // The actual implementation will match the mask in the if above and then
5437    // during isel it can match several different instructions, not only pshufd
5438    // as its name says, sad but true, emulate the behavior for now...
5439    if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
5440        return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
5441
5442    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
5443
5444    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
5445      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
5446
5447    if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
5448      return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V1,
5449                                  TargetMask, DAG);
5450
5451    if (VT == MVT::v4f32)
5452      return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V1,
5453                                  TargetMask, DAG);
5454  }
5455
5456  // Check if this can be converted into a logical shift.
5457  bool isLeft = false;
5458  unsigned ShAmt = 0;
5459  SDValue ShVal;
5460  bool isShift = getSubtarget()->hasSSE2() &&
5461    isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
5462  if (isShift && ShVal.hasOneUse()) {
5463    // If the shifted value has multiple uses, it may be cheaper to use
5464    // v_set0 + movlhps or movhlps, etc.
5465    EVT EltVT = VT.getVectorElementType();
5466    ShAmt *= EltVT.getSizeInBits();
5467    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
5468  }
5469
5470  if (X86::isMOVLMask(SVOp)) {
5471    if (V1IsUndef)
5472      return V2;
5473    if (ISD::isBuildVectorAllZeros(V1.getNode()))
5474      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
5475    if (!X86::isMOVLPMask(SVOp)) {
5476      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
5477        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
5478
5479      if (VT == MVT::v4i32 || VT == MVT::v4f32)
5480        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
5481    }
5482  }
5483
5484  // FIXME: fold these into legal mask.
5485  if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp))
5486    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
5487
5488  if (X86::isMOVHLPSMask(SVOp))
5489    return getMOVHighToLow(Op, dl, DAG);
5490
5491  if (X86::isMOVSHDUPMask(SVOp) && HasSSE3 && V2IsUndef && NumElems == 4)
5492    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
5493
5494  if (X86::isMOVSLDUPMask(SVOp) && HasSSE3 && V2IsUndef && NumElems == 4)
5495    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
5496
5497  if (X86::isMOVLPMask(SVOp))
5498    return getMOVLP(Op, dl, DAG, HasSSE2);
5499
5500  if (ShouldXformToMOVHLPS(SVOp) ||
5501      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
5502    return CommuteVectorShuffle(SVOp, DAG);
5503
5504  if (isShift) {
5505    // No better options. Use a vshl / vsrl.
5506    EVT EltVT = VT.getVectorElementType();
5507    ShAmt *= EltVT.getSizeInBits();
5508    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
5509  }
5510
5511  bool Commuted = false;
5512  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
5513  // 1,1,1,1 -> v8i16 though.
5514  V1IsSplat = isSplatVector(V1.getNode());
5515  V2IsSplat = isSplatVector(V2.getNode());
5516
5517  // Canonicalize the splat or undef, if present, to be on the RHS.
5518  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
5519    Op = CommuteVectorShuffle(SVOp, DAG);
5520    SVOp = cast<ShuffleVectorSDNode>(Op);
5521    V1 = SVOp->getOperand(0);
5522    V2 = SVOp->getOperand(1);
5523    std::swap(V1IsSplat, V2IsSplat);
5524    std::swap(V1IsUndef, V2IsUndef);
5525    Commuted = true;
5526  }
5527
5528  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
5529    // Shuffling low element of v1 into undef, just return v1.
5530    if (V2IsUndef)
5531      return V1;
5532    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
5533    // the instruction selector will not match, so get a canonical MOVL with
5534    // swapped operands to undo the commute.
5535    return getMOVL(DAG, dl, VT, V2, V1);
5536  }
5537
5538  if (X86::isUNPCKLMask(SVOp))
5539    return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V2, DAG);
5540
5541  if (X86::isUNPCKHMask(SVOp))
5542    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V2, DAG);
5543
5544  if (V2IsSplat) {
5545    // Normalize mask so all entries that point to V2 points to its first
5546    // element then try to match unpck{h|l} again. If match, return a
5547    // new vector_shuffle with the corrected mask.
5548    SDValue NewMask = NormalizeMask(SVOp, DAG);
5549    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
5550    if (NSVOp != SVOp) {
5551      if (X86::isUNPCKLMask(NSVOp, true)) {
5552        return NewMask;
5553      } else if (X86::isUNPCKHMask(NSVOp, true)) {
5554        return NewMask;
5555      }
5556    }
5557  }
5558
5559  if (Commuted) {
5560    // Commute is back and try unpck* again.
5561    // FIXME: this seems wrong.
5562    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
5563    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
5564
5565    if (X86::isUNPCKLMask(NewSVOp))
5566      return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V2, V1, DAG);
5567
5568    if (X86::isUNPCKHMask(NewSVOp))
5569      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V2, V1, DAG);
5570  }
5571
5572  // Normalize the node to match x86 shuffle ops if needed
5573  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
5574    return CommuteVectorShuffle(SVOp, DAG);
5575
5576  // The checks below are all present in isShuffleMaskLegal, but they are
5577  // inlined here right now to enable us to directly emit target specific
5578  // nodes, and remove one by one until they don't return Op anymore.
5579  SmallVector<int, 16> M;
5580  SVOp->getMask(M);
5581
5582  if (isPALIGNRMask(M, VT, HasSSSE3))
5583    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
5584                                X86::getShufflePALIGNRImmediate(SVOp),
5585                                DAG);
5586
5587  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
5588      SVOp->getSplatIndex() == 0 && V2IsUndef) {
5589    if (VT == MVT::v2f64)
5590      return getTargetShuffleNode(X86ISD::UNPCKLPD, dl, VT, V1, V1, DAG);
5591    if (VT == MVT::v2i64)
5592      return getTargetShuffleNode(X86ISD::PUNPCKLQDQ, dl, VT, V1, V1, DAG);
5593  }
5594
5595  if (isPSHUFHWMask(M, VT))
5596    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
5597                                X86::getShufflePSHUFHWImmediate(SVOp),
5598                                DAG);
5599
5600  if (isPSHUFLWMask(M, VT))
5601    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
5602                                X86::getShufflePSHUFLWImmediate(SVOp),
5603                                DAG);
5604
5605  if (isSHUFPMask(M, VT)) {
5606    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
5607    if (VT == MVT::v4f32 || VT == MVT::v4i32)
5608      return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V2,
5609                                  TargetMask, DAG);
5610    if (VT == MVT::v2f64 || VT == MVT::v2i64)
5611      return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V2,
5612                                  TargetMask, DAG);
5613  }
5614
5615  if (X86::isUNPCKL_v_undef_Mask(SVOp))
5616    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5617      return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
5618  if (X86::isUNPCKH_v_undef_Mask(SVOp))
5619    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5620      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
5621
5622  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
5623  if (VT == MVT::v8i16) {
5624    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
5625    if (NewOp.getNode())
5626      return NewOp;
5627  }
5628
5629  if (VT == MVT::v16i8) {
5630    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
5631    if (NewOp.getNode())
5632      return NewOp;
5633  }
5634
5635  // Handle all 4 wide cases with a number of shuffles.
5636  if (NumElems == 4)
5637    return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
5638
5639  return SDValue();
5640}
5641
5642SDValue
5643X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
5644                                                SelectionDAG &DAG) const {
5645  EVT VT = Op.getValueType();
5646  DebugLoc dl = Op.getDebugLoc();
5647  if (VT.getSizeInBits() == 8) {
5648    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
5649                                    Op.getOperand(0), Op.getOperand(1));
5650    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
5651                                    DAG.getValueType(VT));
5652    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5653  } else if (VT.getSizeInBits() == 16) {
5654    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5655    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
5656    if (Idx == 0)
5657      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
5658                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5659                                     DAG.getNode(ISD::BIT_CONVERT, dl,
5660                                                 MVT::v4i32,
5661                                                 Op.getOperand(0)),
5662                                     Op.getOperand(1)));
5663    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
5664                                    Op.getOperand(0), Op.getOperand(1));
5665    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
5666                                    DAG.getValueType(VT));
5667    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5668  } else if (VT == MVT::f32) {
5669    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
5670    // the result back to FR32 register. It's only worth matching if the
5671    // result has a single use which is a store or a bitcast to i32.  And in
5672    // the case of a store, it's not worth it if the index is a constant 0,
5673    // because a MOVSSmr can be used instead, which is smaller and faster.
5674    if (!Op.hasOneUse())
5675      return SDValue();
5676    SDNode *User = *Op.getNode()->use_begin();
5677    if ((User->getOpcode() != ISD::STORE ||
5678         (isa<ConstantSDNode>(Op.getOperand(1)) &&
5679          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
5680        (User->getOpcode() != ISD::BIT_CONVERT ||
5681         User->getValueType(0) != MVT::i32))
5682      return SDValue();
5683    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5684                                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32,
5685                                              Op.getOperand(0)),
5686                                              Op.getOperand(1));
5687    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Extract);
5688  } else if (VT == MVT::i32) {
5689    // ExtractPS works with constant index.
5690    if (isa<ConstantSDNode>(Op.getOperand(1)))
5691      return Op;
5692  }
5693  return SDValue();
5694}
5695
5696
5697SDValue
5698X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
5699                                           SelectionDAG &DAG) const {
5700  if (!isa<ConstantSDNode>(Op.getOperand(1)))
5701    return SDValue();
5702
5703  if (Subtarget->hasSSE41()) {
5704    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
5705    if (Res.getNode())
5706      return Res;
5707  }
5708
5709  EVT VT = Op.getValueType();
5710  DebugLoc dl = Op.getDebugLoc();
5711  // TODO: handle v16i8.
5712  if (VT.getSizeInBits() == 16) {
5713    SDValue Vec = Op.getOperand(0);
5714    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5715    if (Idx == 0)
5716      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
5717                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5718                                     DAG.getNode(ISD::BIT_CONVERT, dl,
5719                                                 MVT::v4i32, Vec),
5720                                     Op.getOperand(1)));
5721    // Transform it so it match pextrw which produces a 32-bit result.
5722    EVT EltVT = MVT::i32;
5723    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
5724                                    Op.getOperand(0), Op.getOperand(1));
5725    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
5726                                    DAG.getValueType(VT));
5727    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5728  } else if (VT.getSizeInBits() == 32) {
5729    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5730    if (Idx == 0)
5731      return Op;
5732
5733    // SHUFPS the element to the lowest double word, then movss.
5734    int Mask[4] = { Idx, -1, -1, -1 };
5735    EVT VVT = Op.getOperand(0).getValueType();
5736    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
5737                                       DAG.getUNDEF(VVT), Mask);
5738    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
5739                       DAG.getIntPtrConstant(0));
5740  } else if (VT.getSizeInBits() == 64) {
5741    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
5742    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
5743    //        to match extract_elt for f64.
5744    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5745    if (Idx == 0)
5746      return Op;
5747
5748    // UNPCKHPD the element to the lowest double word, then movsd.
5749    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
5750    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
5751    int Mask[2] = { 1, -1 };
5752    EVT VVT = Op.getOperand(0).getValueType();
5753    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
5754                                       DAG.getUNDEF(VVT), Mask);
5755    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
5756                       DAG.getIntPtrConstant(0));
5757  }
5758
5759  return SDValue();
5760}
5761
5762SDValue
5763X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
5764                                               SelectionDAG &DAG) const {
5765  EVT VT = Op.getValueType();
5766  EVT EltVT = VT.getVectorElementType();
5767  DebugLoc dl = Op.getDebugLoc();
5768
5769  SDValue N0 = Op.getOperand(0);
5770  SDValue N1 = Op.getOperand(1);
5771  SDValue N2 = Op.getOperand(2);
5772
5773  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
5774      isa<ConstantSDNode>(N2)) {
5775    unsigned Opc;
5776    if (VT == MVT::v8i16)
5777      Opc = X86ISD::PINSRW;
5778    else if (VT == MVT::v16i8)
5779      Opc = X86ISD::PINSRB;
5780    else
5781      Opc = X86ISD::PINSRB;
5782
5783    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
5784    // argument.
5785    if (N1.getValueType() != MVT::i32)
5786      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
5787    if (N2.getValueType() != MVT::i32)
5788      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
5789    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
5790  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
5791    // Bits [7:6] of the constant are the source select.  This will always be
5792    //  zero here.  The DAG Combiner may combine an extract_elt index into these
5793    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
5794    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
5795    // Bits [5:4] of the constant are the destination select.  This is the
5796    //  value of the incoming immediate.
5797    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
5798    //   combine either bitwise AND or insert of float 0.0 to set these bits.
5799    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
5800    // Create this as a scalar to vector..
5801    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
5802    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
5803  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
5804    // PINSR* works with constant index.
5805    return Op;
5806  }
5807  return SDValue();
5808}
5809
5810SDValue
5811X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
5812  EVT VT = Op.getValueType();
5813  EVT EltVT = VT.getVectorElementType();
5814
5815  if (Subtarget->hasSSE41())
5816    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
5817
5818  if (EltVT == MVT::i8)
5819    return SDValue();
5820
5821  DebugLoc dl = Op.getDebugLoc();
5822  SDValue N0 = Op.getOperand(0);
5823  SDValue N1 = Op.getOperand(1);
5824  SDValue N2 = Op.getOperand(2);
5825
5826  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
5827    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
5828    // as its second argument.
5829    if (N1.getValueType() != MVT::i32)
5830      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
5831    if (N2.getValueType() != MVT::i32)
5832      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
5833    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
5834  }
5835  return SDValue();
5836}
5837
5838SDValue
5839X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5840  DebugLoc dl = Op.getDebugLoc();
5841
5842  if (Op.getValueType() == MVT::v1i64 &&
5843      Op.getOperand(0).getValueType() == MVT::i64)
5844    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
5845
5846  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
5847  assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
5848         "Expected an SSE type!");
5849  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(),
5850                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
5851}
5852
5853// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
5854// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
5855// one of the above mentioned nodes. It has to be wrapped because otherwise
5856// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
5857// be used to form addressing mode. These wrapped nodes will be selected
5858// into MOV32ri.
5859SDValue
5860X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
5861  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
5862
5863  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5864  // global base reg.
5865  unsigned char OpFlag = 0;
5866  unsigned WrapperKind = X86ISD::Wrapper;
5867  CodeModel::Model M = getTargetMachine().getCodeModel();
5868
5869  if (Subtarget->isPICStyleRIPRel() &&
5870      (M == CodeModel::Small || M == CodeModel::Kernel))
5871    WrapperKind = X86ISD::WrapperRIP;
5872  else if (Subtarget->isPICStyleGOT())
5873    OpFlag = X86II::MO_GOTOFF;
5874  else if (Subtarget->isPICStyleStubPIC())
5875    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5876
5877  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
5878                                             CP->getAlignment(),
5879                                             CP->getOffset(), OpFlag);
5880  DebugLoc DL = CP->getDebugLoc();
5881  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5882  // With PIC, the address is actually $g + Offset.
5883  if (OpFlag) {
5884    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5885                         DAG.getNode(X86ISD::GlobalBaseReg,
5886                                     DebugLoc(), getPointerTy()),
5887                         Result);
5888  }
5889
5890  return Result;
5891}
5892
5893SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
5894  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
5895
5896  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5897  // global base reg.
5898  unsigned char OpFlag = 0;
5899  unsigned WrapperKind = X86ISD::Wrapper;
5900  CodeModel::Model M = getTargetMachine().getCodeModel();
5901
5902  if (Subtarget->isPICStyleRIPRel() &&
5903      (M == CodeModel::Small || M == CodeModel::Kernel))
5904    WrapperKind = X86ISD::WrapperRIP;
5905  else if (Subtarget->isPICStyleGOT())
5906    OpFlag = X86II::MO_GOTOFF;
5907  else if (Subtarget->isPICStyleStubPIC())
5908    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5909
5910  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
5911                                          OpFlag);
5912  DebugLoc DL = JT->getDebugLoc();
5913  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5914
5915  // With PIC, the address is actually $g + Offset.
5916  if (OpFlag) {
5917    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5918                         DAG.getNode(X86ISD::GlobalBaseReg,
5919                                     DebugLoc(), getPointerTy()),
5920                         Result);
5921  }
5922
5923  return Result;
5924}
5925
5926SDValue
5927X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
5928  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
5929
5930  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5931  // global base reg.
5932  unsigned char OpFlag = 0;
5933  unsigned WrapperKind = X86ISD::Wrapper;
5934  CodeModel::Model M = getTargetMachine().getCodeModel();
5935
5936  if (Subtarget->isPICStyleRIPRel() &&
5937      (M == CodeModel::Small || M == CodeModel::Kernel))
5938    WrapperKind = X86ISD::WrapperRIP;
5939  else if (Subtarget->isPICStyleGOT())
5940    OpFlag = X86II::MO_GOTOFF;
5941  else if (Subtarget->isPICStyleStubPIC())
5942    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5943
5944  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
5945
5946  DebugLoc DL = Op.getDebugLoc();
5947  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5948
5949
5950  // With PIC, the address is actually $g + Offset.
5951  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
5952      !Subtarget->is64Bit()) {
5953    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5954                         DAG.getNode(X86ISD::GlobalBaseReg,
5955                                     DebugLoc(), getPointerTy()),
5956                         Result);
5957  }
5958
5959  return Result;
5960}
5961
5962SDValue
5963X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
5964  // Create the TargetBlockAddressAddress node.
5965  unsigned char OpFlags =
5966    Subtarget->ClassifyBlockAddressReference();
5967  CodeModel::Model M = getTargetMachine().getCodeModel();
5968  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
5969  DebugLoc dl = Op.getDebugLoc();
5970  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
5971                                       /*isTarget=*/true, OpFlags);
5972
5973  if (Subtarget->isPICStyleRIPRel() &&
5974      (M == CodeModel::Small || M == CodeModel::Kernel))
5975    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5976  else
5977    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5978
5979  // With PIC, the address is actually $g + Offset.
5980  if (isGlobalRelativeToPICBase(OpFlags)) {
5981    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5982                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5983                         Result);
5984  }
5985
5986  return Result;
5987}
5988
5989SDValue
5990X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
5991                                      int64_t Offset,
5992                                      SelectionDAG &DAG) const {
5993  // Create the TargetGlobalAddress node, folding in the constant
5994  // offset if it is legal.
5995  unsigned char OpFlags =
5996    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
5997  CodeModel::Model M = getTargetMachine().getCodeModel();
5998  SDValue Result;
5999  if (OpFlags == X86II::MO_NO_FLAG &&
6000      X86::isOffsetSuitableForCodeModel(Offset, M)) {
6001    // A direct static reference to a global.
6002    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
6003    Offset = 0;
6004  } else {
6005    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
6006  }
6007
6008  if (Subtarget->isPICStyleRIPRel() &&
6009      (M == CodeModel::Small || M == CodeModel::Kernel))
6010    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
6011  else
6012    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
6013
6014  // With PIC, the address is actually $g + Offset.
6015  if (isGlobalRelativeToPICBase(OpFlags)) {
6016    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6017                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
6018                         Result);
6019  }
6020
6021  // For globals that require a load from a stub to get the address, emit the
6022  // load.
6023  if (isGlobalStubReference(OpFlags))
6024    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
6025                         MachinePointerInfo::getGOT(), false, false, 0);
6026
6027  // If there was a non-zero offset that we didn't fold, create an explicit
6028  // addition for it.
6029  if (Offset != 0)
6030    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
6031                         DAG.getConstant(Offset, getPointerTy()));
6032
6033  return Result;
6034}
6035
6036SDValue
6037X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
6038  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
6039  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
6040  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
6041}
6042
6043static SDValue
6044GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
6045           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
6046           unsigned char OperandFlags) {
6047  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6048  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
6049  DebugLoc dl = GA->getDebugLoc();
6050  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
6051                                           GA->getValueType(0),
6052                                           GA->getOffset(),
6053                                           OperandFlags);
6054  if (InFlag) {
6055    SDValue Ops[] = { Chain,  TGA, *InFlag };
6056    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
6057  } else {
6058    SDValue Ops[]  = { Chain, TGA };
6059    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
6060  }
6061
6062  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
6063  MFI->setAdjustsStack(true);
6064
6065  SDValue Flag = Chain.getValue(1);
6066  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
6067}
6068
6069// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
6070static SDValue
6071LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6072                                const EVT PtrVT) {
6073  SDValue InFlag;
6074  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
6075  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
6076                                     DAG.getNode(X86ISD::GlobalBaseReg,
6077                                                 DebugLoc(), PtrVT), InFlag);
6078  InFlag = Chain.getValue(1);
6079
6080  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
6081}
6082
6083// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
6084static SDValue
6085LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6086                                const EVT PtrVT) {
6087  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
6088                    X86::RAX, X86II::MO_TLSGD);
6089}
6090
6091// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
6092// "local exec" model.
6093static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6094                                   const EVT PtrVT, TLSModel::Model model,
6095                                   bool is64Bit) {
6096  DebugLoc dl = GA->getDebugLoc();
6097
6098  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
6099  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
6100                                                         is64Bit ? 257 : 256));
6101
6102  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
6103                                      DAG.getIntPtrConstant(0),
6104                                      MachinePointerInfo(Ptr), false, false, 0);
6105
6106  unsigned char OperandFlags = 0;
6107  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
6108  // initialexec.
6109  unsigned WrapperKind = X86ISD::Wrapper;
6110  if (model == TLSModel::LocalExec) {
6111    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
6112  } else if (is64Bit) {
6113    assert(model == TLSModel::InitialExec);
6114    OperandFlags = X86II::MO_GOTTPOFF;
6115    WrapperKind = X86ISD::WrapperRIP;
6116  } else {
6117    assert(model == TLSModel::InitialExec);
6118    OperandFlags = X86II::MO_INDNTPOFF;
6119  }
6120
6121  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
6122  // exec)
6123  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
6124                                           GA->getValueType(0),
6125                                           GA->getOffset(), OperandFlags);
6126  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
6127
6128  if (model == TLSModel::InitialExec)
6129    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
6130                         MachinePointerInfo::getGOT(), false, false, 0);
6131
6132  // The address of the thread local variable is the add of the thread
6133  // pointer with the offset of the variable.
6134  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
6135}
6136
6137SDValue
6138X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
6139
6140  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
6141  const GlobalValue *GV = GA->getGlobal();
6142
6143  if (Subtarget->isTargetELF()) {
6144    // TODO: implement the "local dynamic" model
6145    // TODO: implement the "initial exec"model for pic executables
6146
6147    // If GV is an alias then use the aliasee for determining
6148    // thread-localness.
6149    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
6150      GV = GA->resolveAliasedGlobal(false);
6151
6152    TLSModel::Model model
6153      = getTLSModel(GV, getTargetMachine().getRelocationModel());
6154
6155    switch (model) {
6156      case TLSModel::GeneralDynamic:
6157      case TLSModel::LocalDynamic: // not implemented
6158        if (Subtarget->is64Bit())
6159          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
6160        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
6161
6162      case TLSModel::InitialExec:
6163      case TLSModel::LocalExec:
6164        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
6165                                   Subtarget->is64Bit());
6166    }
6167  } else if (Subtarget->isTargetDarwin()) {
6168    // Darwin only has one model of TLS.  Lower to that.
6169    unsigned char OpFlag = 0;
6170    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
6171                           X86ISD::WrapperRIP : X86ISD::Wrapper;
6172
6173    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6174    // global base reg.
6175    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
6176                  !Subtarget->is64Bit();
6177    if (PIC32)
6178      OpFlag = X86II::MO_TLVP_PIC_BASE;
6179    else
6180      OpFlag = X86II::MO_TLVP;
6181    DebugLoc DL = Op.getDebugLoc();
6182    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
6183                                                getPointerTy(),
6184                                                GA->getOffset(), OpFlag);
6185    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6186
6187    // With PIC32, the address is actually $g + Offset.
6188    if (PIC32)
6189      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6190                           DAG.getNode(X86ISD::GlobalBaseReg,
6191                                       DebugLoc(), getPointerTy()),
6192                           Offset);
6193
6194    // Lowering the machine isd will make sure everything is in the right
6195    // location.
6196    SDValue Args[] = { Offset };
6197    SDValue Chain = DAG.getNode(X86ISD::TLSCALL, DL, MVT::Other, Args, 1);
6198
6199    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
6200    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6201    MFI->setAdjustsStack(true);
6202
6203    // And our return value (tls address) is in the standard call return value
6204    // location.
6205    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
6206    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
6207  }
6208
6209  assert(false &&
6210         "TLS not implemented for this target.");
6211
6212  llvm_unreachable("Unreachable");
6213  return SDValue();
6214}
6215
6216
6217/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
6218/// take a 2 x i32 value to shift plus a shift amount.
6219SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
6220  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
6221  EVT VT = Op.getValueType();
6222  unsigned VTBits = VT.getSizeInBits();
6223  DebugLoc dl = Op.getDebugLoc();
6224  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
6225  SDValue ShOpLo = Op.getOperand(0);
6226  SDValue ShOpHi = Op.getOperand(1);
6227  SDValue ShAmt  = Op.getOperand(2);
6228  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
6229                                     DAG.getConstant(VTBits - 1, MVT::i8))
6230                       : DAG.getConstant(0, VT);
6231
6232  SDValue Tmp2, Tmp3;
6233  if (Op.getOpcode() == ISD::SHL_PARTS) {
6234    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
6235    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
6236  } else {
6237    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
6238    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
6239  }
6240
6241  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
6242                                DAG.getConstant(VTBits, MVT::i8));
6243  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
6244                             AndNode, DAG.getConstant(0, MVT::i8));
6245
6246  SDValue Hi, Lo;
6247  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6248  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
6249  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
6250
6251  if (Op.getOpcode() == ISD::SHL_PARTS) {
6252    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
6253    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
6254  } else {
6255    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
6256    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
6257  }
6258
6259  SDValue Ops[2] = { Lo, Hi };
6260  return DAG.getMergeValues(Ops, 2, dl);
6261}
6262
6263SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
6264                                           SelectionDAG &DAG) const {
6265  EVT SrcVT = Op.getOperand(0).getValueType();
6266
6267  if (SrcVT.isVector())
6268    return SDValue();
6269
6270  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
6271         "Unknown SINT_TO_FP to lower!");
6272
6273  // These are really Legal; return the operand so the caller accepts it as
6274  // Legal.
6275  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
6276    return Op;
6277  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
6278      Subtarget->is64Bit()) {
6279    return Op;
6280  }
6281
6282  DebugLoc dl = Op.getDebugLoc();
6283  unsigned Size = SrcVT.getSizeInBits()/8;
6284  MachineFunction &MF = DAG.getMachineFunction();
6285  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
6286  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6287  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6288                               StackSlot,
6289                               MachinePointerInfo::getFixedStack(SSFI),
6290                               false, false, 0);
6291  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
6292}
6293
6294SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
6295                                     SDValue StackSlot,
6296                                     SelectionDAG &DAG) const {
6297  // Build the FILD
6298  DebugLoc DL = Op.getDebugLoc();
6299  SDVTList Tys;
6300  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
6301  if (useSSE)
6302    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
6303  else
6304    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
6305
6306  unsigned ByteSize = SrcVT.getSizeInBits()/8;
6307
6308  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
6309  MachineMemOperand *MMO =
6310    DAG.getMachineFunction()
6311    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6312                          MachineMemOperand::MOLoad, ByteSize, ByteSize);
6313
6314  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
6315  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
6316                                           X86ISD::FILD, DL,
6317                                           Tys, Ops, array_lengthof(Ops),
6318                                           SrcVT, MMO);
6319
6320  if (useSSE) {
6321    Chain = Result.getValue(1);
6322    SDValue InFlag = Result.getValue(2);
6323
6324    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
6325    // shouldn't be necessary except that RFP cannot be live across
6326    // multiple blocks. When stackifier is fixed, they can be uncoupled.
6327    MachineFunction &MF = DAG.getMachineFunction();
6328    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
6329    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
6330    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6331    Tys = DAG.getVTList(MVT::Other);
6332    SDValue Ops[] = {
6333      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
6334    };
6335    MachineMemOperand *MMO =
6336      DAG.getMachineFunction()
6337      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6338                            MachineMemOperand::MOStore, SSFISize, SSFISize);
6339
6340    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
6341                                    Ops, array_lengthof(Ops),
6342                                    Op.getValueType(), MMO);
6343    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
6344                         MachinePointerInfo::getFixedStack(SSFI),
6345                         false, false, 0);
6346  }
6347
6348  return Result;
6349}
6350
6351// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
6352SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
6353                                               SelectionDAG &DAG) const {
6354  // This algorithm is not obvious. Here it is in C code, more or less:
6355  /*
6356    double uint64_to_double( uint32_t hi, uint32_t lo ) {
6357      static const __m128i exp = { 0x4330000045300000ULL, 0 };
6358      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
6359
6360      // Copy ints to xmm registers.
6361      __m128i xh = _mm_cvtsi32_si128( hi );
6362      __m128i xl = _mm_cvtsi32_si128( lo );
6363
6364      // Combine into low half of a single xmm register.
6365      __m128i x = _mm_unpacklo_epi32( xh, xl );
6366      __m128d d;
6367      double sd;
6368
6369      // Merge in appropriate exponents to give the integer bits the right
6370      // magnitude.
6371      x = _mm_unpacklo_epi32( x, exp );
6372
6373      // Subtract away the biases to deal with the IEEE-754 double precision
6374      // implicit 1.
6375      d = _mm_sub_pd( (__m128d) x, bias );
6376
6377      // All conversions up to here are exact. The correctly rounded result is
6378      // calculated using the current rounding mode using the following
6379      // horizontal add.
6380      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
6381      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
6382                                // store doesn't really need to be here (except
6383                                // maybe to zero the other double)
6384      return sd;
6385    }
6386  */
6387
6388  DebugLoc dl = Op.getDebugLoc();
6389  LLVMContext *Context = DAG.getContext();
6390
6391  // Build some magic constants.
6392  std::vector<Constant*> CV0;
6393  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
6394  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
6395  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
6396  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
6397  Constant *C0 = ConstantVector::get(CV0);
6398  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
6399
6400  std::vector<Constant*> CV1;
6401  CV1.push_back(
6402    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
6403  CV1.push_back(
6404    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
6405  Constant *C1 = ConstantVector::get(CV1);
6406  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
6407
6408  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6409                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6410                                        Op.getOperand(0),
6411                                        DAG.getIntPtrConstant(1)));
6412  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6413                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6414                                        Op.getOperand(0),
6415                                        DAG.getIntPtrConstant(0)));
6416  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
6417  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
6418                              MachinePointerInfo::getConstantPool(),
6419                              false, false, 16);
6420  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
6421  SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Unpck2);
6422  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
6423                              MachinePointerInfo::getConstantPool(),
6424                              false, false, 16);
6425  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
6426
6427  // Add the halves; easiest way is to swap them into another reg first.
6428  int ShufMask[2] = { 1, -1 };
6429  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
6430                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
6431  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
6432  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
6433                     DAG.getIntPtrConstant(0));
6434}
6435
6436// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
6437SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
6438                                               SelectionDAG &DAG) const {
6439  DebugLoc dl = Op.getDebugLoc();
6440  // FP constant to bias correct the final result.
6441  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
6442                                   MVT::f64);
6443
6444  // Load the 32-bit value into an XMM register.
6445  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6446                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6447                                         Op.getOperand(0),
6448                                         DAG.getIntPtrConstant(0)));
6449
6450  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
6451                     DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Load),
6452                     DAG.getIntPtrConstant(0));
6453
6454  // Or the load with the bias.
6455  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
6456                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
6457                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6458                                                   MVT::v2f64, Load)),
6459                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
6460                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6461                                                   MVT::v2f64, Bias)));
6462  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
6463                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Or),
6464                   DAG.getIntPtrConstant(0));
6465
6466  // Subtract the bias.
6467  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
6468
6469  // Handle final rounding.
6470  EVT DestVT = Op.getValueType();
6471
6472  if (DestVT.bitsLT(MVT::f64)) {
6473    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
6474                       DAG.getIntPtrConstant(0));
6475  } else if (DestVT.bitsGT(MVT::f64)) {
6476    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
6477  }
6478
6479  // Handle final rounding.
6480  return Sub;
6481}
6482
6483SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
6484                                           SelectionDAG &DAG) const {
6485  SDValue N0 = Op.getOperand(0);
6486  DebugLoc dl = Op.getDebugLoc();
6487
6488  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
6489  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
6490  // the optimization here.
6491  if (DAG.SignBitIsZero(N0))
6492    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
6493
6494  EVT SrcVT = N0.getValueType();
6495  EVT DstVT = Op.getValueType();
6496  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
6497    return LowerUINT_TO_FP_i64(Op, DAG);
6498  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
6499    return LowerUINT_TO_FP_i32(Op, DAG);
6500
6501  // Make a 64-bit buffer, and use it to build an FILD.
6502  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
6503  if (SrcVT == MVT::i32) {
6504    SDValue WordOff = DAG.getConstant(4, getPointerTy());
6505    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
6506                                     getPointerTy(), StackSlot, WordOff);
6507    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6508                                  StackSlot, MachinePointerInfo(),
6509                                  false, false, 0);
6510    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
6511                                  OffsetSlot, MachinePointerInfo(),
6512                                  false, false, 0);
6513    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
6514    return Fild;
6515  }
6516
6517  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
6518  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6519                                StackSlot, MachinePointerInfo(),
6520                               false, false, 0);
6521  // For i64 source, we need to add the appropriate power of 2 if the input
6522  // was negative.  This is the same as the optimization in
6523  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
6524  // we must be careful to do the computation in x87 extended precision, not
6525  // in SSE. (The generic code can't know it's OK to do this, or how to.)
6526  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
6527  MachineMemOperand *MMO =
6528    DAG.getMachineFunction()
6529    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6530                          MachineMemOperand::MOLoad, 8, 8);
6531
6532  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
6533  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
6534  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
6535                                         MVT::i64, MMO);
6536
6537  APInt FF(32, 0x5F800000ULL);
6538
6539  // Check whether the sign bit is set.
6540  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
6541                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
6542                                 ISD::SETLT);
6543
6544  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
6545  SDValue FudgePtr = DAG.getConstantPool(
6546                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
6547                                         getPointerTy());
6548
6549  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
6550  SDValue Zero = DAG.getIntPtrConstant(0);
6551  SDValue Four = DAG.getIntPtrConstant(4);
6552  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
6553                               Zero, Four);
6554  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
6555
6556  // Load the value out, extending it from f32 to f80.
6557  // FIXME: Avoid the extend by constructing the right constant pool?
6558  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, MVT::f80, dl, DAG.getEntryNode(),
6559                                 FudgePtr, MachinePointerInfo::getConstantPool(),
6560                                 MVT::f32, false, false, 4);
6561  // Extend everything to 80 bits to force it to be done on x87.
6562  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
6563  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
6564}
6565
6566std::pair<SDValue,SDValue> X86TargetLowering::
6567FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
6568  DebugLoc DL = Op.getDebugLoc();
6569
6570  EVT DstTy = Op.getValueType();
6571
6572  if (!IsSigned) {
6573    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
6574    DstTy = MVT::i64;
6575  }
6576
6577  assert(DstTy.getSimpleVT() <= MVT::i64 &&
6578         DstTy.getSimpleVT() >= MVT::i16 &&
6579         "Unknown FP_TO_SINT to lower!");
6580
6581  // These are really Legal.
6582  if (DstTy == MVT::i32 &&
6583      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
6584    return std::make_pair(SDValue(), SDValue());
6585  if (Subtarget->is64Bit() &&
6586      DstTy == MVT::i64 &&
6587      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
6588    return std::make_pair(SDValue(), SDValue());
6589
6590  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
6591  // stack slot.
6592  MachineFunction &MF = DAG.getMachineFunction();
6593  unsigned MemSize = DstTy.getSizeInBits()/8;
6594  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
6595  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6596
6597
6598
6599  unsigned Opc;
6600  switch (DstTy.getSimpleVT().SimpleTy) {
6601  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
6602  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
6603  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
6604  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
6605  }
6606
6607  SDValue Chain = DAG.getEntryNode();
6608  SDValue Value = Op.getOperand(0);
6609  EVT TheVT = Op.getOperand(0).getValueType();
6610  if (isScalarFPTypeInSSEReg(TheVT)) {
6611    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
6612    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
6613                         MachinePointerInfo::getFixedStack(SSFI),
6614                         false, false, 0);
6615    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
6616    SDValue Ops[] = {
6617      Chain, StackSlot, DAG.getValueType(TheVT)
6618    };
6619
6620    MachineMemOperand *MMO =
6621      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6622                              MachineMemOperand::MOLoad, MemSize, MemSize);
6623    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
6624                                    DstTy, MMO);
6625    Chain = Value.getValue(1);
6626    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
6627    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6628  }
6629
6630  MachineMemOperand *MMO =
6631    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6632                            MachineMemOperand::MOStore, MemSize, MemSize);
6633
6634  // Build the FP_TO_INT*_IN_MEM
6635  SDValue Ops[] = { Chain, Value, StackSlot };
6636  SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
6637                                         Ops, 3, DstTy, MMO);
6638
6639  return std::make_pair(FIST, StackSlot);
6640}
6641
6642SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
6643                                           SelectionDAG &DAG) const {
6644  if (Op.getValueType().isVector())
6645    return SDValue();
6646
6647  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
6648  SDValue FIST = Vals.first, StackSlot = Vals.second;
6649  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
6650  if (FIST.getNode() == 0) return Op;
6651
6652  // Load the result.
6653  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
6654                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
6655}
6656
6657SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
6658                                           SelectionDAG &DAG) const {
6659  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
6660  SDValue FIST = Vals.first, StackSlot = Vals.second;
6661  assert(FIST.getNode() && "Unexpected failure");
6662
6663  // Load the result.
6664  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
6665                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
6666}
6667
6668SDValue X86TargetLowering::LowerFABS(SDValue Op,
6669                                     SelectionDAG &DAG) const {
6670  LLVMContext *Context = DAG.getContext();
6671  DebugLoc dl = Op.getDebugLoc();
6672  EVT VT = Op.getValueType();
6673  EVT EltVT = VT;
6674  if (VT.isVector())
6675    EltVT = VT.getVectorElementType();
6676  std::vector<Constant*> CV;
6677  if (EltVT == MVT::f64) {
6678    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
6679    CV.push_back(C);
6680    CV.push_back(C);
6681  } else {
6682    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
6683    CV.push_back(C);
6684    CV.push_back(C);
6685    CV.push_back(C);
6686    CV.push_back(C);
6687  }
6688  Constant *C = ConstantVector::get(CV);
6689  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6690  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
6691                             MachinePointerInfo::getConstantPool(),
6692                             false, false, 16);
6693  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
6694}
6695
6696SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
6697  LLVMContext *Context = DAG.getContext();
6698  DebugLoc dl = Op.getDebugLoc();
6699  EVT VT = Op.getValueType();
6700  EVT EltVT = VT;
6701  if (VT.isVector())
6702    EltVT = VT.getVectorElementType();
6703  std::vector<Constant*> CV;
6704  if (EltVT == MVT::f64) {
6705    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
6706    CV.push_back(C);
6707    CV.push_back(C);
6708  } else {
6709    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
6710    CV.push_back(C);
6711    CV.push_back(C);
6712    CV.push_back(C);
6713    CV.push_back(C);
6714  }
6715  Constant *C = ConstantVector::get(CV);
6716  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6717  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
6718                             MachinePointerInfo::getConstantPool(),
6719                             false, false, 16);
6720  if (VT.isVector()) {
6721    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
6722                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
6723                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
6724                                Op.getOperand(0)),
6725                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, Mask)));
6726  } else {
6727    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
6728  }
6729}
6730
6731SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
6732  LLVMContext *Context = DAG.getContext();
6733  SDValue Op0 = Op.getOperand(0);
6734  SDValue Op1 = Op.getOperand(1);
6735  DebugLoc dl = Op.getDebugLoc();
6736  EVT VT = Op.getValueType();
6737  EVT SrcVT = Op1.getValueType();
6738
6739  // If second operand is smaller, extend it first.
6740  if (SrcVT.bitsLT(VT)) {
6741    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
6742    SrcVT = VT;
6743  }
6744  // And if it is bigger, shrink it first.
6745  if (SrcVT.bitsGT(VT)) {
6746    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
6747    SrcVT = VT;
6748  }
6749
6750  // At this point the operands and the result should have the same
6751  // type, and that won't be f80 since that is not custom lowered.
6752
6753  // First get the sign bit of second operand.
6754  std::vector<Constant*> CV;
6755  if (SrcVT == MVT::f64) {
6756    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
6757    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
6758  } else {
6759    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
6760    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6761    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6762    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6763  }
6764  Constant *C = ConstantVector::get(CV);
6765  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6766  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
6767                              MachinePointerInfo::getConstantPool(),
6768                              false, false, 16);
6769  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
6770
6771  // Shift sign bit right or left if the two operands have different types.
6772  if (SrcVT.bitsGT(VT)) {
6773    // Op0 is MVT::f32, Op1 is MVT::f64.
6774    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
6775    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
6776                          DAG.getConstant(32, MVT::i32));
6777    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, SignBit);
6778    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
6779                          DAG.getIntPtrConstant(0));
6780  }
6781
6782  // Clear first operand sign bit.
6783  CV.clear();
6784  if (VT == MVT::f64) {
6785    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
6786    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
6787  } else {
6788    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
6789    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6790    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6791    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6792  }
6793  C = ConstantVector::get(CV);
6794  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6795  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
6796                              MachinePointerInfo::getConstantPool(),
6797                              false, false, 16);
6798  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
6799
6800  // Or the value with the sign bit.
6801  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
6802}
6803
6804/// Emit nodes that will be selected as "test Op0,Op0", or something
6805/// equivalent.
6806SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
6807                                    SelectionDAG &DAG) const {
6808  DebugLoc dl = Op.getDebugLoc();
6809
6810  // CF and OF aren't always set the way we want. Determine which
6811  // of these we need.
6812  bool NeedCF = false;
6813  bool NeedOF = false;
6814  switch (X86CC) {
6815  default: break;
6816  case X86::COND_A: case X86::COND_AE:
6817  case X86::COND_B: case X86::COND_BE:
6818    NeedCF = true;
6819    break;
6820  case X86::COND_G: case X86::COND_GE:
6821  case X86::COND_L: case X86::COND_LE:
6822  case X86::COND_O: case X86::COND_NO:
6823    NeedOF = true;
6824    break;
6825  }
6826
6827  // See if we can use the EFLAGS value from the operand instead of
6828  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
6829  // we prove that the arithmetic won't overflow, we can't use OF or CF.
6830  if (Op.getResNo() != 0 || NeedOF || NeedCF)
6831    // Emit a CMP with 0, which is the TEST pattern.
6832    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
6833                       DAG.getConstant(0, Op.getValueType()));
6834
6835  unsigned Opcode = 0;
6836  unsigned NumOperands = 0;
6837  switch (Op.getNode()->getOpcode()) {
6838  case ISD::ADD:
6839    // Due to an isel shortcoming, be conservative if this add is likely to be
6840    // selected as part of a load-modify-store instruction. When the root node
6841    // in a match is a store, isel doesn't know how to remap non-chain non-flag
6842    // uses of other nodes in the match, such as the ADD in this case. This
6843    // leads to the ADD being left around and reselected, with the result being
6844    // two adds in the output.  Alas, even if none our users are stores, that
6845    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
6846    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
6847    // climbing the DAG back to the root, and it doesn't seem to be worth the
6848    // effort.
6849    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6850           UE = Op.getNode()->use_end(); UI != UE; ++UI)
6851      if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC)
6852        goto default_case;
6853
6854    if (ConstantSDNode *C =
6855        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
6856      // An add of one will be selected as an INC.
6857      if (C->getAPIntValue() == 1) {
6858        Opcode = X86ISD::INC;
6859        NumOperands = 1;
6860        break;
6861      }
6862
6863      // An add of negative one (subtract of one) will be selected as a DEC.
6864      if (C->getAPIntValue().isAllOnesValue()) {
6865        Opcode = X86ISD::DEC;
6866        NumOperands = 1;
6867        break;
6868      }
6869    }
6870
6871    // Otherwise use a regular EFLAGS-setting add.
6872    Opcode = X86ISD::ADD;
6873    NumOperands = 2;
6874    break;
6875  case ISD::AND: {
6876    // If the primary and result isn't used, don't bother using X86ISD::AND,
6877    // because a TEST instruction will be better.
6878    bool NonFlagUse = false;
6879    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6880           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
6881      SDNode *User = *UI;
6882      unsigned UOpNo = UI.getOperandNo();
6883      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
6884        // Look pass truncate.
6885        UOpNo = User->use_begin().getOperandNo();
6886        User = *User->use_begin();
6887      }
6888
6889      if (User->getOpcode() != ISD::BRCOND &&
6890          User->getOpcode() != ISD::SETCC &&
6891          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
6892        NonFlagUse = true;
6893        break;
6894      }
6895    }
6896
6897    if (!NonFlagUse)
6898      break;
6899  }
6900    // FALL THROUGH
6901  case ISD::SUB:
6902  case ISD::OR:
6903  case ISD::XOR:
6904    // Due to the ISEL shortcoming noted above, be conservative if this op is
6905    // likely to be selected as part of a load-modify-store instruction.
6906    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6907           UE = Op.getNode()->use_end(); UI != UE; ++UI)
6908      if (UI->getOpcode() == ISD::STORE)
6909        goto default_case;
6910
6911    // Otherwise use a regular EFLAGS-setting instruction.
6912    switch (Op.getNode()->getOpcode()) {
6913    default: llvm_unreachable("unexpected operator!");
6914    case ISD::SUB: Opcode = X86ISD::SUB; break;
6915    case ISD::OR:  Opcode = X86ISD::OR;  break;
6916    case ISD::XOR: Opcode = X86ISD::XOR; break;
6917    case ISD::AND: Opcode = X86ISD::AND; break;
6918    }
6919
6920    NumOperands = 2;
6921    break;
6922  case X86ISD::ADD:
6923  case X86ISD::SUB:
6924  case X86ISD::INC:
6925  case X86ISD::DEC:
6926  case X86ISD::OR:
6927  case X86ISD::XOR:
6928  case X86ISD::AND:
6929    return SDValue(Op.getNode(), 1);
6930  default:
6931  default_case:
6932    break;
6933  }
6934
6935  if (Opcode == 0)
6936    // Emit a CMP with 0, which is the TEST pattern.
6937    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
6938                       DAG.getConstant(0, Op.getValueType()));
6939
6940  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
6941  SmallVector<SDValue, 4> Ops;
6942  for (unsigned i = 0; i != NumOperands; ++i)
6943    Ops.push_back(Op.getOperand(i));
6944
6945  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
6946  DAG.ReplaceAllUsesWith(Op, New);
6947  return SDValue(New.getNode(), 1);
6948}
6949
6950/// Emit nodes that will be selected as "cmp Op0,Op1", or something
6951/// equivalent.
6952SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
6953                                   SelectionDAG &DAG) const {
6954  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
6955    if (C->getAPIntValue() == 0)
6956      return EmitTest(Op0, X86CC, DAG);
6957
6958  DebugLoc dl = Op0.getDebugLoc();
6959  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
6960}
6961
6962/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
6963/// if it's possible.
6964SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
6965                                     DebugLoc dl, SelectionDAG &DAG) const {
6966  SDValue Op0 = And.getOperand(0);
6967  SDValue Op1 = And.getOperand(1);
6968  if (Op0.getOpcode() == ISD::TRUNCATE)
6969    Op0 = Op0.getOperand(0);
6970  if (Op1.getOpcode() == ISD::TRUNCATE)
6971    Op1 = Op1.getOperand(0);
6972
6973  SDValue LHS, RHS;
6974  if (Op1.getOpcode() == ISD::SHL)
6975    std::swap(Op0, Op1);
6976  if (Op0.getOpcode() == ISD::SHL) {
6977    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
6978      if (And00C->getZExtValue() == 1) {
6979        // If we looked past a truncate, check that it's only truncating away
6980        // known zeros.
6981        unsigned BitWidth = Op0.getValueSizeInBits();
6982        unsigned AndBitWidth = And.getValueSizeInBits();
6983        if (BitWidth > AndBitWidth) {
6984          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
6985          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
6986          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
6987            return SDValue();
6988        }
6989        LHS = Op1;
6990        RHS = Op0.getOperand(1);
6991      }
6992  } else if (Op1.getOpcode() == ISD::Constant) {
6993    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
6994    SDValue AndLHS = Op0;
6995    if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
6996      LHS = AndLHS.getOperand(0);
6997      RHS = AndLHS.getOperand(1);
6998    }
6999  }
7000
7001  if (LHS.getNode()) {
7002    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
7003    // instruction.  Since the shift amount is in-range-or-undefined, we know
7004    // that doing a bittest on the i32 value is ok.  We extend to i32 because
7005    // the encoding for the i16 version is larger than the i32 version.
7006    // Also promote i16 to i32 for performance / code size reason.
7007    if (LHS.getValueType() == MVT::i8 ||
7008        LHS.getValueType() == MVT::i16)
7009      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
7010
7011    // If the operand types disagree, extend the shift amount to match.  Since
7012    // BT ignores high bits (like shifts) we can use anyextend.
7013    if (LHS.getValueType() != RHS.getValueType())
7014      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
7015
7016    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
7017    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
7018    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7019                       DAG.getConstant(Cond, MVT::i8), BT);
7020  }
7021
7022  return SDValue();
7023}
7024
7025SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
7026  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
7027  SDValue Op0 = Op.getOperand(0);
7028  SDValue Op1 = Op.getOperand(1);
7029  DebugLoc dl = Op.getDebugLoc();
7030  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7031
7032  // Optimize to BT if possible.
7033  // Lower (X & (1 << N)) == 0 to BT(X, N).
7034  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
7035  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
7036  if (Op0.getOpcode() == ISD::AND &&
7037      Op0.hasOneUse() &&
7038      Op1.getOpcode() == ISD::Constant &&
7039      cast<ConstantSDNode>(Op1)->isNullValue() &&
7040      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
7041    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
7042    if (NewSetCC.getNode())
7043      return NewSetCC;
7044  }
7045
7046  // Look for "(setcc) == / != 1" to avoid unncessary setcc.
7047  if (Op0.getOpcode() == X86ISD::SETCC &&
7048      Op1.getOpcode() == ISD::Constant &&
7049      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
7050       cast<ConstantSDNode>(Op1)->isNullValue()) &&
7051      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
7052    X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
7053    bool Invert = (CC == ISD::SETNE) ^
7054      cast<ConstantSDNode>(Op1)->isNullValue();
7055    if (Invert)
7056      CCode = X86::GetOppositeBranchCondition(CCode);
7057    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7058                       DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
7059  }
7060
7061  bool isFP = Op1.getValueType().isFloatingPoint();
7062  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
7063  if (X86CC == X86::COND_INVALID)
7064    return SDValue();
7065
7066  SDValue Cond = EmitCmp(Op0, Op1, X86CC, DAG);
7067
7068  // Use sbb x, x to materialize carry bit into a GPR.
7069  if (X86CC == X86::COND_B)
7070    return DAG.getNode(ISD::AND, dl, MVT::i8,
7071                       DAG.getNode(X86ISD::SETCC_CARRY, dl, MVT::i8,
7072                                   DAG.getConstant(X86CC, MVT::i8), Cond),
7073                       DAG.getConstant(1, MVT::i8));
7074
7075  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7076                     DAG.getConstant(X86CC, MVT::i8), Cond);
7077}
7078
7079SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
7080  SDValue Cond;
7081  SDValue Op0 = Op.getOperand(0);
7082  SDValue Op1 = Op.getOperand(1);
7083  SDValue CC = Op.getOperand(2);
7084  EVT VT = Op.getValueType();
7085  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
7086  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
7087  DebugLoc dl = Op.getDebugLoc();
7088
7089  if (isFP) {
7090    unsigned SSECC = 8;
7091    EVT VT0 = Op0.getValueType();
7092    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
7093    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
7094    bool Swap = false;
7095
7096    switch (SetCCOpcode) {
7097    default: break;
7098    case ISD::SETOEQ:
7099    case ISD::SETEQ:  SSECC = 0; break;
7100    case ISD::SETOGT:
7101    case ISD::SETGT: Swap = true; // Fallthrough
7102    case ISD::SETLT:
7103    case ISD::SETOLT: SSECC = 1; break;
7104    case ISD::SETOGE:
7105    case ISD::SETGE: Swap = true; // Fallthrough
7106    case ISD::SETLE:
7107    case ISD::SETOLE: SSECC = 2; break;
7108    case ISD::SETUO:  SSECC = 3; break;
7109    case ISD::SETUNE:
7110    case ISD::SETNE:  SSECC = 4; break;
7111    case ISD::SETULE: Swap = true;
7112    case ISD::SETUGE: SSECC = 5; break;
7113    case ISD::SETULT: Swap = true;
7114    case ISD::SETUGT: SSECC = 6; break;
7115    case ISD::SETO:   SSECC = 7; break;
7116    }
7117    if (Swap)
7118      std::swap(Op0, Op1);
7119
7120    // In the two special cases we can't handle, emit two comparisons.
7121    if (SSECC == 8) {
7122      if (SetCCOpcode == ISD::SETUEQ) {
7123        SDValue UNORD, EQ;
7124        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
7125        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
7126        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
7127      }
7128      else if (SetCCOpcode == ISD::SETONE) {
7129        SDValue ORD, NEQ;
7130        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
7131        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
7132        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
7133      }
7134      llvm_unreachable("Illegal FP comparison");
7135    }
7136    // Handle all other FP comparisons here.
7137    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
7138  }
7139
7140  // We are handling one of the integer comparisons here.  Since SSE only has
7141  // GT and EQ comparisons for integer, swapping operands and multiple
7142  // operations may be required for some comparisons.
7143  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
7144  bool Swap = false, Invert = false, FlipSigns = false;
7145
7146  switch (VT.getSimpleVT().SimpleTy) {
7147  default: break;
7148  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
7149  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
7150  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
7151  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
7152  }
7153
7154  switch (SetCCOpcode) {
7155  default: break;
7156  case ISD::SETNE:  Invert = true;
7157  case ISD::SETEQ:  Opc = EQOpc; break;
7158  case ISD::SETLT:  Swap = true;
7159  case ISD::SETGT:  Opc = GTOpc; break;
7160  case ISD::SETGE:  Swap = true;
7161  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
7162  case ISD::SETULT: Swap = true;
7163  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
7164  case ISD::SETUGE: Swap = true;
7165  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
7166  }
7167  if (Swap)
7168    std::swap(Op0, Op1);
7169
7170  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
7171  // bits of the inputs before performing those operations.
7172  if (FlipSigns) {
7173    EVT EltVT = VT.getVectorElementType();
7174    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
7175                                      EltVT);
7176    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
7177    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
7178                                    SignBits.size());
7179    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
7180    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
7181  }
7182
7183  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
7184
7185  // If the logical-not of the result is required, perform that now.
7186  if (Invert)
7187    Result = DAG.getNOT(dl, Result, VT);
7188
7189  return Result;
7190}
7191
7192// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
7193static bool isX86LogicalCmp(SDValue Op) {
7194  unsigned Opc = Op.getNode()->getOpcode();
7195  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
7196    return true;
7197  if (Op.getResNo() == 1 &&
7198      (Opc == X86ISD::ADD ||
7199       Opc == X86ISD::SUB ||
7200       Opc == X86ISD::SMUL ||
7201       Opc == X86ISD::UMUL ||
7202       Opc == X86ISD::INC ||
7203       Opc == X86ISD::DEC ||
7204       Opc == X86ISD::OR ||
7205       Opc == X86ISD::XOR ||
7206       Opc == X86ISD::AND))
7207    return true;
7208
7209  return false;
7210}
7211
7212SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
7213  bool addTest = true;
7214  SDValue Cond  = Op.getOperand(0);
7215  DebugLoc dl = Op.getDebugLoc();
7216  SDValue CC;
7217
7218  if (Cond.getOpcode() == ISD::SETCC) {
7219    SDValue NewCond = LowerSETCC(Cond, DAG);
7220    if (NewCond.getNode())
7221      Cond = NewCond;
7222  }
7223
7224  // (select (x == 0), -1, 0) -> (sign_bit (x - 1))
7225  SDValue Op1 = Op.getOperand(1);
7226  SDValue Op2 = Op.getOperand(2);
7227  if (Cond.getOpcode() == X86ISD::SETCC &&
7228      cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue() == X86::COND_E) {
7229    SDValue Cmp = Cond.getOperand(1);
7230    if (Cmp.getOpcode() == X86ISD::CMP) {
7231      ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op1);
7232      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
7233      ConstantSDNode *RHSC =
7234        dyn_cast<ConstantSDNode>(Cmp.getOperand(1).getNode());
7235      if (N1C && N1C->isAllOnesValue() &&
7236          N2C && N2C->isNullValue() &&
7237          RHSC && RHSC->isNullValue()) {
7238        SDValue CmpOp0 = Cmp.getOperand(0);
7239        Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7240                          CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
7241        return DAG.getNode(X86ISD::SETCC_CARRY, dl, Op.getValueType(),
7242                           DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
7243      }
7244    }
7245  }
7246
7247  // Look pass (and (setcc_carry (cmp ...)), 1).
7248  if (Cond.getOpcode() == ISD::AND &&
7249      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
7250    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
7251    if (C && C->getAPIntValue() == 1)
7252      Cond = Cond.getOperand(0);
7253  }
7254
7255  // If condition flag is set by a X86ISD::CMP, then use it as the condition
7256  // setting operand in place of the X86ISD::SETCC.
7257  if (Cond.getOpcode() == X86ISD::SETCC ||
7258      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
7259    CC = Cond.getOperand(0);
7260
7261    SDValue Cmp = Cond.getOperand(1);
7262    unsigned Opc = Cmp.getOpcode();
7263    EVT VT = Op.getValueType();
7264
7265    bool IllegalFPCMov = false;
7266    if (VT.isFloatingPoint() && !VT.isVector() &&
7267        !isScalarFPTypeInSSEReg(VT))  // FPStack?
7268      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
7269
7270    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
7271        Opc == X86ISD::BT) { // FIXME
7272      Cond = Cmp;
7273      addTest = false;
7274    }
7275  }
7276
7277  if (addTest) {
7278    // Look pass the truncate.
7279    if (Cond.getOpcode() == ISD::TRUNCATE)
7280      Cond = Cond.getOperand(0);
7281
7282    // We know the result of AND is compared against zero. Try to match
7283    // it to BT.
7284    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
7285      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
7286      if (NewSetCC.getNode()) {
7287        CC = NewSetCC.getOperand(0);
7288        Cond = NewSetCC.getOperand(1);
7289        addTest = false;
7290      }
7291    }
7292  }
7293
7294  if (addTest) {
7295    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7296    Cond = EmitTest(Cond, X86::COND_NE, DAG);
7297  }
7298
7299  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
7300  // condition is true.
7301  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Flag);
7302  SDValue Ops[] = { Op2, Op1, CC, Cond };
7303  return DAG.getNode(X86ISD::CMOV, dl, VTs, Ops, array_lengthof(Ops));
7304}
7305
7306// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
7307// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
7308// from the AND / OR.
7309static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
7310  Opc = Op.getOpcode();
7311  if (Opc != ISD::OR && Opc != ISD::AND)
7312    return false;
7313  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
7314          Op.getOperand(0).hasOneUse() &&
7315          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
7316          Op.getOperand(1).hasOneUse());
7317}
7318
7319// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
7320// 1 and that the SETCC node has a single use.
7321static bool isXor1OfSetCC(SDValue Op) {
7322  if (Op.getOpcode() != ISD::XOR)
7323    return false;
7324  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7325  if (N1C && N1C->getAPIntValue() == 1) {
7326    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
7327      Op.getOperand(0).hasOneUse();
7328  }
7329  return false;
7330}
7331
7332SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
7333  bool addTest = true;
7334  SDValue Chain = Op.getOperand(0);
7335  SDValue Cond  = Op.getOperand(1);
7336  SDValue Dest  = Op.getOperand(2);
7337  DebugLoc dl = Op.getDebugLoc();
7338  SDValue CC;
7339
7340  if (Cond.getOpcode() == ISD::SETCC) {
7341    SDValue NewCond = LowerSETCC(Cond, DAG);
7342    if (NewCond.getNode())
7343      Cond = NewCond;
7344  }
7345#if 0
7346  // FIXME: LowerXALUO doesn't handle these!!
7347  else if (Cond.getOpcode() == X86ISD::ADD  ||
7348           Cond.getOpcode() == X86ISD::SUB  ||
7349           Cond.getOpcode() == X86ISD::SMUL ||
7350           Cond.getOpcode() == X86ISD::UMUL)
7351    Cond = LowerXALUO(Cond, DAG);
7352#endif
7353
7354  // Look pass (and (setcc_carry (cmp ...)), 1).
7355  if (Cond.getOpcode() == ISD::AND &&
7356      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
7357    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
7358    if (C && C->getAPIntValue() == 1)
7359      Cond = Cond.getOperand(0);
7360  }
7361
7362  // If condition flag is set by a X86ISD::CMP, then use it as the condition
7363  // setting operand in place of the X86ISD::SETCC.
7364  if (Cond.getOpcode() == X86ISD::SETCC ||
7365      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
7366    CC = Cond.getOperand(0);
7367
7368    SDValue Cmp = Cond.getOperand(1);
7369    unsigned Opc = Cmp.getOpcode();
7370    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
7371    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
7372      Cond = Cmp;
7373      addTest = false;
7374    } else {
7375      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
7376      default: break;
7377      case X86::COND_O:
7378      case X86::COND_B:
7379        // These can only come from an arithmetic instruction with overflow,
7380        // e.g. SADDO, UADDO.
7381        Cond = Cond.getNode()->getOperand(1);
7382        addTest = false;
7383        break;
7384      }
7385    }
7386  } else {
7387    unsigned CondOpc;
7388    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
7389      SDValue Cmp = Cond.getOperand(0).getOperand(1);
7390      if (CondOpc == ISD::OR) {
7391        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
7392        // two branches instead of an explicit OR instruction with a
7393        // separate test.
7394        if (Cmp == Cond.getOperand(1).getOperand(1) &&
7395            isX86LogicalCmp(Cmp)) {
7396          CC = Cond.getOperand(0).getOperand(0);
7397          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7398                              Chain, Dest, CC, Cmp);
7399          CC = Cond.getOperand(1).getOperand(0);
7400          Cond = Cmp;
7401          addTest = false;
7402        }
7403      } else { // ISD::AND
7404        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
7405        // two branches instead of an explicit AND instruction with a
7406        // separate test. However, we only do this if this block doesn't
7407        // have a fall-through edge, because this requires an explicit
7408        // jmp when the condition is false.
7409        if (Cmp == Cond.getOperand(1).getOperand(1) &&
7410            isX86LogicalCmp(Cmp) &&
7411            Op.getNode()->hasOneUse()) {
7412          X86::CondCode CCode =
7413            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
7414          CCode = X86::GetOppositeBranchCondition(CCode);
7415          CC = DAG.getConstant(CCode, MVT::i8);
7416          SDNode *User = *Op.getNode()->use_begin();
7417          // Look for an unconditional branch following this conditional branch.
7418          // We need this because we need to reverse the successors in order
7419          // to implement FCMP_OEQ.
7420          if (User->getOpcode() == ISD::BR) {
7421            SDValue FalseBB = User->getOperand(1);
7422            SDNode *NewBR =
7423              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
7424            assert(NewBR == User);
7425            (void)NewBR;
7426            Dest = FalseBB;
7427
7428            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7429                                Chain, Dest, CC, Cmp);
7430            X86::CondCode CCode =
7431              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
7432            CCode = X86::GetOppositeBranchCondition(CCode);
7433            CC = DAG.getConstant(CCode, MVT::i8);
7434            Cond = Cmp;
7435            addTest = false;
7436          }
7437        }
7438      }
7439    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
7440      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
7441      // It should be transformed during dag combiner except when the condition
7442      // is set by a arithmetics with overflow node.
7443      X86::CondCode CCode =
7444        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
7445      CCode = X86::GetOppositeBranchCondition(CCode);
7446      CC = DAG.getConstant(CCode, MVT::i8);
7447      Cond = Cond.getOperand(0).getOperand(1);
7448      addTest = false;
7449    }
7450  }
7451
7452  if (addTest) {
7453    // Look pass the truncate.
7454    if (Cond.getOpcode() == ISD::TRUNCATE)
7455      Cond = Cond.getOperand(0);
7456
7457    // We know the result of AND is compared against zero. Try to match
7458    // it to BT.
7459    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
7460      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
7461      if (NewSetCC.getNode()) {
7462        CC = NewSetCC.getOperand(0);
7463        Cond = NewSetCC.getOperand(1);
7464        addTest = false;
7465      }
7466    }
7467  }
7468
7469  if (addTest) {
7470    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7471    Cond = EmitTest(Cond, X86::COND_NE, DAG);
7472  }
7473  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7474                     Chain, Dest, CC, Cond);
7475}
7476
7477
7478// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
7479// Calls to _alloca is needed to probe the stack when allocating more than 4k
7480// bytes in one go. Touching the stack at 4K increments is necessary to ensure
7481// that the guard pages used by the OS virtual memory manager are allocated in
7482// correct sequence.
7483SDValue
7484X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7485                                           SelectionDAG &DAG) const {
7486  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows()) &&
7487         "This should be used only on Windows targets");
7488  DebugLoc dl = Op.getDebugLoc();
7489
7490  // Get the inputs.
7491  SDValue Chain = Op.getOperand(0);
7492  SDValue Size  = Op.getOperand(1);
7493  // FIXME: Ensure alignment here
7494
7495  SDValue Flag;
7496
7497  EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
7498
7499  Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
7500  Flag = Chain.getValue(1);
7501
7502  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
7503
7504  Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
7505  Flag = Chain.getValue(1);
7506
7507  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
7508
7509  SDValue Ops1[2] = { Chain.getValue(0), Chain };
7510  return DAG.getMergeValues(Ops1, 2, dl);
7511}
7512
7513SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
7514  MachineFunction &MF = DAG.getMachineFunction();
7515  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
7516
7517  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
7518  DebugLoc DL = Op.getDebugLoc();
7519
7520  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
7521    // vastart just stores the address of the VarArgsFrameIndex slot into the
7522    // memory location argument.
7523    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
7524                                   getPointerTy());
7525    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
7526                        MachinePointerInfo(SV), false, false, 0);
7527  }
7528
7529  // __va_list_tag:
7530  //   gp_offset         (0 - 6 * 8)
7531  //   fp_offset         (48 - 48 + 8 * 16)
7532  //   overflow_arg_area (point to parameters coming in memory).
7533  //   reg_save_area
7534  SmallVector<SDValue, 8> MemOps;
7535  SDValue FIN = Op.getOperand(1);
7536  // Store gp_offset
7537  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
7538                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
7539                                               MVT::i32),
7540                               FIN, MachinePointerInfo(SV), false, false, 0);
7541  MemOps.push_back(Store);
7542
7543  // Store fp_offset
7544  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7545                    FIN, DAG.getIntPtrConstant(4));
7546  Store = DAG.getStore(Op.getOperand(0), DL,
7547                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
7548                                       MVT::i32),
7549                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
7550  MemOps.push_back(Store);
7551
7552  // Store ptr to overflow_arg_area
7553  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7554                    FIN, DAG.getIntPtrConstant(4));
7555  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
7556                                    getPointerTy());
7557  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
7558                       MachinePointerInfo(SV, 8),
7559                       false, false, 0);
7560  MemOps.push_back(Store);
7561
7562  // Store ptr to reg_save_area.
7563  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7564                    FIN, DAG.getIntPtrConstant(8));
7565  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
7566                                    getPointerTy());
7567  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
7568                       MachinePointerInfo(SV, 16), false, false, 0);
7569  MemOps.push_back(Store);
7570  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
7571                     &MemOps[0], MemOps.size());
7572}
7573
7574SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
7575  assert(Subtarget->is64Bit() &&
7576         "LowerVAARG only handles 64-bit va_arg!");
7577  assert((Subtarget->isTargetLinux() ||
7578          Subtarget->isTargetDarwin()) &&
7579          "Unhandled target in LowerVAARG");
7580  assert(Op.getNode()->getNumOperands() == 4);
7581  SDValue Chain = Op.getOperand(0);
7582  SDValue SrcPtr = Op.getOperand(1);
7583  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
7584  unsigned Align = Op.getConstantOperandVal(3);
7585  DebugLoc dl = Op.getDebugLoc();
7586
7587  EVT ArgVT = Op.getNode()->getValueType(0);
7588  const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
7589  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
7590  uint8_t ArgMode;
7591
7592  // Decide which area this value should be read from.
7593  // TODO: Implement the AMD64 ABI in its entirety. This simple
7594  // selection mechanism works only for the basic types.
7595  if (ArgVT == MVT::f80) {
7596    llvm_unreachable("va_arg for f80 not yet implemented");
7597  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
7598    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
7599  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
7600    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
7601  } else {
7602    llvm_unreachable("Unhandled argument type in LowerVAARG");
7603  }
7604
7605  if (ArgMode == 2) {
7606    // Sanity Check: Make sure using fp_offset makes sense.
7607    assert(!UseSoftFloat &&
7608           !(DAG.getMachineFunction()
7609                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
7610           Subtarget->hasSSE1());
7611  }
7612
7613  // Insert VAARG_64 node into the DAG
7614  // VAARG_64 returns two values: Variable Argument Address, Chain
7615  SmallVector<SDValue, 11> InstOps;
7616  InstOps.push_back(Chain);
7617  InstOps.push_back(SrcPtr);
7618  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
7619  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
7620  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
7621  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
7622  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
7623                                          VTs, &InstOps[0], InstOps.size(),
7624                                          MVT::i64,
7625                                          MachinePointerInfo(SV),
7626                                          /*Align=*/0,
7627                                          /*Volatile=*/false,
7628                                          /*ReadMem=*/true,
7629                                          /*WriteMem=*/true);
7630  Chain = VAARG.getValue(1);
7631
7632  // Load the next argument and return it
7633  return DAG.getLoad(ArgVT, dl,
7634                     Chain,
7635                     VAARG,
7636                     MachinePointerInfo(),
7637                     false, false, 0);
7638}
7639
7640SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
7641  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
7642  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
7643  SDValue Chain = Op.getOperand(0);
7644  SDValue DstPtr = Op.getOperand(1);
7645  SDValue SrcPtr = Op.getOperand(2);
7646  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
7647  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
7648  DebugLoc DL = Op.getDebugLoc();
7649
7650  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
7651                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
7652                       false,
7653                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
7654}
7655
7656SDValue
7657X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
7658  DebugLoc dl = Op.getDebugLoc();
7659  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7660  switch (IntNo) {
7661  default: return SDValue();    // Don't custom lower most intrinsics.
7662  // Comparison intrinsics.
7663  case Intrinsic::x86_sse_comieq_ss:
7664  case Intrinsic::x86_sse_comilt_ss:
7665  case Intrinsic::x86_sse_comile_ss:
7666  case Intrinsic::x86_sse_comigt_ss:
7667  case Intrinsic::x86_sse_comige_ss:
7668  case Intrinsic::x86_sse_comineq_ss:
7669  case Intrinsic::x86_sse_ucomieq_ss:
7670  case Intrinsic::x86_sse_ucomilt_ss:
7671  case Intrinsic::x86_sse_ucomile_ss:
7672  case Intrinsic::x86_sse_ucomigt_ss:
7673  case Intrinsic::x86_sse_ucomige_ss:
7674  case Intrinsic::x86_sse_ucomineq_ss:
7675  case Intrinsic::x86_sse2_comieq_sd:
7676  case Intrinsic::x86_sse2_comilt_sd:
7677  case Intrinsic::x86_sse2_comile_sd:
7678  case Intrinsic::x86_sse2_comigt_sd:
7679  case Intrinsic::x86_sse2_comige_sd:
7680  case Intrinsic::x86_sse2_comineq_sd:
7681  case Intrinsic::x86_sse2_ucomieq_sd:
7682  case Intrinsic::x86_sse2_ucomilt_sd:
7683  case Intrinsic::x86_sse2_ucomile_sd:
7684  case Intrinsic::x86_sse2_ucomigt_sd:
7685  case Intrinsic::x86_sse2_ucomige_sd:
7686  case Intrinsic::x86_sse2_ucomineq_sd: {
7687    unsigned Opc = 0;
7688    ISD::CondCode CC = ISD::SETCC_INVALID;
7689    switch (IntNo) {
7690    default: break;
7691    case Intrinsic::x86_sse_comieq_ss:
7692    case Intrinsic::x86_sse2_comieq_sd:
7693      Opc = X86ISD::COMI;
7694      CC = ISD::SETEQ;
7695      break;
7696    case Intrinsic::x86_sse_comilt_ss:
7697    case Intrinsic::x86_sse2_comilt_sd:
7698      Opc = X86ISD::COMI;
7699      CC = ISD::SETLT;
7700      break;
7701    case Intrinsic::x86_sse_comile_ss:
7702    case Intrinsic::x86_sse2_comile_sd:
7703      Opc = X86ISD::COMI;
7704      CC = ISD::SETLE;
7705      break;
7706    case Intrinsic::x86_sse_comigt_ss:
7707    case Intrinsic::x86_sse2_comigt_sd:
7708      Opc = X86ISD::COMI;
7709      CC = ISD::SETGT;
7710      break;
7711    case Intrinsic::x86_sse_comige_ss:
7712    case Intrinsic::x86_sse2_comige_sd:
7713      Opc = X86ISD::COMI;
7714      CC = ISD::SETGE;
7715      break;
7716    case Intrinsic::x86_sse_comineq_ss:
7717    case Intrinsic::x86_sse2_comineq_sd:
7718      Opc = X86ISD::COMI;
7719      CC = ISD::SETNE;
7720      break;
7721    case Intrinsic::x86_sse_ucomieq_ss:
7722    case Intrinsic::x86_sse2_ucomieq_sd:
7723      Opc = X86ISD::UCOMI;
7724      CC = ISD::SETEQ;
7725      break;
7726    case Intrinsic::x86_sse_ucomilt_ss:
7727    case Intrinsic::x86_sse2_ucomilt_sd:
7728      Opc = X86ISD::UCOMI;
7729      CC = ISD::SETLT;
7730      break;
7731    case Intrinsic::x86_sse_ucomile_ss:
7732    case Intrinsic::x86_sse2_ucomile_sd:
7733      Opc = X86ISD::UCOMI;
7734      CC = ISD::SETLE;
7735      break;
7736    case Intrinsic::x86_sse_ucomigt_ss:
7737    case Intrinsic::x86_sse2_ucomigt_sd:
7738      Opc = X86ISD::UCOMI;
7739      CC = ISD::SETGT;
7740      break;
7741    case Intrinsic::x86_sse_ucomige_ss:
7742    case Intrinsic::x86_sse2_ucomige_sd:
7743      Opc = X86ISD::UCOMI;
7744      CC = ISD::SETGE;
7745      break;
7746    case Intrinsic::x86_sse_ucomineq_ss:
7747    case Intrinsic::x86_sse2_ucomineq_sd:
7748      Opc = X86ISD::UCOMI;
7749      CC = ISD::SETNE;
7750      break;
7751    }
7752
7753    SDValue LHS = Op.getOperand(1);
7754    SDValue RHS = Op.getOperand(2);
7755    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
7756    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
7757    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
7758    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7759                                DAG.getConstant(X86CC, MVT::i8), Cond);
7760    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
7761  }
7762  // ptest and testp intrinsics. The intrinsic these come from are designed to
7763  // return an integer value, not just an instruction so lower it to the ptest
7764  // or testp pattern and a setcc for the result.
7765  case Intrinsic::x86_sse41_ptestz:
7766  case Intrinsic::x86_sse41_ptestc:
7767  case Intrinsic::x86_sse41_ptestnzc:
7768  case Intrinsic::x86_avx_ptestz_256:
7769  case Intrinsic::x86_avx_ptestc_256:
7770  case Intrinsic::x86_avx_ptestnzc_256:
7771  case Intrinsic::x86_avx_vtestz_ps:
7772  case Intrinsic::x86_avx_vtestc_ps:
7773  case Intrinsic::x86_avx_vtestnzc_ps:
7774  case Intrinsic::x86_avx_vtestz_pd:
7775  case Intrinsic::x86_avx_vtestc_pd:
7776  case Intrinsic::x86_avx_vtestnzc_pd:
7777  case Intrinsic::x86_avx_vtestz_ps_256:
7778  case Intrinsic::x86_avx_vtestc_ps_256:
7779  case Intrinsic::x86_avx_vtestnzc_ps_256:
7780  case Intrinsic::x86_avx_vtestz_pd_256:
7781  case Intrinsic::x86_avx_vtestc_pd_256:
7782  case Intrinsic::x86_avx_vtestnzc_pd_256: {
7783    bool IsTestPacked = false;
7784    unsigned X86CC = 0;
7785    switch (IntNo) {
7786    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
7787    case Intrinsic::x86_avx_vtestz_ps:
7788    case Intrinsic::x86_avx_vtestz_pd:
7789    case Intrinsic::x86_avx_vtestz_ps_256:
7790    case Intrinsic::x86_avx_vtestz_pd_256:
7791      IsTestPacked = true; // Fallthrough
7792    case Intrinsic::x86_sse41_ptestz:
7793    case Intrinsic::x86_avx_ptestz_256:
7794      // ZF = 1
7795      X86CC = X86::COND_E;
7796      break;
7797    case Intrinsic::x86_avx_vtestc_ps:
7798    case Intrinsic::x86_avx_vtestc_pd:
7799    case Intrinsic::x86_avx_vtestc_ps_256:
7800    case Intrinsic::x86_avx_vtestc_pd_256:
7801      IsTestPacked = true; // Fallthrough
7802    case Intrinsic::x86_sse41_ptestc:
7803    case Intrinsic::x86_avx_ptestc_256:
7804      // CF = 1
7805      X86CC = X86::COND_B;
7806      break;
7807    case Intrinsic::x86_avx_vtestnzc_ps:
7808    case Intrinsic::x86_avx_vtestnzc_pd:
7809    case Intrinsic::x86_avx_vtestnzc_ps_256:
7810    case Intrinsic::x86_avx_vtestnzc_pd_256:
7811      IsTestPacked = true; // Fallthrough
7812    case Intrinsic::x86_sse41_ptestnzc:
7813    case Intrinsic::x86_avx_ptestnzc_256:
7814      // ZF and CF = 0
7815      X86CC = X86::COND_A;
7816      break;
7817    }
7818
7819    SDValue LHS = Op.getOperand(1);
7820    SDValue RHS = Op.getOperand(2);
7821    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
7822    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
7823    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
7824    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
7825    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
7826  }
7827
7828  // Fix vector shift instructions where the last operand is a non-immediate
7829  // i32 value.
7830  case Intrinsic::x86_sse2_pslli_w:
7831  case Intrinsic::x86_sse2_pslli_d:
7832  case Intrinsic::x86_sse2_pslli_q:
7833  case Intrinsic::x86_sse2_psrli_w:
7834  case Intrinsic::x86_sse2_psrli_d:
7835  case Intrinsic::x86_sse2_psrli_q:
7836  case Intrinsic::x86_sse2_psrai_w:
7837  case Intrinsic::x86_sse2_psrai_d:
7838  case Intrinsic::x86_mmx_pslli_w:
7839  case Intrinsic::x86_mmx_pslli_d:
7840  case Intrinsic::x86_mmx_pslli_q:
7841  case Intrinsic::x86_mmx_psrli_w:
7842  case Intrinsic::x86_mmx_psrli_d:
7843  case Intrinsic::x86_mmx_psrli_q:
7844  case Intrinsic::x86_mmx_psrai_w:
7845  case Intrinsic::x86_mmx_psrai_d: {
7846    SDValue ShAmt = Op.getOperand(2);
7847    if (isa<ConstantSDNode>(ShAmt))
7848      return SDValue();
7849
7850    unsigned NewIntNo = 0;
7851    EVT ShAmtVT = MVT::v4i32;
7852    switch (IntNo) {
7853    case Intrinsic::x86_sse2_pslli_w:
7854      NewIntNo = Intrinsic::x86_sse2_psll_w;
7855      break;
7856    case Intrinsic::x86_sse2_pslli_d:
7857      NewIntNo = Intrinsic::x86_sse2_psll_d;
7858      break;
7859    case Intrinsic::x86_sse2_pslli_q:
7860      NewIntNo = Intrinsic::x86_sse2_psll_q;
7861      break;
7862    case Intrinsic::x86_sse2_psrli_w:
7863      NewIntNo = Intrinsic::x86_sse2_psrl_w;
7864      break;
7865    case Intrinsic::x86_sse2_psrli_d:
7866      NewIntNo = Intrinsic::x86_sse2_psrl_d;
7867      break;
7868    case Intrinsic::x86_sse2_psrli_q:
7869      NewIntNo = Intrinsic::x86_sse2_psrl_q;
7870      break;
7871    case Intrinsic::x86_sse2_psrai_w:
7872      NewIntNo = Intrinsic::x86_sse2_psra_w;
7873      break;
7874    case Intrinsic::x86_sse2_psrai_d:
7875      NewIntNo = Intrinsic::x86_sse2_psra_d;
7876      break;
7877    default: {
7878      ShAmtVT = MVT::v2i32;
7879      switch (IntNo) {
7880      case Intrinsic::x86_mmx_pslli_w:
7881        NewIntNo = Intrinsic::x86_mmx_psll_w;
7882        break;
7883      case Intrinsic::x86_mmx_pslli_d:
7884        NewIntNo = Intrinsic::x86_mmx_psll_d;
7885        break;
7886      case Intrinsic::x86_mmx_pslli_q:
7887        NewIntNo = Intrinsic::x86_mmx_psll_q;
7888        break;
7889      case Intrinsic::x86_mmx_psrli_w:
7890        NewIntNo = Intrinsic::x86_mmx_psrl_w;
7891        break;
7892      case Intrinsic::x86_mmx_psrli_d:
7893        NewIntNo = Intrinsic::x86_mmx_psrl_d;
7894        break;
7895      case Intrinsic::x86_mmx_psrli_q:
7896        NewIntNo = Intrinsic::x86_mmx_psrl_q;
7897        break;
7898      case Intrinsic::x86_mmx_psrai_w:
7899        NewIntNo = Intrinsic::x86_mmx_psra_w;
7900        break;
7901      case Intrinsic::x86_mmx_psrai_d:
7902        NewIntNo = Intrinsic::x86_mmx_psra_d;
7903        break;
7904      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7905      }
7906      break;
7907    }
7908    }
7909
7910    // The vector shift intrinsics with scalars uses 32b shift amounts but
7911    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
7912    // to be zero.
7913    SDValue ShOps[4];
7914    ShOps[0] = ShAmt;
7915    ShOps[1] = DAG.getConstant(0, MVT::i32);
7916    if (ShAmtVT == MVT::v4i32) {
7917      ShOps[2] = DAG.getUNDEF(MVT::i32);
7918      ShOps[3] = DAG.getUNDEF(MVT::i32);
7919      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
7920    } else {
7921      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
7922// FIXME this must be lowered to get rid of the invalid type.
7923    }
7924
7925    EVT VT = Op.getValueType();
7926    ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, VT, ShAmt);
7927    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7928                       DAG.getConstant(NewIntNo, MVT::i32),
7929                       Op.getOperand(1), ShAmt);
7930  }
7931  }
7932}
7933
7934SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
7935                                           SelectionDAG &DAG) const {
7936  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7937  MFI->setReturnAddressIsTaken(true);
7938
7939  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7940  DebugLoc dl = Op.getDebugLoc();
7941
7942  if (Depth > 0) {
7943    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
7944    SDValue Offset =
7945      DAG.getConstant(TD->getPointerSize(),
7946                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
7947    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7948                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
7949                                   FrameAddr, Offset),
7950                       MachinePointerInfo(), false, false, 0);
7951  }
7952
7953  // Just load the return address.
7954  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
7955  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7956                     RetAddrFI, MachinePointerInfo(), false, false, 0);
7957}
7958
7959SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
7960  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7961  MFI->setFrameAddressIsTaken(true);
7962
7963  EVT VT = Op.getValueType();
7964  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
7965  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7966  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
7967  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
7968  while (Depth--)
7969    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
7970                            MachinePointerInfo(),
7971                            false, false, 0);
7972  return FrameAddr;
7973}
7974
7975SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
7976                                                     SelectionDAG &DAG) const {
7977  return DAG.getIntPtrConstant(2*TD->getPointerSize());
7978}
7979
7980SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
7981  MachineFunction &MF = DAG.getMachineFunction();
7982  SDValue Chain     = Op.getOperand(0);
7983  SDValue Offset    = Op.getOperand(1);
7984  SDValue Handler   = Op.getOperand(2);
7985  DebugLoc dl       = Op.getDebugLoc();
7986
7987  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
7988                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
7989                                     getPointerTy());
7990  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
7991
7992  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
7993                                  DAG.getIntPtrConstant(TD->getPointerSize()));
7994  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
7995  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
7996                       false, false, 0);
7997  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
7998  MF.getRegInfo().addLiveOut(StoreAddrReg);
7999
8000  return DAG.getNode(X86ISD::EH_RETURN, dl,
8001                     MVT::Other,
8002                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
8003}
8004
8005SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
8006                                             SelectionDAG &DAG) const {
8007  SDValue Root = Op.getOperand(0);
8008  SDValue Trmp = Op.getOperand(1); // trampoline
8009  SDValue FPtr = Op.getOperand(2); // nested function
8010  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
8011  DebugLoc dl  = Op.getDebugLoc();
8012
8013  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
8014
8015  if (Subtarget->is64Bit()) {
8016    SDValue OutChains[6];
8017
8018    // Large code-model.
8019    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
8020    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
8021
8022    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
8023    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
8024
8025    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
8026
8027    // Load the pointer to the nested function into R11.
8028    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
8029    SDValue Addr = Trmp;
8030    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8031                                Addr, MachinePointerInfo(TrmpAddr),
8032                                false, false, 0);
8033
8034    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8035                       DAG.getConstant(2, MVT::i64));
8036    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
8037                                MachinePointerInfo(TrmpAddr, 2),
8038                                false, false, 2);
8039
8040    // Load the 'nest' parameter value into R10.
8041    // R10 is specified in X86CallingConv.td
8042    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
8043    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8044                       DAG.getConstant(10, MVT::i64));
8045    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8046                                Addr, MachinePointerInfo(TrmpAddr, 10),
8047                                false, false, 0);
8048
8049    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8050                       DAG.getConstant(12, MVT::i64));
8051    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
8052                                MachinePointerInfo(TrmpAddr, 12),
8053                                false, false, 2);
8054
8055    // Jump to the nested function.
8056    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
8057    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8058                       DAG.getConstant(20, MVT::i64));
8059    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8060                                Addr, MachinePointerInfo(TrmpAddr, 20),
8061                                false, false, 0);
8062
8063    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
8064    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8065                       DAG.getConstant(22, MVT::i64));
8066    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
8067                                MachinePointerInfo(TrmpAddr, 22),
8068                                false, false, 0);
8069
8070    SDValue Ops[] =
8071      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
8072    return DAG.getMergeValues(Ops, 2, dl);
8073  } else {
8074    const Function *Func =
8075      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
8076    CallingConv::ID CC = Func->getCallingConv();
8077    unsigned NestReg;
8078
8079    switch (CC) {
8080    default:
8081      llvm_unreachable("Unsupported calling convention");
8082    case CallingConv::C:
8083    case CallingConv::X86_StdCall: {
8084      // Pass 'nest' parameter in ECX.
8085      // Must be kept in sync with X86CallingConv.td
8086      NestReg = X86::ECX;
8087
8088      // Check that ECX wasn't needed by an 'inreg' parameter.
8089      const FunctionType *FTy = Func->getFunctionType();
8090      const AttrListPtr &Attrs = Func->getAttributes();
8091
8092      if (!Attrs.isEmpty() && !Func->isVarArg()) {
8093        unsigned InRegCount = 0;
8094        unsigned Idx = 1;
8095
8096        for (FunctionType::param_iterator I = FTy->param_begin(),
8097             E = FTy->param_end(); I != E; ++I, ++Idx)
8098          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
8099            // FIXME: should only count parameters that are lowered to integers.
8100            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
8101
8102        if (InRegCount > 2) {
8103          report_fatal_error("Nest register in use - reduce number of inreg"
8104                             " parameters!");
8105        }
8106      }
8107      break;
8108    }
8109    case CallingConv::X86_FastCall:
8110    case CallingConv::X86_ThisCall:
8111    case CallingConv::Fast:
8112      // Pass 'nest' parameter in EAX.
8113      // Must be kept in sync with X86CallingConv.td
8114      NestReg = X86::EAX;
8115      break;
8116    }
8117
8118    SDValue OutChains[4];
8119    SDValue Addr, Disp;
8120
8121    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8122                       DAG.getConstant(10, MVT::i32));
8123    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
8124
8125    // This is storing the opcode for MOV32ri.
8126    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
8127    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
8128    OutChains[0] = DAG.getStore(Root, dl,
8129                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
8130                                Trmp, MachinePointerInfo(TrmpAddr),
8131                                false, false, 0);
8132
8133    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8134                       DAG.getConstant(1, MVT::i32));
8135    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
8136                                MachinePointerInfo(TrmpAddr, 1),
8137                                false, false, 1);
8138
8139    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
8140    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8141                       DAG.getConstant(5, MVT::i32));
8142    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
8143                                MachinePointerInfo(TrmpAddr, 5),
8144                                false, false, 1);
8145
8146    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8147                       DAG.getConstant(6, MVT::i32));
8148    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
8149                                MachinePointerInfo(TrmpAddr, 6),
8150                                false, false, 1);
8151
8152    SDValue Ops[] =
8153      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
8154    return DAG.getMergeValues(Ops, 2, dl);
8155  }
8156}
8157
8158SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
8159                                            SelectionDAG &DAG) const {
8160  /*
8161   The rounding mode is in bits 11:10 of FPSR, and has the following
8162   settings:
8163     00 Round to nearest
8164     01 Round to -inf
8165     10 Round to +inf
8166     11 Round to 0
8167
8168  FLT_ROUNDS, on the other hand, expects the following:
8169    -1 Undefined
8170     0 Round to 0
8171     1 Round to nearest
8172     2 Round to +inf
8173     3 Round to -inf
8174
8175  To perform the conversion, we do:
8176    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
8177  */
8178
8179  MachineFunction &MF = DAG.getMachineFunction();
8180  const TargetMachine &TM = MF.getTarget();
8181  const TargetFrameInfo &TFI = *TM.getFrameInfo();
8182  unsigned StackAlignment = TFI.getStackAlignment();
8183  EVT VT = Op.getValueType();
8184  DebugLoc DL = Op.getDebugLoc();
8185
8186  // Save FP Control Word to stack slot
8187  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
8188  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8189
8190
8191  MachineMemOperand *MMO =
8192   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8193                           MachineMemOperand::MOStore, 2, 2);
8194
8195  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
8196  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
8197                                          DAG.getVTList(MVT::Other),
8198                                          Ops, 2, MVT::i16, MMO);
8199
8200  // Load FP Control Word from stack slot
8201  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
8202                            MachinePointerInfo(), false, false, 0);
8203
8204  // Transform as necessary
8205  SDValue CWD1 =
8206    DAG.getNode(ISD::SRL, DL, MVT::i16,
8207                DAG.getNode(ISD::AND, DL, MVT::i16,
8208                            CWD, DAG.getConstant(0x800, MVT::i16)),
8209                DAG.getConstant(11, MVT::i8));
8210  SDValue CWD2 =
8211    DAG.getNode(ISD::SRL, DL, MVT::i16,
8212                DAG.getNode(ISD::AND, DL, MVT::i16,
8213                            CWD, DAG.getConstant(0x400, MVT::i16)),
8214                DAG.getConstant(9, MVT::i8));
8215
8216  SDValue RetVal =
8217    DAG.getNode(ISD::AND, DL, MVT::i16,
8218                DAG.getNode(ISD::ADD, DL, MVT::i16,
8219                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
8220                            DAG.getConstant(1, MVT::i16)),
8221                DAG.getConstant(3, MVT::i16));
8222
8223
8224  return DAG.getNode((VT.getSizeInBits() < 16 ?
8225                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
8226}
8227
8228SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
8229  EVT VT = Op.getValueType();
8230  EVT OpVT = VT;
8231  unsigned NumBits = VT.getSizeInBits();
8232  DebugLoc dl = Op.getDebugLoc();
8233
8234  Op = Op.getOperand(0);
8235  if (VT == MVT::i8) {
8236    // Zero extend to i32 since there is not an i8 bsr.
8237    OpVT = MVT::i32;
8238    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
8239  }
8240
8241  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
8242  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
8243  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
8244
8245  // If src is zero (i.e. bsr sets ZF), returns NumBits.
8246  SDValue Ops[] = {
8247    Op,
8248    DAG.getConstant(NumBits+NumBits-1, OpVT),
8249    DAG.getConstant(X86::COND_E, MVT::i8),
8250    Op.getValue(1)
8251  };
8252  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
8253
8254  // Finally xor with NumBits-1.
8255  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
8256
8257  if (VT == MVT::i8)
8258    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
8259  return Op;
8260}
8261
8262SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
8263  EVT VT = Op.getValueType();
8264  EVT OpVT = VT;
8265  unsigned NumBits = VT.getSizeInBits();
8266  DebugLoc dl = Op.getDebugLoc();
8267
8268  Op = Op.getOperand(0);
8269  if (VT == MVT::i8) {
8270    OpVT = MVT::i32;
8271    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
8272  }
8273
8274  // Issue a bsf (scan bits forward) which also sets EFLAGS.
8275  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
8276  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
8277
8278  // If src is zero (i.e. bsf sets ZF), returns NumBits.
8279  SDValue Ops[] = {
8280    Op,
8281    DAG.getConstant(NumBits, OpVT),
8282    DAG.getConstant(X86::COND_E, MVT::i8),
8283    Op.getValue(1)
8284  };
8285  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
8286
8287  if (VT == MVT::i8)
8288    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
8289  return Op;
8290}
8291
8292SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) const {
8293  EVT VT = Op.getValueType();
8294  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
8295  DebugLoc dl = Op.getDebugLoc();
8296
8297  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
8298  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
8299  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
8300  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
8301  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
8302  //
8303  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
8304  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
8305  //  return AloBlo + AloBhi + AhiBlo;
8306
8307  SDValue A = Op.getOperand(0);
8308  SDValue B = Op.getOperand(1);
8309
8310  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8311                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8312                       A, DAG.getConstant(32, MVT::i32));
8313  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8314                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8315                       B, DAG.getConstant(32, MVT::i32));
8316  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8317                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
8318                       A, B);
8319  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8320                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
8321                       A, Bhi);
8322  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8323                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
8324                       Ahi, B);
8325  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8326                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8327                       AloBhi, DAG.getConstant(32, MVT::i32));
8328  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8329                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8330                       AhiBlo, DAG.getConstant(32, MVT::i32));
8331  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
8332  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
8333  return Res;
8334}
8335
8336SDValue X86TargetLowering::LowerSHL(SDValue Op, SelectionDAG &DAG) const {
8337  EVT VT = Op.getValueType();
8338  DebugLoc dl = Op.getDebugLoc();
8339  SDValue R = Op.getOperand(0);
8340
8341  LLVMContext *Context = DAG.getContext();
8342
8343  assert(Subtarget->hasSSE41() && "Cannot lower SHL without SSE4.1 or later");
8344
8345  if (VT == MVT::v4i32) {
8346    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8347                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
8348                     Op.getOperand(1), DAG.getConstant(23, MVT::i32));
8349
8350    ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
8351
8352    std::vector<Constant*> CV(4, CI);
8353    Constant *C = ConstantVector::get(CV);
8354    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8355    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8356                                 MachinePointerInfo::getConstantPool(),
8357                                 false, false, 16);
8358
8359    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
8360    Op = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, Op);
8361    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
8362    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
8363  }
8364  if (VT == MVT::v16i8) {
8365    // a = a << 5;
8366    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8367                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
8368                     Op.getOperand(1), DAG.getConstant(5, MVT::i32));
8369
8370    ConstantInt *CM1 = ConstantInt::get(*Context, APInt(8, 15));
8371    ConstantInt *CM2 = ConstantInt::get(*Context, APInt(8, 63));
8372
8373    std::vector<Constant*> CVM1(16, CM1);
8374    std::vector<Constant*> CVM2(16, CM2);
8375    Constant *C = ConstantVector::get(CVM1);
8376    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8377    SDValue M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8378                            MachinePointerInfo::getConstantPool(),
8379                            false, false, 16);
8380
8381    // r = pblendv(r, psllw(r & (char16)15, 4), a);
8382    M = DAG.getNode(ISD::AND, dl, VT, R, M);
8383    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8384                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
8385                    DAG.getConstant(4, MVT::i32));
8386    R = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8387                    DAG.getConstant(Intrinsic::x86_sse41_pblendvb, MVT::i32),
8388                    R, M, Op);
8389    // a += a
8390    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
8391
8392    C = ConstantVector::get(CVM2);
8393    CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8394    M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8395                    MachinePointerInfo::getConstantPool(),
8396                    false, false, 16);
8397
8398    // r = pblendv(r, psllw(r & (char16)63, 2), a);
8399    M = DAG.getNode(ISD::AND, dl, VT, R, M);
8400    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8401                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
8402                    DAG.getConstant(2, MVT::i32));
8403    R = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8404                    DAG.getConstant(Intrinsic::x86_sse41_pblendvb, MVT::i32),
8405                    R, M, Op);
8406    // a += a
8407    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
8408
8409    // return pblendv(r, r+r, a);
8410    R = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8411                    DAG.getConstant(Intrinsic::x86_sse41_pblendvb, MVT::i32),
8412                    R, DAG.getNode(ISD::ADD, dl, VT, R, R), Op);
8413    return R;
8414  }
8415  return SDValue();
8416}
8417
8418SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
8419  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
8420  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
8421  // looks for this combo and may remove the "setcc" instruction if the "setcc"
8422  // has only one use.
8423  SDNode *N = Op.getNode();
8424  SDValue LHS = N->getOperand(0);
8425  SDValue RHS = N->getOperand(1);
8426  unsigned BaseOp = 0;
8427  unsigned Cond = 0;
8428  DebugLoc dl = Op.getDebugLoc();
8429
8430  switch (Op.getOpcode()) {
8431  default: llvm_unreachable("Unknown ovf instruction!");
8432  case ISD::SADDO:
8433    // A subtract of one will be selected as a INC. Note that INC doesn't
8434    // set CF, so we can't do this for UADDO.
8435    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
8436      if (C->getAPIntValue() == 1) {
8437        BaseOp = X86ISD::INC;
8438        Cond = X86::COND_O;
8439        break;
8440      }
8441    BaseOp = X86ISD::ADD;
8442    Cond = X86::COND_O;
8443    break;
8444  case ISD::UADDO:
8445    BaseOp = X86ISD::ADD;
8446    Cond = X86::COND_B;
8447    break;
8448  case ISD::SSUBO:
8449    // A subtract of one will be selected as a DEC. Note that DEC doesn't
8450    // set CF, so we can't do this for USUBO.
8451    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
8452      if (C->getAPIntValue() == 1) {
8453        BaseOp = X86ISD::DEC;
8454        Cond = X86::COND_O;
8455        break;
8456      }
8457    BaseOp = X86ISD::SUB;
8458    Cond = X86::COND_O;
8459    break;
8460  case ISD::USUBO:
8461    BaseOp = X86ISD::SUB;
8462    Cond = X86::COND_B;
8463    break;
8464  case ISD::SMULO:
8465    BaseOp = X86ISD::SMUL;
8466    Cond = X86::COND_O;
8467    break;
8468  case ISD::UMULO:
8469    BaseOp = X86ISD::UMUL;
8470    Cond = X86::COND_B;
8471    break;
8472  }
8473
8474  // Also sets EFLAGS.
8475  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
8476  SDValue Sum = DAG.getNode(BaseOp, dl, VTs, LHS, RHS);
8477
8478  SDValue SetCC =
8479    DAG.getNode(X86ISD::SETCC, dl, N->getValueType(1),
8480                DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1));
8481
8482  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
8483  return Sum;
8484}
8485
8486SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
8487  DebugLoc dl = Op.getDebugLoc();
8488
8489  if (!Subtarget->hasSSE2()) {
8490    SDValue Chain = Op.getOperand(0);
8491    SDValue Zero = DAG.getConstant(0,
8492                                   Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
8493    SDValue Ops[] = {
8494      DAG.getRegister(X86::ESP, MVT::i32), // Base
8495      DAG.getTargetConstant(1, MVT::i8),   // Scale
8496      DAG.getRegister(0, MVT::i32),        // Index
8497      DAG.getTargetConstant(0, MVT::i32),  // Disp
8498      DAG.getRegister(0, MVT::i32),        // Segment.
8499      Zero,
8500      Chain
8501    };
8502    SDNode *Res =
8503      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
8504                          array_lengthof(Ops));
8505    return SDValue(Res, 0);
8506  }
8507
8508  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
8509  if (!isDev)
8510    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
8511
8512  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
8513  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
8514  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
8515  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
8516
8517  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
8518  if (!Op1 && !Op2 && !Op3 && Op4)
8519    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
8520
8521  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
8522  if (Op1 && !Op2 && !Op3 && !Op4)
8523    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
8524
8525  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
8526  //           (MFENCE)>;
8527  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
8528}
8529
8530SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
8531  EVT T = Op.getValueType();
8532  DebugLoc DL = Op.getDebugLoc();
8533  unsigned Reg = 0;
8534  unsigned size = 0;
8535  switch(T.getSimpleVT().SimpleTy) {
8536  default:
8537    assert(false && "Invalid value type!");
8538  case MVT::i8:  Reg = X86::AL;  size = 1; break;
8539  case MVT::i16: Reg = X86::AX;  size = 2; break;
8540  case MVT::i32: Reg = X86::EAX; size = 4; break;
8541  case MVT::i64:
8542    assert(Subtarget->is64Bit() && "Node not type legal!");
8543    Reg = X86::RAX; size = 8;
8544    break;
8545  }
8546  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
8547                                    Op.getOperand(2), SDValue());
8548  SDValue Ops[] = { cpIn.getValue(0),
8549                    Op.getOperand(1),
8550                    Op.getOperand(3),
8551                    DAG.getTargetConstant(size, MVT::i8),
8552                    cpIn.getValue(1) };
8553  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
8554  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
8555  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
8556                                           Ops, 5, T, MMO);
8557  SDValue cpOut =
8558    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
8559  return cpOut;
8560}
8561
8562SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
8563                                                 SelectionDAG &DAG) const {
8564  assert(Subtarget->is64Bit() && "Result not type legalized?");
8565  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
8566  SDValue TheChain = Op.getOperand(0);
8567  DebugLoc dl = Op.getDebugLoc();
8568  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
8569  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
8570  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
8571                                   rax.getValue(2));
8572  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
8573                            DAG.getConstant(32, MVT::i8));
8574  SDValue Ops[] = {
8575    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
8576    rdx.getValue(1)
8577  };
8578  return DAG.getMergeValues(Ops, 2, dl);
8579}
8580
8581SDValue X86TargetLowering::LowerBIT_CONVERT(SDValue Op,
8582                                            SelectionDAG &DAG) const {
8583  EVT SrcVT = Op.getOperand(0).getValueType();
8584  EVT DstVT = Op.getValueType();
8585  assert((Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
8586          Subtarget->hasMMX() && !DisableMMX) &&
8587         "Unexpected custom BIT_CONVERT");
8588  assert((DstVT == MVT::i64 ||
8589          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
8590         "Unexpected custom BIT_CONVERT");
8591  // i64 <=> MMX conversions are Legal.
8592  if (SrcVT==MVT::i64 && DstVT.isVector())
8593    return Op;
8594  if (DstVT==MVT::i64 && SrcVT.isVector())
8595    return Op;
8596  // MMX <=> MMX conversions are Legal.
8597  if (SrcVT.isVector() && DstVT.isVector())
8598    return Op;
8599  // All other conversions need to be expanded.
8600  return SDValue();
8601}
8602SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
8603  SDNode *Node = Op.getNode();
8604  DebugLoc dl = Node->getDebugLoc();
8605  EVT T = Node->getValueType(0);
8606  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
8607                              DAG.getConstant(0, T), Node->getOperand(2));
8608  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
8609                       cast<AtomicSDNode>(Node)->getMemoryVT(),
8610                       Node->getOperand(0),
8611                       Node->getOperand(1), negOp,
8612                       cast<AtomicSDNode>(Node)->getSrcValue(),
8613                       cast<AtomicSDNode>(Node)->getAlignment());
8614}
8615
8616/// LowerOperation - Provide custom lowering hooks for some operations.
8617///
8618SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
8619  switch (Op.getOpcode()) {
8620  default: llvm_unreachable("Should not custom lower this!");
8621  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
8622  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
8623  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
8624  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
8625  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
8626  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
8627  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
8628  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
8629  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
8630  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
8631  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
8632  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
8633  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
8634  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
8635  case ISD::SHL_PARTS:
8636  case ISD::SRA_PARTS:
8637  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
8638  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
8639  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
8640  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
8641  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
8642  case ISD::FABS:               return LowerFABS(Op, DAG);
8643  case ISD::FNEG:               return LowerFNEG(Op, DAG);
8644  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
8645  case ISD::SETCC:              return LowerSETCC(Op, DAG);
8646  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
8647  case ISD::SELECT:             return LowerSELECT(Op, DAG);
8648  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
8649  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
8650  case ISD::VASTART:            return LowerVASTART(Op, DAG);
8651  case ISD::VAARG:              return LowerVAARG(Op, DAG);
8652  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
8653  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
8654  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
8655  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
8656  case ISD::FRAME_TO_ARGS_OFFSET:
8657                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
8658  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
8659  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
8660  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
8661  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
8662  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
8663  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
8664  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
8665  case ISD::SHL:                return LowerSHL(Op, DAG);
8666  case ISD::SADDO:
8667  case ISD::UADDO:
8668  case ISD::SSUBO:
8669  case ISD::USUBO:
8670  case ISD::SMULO:
8671  case ISD::UMULO:              return LowerXALUO(Op, DAG);
8672  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
8673  case ISD::BIT_CONVERT:        return LowerBIT_CONVERT(Op, DAG);
8674  }
8675}
8676
8677void X86TargetLowering::
8678ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
8679                        SelectionDAG &DAG, unsigned NewOp) const {
8680  EVT T = Node->getValueType(0);
8681  DebugLoc dl = Node->getDebugLoc();
8682  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
8683
8684  SDValue Chain = Node->getOperand(0);
8685  SDValue In1 = Node->getOperand(1);
8686  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
8687                             Node->getOperand(2), DAG.getIntPtrConstant(0));
8688  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
8689                             Node->getOperand(2), DAG.getIntPtrConstant(1));
8690  SDValue Ops[] = { Chain, In1, In2L, In2H };
8691  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
8692  SDValue Result =
8693    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
8694                            cast<MemSDNode>(Node)->getMemOperand());
8695  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
8696  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
8697  Results.push_back(Result.getValue(2));
8698}
8699
8700/// ReplaceNodeResults - Replace a node with an illegal result type
8701/// with a new node built out of custom code.
8702void X86TargetLowering::ReplaceNodeResults(SDNode *N,
8703                                           SmallVectorImpl<SDValue>&Results,
8704                                           SelectionDAG &DAG) const {
8705  DebugLoc dl = N->getDebugLoc();
8706  switch (N->getOpcode()) {
8707  default:
8708    assert(false && "Do not know how to custom type legalize this operation!");
8709    return;
8710  case ISD::FP_TO_SINT: {
8711    std::pair<SDValue,SDValue> Vals =
8712        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
8713    SDValue FIST = Vals.first, StackSlot = Vals.second;
8714    if (FIST.getNode() != 0) {
8715      EVT VT = N->getValueType(0);
8716      // Return a load from the stack slot.
8717      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
8718                                    MachinePointerInfo(), false, false, 0));
8719    }
8720    return;
8721  }
8722  case ISD::READCYCLECOUNTER: {
8723    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
8724    SDValue TheChain = N->getOperand(0);
8725    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
8726    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
8727                                     rd.getValue(1));
8728    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
8729                                     eax.getValue(2));
8730    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
8731    SDValue Ops[] = { eax, edx };
8732    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
8733    Results.push_back(edx.getValue(1));
8734    return;
8735  }
8736  case ISD::ATOMIC_CMP_SWAP: {
8737    EVT T = N->getValueType(0);
8738    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
8739    SDValue cpInL, cpInH;
8740    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
8741                        DAG.getConstant(0, MVT::i32));
8742    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
8743                        DAG.getConstant(1, MVT::i32));
8744    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
8745    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
8746                             cpInL.getValue(1));
8747    SDValue swapInL, swapInH;
8748    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
8749                          DAG.getConstant(0, MVT::i32));
8750    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
8751                          DAG.getConstant(1, MVT::i32));
8752    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
8753                               cpInH.getValue(1));
8754    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
8755                               swapInL.getValue(1));
8756    SDValue Ops[] = { swapInH.getValue(0),
8757                      N->getOperand(1),
8758                      swapInH.getValue(1) };
8759    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
8760    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
8761    SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG8_DAG, dl, Tys,
8762                                             Ops, 3, T, MMO);
8763    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
8764                                        MVT::i32, Result.getValue(1));
8765    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
8766                                        MVT::i32, cpOutL.getValue(2));
8767    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
8768    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
8769    Results.push_back(cpOutH.getValue(1));
8770    return;
8771  }
8772  case ISD::ATOMIC_LOAD_ADD:
8773    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
8774    return;
8775  case ISD::ATOMIC_LOAD_AND:
8776    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
8777    return;
8778  case ISD::ATOMIC_LOAD_NAND:
8779    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
8780    return;
8781  case ISD::ATOMIC_LOAD_OR:
8782    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
8783    return;
8784  case ISD::ATOMIC_LOAD_SUB:
8785    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
8786    return;
8787  case ISD::ATOMIC_LOAD_XOR:
8788    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
8789    return;
8790  case ISD::ATOMIC_SWAP:
8791    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
8792    return;
8793  }
8794}
8795
8796const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
8797  switch (Opcode) {
8798  default: return NULL;
8799  case X86ISD::BSF:                return "X86ISD::BSF";
8800  case X86ISD::BSR:                return "X86ISD::BSR";
8801  case X86ISD::SHLD:               return "X86ISD::SHLD";
8802  case X86ISD::SHRD:               return "X86ISD::SHRD";
8803  case X86ISD::FAND:               return "X86ISD::FAND";
8804  case X86ISD::FOR:                return "X86ISD::FOR";
8805  case X86ISD::FXOR:               return "X86ISD::FXOR";
8806  case X86ISD::FSRL:               return "X86ISD::FSRL";
8807  case X86ISD::FILD:               return "X86ISD::FILD";
8808  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
8809  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
8810  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
8811  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
8812  case X86ISD::FLD:                return "X86ISD::FLD";
8813  case X86ISD::FST:                return "X86ISD::FST";
8814  case X86ISD::CALL:               return "X86ISD::CALL";
8815  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
8816  case X86ISD::BT:                 return "X86ISD::BT";
8817  case X86ISD::CMP:                return "X86ISD::CMP";
8818  case X86ISD::COMI:               return "X86ISD::COMI";
8819  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
8820  case X86ISD::SETCC:              return "X86ISD::SETCC";
8821  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
8822  case X86ISD::CMOV:               return "X86ISD::CMOV";
8823  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
8824  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
8825  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
8826  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
8827  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
8828  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
8829  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
8830  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
8831  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
8832  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
8833  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
8834  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
8835  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
8836  case X86ISD::FMAX:               return "X86ISD::FMAX";
8837  case X86ISD::FMIN:               return "X86ISD::FMIN";
8838  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
8839  case X86ISD::FRCP:               return "X86ISD::FRCP";
8840  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
8841  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
8842  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
8843  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
8844  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
8845  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
8846  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
8847  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
8848  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
8849  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
8850  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
8851  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
8852  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
8853  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
8854  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
8855  case X86ISD::VSHL:               return "X86ISD::VSHL";
8856  case X86ISD::VSRL:               return "X86ISD::VSRL";
8857  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
8858  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
8859  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
8860  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
8861  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
8862  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
8863  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
8864  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
8865  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
8866  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
8867  case X86ISD::ADD:                return "X86ISD::ADD";
8868  case X86ISD::SUB:                return "X86ISD::SUB";
8869  case X86ISD::SMUL:               return "X86ISD::SMUL";
8870  case X86ISD::UMUL:               return "X86ISD::UMUL";
8871  case X86ISD::INC:                return "X86ISD::INC";
8872  case X86ISD::DEC:                return "X86ISD::DEC";
8873  case X86ISD::OR:                 return "X86ISD::OR";
8874  case X86ISD::XOR:                return "X86ISD::XOR";
8875  case X86ISD::AND:                return "X86ISD::AND";
8876  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
8877  case X86ISD::PTEST:              return "X86ISD::PTEST";
8878  case X86ISD::TESTP:              return "X86ISD::TESTP";
8879  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
8880  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
8881  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
8882  case X86ISD::PSHUFHW_LD:         return "X86ISD::PSHUFHW_LD";
8883  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
8884  case X86ISD::PSHUFLW_LD:         return "X86ISD::PSHUFLW_LD";
8885  case X86ISD::SHUFPS:             return "X86ISD::SHUFPS";
8886  case X86ISD::SHUFPD:             return "X86ISD::SHUFPD";
8887  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
8888  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
8889  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
8890  case X86ISD::MOVHLPD:            return "X86ISD::MOVHLPD";
8891  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
8892  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
8893  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
8894  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
8895  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
8896  case X86ISD::MOVSHDUP_LD:        return "X86ISD::MOVSHDUP_LD";
8897  case X86ISD::MOVSLDUP_LD:        return "X86ISD::MOVSLDUP_LD";
8898  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
8899  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
8900  case X86ISD::UNPCKLPS:           return "X86ISD::UNPCKLPS";
8901  case X86ISD::UNPCKLPD:           return "X86ISD::UNPCKLPD";
8902  case X86ISD::UNPCKHPS:           return "X86ISD::UNPCKHPS";
8903  case X86ISD::UNPCKHPD:           return "X86ISD::UNPCKHPD";
8904  case X86ISD::PUNPCKLBW:          return "X86ISD::PUNPCKLBW";
8905  case X86ISD::PUNPCKLWD:          return "X86ISD::PUNPCKLWD";
8906  case X86ISD::PUNPCKLDQ:          return "X86ISD::PUNPCKLDQ";
8907  case X86ISD::PUNPCKLQDQ:         return "X86ISD::PUNPCKLQDQ";
8908  case X86ISD::PUNPCKHBW:          return "X86ISD::PUNPCKHBW";
8909  case X86ISD::PUNPCKHWD:          return "X86ISD::PUNPCKHWD";
8910  case X86ISD::PUNPCKHDQ:          return "X86ISD::PUNPCKHDQ";
8911  case X86ISD::PUNPCKHQDQ:         return "X86ISD::PUNPCKHQDQ";
8912  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
8913  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
8914  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
8915  }
8916}
8917
8918// isLegalAddressingMode - Return true if the addressing mode represented
8919// by AM is legal for this target, for a load/store of the specified type.
8920bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
8921                                              const Type *Ty) const {
8922  // X86 supports extremely general addressing modes.
8923  CodeModel::Model M = getTargetMachine().getCodeModel();
8924  Reloc::Model R = getTargetMachine().getRelocationModel();
8925
8926  // X86 allows a sign-extended 32-bit immediate field as a displacement.
8927  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
8928    return false;
8929
8930  if (AM.BaseGV) {
8931    unsigned GVFlags =
8932      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
8933
8934    // If a reference to this global requires an extra load, we can't fold it.
8935    if (isGlobalStubReference(GVFlags))
8936      return false;
8937
8938    // If BaseGV requires a register for the PIC base, we cannot also have a
8939    // BaseReg specified.
8940    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
8941      return false;
8942
8943    // If lower 4G is not available, then we must use rip-relative addressing.
8944    if ((M != CodeModel::Small || R != Reloc::Static) &&
8945        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
8946      return false;
8947  }
8948
8949  switch (AM.Scale) {
8950  case 0:
8951  case 1:
8952  case 2:
8953  case 4:
8954  case 8:
8955    // These scales always work.
8956    break;
8957  case 3:
8958  case 5:
8959  case 9:
8960    // These scales are formed with basereg+scalereg.  Only accept if there is
8961    // no basereg yet.
8962    if (AM.HasBaseReg)
8963      return false;
8964    break;
8965  default:  // Other stuff never works.
8966    return false;
8967  }
8968
8969  return true;
8970}
8971
8972
8973bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
8974  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
8975    return false;
8976  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
8977  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
8978  if (NumBits1 <= NumBits2)
8979    return false;
8980  return true;
8981}
8982
8983bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
8984  if (!VT1.isInteger() || !VT2.isInteger())
8985    return false;
8986  unsigned NumBits1 = VT1.getSizeInBits();
8987  unsigned NumBits2 = VT2.getSizeInBits();
8988  if (NumBits1 <= NumBits2)
8989    return false;
8990  return true;
8991}
8992
8993bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
8994  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
8995  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
8996}
8997
8998bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
8999  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
9000  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
9001}
9002
9003bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
9004  // i16 instructions are longer (0x66 prefix) and potentially slower.
9005  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
9006}
9007
9008/// isShuffleMaskLegal - Targets can use this to indicate that they only
9009/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
9010/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
9011/// are assumed to be legal.
9012bool
9013X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
9014                                      EVT VT) const {
9015  // Very little shuffling can be done for 64-bit vectors right now.
9016  if (VT.getSizeInBits() == 64)
9017    return isPALIGNRMask(M, VT, Subtarget->hasSSSE3());
9018
9019  // FIXME: pshufb, blends, shifts.
9020  return (VT.getVectorNumElements() == 2 ||
9021          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
9022          isMOVLMask(M, VT) ||
9023          isSHUFPMask(M, VT) ||
9024          isPSHUFDMask(M, VT) ||
9025          isPSHUFHWMask(M, VT) ||
9026          isPSHUFLWMask(M, VT) ||
9027          isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
9028          isUNPCKLMask(M, VT) ||
9029          isUNPCKHMask(M, VT) ||
9030          isUNPCKL_v_undef_Mask(M, VT) ||
9031          isUNPCKH_v_undef_Mask(M, VT));
9032}
9033
9034bool
9035X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
9036                                          EVT VT) const {
9037  unsigned NumElts = VT.getVectorNumElements();
9038  // FIXME: This collection of masks seems suspect.
9039  if (NumElts == 2)
9040    return true;
9041  if (NumElts == 4 && VT.getSizeInBits() == 128) {
9042    return (isMOVLMask(Mask, VT)  ||
9043            isCommutedMOVLMask(Mask, VT, true) ||
9044            isSHUFPMask(Mask, VT) ||
9045            isCommutedSHUFPMask(Mask, VT));
9046  }
9047  return false;
9048}
9049
9050//===----------------------------------------------------------------------===//
9051//                           X86 Scheduler Hooks
9052//===----------------------------------------------------------------------===//
9053
9054// private utility function
9055MachineBasicBlock *
9056X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
9057                                                       MachineBasicBlock *MBB,
9058                                                       unsigned regOpc,
9059                                                       unsigned immOpc,
9060                                                       unsigned LoadOpc,
9061                                                       unsigned CXchgOpc,
9062                                                       unsigned notOpc,
9063                                                       unsigned EAXreg,
9064                                                       TargetRegisterClass *RC,
9065                                                       bool invSrc) const {
9066  // For the atomic bitwise operator, we generate
9067  //   thisMBB:
9068  //   newMBB:
9069  //     ld  t1 = [bitinstr.addr]
9070  //     op  t2 = t1, [bitinstr.val]
9071  //     mov EAX = t1
9072  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
9073  //     bz  newMBB
9074  //     fallthrough -->nextMBB
9075  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9076  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9077  MachineFunction::iterator MBBIter = MBB;
9078  ++MBBIter;
9079
9080  /// First build the CFG
9081  MachineFunction *F = MBB->getParent();
9082  MachineBasicBlock *thisMBB = MBB;
9083  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
9084  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
9085  F->insert(MBBIter, newMBB);
9086  F->insert(MBBIter, nextMBB);
9087
9088  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
9089  nextMBB->splice(nextMBB->begin(), thisMBB,
9090                  llvm::next(MachineBasicBlock::iterator(bInstr)),
9091                  thisMBB->end());
9092  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9093
9094  // Update thisMBB to fall through to newMBB
9095  thisMBB->addSuccessor(newMBB);
9096
9097  // newMBB jumps to itself and fall through to nextMBB
9098  newMBB->addSuccessor(nextMBB);
9099  newMBB->addSuccessor(newMBB);
9100
9101  // Insert instructions into newMBB based on incoming instruction
9102  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
9103         "unexpected number of operands");
9104  DebugLoc dl = bInstr->getDebugLoc();
9105  MachineOperand& destOper = bInstr->getOperand(0);
9106  MachineOperand* argOpers[2 + X86::AddrNumOperands];
9107  int numArgs = bInstr->getNumOperands() - 1;
9108  for (int i=0; i < numArgs; ++i)
9109    argOpers[i] = &bInstr->getOperand(i+1);
9110
9111  // x86 address has 4 operands: base, index, scale, and displacement
9112  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
9113  int valArgIndx = lastAddrIndx + 1;
9114
9115  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
9116  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
9117  for (int i=0; i <= lastAddrIndx; ++i)
9118    (*MIB).addOperand(*argOpers[i]);
9119
9120  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
9121  if (invSrc) {
9122    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
9123  }
9124  else
9125    tt = t1;
9126
9127  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
9128  assert((argOpers[valArgIndx]->isReg() ||
9129          argOpers[valArgIndx]->isImm()) &&
9130         "invalid operand");
9131  if (argOpers[valArgIndx]->isReg())
9132    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
9133  else
9134    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
9135  MIB.addReg(tt);
9136  (*MIB).addOperand(*argOpers[valArgIndx]);
9137
9138  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
9139  MIB.addReg(t1);
9140
9141  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
9142  for (int i=0; i <= lastAddrIndx; ++i)
9143    (*MIB).addOperand(*argOpers[i]);
9144  MIB.addReg(t2);
9145  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
9146  (*MIB).setMemRefs(bInstr->memoperands_begin(),
9147                    bInstr->memoperands_end());
9148
9149  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
9150  MIB.addReg(EAXreg);
9151
9152  // insert branch
9153  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
9154
9155  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
9156  return nextMBB;
9157}
9158
9159// private utility function:  64 bit atomics on 32 bit host.
9160MachineBasicBlock *
9161X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
9162                                                       MachineBasicBlock *MBB,
9163                                                       unsigned regOpcL,
9164                                                       unsigned regOpcH,
9165                                                       unsigned immOpcL,
9166                                                       unsigned immOpcH,
9167                                                       bool invSrc) const {
9168  // For the atomic bitwise operator, we generate
9169  //   thisMBB (instructions are in pairs, except cmpxchg8b)
9170  //     ld t1,t2 = [bitinstr.addr]
9171  //   newMBB:
9172  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
9173  //     op  t5, t6 <- out1, out2, [bitinstr.val]
9174  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
9175  //     mov ECX, EBX <- t5, t6
9176  //     mov EAX, EDX <- t1, t2
9177  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
9178  //     mov t3, t4 <- EAX, EDX
9179  //     bz  newMBB
9180  //     result in out1, out2
9181  //     fallthrough -->nextMBB
9182
9183  const TargetRegisterClass *RC = X86::GR32RegisterClass;
9184  const unsigned LoadOpc = X86::MOV32rm;
9185  const unsigned NotOpc = X86::NOT32r;
9186  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9187  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9188  MachineFunction::iterator MBBIter = MBB;
9189  ++MBBIter;
9190
9191  /// First build the CFG
9192  MachineFunction *F = MBB->getParent();
9193  MachineBasicBlock *thisMBB = MBB;
9194  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
9195  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
9196  F->insert(MBBIter, newMBB);
9197  F->insert(MBBIter, nextMBB);
9198
9199  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
9200  nextMBB->splice(nextMBB->begin(), thisMBB,
9201                  llvm::next(MachineBasicBlock::iterator(bInstr)),
9202                  thisMBB->end());
9203  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9204
9205  // Update thisMBB to fall through to newMBB
9206  thisMBB->addSuccessor(newMBB);
9207
9208  // newMBB jumps to itself and fall through to nextMBB
9209  newMBB->addSuccessor(nextMBB);
9210  newMBB->addSuccessor(newMBB);
9211
9212  DebugLoc dl = bInstr->getDebugLoc();
9213  // Insert instructions into newMBB based on incoming instruction
9214  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
9215  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
9216         "unexpected number of operands");
9217  MachineOperand& dest1Oper = bInstr->getOperand(0);
9218  MachineOperand& dest2Oper = bInstr->getOperand(1);
9219  MachineOperand* argOpers[2 + X86::AddrNumOperands];
9220  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
9221    argOpers[i] = &bInstr->getOperand(i+2);
9222
9223    // We use some of the operands multiple times, so conservatively just
9224    // clear any kill flags that might be present.
9225    if (argOpers[i]->isReg() && argOpers[i]->isUse())
9226      argOpers[i]->setIsKill(false);
9227  }
9228
9229  // x86 address has 5 operands: base, index, scale, displacement, and segment.
9230  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
9231
9232  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
9233  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
9234  for (int i=0; i <= lastAddrIndx; ++i)
9235    (*MIB).addOperand(*argOpers[i]);
9236  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
9237  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
9238  // add 4 to displacement.
9239  for (int i=0; i <= lastAddrIndx-2; ++i)
9240    (*MIB).addOperand(*argOpers[i]);
9241  MachineOperand newOp3 = *(argOpers[3]);
9242  if (newOp3.isImm())
9243    newOp3.setImm(newOp3.getImm()+4);
9244  else
9245    newOp3.setOffset(newOp3.getOffset()+4);
9246  (*MIB).addOperand(newOp3);
9247  (*MIB).addOperand(*argOpers[lastAddrIndx]);
9248
9249  // t3/4 are defined later, at the bottom of the loop
9250  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
9251  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
9252  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
9253    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
9254  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
9255    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
9256
9257  // The subsequent operations should be using the destination registers of
9258  //the PHI instructions.
9259  if (invSrc) {
9260    t1 = F->getRegInfo().createVirtualRegister(RC);
9261    t2 = F->getRegInfo().createVirtualRegister(RC);
9262    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
9263    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
9264  } else {
9265    t1 = dest1Oper.getReg();
9266    t2 = dest2Oper.getReg();
9267  }
9268
9269  int valArgIndx = lastAddrIndx + 1;
9270  assert((argOpers[valArgIndx]->isReg() ||
9271          argOpers[valArgIndx]->isImm()) &&
9272         "invalid operand");
9273  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
9274  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
9275  if (argOpers[valArgIndx]->isReg())
9276    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
9277  else
9278    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
9279  if (regOpcL != X86::MOV32rr)
9280    MIB.addReg(t1);
9281  (*MIB).addOperand(*argOpers[valArgIndx]);
9282  assert(argOpers[valArgIndx + 1]->isReg() ==
9283         argOpers[valArgIndx]->isReg());
9284  assert(argOpers[valArgIndx + 1]->isImm() ==
9285         argOpers[valArgIndx]->isImm());
9286  if (argOpers[valArgIndx + 1]->isReg())
9287    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
9288  else
9289    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
9290  if (regOpcH != X86::MOV32rr)
9291    MIB.addReg(t2);
9292  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
9293
9294  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
9295  MIB.addReg(t1);
9296  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
9297  MIB.addReg(t2);
9298
9299  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
9300  MIB.addReg(t5);
9301  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
9302  MIB.addReg(t6);
9303
9304  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
9305  for (int i=0; i <= lastAddrIndx; ++i)
9306    (*MIB).addOperand(*argOpers[i]);
9307
9308  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
9309  (*MIB).setMemRefs(bInstr->memoperands_begin(),
9310                    bInstr->memoperands_end());
9311
9312  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
9313  MIB.addReg(X86::EAX);
9314  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
9315  MIB.addReg(X86::EDX);
9316
9317  // insert branch
9318  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
9319
9320  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
9321  return nextMBB;
9322}
9323
9324// private utility function
9325MachineBasicBlock *
9326X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
9327                                                      MachineBasicBlock *MBB,
9328                                                      unsigned cmovOpc) const {
9329  // For the atomic min/max operator, we generate
9330  //   thisMBB:
9331  //   newMBB:
9332  //     ld t1 = [min/max.addr]
9333  //     mov t2 = [min/max.val]
9334  //     cmp  t1, t2
9335  //     cmov[cond] t2 = t1
9336  //     mov EAX = t1
9337  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
9338  //     bz   newMBB
9339  //     fallthrough -->nextMBB
9340  //
9341  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9342  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9343  MachineFunction::iterator MBBIter = MBB;
9344  ++MBBIter;
9345
9346  /// First build the CFG
9347  MachineFunction *F = MBB->getParent();
9348  MachineBasicBlock *thisMBB = MBB;
9349  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
9350  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
9351  F->insert(MBBIter, newMBB);
9352  F->insert(MBBIter, nextMBB);
9353
9354  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
9355  nextMBB->splice(nextMBB->begin(), thisMBB,
9356                  llvm::next(MachineBasicBlock::iterator(mInstr)),
9357                  thisMBB->end());
9358  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9359
9360  // Update thisMBB to fall through to newMBB
9361  thisMBB->addSuccessor(newMBB);
9362
9363  // newMBB jumps to newMBB and fall through to nextMBB
9364  newMBB->addSuccessor(nextMBB);
9365  newMBB->addSuccessor(newMBB);
9366
9367  DebugLoc dl = mInstr->getDebugLoc();
9368  // Insert instructions into newMBB based on incoming instruction
9369  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
9370         "unexpected number of operands");
9371  MachineOperand& destOper = mInstr->getOperand(0);
9372  MachineOperand* argOpers[2 + X86::AddrNumOperands];
9373  int numArgs = mInstr->getNumOperands() - 1;
9374  for (int i=0; i < numArgs; ++i)
9375    argOpers[i] = &mInstr->getOperand(i+1);
9376
9377  // x86 address has 4 operands: base, index, scale, and displacement
9378  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
9379  int valArgIndx = lastAddrIndx + 1;
9380
9381  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
9382  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
9383  for (int i=0; i <= lastAddrIndx; ++i)
9384    (*MIB).addOperand(*argOpers[i]);
9385
9386  // We only support register and immediate values
9387  assert((argOpers[valArgIndx]->isReg() ||
9388          argOpers[valArgIndx]->isImm()) &&
9389         "invalid operand");
9390
9391  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
9392  if (argOpers[valArgIndx]->isReg())
9393    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
9394  else
9395    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
9396  (*MIB).addOperand(*argOpers[valArgIndx]);
9397
9398  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
9399  MIB.addReg(t1);
9400
9401  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
9402  MIB.addReg(t1);
9403  MIB.addReg(t2);
9404
9405  // Generate movc
9406  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
9407  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
9408  MIB.addReg(t2);
9409  MIB.addReg(t1);
9410
9411  // Cmp and exchange if none has modified the memory location
9412  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
9413  for (int i=0; i <= lastAddrIndx; ++i)
9414    (*MIB).addOperand(*argOpers[i]);
9415  MIB.addReg(t3);
9416  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
9417  (*MIB).setMemRefs(mInstr->memoperands_begin(),
9418                    mInstr->memoperands_end());
9419
9420  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
9421  MIB.addReg(X86::EAX);
9422
9423  // insert branch
9424  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
9425
9426  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
9427  return nextMBB;
9428}
9429
9430// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
9431// or XMM0_V32I8 in AVX all of this code can be replaced with that
9432// in the .td file.
9433MachineBasicBlock *
9434X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
9435                            unsigned numArgs, bool memArg) const {
9436
9437  assert((Subtarget->hasSSE42() || Subtarget->hasAVX()) &&
9438         "Target must have SSE4.2 or AVX features enabled");
9439
9440  DebugLoc dl = MI->getDebugLoc();
9441  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9442
9443  unsigned Opc;
9444
9445  if (!Subtarget->hasAVX()) {
9446    if (memArg)
9447      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
9448    else
9449      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
9450  } else {
9451    if (memArg)
9452      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
9453    else
9454      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
9455  }
9456
9457  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(Opc));
9458
9459  for (unsigned i = 0; i < numArgs; ++i) {
9460    MachineOperand &Op = MI->getOperand(i+1);
9461
9462    if (!(Op.isReg() && Op.isImplicit()))
9463      MIB.addOperand(Op);
9464  }
9465
9466  BuildMI(BB, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
9467    .addReg(X86::XMM0);
9468
9469  MI->eraseFromParent();
9470
9471  return BB;
9472}
9473
9474MachineBasicBlock *
9475X86TargetLowering::EmitVAARG64WithCustomInserter(
9476                   MachineInstr *MI,
9477                   MachineBasicBlock *MBB) const {
9478  // Emit va_arg instruction on X86-64.
9479
9480  // Operands to this pseudo-instruction:
9481  // 0  ) Output        : destination address (reg)
9482  // 1-5) Input         : va_list address (addr, i64mem)
9483  // 6  ) ArgSize       : Size (in bytes) of vararg type
9484  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
9485  // 8  ) Align         : Alignment of type
9486  // 9  ) EFLAGS (implicit-def)
9487
9488  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
9489  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
9490
9491  unsigned DestReg = MI->getOperand(0).getReg();
9492  MachineOperand &Base = MI->getOperand(1);
9493  MachineOperand &Scale = MI->getOperand(2);
9494  MachineOperand &Index = MI->getOperand(3);
9495  MachineOperand &Disp = MI->getOperand(4);
9496  MachineOperand &Segment = MI->getOperand(5);
9497  unsigned ArgSize = MI->getOperand(6).getImm();
9498  unsigned ArgMode = MI->getOperand(7).getImm();
9499  unsigned Align = MI->getOperand(8).getImm();
9500
9501  // Memory Reference
9502  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
9503  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
9504  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
9505
9506  // Machine Information
9507  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9508  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
9509  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
9510  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
9511  DebugLoc DL = MI->getDebugLoc();
9512
9513  // struct va_list {
9514  //   i32   gp_offset
9515  //   i32   fp_offset
9516  //   i64   overflow_area (address)
9517  //   i64   reg_save_area (address)
9518  // }
9519  // sizeof(va_list) = 24
9520  // alignment(va_list) = 8
9521
9522  unsigned TotalNumIntRegs = 6;
9523  unsigned TotalNumXMMRegs = 8;
9524  bool UseGPOffset = (ArgMode == 1);
9525  bool UseFPOffset = (ArgMode == 2);
9526  unsigned MaxOffset = TotalNumIntRegs * 8 +
9527                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
9528
9529  /* Align ArgSize to a multiple of 8 */
9530  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
9531  bool NeedsAlign = (Align > 8);
9532
9533  MachineBasicBlock *thisMBB = MBB;
9534  MachineBasicBlock *overflowMBB;
9535  MachineBasicBlock *offsetMBB;
9536  MachineBasicBlock *endMBB;
9537
9538  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
9539  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
9540  unsigned OffsetReg = 0;
9541
9542  if (!UseGPOffset && !UseFPOffset) {
9543    // If we only pull from the overflow region, we don't create a branch.
9544    // We don't need to alter control flow.
9545    OffsetDestReg = 0; // unused
9546    OverflowDestReg = DestReg;
9547
9548    offsetMBB = NULL;
9549    overflowMBB = thisMBB;
9550    endMBB = thisMBB;
9551  } else {
9552    // First emit code to check if gp_offset (or fp_offset) is below the bound.
9553    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
9554    // If not, pull from overflow_area. (branch to overflowMBB)
9555    //
9556    //       thisMBB
9557    //         |     .
9558    //         |        .
9559    //     offsetMBB   overflowMBB
9560    //         |        .
9561    //         |     .
9562    //        endMBB
9563
9564    // Registers for the PHI in endMBB
9565    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
9566    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
9567
9568    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9569    MachineFunction *MF = MBB->getParent();
9570    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
9571    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
9572    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
9573
9574    MachineFunction::iterator MBBIter = MBB;
9575    ++MBBIter;
9576
9577    // Insert the new basic blocks
9578    MF->insert(MBBIter, offsetMBB);
9579    MF->insert(MBBIter, overflowMBB);
9580    MF->insert(MBBIter, endMBB);
9581
9582    // Transfer the remainder of MBB and its successor edges to endMBB.
9583    endMBB->splice(endMBB->begin(), thisMBB,
9584                    llvm::next(MachineBasicBlock::iterator(MI)),
9585                    thisMBB->end());
9586    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9587
9588    // Make offsetMBB and overflowMBB successors of thisMBB
9589    thisMBB->addSuccessor(offsetMBB);
9590    thisMBB->addSuccessor(overflowMBB);
9591
9592    // endMBB is a successor of both offsetMBB and overflowMBB
9593    offsetMBB->addSuccessor(endMBB);
9594    overflowMBB->addSuccessor(endMBB);
9595
9596    // Load the offset value into a register
9597    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
9598    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
9599      .addOperand(Base)
9600      .addOperand(Scale)
9601      .addOperand(Index)
9602      .addDisp(Disp, UseFPOffset ? 4 : 0)
9603      .addOperand(Segment)
9604      .setMemRefs(MMOBegin, MMOEnd);
9605
9606    // Check if there is enough room left to pull this argument.
9607    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
9608      .addReg(OffsetReg)
9609      .addImm(MaxOffset + 8 - ArgSizeA8);
9610
9611    // Branch to "overflowMBB" if offset >= max
9612    // Fall through to "offsetMBB" otherwise
9613    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
9614      .addMBB(overflowMBB);
9615  }
9616
9617  // In offsetMBB, emit code to use the reg_save_area.
9618  if (offsetMBB) {
9619    assert(OffsetReg != 0);
9620
9621    // Read the reg_save_area address.
9622    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
9623    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
9624      .addOperand(Base)
9625      .addOperand(Scale)
9626      .addOperand(Index)
9627      .addDisp(Disp, 16)
9628      .addOperand(Segment)
9629      .setMemRefs(MMOBegin, MMOEnd);
9630
9631    // Zero-extend the offset
9632    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
9633      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
9634        .addImm(0)
9635        .addReg(OffsetReg)
9636        .addImm(X86::sub_32bit);
9637
9638    // Add the offset to the reg_save_area to get the final address.
9639    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
9640      .addReg(OffsetReg64)
9641      .addReg(RegSaveReg);
9642
9643    // Compute the offset for the next argument
9644    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
9645    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
9646      .addReg(OffsetReg)
9647      .addImm(UseFPOffset ? 16 : 8);
9648
9649    // Store it back into the va_list.
9650    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
9651      .addOperand(Base)
9652      .addOperand(Scale)
9653      .addOperand(Index)
9654      .addDisp(Disp, UseFPOffset ? 4 : 0)
9655      .addOperand(Segment)
9656      .addReg(NextOffsetReg)
9657      .setMemRefs(MMOBegin, MMOEnd);
9658
9659    // Jump to endMBB
9660    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
9661      .addMBB(endMBB);
9662  }
9663
9664  //
9665  // Emit code to use overflow area
9666  //
9667
9668  // Load the overflow_area address into a register.
9669  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
9670  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
9671    .addOperand(Base)
9672    .addOperand(Scale)
9673    .addOperand(Index)
9674    .addDisp(Disp, 8)
9675    .addOperand(Segment)
9676    .setMemRefs(MMOBegin, MMOEnd);
9677
9678  // If we need to align it, do so. Otherwise, just copy the address
9679  // to OverflowDestReg.
9680  if (NeedsAlign) {
9681    // Align the overflow address
9682    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
9683    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
9684
9685    // aligned_addr = (addr + (align-1)) & ~(align-1)
9686    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
9687      .addReg(OverflowAddrReg)
9688      .addImm(Align-1);
9689
9690    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
9691      .addReg(TmpReg)
9692      .addImm(~(uint64_t)(Align-1));
9693  } else {
9694    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
9695      .addReg(OverflowAddrReg);
9696  }
9697
9698  // Compute the next overflow address after this argument.
9699  // (the overflow address should be kept 8-byte aligned)
9700  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
9701  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
9702    .addReg(OverflowDestReg)
9703    .addImm(ArgSizeA8);
9704
9705  // Store the new overflow address.
9706  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
9707    .addOperand(Base)
9708    .addOperand(Scale)
9709    .addOperand(Index)
9710    .addDisp(Disp, 8)
9711    .addOperand(Segment)
9712    .addReg(NextAddrReg)
9713    .setMemRefs(MMOBegin, MMOEnd);
9714
9715  // If we branched, emit the PHI to the front of endMBB.
9716  if (offsetMBB) {
9717    BuildMI(*endMBB, endMBB->begin(), DL,
9718            TII->get(X86::PHI), DestReg)
9719      .addReg(OffsetDestReg).addMBB(offsetMBB)
9720      .addReg(OverflowDestReg).addMBB(overflowMBB);
9721  }
9722
9723  // Erase the pseudo instruction
9724  MI->eraseFromParent();
9725
9726  return endMBB;
9727}
9728
9729MachineBasicBlock *
9730X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
9731                                                 MachineInstr *MI,
9732                                                 MachineBasicBlock *MBB) const {
9733  // Emit code to save XMM registers to the stack. The ABI says that the
9734  // number of registers to save is given in %al, so it's theoretically
9735  // possible to do an indirect jump trick to avoid saving all of them,
9736  // however this code takes a simpler approach and just executes all
9737  // of the stores if %al is non-zero. It's less code, and it's probably
9738  // easier on the hardware branch predictor, and stores aren't all that
9739  // expensive anyway.
9740
9741  // Create the new basic blocks. One block contains all the XMM stores,
9742  // and one block is the final destination regardless of whether any
9743  // stores were performed.
9744  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9745  MachineFunction *F = MBB->getParent();
9746  MachineFunction::iterator MBBIter = MBB;
9747  ++MBBIter;
9748  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
9749  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
9750  F->insert(MBBIter, XMMSaveMBB);
9751  F->insert(MBBIter, EndMBB);
9752
9753  // Transfer the remainder of MBB and its successor edges to EndMBB.
9754  EndMBB->splice(EndMBB->begin(), MBB,
9755                 llvm::next(MachineBasicBlock::iterator(MI)),
9756                 MBB->end());
9757  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
9758
9759  // The original block will now fall through to the XMM save block.
9760  MBB->addSuccessor(XMMSaveMBB);
9761  // The XMMSaveMBB will fall through to the end block.
9762  XMMSaveMBB->addSuccessor(EndMBB);
9763
9764  // Now add the instructions.
9765  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9766  DebugLoc DL = MI->getDebugLoc();
9767
9768  unsigned CountReg = MI->getOperand(0).getReg();
9769  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
9770  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
9771
9772  if (!Subtarget->isTargetWin64()) {
9773    // If %al is 0, branch around the XMM save block.
9774    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
9775    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
9776    MBB->addSuccessor(EndMBB);
9777  }
9778
9779  // In the XMM save block, save all the XMM argument registers.
9780  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
9781    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
9782    MachineMemOperand *MMO =
9783      F->getMachineMemOperand(
9784          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
9785        MachineMemOperand::MOStore,
9786        /*Size=*/16, /*Align=*/16);
9787    BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
9788      .addFrameIndex(RegSaveFrameIndex)
9789      .addImm(/*Scale=*/1)
9790      .addReg(/*IndexReg=*/0)
9791      .addImm(/*Disp=*/Offset)
9792      .addReg(/*Segment=*/0)
9793      .addReg(MI->getOperand(i).getReg())
9794      .addMemOperand(MMO);
9795  }
9796
9797  MI->eraseFromParent();   // The pseudo instruction is gone now.
9798
9799  return EndMBB;
9800}
9801
9802MachineBasicBlock *
9803X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
9804                                     MachineBasicBlock *BB) const {
9805  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9806  DebugLoc DL = MI->getDebugLoc();
9807
9808  // To "insert" a SELECT_CC instruction, we actually have to insert the
9809  // diamond control-flow pattern.  The incoming instruction knows the
9810  // destination vreg to set, the condition code register to branch on, the
9811  // true/false values to select between, and a branch opcode to use.
9812  const BasicBlock *LLVM_BB = BB->getBasicBlock();
9813  MachineFunction::iterator It = BB;
9814  ++It;
9815
9816  //  thisMBB:
9817  //  ...
9818  //   TrueVal = ...
9819  //   cmpTY ccX, r1, r2
9820  //   bCC copy1MBB
9821  //   fallthrough --> copy0MBB
9822  MachineBasicBlock *thisMBB = BB;
9823  MachineFunction *F = BB->getParent();
9824  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
9825  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
9826  F->insert(It, copy0MBB);
9827  F->insert(It, sinkMBB);
9828
9829  // If the EFLAGS register isn't dead in the terminator, then claim that it's
9830  // live into the sink and copy blocks.
9831  const MachineFunction *MF = BB->getParent();
9832  const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
9833  BitVector ReservedRegs = TRI->getReservedRegs(*MF);
9834
9835  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
9836    const MachineOperand &MO = MI->getOperand(I);
9837    if (!MO.isReg() || !MO.isUse() || MO.isKill()) continue;
9838    unsigned Reg = MO.getReg();
9839    if (Reg != X86::EFLAGS) continue;
9840    copy0MBB->addLiveIn(Reg);
9841    sinkMBB->addLiveIn(Reg);
9842  }
9843
9844  // Transfer the remainder of BB and its successor edges to sinkMBB.
9845  sinkMBB->splice(sinkMBB->begin(), BB,
9846                  llvm::next(MachineBasicBlock::iterator(MI)),
9847                  BB->end());
9848  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
9849
9850  // Add the true and fallthrough blocks as its successors.
9851  BB->addSuccessor(copy0MBB);
9852  BB->addSuccessor(sinkMBB);
9853
9854  // Create the conditional branch instruction.
9855  unsigned Opc =
9856    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
9857  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
9858
9859  //  copy0MBB:
9860  //   %FalseValue = ...
9861  //   # fallthrough to sinkMBB
9862  copy0MBB->addSuccessor(sinkMBB);
9863
9864  //  sinkMBB:
9865  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
9866  //  ...
9867  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
9868          TII->get(X86::PHI), MI->getOperand(0).getReg())
9869    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
9870    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
9871
9872  MI->eraseFromParent();   // The pseudo instruction is gone now.
9873  return sinkMBB;
9874}
9875
9876MachineBasicBlock *
9877X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
9878                                          MachineBasicBlock *BB) const {
9879  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9880  DebugLoc DL = MI->getDebugLoc();
9881
9882  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
9883  // non-trivial part is impdef of ESP.
9884  // FIXME: The code should be tweaked as soon as we'll try to do codegen for
9885  // mingw-w64.
9886
9887  const char *StackProbeSymbol =
9888      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
9889
9890  BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
9891    .addExternalSymbol(StackProbeSymbol)
9892    .addReg(X86::EAX, RegState::Implicit)
9893    .addReg(X86::ESP, RegState::Implicit)
9894    .addReg(X86::EAX, RegState::Define | RegState::Implicit)
9895    .addReg(X86::ESP, RegState::Define | RegState::Implicit)
9896    .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
9897
9898  MI->eraseFromParent();   // The pseudo instruction is gone now.
9899  return BB;
9900}
9901
9902MachineBasicBlock *
9903X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
9904                                      MachineBasicBlock *BB) const {
9905  // This is pretty easy.  We're taking the value that we received from
9906  // our load from the relocation, sticking it in either RDI (x86-64)
9907  // or EAX and doing an indirect call.  The return value will then
9908  // be in the normal return register.
9909  const X86InstrInfo *TII
9910    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
9911  DebugLoc DL = MI->getDebugLoc();
9912  MachineFunction *F = BB->getParent();
9913
9914  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
9915  assert(MI->getOperand(3).isGlobal() && "This should be a global");
9916
9917  if (Subtarget->is64Bit()) {
9918    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
9919                                      TII->get(X86::MOV64rm), X86::RDI)
9920    .addReg(X86::RIP)
9921    .addImm(0).addReg(0)
9922    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
9923                      MI->getOperand(3).getTargetFlags())
9924    .addReg(0);
9925    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
9926    addDirectMem(MIB, X86::RDI);
9927  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
9928    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
9929                                      TII->get(X86::MOV32rm), X86::EAX)
9930    .addReg(0)
9931    .addImm(0).addReg(0)
9932    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
9933                      MI->getOperand(3).getTargetFlags())
9934    .addReg(0);
9935    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
9936    addDirectMem(MIB, X86::EAX);
9937  } else {
9938    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
9939                                      TII->get(X86::MOV32rm), X86::EAX)
9940    .addReg(TII->getGlobalBaseReg(F))
9941    .addImm(0).addReg(0)
9942    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
9943                      MI->getOperand(3).getTargetFlags())
9944    .addReg(0);
9945    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
9946    addDirectMem(MIB, X86::EAX);
9947  }
9948
9949  MI->eraseFromParent(); // The pseudo instruction is gone now.
9950  return BB;
9951}
9952
9953MachineBasicBlock *
9954X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
9955                                               MachineBasicBlock *BB) const {
9956  switch (MI->getOpcode()) {
9957  default: assert(false && "Unexpected instr type to insert");
9958  case X86::WIN_ALLOCA:
9959    return EmitLoweredWinAlloca(MI, BB);
9960  case X86::TLSCall_32:
9961  case X86::TLSCall_64:
9962    return EmitLoweredTLSCall(MI, BB);
9963  case X86::CMOV_GR8:
9964  case X86::CMOV_FR32:
9965  case X86::CMOV_FR64:
9966  case X86::CMOV_V4F32:
9967  case X86::CMOV_V2F64:
9968  case X86::CMOV_V2I64:
9969  case X86::CMOV_GR16:
9970  case X86::CMOV_GR32:
9971  case X86::CMOV_RFP32:
9972  case X86::CMOV_RFP64:
9973  case X86::CMOV_RFP80:
9974    return EmitLoweredSelect(MI, BB);
9975
9976  case X86::FP32_TO_INT16_IN_MEM:
9977  case X86::FP32_TO_INT32_IN_MEM:
9978  case X86::FP32_TO_INT64_IN_MEM:
9979  case X86::FP64_TO_INT16_IN_MEM:
9980  case X86::FP64_TO_INT32_IN_MEM:
9981  case X86::FP64_TO_INT64_IN_MEM:
9982  case X86::FP80_TO_INT16_IN_MEM:
9983  case X86::FP80_TO_INT32_IN_MEM:
9984  case X86::FP80_TO_INT64_IN_MEM: {
9985    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9986    DebugLoc DL = MI->getDebugLoc();
9987
9988    // Change the floating point control register to use "round towards zero"
9989    // mode when truncating to an integer value.
9990    MachineFunction *F = BB->getParent();
9991    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
9992    addFrameReference(BuildMI(*BB, MI, DL,
9993                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
9994
9995    // Load the old value of the high byte of the control word...
9996    unsigned OldCW =
9997      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
9998    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
9999                      CWFrameIdx);
10000
10001    // Set the high part to be round to zero...
10002    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
10003      .addImm(0xC7F);
10004
10005    // Reload the modified control word now...
10006    addFrameReference(BuildMI(*BB, MI, DL,
10007                              TII->get(X86::FLDCW16m)), CWFrameIdx);
10008
10009    // Restore the memory image of control word to original value
10010    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
10011      .addReg(OldCW);
10012
10013    // Get the X86 opcode to use.
10014    unsigned Opc;
10015    switch (MI->getOpcode()) {
10016    default: llvm_unreachable("illegal opcode!");
10017    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
10018    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
10019    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
10020    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
10021    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
10022    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
10023    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
10024    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
10025    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
10026    }
10027
10028    X86AddressMode AM;
10029    MachineOperand &Op = MI->getOperand(0);
10030    if (Op.isReg()) {
10031      AM.BaseType = X86AddressMode::RegBase;
10032      AM.Base.Reg = Op.getReg();
10033    } else {
10034      AM.BaseType = X86AddressMode::FrameIndexBase;
10035      AM.Base.FrameIndex = Op.getIndex();
10036    }
10037    Op = MI->getOperand(1);
10038    if (Op.isImm())
10039      AM.Scale = Op.getImm();
10040    Op = MI->getOperand(2);
10041    if (Op.isImm())
10042      AM.IndexReg = Op.getImm();
10043    Op = MI->getOperand(3);
10044    if (Op.isGlobal()) {
10045      AM.GV = Op.getGlobal();
10046    } else {
10047      AM.Disp = Op.getImm();
10048    }
10049    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
10050                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
10051
10052    // Reload the original control word now.
10053    addFrameReference(BuildMI(*BB, MI, DL,
10054                              TII->get(X86::FLDCW16m)), CWFrameIdx);
10055
10056    MI->eraseFromParent();   // The pseudo instruction is gone now.
10057    return BB;
10058  }
10059    // String/text processing lowering.
10060  case X86::PCMPISTRM128REG:
10061  case X86::VPCMPISTRM128REG:
10062    return EmitPCMP(MI, BB, 3, false /* in-mem */);
10063  case X86::PCMPISTRM128MEM:
10064  case X86::VPCMPISTRM128MEM:
10065    return EmitPCMP(MI, BB, 3, true /* in-mem */);
10066  case X86::PCMPESTRM128REG:
10067  case X86::VPCMPESTRM128REG:
10068    return EmitPCMP(MI, BB, 5, false /* in mem */);
10069  case X86::PCMPESTRM128MEM:
10070  case X86::VPCMPESTRM128MEM:
10071    return EmitPCMP(MI, BB, 5, true /* in mem */);
10072
10073    // Atomic Lowering.
10074  case X86::ATOMAND32:
10075    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
10076                                               X86::AND32ri, X86::MOV32rm,
10077                                               X86::LCMPXCHG32,
10078                                               X86::NOT32r, X86::EAX,
10079                                               X86::GR32RegisterClass);
10080  case X86::ATOMOR32:
10081    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
10082                                               X86::OR32ri, X86::MOV32rm,
10083                                               X86::LCMPXCHG32,
10084                                               X86::NOT32r, X86::EAX,
10085                                               X86::GR32RegisterClass);
10086  case X86::ATOMXOR32:
10087    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
10088                                               X86::XOR32ri, X86::MOV32rm,
10089                                               X86::LCMPXCHG32,
10090                                               X86::NOT32r, X86::EAX,
10091                                               X86::GR32RegisterClass);
10092  case X86::ATOMNAND32:
10093    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
10094                                               X86::AND32ri, X86::MOV32rm,
10095                                               X86::LCMPXCHG32,
10096                                               X86::NOT32r, X86::EAX,
10097                                               X86::GR32RegisterClass, true);
10098  case X86::ATOMMIN32:
10099    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
10100  case X86::ATOMMAX32:
10101    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
10102  case X86::ATOMUMIN32:
10103    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
10104  case X86::ATOMUMAX32:
10105    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
10106
10107  case X86::ATOMAND16:
10108    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
10109                                               X86::AND16ri, X86::MOV16rm,
10110                                               X86::LCMPXCHG16,
10111                                               X86::NOT16r, X86::AX,
10112                                               X86::GR16RegisterClass);
10113  case X86::ATOMOR16:
10114    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
10115                                               X86::OR16ri, X86::MOV16rm,
10116                                               X86::LCMPXCHG16,
10117                                               X86::NOT16r, X86::AX,
10118                                               X86::GR16RegisterClass);
10119  case X86::ATOMXOR16:
10120    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
10121                                               X86::XOR16ri, X86::MOV16rm,
10122                                               X86::LCMPXCHG16,
10123                                               X86::NOT16r, X86::AX,
10124                                               X86::GR16RegisterClass);
10125  case X86::ATOMNAND16:
10126    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
10127                                               X86::AND16ri, X86::MOV16rm,
10128                                               X86::LCMPXCHG16,
10129                                               X86::NOT16r, X86::AX,
10130                                               X86::GR16RegisterClass, true);
10131  case X86::ATOMMIN16:
10132    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
10133  case X86::ATOMMAX16:
10134    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
10135  case X86::ATOMUMIN16:
10136    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
10137  case X86::ATOMUMAX16:
10138    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
10139
10140  case X86::ATOMAND8:
10141    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
10142                                               X86::AND8ri, X86::MOV8rm,
10143                                               X86::LCMPXCHG8,
10144                                               X86::NOT8r, X86::AL,
10145                                               X86::GR8RegisterClass);
10146  case X86::ATOMOR8:
10147    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
10148                                               X86::OR8ri, X86::MOV8rm,
10149                                               X86::LCMPXCHG8,
10150                                               X86::NOT8r, X86::AL,
10151                                               X86::GR8RegisterClass);
10152  case X86::ATOMXOR8:
10153    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
10154                                               X86::XOR8ri, X86::MOV8rm,
10155                                               X86::LCMPXCHG8,
10156                                               X86::NOT8r, X86::AL,
10157                                               X86::GR8RegisterClass);
10158  case X86::ATOMNAND8:
10159    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
10160                                               X86::AND8ri, X86::MOV8rm,
10161                                               X86::LCMPXCHG8,
10162                                               X86::NOT8r, X86::AL,
10163                                               X86::GR8RegisterClass, true);
10164  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
10165  // This group is for 64-bit host.
10166  case X86::ATOMAND64:
10167    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
10168                                               X86::AND64ri32, X86::MOV64rm,
10169                                               X86::LCMPXCHG64,
10170                                               X86::NOT64r, X86::RAX,
10171                                               X86::GR64RegisterClass);
10172  case X86::ATOMOR64:
10173    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
10174                                               X86::OR64ri32, X86::MOV64rm,
10175                                               X86::LCMPXCHG64,
10176                                               X86::NOT64r, X86::RAX,
10177                                               X86::GR64RegisterClass);
10178  case X86::ATOMXOR64:
10179    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
10180                                               X86::XOR64ri32, X86::MOV64rm,
10181                                               X86::LCMPXCHG64,
10182                                               X86::NOT64r, X86::RAX,
10183                                               X86::GR64RegisterClass);
10184  case X86::ATOMNAND64:
10185    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
10186                                               X86::AND64ri32, X86::MOV64rm,
10187                                               X86::LCMPXCHG64,
10188                                               X86::NOT64r, X86::RAX,
10189                                               X86::GR64RegisterClass, true);
10190  case X86::ATOMMIN64:
10191    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
10192  case X86::ATOMMAX64:
10193    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
10194  case X86::ATOMUMIN64:
10195    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
10196  case X86::ATOMUMAX64:
10197    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
10198
10199  // This group does 64-bit operations on a 32-bit host.
10200  case X86::ATOMAND6432:
10201    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10202                                               X86::AND32rr, X86::AND32rr,
10203                                               X86::AND32ri, X86::AND32ri,
10204                                               false);
10205  case X86::ATOMOR6432:
10206    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10207                                               X86::OR32rr, X86::OR32rr,
10208                                               X86::OR32ri, X86::OR32ri,
10209                                               false);
10210  case X86::ATOMXOR6432:
10211    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10212                                               X86::XOR32rr, X86::XOR32rr,
10213                                               X86::XOR32ri, X86::XOR32ri,
10214                                               false);
10215  case X86::ATOMNAND6432:
10216    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10217                                               X86::AND32rr, X86::AND32rr,
10218                                               X86::AND32ri, X86::AND32ri,
10219                                               true);
10220  case X86::ATOMADD6432:
10221    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10222                                               X86::ADD32rr, X86::ADC32rr,
10223                                               X86::ADD32ri, X86::ADC32ri,
10224                                               false);
10225  case X86::ATOMSUB6432:
10226    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10227                                               X86::SUB32rr, X86::SBB32rr,
10228                                               X86::SUB32ri, X86::SBB32ri,
10229                                               false);
10230  case X86::ATOMSWAP6432:
10231    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10232                                               X86::MOV32rr, X86::MOV32rr,
10233                                               X86::MOV32ri, X86::MOV32ri,
10234                                               false);
10235  case X86::VASTART_SAVE_XMM_REGS:
10236    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
10237
10238  case X86::VAARG_64:
10239    return EmitVAARG64WithCustomInserter(MI, BB);
10240  }
10241}
10242
10243//===----------------------------------------------------------------------===//
10244//                           X86 Optimization Hooks
10245//===----------------------------------------------------------------------===//
10246
10247void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
10248                                                       const APInt &Mask,
10249                                                       APInt &KnownZero,
10250                                                       APInt &KnownOne,
10251                                                       const SelectionDAG &DAG,
10252                                                       unsigned Depth) const {
10253  unsigned Opc = Op.getOpcode();
10254  assert((Opc >= ISD::BUILTIN_OP_END ||
10255          Opc == ISD::INTRINSIC_WO_CHAIN ||
10256          Opc == ISD::INTRINSIC_W_CHAIN ||
10257          Opc == ISD::INTRINSIC_VOID) &&
10258         "Should use MaskedValueIsZero if you don't know whether Op"
10259         " is a target node!");
10260
10261  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
10262  switch (Opc) {
10263  default: break;
10264  case X86ISD::ADD:
10265  case X86ISD::SUB:
10266  case X86ISD::SMUL:
10267  case X86ISD::UMUL:
10268  case X86ISD::INC:
10269  case X86ISD::DEC:
10270  case X86ISD::OR:
10271  case X86ISD::XOR:
10272  case X86ISD::AND:
10273    // These nodes' second result is a boolean.
10274    if (Op.getResNo() == 0)
10275      break;
10276    // Fallthrough
10277  case X86ISD::SETCC:
10278    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
10279                                       Mask.getBitWidth() - 1);
10280    break;
10281  }
10282}
10283
10284unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
10285                                                         unsigned Depth) const {
10286  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
10287  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
10288    return Op.getValueType().getScalarType().getSizeInBits();
10289
10290  // Fallback case.
10291  return 1;
10292}
10293
10294/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
10295/// node is a GlobalAddress + offset.
10296bool X86TargetLowering::isGAPlusOffset(SDNode *N,
10297                                       const GlobalValue* &GA,
10298                                       int64_t &Offset) const {
10299  if (N->getOpcode() == X86ISD::Wrapper) {
10300    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
10301      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
10302      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
10303      return true;
10304    }
10305  }
10306  return TargetLowering::isGAPlusOffset(N, GA, Offset);
10307}
10308
10309/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
10310/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
10311/// if the load addresses are consecutive, non-overlapping, and in the right
10312/// order.
10313static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
10314                                     const TargetLowering &TLI) {
10315  DebugLoc dl = N->getDebugLoc();
10316  EVT VT = N->getValueType(0);
10317
10318  if (VT.getSizeInBits() != 128)
10319    return SDValue();
10320
10321  SmallVector<SDValue, 16> Elts;
10322  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
10323    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
10324
10325  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
10326}
10327
10328/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
10329/// generation and convert it from being a bunch of shuffles and extracts
10330/// to a simple store and scalar loads to extract the elements.
10331static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
10332                                                const TargetLowering &TLI) {
10333  SDValue InputVector = N->getOperand(0);
10334
10335  // Only operate on vectors of 4 elements, where the alternative shuffling
10336  // gets to be more expensive.
10337  if (InputVector.getValueType() != MVT::v4i32)
10338    return SDValue();
10339
10340  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
10341  // single use which is a sign-extend or zero-extend, and all elements are
10342  // used.
10343  SmallVector<SDNode *, 4> Uses;
10344  unsigned ExtractedElements = 0;
10345  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
10346       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
10347    if (UI.getUse().getResNo() != InputVector.getResNo())
10348      return SDValue();
10349
10350    SDNode *Extract = *UI;
10351    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
10352      return SDValue();
10353
10354    if (Extract->getValueType(0) != MVT::i32)
10355      return SDValue();
10356    if (!Extract->hasOneUse())
10357      return SDValue();
10358    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
10359        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
10360      return SDValue();
10361    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
10362      return SDValue();
10363
10364    // Record which element was extracted.
10365    ExtractedElements |=
10366      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
10367
10368    Uses.push_back(Extract);
10369  }
10370
10371  // If not all the elements were used, this may not be worthwhile.
10372  if (ExtractedElements != 15)
10373    return SDValue();
10374
10375  // Ok, we've now decided to do the transformation.
10376  DebugLoc dl = InputVector.getDebugLoc();
10377
10378  // Store the value to a temporary stack slot.
10379  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
10380  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
10381                            MachinePointerInfo(), false, false, 0);
10382
10383  // Replace each use (extract) with a load of the appropriate element.
10384  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
10385       UE = Uses.end(); UI != UE; ++UI) {
10386    SDNode *Extract = *UI;
10387
10388    // Compute the element's address.
10389    SDValue Idx = Extract->getOperand(1);
10390    unsigned EltSize =
10391        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
10392    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
10393    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
10394
10395    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(),
10396                                     StackPtr, OffsetVal);
10397
10398    // Load the scalar.
10399    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
10400                                     ScalarAddr, MachinePointerInfo(),
10401                                     false, false, 0);
10402
10403    // Replace the exact with the load.
10404    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
10405  }
10406
10407  // The replacement was made in place; don't return anything.
10408  return SDValue();
10409}
10410
10411/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
10412static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
10413                                    const X86Subtarget *Subtarget) {
10414  DebugLoc DL = N->getDebugLoc();
10415  SDValue Cond = N->getOperand(0);
10416  // Get the LHS/RHS of the select.
10417  SDValue LHS = N->getOperand(1);
10418  SDValue RHS = N->getOperand(2);
10419
10420  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
10421  // instructions match the semantics of the common C idiom x<y?x:y but not
10422  // x<=y?x:y, because of how they handle negative zero (which can be
10423  // ignored in unsafe-math mode).
10424  if (Subtarget->hasSSE2() &&
10425      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
10426      Cond.getOpcode() == ISD::SETCC) {
10427    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
10428
10429    unsigned Opcode = 0;
10430    // Check for x CC y ? x : y.
10431    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
10432        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
10433      switch (CC) {
10434      default: break;
10435      case ISD::SETULT:
10436        // Converting this to a min would handle NaNs incorrectly, and swapping
10437        // the operands would cause it to handle comparisons between positive
10438        // and negative zero incorrectly.
10439        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
10440          if (!UnsafeFPMath &&
10441              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
10442            break;
10443          std::swap(LHS, RHS);
10444        }
10445        Opcode = X86ISD::FMIN;
10446        break;
10447      case ISD::SETOLE:
10448        // Converting this to a min would handle comparisons between positive
10449        // and negative zero incorrectly.
10450        if (!UnsafeFPMath &&
10451            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
10452          break;
10453        Opcode = X86ISD::FMIN;
10454        break;
10455      case ISD::SETULE:
10456        // Converting this to a min would handle both negative zeros and NaNs
10457        // incorrectly, but we can swap the operands to fix both.
10458        std::swap(LHS, RHS);
10459      case ISD::SETOLT:
10460      case ISD::SETLT:
10461      case ISD::SETLE:
10462        Opcode = X86ISD::FMIN;
10463        break;
10464
10465      case ISD::SETOGE:
10466        // Converting this to a max would handle comparisons between positive
10467        // and negative zero incorrectly.
10468        if (!UnsafeFPMath &&
10469            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(LHS))
10470          break;
10471        Opcode = X86ISD::FMAX;
10472        break;
10473      case ISD::SETUGT:
10474        // Converting this to a max would handle NaNs incorrectly, and swapping
10475        // the operands would cause it to handle comparisons between positive
10476        // and negative zero incorrectly.
10477        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
10478          if (!UnsafeFPMath &&
10479              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
10480            break;
10481          std::swap(LHS, RHS);
10482        }
10483        Opcode = X86ISD::FMAX;
10484        break;
10485      case ISD::SETUGE:
10486        // Converting this to a max would handle both negative zeros and NaNs
10487        // incorrectly, but we can swap the operands to fix both.
10488        std::swap(LHS, RHS);
10489      case ISD::SETOGT:
10490      case ISD::SETGT:
10491      case ISD::SETGE:
10492        Opcode = X86ISD::FMAX;
10493        break;
10494      }
10495    // Check for x CC y ? y : x -- a min/max with reversed arms.
10496    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
10497               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
10498      switch (CC) {
10499      default: break;
10500      case ISD::SETOGE:
10501        // Converting this to a min would handle comparisons between positive
10502        // and negative zero incorrectly, and swapping the operands would
10503        // cause it to handle NaNs incorrectly.
10504        if (!UnsafeFPMath &&
10505            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
10506          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
10507            break;
10508          std::swap(LHS, RHS);
10509        }
10510        Opcode = X86ISD::FMIN;
10511        break;
10512      case ISD::SETUGT:
10513        // Converting this to a min would handle NaNs incorrectly.
10514        if (!UnsafeFPMath &&
10515            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
10516          break;
10517        Opcode = X86ISD::FMIN;
10518        break;
10519      case ISD::SETUGE:
10520        // Converting this to a min would handle both negative zeros and NaNs
10521        // incorrectly, but we can swap the operands to fix both.
10522        std::swap(LHS, RHS);
10523      case ISD::SETOGT:
10524      case ISD::SETGT:
10525      case ISD::SETGE:
10526        Opcode = X86ISD::FMIN;
10527        break;
10528
10529      case ISD::SETULT:
10530        // Converting this to a max would handle NaNs incorrectly.
10531        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
10532          break;
10533        Opcode = X86ISD::FMAX;
10534        break;
10535      case ISD::SETOLE:
10536        // Converting this to a max would handle comparisons between positive
10537        // and negative zero incorrectly, and swapping the operands would
10538        // cause it to handle NaNs incorrectly.
10539        if (!UnsafeFPMath &&
10540            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
10541          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
10542            break;
10543          std::swap(LHS, RHS);
10544        }
10545        Opcode = X86ISD::FMAX;
10546        break;
10547      case ISD::SETULE:
10548        // Converting this to a max would handle both negative zeros and NaNs
10549        // incorrectly, but we can swap the operands to fix both.
10550        std::swap(LHS, RHS);
10551      case ISD::SETOLT:
10552      case ISD::SETLT:
10553      case ISD::SETLE:
10554        Opcode = X86ISD::FMAX;
10555        break;
10556      }
10557    }
10558
10559    if (Opcode)
10560      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
10561  }
10562
10563  // If this is a select between two integer constants, try to do some
10564  // optimizations.
10565  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
10566    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
10567      // Don't do this for crazy integer types.
10568      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
10569        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
10570        // so that TrueC (the true value) is larger than FalseC.
10571        bool NeedsCondInvert = false;
10572
10573        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
10574            // Efficiently invertible.
10575            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
10576             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
10577              isa<ConstantSDNode>(Cond.getOperand(1))))) {
10578          NeedsCondInvert = true;
10579          std::swap(TrueC, FalseC);
10580        }
10581
10582        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
10583        if (FalseC->getAPIntValue() == 0 &&
10584            TrueC->getAPIntValue().isPowerOf2()) {
10585          if (NeedsCondInvert) // Invert the condition if needed.
10586            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
10587                               DAG.getConstant(1, Cond.getValueType()));
10588
10589          // Zero extend the condition if needed.
10590          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
10591
10592          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
10593          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
10594                             DAG.getConstant(ShAmt, MVT::i8));
10595        }
10596
10597        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
10598        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
10599          if (NeedsCondInvert) // Invert the condition if needed.
10600            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
10601                               DAG.getConstant(1, Cond.getValueType()));
10602
10603          // Zero extend the condition if needed.
10604          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
10605                             FalseC->getValueType(0), Cond);
10606          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
10607                             SDValue(FalseC, 0));
10608        }
10609
10610        // Optimize cases that will turn into an LEA instruction.  This requires
10611        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
10612        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
10613          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
10614          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
10615
10616          bool isFastMultiplier = false;
10617          if (Diff < 10) {
10618            switch ((unsigned char)Diff) {
10619              default: break;
10620              case 1:  // result = add base, cond
10621              case 2:  // result = lea base(    , cond*2)
10622              case 3:  // result = lea base(cond, cond*2)
10623              case 4:  // result = lea base(    , cond*4)
10624              case 5:  // result = lea base(cond, cond*4)
10625              case 8:  // result = lea base(    , cond*8)
10626              case 9:  // result = lea base(cond, cond*8)
10627                isFastMultiplier = true;
10628                break;
10629            }
10630          }
10631
10632          if (isFastMultiplier) {
10633            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
10634            if (NeedsCondInvert) // Invert the condition if needed.
10635              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
10636                                 DAG.getConstant(1, Cond.getValueType()));
10637
10638            // Zero extend the condition if needed.
10639            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
10640                               Cond);
10641            // Scale the condition by the difference.
10642            if (Diff != 1)
10643              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
10644                                 DAG.getConstant(Diff, Cond.getValueType()));
10645
10646            // Add the base if non-zero.
10647            if (FalseC->getAPIntValue() != 0)
10648              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
10649                                 SDValue(FalseC, 0));
10650            return Cond;
10651          }
10652        }
10653      }
10654  }
10655
10656  return SDValue();
10657}
10658
10659/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
10660static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
10661                                  TargetLowering::DAGCombinerInfo &DCI) {
10662  DebugLoc DL = N->getDebugLoc();
10663
10664  // If the flag operand isn't dead, don't touch this CMOV.
10665  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
10666    return SDValue();
10667
10668  // If this is a select between two integer constants, try to do some
10669  // optimizations.  Note that the operands are ordered the opposite of SELECT
10670  // operands.
10671  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
10672    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
10673      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
10674      // larger than FalseC (the false value).
10675      X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
10676
10677      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
10678        CC = X86::GetOppositeBranchCondition(CC);
10679        std::swap(TrueC, FalseC);
10680      }
10681
10682      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
10683      // This is efficient for any integer data type (including i8/i16) and
10684      // shift amount.
10685      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
10686        SDValue Cond = N->getOperand(3);
10687        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10688                           DAG.getConstant(CC, MVT::i8), Cond);
10689
10690        // Zero extend the condition if needed.
10691        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
10692
10693        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
10694        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
10695                           DAG.getConstant(ShAmt, MVT::i8));
10696        if (N->getNumValues() == 2)  // Dead flag value?
10697          return DCI.CombineTo(N, Cond, SDValue());
10698        return Cond;
10699      }
10700
10701      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
10702      // for any integer data type, including i8/i16.
10703      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
10704        SDValue Cond = N->getOperand(3);
10705        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10706                           DAG.getConstant(CC, MVT::i8), Cond);
10707
10708        // Zero extend the condition if needed.
10709        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
10710                           FalseC->getValueType(0), Cond);
10711        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
10712                           SDValue(FalseC, 0));
10713
10714        if (N->getNumValues() == 2)  // Dead flag value?
10715          return DCI.CombineTo(N, Cond, SDValue());
10716        return Cond;
10717      }
10718
10719      // Optimize cases that will turn into an LEA instruction.  This requires
10720      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
10721      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
10722        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
10723        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
10724
10725        bool isFastMultiplier = false;
10726        if (Diff < 10) {
10727          switch ((unsigned char)Diff) {
10728          default: break;
10729          case 1:  // result = add base, cond
10730          case 2:  // result = lea base(    , cond*2)
10731          case 3:  // result = lea base(cond, cond*2)
10732          case 4:  // result = lea base(    , cond*4)
10733          case 5:  // result = lea base(cond, cond*4)
10734          case 8:  // result = lea base(    , cond*8)
10735          case 9:  // result = lea base(cond, cond*8)
10736            isFastMultiplier = true;
10737            break;
10738          }
10739        }
10740
10741        if (isFastMultiplier) {
10742          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
10743          SDValue Cond = N->getOperand(3);
10744          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10745                             DAG.getConstant(CC, MVT::i8), Cond);
10746          // Zero extend the condition if needed.
10747          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
10748                             Cond);
10749          // Scale the condition by the difference.
10750          if (Diff != 1)
10751            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
10752                               DAG.getConstant(Diff, Cond.getValueType()));
10753
10754          // Add the base if non-zero.
10755          if (FalseC->getAPIntValue() != 0)
10756            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
10757                               SDValue(FalseC, 0));
10758          if (N->getNumValues() == 2)  // Dead flag value?
10759            return DCI.CombineTo(N, Cond, SDValue());
10760          return Cond;
10761        }
10762      }
10763    }
10764  }
10765  return SDValue();
10766}
10767
10768
10769/// PerformMulCombine - Optimize a single multiply with constant into two
10770/// in order to implement it with two cheaper instructions, e.g.
10771/// LEA + SHL, LEA + LEA.
10772static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
10773                                 TargetLowering::DAGCombinerInfo &DCI) {
10774  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
10775    return SDValue();
10776
10777  EVT VT = N->getValueType(0);
10778  if (VT != MVT::i64)
10779    return SDValue();
10780
10781  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
10782  if (!C)
10783    return SDValue();
10784  uint64_t MulAmt = C->getZExtValue();
10785  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
10786    return SDValue();
10787
10788  uint64_t MulAmt1 = 0;
10789  uint64_t MulAmt2 = 0;
10790  if ((MulAmt % 9) == 0) {
10791    MulAmt1 = 9;
10792    MulAmt2 = MulAmt / 9;
10793  } else if ((MulAmt % 5) == 0) {
10794    MulAmt1 = 5;
10795    MulAmt2 = MulAmt / 5;
10796  } else if ((MulAmt % 3) == 0) {
10797    MulAmt1 = 3;
10798    MulAmt2 = MulAmt / 3;
10799  }
10800  if (MulAmt2 &&
10801      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
10802    DebugLoc DL = N->getDebugLoc();
10803
10804    if (isPowerOf2_64(MulAmt2) &&
10805        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
10806      // If second multiplifer is pow2, issue it first. We want the multiply by
10807      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
10808      // is an add.
10809      std::swap(MulAmt1, MulAmt2);
10810
10811    SDValue NewMul;
10812    if (isPowerOf2_64(MulAmt1))
10813      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
10814                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
10815    else
10816      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
10817                           DAG.getConstant(MulAmt1, VT));
10818
10819    if (isPowerOf2_64(MulAmt2))
10820      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
10821                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
10822    else
10823      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
10824                           DAG.getConstant(MulAmt2, VT));
10825
10826    // Do not add new nodes to DAG combiner worklist.
10827    DCI.CombineTo(N, NewMul, false);
10828  }
10829  return SDValue();
10830}
10831
10832static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
10833  SDValue N0 = N->getOperand(0);
10834  SDValue N1 = N->getOperand(1);
10835  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
10836  EVT VT = N0.getValueType();
10837
10838  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
10839  // since the result of setcc_c is all zero's or all ones.
10840  if (N1C && N0.getOpcode() == ISD::AND &&
10841      N0.getOperand(1).getOpcode() == ISD::Constant) {
10842    SDValue N00 = N0.getOperand(0);
10843    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
10844        ((N00.getOpcode() == ISD::ANY_EXTEND ||
10845          N00.getOpcode() == ISD::ZERO_EXTEND) &&
10846         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
10847      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
10848      APInt ShAmt = N1C->getAPIntValue();
10849      Mask = Mask.shl(ShAmt);
10850      if (Mask != 0)
10851        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
10852                           N00, DAG.getConstant(Mask, VT));
10853    }
10854  }
10855
10856  return SDValue();
10857}
10858
10859/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
10860///                       when possible.
10861static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
10862                                   const X86Subtarget *Subtarget) {
10863  EVT VT = N->getValueType(0);
10864  if (!VT.isVector() && VT.isInteger() &&
10865      N->getOpcode() == ISD::SHL)
10866    return PerformSHLCombine(N, DAG);
10867
10868  // On X86 with SSE2 support, we can transform this to a vector shift if
10869  // all elements are shifted by the same amount.  We can't do this in legalize
10870  // because the a constant vector is typically transformed to a constant pool
10871  // so we have no knowledge of the shift amount.
10872  if (!Subtarget->hasSSE2())
10873    return SDValue();
10874
10875  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
10876    return SDValue();
10877
10878  SDValue ShAmtOp = N->getOperand(1);
10879  EVT EltVT = VT.getVectorElementType();
10880  DebugLoc DL = N->getDebugLoc();
10881  SDValue BaseShAmt = SDValue();
10882  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
10883    unsigned NumElts = VT.getVectorNumElements();
10884    unsigned i = 0;
10885    for (; i != NumElts; ++i) {
10886      SDValue Arg = ShAmtOp.getOperand(i);
10887      if (Arg.getOpcode() == ISD::UNDEF) continue;
10888      BaseShAmt = Arg;
10889      break;
10890    }
10891    for (; i != NumElts; ++i) {
10892      SDValue Arg = ShAmtOp.getOperand(i);
10893      if (Arg.getOpcode() == ISD::UNDEF) continue;
10894      if (Arg != BaseShAmt) {
10895        return SDValue();
10896      }
10897    }
10898  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
10899             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
10900    SDValue InVec = ShAmtOp.getOperand(0);
10901    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
10902      unsigned NumElts = InVec.getValueType().getVectorNumElements();
10903      unsigned i = 0;
10904      for (; i != NumElts; ++i) {
10905        SDValue Arg = InVec.getOperand(i);
10906        if (Arg.getOpcode() == ISD::UNDEF) continue;
10907        BaseShAmt = Arg;
10908        break;
10909      }
10910    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
10911       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
10912         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
10913         if (C->getZExtValue() == SplatIdx)
10914           BaseShAmt = InVec.getOperand(1);
10915       }
10916    }
10917    if (BaseShAmt.getNode() == 0)
10918      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
10919                              DAG.getIntPtrConstant(0));
10920  } else
10921    return SDValue();
10922
10923  // The shift amount is an i32.
10924  if (EltVT.bitsGT(MVT::i32))
10925    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
10926  else if (EltVT.bitsLT(MVT::i32))
10927    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
10928
10929  // The shift amount is identical so we can do a vector shift.
10930  SDValue  ValOp = N->getOperand(0);
10931  switch (N->getOpcode()) {
10932  default:
10933    llvm_unreachable("Unknown shift opcode!");
10934    break;
10935  case ISD::SHL:
10936    if (VT == MVT::v2i64)
10937      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10938                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
10939                         ValOp, BaseShAmt);
10940    if (VT == MVT::v4i32)
10941      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10942                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
10943                         ValOp, BaseShAmt);
10944    if (VT == MVT::v8i16)
10945      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10946                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
10947                         ValOp, BaseShAmt);
10948    break;
10949  case ISD::SRA:
10950    if (VT == MVT::v4i32)
10951      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10952                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
10953                         ValOp, BaseShAmt);
10954    if (VT == MVT::v8i16)
10955      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10956                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
10957                         ValOp, BaseShAmt);
10958    break;
10959  case ISD::SRL:
10960    if (VT == MVT::v2i64)
10961      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10962                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
10963                         ValOp, BaseShAmt);
10964    if (VT == MVT::v4i32)
10965      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10966                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
10967                         ValOp, BaseShAmt);
10968    if (VT ==  MVT::v8i16)
10969      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10970                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
10971                         ValOp, BaseShAmt);
10972    break;
10973  }
10974  return SDValue();
10975}
10976
10977static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
10978                                TargetLowering::DAGCombinerInfo &DCI,
10979                                const X86Subtarget *Subtarget) {
10980  if (DCI.isBeforeLegalizeOps())
10981    return SDValue();
10982
10983  EVT VT = N->getValueType(0);
10984  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
10985    return SDValue();
10986
10987  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
10988  SDValue N0 = N->getOperand(0);
10989  SDValue N1 = N->getOperand(1);
10990  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
10991    std::swap(N0, N1);
10992  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
10993    return SDValue();
10994  if (!N0.hasOneUse() || !N1.hasOneUse())
10995    return SDValue();
10996
10997  SDValue ShAmt0 = N0.getOperand(1);
10998  if (ShAmt0.getValueType() != MVT::i8)
10999    return SDValue();
11000  SDValue ShAmt1 = N1.getOperand(1);
11001  if (ShAmt1.getValueType() != MVT::i8)
11002    return SDValue();
11003  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
11004    ShAmt0 = ShAmt0.getOperand(0);
11005  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
11006    ShAmt1 = ShAmt1.getOperand(0);
11007
11008  DebugLoc DL = N->getDebugLoc();
11009  unsigned Opc = X86ISD::SHLD;
11010  SDValue Op0 = N0.getOperand(0);
11011  SDValue Op1 = N1.getOperand(0);
11012  if (ShAmt0.getOpcode() == ISD::SUB) {
11013    Opc = X86ISD::SHRD;
11014    std::swap(Op0, Op1);
11015    std::swap(ShAmt0, ShAmt1);
11016  }
11017
11018  unsigned Bits = VT.getSizeInBits();
11019  if (ShAmt1.getOpcode() == ISD::SUB) {
11020    SDValue Sum = ShAmt1.getOperand(0);
11021    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
11022      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
11023      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
11024        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
11025      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
11026        return DAG.getNode(Opc, DL, VT,
11027                           Op0, Op1,
11028                           DAG.getNode(ISD::TRUNCATE, DL,
11029                                       MVT::i8, ShAmt0));
11030    }
11031  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
11032    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
11033    if (ShAmt0C &&
11034        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
11035      return DAG.getNode(Opc, DL, VT,
11036                         N0.getOperand(0), N1.getOperand(0),
11037                         DAG.getNode(ISD::TRUNCATE, DL,
11038                                       MVT::i8, ShAmt0));
11039  }
11040
11041  return SDValue();
11042}
11043
11044/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
11045static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
11046                                   const X86Subtarget *Subtarget) {
11047  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
11048  // the FP state in cases where an emms may be missing.
11049  // A preferable solution to the general problem is to figure out the right
11050  // places to insert EMMS.  This qualifies as a quick hack.
11051
11052  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
11053  StoreSDNode *St = cast<StoreSDNode>(N);
11054  EVT VT = St->getValue().getValueType();
11055  if (VT.getSizeInBits() != 64)
11056    return SDValue();
11057
11058  const Function *F = DAG.getMachineFunction().getFunction();
11059  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
11060  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
11061    && Subtarget->hasSSE2();
11062  if ((VT.isVector() ||
11063       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
11064      isa<LoadSDNode>(St->getValue()) &&
11065      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
11066      St->getChain().hasOneUse() && !St->isVolatile()) {
11067    SDNode* LdVal = St->getValue().getNode();
11068    LoadSDNode *Ld = 0;
11069    int TokenFactorIndex = -1;
11070    SmallVector<SDValue, 8> Ops;
11071    SDNode* ChainVal = St->getChain().getNode();
11072    // Must be a store of a load.  We currently handle two cases:  the load
11073    // is a direct child, and it's under an intervening TokenFactor.  It is
11074    // possible to dig deeper under nested TokenFactors.
11075    if (ChainVal == LdVal)
11076      Ld = cast<LoadSDNode>(St->getChain());
11077    else if (St->getValue().hasOneUse() &&
11078             ChainVal->getOpcode() == ISD::TokenFactor) {
11079      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
11080        if (ChainVal->getOperand(i).getNode() == LdVal) {
11081          TokenFactorIndex = i;
11082          Ld = cast<LoadSDNode>(St->getValue());
11083        } else
11084          Ops.push_back(ChainVal->getOperand(i));
11085      }
11086    }
11087
11088    if (!Ld || !ISD::isNormalLoad(Ld))
11089      return SDValue();
11090
11091    // If this is not the MMX case, i.e. we are just turning i64 load/store
11092    // into f64 load/store, avoid the transformation if there are multiple
11093    // uses of the loaded value.
11094    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
11095      return SDValue();
11096
11097    DebugLoc LdDL = Ld->getDebugLoc();
11098    DebugLoc StDL = N->getDebugLoc();
11099    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
11100    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
11101    // pair instead.
11102    if (Subtarget->is64Bit() || F64IsLegal) {
11103      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
11104      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
11105                                  Ld->getPointerInfo(), Ld->isVolatile(),
11106                                  Ld->isNonTemporal(), Ld->getAlignment());
11107      SDValue NewChain = NewLd.getValue(1);
11108      if (TokenFactorIndex != -1) {
11109        Ops.push_back(NewChain);
11110        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
11111                               Ops.size());
11112      }
11113      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
11114                          St->getPointerInfo(),
11115                          St->isVolatile(), St->isNonTemporal(),
11116                          St->getAlignment());
11117    }
11118
11119    // Otherwise, lower to two pairs of 32-bit loads / stores.
11120    SDValue LoAddr = Ld->getBasePtr();
11121    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
11122                                 DAG.getConstant(4, MVT::i32));
11123
11124    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
11125                               Ld->getPointerInfo(),
11126                               Ld->isVolatile(), Ld->isNonTemporal(),
11127                               Ld->getAlignment());
11128    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
11129                               Ld->getPointerInfo().getWithOffset(4),
11130                               Ld->isVolatile(), Ld->isNonTemporal(),
11131                               MinAlign(Ld->getAlignment(), 4));
11132
11133    SDValue NewChain = LoLd.getValue(1);
11134    if (TokenFactorIndex != -1) {
11135      Ops.push_back(LoLd);
11136      Ops.push_back(HiLd);
11137      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
11138                             Ops.size());
11139    }
11140
11141    LoAddr = St->getBasePtr();
11142    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
11143                         DAG.getConstant(4, MVT::i32));
11144
11145    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
11146                                St->getPointerInfo(),
11147                                St->isVolatile(), St->isNonTemporal(),
11148                                St->getAlignment());
11149    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
11150                                St->getPointerInfo().getWithOffset(4),
11151                                St->isVolatile(),
11152                                St->isNonTemporal(),
11153                                MinAlign(St->getAlignment(), 4));
11154    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
11155  }
11156  return SDValue();
11157}
11158
11159/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
11160/// X86ISD::FXOR nodes.
11161static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
11162  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
11163  // F[X]OR(0.0, x) -> x
11164  // F[X]OR(x, 0.0) -> x
11165  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
11166    if (C->getValueAPF().isPosZero())
11167      return N->getOperand(1);
11168  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
11169    if (C->getValueAPF().isPosZero())
11170      return N->getOperand(0);
11171  return SDValue();
11172}
11173
11174/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
11175static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
11176  // FAND(0.0, x) -> 0.0
11177  // FAND(x, 0.0) -> 0.0
11178  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
11179    if (C->getValueAPF().isPosZero())
11180      return N->getOperand(0);
11181  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
11182    if (C->getValueAPF().isPosZero())
11183      return N->getOperand(1);
11184  return SDValue();
11185}
11186
11187static SDValue PerformBTCombine(SDNode *N,
11188                                SelectionDAG &DAG,
11189                                TargetLowering::DAGCombinerInfo &DCI) {
11190  // BT ignores high bits in the bit index operand.
11191  SDValue Op1 = N->getOperand(1);
11192  if (Op1.hasOneUse()) {
11193    unsigned BitWidth = Op1.getValueSizeInBits();
11194    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
11195    APInt KnownZero, KnownOne;
11196    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
11197                                          !DCI.isBeforeLegalizeOps());
11198    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11199    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
11200        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
11201      DCI.CommitTargetLoweringOpt(TLO);
11202  }
11203  return SDValue();
11204}
11205
11206static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
11207  SDValue Op = N->getOperand(0);
11208  if (Op.getOpcode() == ISD::BIT_CONVERT)
11209    Op = Op.getOperand(0);
11210  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
11211  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
11212      VT.getVectorElementType().getSizeInBits() ==
11213      OpVT.getVectorElementType().getSizeInBits()) {
11214    return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
11215  }
11216  return SDValue();
11217}
11218
11219static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
11220  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
11221  //           (and (i32 x86isd::setcc_carry), 1)
11222  // This eliminates the zext. This transformation is necessary because
11223  // ISD::SETCC is always legalized to i8.
11224  DebugLoc dl = N->getDebugLoc();
11225  SDValue N0 = N->getOperand(0);
11226  EVT VT = N->getValueType(0);
11227  if (N0.getOpcode() == ISD::AND &&
11228      N0.hasOneUse() &&
11229      N0.getOperand(0).hasOneUse()) {
11230    SDValue N00 = N0.getOperand(0);
11231    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
11232      return SDValue();
11233    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
11234    if (!C || C->getZExtValue() != 1)
11235      return SDValue();
11236    return DAG.getNode(ISD::AND, dl, VT,
11237                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
11238                                   N00.getOperand(0), N00.getOperand(1)),
11239                       DAG.getConstant(1, VT));
11240  }
11241
11242  return SDValue();
11243}
11244
11245SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
11246                                             DAGCombinerInfo &DCI) const {
11247  SelectionDAG &DAG = DCI.DAG;
11248  switch (N->getOpcode()) {
11249  default: break;
11250  case ISD::EXTRACT_VECTOR_ELT:
11251                        return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
11252  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
11253  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
11254  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
11255  case ISD::SHL:
11256  case ISD::SRA:
11257  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
11258  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
11259  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
11260  case X86ISD::FXOR:
11261  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
11262  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
11263  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
11264  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
11265  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
11266  case X86ISD::SHUFPS:      // Handle all target specific shuffles
11267  case X86ISD::SHUFPD:
11268  case X86ISD::PALIGN:
11269  case X86ISD::PUNPCKHBW:
11270  case X86ISD::PUNPCKHWD:
11271  case X86ISD::PUNPCKHDQ:
11272  case X86ISD::PUNPCKHQDQ:
11273  case X86ISD::UNPCKHPS:
11274  case X86ISD::UNPCKHPD:
11275  case X86ISD::PUNPCKLBW:
11276  case X86ISD::PUNPCKLWD:
11277  case X86ISD::PUNPCKLDQ:
11278  case X86ISD::PUNPCKLQDQ:
11279  case X86ISD::UNPCKLPS:
11280  case X86ISD::UNPCKLPD:
11281  case X86ISD::MOVHLPS:
11282  case X86ISD::MOVLHPS:
11283  case X86ISD::PSHUFD:
11284  case X86ISD::PSHUFHW:
11285  case X86ISD::PSHUFLW:
11286  case X86ISD::MOVSS:
11287  case X86ISD::MOVSD:
11288  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
11289  }
11290
11291  return SDValue();
11292}
11293
11294/// isTypeDesirableForOp - Return true if the target has native support for
11295/// the specified value type and it is 'desirable' to use the type for the
11296/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
11297/// instruction encodings are longer and some i16 instructions are slow.
11298bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
11299  if (!isTypeLegal(VT))
11300    return false;
11301  if (VT != MVT::i16)
11302    return true;
11303
11304  switch (Opc) {
11305  default:
11306    return true;
11307  case ISD::LOAD:
11308  case ISD::SIGN_EXTEND:
11309  case ISD::ZERO_EXTEND:
11310  case ISD::ANY_EXTEND:
11311  case ISD::SHL:
11312  case ISD::SRL:
11313  case ISD::SUB:
11314  case ISD::ADD:
11315  case ISD::MUL:
11316  case ISD::AND:
11317  case ISD::OR:
11318  case ISD::XOR:
11319    return false;
11320  }
11321}
11322
11323/// IsDesirableToPromoteOp - This method query the target whether it is
11324/// beneficial for dag combiner to promote the specified node. If true, it
11325/// should return the desired promotion type by reference.
11326bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
11327  EVT VT = Op.getValueType();
11328  if (VT != MVT::i16)
11329    return false;
11330
11331  bool Promote = false;
11332  bool Commute = false;
11333  switch (Op.getOpcode()) {
11334  default: break;
11335  case ISD::LOAD: {
11336    LoadSDNode *LD = cast<LoadSDNode>(Op);
11337    // If the non-extending load has a single use and it's not live out, then it
11338    // might be folded.
11339    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
11340                                                     Op.hasOneUse()*/) {
11341      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
11342             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
11343        // The only case where we'd want to promote LOAD (rather then it being
11344        // promoted as an operand is when it's only use is liveout.
11345        if (UI->getOpcode() != ISD::CopyToReg)
11346          return false;
11347      }
11348    }
11349    Promote = true;
11350    break;
11351  }
11352  case ISD::SIGN_EXTEND:
11353  case ISD::ZERO_EXTEND:
11354  case ISD::ANY_EXTEND:
11355    Promote = true;
11356    break;
11357  case ISD::SHL:
11358  case ISD::SRL: {
11359    SDValue N0 = Op.getOperand(0);
11360    // Look out for (store (shl (load), x)).
11361    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
11362      return false;
11363    Promote = true;
11364    break;
11365  }
11366  case ISD::ADD:
11367  case ISD::MUL:
11368  case ISD::AND:
11369  case ISD::OR:
11370  case ISD::XOR:
11371    Commute = true;
11372    // fallthrough
11373  case ISD::SUB: {
11374    SDValue N0 = Op.getOperand(0);
11375    SDValue N1 = Op.getOperand(1);
11376    if (!Commute && MayFoldLoad(N1))
11377      return false;
11378    // Avoid disabling potential load folding opportunities.
11379    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
11380      return false;
11381    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
11382      return false;
11383    Promote = true;
11384  }
11385  }
11386
11387  PVT = MVT::i32;
11388  return Promote;
11389}
11390
11391//===----------------------------------------------------------------------===//
11392//                           X86 Inline Assembly Support
11393//===----------------------------------------------------------------------===//
11394
11395static bool LowerToBSwap(CallInst *CI) {
11396  // FIXME: this should verify that we are targetting a 486 or better.  If not,
11397  // we will turn this bswap into something that will be lowered to logical ops
11398  // instead of emitting the bswap asm.  For now, we don't support 486 or lower
11399  // so don't worry about this.
11400
11401  // Verify this is a simple bswap.
11402  if (CI->getNumArgOperands() != 1 ||
11403      CI->getType() != CI->getArgOperand(0)->getType() ||
11404      !CI->getType()->isIntegerTy())
11405    return false;
11406
11407  const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
11408  if (!Ty || Ty->getBitWidth() % 16 != 0)
11409    return false;
11410
11411  // Okay, we can do this xform, do so now.
11412  const Type *Tys[] = { Ty };
11413  Module *M = CI->getParent()->getParent()->getParent();
11414  Constant *Int = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
11415
11416  Value *Op = CI->getArgOperand(0);
11417  Op = CallInst::Create(Int, Op, CI->getName(), CI);
11418
11419  CI->replaceAllUsesWith(Op);
11420  CI->eraseFromParent();
11421  return true;
11422}
11423
11424bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
11425  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
11426  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
11427
11428  std::string AsmStr = IA->getAsmString();
11429
11430  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
11431  SmallVector<StringRef, 4> AsmPieces;
11432  SplitString(AsmStr, AsmPieces, "\n");  // ; as separator?
11433
11434  switch (AsmPieces.size()) {
11435  default: return false;
11436  case 1:
11437    AsmStr = AsmPieces[0];
11438    AsmPieces.clear();
11439    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
11440
11441    // bswap $0
11442    if (AsmPieces.size() == 2 &&
11443        (AsmPieces[0] == "bswap" ||
11444         AsmPieces[0] == "bswapq" ||
11445         AsmPieces[0] == "bswapl") &&
11446        (AsmPieces[1] == "$0" ||
11447         AsmPieces[1] == "${0:q}")) {
11448      // No need to check constraints, nothing other than the equivalent of
11449      // "=r,0" would be valid here.
11450      return LowerToBSwap(CI);
11451    }
11452    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
11453    if (CI->getType()->isIntegerTy(16) &&
11454        AsmPieces.size() == 3 &&
11455        (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
11456        AsmPieces[1] == "$$8," &&
11457        AsmPieces[2] == "${0:w}" &&
11458        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
11459      AsmPieces.clear();
11460      const std::string &Constraints = IA->getConstraintString();
11461      SplitString(StringRef(Constraints).substr(5), AsmPieces, ",");
11462      std::sort(AsmPieces.begin(), AsmPieces.end());
11463      if (AsmPieces.size() == 4 &&
11464          AsmPieces[0] == "~{cc}" &&
11465          AsmPieces[1] == "~{dirflag}" &&
11466          AsmPieces[2] == "~{flags}" &&
11467          AsmPieces[3] == "~{fpsr}") {
11468        return LowerToBSwap(CI);
11469      }
11470    }
11471    break;
11472  case 3:
11473    if (CI->getType()->isIntegerTy(64) &&
11474        Constraints.size() >= 2 &&
11475        Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
11476        Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
11477      // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
11478      SmallVector<StringRef, 4> Words;
11479      SplitString(AsmPieces[0], Words, " \t");
11480      if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
11481        Words.clear();
11482        SplitString(AsmPieces[1], Words, " \t");
11483        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
11484          Words.clear();
11485          SplitString(AsmPieces[2], Words, " \t,");
11486          if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
11487              Words[2] == "%edx") {
11488            return LowerToBSwap(CI);
11489          }
11490        }
11491      }
11492    }
11493    break;
11494  }
11495  return false;
11496}
11497
11498
11499
11500/// getConstraintType - Given a constraint letter, return the type of
11501/// constraint it is for this target.
11502X86TargetLowering::ConstraintType
11503X86TargetLowering::getConstraintType(const std::string &Constraint) const {
11504  if (Constraint.size() == 1) {
11505    switch (Constraint[0]) {
11506    case 'A':
11507      return C_Register;
11508    case 'f':
11509    case 'r':
11510    case 'R':
11511    case 'l':
11512    case 'q':
11513    case 'Q':
11514    case 'x':
11515    case 'y':
11516    case 'Y':
11517      return C_RegisterClass;
11518    case 'e':
11519    case 'Z':
11520      return C_Other;
11521    default:
11522      break;
11523    }
11524  }
11525  return TargetLowering::getConstraintType(Constraint);
11526}
11527
11528/// Examine constraint type and operand type and determine a weight value,
11529/// where: -1 = invalid match, and 0 = so-so match to 3 = good match.
11530/// This object must already have been set up with the operand type
11531/// and the current alternative constraint selected.
11532int X86TargetLowering::getSingleConstraintMatchWeight(
11533    AsmOperandInfo &info, const char *constraint) const {
11534  int weight = -1;
11535  Value *CallOperandVal = info.CallOperandVal;
11536    // If we don't have a value, we can't do a match,
11537    // but allow it at the lowest weight.
11538  if (CallOperandVal == NULL)
11539    return 0;
11540  // Look at the constraint type.
11541  switch (*constraint) {
11542  default:
11543    return TargetLowering::getSingleConstraintMatchWeight(info, constraint);
11544    break;
11545  case 'I':
11546    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
11547      if (C->getZExtValue() <= 31)
11548        weight = 3;
11549    }
11550    break;
11551  // etc.
11552  }
11553  return weight;
11554}
11555
11556/// LowerXConstraint - try to replace an X constraint, which matches anything,
11557/// with another that has more specific requirements based on the type of the
11558/// corresponding operand.
11559const char *X86TargetLowering::
11560LowerXConstraint(EVT ConstraintVT) const {
11561  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
11562  // 'f' like normal targets.
11563  if (ConstraintVT.isFloatingPoint()) {
11564    if (Subtarget->hasSSE2())
11565      return "Y";
11566    if (Subtarget->hasSSE1())
11567      return "x";
11568  }
11569
11570  return TargetLowering::LowerXConstraint(ConstraintVT);
11571}
11572
11573/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
11574/// vector.  If it is invalid, don't add anything to Ops.
11575void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
11576                                                     char Constraint,
11577                                                     std::vector<SDValue>&Ops,
11578                                                     SelectionDAG &DAG) const {
11579  SDValue Result(0, 0);
11580
11581  switch (Constraint) {
11582  default: break;
11583  case 'I':
11584    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11585      if (C->getZExtValue() <= 31) {
11586        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
11587        break;
11588      }
11589    }
11590    return;
11591  case 'J':
11592    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11593      if (C->getZExtValue() <= 63) {
11594        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
11595        break;
11596      }
11597    }
11598    return;
11599  case 'K':
11600    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11601      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
11602        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
11603        break;
11604      }
11605    }
11606    return;
11607  case 'N':
11608    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11609      if (C->getZExtValue() <= 255) {
11610        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
11611        break;
11612      }
11613    }
11614    return;
11615  case 'e': {
11616    // 32-bit signed value
11617    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11618      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
11619                                           C->getSExtValue())) {
11620        // Widen to 64 bits here to get it sign extended.
11621        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
11622        break;
11623      }
11624    // FIXME gcc accepts some relocatable values here too, but only in certain
11625    // memory models; it's complicated.
11626    }
11627    return;
11628  }
11629  case 'Z': {
11630    // 32-bit unsigned value
11631    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11632      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
11633                                           C->getZExtValue())) {
11634        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
11635        break;
11636      }
11637    }
11638    // FIXME gcc accepts some relocatable values here too, but only in certain
11639    // memory models; it's complicated.
11640    return;
11641  }
11642  case 'i': {
11643    // Literal immediates are always ok.
11644    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
11645      // Widen to 64 bits here to get it sign extended.
11646      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
11647      break;
11648    }
11649
11650    // In any sort of PIC mode addresses need to be computed at runtime by
11651    // adding in a register or some sort of table lookup.  These can't
11652    // be used as immediates.
11653    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
11654      return;
11655
11656    // If we are in non-pic codegen mode, we allow the address of a global (with
11657    // an optional displacement) to be used with 'i'.
11658    GlobalAddressSDNode *GA = 0;
11659    int64_t Offset = 0;
11660
11661    // Match either (GA), (GA+C), (GA+C1+C2), etc.
11662    while (1) {
11663      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
11664        Offset += GA->getOffset();
11665        break;
11666      } else if (Op.getOpcode() == ISD::ADD) {
11667        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
11668          Offset += C->getZExtValue();
11669          Op = Op.getOperand(0);
11670          continue;
11671        }
11672      } else if (Op.getOpcode() == ISD::SUB) {
11673        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
11674          Offset += -C->getZExtValue();
11675          Op = Op.getOperand(0);
11676          continue;
11677        }
11678      }
11679
11680      // Otherwise, this isn't something we can handle, reject it.
11681      return;
11682    }
11683
11684    const GlobalValue *GV = GA->getGlobal();
11685    // If we require an extra load to get this address, as in PIC mode, we
11686    // can't accept it.
11687    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
11688                                                        getTargetMachine())))
11689      return;
11690
11691    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
11692                                        GA->getValueType(0), Offset);
11693    break;
11694  }
11695  }
11696
11697  if (Result.getNode()) {
11698    Ops.push_back(Result);
11699    return;
11700  }
11701  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
11702}
11703
11704std::vector<unsigned> X86TargetLowering::
11705getRegClassForInlineAsmConstraint(const std::string &Constraint,
11706                                  EVT VT) const {
11707  if (Constraint.size() == 1) {
11708    // FIXME: not handling fp-stack yet!
11709    switch (Constraint[0]) {      // GCC X86 Constraint Letters
11710    default: break;  // Unknown constraint letter
11711    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
11712      if (Subtarget->is64Bit()) {
11713        if (VT == MVT::i32)
11714          return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
11715                                       X86::ESI, X86::EDI, X86::R8D, X86::R9D,
11716                                       X86::R10D,X86::R11D,X86::R12D,
11717                                       X86::R13D,X86::R14D,X86::R15D,
11718                                       X86::EBP, X86::ESP, 0);
11719        else if (VT == MVT::i16)
11720          return make_vector<unsigned>(X86::AX,  X86::DX,  X86::CX, X86::BX,
11721                                       X86::SI,  X86::DI,  X86::R8W,X86::R9W,
11722                                       X86::R10W,X86::R11W,X86::R12W,
11723                                       X86::R13W,X86::R14W,X86::R15W,
11724                                       X86::BP,  X86::SP, 0);
11725        else if (VT == MVT::i8)
11726          return make_vector<unsigned>(X86::AL,  X86::DL,  X86::CL, X86::BL,
11727                                       X86::SIL, X86::DIL, X86::R8B,X86::R9B,
11728                                       X86::R10B,X86::R11B,X86::R12B,
11729                                       X86::R13B,X86::R14B,X86::R15B,
11730                                       X86::BPL, X86::SPL, 0);
11731
11732        else if (VT == MVT::i64)
11733          return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
11734                                       X86::RSI, X86::RDI, X86::R8,  X86::R9,
11735                                       X86::R10, X86::R11, X86::R12,
11736                                       X86::R13, X86::R14, X86::R15,
11737                                       X86::RBP, X86::RSP, 0);
11738
11739        break;
11740      }
11741      // 32-bit fallthrough
11742    case 'Q':   // Q_REGS
11743      if (VT == MVT::i32)
11744        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
11745      else if (VT == MVT::i16)
11746        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
11747      else if (VT == MVT::i8)
11748        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
11749      else if (VT == MVT::i64)
11750        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
11751      break;
11752    }
11753  }
11754
11755  return std::vector<unsigned>();
11756}
11757
11758std::pair<unsigned, const TargetRegisterClass*>
11759X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
11760                                                EVT VT) const {
11761  // First, see if this is a constraint that directly corresponds to an LLVM
11762  // register class.
11763  if (Constraint.size() == 1) {
11764    // GCC Constraint Letters
11765    switch (Constraint[0]) {
11766    default: break;
11767    case 'r':   // GENERAL_REGS
11768    case 'l':   // INDEX_REGS
11769      if (VT == MVT::i8)
11770        return std::make_pair(0U, X86::GR8RegisterClass);
11771      if (VT == MVT::i16)
11772        return std::make_pair(0U, X86::GR16RegisterClass);
11773      if (VT == MVT::i32 || !Subtarget->is64Bit())
11774        return std::make_pair(0U, X86::GR32RegisterClass);
11775      return std::make_pair(0U, X86::GR64RegisterClass);
11776    case 'R':   // LEGACY_REGS
11777      if (VT == MVT::i8)
11778        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
11779      if (VT == MVT::i16)
11780        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
11781      if (VT == MVT::i32 || !Subtarget->is64Bit())
11782        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
11783      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
11784    case 'f':  // FP Stack registers.
11785      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
11786      // value to the correct fpstack register class.
11787      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
11788        return std::make_pair(0U, X86::RFP32RegisterClass);
11789      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
11790        return std::make_pair(0U, X86::RFP64RegisterClass);
11791      return std::make_pair(0U, X86::RFP80RegisterClass);
11792    case 'y':   // MMX_REGS if MMX allowed.
11793      if (!Subtarget->hasMMX()) break;
11794      return std::make_pair(0U, X86::VR64RegisterClass);
11795    case 'Y':   // SSE_REGS if SSE2 allowed
11796      if (!Subtarget->hasSSE2()) break;
11797      // FALL THROUGH.
11798    case 'x':   // SSE_REGS if SSE1 allowed
11799      if (!Subtarget->hasSSE1()) break;
11800
11801      switch (VT.getSimpleVT().SimpleTy) {
11802      default: break;
11803      // Scalar SSE types.
11804      case MVT::f32:
11805      case MVT::i32:
11806        return std::make_pair(0U, X86::FR32RegisterClass);
11807      case MVT::f64:
11808      case MVT::i64:
11809        return std::make_pair(0U, X86::FR64RegisterClass);
11810      // Vector types.
11811      case MVT::v16i8:
11812      case MVT::v8i16:
11813      case MVT::v4i32:
11814      case MVT::v2i64:
11815      case MVT::v4f32:
11816      case MVT::v2f64:
11817        return std::make_pair(0U, X86::VR128RegisterClass);
11818      }
11819      break;
11820    }
11821  }
11822
11823  // Use the default implementation in TargetLowering to convert the register
11824  // constraint into a member of a register class.
11825  std::pair<unsigned, const TargetRegisterClass*> Res;
11826  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
11827
11828  // Not found as a standard register?
11829  if (Res.second == 0) {
11830    // Map st(0) -> st(7) -> ST0
11831    if (Constraint.size() == 7 && Constraint[0] == '{' &&
11832        tolower(Constraint[1]) == 's' &&
11833        tolower(Constraint[2]) == 't' &&
11834        Constraint[3] == '(' &&
11835        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
11836        Constraint[5] == ')' &&
11837        Constraint[6] == '}') {
11838
11839      Res.first = X86::ST0+Constraint[4]-'0';
11840      Res.second = X86::RFP80RegisterClass;
11841      return Res;
11842    }
11843
11844    // GCC allows "st(0)" to be called just plain "st".
11845    if (StringRef("{st}").equals_lower(Constraint)) {
11846      Res.first = X86::ST0;
11847      Res.second = X86::RFP80RegisterClass;
11848      return Res;
11849    }
11850
11851    // flags -> EFLAGS
11852    if (StringRef("{flags}").equals_lower(Constraint)) {
11853      Res.first = X86::EFLAGS;
11854      Res.second = X86::CCRRegisterClass;
11855      return Res;
11856    }
11857
11858    // 'A' means EAX + EDX.
11859    if (Constraint == "A") {
11860      Res.first = X86::EAX;
11861      Res.second = X86::GR32_ADRegisterClass;
11862      return Res;
11863    }
11864    return Res;
11865  }
11866
11867  // Otherwise, check to see if this is a register class of the wrong value
11868  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
11869  // turn into {ax},{dx}.
11870  if (Res.second->hasType(VT))
11871    return Res;   // Correct type already, nothing to do.
11872
11873  // All of the single-register GCC register classes map their values onto
11874  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
11875  // really want an 8-bit or 32-bit register, map to the appropriate register
11876  // class and return the appropriate register.
11877  if (Res.second == X86::GR16RegisterClass) {
11878    if (VT == MVT::i8) {
11879      unsigned DestReg = 0;
11880      switch (Res.first) {
11881      default: break;
11882      case X86::AX: DestReg = X86::AL; break;
11883      case X86::DX: DestReg = X86::DL; break;
11884      case X86::CX: DestReg = X86::CL; break;
11885      case X86::BX: DestReg = X86::BL; break;
11886      }
11887      if (DestReg) {
11888        Res.first = DestReg;
11889        Res.second = X86::GR8RegisterClass;
11890      }
11891    } else if (VT == MVT::i32) {
11892      unsigned DestReg = 0;
11893      switch (Res.first) {
11894      default: break;
11895      case X86::AX: DestReg = X86::EAX; break;
11896      case X86::DX: DestReg = X86::EDX; break;
11897      case X86::CX: DestReg = X86::ECX; break;
11898      case X86::BX: DestReg = X86::EBX; break;
11899      case X86::SI: DestReg = X86::ESI; break;
11900      case X86::DI: DestReg = X86::EDI; break;
11901      case X86::BP: DestReg = X86::EBP; break;
11902      case X86::SP: DestReg = X86::ESP; break;
11903      }
11904      if (DestReg) {
11905        Res.first = DestReg;
11906        Res.second = X86::GR32RegisterClass;
11907      }
11908    } else if (VT == MVT::i64) {
11909      unsigned DestReg = 0;
11910      switch (Res.first) {
11911      default: break;
11912      case X86::AX: DestReg = X86::RAX; break;
11913      case X86::DX: DestReg = X86::RDX; break;
11914      case X86::CX: DestReg = X86::RCX; break;
11915      case X86::BX: DestReg = X86::RBX; break;
11916      case X86::SI: DestReg = X86::RSI; break;
11917      case X86::DI: DestReg = X86::RDI; break;
11918      case X86::BP: DestReg = X86::RBP; break;
11919      case X86::SP: DestReg = X86::RSP; break;
11920      }
11921      if (DestReg) {
11922        Res.first = DestReg;
11923        Res.second = X86::GR64RegisterClass;
11924      }
11925    }
11926  } else if (Res.second == X86::FR32RegisterClass ||
11927             Res.second == X86::FR64RegisterClass ||
11928             Res.second == X86::VR128RegisterClass) {
11929    // Handle references to XMM physical registers that got mapped into the
11930    // wrong class.  This can happen with constraints like {xmm0} where the
11931    // target independent register mapper will just pick the first match it can
11932    // find, ignoring the required type.
11933    if (VT == MVT::f32)
11934      Res.second = X86::FR32RegisterClass;
11935    else if (VT == MVT::f64)
11936      Res.second = X86::FR64RegisterClass;
11937    else if (X86::VR128RegisterClass->hasType(VT))
11938      Res.second = X86::VR128RegisterClass;
11939  }
11940
11941  return Res;
11942}
11943