X86ISelLowering.cpp revision 228756c744a1f877f7150c8fc91e074ff58c9d66
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86ISelLowering.h"
17#include "X86.h"
18#include "X86InstrBuilder.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/MC/MCAsmInfo.h"
39#include "llvm/MC/MCContext.h"
40#include "llvm/MC/MCExpr.h"
41#include "llvm/MC/MCSymbol.h"
42#include "llvm/ADT/SmallSet.h"
43#include "llvm/ADT/Statistic.h"
44#include "llvm/ADT/StringExtras.h"
45#include "llvm/ADT/VariadicFunction.h"
46#include "llvm/Support/CallSite.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/Target/TargetOptions.h"
51#include <bitset>
52using namespace llvm;
53
54STATISTIC(NumTailCalls, "Number of tail calls");
55
56// Forward declarations.
57static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
58                       SDValue V2);
59
60/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
61/// sets things up to match to an AVX VEXTRACTF128 instruction or a
62/// simple subregister reference.  Idx is an index in the 128 bits we
63/// want.  It need not be aligned to a 128-bit bounday.  That makes
64/// lowering EXTRACT_VECTOR_ELT operations easier.
65static SDValue Extract128BitVector(SDValue Vec, unsigned IdxVal,
66                                   SelectionDAG &DAG, DebugLoc dl) {
67  EVT VT = Vec.getValueType();
68  assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
69  EVT ElVT = VT.getVectorElementType();
70  unsigned Factor = VT.getSizeInBits()/128;
71  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
72                                  VT.getVectorNumElements()/Factor);
73
74  // Extract from UNDEF is UNDEF.
75  if (Vec.getOpcode() == ISD::UNDEF)
76    return DAG.getUNDEF(ResultVT);
77
78  // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
79  // we can match to VEXTRACTF128.
80  unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
81
82  // This is the index of the first element of the 128-bit chunk
83  // we want.
84  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
85                               * ElemsPerChunk);
86
87  SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
88  SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
89                               VecIdx);
90
91  return Result;
92}
93
94/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
95/// sets things up to match to an AVX VINSERTF128 instruction or a
96/// simple superregister reference.  Idx is an index in the 128 bits
97/// we want.  It need not be aligned to a 128-bit bounday.  That makes
98/// lowering INSERT_VECTOR_ELT operations easier.
99static SDValue Insert128BitVector(SDValue Result, SDValue Vec,
100                                  unsigned IdxVal, SelectionDAG &DAG,
101                                  DebugLoc dl) {
102  EVT VT = Vec.getValueType();
103  assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
104
105  EVT ElVT = VT.getVectorElementType();
106  EVT ResultVT = Result.getValueType();
107
108  // Insert the relevant 128 bits.
109  unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
110
111  // This is the index of the first element of the 128-bit chunk
112  // we want.
113  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
114                               * ElemsPerChunk);
115
116  SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
117  Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
118                       VecIdx);
119  return Result;
120}
121
122/// Concat two 128-bit vectors into a 256 bit vector using VINSERTF128
123/// instructions. This is used because creating CONCAT_VECTOR nodes of
124/// BUILD_VECTORS returns a larger BUILD_VECTOR while we're trying to lower
125/// large BUILD_VECTORS.
126static SDValue Concat128BitVectors(SDValue V1, SDValue V2, EVT VT,
127                                   unsigned NumElems, SelectionDAG &DAG,
128                                   DebugLoc dl) {
129  SDValue V = Insert128BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
130  return Insert128BitVector(V, V2, NumElems/2, DAG, dl);
131}
132
133static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
134  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
135  bool is64Bit = Subtarget->is64Bit();
136
137  if (Subtarget->isTargetEnvMacho()) {
138    if (is64Bit)
139      return new X8664_MachoTargetObjectFile();
140    return new TargetLoweringObjectFileMachO();
141  }
142
143  if (Subtarget->isTargetELF())
144    return new TargetLoweringObjectFileELF();
145  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
146    return new TargetLoweringObjectFileCOFF();
147  llvm_unreachable("unknown subtarget type");
148}
149
150X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
151  : TargetLowering(TM, createTLOF(TM)) {
152  Subtarget = &TM.getSubtarget<X86Subtarget>();
153  X86ScalarSSEf64 = Subtarget->hasSSE2();
154  X86ScalarSSEf32 = Subtarget->hasSSE1();
155  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
156
157  RegInfo = TM.getRegisterInfo();
158  TD = getTargetData();
159
160  // Set up the TargetLowering object.
161  static const MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
162
163  // X86 is weird, it always uses i8 for shift amounts and setcc results.
164  setBooleanContents(ZeroOrOneBooleanContent);
165  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
166  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
167
168  // For 64-bit since we have so many registers use the ILP scheduler, for
169  // 32-bit code use the register pressure specific scheduling.
170  // For Atom, always use ILP scheduling.
171  if (Subtarget->isAtom())
172    setSchedulingPreference(Sched::ILP);
173  else if (Subtarget->is64Bit())
174    setSchedulingPreference(Sched::ILP);
175  else
176    setSchedulingPreference(Sched::RegPressure);
177  setStackPointerRegisterToSaveRestore(X86StackPtr);
178
179  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
180    // Setup Windows compiler runtime calls.
181    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
182    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
183    setLibcallName(RTLIB::SREM_I64, "_allrem");
184    setLibcallName(RTLIB::UREM_I64, "_aullrem");
185    setLibcallName(RTLIB::MUL_I64, "_allmul");
186    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
187    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
188    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
189    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
190    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
191
192    // The _ftol2 runtime function has an unusual calling conv, which
193    // is modeled by a special pseudo-instruction.
194    setLibcallName(RTLIB::FPTOUINT_F64_I64, 0);
195    setLibcallName(RTLIB::FPTOUINT_F32_I64, 0);
196    setLibcallName(RTLIB::FPTOUINT_F64_I32, 0);
197    setLibcallName(RTLIB::FPTOUINT_F32_I32, 0);
198  }
199
200  if (Subtarget->isTargetDarwin()) {
201    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
202    setUseUnderscoreSetJmp(false);
203    setUseUnderscoreLongJmp(false);
204  } else if (Subtarget->isTargetMingw()) {
205    // MS runtime is weird: it exports _setjmp, but longjmp!
206    setUseUnderscoreSetJmp(true);
207    setUseUnderscoreLongJmp(false);
208  } else {
209    setUseUnderscoreSetJmp(true);
210    setUseUnderscoreLongJmp(true);
211  }
212
213  // Set up the register classes.
214  addRegisterClass(MVT::i8, &X86::GR8RegClass);
215  addRegisterClass(MVT::i16, &X86::GR16RegClass);
216  addRegisterClass(MVT::i32, &X86::GR32RegClass);
217  if (Subtarget->is64Bit())
218    addRegisterClass(MVT::i64, &X86::GR64RegClass);
219
220  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
221
222  // We don't accept any truncstore of integer registers.
223  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
224  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
225  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
226  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
227  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
228  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
229
230  // SETOEQ and SETUNE require checking two conditions.
231  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
232  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
233  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
234  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
235  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
236  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
237
238  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
239  // operation.
240  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
241  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
242  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
243
244  if (Subtarget->is64Bit()) {
245    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
246    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
247  } else if (!TM.Options.UseSoftFloat) {
248    // We have an algorithm for SSE2->double, and we turn this into a
249    // 64-bit FILD followed by conditional FADD for other targets.
250    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
251    // We have an algorithm for SSE2, and we turn this into a 64-bit
252    // FILD for other targets.
253    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
254  }
255
256  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
257  // this operation.
258  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
259  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
260
261  if (!TM.Options.UseSoftFloat) {
262    // SSE has no i16 to fp conversion, only i32
263    if (X86ScalarSSEf32) {
264      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
265      // f32 and f64 cases are Legal, f80 case is not
266      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
267    } else {
268      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
269      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
270    }
271  } else {
272    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
273    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
274  }
275
276  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
277  // are Legal, f80 is custom lowered.
278  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
279  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
280
281  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
282  // this operation.
283  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
284  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
285
286  if (X86ScalarSSEf32) {
287    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
288    // f32 and f64 cases are Legal, f80 case is not
289    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
290  } else {
291    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
292    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
293  }
294
295  // Handle FP_TO_UINT by promoting the destination to a larger signed
296  // conversion.
297  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
298  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
299  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
300
301  if (Subtarget->is64Bit()) {
302    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
303    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
304  } else if (!TM.Options.UseSoftFloat) {
305    // Since AVX is a superset of SSE3, only check for SSE here.
306    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
307      // Expand FP_TO_UINT into a select.
308      // FIXME: We would like to use a Custom expander here eventually to do
309      // the optimal thing for SSE vs. the default expansion in the legalizer.
310      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
311    else
312      // With SSE3 we can use fisttpll to convert to a signed i64; without
313      // SSE, we're stuck with a fistpll.
314      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
315  }
316
317  if (isTargetFTOL()) {
318    // Use the _ftol2 runtime function, which has a pseudo-instruction
319    // to handle its weird calling convention.
320    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Custom);
321  }
322
323  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
324  if (!X86ScalarSSEf64) {
325    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
326    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
327    if (Subtarget->is64Bit()) {
328      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
329      // Without SSE, i64->f64 goes through memory.
330      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
331    }
332  }
333
334  // Scalar integer divide and remainder are lowered to use operations that
335  // produce two results, to match the available instructions. This exposes
336  // the two-result form to trivial CSE, which is able to combine x/y and x%y
337  // into a single instruction.
338  //
339  // Scalar integer multiply-high is also lowered to use two-result
340  // operations, to match the available instructions. However, plain multiply
341  // (low) operations are left as Legal, as there are single-result
342  // instructions for this in x86. Using the two-result multiply instructions
343  // when both high and low results are needed must be arranged by dagcombine.
344  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
345    MVT VT = IntVTs[i];
346    setOperationAction(ISD::MULHS, VT, Expand);
347    setOperationAction(ISD::MULHU, VT, Expand);
348    setOperationAction(ISD::SDIV, VT, Expand);
349    setOperationAction(ISD::UDIV, VT, Expand);
350    setOperationAction(ISD::SREM, VT, Expand);
351    setOperationAction(ISD::UREM, VT, Expand);
352
353    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
354    setOperationAction(ISD::ADDC, VT, Custom);
355    setOperationAction(ISD::ADDE, VT, Custom);
356    setOperationAction(ISD::SUBC, VT, Custom);
357    setOperationAction(ISD::SUBE, VT, Custom);
358  }
359
360  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
361  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
362  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
363  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
364  if (Subtarget->is64Bit())
365    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
366  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
367  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
368  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
369  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
370  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
371  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
372  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
373  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
374
375  // Promote the i8 variants and force them on up to i32 which has a shorter
376  // encoding.
377  setOperationAction(ISD::CTTZ             , MVT::i8   , Promote);
378  AddPromotedToType (ISD::CTTZ             , MVT::i8   , MVT::i32);
379  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Promote);
380  AddPromotedToType (ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , MVT::i32);
381  if (Subtarget->hasBMI()) {
382    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Expand);
383    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Expand);
384    if (Subtarget->is64Bit())
385      setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
386  } else {
387    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
388    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
389    if (Subtarget->is64Bit())
390      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
391  }
392
393  if (Subtarget->hasLZCNT()) {
394    // When promoting the i8 variants, force them to i32 for a shorter
395    // encoding.
396    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
397    AddPromotedToType (ISD::CTLZ           , MVT::i8   , MVT::i32);
398    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Promote);
399    AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
400    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Expand);
401    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Expand);
402    if (Subtarget->is64Bit())
403      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
404  } else {
405    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
406    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
407    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
408    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom);
409    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom);
410    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom);
411    if (Subtarget->is64Bit()) {
412      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
413      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
414    }
415  }
416
417  if (Subtarget->hasPOPCNT()) {
418    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
419  } else {
420    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
421    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
422    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
423    if (Subtarget->is64Bit())
424      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
425  }
426
427  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
428  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
429
430  // These should be promoted to a larger select which is supported.
431  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
432  // X86 wants to expand cmov itself.
433  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
434  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
435  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
436  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
437  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
438  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
439  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
440  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
441  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
442  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
443  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
444  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
445  if (Subtarget->is64Bit()) {
446    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
447    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
448  }
449  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
450
451  // Darwin ABI issue.
452  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
453  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
454  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
455  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
456  if (Subtarget->is64Bit())
457    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
458  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
459  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
460  if (Subtarget->is64Bit()) {
461    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
462    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
463    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
464    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
465    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
466  }
467  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
468  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
469  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
470  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
471  if (Subtarget->is64Bit()) {
472    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
473    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
474    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
475  }
476
477  if (Subtarget->hasSSE1())
478    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
479
480  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
481  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
482
483  // On X86 and X86-64, atomic operations are lowered to locked instructions.
484  // Locked instructions, in turn, have implicit fence semantics (all memory
485  // operations are flushed before issuing the locked instruction, and they
486  // are not buffered), so we can fold away the common pattern of
487  // fence-atomic-fence.
488  setShouldFoldAtomicFences(true);
489
490  // Expand certain atomics
491  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
492    MVT VT = IntVTs[i];
493    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
494    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
495    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
496  }
497
498  if (!Subtarget->is64Bit()) {
499    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
500    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
501    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
502    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
503    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
504    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
505    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
506    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
507  }
508
509  if (Subtarget->hasCmpxchg16b()) {
510    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
511  }
512
513  // FIXME - use subtarget debug flags
514  if (!Subtarget->isTargetDarwin() &&
515      !Subtarget->isTargetELF() &&
516      !Subtarget->isTargetCygMing()) {
517    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
518  }
519
520  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
521  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
522  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
523  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
524  if (Subtarget->is64Bit()) {
525    setExceptionPointerRegister(X86::RAX);
526    setExceptionSelectorRegister(X86::RDX);
527  } else {
528    setExceptionPointerRegister(X86::EAX);
529    setExceptionSelectorRegister(X86::EDX);
530  }
531  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
532  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
533
534  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
535  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
536
537  setOperationAction(ISD::TRAP, MVT::Other, Legal);
538
539  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
540  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
541  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
542  if (Subtarget->is64Bit()) {
543    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
544    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
545  } else {
546    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
547    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
548  }
549
550  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
551  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
552
553  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
554    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
555                       MVT::i64 : MVT::i32, Custom);
556  else if (TM.Options.EnableSegmentedStacks)
557    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
558                       MVT::i64 : MVT::i32, Custom);
559  else
560    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
561                       MVT::i64 : MVT::i32, Expand);
562
563  if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
564    // f32 and f64 use SSE.
565    // Set up the FP register classes.
566    addRegisterClass(MVT::f32, &X86::FR32RegClass);
567    addRegisterClass(MVT::f64, &X86::FR64RegClass);
568
569    // Use ANDPD to simulate FABS.
570    setOperationAction(ISD::FABS , MVT::f64, Custom);
571    setOperationAction(ISD::FABS , MVT::f32, Custom);
572
573    // Use XORP to simulate FNEG.
574    setOperationAction(ISD::FNEG , MVT::f64, Custom);
575    setOperationAction(ISD::FNEG , MVT::f32, Custom);
576
577    // Use ANDPD and ORPD to simulate FCOPYSIGN.
578    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
579    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
580
581    // Lower this to FGETSIGNx86 plus an AND.
582    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
583    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
584
585    // We don't support sin/cos/fmod
586    setOperationAction(ISD::FSIN , MVT::f64, Expand);
587    setOperationAction(ISD::FCOS , MVT::f64, Expand);
588    setOperationAction(ISD::FSIN , MVT::f32, Expand);
589    setOperationAction(ISD::FCOS , MVT::f32, Expand);
590
591    // Expand FP immediates into loads from the stack, except for the special
592    // cases we handle.
593    addLegalFPImmediate(APFloat(+0.0)); // xorpd
594    addLegalFPImmediate(APFloat(+0.0f)); // xorps
595  } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
596    // Use SSE for f32, x87 for f64.
597    // Set up the FP register classes.
598    addRegisterClass(MVT::f32, &X86::FR32RegClass);
599    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
600
601    // Use ANDPS to simulate FABS.
602    setOperationAction(ISD::FABS , MVT::f32, Custom);
603
604    // Use XORP to simulate FNEG.
605    setOperationAction(ISD::FNEG , MVT::f32, Custom);
606
607    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
608
609    // Use ANDPS and ORPS to simulate FCOPYSIGN.
610    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
611    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
612
613    // We don't support sin/cos/fmod
614    setOperationAction(ISD::FSIN , MVT::f32, Expand);
615    setOperationAction(ISD::FCOS , MVT::f32, Expand);
616
617    // Special cases we handle for FP constants.
618    addLegalFPImmediate(APFloat(+0.0f)); // xorps
619    addLegalFPImmediate(APFloat(+0.0)); // FLD0
620    addLegalFPImmediate(APFloat(+1.0)); // FLD1
621    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
622    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
623
624    if (!TM.Options.UnsafeFPMath) {
625      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
626      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
627    }
628  } else if (!TM.Options.UseSoftFloat) {
629    // f32 and f64 in x87.
630    // Set up the FP register classes.
631    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
632    addRegisterClass(MVT::f32, &X86::RFP32RegClass);
633
634    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
635    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
636    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
637    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
638
639    if (!TM.Options.UnsafeFPMath) {
640      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
641      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
642    }
643    addLegalFPImmediate(APFloat(+0.0)); // FLD0
644    addLegalFPImmediate(APFloat(+1.0)); // FLD1
645    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
646    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
647    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
648    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
649    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
650    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
651  }
652
653  // We don't support FMA.
654  setOperationAction(ISD::FMA, MVT::f64, Expand);
655  setOperationAction(ISD::FMA, MVT::f32, Expand);
656
657  // Long double always uses X87.
658  if (!TM.Options.UseSoftFloat) {
659    addRegisterClass(MVT::f80, &X86::RFP80RegClass);
660    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
661    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
662    {
663      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
664      addLegalFPImmediate(TmpFlt);  // FLD0
665      TmpFlt.changeSign();
666      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
667
668      bool ignored;
669      APFloat TmpFlt2(+1.0);
670      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
671                      &ignored);
672      addLegalFPImmediate(TmpFlt2);  // FLD1
673      TmpFlt2.changeSign();
674      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
675    }
676
677    if (!TM.Options.UnsafeFPMath) {
678      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
679      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
680    }
681
682    setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
683    setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
684    setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
685    setOperationAction(ISD::FRINT,  MVT::f80, Expand);
686    setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
687    setOperationAction(ISD::FMA, MVT::f80, Expand);
688  }
689
690  // Always use a library call for pow.
691  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
692  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
693  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
694
695  setOperationAction(ISD::FLOG, MVT::f80, Expand);
696  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
697  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
698  setOperationAction(ISD::FEXP, MVT::f80, Expand);
699  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
700
701  // First set operation action for all vector types to either promote
702  // (for widening) or expand (for scalarization). Then we will selectively
703  // turn on ones that can be effectively codegen'd.
704  for (int VT = MVT::FIRST_VECTOR_VALUETYPE;
705           VT <= MVT::LAST_VECTOR_VALUETYPE; ++VT) {
706    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
707    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
708    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
709    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
710    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
711    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
712    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
713    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
714    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
715    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
716    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
717    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
718    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
719    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
720    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
721    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
722    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
723    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
724    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
725    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
726    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
727    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
728    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
729    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
730    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
731    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
732    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
733    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
734    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
735    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
736    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
737    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
738    setOperationAction(ISD::CTTZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
739    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
740    setOperationAction(ISD::CTLZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
741    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
742    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
743    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
744    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
745    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
746    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
747    setOperationAction(ISD::SETCC, (MVT::SimpleValueType)VT, Expand);
748    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
749    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
750    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
751    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
752    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
753    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
754    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
755    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
756    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
757    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
758    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
759    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
760    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
761    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
762    setOperationAction(ISD::VSELECT,  (MVT::SimpleValueType)VT, Expand);
763    for (int InnerVT = MVT::FIRST_VECTOR_VALUETYPE;
764             InnerVT <= MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
765      setTruncStoreAction((MVT::SimpleValueType)VT,
766                          (MVT::SimpleValueType)InnerVT, Expand);
767    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
768    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
769    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
770  }
771
772  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
773  // with -msoft-float, disable use of MMX as well.
774  if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
775    addRegisterClass(MVT::x86mmx, &X86::VR64RegClass);
776    // No operations on x86mmx supported, everything uses intrinsics.
777  }
778
779  // MMX-sized vectors (other than x86mmx) are expected to be expanded
780  // into smaller operations.
781  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
782  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
783  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
784  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
785  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
786  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
787  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
788  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
789  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
790  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
791  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
792  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
793  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
794  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
795  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
796  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
797  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
798  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
799  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
800  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
801  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
802  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
803  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
804  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
805  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
806  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
807  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
808  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
809  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
810
811  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
812    addRegisterClass(MVT::v4f32, &X86::VR128RegClass);
813
814    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
815    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
816    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
817    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
818    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
819    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
820    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
821    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
822    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
823    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
824    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
825    setOperationAction(ISD::SETCC,              MVT::v4f32, Custom);
826  }
827
828  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
829    addRegisterClass(MVT::v2f64, &X86::VR128RegClass);
830
831    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
832    // registers cannot be used even for integer operations.
833    addRegisterClass(MVT::v16i8, &X86::VR128RegClass);
834    addRegisterClass(MVT::v8i16, &X86::VR128RegClass);
835    addRegisterClass(MVT::v4i32, &X86::VR128RegClass);
836    addRegisterClass(MVT::v2i64, &X86::VR128RegClass);
837
838    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
839    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
840    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
841    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
842    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
843    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
844    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
845    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
846    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
847    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
848    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
849    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
850    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
851    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
852    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
853    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
854
855    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
856    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
857    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
858    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
859
860    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
861    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
862    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
863    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
864    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
865
866    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
867    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
868    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
869    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
870    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
871
872    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
873    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
874      EVT VT = (MVT::SimpleValueType)i;
875      // Do not attempt to custom lower non-power-of-2 vectors
876      if (!isPowerOf2_32(VT.getVectorNumElements()))
877        continue;
878      // Do not attempt to custom lower non-128-bit vectors
879      if (!VT.is128BitVector())
880        continue;
881      setOperationAction(ISD::BUILD_VECTOR,
882                         VT.getSimpleVT().SimpleTy, Custom);
883      setOperationAction(ISD::VECTOR_SHUFFLE,
884                         VT.getSimpleVT().SimpleTy, Custom);
885      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
886                         VT.getSimpleVT().SimpleTy, Custom);
887    }
888
889    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
890    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
891    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
892    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
893    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
894    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
895
896    if (Subtarget->is64Bit()) {
897      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
898      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
899    }
900
901    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
902    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
903      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
904      EVT VT = SVT;
905
906      // Do not attempt to promote non-128-bit vectors
907      if (!VT.is128BitVector())
908        continue;
909
910      setOperationAction(ISD::AND,    SVT, Promote);
911      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
912      setOperationAction(ISD::OR,     SVT, Promote);
913      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
914      setOperationAction(ISD::XOR,    SVT, Promote);
915      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
916      setOperationAction(ISD::LOAD,   SVT, Promote);
917      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
918      setOperationAction(ISD::SELECT, SVT, Promote);
919      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
920    }
921
922    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
923
924    // Custom lower v2i64 and v2f64 selects.
925    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
926    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
927    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
928    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
929
930    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
931    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
932  }
933
934  if (Subtarget->hasSSE41()) {
935    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
936    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
937    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
938    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
939    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
940    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
941    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
942    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
943    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
944    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
945
946    // FIXME: Do we need to handle scalar-to-vector here?
947    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
948
949    setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
950    setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
951    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
952    setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
953    setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
954
955    // i8 and i16 vectors are custom , because the source register and source
956    // source memory operand types are not the same width.  f32 vectors are
957    // custom since the immediate controlling the insert encodes additional
958    // information.
959    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
960    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
961    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
962    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
963
964    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
965    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
966    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
967    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
968
969    // FIXME: these should be Legal but thats only for the case where
970    // the index is constant.  For now custom expand to deal with that.
971    if (Subtarget->is64Bit()) {
972      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
973      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
974    }
975  }
976
977  if (Subtarget->hasSSE2()) {
978    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
979    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
980
981    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
982    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
983
984    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
985    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
986
987    if (Subtarget->hasAVX2()) {
988      setOperationAction(ISD::SRL,             MVT::v2i64, Legal);
989      setOperationAction(ISD::SRL,             MVT::v4i32, Legal);
990
991      setOperationAction(ISD::SHL,             MVT::v2i64, Legal);
992      setOperationAction(ISD::SHL,             MVT::v4i32, Legal);
993
994      setOperationAction(ISD::SRA,             MVT::v4i32, Legal);
995    } else {
996      setOperationAction(ISD::SRL,             MVT::v2i64, Custom);
997      setOperationAction(ISD::SRL,             MVT::v4i32, Custom);
998
999      setOperationAction(ISD::SHL,             MVT::v2i64, Custom);
1000      setOperationAction(ISD::SHL,             MVT::v4i32, Custom);
1001
1002      setOperationAction(ISD::SRA,             MVT::v4i32, Custom);
1003    }
1004  }
1005
1006  if (Subtarget->hasSSE42())
1007    setOperationAction(ISD::SETCC,             MVT::v2i64, Custom);
1008
1009  if (!TM.Options.UseSoftFloat && Subtarget->hasAVX()) {
1010    addRegisterClass(MVT::v32i8,  &X86::VR256RegClass);
1011    addRegisterClass(MVT::v16i16, &X86::VR256RegClass);
1012    addRegisterClass(MVT::v8i32,  &X86::VR256RegClass);
1013    addRegisterClass(MVT::v8f32,  &X86::VR256RegClass);
1014    addRegisterClass(MVT::v4i64,  &X86::VR256RegClass);
1015    addRegisterClass(MVT::v4f64,  &X86::VR256RegClass);
1016
1017    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
1018    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
1019    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
1020
1021    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
1022    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1023    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1024    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1025    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1026    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1027
1028    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1029    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1030    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1031    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1032    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1033    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1034
1035    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1036    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1037    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1038
1039    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4f64,  Custom);
1040    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i64,  Custom);
1041    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f32,  Custom);
1042    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i32,  Custom);
1043    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v32i8,  Custom);
1044    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i16, Custom);
1045
1046    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1047    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1048
1049    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1050    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1051
1052    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1053    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1054
1055    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1056    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1057    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1058    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1059
1060    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1061    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1062    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1063
1064    setOperationAction(ISD::VSELECT,           MVT::v4f64, Legal);
1065    setOperationAction(ISD::VSELECT,           MVT::v4i64, Legal);
1066    setOperationAction(ISD::VSELECT,           MVT::v8i32, Legal);
1067    setOperationAction(ISD::VSELECT,           MVT::v8f32, Legal);
1068
1069    if (Subtarget->hasAVX2()) {
1070      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1071      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1072      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1073      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1074
1075      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1076      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1077      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1078      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1079
1080      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1081      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1082      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1083      // Don't lower v32i8 because there is no 128-bit byte mul
1084
1085      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1086
1087      setOperationAction(ISD::SRL,             MVT::v4i64, Legal);
1088      setOperationAction(ISD::SRL,             MVT::v8i32, Legal);
1089
1090      setOperationAction(ISD::SHL,             MVT::v4i64, Legal);
1091      setOperationAction(ISD::SHL,             MVT::v8i32, Legal);
1092
1093      setOperationAction(ISD::SRA,             MVT::v8i32, Legal);
1094    } else {
1095      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1096      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1097      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1098      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1099
1100      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1101      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1102      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1103      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1104
1105      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1106      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1107      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1108      // Don't lower v32i8 because there is no 128-bit byte mul
1109
1110      setOperationAction(ISD::SRL,             MVT::v4i64, Custom);
1111      setOperationAction(ISD::SRL,             MVT::v8i32, Custom);
1112
1113      setOperationAction(ISD::SHL,             MVT::v4i64, Custom);
1114      setOperationAction(ISD::SHL,             MVT::v8i32, Custom);
1115
1116      setOperationAction(ISD::SRA,             MVT::v8i32, Custom);
1117    }
1118
1119    // Custom lower several nodes for 256-bit types.
1120    for (int i = MVT::FIRST_VECTOR_VALUETYPE;
1121             i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
1122      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1123      EVT VT = SVT;
1124
1125      // Extract subvector is special because the value type
1126      // (result) is 128-bit but the source is 256-bit wide.
1127      if (VT.is128BitVector())
1128        setOperationAction(ISD::EXTRACT_SUBVECTOR, SVT, Custom);
1129
1130      // Do not attempt to custom lower other non-256-bit vectors
1131      if (!VT.is256BitVector())
1132        continue;
1133
1134      setOperationAction(ISD::BUILD_VECTOR,       SVT, Custom);
1135      setOperationAction(ISD::VECTOR_SHUFFLE,     SVT, Custom);
1136      setOperationAction(ISD::INSERT_VECTOR_ELT,  SVT, Custom);
1137      setOperationAction(ISD::EXTRACT_VECTOR_ELT, SVT, Custom);
1138      setOperationAction(ISD::SCALAR_TO_VECTOR,   SVT, Custom);
1139      setOperationAction(ISD::INSERT_SUBVECTOR,   SVT, Custom);
1140    }
1141
1142    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1143    for (int i = MVT::v32i8; i != MVT::v4i64; ++i) {
1144      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1145      EVT VT = SVT;
1146
1147      // Do not attempt to promote non-256-bit vectors
1148      if (!VT.is256BitVector())
1149        continue;
1150
1151      setOperationAction(ISD::AND,    SVT, Promote);
1152      AddPromotedToType (ISD::AND,    SVT, MVT::v4i64);
1153      setOperationAction(ISD::OR,     SVT, Promote);
1154      AddPromotedToType (ISD::OR,     SVT, MVT::v4i64);
1155      setOperationAction(ISD::XOR,    SVT, Promote);
1156      AddPromotedToType (ISD::XOR,    SVT, MVT::v4i64);
1157      setOperationAction(ISD::LOAD,   SVT, Promote);
1158      AddPromotedToType (ISD::LOAD,   SVT, MVT::v4i64);
1159      setOperationAction(ISD::SELECT, SVT, Promote);
1160      AddPromotedToType (ISD::SELECT, SVT, MVT::v4i64);
1161    }
1162  }
1163
1164  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1165  // of this type with custom code.
1166  for (int VT = MVT::FIRST_VECTOR_VALUETYPE;
1167           VT != MVT::LAST_VECTOR_VALUETYPE; VT++) {
1168    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
1169                       Custom);
1170  }
1171
1172  // We want to custom lower some of our intrinsics.
1173  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1174
1175
1176  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1177  // handle type legalization for these operations here.
1178  //
1179  // FIXME: We really should do custom legalization for addition and
1180  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1181  // than generic legalization for 64-bit multiplication-with-overflow, though.
1182  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1183    // Add/Sub/Mul with overflow operations are custom lowered.
1184    MVT VT = IntVTs[i];
1185    setOperationAction(ISD::SADDO, VT, Custom);
1186    setOperationAction(ISD::UADDO, VT, Custom);
1187    setOperationAction(ISD::SSUBO, VT, Custom);
1188    setOperationAction(ISD::USUBO, VT, Custom);
1189    setOperationAction(ISD::SMULO, VT, Custom);
1190    setOperationAction(ISD::UMULO, VT, Custom);
1191  }
1192
1193  // There are no 8-bit 3-address imul/mul instructions
1194  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1195  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1196
1197  if (!Subtarget->is64Bit()) {
1198    // These libcalls are not available in 32-bit.
1199    setLibcallName(RTLIB::SHL_I128, 0);
1200    setLibcallName(RTLIB::SRL_I128, 0);
1201    setLibcallName(RTLIB::SRA_I128, 0);
1202  }
1203
1204  // We have target-specific dag combine patterns for the following nodes:
1205  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1206  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1207  setTargetDAGCombine(ISD::VSELECT);
1208  setTargetDAGCombine(ISD::SELECT);
1209  setTargetDAGCombine(ISD::SHL);
1210  setTargetDAGCombine(ISD::SRA);
1211  setTargetDAGCombine(ISD::SRL);
1212  setTargetDAGCombine(ISD::OR);
1213  setTargetDAGCombine(ISD::AND);
1214  setTargetDAGCombine(ISD::ADD);
1215  setTargetDAGCombine(ISD::FADD);
1216  setTargetDAGCombine(ISD::FSUB);
1217  setTargetDAGCombine(ISD::SUB);
1218  setTargetDAGCombine(ISD::LOAD);
1219  setTargetDAGCombine(ISD::STORE);
1220  setTargetDAGCombine(ISD::ZERO_EXTEND);
1221  setTargetDAGCombine(ISD::ANY_EXTEND);
1222  setTargetDAGCombine(ISD::SIGN_EXTEND);
1223  setTargetDAGCombine(ISD::TRUNCATE);
1224  setTargetDAGCombine(ISD::UINT_TO_FP);
1225  setTargetDAGCombine(ISD::SINT_TO_FP);
1226  setTargetDAGCombine(ISD::SETCC);
1227  setTargetDAGCombine(ISD::FP_TO_SINT);
1228  if (Subtarget->is64Bit())
1229    setTargetDAGCombine(ISD::MUL);
1230  if (Subtarget->hasBMI())
1231    setTargetDAGCombine(ISD::XOR);
1232
1233  computeRegisterProperties();
1234
1235  // On Darwin, -Os means optimize for size without hurting performance,
1236  // do not reduce the limit.
1237  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1238  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1239  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1240  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1241  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1242  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1243  setPrefLoopAlignment(4); // 2^4 bytes.
1244  benefitFromCodePlacementOpt = true;
1245
1246  // Predictable cmov don't hurt on atom because it's in-order.
1247  predictableSelectIsExpensive = !Subtarget->isAtom();
1248
1249  setPrefFunctionAlignment(4); // 2^4 bytes.
1250}
1251
1252
1253EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1254  if (!VT.isVector()) return MVT::i8;
1255  return VT.changeVectorElementTypeToInteger();
1256}
1257
1258
1259/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1260/// the desired ByVal argument alignment.
1261static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1262  if (MaxAlign == 16)
1263    return;
1264  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1265    if (VTy->getBitWidth() == 128)
1266      MaxAlign = 16;
1267  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1268    unsigned EltAlign = 0;
1269    getMaxByValAlign(ATy->getElementType(), EltAlign);
1270    if (EltAlign > MaxAlign)
1271      MaxAlign = EltAlign;
1272  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1273    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1274      unsigned EltAlign = 0;
1275      getMaxByValAlign(STy->getElementType(i), EltAlign);
1276      if (EltAlign > MaxAlign)
1277        MaxAlign = EltAlign;
1278      if (MaxAlign == 16)
1279        break;
1280    }
1281  }
1282}
1283
1284/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1285/// function arguments in the caller parameter area. For X86, aggregates
1286/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1287/// are at 4-byte boundaries.
1288unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1289  if (Subtarget->is64Bit()) {
1290    // Max of 8 and alignment of type.
1291    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1292    if (TyAlign > 8)
1293      return TyAlign;
1294    return 8;
1295  }
1296
1297  unsigned Align = 4;
1298  if (Subtarget->hasSSE1())
1299    getMaxByValAlign(Ty, Align);
1300  return Align;
1301}
1302
1303/// getOptimalMemOpType - Returns the target specific optimal type for load
1304/// and store operations as a result of memset, memcpy, and memmove
1305/// lowering. If DstAlign is zero that means it's safe to destination
1306/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1307/// means there isn't a need to check it against alignment requirement,
1308/// probably because the source does not need to be loaded. If
1309/// 'IsZeroVal' is true, that means it's safe to return a
1310/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1311/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1312/// constant so it does not need to be loaded.
1313/// It returns EVT::Other if the type should be determined using generic
1314/// target-independent logic.
1315EVT
1316X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1317                                       unsigned DstAlign, unsigned SrcAlign,
1318                                       bool IsZeroVal,
1319                                       bool MemcpyStrSrc,
1320                                       MachineFunction &MF) const {
1321  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1322  // linux.  This is because the stack realignment code can't handle certain
1323  // cases like PR2962.  This should be removed when PR2962 is fixed.
1324  const Function *F = MF.getFunction();
1325  if (IsZeroVal &&
1326      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1327    if (Size >= 16 &&
1328        (Subtarget->isUnalignedMemAccessFast() ||
1329         ((DstAlign == 0 || DstAlign >= 16) &&
1330          (SrcAlign == 0 || SrcAlign >= 16))) &&
1331        Subtarget->getStackAlignment() >= 16) {
1332      if (Subtarget->getStackAlignment() >= 32) {
1333        if (Subtarget->hasAVX2())
1334          return MVT::v8i32;
1335        if (Subtarget->hasAVX())
1336          return MVT::v8f32;
1337      }
1338      if (Subtarget->hasSSE2())
1339        return MVT::v4i32;
1340      if (Subtarget->hasSSE1())
1341        return MVT::v4f32;
1342    } else if (!MemcpyStrSrc && Size >= 8 &&
1343               !Subtarget->is64Bit() &&
1344               Subtarget->getStackAlignment() >= 8 &&
1345               Subtarget->hasSSE2()) {
1346      // Do not use f64 to lower memcpy if source is string constant. It's
1347      // better to use i32 to avoid the loads.
1348      return MVT::f64;
1349    }
1350  }
1351  if (Subtarget->is64Bit() && Size >= 8)
1352    return MVT::i64;
1353  return MVT::i32;
1354}
1355
1356/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1357/// current function.  The returned value is a member of the
1358/// MachineJumpTableInfo::JTEntryKind enum.
1359unsigned X86TargetLowering::getJumpTableEncoding() const {
1360  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1361  // symbol.
1362  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1363      Subtarget->isPICStyleGOT())
1364    return MachineJumpTableInfo::EK_Custom32;
1365
1366  // Otherwise, use the normal jump table encoding heuristics.
1367  return TargetLowering::getJumpTableEncoding();
1368}
1369
1370const MCExpr *
1371X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1372                                             const MachineBasicBlock *MBB,
1373                                             unsigned uid,MCContext &Ctx) const{
1374  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1375         Subtarget->isPICStyleGOT());
1376  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1377  // entries.
1378  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1379                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1380}
1381
1382/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1383/// jumptable.
1384SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1385                                                    SelectionDAG &DAG) const {
1386  if (!Subtarget->is64Bit())
1387    // This doesn't have DebugLoc associated with it, but is not really the
1388    // same as a Register.
1389    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1390  return Table;
1391}
1392
1393/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1394/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1395/// MCExpr.
1396const MCExpr *X86TargetLowering::
1397getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1398                             MCContext &Ctx) const {
1399  // X86-64 uses RIP relative addressing based on the jump table label.
1400  if (Subtarget->isPICStyleRIPRel())
1401    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1402
1403  // Otherwise, the reference is relative to the PIC base.
1404  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1405}
1406
1407// FIXME: Why this routine is here? Move to RegInfo!
1408std::pair<const TargetRegisterClass*, uint8_t>
1409X86TargetLowering::findRepresentativeClass(EVT VT) const{
1410  const TargetRegisterClass *RRC = 0;
1411  uint8_t Cost = 1;
1412  switch (VT.getSimpleVT().SimpleTy) {
1413  default:
1414    return TargetLowering::findRepresentativeClass(VT);
1415  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1416    RRC = Subtarget->is64Bit() ?
1417      (const TargetRegisterClass*)&X86::GR64RegClass :
1418      (const TargetRegisterClass*)&X86::GR32RegClass;
1419    break;
1420  case MVT::x86mmx:
1421    RRC = &X86::VR64RegClass;
1422    break;
1423  case MVT::f32: case MVT::f64:
1424  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1425  case MVT::v4f32: case MVT::v2f64:
1426  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1427  case MVT::v4f64:
1428    RRC = &X86::VR128RegClass;
1429    break;
1430  }
1431  return std::make_pair(RRC, Cost);
1432}
1433
1434bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1435                                               unsigned &Offset) const {
1436  if (!Subtarget->isTargetLinux())
1437    return false;
1438
1439  if (Subtarget->is64Bit()) {
1440    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1441    Offset = 0x28;
1442    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1443      AddressSpace = 256;
1444    else
1445      AddressSpace = 257;
1446  } else {
1447    // %gs:0x14 on i386
1448    Offset = 0x14;
1449    AddressSpace = 256;
1450  }
1451  return true;
1452}
1453
1454
1455//===----------------------------------------------------------------------===//
1456//               Return Value Calling Convention Implementation
1457//===----------------------------------------------------------------------===//
1458
1459#include "X86GenCallingConv.inc"
1460
1461bool
1462X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1463                                  MachineFunction &MF, bool isVarArg,
1464                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1465                        LLVMContext &Context) const {
1466  SmallVector<CCValAssign, 16> RVLocs;
1467  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1468                 RVLocs, Context);
1469  return CCInfo.CheckReturn(Outs, RetCC_X86);
1470}
1471
1472SDValue
1473X86TargetLowering::LowerReturn(SDValue Chain,
1474                               CallingConv::ID CallConv, bool isVarArg,
1475                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1476                               const SmallVectorImpl<SDValue> &OutVals,
1477                               DebugLoc dl, SelectionDAG &DAG) const {
1478  MachineFunction &MF = DAG.getMachineFunction();
1479  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1480
1481  SmallVector<CCValAssign, 16> RVLocs;
1482  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1483                 RVLocs, *DAG.getContext());
1484  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1485
1486  // Add the regs to the liveout set for the function.
1487  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1488  for (unsigned i = 0; i != RVLocs.size(); ++i)
1489    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1490      MRI.addLiveOut(RVLocs[i].getLocReg());
1491
1492  SDValue Flag;
1493
1494  SmallVector<SDValue, 6> RetOps;
1495  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1496  // Operand #1 = Bytes To Pop
1497  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1498                   MVT::i16));
1499
1500  // Copy the result values into the output registers.
1501  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1502    CCValAssign &VA = RVLocs[i];
1503    assert(VA.isRegLoc() && "Can only return in registers!");
1504    SDValue ValToCopy = OutVals[i];
1505    EVT ValVT = ValToCopy.getValueType();
1506
1507    // If this is x86-64, and we disabled SSE, we can't return FP values,
1508    // or SSE or MMX vectors.
1509    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1510         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1511          (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1512      report_fatal_error("SSE register return with SSE disabled");
1513    }
1514    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1515    // llvm-gcc has never done it right and no one has noticed, so this
1516    // should be OK for now.
1517    if (ValVT == MVT::f64 &&
1518        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1519      report_fatal_error("SSE2 register return with SSE2 disabled");
1520
1521    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1522    // the RET instruction and handled by the FP Stackifier.
1523    if (VA.getLocReg() == X86::ST0 ||
1524        VA.getLocReg() == X86::ST1) {
1525      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1526      // change the value to the FP stack register class.
1527      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1528        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1529      RetOps.push_back(ValToCopy);
1530      // Don't emit a copytoreg.
1531      continue;
1532    }
1533
1534    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1535    // which is returned in RAX / RDX.
1536    if (Subtarget->is64Bit()) {
1537      if (ValVT == MVT::x86mmx) {
1538        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1539          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1540          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1541                                  ValToCopy);
1542          // If we don't have SSE2 available, convert to v4f32 so the generated
1543          // register is legal.
1544          if (!Subtarget->hasSSE2())
1545            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1546        }
1547      }
1548    }
1549
1550    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1551    Flag = Chain.getValue(1);
1552  }
1553
1554  // The x86-64 ABI for returning structs by value requires that we copy
1555  // the sret argument into %rax for the return. We saved the argument into
1556  // a virtual register in the entry block, so now we copy the value out
1557  // and into %rax.
1558  if (Subtarget->is64Bit() &&
1559      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1560    MachineFunction &MF = DAG.getMachineFunction();
1561    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1562    unsigned Reg = FuncInfo->getSRetReturnReg();
1563    assert(Reg &&
1564           "SRetReturnReg should have been set in LowerFormalArguments().");
1565    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1566
1567    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1568    Flag = Chain.getValue(1);
1569
1570    // RAX now acts like a return value.
1571    MRI.addLiveOut(X86::RAX);
1572  }
1573
1574  RetOps[0] = Chain;  // Update chain.
1575
1576  // Add the flag if we have it.
1577  if (Flag.getNode())
1578    RetOps.push_back(Flag);
1579
1580  return DAG.getNode(X86ISD::RET_FLAG, dl,
1581                     MVT::Other, &RetOps[0], RetOps.size());
1582}
1583
1584bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
1585  if (N->getNumValues() != 1)
1586    return false;
1587  if (!N->hasNUsesOfValue(1, 0))
1588    return false;
1589
1590  SDValue TCChain = Chain;
1591  SDNode *Copy = *N->use_begin();
1592  if (Copy->getOpcode() == ISD::CopyToReg) {
1593    // If the copy has a glue operand, we conservatively assume it isn't safe to
1594    // perform a tail call.
1595    if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
1596      return false;
1597    TCChain = Copy->getOperand(0);
1598  } else if (Copy->getOpcode() != ISD::FP_EXTEND)
1599    return false;
1600
1601  bool HasRet = false;
1602  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1603       UI != UE; ++UI) {
1604    if (UI->getOpcode() != X86ISD::RET_FLAG)
1605      return false;
1606    HasRet = true;
1607  }
1608
1609  if (!HasRet)
1610    return false;
1611
1612  Chain = TCChain;
1613  return true;
1614}
1615
1616EVT
1617X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1618                                            ISD::NodeType ExtendKind) const {
1619  MVT ReturnMVT;
1620  // TODO: Is this also valid on 32-bit?
1621  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1622    ReturnMVT = MVT::i8;
1623  else
1624    ReturnMVT = MVT::i32;
1625
1626  EVT MinVT = getRegisterType(Context, ReturnMVT);
1627  return VT.bitsLT(MinVT) ? MinVT : VT;
1628}
1629
1630/// LowerCallResult - Lower the result values of a call into the
1631/// appropriate copies out of appropriate physical registers.
1632///
1633SDValue
1634X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1635                                   CallingConv::ID CallConv, bool isVarArg,
1636                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1637                                   DebugLoc dl, SelectionDAG &DAG,
1638                                   SmallVectorImpl<SDValue> &InVals) const {
1639
1640  // Assign locations to each value returned by this call.
1641  SmallVector<CCValAssign, 16> RVLocs;
1642  bool Is64Bit = Subtarget->is64Bit();
1643  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1644                 getTargetMachine(), RVLocs, *DAG.getContext());
1645  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1646
1647  // Copy all of the result registers out of their specified physreg.
1648  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1649    CCValAssign &VA = RVLocs[i];
1650    EVT CopyVT = VA.getValVT();
1651
1652    // If this is x86-64, and we disabled SSE, we can't return FP values
1653    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1654        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1655      report_fatal_error("SSE register return with SSE disabled");
1656    }
1657
1658    SDValue Val;
1659
1660    // If this is a call to a function that returns an fp value on the floating
1661    // point stack, we must guarantee the the value is popped from the stack, so
1662    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1663    // if the return value is not used. We use the FpPOP_RETVAL instruction
1664    // instead.
1665    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1666      // If we prefer to use the value in xmm registers, copy it out as f80 and
1667      // use a truncate to move it from fp stack reg to xmm reg.
1668      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1669      SDValue Ops[] = { Chain, InFlag };
1670      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1671                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1672      Val = Chain.getValue(0);
1673
1674      // Round the f80 to the right size, which also moves it to the appropriate
1675      // xmm register.
1676      if (CopyVT != VA.getValVT())
1677        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1678                          // This truncation won't change the value.
1679                          DAG.getIntPtrConstant(1));
1680    } else {
1681      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1682                                 CopyVT, InFlag).getValue(1);
1683      Val = Chain.getValue(0);
1684    }
1685    InFlag = Chain.getValue(2);
1686    InVals.push_back(Val);
1687  }
1688
1689  return Chain;
1690}
1691
1692
1693//===----------------------------------------------------------------------===//
1694//                C & StdCall & Fast Calling Convention implementation
1695//===----------------------------------------------------------------------===//
1696//  StdCall calling convention seems to be standard for many Windows' API
1697//  routines and around. It differs from C calling convention just a little:
1698//  callee should clean up the stack, not caller. Symbols should be also
1699//  decorated in some fancy way :) It doesn't support any vector arguments.
1700//  For info on fast calling convention see Fast Calling Convention (tail call)
1701//  implementation LowerX86_32FastCCCallTo.
1702
1703/// CallIsStructReturn - Determines whether a call uses struct return
1704/// semantics.
1705static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1706  if (Outs.empty())
1707    return false;
1708
1709  return Outs[0].Flags.isSRet();
1710}
1711
1712/// ArgsAreStructReturn - Determines whether a function uses struct
1713/// return semantics.
1714static bool
1715ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1716  if (Ins.empty())
1717    return false;
1718
1719  return Ins[0].Flags.isSRet();
1720}
1721
1722/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1723/// by "Src" to address "Dst" with size and alignment information specified by
1724/// the specific parameter attribute. The copy will be passed as a byval
1725/// function parameter.
1726static SDValue
1727CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1728                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1729                          DebugLoc dl) {
1730  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1731
1732  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1733                       /*isVolatile*/false, /*AlwaysInline=*/true,
1734                       MachinePointerInfo(), MachinePointerInfo());
1735}
1736
1737/// IsTailCallConvention - Return true if the calling convention is one that
1738/// supports tail call optimization.
1739static bool IsTailCallConvention(CallingConv::ID CC) {
1740  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1741}
1742
1743bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1744  if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
1745    return false;
1746
1747  CallSite CS(CI);
1748  CallingConv::ID CalleeCC = CS.getCallingConv();
1749  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1750    return false;
1751
1752  return true;
1753}
1754
1755/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1756/// a tailcall target by changing its ABI.
1757static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
1758                                   bool GuaranteedTailCallOpt) {
1759  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1760}
1761
1762SDValue
1763X86TargetLowering::LowerMemArgument(SDValue Chain,
1764                                    CallingConv::ID CallConv,
1765                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1766                                    DebugLoc dl, SelectionDAG &DAG,
1767                                    const CCValAssign &VA,
1768                                    MachineFrameInfo *MFI,
1769                                    unsigned i) const {
1770  // Create the nodes corresponding to a load from this parameter slot.
1771  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1772  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
1773                              getTargetMachine().Options.GuaranteedTailCallOpt);
1774  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1775  EVT ValVT;
1776
1777  // If value is passed by pointer we have address passed instead of the value
1778  // itself.
1779  if (VA.getLocInfo() == CCValAssign::Indirect)
1780    ValVT = VA.getLocVT();
1781  else
1782    ValVT = VA.getValVT();
1783
1784  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1785  // changed with more analysis.
1786  // In case of tail call optimization mark all arguments mutable. Since they
1787  // could be overwritten by lowering of arguments in case of a tail call.
1788  if (Flags.isByVal()) {
1789    unsigned Bytes = Flags.getByValSize();
1790    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1791    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1792    return DAG.getFrameIndex(FI, getPointerTy());
1793  } else {
1794    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1795                                    VA.getLocMemOffset(), isImmutable);
1796    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1797    return DAG.getLoad(ValVT, dl, Chain, FIN,
1798                       MachinePointerInfo::getFixedStack(FI),
1799                       false, false, false, 0);
1800  }
1801}
1802
1803SDValue
1804X86TargetLowering::LowerFormalArguments(SDValue Chain,
1805                                        CallingConv::ID CallConv,
1806                                        bool isVarArg,
1807                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1808                                        DebugLoc dl,
1809                                        SelectionDAG &DAG,
1810                                        SmallVectorImpl<SDValue> &InVals)
1811                                          const {
1812  MachineFunction &MF = DAG.getMachineFunction();
1813  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1814
1815  const Function* Fn = MF.getFunction();
1816  if (Fn->hasExternalLinkage() &&
1817      Subtarget->isTargetCygMing() &&
1818      Fn->getName() == "main")
1819    FuncInfo->setForceFramePointer(true);
1820
1821  MachineFrameInfo *MFI = MF.getFrameInfo();
1822  bool Is64Bit = Subtarget->is64Bit();
1823  bool IsWindows = Subtarget->isTargetWindows();
1824  bool IsWin64 = Subtarget->isTargetWin64();
1825
1826  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1827         "Var args not supported with calling convention fastcc or ghc");
1828
1829  // Assign locations to all of the incoming arguments.
1830  SmallVector<CCValAssign, 16> ArgLocs;
1831  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1832                 ArgLocs, *DAG.getContext());
1833
1834  // Allocate shadow area for Win64
1835  if (IsWin64) {
1836    CCInfo.AllocateStack(32, 8);
1837  }
1838
1839  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1840
1841  unsigned LastVal = ~0U;
1842  SDValue ArgValue;
1843  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1844    CCValAssign &VA = ArgLocs[i];
1845    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1846    // places.
1847    assert(VA.getValNo() != LastVal &&
1848           "Don't support value assigned to multiple locs yet");
1849    (void)LastVal;
1850    LastVal = VA.getValNo();
1851
1852    if (VA.isRegLoc()) {
1853      EVT RegVT = VA.getLocVT();
1854      const TargetRegisterClass *RC;
1855      if (RegVT == MVT::i32)
1856        RC = &X86::GR32RegClass;
1857      else if (Is64Bit && RegVT == MVT::i64)
1858        RC = &X86::GR64RegClass;
1859      else if (RegVT == MVT::f32)
1860        RC = &X86::FR32RegClass;
1861      else if (RegVT == MVT::f64)
1862        RC = &X86::FR64RegClass;
1863      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1864        RC = &X86::VR256RegClass;
1865      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1866        RC = &X86::VR128RegClass;
1867      else if (RegVT == MVT::x86mmx)
1868        RC = &X86::VR64RegClass;
1869      else
1870        llvm_unreachable("Unknown argument type!");
1871
1872      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1873      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1874
1875      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1876      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1877      // right size.
1878      if (VA.getLocInfo() == CCValAssign::SExt)
1879        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1880                               DAG.getValueType(VA.getValVT()));
1881      else if (VA.getLocInfo() == CCValAssign::ZExt)
1882        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1883                               DAG.getValueType(VA.getValVT()));
1884      else if (VA.getLocInfo() == CCValAssign::BCvt)
1885        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1886
1887      if (VA.isExtInLoc()) {
1888        // Handle MMX values passed in XMM regs.
1889        if (RegVT.isVector()) {
1890          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1891                                 ArgValue);
1892        } else
1893          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1894      }
1895    } else {
1896      assert(VA.isMemLoc());
1897      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1898    }
1899
1900    // If value is passed via pointer - do a load.
1901    if (VA.getLocInfo() == CCValAssign::Indirect)
1902      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1903                             MachinePointerInfo(), false, false, false, 0);
1904
1905    InVals.push_back(ArgValue);
1906  }
1907
1908  // The x86-64 ABI for returning structs by value requires that we copy
1909  // the sret argument into %rax for the return. Save the argument into
1910  // a virtual register so that we can access it from the return points.
1911  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1912    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1913    unsigned Reg = FuncInfo->getSRetReturnReg();
1914    if (!Reg) {
1915      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1916      FuncInfo->setSRetReturnReg(Reg);
1917    }
1918    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1919    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1920  }
1921
1922  unsigned StackSize = CCInfo.getNextStackOffset();
1923  // Align stack specially for tail calls.
1924  if (FuncIsMadeTailCallSafe(CallConv,
1925                             MF.getTarget().Options.GuaranteedTailCallOpt))
1926    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1927
1928  // If the function takes variable number of arguments, make a frame index for
1929  // the start of the first vararg value... for expansion of llvm.va_start.
1930  if (isVarArg) {
1931    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1932                    CallConv != CallingConv::X86_ThisCall)) {
1933      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1934    }
1935    if (Is64Bit) {
1936      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1937
1938      // FIXME: We should really autogenerate these arrays
1939      static const uint16_t GPR64ArgRegsWin64[] = {
1940        X86::RCX, X86::RDX, X86::R8,  X86::R9
1941      };
1942      static const uint16_t GPR64ArgRegs64Bit[] = {
1943        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1944      };
1945      static const uint16_t XMMArgRegs64Bit[] = {
1946        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1947        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1948      };
1949      const uint16_t *GPR64ArgRegs;
1950      unsigned NumXMMRegs = 0;
1951
1952      if (IsWin64) {
1953        // The XMM registers which might contain var arg parameters are shadowed
1954        // in their paired GPR.  So we only need to save the GPR to their home
1955        // slots.
1956        TotalNumIntRegs = 4;
1957        GPR64ArgRegs = GPR64ArgRegsWin64;
1958      } else {
1959        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1960        GPR64ArgRegs = GPR64ArgRegs64Bit;
1961
1962        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
1963                                                TotalNumXMMRegs);
1964      }
1965      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1966                                                       TotalNumIntRegs);
1967
1968      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1969      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1970             "SSE register cannot be used when SSE is disabled!");
1971      assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
1972               NoImplicitFloatOps) &&
1973             "SSE register cannot be used when SSE is disabled!");
1974      if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
1975          !Subtarget->hasSSE1())
1976        // Kernel mode asks for SSE to be disabled, so don't push them
1977        // on the stack.
1978        TotalNumXMMRegs = 0;
1979
1980      if (IsWin64) {
1981        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1982        // Get to the caller-allocated home save location.  Add 8 to account
1983        // for the return address.
1984        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1985        FuncInfo->setRegSaveFrameIndex(
1986          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1987        // Fixup to set vararg frame on shadow area (4 x i64).
1988        if (NumIntRegs < 4)
1989          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1990      } else {
1991        // For X86-64, if there are vararg parameters that are passed via
1992        // registers, then we must store them to their spots on the stack so
1993        // they may be loaded by deferencing the result of va_next.
1994        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1995        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1996        FuncInfo->setRegSaveFrameIndex(
1997          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1998                               false));
1999      }
2000
2001      // Store the integer parameter registers.
2002      SmallVector<SDValue, 8> MemOps;
2003      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
2004                                        getPointerTy());
2005      unsigned Offset = FuncInfo->getVarArgsGPOffset();
2006      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
2007        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
2008                                  DAG.getIntPtrConstant(Offset));
2009        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
2010                                     &X86::GR64RegClass);
2011        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2012        SDValue Store =
2013          DAG.getStore(Val.getValue(1), dl, Val, FIN,
2014                       MachinePointerInfo::getFixedStack(
2015                         FuncInfo->getRegSaveFrameIndex(), Offset),
2016                       false, false, 0);
2017        MemOps.push_back(Store);
2018        Offset += 8;
2019      }
2020
2021      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
2022        // Now store the XMM (fp + vector) parameter registers.
2023        SmallVector<SDValue, 11> SaveXMMOps;
2024        SaveXMMOps.push_back(Chain);
2025
2026        unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
2027        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
2028        SaveXMMOps.push_back(ALVal);
2029
2030        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2031                               FuncInfo->getRegSaveFrameIndex()));
2032        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2033                               FuncInfo->getVarArgsFPOffset()));
2034
2035        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
2036          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
2037                                       &X86::VR128RegClass);
2038          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
2039          SaveXMMOps.push_back(Val);
2040        }
2041        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2042                                     MVT::Other,
2043                                     &SaveXMMOps[0], SaveXMMOps.size()));
2044      }
2045
2046      if (!MemOps.empty())
2047        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2048                            &MemOps[0], MemOps.size());
2049    }
2050  }
2051
2052  // Some CCs need callee pop.
2053  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2054                       MF.getTarget().Options.GuaranteedTailCallOpt)) {
2055    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2056  } else {
2057    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2058    // If this is an sret function, the return should pop the hidden pointer.
2059    if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2060        ArgsAreStructReturn(Ins))
2061      FuncInfo->setBytesToPopOnReturn(4);
2062  }
2063
2064  if (!Is64Bit) {
2065    // RegSaveFrameIndex is X86-64 only.
2066    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2067    if (CallConv == CallingConv::X86_FastCall ||
2068        CallConv == CallingConv::X86_ThisCall)
2069      // fastcc functions can't have varargs.
2070      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2071  }
2072
2073  FuncInfo->setArgumentStackSize(StackSize);
2074
2075  return Chain;
2076}
2077
2078SDValue
2079X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2080                                    SDValue StackPtr, SDValue Arg,
2081                                    DebugLoc dl, SelectionDAG &DAG,
2082                                    const CCValAssign &VA,
2083                                    ISD::ArgFlagsTy Flags) const {
2084  unsigned LocMemOffset = VA.getLocMemOffset();
2085  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2086  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2087  if (Flags.isByVal())
2088    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2089
2090  return DAG.getStore(Chain, dl, Arg, PtrOff,
2091                      MachinePointerInfo::getStack(LocMemOffset),
2092                      false, false, 0);
2093}
2094
2095/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2096/// optimization is performed and it is required.
2097SDValue
2098X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2099                                           SDValue &OutRetAddr, SDValue Chain,
2100                                           bool IsTailCall, bool Is64Bit,
2101                                           int FPDiff, DebugLoc dl) const {
2102  // Adjust the Return address stack slot.
2103  EVT VT = getPointerTy();
2104  OutRetAddr = getReturnAddressFrameIndex(DAG);
2105
2106  // Load the "old" Return address.
2107  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2108                           false, false, false, 0);
2109  return SDValue(OutRetAddr.getNode(), 1);
2110}
2111
2112/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2113/// optimization is performed and it is required (FPDiff!=0).
2114static SDValue
2115EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2116                         SDValue Chain, SDValue RetAddrFrIdx,
2117                         bool Is64Bit, int FPDiff, DebugLoc dl) {
2118  // Store the return address to the appropriate stack slot.
2119  if (!FPDiff) return Chain;
2120  // Calculate the new stack slot for the return address.
2121  int SlotSize = Is64Bit ? 8 : 4;
2122  int NewReturnAddrFI =
2123    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2124  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2125  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
2126  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2127                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2128                       false, false, 0);
2129  return Chain;
2130}
2131
2132SDValue
2133X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2134                             CallingConv::ID CallConv, bool isVarArg,
2135                             bool doesNotRet, bool &isTailCall,
2136                             const SmallVectorImpl<ISD::OutputArg> &Outs,
2137                             const SmallVectorImpl<SDValue> &OutVals,
2138                             const SmallVectorImpl<ISD::InputArg> &Ins,
2139                             DebugLoc dl, SelectionDAG &DAG,
2140                             SmallVectorImpl<SDValue> &InVals) const {
2141  MachineFunction &MF = DAG.getMachineFunction();
2142  bool Is64Bit        = Subtarget->is64Bit();
2143  bool IsWin64        = Subtarget->isTargetWin64();
2144  bool IsWindows      = Subtarget->isTargetWindows();
2145  bool IsStructRet    = CallIsStructReturn(Outs);
2146  bool IsSibcall      = false;
2147
2148  if (MF.getTarget().Options.DisableTailCalls)
2149    isTailCall = false;
2150
2151  if (isTailCall) {
2152    // Check if it's really possible to do a tail call.
2153    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2154                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
2155                                                   Outs, OutVals, Ins, DAG);
2156
2157    // Sibcalls are automatically detected tailcalls which do not require
2158    // ABI changes.
2159    if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2160      IsSibcall = true;
2161
2162    if (isTailCall)
2163      ++NumTailCalls;
2164  }
2165
2166  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2167         "Var args not supported with calling convention fastcc or ghc");
2168
2169  // Analyze operands of the call, assigning locations to each operand.
2170  SmallVector<CCValAssign, 16> ArgLocs;
2171  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2172                 ArgLocs, *DAG.getContext());
2173
2174  // Allocate shadow area for Win64
2175  if (IsWin64) {
2176    CCInfo.AllocateStack(32, 8);
2177  }
2178
2179  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2180
2181  // Get a count of how many bytes are to be pushed on the stack.
2182  unsigned NumBytes = CCInfo.getNextStackOffset();
2183  if (IsSibcall)
2184    // This is a sibcall. The memory operands are available in caller's
2185    // own caller's stack.
2186    NumBytes = 0;
2187  else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
2188           IsTailCallConvention(CallConv))
2189    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2190
2191  int FPDiff = 0;
2192  if (isTailCall && !IsSibcall) {
2193    // Lower arguments at fp - stackoffset + fpdiff.
2194    unsigned NumBytesCallerPushed =
2195      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2196    FPDiff = NumBytesCallerPushed - NumBytes;
2197
2198    // Set the delta of movement of the returnaddr stackslot.
2199    // But only set if delta is greater than previous delta.
2200    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2201      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2202  }
2203
2204  if (!IsSibcall)
2205    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2206
2207  SDValue RetAddrFrIdx;
2208  // Load return address for tail calls.
2209  if (isTailCall && FPDiff)
2210    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2211                                    Is64Bit, FPDiff, dl);
2212
2213  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2214  SmallVector<SDValue, 8> MemOpChains;
2215  SDValue StackPtr;
2216
2217  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2218  // of tail call optimization arguments are handle later.
2219  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2220    CCValAssign &VA = ArgLocs[i];
2221    EVT RegVT = VA.getLocVT();
2222    SDValue Arg = OutVals[i];
2223    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2224    bool isByVal = Flags.isByVal();
2225
2226    // Promote the value if needed.
2227    switch (VA.getLocInfo()) {
2228    default: llvm_unreachable("Unknown loc info!");
2229    case CCValAssign::Full: break;
2230    case CCValAssign::SExt:
2231      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2232      break;
2233    case CCValAssign::ZExt:
2234      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2235      break;
2236    case CCValAssign::AExt:
2237      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2238        // Special case: passing MMX values in XMM registers.
2239        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2240        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2241        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2242      } else
2243        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2244      break;
2245    case CCValAssign::BCvt:
2246      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2247      break;
2248    case CCValAssign::Indirect: {
2249      // Store the argument.
2250      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2251      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2252      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2253                           MachinePointerInfo::getFixedStack(FI),
2254                           false, false, 0);
2255      Arg = SpillSlot;
2256      break;
2257    }
2258    }
2259
2260    if (VA.isRegLoc()) {
2261      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2262      if (isVarArg && IsWin64) {
2263        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2264        // shadow reg if callee is a varargs function.
2265        unsigned ShadowReg = 0;
2266        switch (VA.getLocReg()) {
2267        case X86::XMM0: ShadowReg = X86::RCX; break;
2268        case X86::XMM1: ShadowReg = X86::RDX; break;
2269        case X86::XMM2: ShadowReg = X86::R8; break;
2270        case X86::XMM3: ShadowReg = X86::R9; break;
2271        }
2272        if (ShadowReg)
2273          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2274      }
2275    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2276      assert(VA.isMemLoc());
2277      if (StackPtr.getNode() == 0)
2278        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2279      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2280                                             dl, DAG, VA, Flags));
2281    }
2282  }
2283
2284  if (!MemOpChains.empty())
2285    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2286                        &MemOpChains[0], MemOpChains.size());
2287
2288  // Build a sequence of copy-to-reg nodes chained together with token chain
2289  // and flag operands which copy the outgoing args into registers.
2290  SDValue InFlag;
2291  // Tail call byval lowering might overwrite argument registers so in case of
2292  // tail call optimization the copies to registers are lowered later.
2293  if (!isTailCall)
2294    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2295      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2296                               RegsToPass[i].second, InFlag);
2297      InFlag = Chain.getValue(1);
2298    }
2299
2300  if (Subtarget->isPICStyleGOT()) {
2301    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2302    // GOT pointer.
2303    if (!isTailCall) {
2304      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2305                               DAG.getNode(X86ISD::GlobalBaseReg,
2306                                           DebugLoc(), getPointerTy()),
2307                               InFlag);
2308      InFlag = Chain.getValue(1);
2309    } else {
2310      // If we are tail calling and generating PIC/GOT style code load the
2311      // address of the callee into ECX. The value in ecx is used as target of
2312      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2313      // for tail calls on PIC/GOT architectures. Normally we would just put the
2314      // address of GOT into ebx and then call target@PLT. But for tail calls
2315      // ebx would be restored (since ebx is callee saved) before jumping to the
2316      // target@PLT.
2317
2318      // Note: The actual moving to ECX is done further down.
2319      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2320      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2321          !G->getGlobal()->hasProtectedVisibility())
2322        Callee = LowerGlobalAddress(Callee, DAG);
2323      else if (isa<ExternalSymbolSDNode>(Callee))
2324        Callee = LowerExternalSymbol(Callee, DAG);
2325    }
2326  }
2327
2328  if (Is64Bit && isVarArg && !IsWin64) {
2329    // From AMD64 ABI document:
2330    // For calls that may call functions that use varargs or stdargs
2331    // (prototype-less calls or calls to functions containing ellipsis (...) in
2332    // the declaration) %al is used as hidden argument to specify the number
2333    // of SSE registers used. The contents of %al do not need to match exactly
2334    // the number of registers, but must be an ubound on the number of SSE
2335    // registers used and is in the range 0 - 8 inclusive.
2336
2337    // Count the number of XMM registers allocated.
2338    static const uint16_t XMMArgRegs[] = {
2339      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2340      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2341    };
2342    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2343    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2344           && "SSE registers cannot be used when SSE is disabled");
2345
2346    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2347                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2348    InFlag = Chain.getValue(1);
2349  }
2350
2351
2352  // For tail calls lower the arguments to the 'real' stack slot.
2353  if (isTailCall) {
2354    // Force all the incoming stack arguments to be loaded from the stack
2355    // before any new outgoing arguments are stored to the stack, because the
2356    // outgoing stack slots may alias the incoming argument stack slots, and
2357    // the alias isn't otherwise explicit. This is slightly more conservative
2358    // than necessary, because it means that each store effectively depends
2359    // on every argument instead of just those arguments it would clobber.
2360    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2361
2362    SmallVector<SDValue, 8> MemOpChains2;
2363    SDValue FIN;
2364    int FI = 0;
2365    // Do not flag preceding copytoreg stuff together with the following stuff.
2366    InFlag = SDValue();
2367    if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2368      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2369        CCValAssign &VA = ArgLocs[i];
2370        if (VA.isRegLoc())
2371          continue;
2372        assert(VA.isMemLoc());
2373        SDValue Arg = OutVals[i];
2374        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2375        // Create frame index.
2376        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2377        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2378        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2379        FIN = DAG.getFrameIndex(FI, getPointerTy());
2380
2381        if (Flags.isByVal()) {
2382          // Copy relative to framepointer.
2383          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2384          if (StackPtr.getNode() == 0)
2385            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2386                                          getPointerTy());
2387          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2388
2389          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2390                                                           ArgChain,
2391                                                           Flags, DAG, dl));
2392        } else {
2393          // Store relative to framepointer.
2394          MemOpChains2.push_back(
2395            DAG.getStore(ArgChain, dl, Arg, FIN,
2396                         MachinePointerInfo::getFixedStack(FI),
2397                         false, false, 0));
2398        }
2399      }
2400    }
2401
2402    if (!MemOpChains2.empty())
2403      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2404                          &MemOpChains2[0], MemOpChains2.size());
2405
2406    // Copy arguments to their registers.
2407    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2408      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2409                               RegsToPass[i].second, InFlag);
2410      InFlag = Chain.getValue(1);
2411    }
2412    InFlag =SDValue();
2413
2414    // Store the return address to the appropriate stack slot.
2415    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2416                                     FPDiff, dl);
2417  }
2418
2419  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2420    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2421    // In the 64-bit large code model, we have to make all calls
2422    // through a register, since the call instruction's 32-bit
2423    // pc-relative offset may not be large enough to hold the whole
2424    // address.
2425  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2426    // If the callee is a GlobalAddress node (quite common, every direct call
2427    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2428    // it.
2429
2430    // We should use extra load for direct calls to dllimported functions in
2431    // non-JIT mode.
2432    const GlobalValue *GV = G->getGlobal();
2433    if (!GV->hasDLLImportLinkage()) {
2434      unsigned char OpFlags = 0;
2435      bool ExtraLoad = false;
2436      unsigned WrapperKind = ISD::DELETED_NODE;
2437
2438      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2439      // external symbols most go through the PLT in PIC mode.  If the symbol
2440      // has hidden or protected visibility, or if it is static or local, then
2441      // we don't need to use the PLT - we can directly call it.
2442      if (Subtarget->isTargetELF() &&
2443          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2444          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2445        OpFlags = X86II::MO_PLT;
2446      } else if (Subtarget->isPICStyleStubAny() &&
2447                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2448                 (!Subtarget->getTargetTriple().isMacOSX() ||
2449                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2450        // PC-relative references to external symbols should go through $stub,
2451        // unless we're building with the leopard linker or later, which
2452        // automatically synthesizes these stubs.
2453        OpFlags = X86II::MO_DARWIN_STUB;
2454      } else if (Subtarget->isPICStyleRIPRel() &&
2455                 isa<Function>(GV) &&
2456                 cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
2457        // If the function is marked as non-lazy, generate an indirect call
2458        // which loads from the GOT directly. This avoids runtime overhead
2459        // at the cost of eager binding (and one extra byte of encoding).
2460        OpFlags = X86II::MO_GOTPCREL;
2461        WrapperKind = X86ISD::WrapperRIP;
2462        ExtraLoad = true;
2463      }
2464
2465      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2466                                          G->getOffset(), OpFlags);
2467
2468      // Add a wrapper if needed.
2469      if (WrapperKind != ISD::DELETED_NODE)
2470        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2471      // Add extra indirection if needed.
2472      if (ExtraLoad)
2473        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2474                             MachinePointerInfo::getGOT(),
2475                             false, false, false, 0);
2476    }
2477  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2478    unsigned char OpFlags = 0;
2479
2480    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2481    // external symbols should go through the PLT.
2482    if (Subtarget->isTargetELF() &&
2483        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2484      OpFlags = X86II::MO_PLT;
2485    } else if (Subtarget->isPICStyleStubAny() &&
2486               (!Subtarget->getTargetTriple().isMacOSX() ||
2487                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2488      // PC-relative references to external symbols should go through $stub,
2489      // unless we're building with the leopard linker or later, which
2490      // automatically synthesizes these stubs.
2491      OpFlags = X86II::MO_DARWIN_STUB;
2492    }
2493
2494    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2495                                         OpFlags);
2496  }
2497
2498  // Returns a chain & a flag for retval copy to use.
2499  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2500  SmallVector<SDValue, 8> Ops;
2501
2502  if (!IsSibcall && isTailCall) {
2503    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2504                           DAG.getIntPtrConstant(0, true), InFlag);
2505    InFlag = Chain.getValue(1);
2506  }
2507
2508  Ops.push_back(Chain);
2509  Ops.push_back(Callee);
2510
2511  if (isTailCall)
2512    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2513
2514  // Add argument registers to the end of the list so that they are known live
2515  // into the call.
2516  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2517    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2518                                  RegsToPass[i].second.getValueType()));
2519
2520  // Add an implicit use GOT pointer in EBX.
2521  if (!isTailCall && Subtarget->isPICStyleGOT())
2522    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2523
2524  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2525  if (Is64Bit && isVarArg && !IsWin64)
2526    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2527
2528  // Add a register mask operand representing the call-preserved registers.
2529  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2530  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2531  assert(Mask && "Missing call preserved mask for calling convention");
2532  Ops.push_back(DAG.getRegisterMask(Mask));
2533
2534  if (InFlag.getNode())
2535    Ops.push_back(InFlag);
2536
2537  if (isTailCall) {
2538    // We used to do:
2539    //// If this is the first return lowered for this function, add the regs
2540    //// to the liveout set for the function.
2541    // This isn't right, although it's probably harmless on x86; liveouts
2542    // should be computed from returns not tail calls.  Consider a void
2543    // function making a tail call to a function returning int.
2544    return DAG.getNode(X86ISD::TC_RETURN, dl,
2545                       NodeTys, &Ops[0], Ops.size());
2546  }
2547
2548  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2549  InFlag = Chain.getValue(1);
2550
2551  // Create the CALLSEQ_END node.
2552  unsigned NumBytesForCalleeToPush;
2553  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2554                       getTargetMachine().Options.GuaranteedTailCallOpt))
2555    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2556  else if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2557           IsStructRet)
2558    // If this is a call to a struct-return function, the callee
2559    // pops the hidden struct pointer, so we have to push it back.
2560    // This is common for Darwin/X86, Linux & Mingw32 targets.
2561    // For MSVC Win32 targets, the caller pops the hidden struct pointer.
2562    NumBytesForCalleeToPush = 4;
2563  else
2564    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2565
2566  // Returns a flag for retval copy to use.
2567  if (!IsSibcall) {
2568    Chain = DAG.getCALLSEQ_END(Chain,
2569                               DAG.getIntPtrConstant(NumBytes, true),
2570                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2571                                                     true),
2572                               InFlag);
2573    InFlag = Chain.getValue(1);
2574  }
2575
2576  // Handle result values, copying them out of physregs into vregs that we
2577  // return.
2578  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2579                         Ins, dl, DAG, InVals);
2580}
2581
2582
2583//===----------------------------------------------------------------------===//
2584//                Fast Calling Convention (tail call) implementation
2585//===----------------------------------------------------------------------===//
2586
2587//  Like std call, callee cleans arguments, convention except that ECX is
2588//  reserved for storing the tail called function address. Only 2 registers are
2589//  free for argument passing (inreg). Tail call optimization is performed
2590//  provided:
2591//                * tailcallopt is enabled
2592//                * caller/callee are fastcc
2593//  On X86_64 architecture with GOT-style position independent code only local
2594//  (within module) calls are supported at the moment.
2595//  To keep the stack aligned according to platform abi the function
2596//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2597//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2598//  If a tail called function callee has more arguments than the caller the
2599//  caller needs to make sure that there is room to move the RETADDR to. This is
2600//  achieved by reserving an area the size of the argument delta right after the
2601//  original REtADDR, but before the saved framepointer or the spilled registers
2602//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2603//  stack layout:
2604//    arg1
2605//    arg2
2606//    RETADDR
2607//    [ new RETADDR
2608//      move area ]
2609//    (possible EBP)
2610//    ESI
2611//    EDI
2612//    local1 ..
2613
2614/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2615/// for a 16 byte align requirement.
2616unsigned
2617X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2618                                               SelectionDAG& DAG) const {
2619  MachineFunction &MF = DAG.getMachineFunction();
2620  const TargetMachine &TM = MF.getTarget();
2621  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2622  unsigned StackAlignment = TFI.getStackAlignment();
2623  uint64_t AlignMask = StackAlignment - 1;
2624  int64_t Offset = StackSize;
2625  uint64_t SlotSize = TD->getPointerSize();
2626  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2627    // Number smaller than 12 so just add the difference.
2628    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2629  } else {
2630    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2631    Offset = ((~AlignMask) & Offset) + StackAlignment +
2632      (StackAlignment-SlotSize);
2633  }
2634  return Offset;
2635}
2636
2637/// MatchingStackOffset - Return true if the given stack call argument is
2638/// already available in the same position (relatively) of the caller's
2639/// incoming argument stack.
2640static
2641bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2642                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2643                         const X86InstrInfo *TII) {
2644  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2645  int FI = INT_MAX;
2646  if (Arg.getOpcode() == ISD::CopyFromReg) {
2647    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2648    if (!TargetRegisterInfo::isVirtualRegister(VR))
2649      return false;
2650    MachineInstr *Def = MRI->getVRegDef(VR);
2651    if (!Def)
2652      return false;
2653    if (!Flags.isByVal()) {
2654      if (!TII->isLoadFromStackSlot(Def, FI))
2655        return false;
2656    } else {
2657      unsigned Opcode = Def->getOpcode();
2658      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2659          Def->getOperand(1).isFI()) {
2660        FI = Def->getOperand(1).getIndex();
2661        Bytes = Flags.getByValSize();
2662      } else
2663        return false;
2664    }
2665  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2666    if (Flags.isByVal())
2667      // ByVal argument is passed in as a pointer but it's now being
2668      // dereferenced. e.g.
2669      // define @foo(%struct.X* %A) {
2670      //   tail call @bar(%struct.X* byval %A)
2671      // }
2672      return false;
2673    SDValue Ptr = Ld->getBasePtr();
2674    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2675    if (!FINode)
2676      return false;
2677    FI = FINode->getIndex();
2678  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2679    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2680    FI = FINode->getIndex();
2681    Bytes = Flags.getByValSize();
2682  } else
2683    return false;
2684
2685  assert(FI != INT_MAX);
2686  if (!MFI->isFixedObjectIndex(FI))
2687    return false;
2688  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2689}
2690
2691/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2692/// for tail call optimization. Targets which want to do tail call
2693/// optimization should implement this function.
2694bool
2695X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2696                                                     CallingConv::ID CalleeCC,
2697                                                     bool isVarArg,
2698                                                     bool isCalleeStructRet,
2699                                                     bool isCallerStructRet,
2700                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2701                                    const SmallVectorImpl<SDValue> &OutVals,
2702                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2703                                                     SelectionDAG& DAG) const {
2704  if (!IsTailCallConvention(CalleeCC) &&
2705      CalleeCC != CallingConv::C)
2706    return false;
2707
2708  // If -tailcallopt is specified, make fastcc functions tail-callable.
2709  const MachineFunction &MF = DAG.getMachineFunction();
2710  const Function *CallerF = DAG.getMachineFunction().getFunction();
2711  CallingConv::ID CallerCC = CallerF->getCallingConv();
2712  bool CCMatch = CallerCC == CalleeCC;
2713
2714  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2715    if (IsTailCallConvention(CalleeCC) && CCMatch)
2716      return true;
2717    return false;
2718  }
2719
2720  // Look for obvious safe cases to perform tail call optimization that do not
2721  // require ABI changes. This is what gcc calls sibcall.
2722
2723  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2724  // emit a special epilogue.
2725  if (RegInfo->needsStackRealignment(MF))
2726    return false;
2727
2728  // Also avoid sibcall optimization if either caller or callee uses struct
2729  // return semantics.
2730  if (isCalleeStructRet || isCallerStructRet)
2731    return false;
2732
2733  // An stdcall caller is expected to clean up its arguments; the callee
2734  // isn't going to do that.
2735  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2736    return false;
2737
2738  // Do not sibcall optimize vararg calls unless all arguments are passed via
2739  // registers.
2740  if (isVarArg && !Outs.empty()) {
2741
2742    // Optimizing for varargs on Win64 is unlikely to be safe without
2743    // additional testing.
2744    if (Subtarget->isTargetWin64())
2745      return false;
2746
2747    SmallVector<CCValAssign, 16> ArgLocs;
2748    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2749                   getTargetMachine(), ArgLocs, *DAG.getContext());
2750
2751    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2752    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2753      if (!ArgLocs[i].isRegLoc())
2754        return false;
2755  }
2756
2757  // If the call result is in ST0 / ST1, it needs to be popped off the x87
2758  // stack.  Therefore, if it's not used by the call it is not safe to optimize
2759  // this into a sibcall.
2760  bool Unused = false;
2761  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2762    if (!Ins[i].Used) {
2763      Unused = true;
2764      break;
2765    }
2766  }
2767  if (Unused) {
2768    SmallVector<CCValAssign, 16> RVLocs;
2769    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2770                   getTargetMachine(), RVLocs, *DAG.getContext());
2771    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2772    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2773      CCValAssign &VA = RVLocs[i];
2774      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2775        return false;
2776    }
2777  }
2778
2779  // If the calling conventions do not match, then we'd better make sure the
2780  // results are returned in the same way as what the caller expects.
2781  if (!CCMatch) {
2782    SmallVector<CCValAssign, 16> RVLocs1;
2783    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2784                    getTargetMachine(), RVLocs1, *DAG.getContext());
2785    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2786
2787    SmallVector<CCValAssign, 16> RVLocs2;
2788    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2789                    getTargetMachine(), RVLocs2, *DAG.getContext());
2790    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2791
2792    if (RVLocs1.size() != RVLocs2.size())
2793      return false;
2794    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2795      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2796        return false;
2797      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2798        return false;
2799      if (RVLocs1[i].isRegLoc()) {
2800        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2801          return false;
2802      } else {
2803        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2804          return false;
2805      }
2806    }
2807  }
2808
2809  // If the callee takes no arguments then go on to check the results of the
2810  // call.
2811  if (!Outs.empty()) {
2812    // Check if stack adjustment is needed. For now, do not do this if any
2813    // argument is passed on the stack.
2814    SmallVector<CCValAssign, 16> ArgLocs;
2815    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2816                   getTargetMachine(), ArgLocs, *DAG.getContext());
2817
2818    // Allocate shadow area for Win64
2819    if (Subtarget->isTargetWin64()) {
2820      CCInfo.AllocateStack(32, 8);
2821    }
2822
2823    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2824    if (CCInfo.getNextStackOffset()) {
2825      MachineFunction &MF = DAG.getMachineFunction();
2826      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2827        return false;
2828
2829      // Check if the arguments are already laid out in the right way as
2830      // the caller's fixed stack objects.
2831      MachineFrameInfo *MFI = MF.getFrameInfo();
2832      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2833      const X86InstrInfo *TII =
2834        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2835      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2836        CCValAssign &VA = ArgLocs[i];
2837        SDValue Arg = OutVals[i];
2838        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2839        if (VA.getLocInfo() == CCValAssign::Indirect)
2840          return false;
2841        if (!VA.isRegLoc()) {
2842          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2843                                   MFI, MRI, TII))
2844            return false;
2845        }
2846      }
2847    }
2848
2849    // If the tailcall address may be in a register, then make sure it's
2850    // possible to register allocate for it. In 32-bit, the call address can
2851    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2852    // callee-saved registers are restored. These happen to be the same
2853    // registers used to pass 'inreg' arguments so watch out for those.
2854    if (!Subtarget->is64Bit() &&
2855        !isa<GlobalAddressSDNode>(Callee) &&
2856        !isa<ExternalSymbolSDNode>(Callee)) {
2857      unsigned NumInRegs = 0;
2858      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2859        CCValAssign &VA = ArgLocs[i];
2860        if (!VA.isRegLoc())
2861          continue;
2862        unsigned Reg = VA.getLocReg();
2863        switch (Reg) {
2864        default: break;
2865        case X86::EAX: case X86::EDX: case X86::ECX:
2866          if (++NumInRegs == 3)
2867            return false;
2868          break;
2869        }
2870      }
2871    }
2872  }
2873
2874  return true;
2875}
2876
2877FastISel *
2878X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2879  return X86::createFastISel(funcInfo);
2880}
2881
2882
2883//===----------------------------------------------------------------------===//
2884//                           Other Lowering Hooks
2885//===----------------------------------------------------------------------===//
2886
2887static bool MayFoldLoad(SDValue Op) {
2888  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2889}
2890
2891static bool MayFoldIntoStore(SDValue Op) {
2892  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2893}
2894
2895static bool isTargetShuffle(unsigned Opcode) {
2896  switch(Opcode) {
2897  default: return false;
2898  case X86ISD::PSHUFD:
2899  case X86ISD::PSHUFHW:
2900  case X86ISD::PSHUFLW:
2901  case X86ISD::SHUFP:
2902  case X86ISD::PALIGN:
2903  case X86ISD::MOVLHPS:
2904  case X86ISD::MOVLHPD:
2905  case X86ISD::MOVHLPS:
2906  case X86ISD::MOVLPS:
2907  case X86ISD::MOVLPD:
2908  case X86ISD::MOVSHDUP:
2909  case X86ISD::MOVSLDUP:
2910  case X86ISD::MOVDDUP:
2911  case X86ISD::MOVSS:
2912  case X86ISD::MOVSD:
2913  case X86ISD::UNPCKL:
2914  case X86ISD::UNPCKH:
2915  case X86ISD::VPERMILP:
2916  case X86ISD::VPERM2X128:
2917  case X86ISD::VPERMI:
2918    return true;
2919  }
2920}
2921
2922static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2923                                    SDValue V1, SelectionDAG &DAG) {
2924  switch(Opc) {
2925  default: llvm_unreachable("Unknown x86 shuffle node");
2926  case X86ISD::MOVSHDUP:
2927  case X86ISD::MOVSLDUP:
2928  case X86ISD::MOVDDUP:
2929    return DAG.getNode(Opc, dl, VT, V1);
2930  }
2931}
2932
2933static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2934                                    SDValue V1, unsigned TargetMask,
2935                                    SelectionDAG &DAG) {
2936  switch(Opc) {
2937  default: llvm_unreachable("Unknown x86 shuffle node");
2938  case X86ISD::PSHUFD:
2939  case X86ISD::PSHUFHW:
2940  case X86ISD::PSHUFLW:
2941  case X86ISD::VPERMILP:
2942  case X86ISD::VPERMI:
2943    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2944  }
2945}
2946
2947static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2948                                    SDValue V1, SDValue V2, unsigned TargetMask,
2949                                    SelectionDAG &DAG) {
2950  switch(Opc) {
2951  default: llvm_unreachable("Unknown x86 shuffle node");
2952  case X86ISD::PALIGN:
2953  case X86ISD::SHUFP:
2954  case X86ISD::VPERM2X128:
2955    return DAG.getNode(Opc, dl, VT, V1, V2,
2956                       DAG.getConstant(TargetMask, MVT::i8));
2957  }
2958}
2959
2960static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2961                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2962  switch(Opc) {
2963  default: llvm_unreachable("Unknown x86 shuffle node");
2964  case X86ISD::MOVLHPS:
2965  case X86ISD::MOVLHPD:
2966  case X86ISD::MOVHLPS:
2967  case X86ISD::MOVLPS:
2968  case X86ISD::MOVLPD:
2969  case X86ISD::MOVSS:
2970  case X86ISD::MOVSD:
2971  case X86ISD::UNPCKL:
2972  case X86ISD::UNPCKH:
2973    return DAG.getNode(Opc, dl, VT, V1, V2);
2974  }
2975}
2976
2977SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2978  MachineFunction &MF = DAG.getMachineFunction();
2979  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2980  int ReturnAddrIndex = FuncInfo->getRAIndex();
2981
2982  if (ReturnAddrIndex == 0) {
2983    // Set up a frame object for the return address.
2984    uint64_t SlotSize = TD->getPointerSize();
2985    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2986                                                           false);
2987    FuncInfo->setRAIndex(ReturnAddrIndex);
2988  }
2989
2990  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2991}
2992
2993
2994bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2995                                       bool hasSymbolicDisplacement) {
2996  // Offset should fit into 32 bit immediate field.
2997  if (!isInt<32>(Offset))
2998    return false;
2999
3000  // If we don't have a symbolic displacement - we don't have any extra
3001  // restrictions.
3002  if (!hasSymbolicDisplacement)
3003    return true;
3004
3005  // FIXME: Some tweaks might be needed for medium code model.
3006  if (M != CodeModel::Small && M != CodeModel::Kernel)
3007    return false;
3008
3009  // For small code model we assume that latest object is 16MB before end of 31
3010  // bits boundary. We may also accept pretty large negative constants knowing
3011  // that all objects are in the positive half of address space.
3012  if (M == CodeModel::Small && Offset < 16*1024*1024)
3013    return true;
3014
3015  // For kernel code model we know that all object resist in the negative half
3016  // of 32bits address space. We may not accept negative offsets, since they may
3017  // be just off and we may accept pretty large positive ones.
3018  if (M == CodeModel::Kernel && Offset > 0)
3019    return true;
3020
3021  return false;
3022}
3023
3024/// isCalleePop - Determines whether the callee is required to pop its
3025/// own arguments. Callee pop is necessary to support tail calls.
3026bool X86::isCalleePop(CallingConv::ID CallingConv,
3027                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3028  if (IsVarArg)
3029    return false;
3030
3031  switch (CallingConv) {
3032  default:
3033    return false;
3034  case CallingConv::X86_StdCall:
3035    return !is64Bit;
3036  case CallingConv::X86_FastCall:
3037    return !is64Bit;
3038  case CallingConv::X86_ThisCall:
3039    return !is64Bit;
3040  case CallingConv::Fast:
3041    return TailCallOpt;
3042  case CallingConv::GHC:
3043    return TailCallOpt;
3044  }
3045}
3046
3047/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3048/// specific condition code, returning the condition code and the LHS/RHS of the
3049/// comparison to make.
3050static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3051                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3052  if (!isFP) {
3053    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3054      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3055        // X > -1   -> X == 0, jump !sign.
3056        RHS = DAG.getConstant(0, RHS.getValueType());
3057        return X86::COND_NS;
3058      }
3059      if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3060        // X < 0   -> X == 0, jump on sign.
3061        return X86::COND_S;
3062      }
3063      if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3064        // X < 1   -> X <= 0
3065        RHS = DAG.getConstant(0, RHS.getValueType());
3066        return X86::COND_LE;
3067      }
3068    }
3069
3070    switch (SetCCOpcode) {
3071    default: llvm_unreachable("Invalid integer condition!");
3072    case ISD::SETEQ:  return X86::COND_E;
3073    case ISD::SETGT:  return X86::COND_G;
3074    case ISD::SETGE:  return X86::COND_GE;
3075    case ISD::SETLT:  return X86::COND_L;
3076    case ISD::SETLE:  return X86::COND_LE;
3077    case ISD::SETNE:  return X86::COND_NE;
3078    case ISD::SETULT: return X86::COND_B;
3079    case ISD::SETUGT: return X86::COND_A;
3080    case ISD::SETULE: return X86::COND_BE;
3081    case ISD::SETUGE: return X86::COND_AE;
3082    }
3083  }
3084
3085  // First determine if it is required or is profitable to flip the operands.
3086
3087  // If LHS is a foldable load, but RHS is not, flip the condition.
3088  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3089      !ISD::isNON_EXTLoad(RHS.getNode())) {
3090    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3091    std::swap(LHS, RHS);
3092  }
3093
3094  switch (SetCCOpcode) {
3095  default: break;
3096  case ISD::SETOLT:
3097  case ISD::SETOLE:
3098  case ISD::SETUGT:
3099  case ISD::SETUGE:
3100    std::swap(LHS, RHS);
3101    break;
3102  }
3103
3104  // On a floating point condition, the flags are set as follows:
3105  // ZF  PF  CF   op
3106  //  0 | 0 | 0 | X > Y
3107  //  0 | 0 | 1 | X < Y
3108  //  1 | 0 | 0 | X == Y
3109  //  1 | 1 | 1 | unordered
3110  switch (SetCCOpcode) {
3111  default: llvm_unreachable("Condcode should be pre-legalized away");
3112  case ISD::SETUEQ:
3113  case ISD::SETEQ:   return X86::COND_E;
3114  case ISD::SETOLT:              // flipped
3115  case ISD::SETOGT:
3116  case ISD::SETGT:   return X86::COND_A;
3117  case ISD::SETOLE:              // flipped
3118  case ISD::SETOGE:
3119  case ISD::SETGE:   return X86::COND_AE;
3120  case ISD::SETUGT:              // flipped
3121  case ISD::SETULT:
3122  case ISD::SETLT:   return X86::COND_B;
3123  case ISD::SETUGE:              // flipped
3124  case ISD::SETULE:
3125  case ISD::SETLE:   return X86::COND_BE;
3126  case ISD::SETONE:
3127  case ISD::SETNE:   return X86::COND_NE;
3128  case ISD::SETUO:   return X86::COND_P;
3129  case ISD::SETO:    return X86::COND_NP;
3130  case ISD::SETOEQ:
3131  case ISD::SETUNE:  return X86::COND_INVALID;
3132  }
3133}
3134
3135/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3136/// code. Current x86 isa includes the following FP cmov instructions:
3137/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3138static bool hasFPCMov(unsigned X86CC) {
3139  switch (X86CC) {
3140  default:
3141    return false;
3142  case X86::COND_B:
3143  case X86::COND_BE:
3144  case X86::COND_E:
3145  case X86::COND_P:
3146  case X86::COND_A:
3147  case X86::COND_AE:
3148  case X86::COND_NE:
3149  case X86::COND_NP:
3150    return true;
3151  }
3152}
3153
3154/// isFPImmLegal - Returns true if the target can instruction select the
3155/// specified FP immediate natively. If false, the legalizer will
3156/// materialize the FP immediate as a load from a constant pool.
3157bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3158  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3159    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3160      return true;
3161  }
3162  return false;
3163}
3164
3165/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3166/// the specified range (L, H].
3167static bool isUndefOrInRange(int Val, int Low, int Hi) {
3168  return (Val < 0) || (Val >= Low && Val < Hi);
3169}
3170
3171/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3172/// specified value.
3173static bool isUndefOrEqual(int Val, int CmpVal) {
3174  if (Val < 0 || Val == CmpVal)
3175    return true;
3176  return false;
3177}
3178
3179/// isSequentialOrUndefInRange - Return true if every element in Mask, begining
3180/// from position Pos and ending in Pos+Size, falls within the specified
3181/// sequential range (L, L+Pos]. or is undef.
3182static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
3183                                       unsigned Pos, unsigned Size, int Low) {
3184  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3185    if (!isUndefOrEqual(Mask[i], Low))
3186      return false;
3187  return true;
3188}
3189
3190/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3191/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3192/// the second operand.
3193static bool isPSHUFDMask(ArrayRef<int> Mask, EVT VT) {
3194  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3195    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3196  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3197    return (Mask[0] < 2 && Mask[1] < 2);
3198  return false;
3199}
3200
3201/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3202/// is suitable for input to PSHUFHW.
3203static bool isPSHUFHWMask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3204  if (VT != MVT::v8i16 && (!HasAVX2 || VT != MVT::v16i16))
3205    return false;
3206
3207  // Lower quadword copied in order or undef.
3208  if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
3209    return false;
3210
3211  // Upper quadword shuffled.
3212  for (unsigned i = 4; i != 8; ++i)
3213    if (!isUndefOrInRange(Mask[i], 4, 8))
3214      return false;
3215
3216  if (VT == MVT::v16i16) {
3217    // Lower quadword copied in order or undef.
3218    if (!isSequentialOrUndefInRange(Mask, 8, 4, 8))
3219      return false;
3220
3221    // Upper quadword shuffled.
3222    for (unsigned i = 12; i != 16; ++i)
3223      if (!isUndefOrInRange(Mask[i], 12, 16))
3224        return false;
3225  }
3226
3227  return true;
3228}
3229
3230/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3231/// is suitable for input to PSHUFLW.
3232static bool isPSHUFLWMask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3233  if (VT != MVT::v8i16 && (!HasAVX2 || VT != MVT::v16i16))
3234    return false;
3235
3236  // Upper quadword copied in order.
3237  if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
3238    return false;
3239
3240  // Lower quadword shuffled.
3241  for (unsigned i = 0; i != 4; ++i)
3242    if (!isUndefOrInRange(Mask[i], 0, 4))
3243      return false;
3244
3245  if (VT == MVT::v16i16) {
3246    // Upper quadword copied in order.
3247    if (!isSequentialOrUndefInRange(Mask, 12, 4, 12))
3248      return false;
3249
3250    // Lower quadword shuffled.
3251    for (unsigned i = 8; i != 12; ++i)
3252      if (!isUndefOrInRange(Mask[i], 8, 12))
3253        return false;
3254  }
3255
3256  return true;
3257}
3258
3259/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3260/// is suitable for input to PALIGNR.
3261static bool isPALIGNRMask(ArrayRef<int> Mask, EVT VT,
3262                          const X86Subtarget *Subtarget) {
3263  if ((VT.getSizeInBits() == 128 && !Subtarget->hasSSSE3()) ||
3264      (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2()))
3265    return false;
3266
3267  unsigned NumElts = VT.getVectorNumElements();
3268  unsigned NumLanes = VT.getSizeInBits()/128;
3269  unsigned NumLaneElts = NumElts/NumLanes;
3270
3271  // Do not handle 64-bit element shuffles with palignr.
3272  if (NumLaneElts == 2)
3273    return false;
3274
3275  for (unsigned l = 0; l != NumElts; l+=NumLaneElts) {
3276    unsigned i;
3277    for (i = 0; i != NumLaneElts; ++i) {
3278      if (Mask[i+l] >= 0)
3279        break;
3280    }
3281
3282    // Lane is all undef, go to next lane
3283    if (i == NumLaneElts)
3284      continue;
3285
3286    int Start = Mask[i+l];
3287
3288    // Make sure its in this lane in one of the sources
3289    if (!isUndefOrInRange(Start, l, l+NumLaneElts) &&
3290        !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts))
3291      return false;
3292
3293    // If not lane 0, then we must match lane 0
3294    if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l))
3295      return false;
3296
3297    // Correct second source to be contiguous with first source
3298    if (Start >= (int)NumElts)
3299      Start -= NumElts - NumLaneElts;
3300
3301    // Make sure we're shifting in the right direction.
3302    if (Start <= (int)(i+l))
3303      return false;
3304
3305    Start -= i;
3306
3307    // Check the rest of the elements to see if they are consecutive.
3308    for (++i; i != NumLaneElts; ++i) {
3309      int Idx = Mask[i+l];
3310
3311      // Make sure its in this lane
3312      if (!isUndefOrInRange(Idx, l, l+NumLaneElts) &&
3313          !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts))
3314        return false;
3315
3316      // If not lane 0, then we must match lane 0
3317      if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l))
3318        return false;
3319
3320      if (Idx >= (int)NumElts)
3321        Idx -= NumElts - NumLaneElts;
3322
3323      if (!isUndefOrEqual(Idx, Start+i))
3324        return false;
3325
3326    }
3327  }
3328
3329  return true;
3330}
3331
3332/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3333/// the two vector operands have swapped position.
3334static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
3335                                     unsigned NumElems) {
3336  for (unsigned i = 0; i != NumElems; ++i) {
3337    int idx = Mask[i];
3338    if (idx < 0)
3339      continue;
3340    else if (idx < (int)NumElems)
3341      Mask[i] = idx + NumElems;
3342    else
3343      Mask[i] = idx - NumElems;
3344  }
3345}
3346
3347/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3348/// specifies a shuffle of elements that is suitable for input to 128/256-bit
3349/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
3350/// reverse of what x86 shuffles want.
3351static bool isSHUFPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX,
3352                        bool Commuted = false) {
3353  if (!HasAVX && VT.getSizeInBits() == 256)
3354    return false;
3355
3356  unsigned NumElems = VT.getVectorNumElements();
3357  unsigned NumLanes = VT.getSizeInBits()/128;
3358  unsigned NumLaneElems = NumElems/NumLanes;
3359
3360  if (NumLaneElems != 2 && NumLaneElems != 4)
3361    return false;
3362
3363  // VSHUFPSY divides the resulting vector into 4 chunks.
3364  // The sources are also splitted into 4 chunks, and each destination
3365  // chunk must come from a different source chunk.
3366  //
3367  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3368  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3369  //
3370  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3371  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3372  //
3373  // VSHUFPDY divides the resulting vector into 4 chunks.
3374  // The sources are also splitted into 4 chunks, and each destination
3375  // chunk must come from a different source chunk.
3376  //
3377  //  SRC1 =>      X3       X2       X1       X0
3378  //  SRC2 =>      Y3       Y2       Y1       Y0
3379  //
3380  //  DST  =>  Y3..Y2,  X3..X2,  Y1..Y0,  X1..X0
3381  //
3382  unsigned HalfLaneElems = NumLaneElems/2;
3383  for (unsigned l = 0; l != NumElems; l += NumLaneElems) {
3384    for (unsigned i = 0; i != NumLaneElems; ++i) {
3385      int Idx = Mask[i+l];
3386      unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0);
3387      if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems))
3388        return false;
3389      // For VSHUFPSY, the mask of the second half must be the same as the
3390      // first but with the appropriate offsets. This works in the same way as
3391      // VPERMILPS works with masks.
3392      if (NumElems != 8 || l == 0 || Mask[i] < 0)
3393        continue;
3394      if (!isUndefOrEqual(Idx, Mask[i]+l))
3395        return false;
3396    }
3397  }
3398
3399  return true;
3400}
3401
3402/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3403/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3404static bool isMOVHLPSMask(ArrayRef<int> Mask, EVT VT) {
3405  unsigned NumElems = VT.getVectorNumElements();
3406
3407  if (VT.getSizeInBits() != 128)
3408    return false;
3409
3410  if (NumElems != 4)
3411    return false;
3412
3413  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3414  return isUndefOrEqual(Mask[0], 6) &&
3415         isUndefOrEqual(Mask[1], 7) &&
3416         isUndefOrEqual(Mask[2], 2) &&
3417         isUndefOrEqual(Mask[3], 3);
3418}
3419
3420/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3421/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3422/// <2, 3, 2, 3>
3423static bool isMOVHLPS_v_undef_Mask(ArrayRef<int> Mask, EVT VT) {
3424  unsigned NumElems = VT.getVectorNumElements();
3425
3426  if (VT.getSizeInBits() != 128)
3427    return false;
3428
3429  if (NumElems != 4)
3430    return false;
3431
3432  return isUndefOrEqual(Mask[0], 2) &&
3433         isUndefOrEqual(Mask[1], 3) &&
3434         isUndefOrEqual(Mask[2], 2) &&
3435         isUndefOrEqual(Mask[3], 3);
3436}
3437
3438/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3439/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3440static bool isMOVLPMask(ArrayRef<int> Mask, EVT VT) {
3441  if (VT.getSizeInBits() != 128)
3442    return false;
3443
3444  unsigned NumElems = VT.getVectorNumElements();
3445
3446  if (NumElems != 2 && NumElems != 4)
3447    return false;
3448
3449  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3450    if (!isUndefOrEqual(Mask[i], i + NumElems))
3451      return false;
3452
3453  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
3454    if (!isUndefOrEqual(Mask[i], i))
3455      return false;
3456
3457  return true;
3458}
3459
3460/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3461/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3462static bool isMOVLHPSMask(ArrayRef<int> Mask, EVT VT) {
3463  unsigned NumElems = VT.getVectorNumElements();
3464
3465  if ((NumElems != 2 && NumElems != 4)
3466      || VT.getSizeInBits() > 128)
3467    return false;
3468
3469  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3470    if (!isUndefOrEqual(Mask[i], i))
3471      return false;
3472
3473  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3474    if (!isUndefOrEqual(Mask[i + e], i + NumElems))
3475      return false;
3476
3477  return true;
3478}
3479
3480/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3481/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3482static bool isUNPCKLMask(ArrayRef<int> Mask, EVT VT,
3483                         bool HasAVX2, bool V2IsSplat = false) {
3484  unsigned NumElts = VT.getVectorNumElements();
3485
3486  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3487         "Unsupported vector type for unpckh");
3488
3489  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3490      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3491    return false;
3492
3493  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3494  // independently on 128-bit lanes.
3495  unsigned NumLanes = VT.getSizeInBits()/128;
3496  unsigned NumLaneElts = NumElts/NumLanes;
3497
3498  for (unsigned l = 0; l != NumLanes; ++l) {
3499    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3500         i != (l+1)*NumLaneElts;
3501         i += 2, ++j) {
3502      int BitI  = Mask[i];
3503      int BitI1 = Mask[i+1];
3504      if (!isUndefOrEqual(BitI, j))
3505        return false;
3506      if (V2IsSplat) {
3507        if (!isUndefOrEqual(BitI1, NumElts))
3508          return false;
3509      } else {
3510        if (!isUndefOrEqual(BitI1, j + NumElts))
3511          return false;
3512      }
3513    }
3514  }
3515
3516  return true;
3517}
3518
3519/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3520/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3521static bool isUNPCKHMask(ArrayRef<int> Mask, EVT VT,
3522                         bool HasAVX2, bool V2IsSplat = false) {
3523  unsigned NumElts = VT.getVectorNumElements();
3524
3525  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3526         "Unsupported vector type for unpckh");
3527
3528  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3529      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3530    return false;
3531
3532  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3533  // independently on 128-bit lanes.
3534  unsigned NumLanes = VT.getSizeInBits()/128;
3535  unsigned NumLaneElts = NumElts/NumLanes;
3536
3537  for (unsigned l = 0; l != NumLanes; ++l) {
3538    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3539         i != (l+1)*NumLaneElts; i += 2, ++j) {
3540      int BitI  = Mask[i];
3541      int BitI1 = Mask[i+1];
3542      if (!isUndefOrEqual(BitI, j))
3543        return false;
3544      if (V2IsSplat) {
3545        if (isUndefOrEqual(BitI1, NumElts))
3546          return false;
3547      } else {
3548        if (!isUndefOrEqual(BitI1, j+NumElts))
3549          return false;
3550      }
3551    }
3552  }
3553  return true;
3554}
3555
3556/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3557/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3558/// <0, 0, 1, 1>
3559static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, EVT VT,
3560                                  bool HasAVX2) {
3561  unsigned NumElts = VT.getVectorNumElements();
3562
3563  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3564         "Unsupported vector type for unpckh");
3565
3566  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3567      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3568    return false;
3569
3570  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3571  // FIXME: Need a better way to get rid of this, there's no latency difference
3572  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3573  // the former later. We should also remove the "_undef" special mask.
3574  if (NumElts == 4 && VT.getSizeInBits() == 256)
3575    return false;
3576
3577  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3578  // independently on 128-bit lanes.
3579  unsigned NumLanes = VT.getSizeInBits()/128;
3580  unsigned NumLaneElts = NumElts/NumLanes;
3581
3582  for (unsigned l = 0; l != NumLanes; ++l) {
3583    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3584         i != (l+1)*NumLaneElts;
3585         i += 2, ++j) {
3586      int BitI  = Mask[i];
3587      int BitI1 = Mask[i+1];
3588
3589      if (!isUndefOrEqual(BitI, j))
3590        return false;
3591      if (!isUndefOrEqual(BitI1, j))
3592        return false;
3593    }
3594  }
3595
3596  return true;
3597}
3598
3599/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3600/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3601/// <2, 2, 3, 3>
3602static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3603  unsigned NumElts = VT.getVectorNumElements();
3604
3605  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3606         "Unsupported vector type for unpckh");
3607
3608  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3609      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3610    return false;
3611
3612  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3613  // independently on 128-bit lanes.
3614  unsigned NumLanes = VT.getSizeInBits()/128;
3615  unsigned NumLaneElts = NumElts/NumLanes;
3616
3617  for (unsigned l = 0; l != NumLanes; ++l) {
3618    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3619         i != (l+1)*NumLaneElts; i += 2, ++j) {
3620      int BitI  = Mask[i];
3621      int BitI1 = Mask[i+1];
3622      if (!isUndefOrEqual(BitI, j))
3623        return false;
3624      if (!isUndefOrEqual(BitI1, j))
3625        return false;
3626    }
3627  }
3628  return true;
3629}
3630
3631/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3632/// specifies a shuffle of elements that is suitable for input to MOVSS,
3633/// MOVSD, and MOVD, i.e. setting the lowest element.
3634static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) {
3635  if (VT.getVectorElementType().getSizeInBits() < 32)
3636    return false;
3637  if (VT.getSizeInBits() == 256)
3638    return false;
3639
3640  unsigned NumElts = VT.getVectorNumElements();
3641
3642  if (!isUndefOrEqual(Mask[0], NumElts))
3643    return false;
3644
3645  for (unsigned i = 1; i != NumElts; ++i)
3646    if (!isUndefOrEqual(Mask[i], i))
3647      return false;
3648
3649  return true;
3650}
3651
3652/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
3653/// as permutations between 128-bit chunks or halves. As an example: this
3654/// shuffle bellow:
3655///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3656/// The first half comes from the second half of V1 and the second half from the
3657/// the second half of V2.
3658static bool isVPERM2X128Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3659  if (!HasAVX || VT.getSizeInBits() != 256)
3660    return false;
3661
3662  // The shuffle result is divided into half A and half B. In total the two
3663  // sources have 4 halves, namely: C, D, E, F. The final values of A and
3664  // B must come from C, D, E or F.
3665  unsigned HalfSize = VT.getVectorNumElements()/2;
3666  bool MatchA = false, MatchB = false;
3667
3668  // Check if A comes from one of C, D, E, F.
3669  for (unsigned Half = 0; Half != 4; ++Half) {
3670    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3671      MatchA = true;
3672      break;
3673    }
3674  }
3675
3676  // Check if B comes from one of C, D, E, F.
3677  for (unsigned Half = 0; Half != 4; ++Half) {
3678    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3679      MatchB = true;
3680      break;
3681    }
3682  }
3683
3684  return MatchA && MatchB;
3685}
3686
3687/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
3688/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
3689static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
3690  EVT VT = SVOp->getValueType(0);
3691
3692  unsigned HalfSize = VT.getVectorNumElements()/2;
3693
3694  unsigned FstHalf = 0, SndHalf = 0;
3695  for (unsigned i = 0; i < HalfSize; ++i) {
3696    if (SVOp->getMaskElt(i) > 0) {
3697      FstHalf = SVOp->getMaskElt(i)/HalfSize;
3698      break;
3699    }
3700  }
3701  for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
3702    if (SVOp->getMaskElt(i) > 0) {
3703      SndHalf = SVOp->getMaskElt(i)/HalfSize;
3704      break;
3705    }
3706  }
3707
3708  return (FstHalf | (SndHalf << 4));
3709}
3710
3711/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
3712/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3713/// Note that VPERMIL mask matching is different depending whether theunderlying
3714/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3715/// to the same elements of the low, but to the higher half of the source.
3716/// In VPERMILPD the two lanes could be shuffled independently of each other
3717/// with the same restriction that lanes can't be crossed. Also handles PSHUFDY.
3718static bool isVPERMILPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3719  if (!HasAVX)
3720    return false;
3721
3722  unsigned NumElts = VT.getVectorNumElements();
3723  // Only match 256-bit with 32/64-bit types
3724  if (VT.getSizeInBits() != 256 || (NumElts != 4 && NumElts != 8))
3725    return false;
3726
3727  unsigned NumLanes = VT.getSizeInBits()/128;
3728  unsigned LaneSize = NumElts/NumLanes;
3729  for (unsigned l = 0; l != NumElts; l += LaneSize) {
3730    for (unsigned i = 0; i != LaneSize; ++i) {
3731      if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
3732        return false;
3733      if (NumElts != 8 || l == 0)
3734        continue;
3735      // VPERMILPS handling
3736      if (Mask[i] < 0)
3737        continue;
3738      if (!isUndefOrEqual(Mask[i+l], Mask[i]+l))
3739        return false;
3740    }
3741  }
3742
3743  return true;
3744}
3745
3746/// isCommutedMOVLMask - Returns true if the shuffle mask is except the reverse
3747/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3748/// element of vector 2 and the other elements to come from vector 1 in order.
3749static bool isCommutedMOVLMask(ArrayRef<int> Mask, EVT VT,
3750                               bool V2IsSplat = false, bool V2IsUndef = false) {
3751  unsigned NumOps = VT.getVectorNumElements();
3752  if (VT.getSizeInBits() == 256)
3753    return false;
3754  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3755    return false;
3756
3757  if (!isUndefOrEqual(Mask[0], 0))
3758    return false;
3759
3760  for (unsigned i = 1; i != NumOps; ++i)
3761    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3762          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3763          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3764      return false;
3765
3766  return true;
3767}
3768
3769/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3770/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3771/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3772static bool isMOVSHDUPMask(ArrayRef<int> Mask, EVT VT,
3773                           const X86Subtarget *Subtarget) {
3774  if (!Subtarget->hasSSE3())
3775    return false;
3776
3777  unsigned NumElems = VT.getVectorNumElements();
3778
3779  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3780      (VT.getSizeInBits() == 256 && NumElems != 8))
3781    return false;
3782
3783  // "i+1" is the value the indexed mask element must have
3784  for (unsigned i = 0; i != NumElems; i += 2)
3785    if (!isUndefOrEqual(Mask[i], i+1) ||
3786        !isUndefOrEqual(Mask[i+1], i+1))
3787      return false;
3788
3789  return true;
3790}
3791
3792/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3793/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3794/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3795static bool isMOVSLDUPMask(ArrayRef<int> Mask, EVT VT,
3796                           const X86Subtarget *Subtarget) {
3797  if (!Subtarget->hasSSE3())
3798    return false;
3799
3800  unsigned NumElems = VT.getVectorNumElements();
3801
3802  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3803      (VT.getSizeInBits() == 256 && NumElems != 8))
3804    return false;
3805
3806  // "i" is the value the indexed mask element must have
3807  for (unsigned i = 0; i != NumElems; i += 2)
3808    if (!isUndefOrEqual(Mask[i], i) ||
3809        !isUndefOrEqual(Mask[i+1], i))
3810      return false;
3811
3812  return true;
3813}
3814
3815/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
3816/// specifies a shuffle of elements that is suitable for input to 256-bit
3817/// version of MOVDDUP.
3818static bool isMOVDDUPYMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3819  unsigned NumElts = VT.getVectorNumElements();
3820
3821  if (!HasAVX || VT.getSizeInBits() != 256 || NumElts != 4)
3822    return false;
3823
3824  for (unsigned i = 0; i != NumElts/2; ++i)
3825    if (!isUndefOrEqual(Mask[i], 0))
3826      return false;
3827  for (unsigned i = NumElts/2; i != NumElts; ++i)
3828    if (!isUndefOrEqual(Mask[i], NumElts/2))
3829      return false;
3830  return true;
3831}
3832
3833/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3834/// specifies a shuffle of elements that is suitable for input to 128-bit
3835/// version of MOVDDUP.
3836static bool isMOVDDUPMask(ArrayRef<int> Mask, EVT VT) {
3837  if (VT.getSizeInBits() != 128)
3838    return false;
3839
3840  unsigned e = VT.getVectorNumElements() / 2;
3841  for (unsigned i = 0; i != e; ++i)
3842    if (!isUndefOrEqual(Mask[i], i))
3843      return false;
3844  for (unsigned i = 0; i != e; ++i)
3845    if (!isUndefOrEqual(Mask[e+i], i))
3846      return false;
3847  return true;
3848}
3849
3850/// isVEXTRACTF128Index - Return true if the specified
3851/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3852/// suitable for input to VEXTRACTF128.
3853bool X86::isVEXTRACTF128Index(SDNode *N) {
3854  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3855    return false;
3856
3857  // The index should be aligned on a 128-bit boundary.
3858  uint64_t Index =
3859    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3860
3861  unsigned VL = N->getValueType(0).getVectorNumElements();
3862  unsigned VBits = N->getValueType(0).getSizeInBits();
3863  unsigned ElSize = VBits / VL;
3864  bool Result = (Index * ElSize) % 128 == 0;
3865
3866  return Result;
3867}
3868
3869/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
3870/// operand specifies a subvector insert that is suitable for input to
3871/// VINSERTF128.
3872bool X86::isVINSERTF128Index(SDNode *N) {
3873  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3874    return false;
3875
3876  // The index should be aligned on a 128-bit boundary.
3877  uint64_t Index =
3878    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3879
3880  unsigned VL = N->getValueType(0).getVectorNumElements();
3881  unsigned VBits = N->getValueType(0).getSizeInBits();
3882  unsigned ElSize = VBits / VL;
3883  bool Result = (Index * ElSize) % 128 == 0;
3884
3885  return Result;
3886}
3887
3888/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3889/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3890/// Handles 128-bit and 256-bit.
3891static unsigned getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
3892  EVT VT = N->getValueType(0);
3893
3894  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3895         "Unsupported vector type for PSHUF/SHUFP");
3896
3897  // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate
3898  // independently on 128-bit lanes.
3899  unsigned NumElts = VT.getVectorNumElements();
3900  unsigned NumLanes = VT.getSizeInBits()/128;
3901  unsigned NumLaneElts = NumElts/NumLanes;
3902
3903  assert((NumLaneElts == 2 || NumLaneElts == 4) &&
3904         "Only supports 2 or 4 elements per lane");
3905
3906  unsigned Shift = (NumLaneElts == 4) ? 1 : 0;
3907  unsigned Mask = 0;
3908  for (unsigned i = 0; i != NumElts; ++i) {
3909    int Elt = N->getMaskElt(i);
3910    if (Elt < 0) continue;
3911    Elt &= NumLaneElts - 1;
3912    unsigned ShAmt = (i << Shift) % 8;
3913    Mask |= Elt << ShAmt;
3914  }
3915
3916  return Mask;
3917}
3918
3919/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3920/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3921static unsigned getShufflePSHUFHWImmediate(ShuffleVectorSDNode *N) {
3922  EVT VT = N->getValueType(0);
3923
3924  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
3925         "Unsupported vector type for PSHUFHW");
3926
3927  unsigned NumElts = VT.getVectorNumElements();
3928
3929  unsigned Mask = 0;
3930  for (unsigned l = 0; l != NumElts; l += 8) {
3931    // 8 nodes per lane, but we only care about the last 4.
3932    for (unsigned i = 0; i < 4; ++i) {
3933      int Elt = N->getMaskElt(l+i+4);
3934      if (Elt < 0) continue;
3935      Elt &= 0x3; // only 2-bits.
3936      Mask |= Elt << (i * 2);
3937    }
3938  }
3939
3940  return Mask;
3941}
3942
3943/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3944/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3945static unsigned getShufflePSHUFLWImmediate(ShuffleVectorSDNode *N) {
3946  EVT VT = N->getValueType(0);
3947
3948  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
3949         "Unsupported vector type for PSHUFHW");
3950
3951  unsigned NumElts = VT.getVectorNumElements();
3952
3953  unsigned Mask = 0;
3954  for (unsigned l = 0; l != NumElts; l += 8) {
3955    // 8 nodes per lane, but we only care about the first 4.
3956    for (unsigned i = 0; i < 4; ++i) {
3957      int Elt = N->getMaskElt(l+i);
3958      if (Elt < 0) continue;
3959      Elt &= 0x3; // only 2-bits
3960      Mask |= Elt << (i * 2);
3961    }
3962  }
3963
3964  return Mask;
3965}
3966
3967/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3968/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3969static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
3970  EVT VT = SVOp->getValueType(0);
3971  unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3;
3972
3973  unsigned NumElts = VT.getVectorNumElements();
3974  unsigned NumLanes = VT.getSizeInBits()/128;
3975  unsigned NumLaneElts = NumElts/NumLanes;
3976
3977  int Val = 0;
3978  unsigned i;
3979  for (i = 0; i != NumElts; ++i) {
3980    Val = SVOp->getMaskElt(i);
3981    if (Val >= 0)
3982      break;
3983  }
3984  if (Val >= (int)NumElts)
3985    Val -= NumElts - NumLaneElts;
3986
3987  assert(Val - i > 0 && "PALIGNR imm should be positive");
3988  return (Val - i) * EltSize;
3989}
3990
3991/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
3992/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
3993/// instructions.
3994unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
3995  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3996    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
3997
3998  uint64_t Index =
3999    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4000
4001  EVT VecVT = N->getOperand(0).getValueType();
4002  EVT ElVT = VecVT.getVectorElementType();
4003
4004  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4005  return Index / NumElemsPerChunk;
4006}
4007
4008/// getInsertVINSERTF128Immediate - Return the appropriate immediate
4009/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4010/// instructions.
4011unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
4012  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4013    llvm_unreachable("Illegal insert subvector for VINSERTF128");
4014
4015  uint64_t Index =
4016    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4017
4018  EVT VecVT = N->getValueType(0);
4019  EVT ElVT = VecVT.getVectorElementType();
4020
4021  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4022  return Index / NumElemsPerChunk;
4023}
4024
4025/// getShuffleCLImmediate - Return the appropriate immediate to shuffle
4026/// the specified VECTOR_SHUFFLE mask with VPERMQ and VPERMPD instructions.
4027/// Handles 256-bit.
4028static unsigned getShuffleCLImmediate(ShuffleVectorSDNode *N) {
4029  EVT VT = N->getValueType(0);
4030
4031  unsigned NumElts = VT.getVectorNumElements();
4032
4033  assert((VT.is256BitVector() && NumElts == 4) &&
4034         "Unsupported vector type for VPERMQ/VPERMPD");
4035
4036  unsigned Mask = 0;
4037  for (unsigned i = 0; i != NumElts; ++i) {
4038    int Elt = N->getMaskElt(i);
4039    if (Elt < 0)
4040      continue;
4041    Mask |= Elt << (i*2);
4042  }
4043
4044  return Mask;
4045}
4046/// isZeroNode - Returns true if Elt is a constant zero or a floating point
4047/// constant +0.0.
4048bool X86::isZeroNode(SDValue Elt) {
4049  return ((isa<ConstantSDNode>(Elt) &&
4050           cast<ConstantSDNode>(Elt)->isNullValue()) ||
4051          (isa<ConstantFPSDNode>(Elt) &&
4052           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
4053}
4054
4055/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4056/// their permute mask.
4057static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4058                                    SelectionDAG &DAG) {
4059  EVT VT = SVOp->getValueType(0);
4060  unsigned NumElems = VT.getVectorNumElements();
4061  SmallVector<int, 8> MaskVec;
4062
4063  for (unsigned i = 0; i != NumElems; ++i) {
4064    int idx = SVOp->getMaskElt(i);
4065    if (idx < 0)
4066      MaskVec.push_back(idx);
4067    else if (idx < (int)NumElems)
4068      MaskVec.push_back(idx + NumElems);
4069    else
4070      MaskVec.push_back(idx - NumElems);
4071  }
4072  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4073                              SVOp->getOperand(0), &MaskVec[0]);
4074}
4075
4076/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4077/// match movhlps. The lower half elements should come from upper half of
4078/// V1 (and in order), and the upper half elements should come from the upper
4079/// half of V2 (and in order).
4080static bool ShouldXformToMOVHLPS(ArrayRef<int> Mask, EVT VT) {
4081  if (VT.getSizeInBits() != 128)
4082    return false;
4083  if (VT.getVectorNumElements() != 4)
4084    return false;
4085  for (unsigned i = 0, e = 2; i != e; ++i)
4086    if (!isUndefOrEqual(Mask[i], i+2))
4087      return false;
4088  for (unsigned i = 2; i != 4; ++i)
4089    if (!isUndefOrEqual(Mask[i], i+4))
4090      return false;
4091  return true;
4092}
4093
4094/// isScalarLoadToVector - Returns true if the node is a scalar load that
4095/// is promoted to a vector. It also returns the LoadSDNode by reference if
4096/// required.
4097static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4098  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4099    return false;
4100  N = N->getOperand(0).getNode();
4101  if (!ISD::isNON_EXTLoad(N))
4102    return false;
4103  if (LD)
4104    *LD = cast<LoadSDNode>(N);
4105  return true;
4106}
4107
4108// Test whether the given value is a vector value which will be legalized
4109// into a load.
4110static bool WillBeConstantPoolLoad(SDNode *N) {
4111  if (N->getOpcode() != ISD::BUILD_VECTOR)
4112    return false;
4113
4114  // Check for any non-constant elements.
4115  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4116    switch (N->getOperand(i).getNode()->getOpcode()) {
4117    case ISD::UNDEF:
4118    case ISD::ConstantFP:
4119    case ISD::Constant:
4120      break;
4121    default:
4122      return false;
4123    }
4124
4125  // Vectors of all-zeros and all-ones are materialized with special
4126  // instructions rather than being loaded.
4127  return !ISD::isBuildVectorAllZeros(N) &&
4128         !ISD::isBuildVectorAllOnes(N);
4129}
4130
4131/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4132/// match movlp{s|d}. The lower half elements should come from lower half of
4133/// V1 (and in order), and the upper half elements should come from the upper
4134/// half of V2 (and in order). And since V1 will become the source of the
4135/// MOVLP, it must be either a vector load or a scalar load to vector.
4136static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4137                               ArrayRef<int> Mask, EVT VT) {
4138  if (VT.getSizeInBits() != 128)
4139    return false;
4140
4141  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4142    return false;
4143  // Is V2 is a vector load, don't do this transformation. We will try to use
4144  // load folding shufps op.
4145  if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4146    return false;
4147
4148  unsigned NumElems = VT.getVectorNumElements();
4149
4150  if (NumElems != 2 && NumElems != 4)
4151    return false;
4152  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4153    if (!isUndefOrEqual(Mask[i], i))
4154      return false;
4155  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
4156    if (!isUndefOrEqual(Mask[i], i+NumElems))
4157      return false;
4158  return true;
4159}
4160
4161/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4162/// all the same.
4163static bool isSplatVector(SDNode *N) {
4164  if (N->getOpcode() != ISD::BUILD_VECTOR)
4165    return false;
4166
4167  SDValue SplatValue = N->getOperand(0);
4168  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4169    if (N->getOperand(i) != SplatValue)
4170      return false;
4171  return true;
4172}
4173
4174/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4175/// to an zero vector.
4176/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4177static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4178  SDValue V1 = N->getOperand(0);
4179  SDValue V2 = N->getOperand(1);
4180  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4181  for (unsigned i = 0; i != NumElems; ++i) {
4182    int Idx = N->getMaskElt(i);
4183    if (Idx >= (int)NumElems) {
4184      unsigned Opc = V2.getOpcode();
4185      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4186        continue;
4187      if (Opc != ISD::BUILD_VECTOR ||
4188          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4189        return false;
4190    } else if (Idx >= 0) {
4191      unsigned Opc = V1.getOpcode();
4192      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4193        continue;
4194      if (Opc != ISD::BUILD_VECTOR ||
4195          !X86::isZeroNode(V1.getOperand(Idx)))
4196        return false;
4197    }
4198  }
4199  return true;
4200}
4201
4202/// getZeroVector - Returns a vector of specified type with all zero elements.
4203///
4204static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget,
4205                             SelectionDAG &DAG, DebugLoc dl) {
4206  assert(VT.isVector() && "Expected a vector type");
4207  unsigned Size = VT.getSizeInBits();
4208
4209  // Always build SSE zero vectors as <4 x i32> bitcasted
4210  // to their dest type. This ensures they get CSE'd.
4211  SDValue Vec;
4212  if (Size == 128) {  // SSE
4213    if (Subtarget->hasSSE2()) {  // SSE2
4214      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4215      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4216    } else { // SSE1
4217      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4218      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4219    }
4220  } else if (Size == 256) { // AVX
4221    if (Subtarget->hasAVX2()) { // AVX2
4222      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4223      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4224      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4225    } else {
4226      // 256-bit logic and arithmetic instructions in AVX are all
4227      // floating-point, no support for integer ops. Emit fp zeroed vectors.
4228      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4229      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4230      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4231    }
4232  } else
4233    llvm_unreachable("Unexpected vector type");
4234
4235  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4236}
4237
4238/// getOnesVector - Returns a vector of specified type with all bits set.
4239/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4240/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4241/// Then bitcast to their original type, ensuring they get CSE'd.
4242static SDValue getOnesVector(EVT VT, bool HasAVX2, SelectionDAG &DAG,
4243                             DebugLoc dl) {
4244  assert(VT.isVector() && "Expected a vector type");
4245  unsigned Size = VT.getSizeInBits();
4246
4247  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4248  SDValue Vec;
4249  if (Size == 256) {
4250    if (HasAVX2) { // AVX2
4251      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4252      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4253    } else { // AVX
4254      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4255      Vec = Concat128BitVectors(Vec, Vec, MVT::v8i32, 8, DAG, dl);
4256    }
4257  } else if (Size == 128) {
4258    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4259  } else
4260    llvm_unreachable("Unexpected vector type");
4261
4262  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4263}
4264
4265/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4266/// that point to V2 points to its first element.
4267static void NormalizeMask(SmallVectorImpl<int> &Mask, unsigned NumElems) {
4268  for (unsigned i = 0; i != NumElems; ++i) {
4269    if (Mask[i] > (int)NumElems) {
4270      Mask[i] = NumElems;
4271    }
4272  }
4273}
4274
4275/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4276/// operation of specified width.
4277static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4278                       SDValue V2) {
4279  unsigned NumElems = VT.getVectorNumElements();
4280  SmallVector<int, 8> Mask;
4281  Mask.push_back(NumElems);
4282  for (unsigned i = 1; i != NumElems; ++i)
4283    Mask.push_back(i);
4284  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4285}
4286
4287/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4288static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4289                          SDValue V2) {
4290  unsigned NumElems = VT.getVectorNumElements();
4291  SmallVector<int, 8> Mask;
4292  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4293    Mask.push_back(i);
4294    Mask.push_back(i + NumElems);
4295  }
4296  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4297}
4298
4299/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4300static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4301                          SDValue V2) {
4302  unsigned NumElems = VT.getVectorNumElements();
4303  SmallVector<int, 8> Mask;
4304  for (unsigned i = 0, Half = NumElems/2; i != Half; ++i) {
4305    Mask.push_back(i + Half);
4306    Mask.push_back(i + NumElems + Half);
4307  }
4308  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4309}
4310
4311// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4312// a generic shuffle instruction because the target has no such instructions.
4313// Generate shuffles which repeat i16 and i8 several times until they can be
4314// represented by v4f32 and then be manipulated by target suported shuffles.
4315static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4316  EVT VT = V.getValueType();
4317  int NumElems = VT.getVectorNumElements();
4318  DebugLoc dl = V.getDebugLoc();
4319
4320  while (NumElems > 4) {
4321    if (EltNo < NumElems/2) {
4322      V = getUnpackl(DAG, dl, VT, V, V);
4323    } else {
4324      V = getUnpackh(DAG, dl, VT, V, V);
4325      EltNo -= NumElems/2;
4326    }
4327    NumElems >>= 1;
4328  }
4329  return V;
4330}
4331
4332/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4333static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4334  EVT VT = V.getValueType();
4335  DebugLoc dl = V.getDebugLoc();
4336  unsigned Size = VT.getSizeInBits();
4337
4338  if (Size == 128) {
4339    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4340    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4341    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4342                             &SplatMask[0]);
4343  } else if (Size == 256) {
4344    // To use VPERMILPS to splat scalars, the second half of indicies must
4345    // refer to the higher part, which is a duplication of the lower one,
4346    // because VPERMILPS can only handle in-lane permutations.
4347    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4348                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4349
4350    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4351    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4352                             &SplatMask[0]);
4353  } else
4354    llvm_unreachable("Vector size not supported");
4355
4356  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4357}
4358
4359/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4360static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4361  EVT SrcVT = SV->getValueType(0);
4362  SDValue V1 = SV->getOperand(0);
4363  DebugLoc dl = SV->getDebugLoc();
4364
4365  int EltNo = SV->getSplatIndex();
4366  int NumElems = SrcVT.getVectorNumElements();
4367  unsigned Size = SrcVT.getSizeInBits();
4368
4369  assert(((Size == 128 && NumElems > 4) || Size == 256) &&
4370          "Unknown how to promote splat for type");
4371
4372  // Extract the 128-bit part containing the splat element and update
4373  // the splat element index when it refers to the higher register.
4374  if (Size == 256) {
4375    V1 = Extract128BitVector(V1, EltNo, DAG, dl);
4376    if (EltNo >= NumElems/2)
4377      EltNo -= NumElems/2;
4378  }
4379
4380  // All i16 and i8 vector types can't be used directly by a generic shuffle
4381  // instruction because the target has no such instruction. Generate shuffles
4382  // which repeat i16 and i8 several times until they fit in i32, and then can
4383  // be manipulated by target suported shuffles.
4384  EVT EltVT = SrcVT.getVectorElementType();
4385  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4386    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4387
4388  // Recreate the 256-bit vector and place the same 128-bit vector
4389  // into the low and high part. This is necessary because we want
4390  // to use VPERM* to shuffle the vectors
4391  if (Size == 256) {
4392    V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, SrcVT, V1, V1);
4393  }
4394
4395  return getLegalSplat(DAG, V1, EltNo);
4396}
4397
4398/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4399/// vector of zero or undef vector.  This produces a shuffle where the low
4400/// element of V2 is swizzled into the zero/undef vector, landing at element
4401/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4402static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4403                                           bool IsZero,
4404                                           const X86Subtarget *Subtarget,
4405                                           SelectionDAG &DAG) {
4406  EVT VT = V2.getValueType();
4407  SDValue V1 = IsZero
4408    ? getZeroVector(VT, Subtarget, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4409  unsigned NumElems = VT.getVectorNumElements();
4410  SmallVector<int, 16> MaskVec;
4411  for (unsigned i = 0; i != NumElems; ++i)
4412    // If this is the insertion idx, put the low elt of V2 here.
4413    MaskVec.push_back(i == Idx ? NumElems : i);
4414  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4415}
4416
4417/// getTargetShuffleMask - Calculates the shuffle mask corresponding to the
4418/// target specific opcode. Returns true if the Mask could be calculated.
4419/// Sets IsUnary to true if only uses one source.
4420static bool getTargetShuffleMask(SDNode *N, MVT VT,
4421                                 SmallVectorImpl<int> &Mask, bool &IsUnary) {
4422  unsigned NumElems = VT.getVectorNumElements();
4423  SDValue ImmN;
4424
4425  IsUnary = false;
4426  switch(N->getOpcode()) {
4427  case X86ISD::SHUFP:
4428    ImmN = N->getOperand(N->getNumOperands()-1);
4429    DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4430    break;
4431  case X86ISD::UNPCKH:
4432    DecodeUNPCKHMask(VT, Mask);
4433    break;
4434  case X86ISD::UNPCKL:
4435    DecodeUNPCKLMask(VT, Mask);
4436    break;
4437  case X86ISD::MOVHLPS:
4438    DecodeMOVHLPSMask(NumElems, Mask);
4439    break;
4440  case X86ISD::MOVLHPS:
4441    DecodeMOVLHPSMask(NumElems, Mask);
4442    break;
4443  case X86ISD::PSHUFD:
4444  case X86ISD::VPERMILP:
4445    ImmN = N->getOperand(N->getNumOperands()-1);
4446    DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4447    IsUnary = true;
4448    break;
4449  case X86ISD::PSHUFHW:
4450    ImmN = N->getOperand(N->getNumOperands()-1);
4451    DecodePSHUFHWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4452    IsUnary = true;
4453    break;
4454  case X86ISD::PSHUFLW:
4455    ImmN = N->getOperand(N->getNumOperands()-1);
4456    DecodePSHUFLWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4457    IsUnary = true;
4458    break;
4459  case X86ISD::VPERMI:
4460    ImmN = N->getOperand(N->getNumOperands()-1);
4461    DecodeVPERMMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4462    IsUnary = true;
4463    break;
4464  case X86ISD::MOVSS:
4465  case X86ISD::MOVSD: {
4466    // The index 0 always comes from the first element of the second source,
4467    // this is why MOVSS and MOVSD are used in the first place. The other
4468    // elements come from the other positions of the first source vector
4469    Mask.push_back(NumElems);
4470    for (unsigned i = 1; i != NumElems; ++i) {
4471      Mask.push_back(i);
4472    }
4473    break;
4474  }
4475  case X86ISD::VPERM2X128:
4476    ImmN = N->getOperand(N->getNumOperands()-1);
4477    DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4478    if (Mask.empty()) return false;
4479    break;
4480  case X86ISD::MOVDDUP:
4481  case X86ISD::MOVLHPD:
4482  case X86ISD::MOVLPD:
4483  case X86ISD::MOVLPS:
4484  case X86ISD::MOVSHDUP:
4485  case X86ISD::MOVSLDUP:
4486  case X86ISD::PALIGN:
4487    // Not yet implemented
4488    return false;
4489  default: llvm_unreachable("unknown target shuffle node");
4490  }
4491
4492  return true;
4493}
4494
4495/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4496/// element of the result of the vector shuffle.
4497static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
4498                                   unsigned Depth) {
4499  if (Depth == 6)
4500    return SDValue();  // Limit search depth.
4501
4502  SDValue V = SDValue(N, 0);
4503  EVT VT = V.getValueType();
4504  unsigned Opcode = V.getOpcode();
4505
4506  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4507  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4508    int Elt = SV->getMaskElt(Index);
4509
4510    if (Elt < 0)
4511      return DAG.getUNDEF(VT.getVectorElementType());
4512
4513    unsigned NumElems = VT.getVectorNumElements();
4514    SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0)
4515                                         : SV->getOperand(1);
4516    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1);
4517  }
4518
4519  // Recurse into target specific vector shuffles to find scalars.
4520  if (isTargetShuffle(Opcode)) {
4521    MVT ShufVT = V.getValueType().getSimpleVT();
4522    unsigned NumElems = ShufVT.getVectorNumElements();
4523    SmallVector<int, 16> ShuffleMask;
4524    SDValue ImmN;
4525    bool IsUnary;
4526
4527    if (!getTargetShuffleMask(N, ShufVT, ShuffleMask, IsUnary))
4528      return SDValue();
4529
4530    int Elt = ShuffleMask[Index];
4531    if (Elt < 0)
4532      return DAG.getUNDEF(ShufVT.getVectorElementType());
4533
4534    SDValue NewV = (Elt < (int)NumElems) ? N->getOperand(0)
4535                                         : N->getOperand(1);
4536    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG,
4537                               Depth+1);
4538  }
4539
4540  // Actual nodes that may contain scalar elements
4541  if (Opcode == ISD::BITCAST) {
4542    V = V.getOperand(0);
4543    EVT SrcVT = V.getValueType();
4544    unsigned NumElems = VT.getVectorNumElements();
4545
4546    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4547      return SDValue();
4548  }
4549
4550  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4551    return (Index == 0) ? V.getOperand(0)
4552                        : DAG.getUNDEF(VT.getVectorElementType());
4553
4554  if (V.getOpcode() == ISD::BUILD_VECTOR)
4555    return V.getOperand(Index);
4556
4557  return SDValue();
4558}
4559
4560/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4561/// shuffle operation which come from a consecutively from a zero. The
4562/// search can start in two different directions, from left or right.
4563static
4564unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, unsigned NumElems,
4565                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4566  unsigned i;
4567  for (i = 0; i != NumElems; ++i) {
4568    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4569    SDValue Elt = getShuffleScalarElt(SVOp, Index, DAG, 0);
4570    if (!(Elt.getNode() &&
4571         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4572      break;
4573  }
4574
4575  return i;
4576}
4577
4578/// isShuffleMaskConsecutive - Check if the shuffle mask indicies [MaskI, MaskE)
4579/// correspond consecutively to elements from one of the vector operands,
4580/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4581static
4582bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp,
4583                              unsigned MaskI, unsigned MaskE, unsigned OpIdx,
4584                              unsigned NumElems, unsigned &OpNum) {
4585  bool SeenV1 = false;
4586  bool SeenV2 = false;
4587
4588  for (unsigned i = MaskI; i != MaskE; ++i, ++OpIdx) {
4589    int Idx = SVOp->getMaskElt(i);
4590    // Ignore undef indicies
4591    if (Idx < 0)
4592      continue;
4593
4594    if (Idx < (int)NumElems)
4595      SeenV1 = true;
4596    else
4597      SeenV2 = true;
4598
4599    // Only accept consecutive elements from the same vector
4600    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4601      return false;
4602  }
4603
4604  OpNum = SeenV1 ? 0 : 1;
4605  return true;
4606}
4607
4608/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4609/// logical left shift of a vector.
4610static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4611                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4612  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4613  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4614              false /* check zeros from right */, DAG);
4615  unsigned OpSrc;
4616
4617  if (!NumZeros)
4618    return false;
4619
4620  // Considering the elements in the mask that are not consecutive zeros,
4621  // check if they consecutively come from only one of the source vectors.
4622  //
4623  //               V1 = {X, A, B, C}     0
4624  //                         \  \  \    /
4625  //   vector_shuffle V1, V2 <1, 2, 3, X>
4626  //
4627  if (!isShuffleMaskConsecutive(SVOp,
4628            0,                   // Mask Start Index
4629            NumElems-NumZeros,   // Mask End Index(exclusive)
4630            NumZeros,            // Where to start looking in the src vector
4631            NumElems,            // Number of elements in vector
4632            OpSrc))              // Which source operand ?
4633    return false;
4634
4635  isLeft = false;
4636  ShAmt = NumZeros;
4637  ShVal = SVOp->getOperand(OpSrc);
4638  return true;
4639}
4640
4641/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4642/// logical left shift of a vector.
4643static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4644                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4645  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4646  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4647              true /* check zeros from left */, DAG);
4648  unsigned OpSrc;
4649
4650  if (!NumZeros)
4651    return false;
4652
4653  // Considering the elements in the mask that are not consecutive zeros,
4654  // check if they consecutively come from only one of the source vectors.
4655  //
4656  //                           0    { A, B, X, X } = V2
4657  //                          / \    /  /
4658  //   vector_shuffle V1, V2 <X, X, 4, 5>
4659  //
4660  if (!isShuffleMaskConsecutive(SVOp,
4661            NumZeros,     // Mask Start Index
4662            NumElems,     // Mask End Index(exclusive)
4663            0,            // Where to start looking in the src vector
4664            NumElems,     // Number of elements in vector
4665            OpSrc))       // Which source operand ?
4666    return false;
4667
4668  isLeft = true;
4669  ShAmt = NumZeros;
4670  ShVal = SVOp->getOperand(OpSrc);
4671  return true;
4672}
4673
4674/// isVectorShift - Returns true if the shuffle can be implemented as a
4675/// logical left or right shift of a vector.
4676static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4677                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4678  // Although the logic below support any bitwidth size, there are no
4679  // shift instructions which handle more than 128-bit vectors.
4680  if (SVOp->getValueType(0).getSizeInBits() > 128)
4681    return false;
4682
4683  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4684      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4685    return true;
4686
4687  return false;
4688}
4689
4690/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4691///
4692static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4693                                       unsigned NumNonZero, unsigned NumZero,
4694                                       SelectionDAG &DAG,
4695                                       const X86Subtarget* Subtarget,
4696                                       const TargetLowering &TLI) {
4697  if (NumNonZero > 8)
4698    return SDValue();
4699
4700  DebugLoc dl = Op.getDebugLoc();
4701  SDValue V(0, 0);
4702  bool First = true;
4703  for (unsigned i = 0; i < 16; ++i) {
4704    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4705    if (ThisIsNonZero && First) {
4706      if (NumZero)
4707        V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4708      else
4709        V = DAG.getUNDEF(MVT::v8i16);
4710      First = false;
4711    }
4712
4713    if ((i & 1) != 0) {
4714      SDValue ThisElt(0, 0), LastElt(0, 0);
4715      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4716      if (LastIsNonZero) {
4717        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4718                              MVT::i16, Op.getOperand(i-1));
4719      }
4720      if (ThisIsNonZero) {
4721        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4722        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4723                              ThisElt, DAG.getConstant(8, MVT::i8));
4724        if (LastIsNonZero)
4725          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4726      } else
4727        ThisElt = LastElt;
4728
4729      if (ThisElt.getNode())
4730        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4731                        DAG.getIntPtrConstant(i/2));
4732    }
4733  }
4734
4735  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4736}
4737
4738/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4739///
4740static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4741                                     unsigned NumNonZero, unsigned NumZero,
4742                                     SelectionDAG &DAG,
4743                                     const X86Subtarget* Subtarget,
4744                                     const TargetLowering &TLI) {
4745  if (NumNonZero > 4)
4746    return SDValue();
4747
4748  DebugLoc dl = Op.getDebugLoc();
4749  SDValue V(0, 0);
4750  bool First = true;
4751  for (unsigned i = 0; i < 8; ++i) {
4752    bool isNonZero = (NonZeros & (1 << i)) != 0;
4753    if (isNonZero) {
4754      if (First) {
4755        if (NumZero)
4756          V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4757        else
4758          V = DAG.getUNDEF(MVT::v8i16);
4759        First = false;
4760      }
4761      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4762                      MVT::v8i16, V, Op.getOperand(i),
4763                      DAG.getIntPtrConstant(i));
4764    }
4765  }
4766
4767  return V;
4768}
4769
4770/// getVShift - Return a vector logical shift node.
4771///
4772static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4773                         unsigned NumBits, SelectionDAG &DAG,
4774                         const TargetLowering &TLI, DebugLoc dl) {
4775  assert(VT.getSizeInBits() == 128 && "Unknown type for VShift");
4776  EVT ShVT = MVT::v2i64;
4777  unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
4778  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4779  return DAG.getNode(ISD::BITCAST, dl, VT,
4780                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4781                             DAG.getConstant(NumBits,
4782                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4783}
4784
4785SDValue
4786X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4787                                          SelectionDAG &DAG) const {
4788
4789  // Check if the scalar load can be widened into a vector load. And if
4790  // the address is "base + cst" see if the cst can be "absorbed" into
4791  // the shuffle mask.
4792  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4793    SDValue Ptr = LD->getBasePtr();
4794    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4795      return SDValue();
4796    EVT PVT = LD->getValueType(0);
4797    if (PVT != MVT::i32 && PVT != MVT::f32)
4798      return SDValue();
4799
4800    int FI = -1;
4801    int64_t Offset = 0;
4802    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4803      FI = FINode->getIndex();
4804      Offset = 0;
4805    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4806               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4807      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4808      Offset = Ptr.getConstantOperandVal(1);
4809      Ptr = Ptr.getOperand(0);
4810    } else {
4811      return SDValue();
4812    }
4813
4814    // FIXME: 256-bit vector instructions don't require a strict alignment,
4815    // improve this code to support it better.
4816    unsigned RequiredAlign = VT.getSizeInBits()/8;
4817    SDValue Chain = LD->getChain();
4818    // Make sure the stack object alignment is at least 16 or 32.
4819    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4820    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4821      if (MFI->isFixedObjectIndex(FI)) {
4822        // Can't change the alignment. FIXME: It's possible to compute
4823        // the exact stack offset and reference FI + adjust offset instead.
4824        // If someone *really* cares about this. That's the way to implement it.
4825        return SDValue();
4826      } else {
4827        MFI->setObjectAlignment(FI, RequiredAlign);
4828      }
4829    }
4830
4831    // (Offset % 16 or 32) must be multiple of 4. Then address is then
4832    // Ptr + (Offset & ~15).
4833    if (Offset < 0)
4834      return SDValue();
4835    if ((Offset % RequiredAlign) & 3)
4836      return SDValue();
4837    int64_t StartOffset = Offset & ~(RequiredAlign-1);
4838    if (StartOffset)
4839      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4840                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4841
4842    int EltNo = (Offset - StartOffset) >> 2;
4843    unsigned NumElems = VT.getVectorNumElements();
4844
4845    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4846    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4847                             LD->getPointerInfo().getWithOffset(StartOffset),
4848                             false, false, false, 0);
4849
4850    SmallVector<int, 8> Mask;
4851    for (unsigned i = 0; i != NumElems; ++i)
4852      Mask.push_back(EltNo);
4853
4854    return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]);
4855  }
4856
4857  return SDValue();
4858}
4859
4860/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4861/// vector of type 'VT', see if the elements can be replaced by a single large
4862/// load which has the same value as a build_vector whose operands are 'elts'.
4863///
4864/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4865///
4866/// FIXME: we'd also like to handle the case where the last elements are zero
4867/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4868/// There's even a handy isZeroNode for that purpose.
4869static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4870                                        DebugLoc &DL, SelectionDAG &DAG) {
4871  EVT EltVT = VT.getVectorElementType();
4872  unsigned NumElems = Elts.size();
4873
4874  LoadSDNode *LDBase = NULL;
4875  unsigned LastLoadedElt = -1U;
4876
4877  // For each element in the initializer, see if we've found a load or an undef.
4878  // If we don't find an initial load element, or later load elements are
4879  // non-consecutive, bail out.
4880  for (unsigned i = 0; i < NumElems; ++i) {
4881    SDValue Elt = Elts[i];
4882
4883    if (!Elt.getNode() ||
4884        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4885      return SDValue();
4886    if (!LDBase) {
4887      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4888        return SDValue();
4889      LDBase = cast<LoadSDNode>(Elt.getNode());
4890      LastLoadedElt = i;
4891      continue;
4892    }
4893    if (Elt.getOpcode() == ISD::UNDEF)
4894      continue;
4895
4896    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4897    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4898      return SDValue();
4899    LastLoadedElt = i;
4900  }
4901
4902  // If we have found an entire vector of loads and undefs, then return a large
4903  // load of the entire vector width starting at the base pointer.  If we found
4904  // consecutive loads for the low half, generate a vzext_load node.
4905  if (LastLoadedElt == NumElems - 1) {
4906    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4907      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4908                         LDBase->getPointerInfo(),
4909                         LDBase->isVolatile(), LDBase->isNonTemporal(),
4910                         LDBase->isInvariant(), 0);
4911    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4912                       LDBase->getPointerInfo(),
4913                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4914                       LDBase->isInvariant(), LDBase->getAlignment());
4915  }
4916  if (NumElems == 4 && LastLoadedElt == 1 &&
4917      DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
4918    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4919    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4920    SDValue ResNode =
4921        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
4922                                LDBase->getPointerInfo(),
4923                                LDBase->getAlignment(),
4924                                false/*isVolatile*/, true/*ReadMem*/,
4925                                false/*WriteMem*/);
4926    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
4927  }
4928  return SDValue();
4929}
4930
4931/// LowerVectorBroadcast - Attempt to use the vbroadcast instruction
4932/// to generate a splat value for the following cases:
4933/// 1. A splat BUILD_VECTOR which uses a single scalar load, or a constant.
4934/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
4935/// a scalar load, or a constant.
4936/// The VBROADCAST node is returned when a pattern is found,
4937/// or SDValue() otherwise.
4938SDValue
4939X86TargetLowering::LowerVectorBroadcast(SDValue &Op, SelectionDAG &DAG) const {
4940  if (!Subtarget->hasAVX())
4941    return SDValue();
4942
4943  EVT VT = Op.getValueType();
4944  DebugLoc dl = Op.getDebugLoc();
4945
4946  assert((VT.is128BitVector() || VT.is256BitVector()) &&
4947         "Unsupported vector type for broadcast.");
4948
4949  SDValue Ld;
4950  bool ConstSplatVal;
4951
4952  switch (Op.getOpcode()) {
4953    default:
4954      // Unknown pattern found.
4955      return SDValue();
4956
4957    case ISD::BUILD_VECTOR: {
4958      // The BUILD_VECTOR node must be a splat.
4959      if (!isSplatVector(Op.getNode()))
4960        return SDValue();
4961
4962      Ld = Op.getOperand(0);
4963      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
4964                     Ld.getOpcode() == ISD::ConstantFP);
4965
4966      // The suspected load node has several users. Make sure that all
4967      // of its users are from the BUILD_VECTOR node.
4968      // Constants may have multiple users.
4969      if (!ConstSplatVal && !Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
4970        return SDValue();
4971      break;
4972    }
4973
4974    case ISD::VECTOR_SHUFFLE: {
4975      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4976
4977      // Shuffles must have a splat mask where the first element is
4978      // broadcasted.
4979      if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
4980        return SDValue();
4981
4982      SDValue Sc = Op.getOperand(0);
4983      if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR &&
4984          Sc.getOpcode() != ISD::BUILD_VECTOR)
4985        return SDValue();
4986
4987      Ld = Sc.getOperand(0);
4988      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
4989                       Ld.getOpcode() == ISD::ConstantFP);
4990
4991      // The scalar_to_vector node and the suspected
4992      // load node must have exactly one user.
4993      // Constants may have multiple users.
4994      if (!ConstSplatVal && (!Sc.hasOneUse() || !Ld.hasOneUse()))
4995        return SDValue();
4996      break;
4997    }
4998  }
4999
5000  bool Is256 = VT.getSizeInBits() == 256;
5001
5002  // Handle the broadcasting a single constant scalar from the constant pool
5003  // into a vector. On Sandybridge it is still better to load a constant vector
5004  // from the constant pool and not to broadcast it from a scalar.
5005  if (ConstSplatVal && Subtarget->hasAVX2()) {
5006    EVT CVT = Ld.getValueType();
5007    assert(!CVT.isVector() && "Must not broadcast a vector type");
5008    unsigned ScalarSize = CVT.getSizeInBits();
5009
5010    if (ScalarSize == 32 || (Is256 && ScalarSize == 64)) {
5011      const Constant *C = 0;
5012      if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld))
5013        C = CI->getConstantIntValue();
5014      else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld))
5015        C = CF->getConstantFPValue();
5016
5017      assert(C && "Invalid constant type");
5018
5019      SDValue CP = DAG.getConstantPool(C, getPointerTy());
5020      unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
5021      Ld = DAG.getLoad(CVT, dl, DAG.getEntryNode(), CP,
5022                       MachinePointerInfo::getConstantPool(),
5023                       false, false, false, Alignment);
5024
5025      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5026    }
5027  }
5028
5029  // The scalar source must be a normal load.
5030  if (!ISD::isNormalLoad(Ld.getNode()))
5031    return SDValue();
5032
5033  unsigned ScalarSize = Ld.getValueType().getSizeInBits();
5034
5035  if (ScalarSize == 32 || (Is256 && ScalarSize == 64))
5036    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5037
5038  // The integer check is needed for the 64-bit into 128-bit so it doesn't match
5039  // double since there is no vbroadcastsd xmm
5040  if (Subtarget->hasAVX2() && Ld.getValueType().isInteger()) {
5041    if (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64)
5042      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5043  }
5044
5045  // Unsupported broadcast.
5046  return SDValue();
5047}
5048
5049SDValue
5050X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5051  DebugLoc dl = Op.getDebugLoc();
5052
5053  EVT VT = Op.getValueType();
5054  EVT ExtVT = VT.getVectorElementType();
5055  unsigned NumElems = Op.getNumOperands();
5056
5057  // Vectors containing all zeros can be matched by pxor and xorps later
5058  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5059    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5060    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5061    if (VT == MVT::v4i32 || VT == MVT::v8i32)
5062      return Op;
5063
5064    return getZeroVector(VT, Subtarget, DAG, dl);
5065  }
5066
5067  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5068  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
5069  // vpcmpeqd on 256-bit vectors.
5070  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5071    if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasAVX2()))
5072      return Op;
5073
5074    return getOnesVector(VT, Subtarget->hasAVX2(), DAG, dl);
5075  }
5076
5077  SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
5078  if (Broadcast.getNode())
5079    return Broadcast;
5080
5081  unsigned EVTBits = ExtVT.getSizeInBits();
5082
5083  unsigned NumZero  = 0;
5084  unsigned NumNonZero = 0;
5085  unsigned NonZeros = 0;
5086  bool IsAllConstants = true;
5087  SmallSet<SDValue, 8> Values;
5088  for (unsigned i = 0; i < NumElems; ++i) {
5089    SDValue Elt = Op.getOperand(i);
5090    if (Elt.getOpcode() == ISD::UNDEF)
5091      continue;
5092    Values.insert(Elt);
5093    if (Elt.getOpcode() != ISD::Constant &&
5094        Elt.getOpcode() != ISD::ConstantFP)
5095      IsAllConstants = false;
5096    if (X86::isZeroNode(Elt))
5097      NumZero++;
5098    else {
5099      NonZeros |= (1 << i);
5100      NumNonZero++;
5101    }
5102  }
5103
5104  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5105  if (NumNonZero == 0)
5106    return DAG.getUNDEF(VT);
5107
5108  // Special case for single non-zero, non-undef, element.
5109  if (NumNonZero == 1) {
5110    unsigned Idx = CountTrailingZeros_32(NonZeros);
5111    SDValue Item = Op.getOperand(Idx);
5112
5113    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5114    // the value are obviously zero, truncate the value to i32 and do the
5115    // insertion that way.  Only do this if the value is non-constant or if the
5116    // value is a constant being inserted into element 0.  It is cheaper to do
5117    // a constant pool load than it is to do a movd + shuffle.
5118    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5119        (!IsAllConstants || Idx == 0)) {
5120      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5121        // Handle SSE only.
5122        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5123        EVT VecVT = MVT::v4i32;
5124        unsigned VecElts = 4;
5125
5126        // Truncate the value (which may itself be a constant) to i32, and
5127        // convert it to a vector with movd (S2V+shuffle to zero extend).
5128        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5129        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5130        Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5131
5132        // Now we have our 32-bit value zero extended in the low element of
5133        // a vector.  If Idx != 0, swizzle it into place.
5134        if (Idx != 0) {
5135          SmallVector<int, 4> Mask;
5136          Mask.push_back(Idx);
5137          for (unsigned i = 1; i != VecElts; ++i)
5138            Mask.push_back(i);
5139          Item = DAG.getVectorShuffle(VecVT, dl, Item, DAG.getUNDEF(VecVT),
5140                                      &Mask[0]);
5141        }
5142        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5143      }
5144    }
5145
5146    // If we have a constant or non-constant insertion into the low element of
5147    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5148    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5149    // depending on what the source datatype is.
5150    if (Idx == 0) {
5151      if (NumZero == 0)
5152        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5153
5154      if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5155          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5156        if (VT.getSizeInBits() == 256) {
5157          SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl);
5158          return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
5159                             Item, DAG.getIntPtrConstant(0));
5160        }
5161        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5162        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5163        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5164        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5165      }
5166
5167      if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5168        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5169        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
5170        if (VT.getSizeInBits() == 256) {
5171          SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl);
5172          Item = Insert128BitVector(ZeroVec, Item, 0, DAG, dl);
5173        } else {
5174          assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5175          Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5176        }
5177        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5178      }
5179    }
5180
5181    // Is it a vector logical left shift?
5182    if (NumElems == 2 && Idx == 1 &&
5183        X86::isZeroNode(Op.getOperand(0)) &&
5184        !X86::isZeroNode(Op.getOperand(1))) {
5185      unsigned NumBits = VT.getSizeInBits();
5186      return getVShift(true, VT,
5187                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5188                                   VT, Op.getOperand(1)),
5189                       NumBits/2, DAG, *this, dl);
5190    }
5191
5192    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5193      return SDValue();
5194
5195    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5196    // is a non-constant being inserted into an element other than the low one,
5197    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5198    // movd/movss) to move this into the low element, then shuffle it into
5199    // place.
5200    if (EVTBits == 32) {
5201      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5202
5203      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5204      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG);
5205      SmallVector<int, 8> MaskVec;
5206      for (unsigned i = 0; i != NumElems; ++i)
5207        MaskVec.push_back(i == Idx ? 0 : 1);
5208      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5209    }
5210  }
5211
5212  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5213  if (Values.size() == 1) {
5214    if (EVTBits == 32) {
5215      // Instead of a shuffle like this:
5216      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5217      // Check if it's possible to issue this instead.
5218      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5219      unsigned Idx = CountTrailingZeros_32(NonZeros);
5220      SDValue Item = Op.getOperand(Idx);
5221      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5222        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5223    }
5224    return SDValue();
5225  }
5226
5227  // A vector full of immediates; various special cases are already
5228  // handled, so this is best done with a single constant-pool load.
5229  if (IsAllConstants)
5230    return SDValue();
5231
5232  // For AVX-length vectors, build the individual 128-bit pieces and use
5233  // shuffles to put them in place.
5234  if (VT.getSizeInBits() == 256) {
5235    SmallVector<SDValue, 32> V;
5236    for (unsigned i = 0; i != NumElems; ++i)
5237      V.push_back(Op.getOperand(i));
5238
5239    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5240
5241    // Build both the lower and upper subvector.
5242    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5243    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5244                                NumElems/2);
5245
5246    // Recreate the wider vector with the lower and upper part.
5247    return Concat128BitVectors(Lower, Upper, VT, NumElems, DAG, dl);
5248  }
5249
5250  // Let legalizer expand 2-wide build_vectors.
5251  if (EVTBits == 64) {
5252    if (NumNonZero == 1) {
5253      // One half is zero or undef.
5254      unsigned Idx = CountTrailingZeros_32(NonZeros);
5255      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5256                                 Op.getOperand(Idx));
5257      return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
5258    }
5259    return SDValue();
5260  }
5261
5262  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5263  if (EVTBits == 8 && NumElems == 16) {
5264    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5265                                        Subtarget, *this);
5266    if (V.getNode()) return V;
5267  }
5268
5269  if (EVTBits == 16 && NumElems == 8) {
5270    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5271                                      Subtarget, *this);
5272    if (V.getNode()) return V;
5273  }
5274
5275  // If element VT is == 32 bits, turn it into a number of shuffles.
5276  SmallVector<SDValue, 8> V(NumElems);
5277  if (NumElems == 4 && NumZero > 0) {
5278    for (unsigned i = 0; i < 4; ++i) {
5279      bool isZero = !(NonZeros & (1 << i));
5280      if (isZero)
5281        V[i] = getZeroVector(VT, Subtarget, DAG, dl);
5282      else
5283        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5284    }
5285
5286    for (unsigned i = 0; i < 2; ++i) {
5287      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5288        default: break;
5289        case 0:
5290          V[i] = V[i*2];  // Must be a zero vector.
5291          break;
5292        case 1:
5293          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5294          break;
5295        case 2:
5296          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5297          break;
5298        case 3:
5299          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5300          break;
5301      }
5302    }
5303
5304    bool Reverse1 = (NonZeros & 0x3) == 2;
5305    bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5306    int MaskVec[] = {
5307      Reverse1 ? 1 : 0,
5308      Reverse1 ? 0 : 1,
5309      static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
5310      static_cast<int>(Reverse2 ? NumElems   : NumElems+1)
5311    };
5312    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5313  }
5314
5315  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
5316    // Check for a build vector of consecutive loads.
5317    for (unsigned i = 0; i < NumElems; ++i)
5318      V[i] = Op.getOperand(i);
5319
5320    // Check for elements which are consecutive loads.
5321    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5322    if (LD.getNode())
5323      return LD;
5324
5325    // For SSE 4.1, use insertps to put the high elements into the low element.
5326    if (getSubtarget()->hasSSE41()) {
5327      SDValue Result;
5328      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5329        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5330      else
5331        Result = DAG.getUNDEF(VT);
5332
5333      for (unsigned i = 1; i < NumElems; ++i) {
5334        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5335        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5336                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5337      }
5338      return Result;
5339    }
5340
5341    // Otherwise, expand into a number of unpckl*, start by extending each of
5342    // our (non-undef) elements to the full vector width with the element in the
5343    // bottom slot of the vector (which generates no code for SSE).
5344    for (unsigned i = 0; i < NumElems; ++i) {
5345      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5346        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5347      else
5348        V[i] = DAG.getUNDEF(VT);
5349    }
5350
5351    // Next, we iteratively mix elements, e.g. for v4f32:
5352    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5353    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5354    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5355    unsigned EltStride = NumElems >> 1;
5356    while (EltStride != 0) {
5357      for (unsigned i = 0; i < EltStride; ++i) {
5358        // If V[i+EltStride] is undef and this is the first round of mixing,
5359        // then it is safe to just drop this shuffle: V[i] is already in the
5360        // right place, the one element (since it's the first round) being
5361        // inserted as undef can be dropped.  This isn't safe for successive
5362        // rounds because they will permute elements within both vectors.
5363        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5364            EltStride == NumElems/2)
5365          continue;
5366
5367        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5368      }
5369      EltStride >>= 1;
5370    }
5371    return V[0];
5372  }
5373  return SDValue();
5374}
5375
5376// LowerMMXCONCAT_VECTORS - We support concatenate two MMX registers and place
5377// them in a MMX register.  This is better than doing a stack convert.
5378static SDValue LowerMMXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5379  DebugLoc dl = Op.getDebugLoc();
5380  EVT ResVT = Op.getValueType();
5381
5382  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
5383         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
5384  int Mask[2];
5385  SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
5386  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5387  InVec = Op.getOperand(1);
5388  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5389    unsigned NumElts = ResVT.getVectorNumElements();
5390    VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5391    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
5392                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
5393  } else {
5394    InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
5395    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5396    Mask[0] = 0; Mask[1] = 2;
5397    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
5398  }
5399  return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5400}
5401
5402// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5403// to create 256-bit vectors from two other 128-bit ones.
5404static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5405  DebugLoc dl = Op.getDebugLoc();
5406  EVT ResVT = Op.getValueType();
5407
5408  assert(ResVT.getSizeInBits() == 256 && "Value type must be 256-bit wide");
5409
5410  SDValue V1 = Op.getOperand(0);
5411  SDValue V2 = Op.getOperand(1);
5412  unsigned NumElems = ResVT.getVectorNumElements();
5413
5414  return Concat128BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
5415}
5416
5417SDValue
5418X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
5419  EVT ResVT = Op.getValueType();
5420
5421  assert(Op.getNumOperands() == 2);
5422  assert((ResVT.getSizeInBits() == 128 || ResVT.getSizeInBits() == 256) &&
5423         "Unsupported CONCAT_VECTORS for value type");
5424
5425  // We support concatenate two MMX registers and place them in a MMX register.
5426  // This is better than doing a stack convert.
5427  if (ResVT.is128BitVector())
5428    return LowerMMXCONCAT_VECTORS(Op, DAG);
5429
5430  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5431  // from two other 128-bit ones.
5432  return LowerAVXCONCAT_VECTORS(Op, DAG);
5433}
5434
5435// Try to lower a shuffle node into a simple blend instruction.
5436static SDValue LowerVECTOR_SHUFFLEtoBlend(ShuffleVectorSDNode *SVOp,
5437                                          const X86Subtarget *Subtarget,
5438                                          SelectionDAG &DAG) {
5439  SDValue V1 = SVOp->getOperand(0);
5440  SDValue V2 = SVOp->getOperand(1);
5441  DebugLoc dl = SVOp->getDebugLoc();
5442  MVT VT = SVOp->getValueType(0).getSimpleVT();
5443  unsigned NumElems = VT.getVectorNumElements();
5444
5445  if (!Subtarget->hasSSE41())
5446    return SDValue();
5447
5448  unsigned ISDNo = 0;
5449  MVT OpTy;
5450
5451  switch (VT.SimpleTy) {
5452  default: return SDValue();
5453  case MVT::v8i16:
5454    ISDNo = X86ISD::BLENDPW;
5455    OpTy = MVT::v8i16;
5456    break;
5457  case MVT::v4i32:
5458  case MVT::v4f32:
5459    ISDNo = X86ISD::BLENDPS;
5460    OpTy = MVT::v4f32;
5461    break;
5462  case MVT::v2i64:
5463  case MVT::v2f64:
5464    ISDNo = X86ISD::BLENDPD;
5465    OpTy = MVT::v2f64;
5466    break;
5467  case MVT::v8i32:
5468  case MVT::v8f32:
5469    if (!Subtarget->hasAVX())
5470      return SDValue();
5471    ISDNo = X86ISD::BLENDPS;
5472    OpTy = MVT::v8f32;
5473    break;
5474  case MVT::v4i64:
5475  case MVT::v4f64:
5476    if (!Subtarget->hasAVX())
5477      return SDValue();
5478    ISDNo = X86ISD::BLENDPD;
5479    OpTy = MVT::v4f64;
5480    break;
5481  }
5482  assert(ISDNo && "Invalid Op Number");
5483
5484  unsigned MaskVals = 0;
5485
5486  for (unsigned i = 0; i != NumElems; ++i) {
5487    int EltIdx = SVOp->getMaskElt(i);
5488    if (EltIdx == (int)i || EltIdx < 0)
5489      MaskVals |= (1<<i);
5490    else if (EltIdx == (int)(i + NumElems))
5491      continue; // Bit is set to zero;
5492    else
5493      return SDValue();
5494  }
5495
5496  V1 = DAG.getNode(ISD::BITCAST, dl, OpTy, V1);
5497  V2 = DAG.getNode(ISD::BITCAST, dl, OpTy, V2);
5498  SDValue Ret =  DAG.getNode(ISDNo, dl, OpTy, V1, V2,
5499                             DAG.getConstant(MaskVals, MVT::i32));
5500  return DAG.getNode(ISD::BITCAST, dl, VT, Ret);
5501}
5502
5503// v8i16 shuffles - Prefer shuffles in the following order:
5504// 1. [all]   pshuflw, pshufhw, optional move
5505// 2. [ssse3] 1 x pshufb
5506// 3. [ssse3] 2 x pshufb + 1 x por
5507// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5508SDValue
5509X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
5510                                            SelectionDAG &DAG) const {
5511  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5512  SDValue V1 = SVOp->getOperand(0);
5513  SDValue V2 = SVOp->getOperand(1);
5514  DebugLoc dl = SVOp->getDebugLoc();
5515  SmallVector<int, 8> MaskVals;
5516
5517  // Determine if more than 1 of the words in each of the low and high quadwords
5518  // of the result come from the same quadword of one of the two inputs.  Undef
5519  // mask values count as coming from any quadword, for better codegen.
5520  unsigned LoQuad[] = { 0, 0, 0, 0 };
5521  unsigned HiQuad[] = { 0, 0, 0, 0 };
5522  std::bitset<4> InputQuads;
5523  for (unsigned i = 0; i < 8; ++i) {
5524    unsigned *Quad = i < 4 ? LoQuad : HiQuad;
5525    int EltIdx = SVOp->getMaskElt(i);
5526    MaskVals.push_back(EltIdx);
5527    if (EltIdx < 0) {
5528      ++Quad[0];
5529      ++Quad[1];
5530      ++Quad[2];
5531      ++Quad[3];
5532      continue;
5533    }
5534    ++Quad[EltIdx / 4];
5535    InputQuads.set(EltIdx / 4);
5536  }
5537
5538  int BestLoQuad = -1;
5539  unsigned MaxQuad = 1;
5540  for (unsigned i = 0; i < 4; ++i) {
5541    if (LoQuad[i] > MaxQuad) {
5542      BestLoQuad = i;
5543      MaxQuad = LoQuad[i];
5544    }
5545  }
5546
5547  int BestHiQuad = -1;
5548  MaxQuad = 1;
5549  for (unsigned i = 0; i < 4; ++i) {
5550    if (HiQuad[i] > MaxQuad) {
5551      BestHiQuad = i;
5552      MaxQuad = HiQuad[i];
5553    }
5554  }
5555
5556  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5557  // of the two input vectors, shuffle them into one input vector so only a
5558  // single pshufb instruction is necessary. If There are more than 2 input
5559  // quads, disable the next transformation since it does not help SSSE3.
5560  bool V1Used = InputQuads[0] || InputQuads[1];
5561  bool V2Used = InputQuads[2] || InputQuads[3];
5562  if (Subtarget->hasSSSE3()) {
5563    if (InputQuads.count() == 2 && V1Used && V2Used) {
5564      BestLoQuad = InputQuads[0] ? 0 : 1;
5565      BestHiQuad = InputQuads[2] ? 2 : 3;
5566    }
5567    if (InputQuads.count() > 2) {
5568      BestLoQuad = -1;
5569      BestHiQuad = -1;
5570    }
5571  }
5572
5573  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5574  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5575  // words from all 4 input quadwords.
5576  SDValue NewV;
5577  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5578    int MaskV[] = {
5579      BestLoQuad < 0 ? 0 : BestLoQuad,
5580      BestHiQuad < 0 ? 1 : BestHiQuad
5581    };
5582    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5583                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5584                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5585    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5586
5587    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5588    // source words for the shuffle, to aid later transformations.
5589    bool AllWordsInNewV = true;
5590    bool InOrder[2] = { true, true };
5591    for (unsigned i = 0; i != 8; ++i) {
5592      int idx = MaskVals[i];
5593      if (idx != (int)i)
5594        InOrder[i/4] = false;
5595      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5596        continue;
5597      AllWordsInNewV = false;
5598      break;
5599    }
5600
5601    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5602    if (AllWordsInNewV) {
5603      for (int i = 0; i != 8; ++i) {
5604        int idx = MaskVals[i];
5605        if (idx < 0)
5606          continue;
5607        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5608        if ((idx != i) && idx < 4)
5609          pshufhw = false;
5610        if ((idx != i) && idx > 3)
5611          pshuflw = false;
5612      }
5613      V1 = NewV;
5614      V2Used = false;
5615      BestLoQuad = 0;
5616      BestHiQuad = 1;
5617    }
5618
5619    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5620    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5621    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5622      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5623      unsigned TargetMask = 0;
5624      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5625                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5626      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5627      TargetMask = pshufhw ? getShufflePSHUFHWImmediate(SVOp):
5628                             getShufflePSHUFLWImmediate(SVOp);
5629      V1 = NewV.getOperand(0);
5630      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5631    }
5632  }
5633
5634  // If we have SSSE3, and all words of the result are from 1 input vector,
5635  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5636  // is present, fall back to case 4.
5637  if (Subtarget->hasSSSE3()) {
5638    SmallVector<SDValue,16> pshufbMask;
5639
5640    // If we have elements from both input vectors, set the high bit of the
5641    // shuffle mask element to zero out elements that come from V2 in the V1
5642    // mask, and elements that come from V1 in the V2 mask, so that the two
5643    // results can be OR'd together.
5644    bool TwoInputs = V1Used && V2Used;
5645    for (unsigned i = 0; i != 8; ++i) {
5646      int EltIdx = MaskVals[i] * 2;
5647      if (TwoInputs && (EltIdx >= 16)) {
5648        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5649        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5650        continue;
5651      }
5652      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
5653      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
5654    }
5655    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5656    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5657                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5658                                 MVT::v16i8, &pshufbMask[0], 16));
5659    if (!TwoInputs)
5660      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5661
5662    // Calculate the shuffle mask for the second input, shuffle it, and
5663    // OR it with the first shuffled input.
5664    pshufbMask.clear();
5665    for (unsigned i = 0; i != 8; ++i) {
5666      int EltIdx = MaskVals[i] * 2;
5667      if (EltIdx < 16) {
5668        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5669        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5670        continue;
5671      }
5672      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5673      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
5674    }
5675    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5676    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5677                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5678                                 MVT::v16i8, &pshufbMask[0], 16));
5679    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5680    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5681  }
5682
5683  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5684  // and update MaskVals with new element order.
5685  std::bitset<8> InOrder;
5686  if (BestLoQuad >= 0) {
5687    int MaskV[] = { -1, -1, -1, -1, 4, 5, 6, 7 };
5688    for (int i = 0; i != 4; ++i) {
5689      int idx = MaskVals[i];
5690      if (idx < 0) {
5691        InOrder.set(i);
5692      } else if ((idx / 4) == BestLoQuad) {
5693        MaskV[i] = idx & 3;
5694        InOrder.set(i);
5695      }
5696    }
5697    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5698                                &MaskV[0]);
5699
5700    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5701      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5702      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5703                                  NewV.getOperand(0),
5704                                  getShufflePSHUFLWImmediate(SVOp), DAG);
5705    }
5706  }
5707
5708  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5709  // and update MaskVals with the new element order.
5710  if (BestHiQuad >= 0) {
5711    int MaskV[] = { 0, 1, 2, 3, -1, -1, -1, -1 };
5712    for (unsigned i = 4; i != 8; ++i) {
5713      int idx = MaskVals[i];
5714      if (idx < 0) {
5715        InOrder.set(i);
5716      } else if ((idx / 4) == BestHiQuad) {
5717        MaskV[i] = (idx & 3) + 4;
5718        InOrder.set(i);
5719      }
5720    }
5721    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5722                                &MaskV[0]);
5723
5724    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5725      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5726      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5727                                  NewV.getOperand(0),
5728                                  getShufflePSHUFHWImmediate(SVOp), DAG);
5729    }
5730  }
5731
5732  // In case BestHi & BestLo were both -1, which means each quadword has a word
5733  // from each of the four input quadwords, calculate the InOrder bitvector now
5734  // before falling through to the insert/extract cleanup.
5735  if (BestLoQuad == -1 && BestHiQuad == -1) {
5736    NewV = V1;
5737    for (int i = 0; i != 8; ++i)
5738      if (MaskVals[i] < 0 || MaskVals[i] == i)
5739        InOrder.set(i);
5740  }
5741
5742  // The other elements are put in the right place using pextrw and pinsrw.
5743  for (unsigned i = 0; i != 8; ++i) {
5744    if (InOrder[i])
5745      continue;
5746    int EltIdx = MaskVals[i];
5747    if (EltIdx < 0)
5748      continue;
5749    SDValue ExtOp = (EltIdx < 8) ?
5750      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5751                  DAG.getIntPtrConstant(EltIdx)) :
5752      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5753                  DAG.getIntPtrConstant(EltIdx - 8));
5754    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5755                       DAG.getIntPtrConstant(i));
5756  }
5757  return NewV;
5758}
5759
5760// v16i8 shuffles - Prefer shuffles in the following order:
5761// 1. [ssse3] 1 x pshufb
5762// 2. [ssse3] 2 x pshufb + 1 x por
5763// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5764static
5765SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5766                                 SelectionDAG &DAG,
5767                                 const X86TargetLowering &TLI) {
5768  SDValue V1 = SVOp->getOperand(0);
5769  SDValue V2 = SVOp->getOperand(1);
5770  DebugLoc dl = SVOp->getDebugLoc();
5771  ArrayRef<int> MaskVals = SVOp->getMask();
5772
5773  // If we have SSSE3, case 1 is generated when all result bytes come from
5774  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5775  // present, fall back to case 3.
5776  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
5777  bool V1Only = true;
5778  bool V2Only = true;
5779  for (unsigned i = 0; i < 16; ++i) {
5780    int EltIdx = MaskVals[i];
5781    if (EltIdx < 0)
5782      continue;
5783    if (EltIdx < 16)
5784      V2Only = false;
5785    else
5786      V1Only = false;
5787  }
5788
5789  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5790  if (TLI.getSubtarget()->hasSSSE3()) {
5791    SmallVector<SDValue,16> pshufbMask;
5792
5793    // If all result elements are from one input vector, then only translate
5794    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5795    //
5796    // Otherwise, we have elements from both input vectors, and must zero out
5797    // elements that come from V2 in the first mask, and V1 in the second mask
5798    // so that we can OR them together.
5799    bool TwoInputs = !(V1Only || V2Only);
5800    for (unsigned i = 0; i != 16; ++i) {
5801      int EltIdx = MaskVals[i];
5802      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
5803        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5804        continue;
5805      }
5806      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5807    }
5808    // If all the elements are from V2, assign it to V1 and return after
5809    // building the first pshufb.
5810    if (V2Only)
5811      V1 = V2;
5812    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5813                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5814                                 MVT::v16i8, &pshufbMask[0], 16));
5815    if (!TwoInputs)
5816      return V1;
5817
5818    // Calculate the shuffle mask for the second input, shuffle it, and
5819    // OR it with the first shuffled input.
5820    pshufbMask.clear();
5821    for (unsigned i = 0; i != 16; ++i) {
5822      int EltIdx = MaskVals[i];
5823      if (EltIdx < 16) {
5824        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5825        continue;
5826      }
5827      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5828    }
5829    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5830                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5831                                 MVT::v16i8, &pshufbMask[0], 16));
5832    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5833  }
5834
5835  // No SSSE3 - Calculate in place words and then fix all out of place words
5836  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5837  // the 16 different words that comprise the two doublequadword input vectors.
5838  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5839  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5840  SDValue NewV = V2Only ? V2 : V1;
5841  for (int i = 0; i != 8; ++i) {
5842    int Elt0 = MaskVals[i*2];
5843    int Elt1 = MaskVals[i*2+1];
5844
5845    // This word of the result is all undef, skip it.
5846    if (Elt0 < 0 && Elt1 < 0)
5847      continue;
5848
5849    // This word of the result is already in the correct place, skip it.
5850    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
5851      continue;
5852    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
5853      continue;
5854
5855    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5856    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5857    SDValue InsElt;
5858
5859    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5860    // using a single extract together, load it and store it.
5861    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5862      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5863                           DAG.getIntPtrConstant(Elt1 / 2));
5864      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5865                        DAG.getIntPtrConstant(i));
5866      continue;
5867    }
5868
5869    // If Elt1 is defined, extract it from the appropriate source.  If the
5870    // source byte is not also odd, shift the extracted word left 8 bits
5871    // otherwise clear the bottom 8 bits if we need to do an or.
5872    if (Elt1 >= 0) {
5873      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5874                           DAG.getIntPtrConstant(Elt1 / 2));
5875      if ((Elt1 & 1) == 0)
5876        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5877                             DAG.getConstant(8,
5878                                  TLI.getShiftAmountTy(InsElt.getValueType())));
5879      else if (Elt0 >= 0)
5880        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5881                             DAG.getConstant(0xFF00, MVT::i16));
5882    }
5883    // If Elt0 is defined, extract it from the appropriate source.  If the
5884    // source byte is not also even, shift the extracted word right 8 bits. If
5885    // Elt1 was also defined, OR the extracted values together before
5886    // inserting them in the result.
5887    if (Elt0 >= 0) {
5888      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5889                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5890      if ((Elt0 & 1) != 0)
5891        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5892                              DAG.getConstant(8,
5893                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
5894      else if (Elt1 >= 0)
5895        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5896                             DAG.getConstant(0x00FF, MVT::i16));
5897      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5898                         : InsElt0;
5899    }
5900    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5901                       DAG.getIntPtrConstant(i));
5902  }
5903  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5904}
5905
5906/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5907/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5908/// done when every pair / quad of shuffle mask elements point to elements in
5909/// the right sequence. e.g.
5910/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5911static
5912SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5913                                 SelectionDAG &DAG, DebugLoc dl) {
5914  MVT VT = SVOp->getValueType(0).getSimpleVT();
5915  unsigned NumElems = VT.getVectorNumElements();
5916  MVT NewVT;
5917  unsigned Scale;
5918  switch (VT.SimpleTy) {
5919  default: llvm_unreachable("Unexpected!");
5920  case MVT::v4f32:  NewVT = MVT::v2f64; Scale = 2; break;
5921  case MVT::v4i32:  NewVT = MVT::v2i64; Scale = 2; break;
5922  case MVT::v8i16:  NewVT = MVT::v4i32; Scale = 2; break;
5923  case MVT::v16i8:  NewVT = MVT::v4i32; Scale = 4; break;
5924  case MVT::v16i16: NewVT = MVT::v8i32; Scale = 2; break;
5925  case MVT::v32i8:  NewVT = MVT::v8i32; Scale = 4; break;
5926  }
5927
5928  SmallVector<int, 8> MaskVec;
5929  for (unsigned i = 0; i != NumElems; i += Scale) {
5930    int StartIdx = -1;
5931    for (unsigned j = 0; j != Scale; ++j) {
5932      int EltIdx = SVOp->getMaskElt(i+j);
5933      if (EltIdx < 0)
5934        continue;
5935      if (StartIdx < 0)
5936        StartIdx = (EltIdx / Scale);
5937      if (EltIdx != (int)(StartIdx*Scale + j))
5938        return SDValue();
5939    }
5940    MaskVec.push_back(StartIdx);
5941  }
5942
5943  SDValue V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(0));
5944  SDValue V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(1));
5945  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
5946}
5947
5948/// getVZextMovL - Return a zero-extending vector move low node.
5949///
5950static SDValue getVZextMovL(EVT VT, EVT OpVT,
5951                            SDValue SrcOp, SelectionDAG &DAG,
5952                            const X86Subtarget *Subtarget, DebugLoc dl) {
5953  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
5954    LoadSDNode *LD = NULL;
5955    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
5956      LD = dyn_cast<LoadSDNode>(SrcOp);
5957    if (!LD) {
5958      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
5959      // instead.
5960      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
5961      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
5962          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5963          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
5964          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
5965        // PR2108
5966        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
5967        return DAG.getNode(ISD::BITCAST, dl, VT,
5968                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5969                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5970                                                   OpVT,
5971                                                   SrcOp.getOperand(0)
5972                                                          .getOperand(0))));
5973      }
5974    }
5975  }
5976
5977  return DAG.getNode(ISD::BITCAST, dl, VT,
5978                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5979                                 DAG.getNode(ISD::BITCAST, dl,
5980                                             OpVT, SrcOp)));
5981}
5982
5983/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
5984/// which could not be matched by any known target speficic shuffle
5985static SDValue
5986LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5987  EVT VT = SVOp->getValueType(0);
5988
5989  unsigned NumElems = VT.getVectorNumElements();
5990  unsigned NumLaneElems = NumElems / 2;
5991
5992  DebugLoc dl = SVOp->getDebugLoc();
5993  MVT EltVT = VT.getVectorElementType().getSimpleVT();
5994  EVT NVT = MVT::getVectorVT(EltVT, NumLaneElems);
5995  SDValue Shufs[2];
5996
5997  SmallVector<int, 16> Mask;
5998  for (unsigned l = 0; l < 2; ++l) {
5999    // Build a shuffle mask for the output, discovering on the fly which
6000    // input vectors to use as shuffle operands (recorded in InputUsed).
6001    // If building a suitable shuffle vector proves too hard, then bail
6002    // out with useBuildVector set.
6003    int InputUsed[2] = { -1, -1 }; // Not yet discovered.
6004    unsigned LaneStart = l * NumLaneElems;
6005    for (unsigned i = 0; i != NumLaneElems; ++i) {
6006      // The mask element.  This indexes into the input.
6007      int Idx = SVOp->getMaskElt(i+LaneStart);
6008      if (Idx < 0) {
6009        // the mask element does not index into any input vector.
6010        Mask.push_back(-1);
6011        continue;
6012      }
6013
6014      // The input vector this mask element indexes into.
6015      int Input = Idx / NumLaneElems;
6016
6017      // Turn the index into an offset from the start of the input vector.
6018      Idx -= Input * NumLaneElems;
6019
6020      // Find or create a shuffle vector operand to hold this input.
6021      unsigned OpNo;
6022      for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
6023        if (InputUsed[OpNo] == Input)
6024          // This input vector is already an operand.
6025          break;
6026        if (InputUsed[OpNo] < 0) {
6027          // Create a new operand for this input vector.
6028          InputUsed[OpNo] = Input;
6029          break;
6030        }
6031      }
6032
6033      if (OpNo >= array_lengthof(InputUsed)) {
6034        // More than two input vectors used! Give up.
6035        return SDValue();
6036      }
6037
6038      // Add the mask index for the new shuffle vector.
6039      Mask.push_back(Idx + OpNo * NumLaneElems);
6040    }
6041
6042    if (InputUsed[0] < 0) {
6043      // No input vectors were used! The result is undefined.
6044      Shufs[l] = DAG.getUNDEF(NVT);
6045    } else {
6046      SDValue Op0 = Extract128BitVector(SVOp->getOperand(InputUsed[0] / 2),
6047                                        (InputUsed[0] % 2) * NumLaneElems,
6048                                        DAG, dl);
6049      // If only one input was used, use an undefined vector for the other.
6050      SDValue Op1 = (InputUsed[1] < 0) ? DAG.getUNDEF(NVT) :
6051        Extract128BitVector(SVOp->getOperand(InputUsed[1] / 2),
6052                            (InputUsed[1] % 2) * NumLaneElems, DAG, dl);
6053      // At least one input vector was used. Create a new shuffle vector.
6054      Shufs[l] = DAG.getVectorShuffle(NVT, dl, Op0, Op1, &Mask[0]);
6055    }
6056
6057    Mask.clear();
6058  }
6059
6060  // Concatenate the result back
6061  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Shufs[0], Shufs[1]);
6062}
6063
6064/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6065/// 4 elements, and match them with several different shuffle types.
6066static SDValue
6067LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6068  SDValue V1 = SVOp->getOperand(0);
6069  SDValue V2 = SVOp->getOperand(1);
6070  DebugLoc dl = SVOp->getDebugLoc();
6071  EVT VT = SVOp->getValueType(0);
6072
6073  assert(VT.getSizeInBits() == 128 && "Unsupported vector size");
6074
6075  std::pair<int, int> Locs[4];
6076  int Mask1[] = { -1, -1, -1, -1 };
6077  SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end());
6078
6079  unsigned NumHi = 0;
6080  unsigned NumLo = 0;
6081  for (unsigned i = 0; i != 4; ++i) {
6082    int Idx = PermMask[i];
6083    if (Idx < 0) {
6084      Locs[i] = std::make_pair(-1, -1);
6085    } else {
6086      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6087      if (Idx < 4) {
6088        Locs[i] = std::make_pair(0, NumLo);
6089        Mask1[NumLo] = Idx;
6090        NumLo++;
6091      } else {
6092        Locs[i] = std::make_pair(1, NumHi);
6093        if (2+NumHi < 4)
6094          Mask1[2+NumHi] = Idx;
6095        NumHi++;
6096      }
6097    }
6098  }
6099
6100  if (NumLo <= 2 && NumHi <= 2) {
6101    // If no more than two elements come from either vector. This can be
6102    // implemented with two shuffles. First shuffle gather the elements.
6103    // The second shuffle, which takes the first shuffle as both of its
6104    // vector operands, put the elements into the right order.
6105    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6106
6107    int Mask2[] = { -1, -1, -1, -1 };
6108
6109    for (unsigned i = 0; i != 4; ++i)
6110      if (Locs[i].first != -1) {
6111        unsigned Idx = (i < 2) ? 0 : 4;
6112        Idx += Locs[i].first * 2 + Locs[i].second;
6113        Mask2[i] = Idx;
6114      }
6115
6116    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6117  }
6118
6119  if (NumLo == 3 || NumHi == 3) {
6120    // Otherwise, we must have three elements from one vector, call it X, and
6121    // one element from the other, call it Y.  First, use a shufps to build an
6122    // intermediate vector with the one element from Y and the element from X
6123    // that will be in the same half in the final destination (the indexes don't
6124    // matter). Then, use a shufps to build the final vector, taking the half
6125    // containing the element from Y from the intermediate, and the other half
6126    // from X.
6127    if (NumHi == 3) {
6128      // Normalize it so the 3 elements come from V1.
6129      CommuteVectorShuffleMask(PermMask, 4);
6130      std::swap(V1, V2);
6131    }
6132
6133    // Find the element from V2.
6134    unsigned HiIndex;
6135    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6136      int Val = PermMask[HiIndex];
6137      if (Val < 0)
6138        continue;
6139      if (Val >= 4)
6140        break;
6141    }
6142
6143    Mask1[0] = PermMask[HiIndex];
6144    Mask1[1] = -1;
6145    Mask1[2] = PermMask[HiIndex^1];
6146    Mask1[3] = -1;
6147    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6148
6149    if (HiIndex >= 2) {
6150      Mask1[0] = PermMask[0];
6151      Mask1[1] = PermMask[1];
6152      Mask1[2] = HiIndex & 1 ? 6 : 4;
6153      Mask1[3] = HiIndex & 1 ? 4 : 6;
6154      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6155    }
6156
6157    Mask1[0] = HiIndex & 1 ? 2 : 0;
6158    Mask1[1] = HiIndex & 1 ? 0 : 2;
6159    Mask1[2] = PermMask[2];
6160    Mask1[3] = PermMask[3];
6161    if (Mask1[2] >= 0)
6162      Mask1[2] += 4;
6163    if (Mask1[3] >= 0)
6164      Mask1[3] += 4;
6165    return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6166  }
6167
6168  // Break it into (shuffle shuffle_hi, shuffle_lo).
6169  int LoMask[] = { -1, -1, -1, -1 };
6170  int HiMask[] = { -1, -1, -1, -1 };
6171
6172  int *MaskPtr = LoMask;
6173  unsigned MaskIdx = 0;
6174  unsigned LoIdx = 0;
6175  unsigned HiIdx = 2;
6176  for (unsigned i = 0; i != 4; ++i) {
6177    if (i == 2) {
6178      MaskPtr = HiMask;
6179      MaskIdx = 1;
6180      LoIdx = 0;
6181      HiIdx = 2;
6182    }
6183    int Idx = PermMask[i];
6184    if (Idx < 0) {
6185      Locs[i] = std::make_pair(-1, -1);
6186    } else if (Idx < 4) {
6187      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6188      MaskPtr[LoIdx] = Idx;
6189      LoIdx++;
6190    } else {
6191      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6192      MaskPtr[HiIdx] = Idx;
6193      HiIdx++;
6194    }
6195  }
6196
6197  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6198  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6199  int MaskOps[] = { -1, -1, -1, -1 };
6200  for (unsigned i = 0; i != 4; ++i)
6201    if (Locs[i].first != -1)
6202      MaskOps[i] = Locs[i].first * 4 + Locs[i].second;
6203  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6204}
6205
6206static bool MayFoldVectorLoad(SDValue V) {
6207  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6208    V = V.getOperand(0);
6209  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6210    V = V.getOperand(0);
6211  if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
6212      V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
6213    // BUILD_VECTOR (load), undef
6214    V = V.getOperand(0);
6215  if (MayFoldLoad(V))
6216    return true;
6217  return false;
6218}
6219
6220// FIXME: the version above should always be used. Since there's
6221// a bug where several vector shuffles can't be folded because the
6222// DAG is not updated during lowering and a node claims to have two
6223// uses while it only has one, use this version, and let isel match
6224// another instruction if the load really happens to have more than
6225// one use. Remove this version after this bug get fixed.
6226// rdar://8434668, PR8156
6227static bool RelaxedMayFoldVectorLoad(SDValue V) {
6228  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6229    V = V.getOperand(0);
6230  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6231    V = V.getOperand(0);
6232  if (ISD::isNormalLoad(V.getNode()))
6233    return true;
6234  return false;
6235}
6236
6237static
6238SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6239  EVT VT = Op.getValueType();
6240
6241  // Canonizalize to v2f64.
6242  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6243  return DAG.getNode(ISD::BITCAST, dl, VT,
6244                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6245                                          V1, DAG));
6246}
6247
6248static
6249SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6250                        bool HasSSE2) {
6251  SDValue V1 = Op.getOperand(0);
6252  SDValue V2 = Op.getOperand(1);
6253  EVT VT = Op.getValueType();
6254
6255  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6256
6257  if (HasSSE2 && VT == MVT::v2f64)
6258    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6259
6260  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6261  return DAG.getNode(ISD::BITCAST, dl, VT,
6262                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6263                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6264                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6265}
6266
6267static
6268SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6269  SDValue V1 = Op.getOperand(0);
6270  SDValue V2 = Op.getOperand(1);
6271  EVT VT = Op.getValueType();
6272
6273  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6274         "unsupported shuffle type");
6275
6276  if (V2.getOpcode() == ISD::UNDEF)
6277    V2 = V1;
6278
6279  // v4i32 or v4f32
6280  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6281}
6282
6283static
6284SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
6285  SDValue V1 = Op.getOperand(0);
6286  SDValue V2 = Op.getOperand(1);
6287  EVT VT = Op.getValueType();
6288  unsigned NumElems = VT.getVectorNumElements();
6289
6290  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6291  // operand of these instructions is only memory, so check if there's a
6292  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6293  // same masks.
6294  bool CanFoldLoad = false;
6295
6296  // Trivial case, when V2 comes from a load.
6297  if (MayFoldVectorLoad(V2))
6298    CanFoldLoad = true;
6299
6300  // When V1 is a load, it can be folded later into a store in isel, example:
6301  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6302  //    turns into:
6303  //  (MOVLPSmr addr:$src1, VR128:$src2)
6304  // So, recognize this potential and also use MOVLPS or MOVLPD
6305  else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6306    CanFoldLoad = true;
6307
6308  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6309  if (CanFoldLoad) {
6310    if (HasSSE2 && NumElems == 2)
6311      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6312
6313    if (NumElems == 4)
6314      // If we don't care about the second element, procede to use movss.
6315      if (SVOp->getMaskElt(1) != -1)
6316        return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6317  }
6318
6319  // movl and movlp will both match v2i64, but v2i64 is never matched by
6320  // movl earlier because we make it strict to avoid messing with the movlp load
6321  // folding logic (see the code above getMOVLP call). Match it here then,
6322  // this is horrible, but will stay like this until we move all shuffle
6323  // matching to x86 specific nodes. Note that for the 1st condition all
6324  // types are matched with movsd.
6325  if (HasSSE2) {
6326    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6327    // as to remove this logic from here, as much as possible
6328    if (NumElems == 2 || !isMOVLMask(SVOp->getMask(), VT))
6329      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6330    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6331  }
6332
6333  assert(VT != MVT::v4i32 && "unsupported shuffle type");
6334
6335  // Invert the operand order and use SHUFPS to match it.
6336  return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
6337                              getShuffleSHUFImmediate(SVOp), DAG);
6338}
6339
6340SDValue
6341X86TargetLowering::NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG) const {
6342  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6343  EVT VT = Op.getValueType();
6344  DebugLoc dl = Op.getDebugLoc();
6345  SDValue V1 = Op.getOperand(0);
6346  SDValue V2 = Op.getOperand(1);
6347
6348  if (isZeroShuffle(SVOp))
6349    return getZeroVector(VT, Subtarget, DAG, dl);
6350
6351  // Handle splat operations
6352  if (SVOp->isSplat()) {
6353    unsigned NumElem = VT.getVectorNumElements();
6354    int Size = VT.getSizeInBits();
6355
6356    // Use vbroadcast whenever the splat comes from a foldable load
6357    SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
6358    if (Broadcast.getNode())
6359      return Broadcast;
6360
6361    // Handle splats by matching through known shuffle masks
6362    if ((Size == 128 && NumElem <= 4) ||
6363        (Size == 256 && NumElem < 8))
6364      return SDValue();
6365
6366    // All remaning splats are promoted to target supported vector shuffles.
6367    return PromoteSplat(SVOp, DAG);
6368  }
6369
6370  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6371  // do it!
6372  if (VT == MVT::v8i16  || VT == MVT::v16i8 ||
6373      VT == MVT::v16i16 || VT == MVT::v32i8) {
6374    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6375    if (NewOp.getNode())
6376      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6377  } else if ((VT == MVT::v4i32 ||
6378             (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
6379    // FIXME: Figure out a cleaner way to do this.
6380    // Try to make use of movq to zero out the top part.
6381    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6382      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6383      if (NewOp.getNode()) {
6384        EVT NewVT = NewOp.getValueType();
6385        if (isCommutedMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(),
6386                               NewVT, true, false))
6387          return getVZextMovL(VT, NewVT, NewOp.getOperand(0),
6388                              DAG, Subtarget, dl);
6389      }
6390    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6391      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6392      if (NewOp.getNode()) {
6393        EVT NewVT = NewOp.getValueType();
6394        if (isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(), NewVT))
6395          return getVZextMovL(VT, NewVT, NewOp.getOperand(1),
6396                              DAG, Subtarget, dl);
6397      }
6398    }
6399  }
6400  return SDValue();
6401}
6402
6403SDValue
6404X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6405  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6406  SDValue V1 = Op.getOperand(0);
6407  SDValue V2 = Op.getOperand(1);
6408  EVT VT = Op.getValueType();
6409  DebugLoc dl = Op.getDebugLoc();
6410  unsigned NumElems = VT.getVectorNumElements();
6411  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6412  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6413  bool V1IsSplat = false;
6414  bool V2IsSplat = false;
6415  bool HasSSE2 = Subtarget->hasSSE2();
6416  bool HasAVX    = Subtarget->hasAVX();
6417  bool HasAVX2   = Subtarget->hasAVX2();
6418  MachineFunction &MF = DAG.getMachineFunction();
6419  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
6420
6421  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
6422
6423  if (V1IsUndef && V2IsUndef)
6424    return DAG.getUNDEF(VT);
6425
6426  assert(!V1IsUndef && "Op 1 of shuffle should not be undef");
6427
6428  // Vector shuffle lowering takes 3 steps:
6429  //
6430  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6431  //    narrowing and commutation of operands should be handled.
6432  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6433  //    shuffle nodes.
6434  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6435  //    so the shuffle can be broken into other shuffles and the legalizer can
6436  //    try the lowering again.
6437  //
6438  // The general idea is that no vector_shuffle operation should be left to
6439  // be matched during isel, all of them must be converted to a target specific
6440  // node here.
6441
6442  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6443  // narrowing and commutation of operands should be handled. The actual code
6444  // doesn't include all of those, work in progress...
6445  SDValue NewOp = NormalizeVectorShuffle(Op, DAG);
6446  if (NewOp.getNode())
6447    return NewOp;
6448
6449  SmallVector<int, 8> M(SVOp->getMask().begin(), SVOp->getMask().end());
6450
6451  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6452  // unpckh_undef). Only use pshufd if speed is more important than size.
6453  if (OptForSize && isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6454    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6455  if (OptForSize && isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6456    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6457
6458  if (isMOVDDUPMask(M, VT) && Subtarget->hasSSE3() &&
6459      V2IsUndef && RelaxedMayFoldVectorLoad(V1))
6460    return getMOVDDup(Op, dl, V1, DAG);
6461
6462  if (isMOVHLPS_v_undef_Mask(M, VT))
6463    return getMOVHighToLow(Op, dl, DAG);
6464
6465  // Use to match splats
6466  if (HasSSE2 && isUNPCKHMask(M, VT, HasAVX2) && V2IsUndef &&
6467      (VT == MVT::v2f64 || VT == MVT::v2i64))
6468    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6469
6470  if (isPSHUFDMask(M, VT)) {
6471    // The actual implementation will match the mask in the if above and then
6472    // during isel it can match several different instructions, not only pshufd
6473    // as its name says, sad but true, emulate the behavior for now...
6474    if (isMOVDDUPMask(M, VT) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6475      return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6476
6477    unsigned TargetMask = getShuffleSHUFImmediate(SVOp);
6478
6479    if (HasAVX && (VT == MVT::v4f32 || VT == MVT::v2f64))
6480      return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1, TargetMask, DAG);
6481
6482    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
6483      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6484
6485    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
6486                                TargetMask, DAG);
6487  }
6488
6489  // Check if this can be converted into a logical shift.
6490  bool isLeft = false;
6491  unsigned ShAmt = 0;
6492  SDValue ShVal;
6493  bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6494  if (isShift && ShVal.hasOneUse()) {
6495    // If the shifted value has multiple uses, it may be cheaper to use
6496    // v_set0 + movlhps or movhlps, etc.
6497    EVT EltVT = VT.getVectorElementType();
6498    ShAmt *= EltVT.getSizeInBits();
6499    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6500  }
6501
6502  if (isMOVLMask(M, VT)) {
6503    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6504      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6505    if (!isMOVLPMask(M, VT)) {
6506      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6507        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6508
6509      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6510        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6511    }
6512  }
6513
6514  // FIXME: fold these into legal mask.
6515  if (isMOVLHPSMask(M, VT) && !isUNPCKLMask(M, VT, HasAVX2))
6516    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
6517
6518  if (isMOVHLPSMask(M, VT))
6519    return getMOVHighToLow(Op, dl, DAG);
6520
6521  if (V2IsUndef && isMOVSHDUPMask(M, VT, Subtarget))
6522    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6523
6524  if (V2IsUndef && isMOVSLDUPMask(M, VT, Subtarget))
6525    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6526
6527  if (isMOVLPMask(M, VT))
6528    return getMOVLP(Op, dl, DAG, HasSSE2);
6529
6530  if (ShouldXformToMOVHLPS(M, VT) ||
6531      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), M, VT))
6532    return CommuteVectorShuffle(SVOp, DAG);
6533
6534  if (isShift) {
6535    // No better options. Use a vshldq / vsrldq.
6536    EVT EltVT = VT.getVectorElementType();
6537    ShAmt *= EltVT.getSizeInBits();
6538    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6539  }
6540
6541  bool Commuted = false;
6542  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6543  // 1,1,1,1 -> v8i16 though.
6544  V1IsSplat = isSplatVector(V1.getNode());
6545  V2IsSplat = isSplatVector(V2.getNode());
6546
6547  // Canonicalize the splat or undef, if present, to be on the RHS.
6548  if (!V2IsUndef && V1IsSplat && !V2IsSplat) {
6549    CommuteVectorShuffleMask(M, NumElems);
6550    std::swap(V1, V2);
6551    std::swap(V1IsSplat, V2IsSplat);
6552    Commuted = true;
6553  }
6554
6555  if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
6556    // Shuffling low element of v1 into undef, just return v1.
6557    if (V2IsUndef)
6558      return V1;
6559    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6560    // the instruction selector will not match, so get a canonical MOVL with
6561    // swapped operands to undo the commute.
6562    return getMOVL(DAG, dl, VT, V2, V1);
6563  }
6564
6565  if (isUNPCKLMask(M, VT, HasAVX2))
6566    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6567
6568  if (isUNPCKHMask(M, VT, HasAVX2))
6569    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6570
6571  if (V2IsSplat) {
6572    // Normalize mask so all entries that point to V2 points to its first
6573    // element then try to match unpck{h|l} again. If match, return a
6574    // new vector_shuffle with the corrected mask.p
6575    SmallVector<int, 8> NewMask(M.begin(), M.end());
6576    NormalizeMask(NewMask, NumElems);
6577    if (isUNPCKLMask(NewMask, VT, HasAVX2, true))
6578      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6579    if (isUNPCKHMask(NewMask, VT, HasAVX2, true))
6580      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6581  }
6582
6583  if (Commuted) {
6584    // Commute is back and try unpck* again.
6585    // FIXME: this seems wrong.
6586    CommuteVectorShuffleMask(M, NumElems);
6587    std::swap(V1, V2);
6588    std::swap(V1IsSplat, V2IsSplat);
6589    Commuted = false;
6590
6591    if (isUNPCKLMask(M, VT, HasAVX2))
6592      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6593
6594    if (isUNPCKHMask(M, VT, HasAVX2))
6595      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6596  }
6597
6598  // Normalize the node to match x86 shuffle ops if needed
6599  if (!V2IsUndef && (isSHUFPMask(M, VT, HasAVX, /* Commuted */ true)))
6600    return CommuteVectorShuffle(SVOp, DAG);
6601
6602  // The checks below are all present in isShuffleMaskLegal, but they are
6603  // inlined here right now to enable us to directly emit target specific
6604  // nodes, and remove one by one until they don't return Op anymore.
6605
6606  if (isPALIGNRMask(M, VT, Subtarget))
6607    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6608                                getShufflePALIGNRImmediate(SVOp),
6609                                DAG);
6610
6611  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6612      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6613    if (VT == MVT::v2f64 || VT == MVT::v2i64)
6614      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6615  }
6616
6617  if (isPSHUFHWMask(M, VT, HasAVX2))
6618    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6619                                getShufflePSHUFHWImmediate(SVOp),
6620                                DAG);
6621
6622  if (isPSHUFLWMask(M, VT, HasAVX2))
6623    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6624                                getShufflePSHUFLWImmediate(SVOp),
6625                                DAG);
6626
6627  if (isSHUFPMask(M, VT, HasAVX))
6628    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
6629                                getShuffleSHUFImmediate(SVOp), DAG);
6630
6631  if (isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6632    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6633  if (isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6634    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6635
6636  //===--------------------------------------------------------------------===//
6637  // Generate target specific nodes for 128 or 256-bit shuffles only
6638  // supported in the AVX instruction set.
6639  //
6640
6641  // Handle VMOVDDUPY permutations
6642  if (V2IsUndef && isMOVDDUPYMask(M, VT, HasAVX))
6643    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
6644
6645  // Handle VPERMILPS/D* permutations
6646  if (isVPERMILPMask(M, VT, HasAVX)) {
6647    if (HasAVX2 && VT == MVT::v8i32)
6648      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1,
6649                                  getShuffleSHUFImmediate(SVOp), DAG);
6650    return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
6651                                getShuffleSHUFImmediate(SVOp), DAG);
6652  }
6653
6654  // Handle VPERM2F128/VPERM2I128 permutations
6655  if (isVPERM2X128Mask(M, VT, HasAVX))
6656    return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
6657                                V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
6658
6659  SDValue BlendOp = LowerVECTOR_SHUFFLEtoBlend(SVOp, Subtarget, DAG);
6660  if (BlendOp.getNode())
6661    return BlendOp;
6662
6663  if (V2IsUndef && HasAVX2 && (VT == MVT::v8i32 || VT == MVT::v8f32)) {
6664    SmallVector<SDValue, 8> permclMask;
6665    for (unsigned i = 0; i != 8; ++i) {
6666      permclMask.push_back(DAG.getConstant((M[i]>=0) ? M[i] : 0, MVT::i32));
6667    }
6668    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32,
6669                               &permclMask[0], 8);
6670    // Bitcast is for VPERMPS since mask is v8i32 but node takes v8f32
6671    return DAG.getNode(X86ISD::VPERMV, dl, VT,
6672                       DAG.getNode(ISD::BITCAST, dl, VT, Mask), V1);
6673  }
6674
6675  if (V2IsUndef && HasAVX2 && (VT == MVT::v4i64 || VT == MVT::v4f64))
6676    return getTargetShuffleNode(X86ISD::VPERMI, dl, VT, V1,
6677                                getShuffleCLImmediate(SVOp), DAG);
6678
6679
6680  //===--------------------------------------------------------------------===//
6681  // Since no target specific shuffle was selected for this generic one,
6682  // lower it into other known shuffles. FIXME: this isn't true yet, but
6683  // this is the plan.
6684  //
6685
6686  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6687  if (VT == MVT::v8i16) {
6688    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
6689    if (NewOp.getNode())
6690      return NewOp;
6691  }
6692
6693  if (VT == MVT::v16i8) {
6694    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6695    if (NewOp.getNode())
6696      return NewOp;
6697  }
6698
6699  // Handle all 128-bit wide vectors with 4 elements, and match them with
6700  // several different shuffle types.
6701  if (NumElems == 4 && VT.getSizeInBits() == 128)
6702    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6703
6704  // Handle general 256-bit shuffles
6705  if (VT.is256BitVector())
6706    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6707
6708  return SDValue();
6709}
6710
6711SDValue
6712X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6713                                                SelectionDAG &DAG) const {
6714  EVT VT = Op.getValueType();
6715  DebugLoc dl = Op.getDebugLoc();
6716
6717  if (Op.getOperand(0).getValueType().getSizeInBits() != 128)
6718    return SDValue();
6719
6720  if (VT.getSizeInBits() == 8) {
6721    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6722                                    Op.getOperand(0), Op.getOperand(1));
6723    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6724                                    DAG.getValueType(VT));
6725    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6726  }
6727
6728  if (VT.getSizeInBits() == 16) {
6729    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6730    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6731    if (Idx == 0)
6732      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6733                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6734                                     DAG.getNode(ISD::BITCAST, dl,
6735                                                 MVT::v4i32,
6736                                                 Op.getOperand(0)),
6737                                     Op.getOperand(1)));
6738    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6739                                    Op.getOperand(0), Op.getOperand(1));
6740    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6741                                    DAG.getValueType(VT));
6742    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6743  }
6744
6745  if (VT == MVT::f32) {
6746    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6747    // the result back to FR32 register. It's only worth matching if the
6748    // result has a single use which is a store or a bitcast to i32.  And in
6749    // the case of a store, it's not worth it if the index is a constant 0,
6750    // because a MOVSSmr can be used instead, which is smaller and faster.
6751    if (!Op.hasOneUse())
6752      return SDValue();
6753    SDNode *User = *Op.getNode()->use_begin();
6754    if ((User->getOpcode() != ISD::STORE ||
6755         (isa<ConstantSDNode>(Op.getOperand(1)) &&
6756          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6757        (User->getOpcode() != ISD::BITCAST ||
6758         User->getValueType(0) != MVT::i32))
6759      return SDValue();
6760    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6761                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
6762                                              Op.getOperand(0)),
6763                                              Op.getOperand(1));
6764    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
6765  }
6766
6767  if (VT == MVT::i32 || VT == MVT::i64) {
6768    // ExtractPS/pextrq works with constant index.
6769    if (isa<ConstantSDNode>(Op.getOperand(1)))
6770      return Op;
6771  }
6772  return SDValue();
6773}
6774
6775
6776SDValue
6777X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6778                                           SelectionDAG &DAG) const {
6779  if (!isa<ConstantSDNode>(Op.getOperand(1)))
6780    return SDValue();
6781
6782  SDValue Vec = Op.getOperand(0);
6783  EVT VecVT = Vec.getValueType();
6784
6785  // If this is a 256-bit vector result, first extract the 128-bit vector and
6786  // then extract the element from the 128-bit vector.
6787  if (VecVT.getSizeInBits() == 256) {
6788    DebugLoc dl = Op.getNode()->getDebugLoc();
6789    unsigned NumElems = VecVT.getVectorNumElements();
6790    SDValue Idx = Op.getOperand(1);
6791    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6792
6793    // Get the 128-bit vector.
6794    Vec = Extract128BitVector(Vec, IdxVal, DAG, dl);
6795
6796    if (IdxVal >= NumElems/2)
6797      IdxVal -= NumElems/2;
6798    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6799                       DAG.getConstant(IdxVal, MVT::i32));
6800  }
6801
6802  assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
6803
6804  if (Subtarget->hasSSE41()) {
6805    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6806    if (Res.getNode())
6807      return Res;
6808  }
6809
6810  EVT VT = Op.getValueType();
6811  DebugLoc dl = Op.getDebugLoc();
6812  // TODO: handle v16i8.
6813  if (VT.getSizeInBits() == 16) {
6814    SDValue Vec = Op.getOperand(0);
6815    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6816    if (Idx == 0)
6817      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6818                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6819                                     DAG.getNode(ISD::BITCAST, dl,
6820                                                 MVT::v4i32, Vec),
6821                                     Op.getOperand(1)));
6822    // Transform it so it match pextrw which produces a 32-bit result.
6823    EVT EltVT = MVT::i32;
6824    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6825                                    Op.getOperand(0), Op.getOperand(1));
6826    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6827                                    DAG.getValueType(VT));
6828    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6829  }
6830
6831  if (VT.getSizeInBits() == 32) {
6832    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6833    if (Idx == 0)
6834      return Op;
6835
6836    // SHUFPS the element to the lowest double word, then movss.
6837    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
6838    EVT VVT = Op.getOperand(0).getValueType();
6839    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6840                                       DAG.getUNDEF(VVT), Mask);
6841    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6842                       DAG.getIntPtrConstant(0));
6843  }
6844
6845  if (VT.getSizeInBits() == 64) {
6846    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6847    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6848    //        to match extract_elt for f64.
6849    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6850    if (Idx == 0)
6851      return Op;
6852
6853    // UNPCKHPD the element to the lowest double word, then movsd.
6854    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6855    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6856    int Mask[2] = { 1, -1 };
6857    EVT VVT = Op.getOperand(0).getValueType();
6858    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6859                                       DAG.getUNDEF(VVT), Mask);
6860    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6861                       DAG.getIntPtrConstant(0));
6862  }
6863
6864  return SDValue();
6865}
6866
6867SDValue
6868X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
6869                                               SelectionDAG &DAG) const {
6870  EVT VT = Op.getValueType();
6871  EVT EltVT = VT.getVectorElementType();
6872  DebugLoc dl = Op.getDebugLoc();
6873
6874  SDValue N0 = Op.getOperand(0);
6875  SDValue N1 = Op.getOperand(1);
6876  SDValue N2 = Op.getOperand(2);
6877
6878  if (VT.getSizeInBits() == 256)
6879    return SDValue();
6880
6881  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
6882      isa<ConstantSDNode>(N2)) {
6883    unsigned Opc;
6884    if (VT == MVT::v8i16)
6885      Opc = X86ISD::PINSRW;
6886    else if (VT == MVT::v16i8)
6887      Opc = X86ISD::PINSRB;
6888    else
6889      Opc = X86ISD::PINSRB;
6890
6891    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
6892    // argument.
6893    if (N1.getValueType() != MVT::i32)
6894      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6895    if (N2.getValueType() != MVT::i32)
6896      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6897    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
6898  }
6899
6900  if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
6901    // Bits [7:6] of the constant are the source select.  This will always be
6902    //  zero here.  The DAG Combiner may combine an extract_elt index into these
6903    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
6904    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
6905    // Bits [5:4] of the constant are the destination select.  This is the
6906    //  value of the incoming immediate.
6907    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
6908    //   combine either bitwise AND or insert of float 0.0 to set these bits.
6909    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
6910    // Create this as a scalar to vector..
6911    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
6912    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
6913  }
6914
6915  if ((EltVT == MVT::i32 || EltVT == MVT::i64) && isa<ConstantSDNode>(N2)) {
6916    // PINSR* works with constant index.
6917    return Op;
6918  }
6919  return SDValue();
6920}
6921
6922SDValue
6923X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
6924  EVT VT = Op.getValueType();
6925  EVT EltVT = VT.getVectorElementType();
6926
6927  DebugLoc dl = Op.getDebugLoc();
6928  SDValue N0 = Op.getOperand(0);
6929  SDValue N1 = Op.getOperand(1);
6930  SDValue N2 = Op.getOperand(2);
6931
6932  // If this is a 256-bit vector result, first extract the 128-bit vector,
6933  // insert the element into the extracted half and then place it back.
6934  if (VT.getSizeInBits() == 256) {
6935    if (!isa<ConstantSDNode>(N2))
6936      return SDValue();
6937
6938    // Get the desired 128-bit vector half.
6939    unsigned NumElems = VT.getVectorNumElements();
6940    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
6941    SDValue V = Extract128BitVector(N0, IdxVal, DAG, dl);
6942
6943    // Insert the element into the desired half.
6944    bool Upper = IdxVal >= NumElems/2;
6945    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1,
6946                 DAG.getConstant(Upper ? IdxVal-NumElems/2 : IdxVal, MVT::i32));
6947
6948    // Insert the changed part back to the 256-bit vector
6949    return Insert128BitVector(N0, V, IdxVal, DAG, dl);
6950  }
6951
6952  if (Subtarget->hasSSE41())
6953    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
6954
6955  if (EltVT == MVT::i8)
6956    return SDValue();
6957
6958  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
6959    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
6960    // as its second argument.
6961    if (N1.getValueType() != MVT::i32)
6962      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6963    if (N2.getValueType() != MVT::i32)
6964      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6965    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
6966  }
6967  return SDValue();
6968}
6969
6970SDValue
6971X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
6972  LLVMContext *Context = DAG.getContext();
6973  DebugLoc dl = Op.getDebugLoc();
6974  EVT OpVT = Op.getValueType();
6975
6976  // If this is a 256-bit vector result, first insert into a 128-bit
6977  // vector and then insert into the 256-bit vector.
6978  if (OpVT.getSizeInBits() > 128) {
6979    // Insert into a 128-bit vector.
6980    EVT VT128 = EVT::getVectorVT(*Context,
6981                                 OpVT.getVectorElementType(),
6982                                 OpVT.getVectorNumElements() / 2);
6983
6984    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
6985
6986    // Insert the 128-bit vector.
6987    return Insert128BitVector(DAG.getUNDEF(OpVT), Op, 0, DAG, dl);
6988  }
6989
6990  if (OpVT == MVT::v1i64 &&
6991      Op.getOperand(0).getValueType() == MVT::i64)
6992    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
6993
6994  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
6995  assert(OpVT.getSizeInBits() == 128 && "Expected an SSE type!");
6996  return DAG.getNode(ISD::BITCAST, dl, OpVT,
6997                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
6998}
6999
7000// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
7001// a simple subregister reference or explicit instructions to grab
7002// upper bits of a vector.
7003SDValue
7004X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7005  if (Subtarget->hasAVX()) {
7006    DebugLoc dl = Op.getNode()->getDebugLoc();
7007    SDValue Vec = Op.getNode()->getOperand(0);
7008    SDValue Idx = Op.getNode()->getOperand(1);
7009
7010    if (Op.getNode()->getValueType(0).getSizeInBits() == 128 &&
7011        Vec.getNode()->getValueType(0).getSizeInBits() == 256 &&
7012        isa<ConstantSDNode>(Idx)) {
7013      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7014      return Extract128BitVector(Vec, IdxVal, DAG, dl);
7015    }
7016  }
7017  return SDValue();
7018}
7019
7020// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
7021// simple superregister reference or explicit instructions to insert
7022// the upper bits of a vector.
7023SDValue
7024X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7025  if (Subtarget->hasAVX()) {
7026    DebugLoc dl = Op.getNode()->getDebugLoc();
7027    SDValue Vec = Op.getNode()->getOperand(0);
7028    SDValue SubVec = Op.getNode()->getOperand(1);
7029    SDValue Idx = Op.getNode()->getOperand(2);
7030
7031    if (Op.getNode()->getValueType(0).getSizeInBits() == 256 &&
7032        SubVec.getNode()->getValueType(0).getSizeInBits() == 128 &&
7033        isa<ConstantSDNode>(Idx)) {
7034      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7035      return Insert128BitVector(Vec, SubVec, IdxVal, DAG, dl);
7036    }
7037  }
7038  return SDValue();
7039}
7040
7041// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7042// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7043// one of the above mentioned nodes. It has to be wrapped because otherwise
7044// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7045// be used to form addressing mode. These wrapped nodes will be selected
7046// into MOV32ri.
7047SDValue
7048X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7049  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7050
7051  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7052  // global base reg.
7053  unsigned char OpFlag = 0;
7054  unsigned WrapperKind = X86ISD::Wrapper;
7055  CodeModel::Model M = getTargetMachine().getCodeModel();
7056
7057  if (Subtarget->isPICStyleRIPRel() &&
7058      (M == CodeModel::Small || M == CodeModel::Kernel))
7059    WrapperKind = X86ISD::WrapperRIP;
7060  else if (Subtarget->isPICStyleGOT())
7061    OpFlag = X86II::MO_GOTOFF;
7062  else if (Subtarget->isPICStyleStubPIC())
7063    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7064
7065  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7066                                             CP->getAlignment(),
7067                                             CP->getOffset(), OpFlag);
7068  DebugLoc DL = CP->getDebugLoc();
7069  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7070  // With PIC, the address is actually $g + Offset.
7071  if (OpFlag) {
7072    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7073                         DAG.getNode(X86ISD::GlobalBaseReg,
7074                                     DebugLoc(), getPointerTy()),
7075                         Result);
7076  }
7077
7078  return Result;
7079}
7080
7081SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7082  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7083
7084  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7085  // global base reg.
7086  unsigned char OpFlag = 0;
7087  unsigned WrapperKind = X86ISD::Wrapper;
7088  CodeModel::Model M = getTargetMachine().getCodeModel();
7089
7090  if (Subtarget->isPICStyleRIPRel() &&
7091      (M == CodeModel::Small || M == CodeModel::Kernel))
7092    WrapperKind = X86ISD::WrapperRIP;
7093  else if (Subtarget->isPICStyleGOT())
7094    OpFlag = X86II::MO_GOTOFF;
7095  else if (Subtarget->isPICStyleStubPIC())
7096    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7097
7098  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7099                                          OpFlag);
7100  DebugLoc DL = JT->getDebugLoc();
7101  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7102
7103  // With PIC, the address is actually $g + Offset.
7104  if (OpFlag)
7105    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7106                         DAG.getNode(X86ISD::GlobalBaseReg,
7107                                     DebugLoc(), getPointerTy()),
7108                         Result);
7109
7110  return Result;
7111}
7112
7113SDValue
7114X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7115  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7116
7117  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7118  // global base reg.
7119  unsigned char OpFlag = 0;
7120  unsigned WrapperKind = X86ISD::Wrapper;
7121  CodeModel::Model M = getTargetMachine().getCodeModel();
7122
7123  if (Subtarget->isPICStyleRIPRel() &&
7124      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7125    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7126      OpFlag = X86II::MO_GOTPCREL;
7127    WrapperKind = X86ISD::WrapperRIP;
7128  } else if (Subtarget->isPICStyleGOT()) {
7129    OpFlag = X86II::MO_GOT;
7130  } else if (Subtarget->isPICStyleStubPIC()) {
7131    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7132  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7133    OpFlag = X86II::MO_DARWIN_NONLAZY;
7134  }
7135
7136  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7137
7138  DebugLoc DL = Op.getDebugLoc();
7139  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7140
7141
7142  // With PIC, the address is actually $g + Offset.
7143  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7144      !Subtarget->is64Bit()) {
7145    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7146                         DAG.getNode(X86ISD::GlobalBaseReg,
7147                                     DebugLoc(), getPointerTy()),
7148                         Result);
7149  }
7150
7151  // For symbols that require a load from a stub to get the address, emit the
7152  // load.
7153  if (isGlobalStubReference(OpFlag))
7154    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7155                         MachinePointerInfo::getGOT(), false, false, false, 0);
7156
7157  return Result;
7158}
7159
7160SDValue
7161X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7162  // Create the TargetBlockAddressAddress node.
7163  unsigned char OpFlags =
7164    Subtarget->ClassifyBlockAddressReference();
7165  CodeModel::Model M = getTargetMachine().getCodeModel();
7166  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7167  DebugLoc dl = Op.getDebugLoc();
7168  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
7169                                       /*isTarget=*/true, OpFlags);
7170
7171  if (Subtarget->isPICStyleRIPRel() &&
7172      (M == CodeModel::Small || M == CodeModel::Kernel))
7173    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7174  else
7175    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7176
7177  // With PIC, the address is actually $g + Offset.
7178  if (isGlobalRelativeToPICBase(OpFlags)) {
7179    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7180                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7181                         Result);
7182  }
7183
7184  return Result;
7185}
7186
7187SDValue
7188X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7189                                      int64_t Offset,
7190                                      SelectionDAG &DAG) const {
7191  // Create the TargetGlobalAddress node, folding in the constant
7192  // offset if it is legal.
7193  unsigned char OpFlags =
7194    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7195  CodeModel::Model M = getTargetMachine().getCodeModel();
7196  SDValue Result;
7197  if (OpFlags == X86II::MO_NO_FLAG &&
7198      X86::isOffsetSuitableForCodeModel(Offset, M)) {
7199    // A direct static reference to a global.
7200    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7201    Offset = 0;
7202  } else {
7203    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7204  }
7205
7206  if (Subtarget->isPICStyleRIPRel() &&
7207      (M == CodeModel::Small || M == CodeModel::Kernel))
7208    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7209  else
7210    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7211
7212  // With PIC, the address is actually $g + Offset.
7213  if (isGlobalRelativeToPICBase(OpFlags)) {
7214    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7215                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7216                         Result);
7217  }
7218
7219  // For globals that require a load from a stub to get the address, emit the
7220  // load.
7221  if (isGlobalStubReference(OpFlags))
7222    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7223                         MachinePointerInfo::getGOT(), false, false, false, 0);
7224
7225  // If there was a non-zero offset that we didn't fold, create an explicit
7226  // addition for it.
7227  if (Offset != 0)
7228    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7229                         DAG.getConstant(Offset, getPointerTy()));
7230
7231  return Result;
7232}
7233
7234SDValue
7235X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7236  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7237  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7238  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7239}
7240
7241static SDValue
7242GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7243           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7244           unsigned char OperandFlags) {
7245  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7246  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7247  DebugLoc dl = GA->getDebugLoc();
7248  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7249                                           GA->getValueType(0),
7250                                           GA->getOffset(),
7251                                           OperandFlags);
7252  if (InFlag) {
7253    SDValue Ops[] = { Chain,  TGA, *InFlag };
7254    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
7255  } else {
7256    SDValue Ops[]  = { Chain, TGA };
7257    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
7258  }
7259
7260  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7261  MFI->setAdjustsStack(true);
7262
7263  SDValue Flag = Chain.getValue(1);
7264  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7265}
7266
7267// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7268static SDValue
7269LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7270                                const EVT PtrVT) {
7271  SDValue InFlag;
7272  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
7273  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7274                                     DAG.getNode(X86ISD::GlobalBaseReg,
7275                                                 DebugLoc(), PtrVT), InFlag);
7276  InFlag = Chain.getValue(1);
7277
7278  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7279}
7280
7281// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7282static SDValue
7283LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7284                                const EVT PtrVT) {
7285  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7286                    X86::RAX, X86II::MO_TLSGD);
7287}
7288
7289// Lower ISD::GlobalTLSAddress using the "initial exec" or "local exec" model.
7290static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7291                                   const EVT PtrVT, TLSModel::Model model,
7292                                   bool is64Bit, bool isPIC) {
7293  DebugLoc dl = GA->getDebugLoc();
7294
7295  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7296  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7297                                                         is64Bit ? 257 : 256));
7298
7299  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7300                                      DAG.getIntPtrConstant(0),
7301                                      MachinePointerInfo(Ptr),
7302                                      false, false, false, 0);
7303
7304  unsigned char OperandFlags = 0;
7305  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7306  // initialexec.
7307  unsigned WrapperKind = X86ISD::Wrapper;
7308  if (model == TLSModel::LocalExec) {
7309    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7310  } else if (model == TLSModel::InitialExec) {
7311    if (is64Bit) {
7312      OperandFlags = X86II::MO_GOTTPOFF;
7313      WrapperKind = X86ISD::WrapperRIP;
7314    } else {
7315      OperandFlags = isPIC ? X86II::MO_GOTNTPOFF : X86II::MO_INDNTPOFF;
7316    }
7317  } else {
7318    llvm_unreachable("Unexpected model");
7319  }
7320
7321  // emit "addl x@ntpoff,%eax" (local exec)
7322  // or "addl x@indntpoff,%eax" (initial exec)
7323  // or "addl x@gotntpoff(%ebx) ,%eax" (initial exec, 32-bit pic)
7324  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7325                                           GA->getValueType(0),
7326                                           GA->getOffset(), OperandFlags);
7327  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7328
7329  if (model == TLSModel::InitialExec) {
7330    if (isPIC && !is64Bit) {
7331      Offset = DAG.getNode(ISD::ADD, dl, PtrVT,
7332                          DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), PtrVT),
7333                           Offset);
7334    } else {
7335      Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7336                           MachinePointerInfo::getGOT(), false, false, false,
7337                           0);
7338    }
7339  }
7340
7341  // The address of the thread local variable is the add of the thread
7342  // pointer with the offset of the variable.
7343  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7344}
7345
7346SDValue
7347X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7348
7349  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7350  const GlobalValue *GV = GA->getGlobal();
7351
7352  if (Subtarget->isTargetELF()) {
7353    // TODO: implement the "local dynamic" model
7354
7355    // If GV is an alias then use the aliasee for determining
7356    // thread-localness.
7357    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7358      GV = GA->resolveAliasedGlobal(false);
7359
7360    TLSModel::Model model = getTargetMachine().getTLSModel(GV);
7361
7362    switch (model) {
7363      case TLSModel::GeneralDynamic:
7364      case TLSModel::LocalDynamic: // not implemented
7365        if (Subtarget->is64Bit())
7366          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7367        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7368
7369      case TLSModel::InitialExec:
7370      case TLSModel::LocalExec:
7371        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7372                                   Subtarget->is64Bit(),
7373                         getTargetMachine().getRelocationModel() == Reloc::PIC_);
7374    }
7375    llvm_unreachable("Unknown TLS model.");
7376  }
7377
7378  if (Subtarget->isTargetDarwin()) {
7379    // Darwin only has one model of TLS.  Lower to that.
7380    unsigned char OpFlag = 0;
7381    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7382                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7383
7384    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7385    // global base reg.
7386    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7387                  !Subtarget->is64Bit();
7388    if (PIC32)
7389      OpFlag = X86II::MO_TLVP_PIC_BASE;
7390    else
7391      OpFlag = X86II::MO_TLVP;
7392    DebugLoc DL = Op.getDebugLoc();
7393    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7394                                                GA->getValueType(0),
7395                                                GA->getOffset(), OpFlag);
7396    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7397
7398    // With PIC32, the address is actually $g + Offset.
7399    if (PIC32)
7400      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7401                           DAG.getNode(X86ISD::GlobalBaseReg,
7402                                       DebugLoc(), getPointerTy()),
7403                           Offset);
7404
7405    // Lowering the machine isd will make sure everything is in the right
7406    // location.
7407    SDValue Chain = DAG.getEntryNode();
7408    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7409    SDValue Args[] = { Chain, Offset };
7410    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7411
7412    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7413    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7414    MFI->setAdjustsStack(true);
7415
7416    // And our return value (tls address) is in the standard call return value
7417    // location.
7418    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7419    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
7420                              Chain.getValue(1));
7421  }
7422
7423  if (Subtarget->isTargetWindows()) {
7424    // Just use the implicit TLS architecture
7425    // Need to generate someting similar to:
7426    //   mov     rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage
7427    //                                  ; from TEB
7428    //   mov     ecx, dword [rel _tls_index]: Load index (from C runtime)
7429    //   mov     rcx, qword [rdx+rcx*8]
7430    //   mov     eax, .tls$:tlsvar
7431    //   [rax+rcx] contains the address
7432    // Windows 64bit: gs:0x58
7433    // Windows 32bit: fs:__tls_array
7434
7435    // If GV is an alias then use the aliasee for determining
7436    // thread-localness.
7437    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7438      GV = GA->resolveAliasedGlobal(false);
7439    DebugLoc dl = GA->getDebugLoc();
7440    SDValue Chain = DAG.getEntryNode();
7441
7442    // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
7443    // %gs:0x58 (64-bit).
7444    Value *Ptr = Constant::getNullValue(Subtarget->is64Bit()
7445                                        ? Type::getInt8PtrTy(*DAG.getContext(),
7446                                                             256)
7447                                        : Type::getInt32PtrTy(*DAG.getContext(),
7448                                                              257));
7449
7450    SDValue ThreadPointer = DAG.getLoad(getPointerTy(), dl, Chain,
7451                                        Subtarget->is64Bit()
7452                                        ? DAG.getIntPtrConstant(0x58)
7453                                        : DAG.getExternalSymbol("_tls_array",
7454                                                                getPointerTy()),
7455                                        MachinePointerInfo(Ptr),
7456                                        false, false, false, 0);
7457
7458    // Load the _tls_index variable
7459    SDValue IDX = DAG.getExternalSymbol("_tls_index", getPointerTy());
7460    if (Subtarget->is64Bit())
7461      IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, getPointerTy(), Chain,
7462                           IDX, MachinePointerInfo(), MVT::i32,
7463                           false, false, 0);
7464    else
7465      IDX = DAG.getLoad(getPointerTy(), dl, Chain, IDX, MachinePointerInfo(),
7466                        false, false, false, 0);
7467
7468    SDValue Scale = DAG.getConstant(Log2_64_Ceil(TD->getPointerSize()),
7469                                    getPointerTy());
7470    IDX = DAG.getNode(ISD::SHL, dl, getPointerTy(), IDX, Scale);
7471
7472    SDValue res = DAG.getNode(ISD::ADD, dl, getPointerTy(), ThreadPointer, IDX);
7473    res = DAG.getLoad(getPointerTy(), dl, Chain, res, MachinePointerInfo(),
7474                      false, false, false, 0);
7475
7476    // Get the offset of start of .tls section
7477    SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7478                                             GA->getValueType(0),
7479                                             GA->getOffset(), X86II::MO_SECREL);
7480    SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), TGA);
7481
7482    // The address of the thread local variable is the add of the thread
7483    // pointer with the offset of the variable.
7484    return DAG.getNode(ISD::ADD, dl, getPointerTy(), res, Offset);
7485  }
7486
7487  llvm_unreachable("TLS not implemented for this target.");
7488}
7489
7490
7491/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
7492/// and take a 2 x i32 value to shift plus a shift amount.
7493SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{
7494  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7495  EVT VT = Op.getValueType();
7496  unsigned VTBits = VT.getSizeInBits();
7497  DebugLoc dl = Op.getDebugLoc();
7498  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7499  SDValue ShOpLo = Op.getOperand(0);
7500  SDValue ShOpHi = Op.getOperand(1);
7501  SDValue ShAmt  = Op.getOperand(2);
7502  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7503                                     DAG.getConstant(VTBits - 1, MVT::i8))
7504                       : DAG.getConstant(0, VT);
7505
7506  SDValue Tmp2, Tmp3;
7507  if (Op.getOpcode() == ISD::SHL_PARTS) {
7508    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7509    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7510  } else {
7511    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7512    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7513  }
7514
7515  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7516                                DAG.getConstant(VTBits, MVT::i8));
7517  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7518                             AndNode, DAG.getConstant(0, MVT::i8));
7519
7520  SDValue Hi, Lo;
7521  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7522  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7523  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7524
7525  if (Op.getOpcode() == ISD::SHL_PARTS) {
7526    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7527    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7528  } else {
7529    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7530    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7531  }
7532
7533  SDValue Ops[2] = { Lo, Hi };
7534  return DAG.getMergeValues(Ops, 2, dl);
7535}
7536
7537SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7538                                           SelectionDAG &DAG) const {
7539  EVT SrcVT = Op.getOperand(0).getValueType();
7540
7541  if (SrcVT.isVector())
7542    return SDValue();
7543
7544  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7545         "Unknown SINT_TO_FP to lower!");
7546
7547  // These are really Legal; return the operand so the caller accepts it as
7548  // Legal.
7549  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7550    return Op;
7551  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7552      Subtarget->is64Bit()) {
7553    return Op;
7554  }
7555
7556  DebugLoc dl = Op.getDebugLoc();
7557  unsigned Size = SrcVT.getSizeInBits()/8;
7558  MachineFunction &MF = DAG.getMachineFunction();
7559  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7560  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7561  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7562                               StackSlot,
7563                               MachinePointerInfo::getFixedStack(SSFI),
7564                               false, false, 0);
7565  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7566}
7567
7568SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7569                                     SDValue StackSlot,
7570                                     SelectionDAG &DAG) const {
7571  // Build the FILD
7572  DebugLoc DL = Op.getDebugLoc();
7573  SDVTList Tys;
7574  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7575  if (useSSE)
7576    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7577  else
7578    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7579
7580  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7581
7582  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7583  MachineMemOperand *MMO;
7584  if (FI) {
7585    int SSFI = FI->getIndex();
7586    MMO =
7587      DAG.getMachineFunction()
7588      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7589                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7590  } else {
7591    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7592    StackSlot = StackSlot.getOperand(1);
7593  }
7594  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7595  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7596                                           X86ISD::FILD, DL,
7597                                           Tys, Ops, array_lengthof(Ops),
7598                                           SrcVT, MMO);
7599
7600  if (useSSE) {
7601    Chain = Result.getValue(1);
7602    SDValue InFlag = Result.getValue(2);
7603
7604    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7605    // shouldn't be necessary except that RFP cannot be live across
7606    // multiple blocks. When stackifier is fixed, they can be uncoupled.
7607    MachineFunction &MF = DAG.getMachineFunction();
7608    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7609    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7610    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7611    Tys = DAG.getVTList(MVT::Other);
7612    SDValue Ops[] = {
7613      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7614    };
7615    MachineMemOperand *MMO =
7616      DAG.getMachineFunction()
7617      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7618                            MachineMemOperand::MOStore, SSFISize, SSFISize);
7619
7620    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7621                                    Ops, array_lengthof(Ops),
7622                                    Op.getValueType(), MMO);
7623    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7624                         MachinePointerInfo::getFixedStack(SSFI),
7625                         false, false, false, 0);
7626  }
7627
7628  return Result;
7629}
7630
7631// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7632SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7633                                               SelectionDAG &DAG) const {
7634  // This algorithm is not obvious. Here it is what we're trying to output:
7635  /*
7636     movq       %rax,  %xmm0
7637     punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
7638     subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
7639     #ifdef __SSE3__
7640       haddpd   %xmm0, %xmm0
7641     #else
7642       pshufd   $0x4e, %xmm0, %xmm1
7643       addpd    %xmm1, %xmm0
7644     #endif
7645  */
7646
7647  DebugLoc dl = Op.getDebugLoc();
7648  LLVMContext *Context = DAG.getContext();
7649
7650  // Build some magic constants.
7651  const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
7652  Constant *C0 = ConstantDataVector::get(*Context, CV0);
7653  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7654
7655  SmallVector<Constant*,2> CV1;
7656  CV1.push_back(
7657        ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7658  CV1.push_back(
7659        ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7660  Constant *C1 = ConstantVector::get(CV1);
7661  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7662
7663  // Load the 64-bit value into an XMM register.
7664  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
7665                            Op.getOperand(0));
7666  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7667                              MachinePointerInfo::getConstantPool(),
7668                              false, false, false, 16);
7669  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
7670                              DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
7671                              CLod0);
7672
7673  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7674                              MachinePointerInfo::getConstantPool(),
7675                              false, false, false, 16);
7676  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
7677  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7678  SDValue Result;
7679
7680  if (Subtarget->hasSSE3()) {
7681    // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
7682    Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
7683  } else {
7684    SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
7685    SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
7686                                           S2F, 0x4E, DAG);
7687    Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
7688                         DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
7689                         Sub);
7690  }
7691
7692  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
7693                     DAG.getIntPtrConstant(0));
7694}
7695
7696// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
7697SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7698                                               SelectionDAG &DAG) const {
7699  DebugLoc dl = Op.getDebugLoc();
7700  // FP constant to bias correct the final result.
7701  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7702                                   MVT::f64);
7703
7704  // Load the 32-bit value into an XMM register.
7705  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7706                             Op.getOperand(0));
7707
7708  // Zero out the upper parts of the register.
7709  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
7710
7711  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7712                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7713                     DAG.getIntPtrConstant(0));
7714
7715  // Or the load with the bias.
7716  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7717                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7718                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7719                                                   MVT::v2f64, Load)),
7720                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7721                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7722                                                   MVT::v2f64, Bias)));
7723  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7724                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7725                   DAG.getIntPtrConstant(0));
7726
7727  // Subtract the bias.
7728  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7729
7730  // Handle final rounding.
7731  EVT DestVT = Op.getValueType();
7732
7733  if (DestVT.bitsLT(MVT::f64))
7734    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7735                       DAG.getIntPtrConstant(0));
7736  if (DestVT.bitsGT(MVT::f64))
7737    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7738
7739  // Handle final rounding.
7740  return Sub;
7741}
7742
7743SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
7744                                           SelectionDAG &DAG) const {
7745  SDValue N0 = Op.getOperand(0);
7746  DebugLoc dl = Op.getDebugLoc();
7747
7748  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
7749  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
7750  // the optimization here.
7751  if (DAG.SignBitIsZero(N0))
7752    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
7753
7754  EVT SrcVT = N0.getValueType();
7755  EVT DstVT = Op.getValueType();
7756  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
7757    return LowerUINT_TO_FP_i64(Op, DAG);
7758  if (SrcVT == MVT::i32 && X86ScalarSSEf64)
7759    return LowerUINT_TO_FP_i32(Op, DAG);
7760  if (Subtarget->is64Bit() && SrcVT == MVT::i64 && DstVT == MVT::f32)
7761    return SDValue();
7762
7763  // Make a 64-bit buffer, and use it to build an FILD.
7764  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
7765  if (SrcVT == MVT::i32) {
7766    SDValue WordOff = DAG.getConstant(4, getPointerTy());
7767    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
7768                                     getPointerTy(), StackSlot, WordOff);
7769    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7770                                  StackSlot, MachinePointerInfo(),
7771                                  false, false, 0);
7772    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
7773                                  OffsetSlot, MachinePointerInfo(),
7774                                  false, false, 0);
7775    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
7776    return Fild;
7777  }
7778
7779  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
7780  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7781                               StackSlot, MachinePointerInfo(),
7782                               false, false, 0);
7783  // For i64 source, we need to add the appropriate power of 2 if the input
7784  // was negative.  This is the same as the optimization in
7785  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
7786  // we must be careful to do the computation in x87 extended precision, not
7787  // in SSE. (The generic code can't know it's OK to do this, or how to.)
7788  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
7789  MachineMemOperand *MMO =
7790    DAG.getMachineFunction()
7791    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7792                          MachineMemOperand::MOLoad, 8, 8);
7793
7794  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
7795  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
7796  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
7797                                         MVT::i64, MMO);
7798
7799  APInt FF(32, 0x5F800000ULL);
7800
7801  // Check whether the sign bit is set.
7802  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
7803                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
7804                                 ISD::SETLT);
7805
7806  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
7807  SDValue FudgePtr = DAG.getConstantPool(
7808                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
7809                                         getPointerTy());
7810
7811  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
7812  SDValue Zero = DAG.getIntPtrConstant(0);
7813  SDValue Four = DAG.getIntPtrConstant(4);
7814  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
7815                               Zero, Four);
7816  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
7817
7818  // Load the value out, extending it from f32 to f80.
7819  // FIXME: Avoid the extend by constructing the right constant pool?
7820  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
7821                                 FudgePtr, MachinePointerInfo::getConstantPool(),
7822                                 MVT::f32, false, false, 4);
7823  // Extend everything to 80 bits to force it to be done on x87.
7824  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
7825  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
7826}
7827
7828std::pair<SDValue,SDValue> X86TargetLowering::
7829FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned, bool IsReplace) const {
7830  DebugLoc DL = Op.getDebugLoc();
7831
7832  EVT DstTy = Op.getValueType();
7833
7834  if (!IsSigned && !isIntegerTypeFTOL(DstTy)) {
7835    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
7836    DstTy = MVT::i64;
7837  }
7838
7839  assert(DstTy.getSimpleVT() <= MVT::i64 &&
7840         DstTy.getSimpleVT() >= MVT::i16 &&
7841         "Unknown FP_TO_INT to lower!");
7842
7843  // These are really Legal.
7844  if (DstTy == MVT::i32 &&
7845      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7846    return std::make_pair(SDValue(), SDValue());
7847  if (Subtarget->is64Bit() &&
7848      DstTy == MVT::i64 &&
7849      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7850    return std::make_pair(SDValue(), SDValue());
7851
7852  // We lower FP->int64 either into FISTP64 followed by a load from a temporary
7853  // stack slot, or into the FTOL runtime function.
7854  MachineFunction &MF = DAG.getMachineFunction();
7855  unsigned MemSize = DstTy.getSizeInBits()/8;
7856  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7857  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7858
7859  unsigned Opc;
7860  if (!IsSigned && isIntegerTypeFTOL(DstTy))
7861    Opc = X86ISD::WIN_FTOL;
7862  else
7863    switch (DstTy.getSimpleVT().SimpleTy) {
7864    default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
7865    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
7866    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
7867    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
7868    }
7869
7870  SDValue Chain = DAG.getEntryNode();
7871  SDValue Value = Op.getOperand(0);
7872  EVT TheVT = Op.getOperand(0).getValueType();
7873  // FIXME This causes a redundant load/store if the SSE-class value is already
7874  // in memory, such as if it is on the callstack.
7875  if (isScalarFPTypeInSSEReg(TheVT)) {
7876    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
7877    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
7878                         MachinePointerInfo::getFixedStack(SSFI),
7879                         false, false, 0);
7880    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
7881    SDValue Ops[] = {
7882      Chain, StackSlot, DAG.getValueType(TheVT)
7883    };
7884
7885    MachineMemOperand *MMO =
7886      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7887                              MachineMemOperand::MOLoad, MemSize, MemSize);
7888    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
7889                                    DstTy, MMO);
7890    Chain = Value.getValue(1);
7891    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7892    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7893  }
7894
7895  MachineMemOperand *MMO =
7896    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7897                            MachineMemOperand::MOStore, MemSize, MemSize);
7898
7899  if (Opc != X86ISD::WIN_FTOL) {
7900    // Build the FP_TO_INT*_IN_MEM
7901    SDValue Ops[] = { Chain, Value, StackSlot };
7902    SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
7903                                           Ops, 3, DstTy, MMO);
7904    return std::make_pair(FIST, StackSlot);
7905  } else {
7906    SDValue ftol = DAG.getNode(X86ISD::WIN_FTOL, DL,
7907      DAG.getVTList(MVT::Other, MVT::Glue),
7908      Chain, Value);
7909    SDValue eax = DAG.getCopyFromReg(ftol, DL, X86::EAX,
7910      MVT::i32, ftol.getValue(1));
7911    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), DL, X86::EDX,
7912      MVT::i32, eax.getValue(2));
7913    SDValue Ops[] = { eax, edx };
7914    SDValue pair = IsReplace
7915      ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops, 2)
7916      : DAG.getMergeValues(Ops, 2, DL);
7917    return std::make_pair(pair, SDValue());
7918  }
7919}
7920
7921SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
7922                                           SelectionDAG &DAG) const {
7923  if (Op.getValueType().isVector())
7924    return SDValue();
7925
7926  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
7927    /*IsSigned=*/ true, /*IsReplace=*/ false);
7928  SDValue FIST = Vals.first, StackSlot = Vals.second;
7929  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
7930  if (FIST.getNode() == 0) return Op;
7931
7932  if (StackSlot.getNode())
7933    // Load the result.
7934    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7935                       FIST, StackSlot, MachinePointerInfo(),
7936                       false, false, false, 0);
7937
7938  // The node is the result.
7939  return FIST;
7940}
7941
7942SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
7943                                           SelectionDAG &DAG) const {
7944  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
7945    /*IsSigned=*/ false, /*IsReplace=*/ false);
7946  SDValue FIST = Vals.first, StackSlot = Vals.second;
7947  assert(FIST.getNode() && "Unexpected failure");
7948
7949  if (StackSlot.getNode())
7950    // Load the result.
7951    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7952                       FIST, StackSlot, MachinePointerInfo(),
7953                       false, false, false, 0);
7954
7955  // The node is the result.
7956  return FIST;
7957}
7958
7959SDValue X86TargetLowering::LowerFABS(SDValue Op,
7960                                     SelectionDAG &DAG) const {
7961  LLVMContext *Context = DAG.getContext();
7962  DebugLoc dl = Op.getDebugLoc();
7963  EVT VT = Op.getValueType();
7964  EVT EltVT = VT;
7965  if (VT.isVector())
7966    EltVT = VT.getVectorElementType();
7967  Constant *C;
7968  if (EltVT == MVT::f64) {
7969    C = ConstantVector::getSplat(2,
7970                ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
7971  } else {
7972    C = ConstantVector::getSplat(4,
7973               ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
7974  }
7975  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7976  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7977                             MachinePointerInfo::getConstantPool(),
7978                             false, false, false, 16);
7979  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
7980}
7981
7982SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
7983  LLVMContext *Context = DAG.getContext();
7984  DebugLoc dl = Op.getDebugLoc();
7985  EVT VT = Op.getValueType();
7986  EVT EltVT = VT;
7987  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
7988  if (VT.isVector()) {
7989    EltVT = VT.getVectorElementType();
7990    NumElts = VT.getVectorNumElements();
7991  }
7992  Constant *C;
7993  if (EltVT == MVT::f64)
7994    C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
7995  else
7996    C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
7997  C = ConstantVector::getSplat(NumElts, C);
7998  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7999  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8000                             MachinePointerInfo::getConstantPool(),
8001                             false, false, false, 16);
8002  if (VT.isVector()) {
8003    MVT XORVT = VT.getSizeInBits() == 128 ? MVT::v2i64 : MVT::v4i64;
8004    return DAG.getNode(ISD::BITCAST, dl, VT,
8005                       DAG.getNode(ISD::XOR, dl, XORVT,
8006                                   DAG.getNode(ISD::BITCAST, dl, XORVT,
8007                                               Op.getOperand(0)),
8008                                   DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
8009  }
8010
8011  return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
8012}
8013
8014SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
8015  LLVMContext *Context = DAG.getContext();
8016  SDValue Op0 = Op.getOperand(0);
8017  SDValue Op1 = Op.getOperand(1);
8018  DebugLoc dl = Op.getDebugLoc();
8019  EVT VT = Op.getValueType();
8020  EVT SrcVT = Op1.getValueType();
8021
8022  // If second operand is smaller, extend it first.
8023  if (SrcVT.bitsLT(VT)) {
8024    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
8025    SrcVT = VT;
8026  }
8027  // And if it is bigger, shrink it first.
8028  if (SrcVT.bitsGT(VT)) {
8029    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
8030    SrcVT = VT;
8031  }
8032
8033  // At this point the operands and the result should have the same
8034  // type, and that won't be f80 since that is not custom lowered.
8035
8036  // First get the sign bit of second operand.
8037  SmallVector<Constant*,4> CV;
8038  if (SrcVT == MVT::f64) {
8039    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
8040    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8041  } else {
8042    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
8043    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8044    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8045    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8046  }
8047  Constant *C = ConstantVector::get(CV);
8048  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8049  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
8050                              MachinePointerInfo::getConstantPool(),
8051                              false, false, false, 16);
8052  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
8053
8054  // Shift sign bit right or left if the two operands have different types.
8055  if (SrcVT.bitsGT(VT)) {
8056    // Op0 is MVT::f32, Op1 is MVT::f64.
8057    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
8058    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
8059                          DAG.getConstant(32, MVT::i32));
8060    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
8061    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
8062                          DAG.getIntPtrConstant(0));
8063  }
8064
8065  // Clear first operand sign bit.
8066  CV.clear();
8067  if (VT == MVT::f64) {
8068    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
8069    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8070  } else {
8071    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
8072    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8073    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8074    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8075  }
8076  C = ConstantVector::get(CV);
8077  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8078  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8079                              MachinePointerInfo::getConstantPool(),
8080                              false, false, false, 16);
8081  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
8082
8083  // Or the value with the sign bit.
8084  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
8085}
8086
8087SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
8088  SDValue N0 = Op.getOperand(0);
8089  DebugLoc dl = Op.getDebugLoc();
8090  EVT VT = Op.getValueType();
8091
8092  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
8093  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
8094                                  DAG.getConstant(1, VT));
8095  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
8096}
8097
8098/// Emit nodes that will be selected as "test Op0,Op0", or something
8099/// equivalent.
8100SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
8101                                    SelectionDAG &DAG) const {
8102  DebugLoc dl = Op.getDebugLoc();
8103
8104  // CF and OF aren't always set the way we want. Determine which
8105  // of these we need.
8106  bool NeedCF = false;
8107  bool NeedOF = false;
8108  switch (X86CC) {
8109  default: break;
8110  case X86::COND_A: case X86::COND_AE:
8111  case X86::COND_B: case X86::COND_BE:
8112    NeedCF = true;
8113    break;
8114  case X86::COND_G: case X86::COND_GE:
8115  case X86::COND_L: case X86::COND_LE:
8116  case X86::COND_O: case X86::COND_NO:
8117    NeedOF = true;
8118    break;
8119  }
8120
8121  // See if we can use the EFLAGS value from the operand instead of
8122  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8123  // we prove that the arithmetic won't overflow, we can't use OF or CF.
8124  if (Op.getResNo() != 0 || NeedOF || NeedCF)
8125    // Emit a CMP with 0, which is the TEST pattern.
8126    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8127                       DAG.getConstant(0, Op.getValueType()));
8128
8129  unsigned Opcode = 0;
8130  unsigned NumOperands = 0;
8131  switch (Op.getNode()->getOpcode()) {
8132  case ISD::ADD:
8133    // Due to an isel shortcoming, be conservative if this add is likely to be
8134    // selected as part of a load-modify-store instruction. When the root node
8135    // in a match is a store, isel doesn't know how to remap non-chain non-flag
8136    // uses of other nodes in the match, such as the ADD in this case. This
8137    // leads to the ADD being left around and reselected, with the result being
8138    // two adds in the output.  Alas, even if none our users are stores, that
8139    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
8140    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
8141    // climbing the DAG back to the root, and it doesn't seem to be worth the
8142    // effort.
8143    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8144         UE = Op.getNode()->use_end(); UI != UE; ++UI)
8145      if (UI->getOpcode() != ISD::CopyToReg &&
8146          UI->getOpcode() != ISD::SETCC &&
8147          UI->getOpcode() != ISD::STORE)
8148        goto default_case;
8149
8150    if (ConstantSDNode *C =
8151        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
8152      // An add of one will be selected as an INC.
8153      if (C->getAPIntValue() == 1) {
8154        Opcode = X86ISD::INC;
8155        NumOperands = 1;
8156        break;
8157      }
8158
8159      // An add of negative one (subtract of one) will be selected as a DEC.
8160      if (C->getAPIntValue().isAllOnesValue()) {
8161        Opcode = X86ISD::DEC;
8162        NumOperands = 1;
8163        break;
8164      }
8165    }
8166
8167    // Otherwise use a regular EFLAGS-setting add.
8168    Opcode = X86ISD::ADD;
8169    NumOperands = 2;
8170    break;
8171  case ISD::AND: {
8172    // If the primary and result isn't used, don't bother using X86ISD::AND,
8173    // because a TEST instruction will be better.
8174    bool NonFlagUse = false;
8175    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8176           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8177      SDNode *User = *UI;
8178      unsigned UOpNo = UI.getOperandNo();
8179      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8180        // Look pass truncate.
8181        UOpNo = User->use_begin().getOperandNo();
8182        User = *User->use_begin();
8183      }
8184
8185      if (User->getOpcode() != ISD::BRCOND &&
8186          User->getOpcode() != ISD::SETCC &&
8187          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
8188        NonFlagUse = true;
8189        break;
8190      }
8191    }
8192
8193    if (!NonFlagUse)
8194      break;
8195  }
8196    // FALL THROUGH
8197  case ISD::SUB:
8198  case ISD::OR:
8199  case ISD::XOR:
8200    // Due to the ISEL shortcoming noted above, be conservative if this op is
8201    // likely to be selected as part of a load-modify-store instruction.
8202    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8203           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8204      if (UI->getOpcode() == ISD::STORE)
8205        goto default_case;
8206
8207    // Otherwise use a regular EFLAGS-setting instruction.
8208    switch (Op.getNode()->getOpcode()) {
8209    default: llvm_unreachable("unexpected operator!");
8210    case ISD::SUB: Opcode = X86ISD::SUB; break;
8211    case ISD::OR:  Opcode = X86ISD::OR;  break;
8212    case ISD::XOR: Opcode = X86ISD::XOR; break;
8213    case ISD::AND: Opcode = X86ISD::AND; break;
8214    }
8215
8216    NumOperands = 2;
8217    break;
8218  case X86ISD::ADD:
8219  case X86ISD::SUB:
8220  case X86ISD::INC:
8221  case X86ISD::DEC:
8222  case X86ISD::OR:
8223  case X86ISD::XOR:
8224  case X86ISD::AND:
8225    return SDValue(Op.getNode(), 1);
8226  default:
8227  default_case:
8228    break;
8229  }
8230
8231  if (Opcode == 0)
8232    // Emit a CMP with 0, which is the TEST pattern.
8233    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8234                       DAG.getConstant(0, Op.getValueType()));
8235
8236  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
8237  SmallVector<SDValue, 4> Ops;
8238  for (unsigned i = 0; i != NumOperands; ++i)
8239    Ops.push_back(Op.getOperand(i));
8240
8241  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
8242  DAG.ReplaceAllUsesWith(Op, New);
8243  return SDValue(New.getNode(), 1);
8244}
8245
8246/// Emit nodes that will be selected as "cmp Op0,Op1", or something
8247/// equivalent.
8248SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
8249                                   SelectionDAG &DAG) const {
8250  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
8251    if (C->getAPIntValue() == 0)
8252      return EmitTest(Op0, X86CC, DAG);
8253
8254  DebugLoc dl = Op0.getDebugLoc();
8255  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
8256}
8257
8258/// Convert a comparison if required by the subtarget.
8259SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp,
8260                                                 SelectionDAG &DAG) const {
8261  // If the subtarget does not support the FUCOMI instruction, floating-point
8262  // comparisons have to be converted.
8263  if (Subtarget->hasCMov() ||
8264      Cmp.getOpcode() != X86ISD::CMP ||
8265      !Cmp.getOperand(0).getValueType().isFloatingPoint() ||
8266      !Cmp.getOperand(1).getValueType().isFloatingPoint())
8267    return Cmp;
8268
8269  // The instruction selector will select an FUCOM instruction instead of
8270  // FUCOMI, which writes the comparison result to FPSW instead of EFLAGS. Hence
8271  // build an SDNode sequence that transfers the result from FPSW into EFLAGS:
8272  // (X86sahf (trunc (srl (X86fp_stsw (trunc (X86cmp ...)), 8))))
8273  DebugLoc dl = Cmp.getDebugLoc();
8274  SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp);
8275  SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW);
8276  SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW,
8277                            DAG.getConstant(8, MVT::i8));
8278  SDValue TruncSrl = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Srl);
8279  return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl);
8280}
8281
8282/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
8283/// if it's possible.
8284SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
8285                                     DebugLoc dl, SelectionDAG &DAG) const {
8286  SDValue Op0 = And.getOperand(0);
8287  SDValue Op1 = And.getOperand(1);
8288  if (Op0.getOpcode() == ISD::TRUNCATE)
8289    Op0 = Op0.getOperand(0);
8290  if (Op1.getOpcode() == ISD::TRUNCATE)
8291    Op1 = Op1.getOperand(0);
8292
8293  SDValue LHS, RHS;
8294  if (Op1.getOpcode() == ISD::SHL)
8295    std::swap(Op0, Op1);
8296  if (Op0.getOpcode() == ISD::SHL) {
8297    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
8298      if (And00C->getZExtValue() == 1) {
8299        // If we looked past a truncate, check that it's only truncating away
8300        // known zeros.
8301        unsigned BitWidth = Op0.getValueSizeInBits();
8302        unsigned AndBitWidth = And.getValueSizeInBits();
8303        if (BitWidth > AndBitWidth) {
8304          APInt Zeros, Ones;
8305          DAG.ComputeMaskedBits(Op0, Zeros, Ones);
8306          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
8307            return SDValue();
8308        }
8309        LHS = Op1;
8310        RHS = Op0.getOperand(1);
8311      }
8312  } else if (Op1.getOpcode() == ISD::Constant) {
8313    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
8314    uint64_t AndRHSVal = AndRHS->getZExtValue();
8315    SDValue AndLHS = Op0;
8316
8317    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
8318      LHS = AndLHS.getOperand(0);
8319      RHS = AndLHS.getOperand(1);
8320    }
8321
8322    // Use BT if the immediate can't be encoded in a TEST instruction.
8323    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
8324      LHS = AndLHS;
8325      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
8326    }
8327  }
8328
8329  if (LHS.getNode()) {
8330    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
8331    // instruction.  Since the shift amount is in-range-or-undefined, we know
8332    // that doing a bittest on the i32 value is ok.  We extend to i32 because
8333    // the encoding for the i16 version is larger than the i32 version.
8334    // Also promote i16 to i32 for performance / code size reason.
8335    if (LHS.getValueType() == MVT::i8 ||
8336        LHS.getValueType() == MVT::i16)
8337      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
8338
8339    // If the operand types disagree, extend the shift amount to match.  Since
8340    // BT ignores high bits (like shifts) we can use anyextend.
8341    if (LHS.getValueType() != RHS.getValueType())
8342      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
8343
8344    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
8345    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
8346    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8347                       DAG.getConstant(Cond, MVT::i8), BT);
8348  }
8349
8350  return SDValue();
8351}
8352
8353SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
8354
8355  if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
8356
8357  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
8358  SDValue Op0 = Op.getOperand(0);
8359  SDValue Op1 = Op.getOperand(1);
8360  DebugLoc dl = Op.getDebugLoc();
8361  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8362
8363  // Optimize to BT if possible.
8364  // Lower (X & (1 << N)) == 0 to BT(X, N).
8365  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
8366  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
8367  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
8368      Op1.getOpcode() == ISD::Constant &&
8369      cast<ConstantSDNode>(Op1)->isNullValue() &&
8370      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8371    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
8372    if (NewSetCC.getNode())
8373      return NewSetCC;
8374  }
8375
8376  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
8377  // these.
8378  if (Op1.getOpcode() == ISD::Constant &&
8379      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
8380       cast<ConstantSDNode>(Op1)->isNullValue()) &&
8381      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8382
8383    // If the input is a setcc, then reuse the input setcc or use a new one with
8384    // the inverted condition.
8385    if (Op0.getOpcode() == X86ISD::SETCC) {
8386      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
8387      bool Invert = (CC == ISD::SETNE) ^
8388        cast<ConstantSDNode>(Op1)->isNullValue();
8389      if (!Invert) return Op0;
8390
8391      CCode = X86::GetOppositeBranchCondition(CCode);
8392      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8393                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
8394    }
8395  }
8396
8397  bool isFP = Op1.getValueType().isFloatingPoint();
8398  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
8399  if (X86CC == X86::COND_INVALID)
8400    return SDValue();
8401
8402  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
8403  EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG);
8404  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8405                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
8406}
8407
8408// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
8409// ones, and then concatenate the result back.
8410static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
8411  EVT VT = Op.getValueType();
8412
8413  assert(VT.getSizeInBits() == 256 && Op.getOpcode() == ISD::SETCC &&
8414         "Unsupported value type for operation");
8415
8416  unsigned NumElems = VT.getVectorNumElements();
8417  DebugLoc dl = Op.getDebugLoc();
8418  SDValue CC = Op.getOperand(2);
8419
8420  // Extract the LHS vectors
8421  SDValue LHS = Op.getOperand(0);
8422  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
8423  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
8424
8425  // Extract the RHS vectors
8426  SDValue RHS = Op.getOperand(1);
8427  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
8428  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
8429
8430  // Issue the operation on the smaller types and concatenate the result back
8431  MVT EltVT = VT.getVectorElementType().getSimpleVT();
8432  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
8433  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8434                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
8435                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
8436}
8437
8438
8439SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
8440  SDValue Cond;
8441  SDValue Op0 = Op.getOperand(0);
8442  SDValue Op1 = Op.getOperand(1);
8443  SDValue CC = Op.getOperand(2);
8444  EVT VT = Op.getValueType();
8445  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
8446  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
8447  DebugLoc dl = Op.getDebugLoc();
8448
8449  if (isFP) {
8450    unsigned SSECC = 8;
8451    EVT EltVT = Op0.getValueType().getVectorElementType();
8452    assert(EltVT == MVT::f32 || EltVT == MVT::f64); (void)EltVT;
8453
8454    bool Swap = false;
8455
8456    // SSE Condition code mapping:
8457    //  0 - EQ
8458    //  1 - LT
8459    //  2 - LE
8460    //  3 - UNORD
8461    //  4 - NEQ
8462    //  5 - NLT
8463    //  6 - NLE
8464    //  7 - ORD
8465    switch (SetCCOpcode) {
8466    default: break;
8467    case ISD::SETOEQ:
8468    case ISD::SETEQ:  SSECC = 0; break;
8469    case ISD::SETOGT:
8470    case ISD::SETGT: Swap = true; // Fallthrough
8471    case ISD::SETLT:
8472    case ISD::SETOLT: SSECC = 1; break;
8473    case ISD::SETOGE:
8474    case ISD::SETGE: Swap = true; // Fallthrough
8475    case ISD::SETLE:
8476    case ISD::SETOLE: SSECC = 2; break;
8477    case ISD::SETUO:  SSECC = 3; break;
8478    case ISD::SETUNE:
8479    case ISD::SETNE:  SSECC = 4; break;
8480    case ISD::SETULE: Swap = true;
8481    case ISD::SETUGE: SSECC = 5; break;
8482    case ISD::SETULT: Swap = true;
8483    case ISD::SETUGT: SSECC = 6; break;
8484    case ISD::SETO:   SSECC = 7; break;
8485    }
8486    if (Swap)
8487      std::swap(Op0, Op1);
8488
8489    // In the two special cases we can't handle, emit two comparisons.
8490    if (SSECC == 8) {
8491      if (SetCCOpcode == ISD::SETUEQ) {
8492        SDValue UNORD, EQ;
8493        UNORD = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8494                            DAG.getConstant(3, MVT::i8));
8495        EQ = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8496                         DAG.getConstant(0, MVT::i8));
8497        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
8498      }
8499      if (SetCCOpcode == ISD::SETONE) {
8500        SDValue ORD, NEQ;
8501        ORD = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8502                          DAG.getConstant(7, MVT::i8));
8503        NEQ = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8504                          DAG.getConstant(4, MVT::i8));
8505        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
8506      }
8507      llvm_unreachable("Illegal FP comparison");
8508    }
8509    // Handle all other FP comparisons here.
8510    return DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8511                       DAG.getConstant(SSECC, MVT::i8));
8512  }
8513
8514  // Break 256-bit integer vector compare into smaller ones.
8515  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
8516    return Lower256IntVSETCC(Op, DAG);
8517
8518  // We are handling one of the integer comparisons here.  Since SSE only has
8519  // GT and EQ comparisons for integer, swapping operands and multiple
8520  // operations may be required for some comparisons.
8521  unsigned Opc = 0;
8522  bool Swap = false, Invert = false, FlipSigns = false;
8523
8524  switch (SetCCOpcode) {
8525  default: break;
8526  case ISD::SETNE:  Invert = true;
8527  case ISD::SETEQ:  Opc = X86ISD::PCMPEQ; break;
8528  case ISD::SETLT:  Swap = true;
8529  case ISD::SETGT:  Opc = X86ISD::PCMPGT; break;
8530  case ISD::SETGE:  Swap = true;
8531  case ISD::SETLE:  Opc = X86ISD::PCMPGT; Invert = true; break;
8532  case ISD::SETULT: Swap = true;
8533  case ISD::SETUGT: Opc = X86ISD::PCMPGT; FlipSigns = true; break;
8534  case ISD::SETUGE: Swap = true;
8535  case ISD::SETULE: Opc = X86ISD::PCMPGT; FlipSigns = true; Invert = true; break;
8536  }
8537  if (Swap)
8538    std::swap(Op0, Op1);
8539
8540  // Check that the operation in question is available (most are plain SSE2,
8541  // but PCMPGTQ and PCMPEQQ have different requirements).
8542  if (Opc == X86ISD::PCMPGT && VT == MVT::v2i64 && !Subtarget->hasSSE42())
8543    return SDValue();
8544  if (Opc == X86ISD::PCMPEQ && VT == MVT::v2i64 && !Subtarget->hasSSE41())
8545    return SDValue();
8546
8547  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
8548  // bits of the inputs before performing those operations.
8549  if (FlipSigns) {
8550    EVT EltVT = VT.getVectorElementType();
8551    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
8552                                      EltVT);
8553    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
8554    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
8555                                    SignBits.size());
8556    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
8557    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
8558  }
8559
8560  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
8561
8562  // If the logical-not of the result is required, perform that now.
8563  if (Invert)
8564    Result = DAG.getNOT(dl, Result, VT);
8565
8566  return Result;
8567}
8568
8569// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
8570static bool isX86LogicalCmp(SDValue Op) {
8571  unsigned Opc = Op.getNode()->getOpcode();
8572  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI ||
8573      Opc == X86ISD::SAHF)
8574    return true;
8575  if (Op.getResNo() == 1 &&
8576      (Opc == X86ISD::ADD ||
8577       Opc == X86ISD::SUB ||
8578       Opc == X86ISD::ADC ||
8579       Opc == X86ISD::SBB ||
8580       Opc == X86ISD::SMUL ||
8581       Opc == X86ISD::UMUL ||
8582       Opc == X86ISD::INC ||
8583       Opc == X86ISD::DEC ||
8584       Opc == X86ISD::OR ||
8585       Opc == X86ISD::XOR ||
8586       Opc == X86ISD::AND))
8587    return true;
8588
8589  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
8590    return true;
8591
8592  return false;
8593}
8594
8595static bool isZero(SDValue V) {
8596  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8597  return C && C->isNullValue();
8598}
8599
8600static bool isAllOnes(SDValue V) {
8601  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8602  return C && C->isAllOnesValue();
8603}
8604
8605SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8606  bool addTest = true;
8607  SDValue Cond  = Op.getOperand(0);
8608  SDValue Op1 = Op.getOperand(1);
8609  SDValue Op2 = Op.getOperand(2);
8610  DebugLoc DL = Op.getDebugLoc();
8611  SDValue CC;
8612
8613  if (Cond.getOpcode() == ISD::SETCC) {
8614    SDValue NewCond = LowerSETCC(Cond, DAG);
8615    if (NewCond.getNode())
8616      Cond = NewCond;
8617  }
8618
8619  // Handle the following cases related to max and min:
8620  // (a > b) ? (a-b) : 0
8621  // (a >= b) ? (a-b) : 0
8622  // (b < a) ? (a-b) : 0
8623  // (b <= a) ? (a-b) : 0
8624  // Comparison is removed to use EFLAGS from SUB.
8625  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op2))
8626    if (Cond.getOpcode() == X86ISD::SETCC &&
8627        Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
8628        (Op1.getOpcode() == ISD::SUB || Op1.getOpcode() == X86ISD::SUB) &&
8629        C->getAPIntValue() == 0) {
8630      SDValue Cmp = Cond.getOperand(1);
8631      unsigned CC = cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
8632      if ((DAG.isEqualTo(Op1.getOperand(0), Cmp.getOperand(0)) &&
8633           DAG.isEqualTo(Op1.getOperand(1), Cmp.getOperand(1)) &&
8634           (CC == X86::COND_G || CC == X86::COND_GE ||
8635            CC == X86::COND_A || CC == X86::COND_AE)) ||
8636          (DAG.isEqualTo(Op1.getOperand(0), Cmp.getOperand(1)) &&
8637           DAG.isEqualTo(Op1.getOperand(1), Cmp.getOperand(0)) &&
8638           (CC == X86::COND_L || CC == X86::COND_LE ||
8639            CC == X86::COND_B || CC == X86::COND_BE))) {
8640
8641        if (Op1.getOpcode() == ISD::SUB) {
8642          SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i32);
8643          SDValue New = DAG.getNode(X86ISD::SUB, DL, VTs,
8644                                    Op1.getOperand(0), Op1.getOperand(1));
8645          DAG.ReplaceAllUsesWith(Op1, New);
8646          Op1 = New;
8647        }
8648
8649        SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
8650        unsigned NewCC = (CC == X86::COND_G || CC == X86::COND_GE ||
8651                          CC == X86::COND_L ||
8652                          CC == X86::COND_LE) ? X86::COND_GE : X86::COND_AE;
8653        SDValue Ops[] = { Op2, Op1, DAG.getConstant(NewCC, MVT::i8),
8654                          SDValue(Op1.getNode(), 1) };
8655        return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
8656      }
8657    }
8658
8659  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
8660  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
8661  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
8662  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
8663  if (Cond.getOpcode() == X86ISD::SETCC &&
8664      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
8665      isZero(Cond.getOperand(1).getOperand(1))) {
8666    SDValue Cmp = Cond.getOperand(1);
8667
8668    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
8669
8670    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
8671        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
8672      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
8673
8674      SDValue CmpOp0 = Cmp.getOperand(0);
8675      // Apply further optimizations for special cases
8676      // (select (x != 0), -1, 0) -> neg & sbb
8677      // (select (x == 0), 0, -1) -> neg & sbb
8678      if (ConstantSDNode *YC = dyn_cast<ConstantSDNode>(Y))
8679        if (YC->isNullValue() &&
8680            (isAllOnes(Op1) == (CondCode == X86::COND_NE))) {
8681          SDVTList VTs = DAG.getVTList(CmpOp0.getValueType(), MVT::i32);
8682          SDValue Neg = DAG.getNode(X86ISD::SUB, DL, VTs,
8683                                    DAG.getConstant(0, CmpOp0.getValueType()),
8684                                    CmpOp0);
8685          SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8686                                    DAG.getConstant(X86::COND_B, MVT::i8),
8687                                    SDValue(Neg.getNode(), 1));
8688          return Res;
8689        }
8690
8691      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
8692                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
8693      Cmp = ConvertCmpIfNecessary(Cmp, DAG);
8694
8695      SDValue Res =   // Res = 0 or -1.
8696        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8697                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
8698
8699      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
8700        Res = DAG.getNOT(DL, Res, Res.getValueType());
8701
8702      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
8703      if (N2C == 0 || !N2C->isNullValue())
8704        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
8705      return Res;
8706    }
8707  }
8708
8709  // Look past (and (setcc_carry (cmp ...)), 1).
8710  if (Cond.getOpcode() == ISD::AND &&
8711      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8712    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8713    if (C && C->getAPIntValue() == 1)
8714      Cond = Cond.getOperand(0);
8715  }
8716
8717  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8718  // setting operand in place of the X86ISD::SETCC.
8719  unsigned CondOpcode = Cond.getOpcode();
8720  if (CondOpcode == X86ISD::SETCC ||
8721      CondOpcode == X86ISD::SETCC_CARRY) {
8722    CC = Cond.getOperand(0);
8723
8724    SDValue Cmp = Cond.getOperand(1);
8725    unsigned Opc = Cmp.getOpcode();
8726    EVT VT = Op.getValueType();
8727
8728    bool IllegalFPCMov = false;
8729    if (VT.isFloatingPoint() && !VT.isVector() &&
8730        !isScalarFPTypeInSSEReg(VT))  // FPStack?
8731      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
8732
8733    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
8734        Opc == X86ISD::BT) { // FIXME
8735      Cond = Cmp;
8736      addTest = false;
8737    }
8738  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8739             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8740             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8741              Cond.getOperand(0).getValueType() != MVT::i8)) {
8742    SDValue LHS = Cond.getOperand(0);
8743    SDValue RHS = Cond.getOperand(1);
8744    unsigned X86Opcode;
8745    unsigned X86Cond;
8746    SDVTList VTs;
8747    switch (CondOpcode) {
8748    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8749    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8750    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8751    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8752    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8753    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8754    default: llvm_unreachable("unexpected overflowing operator");
8755    }
8756    if (CondOpcode == ISD::UMULO)
8757      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8758                          MVT::i32);
8759    else
8760      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8761
8762    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
8763
8764    if (CondOpcode == ISD::UMULO)
8765      Cond = X86Op.getValue(2);
8766    else
8767      Cond = X86Op.getValue(1);
8768
8769    CC = DAG.getConstant(X86Cond, MVT::i8);
8770    addTest = false;
8771  }
8772
8773  if (addTest) {
8774    // Look pass the truncate.
8775    if (Cond.getOpcode() == ISD::TRUNCATE)
8776      Cond = Cond.getOperand(0);
8777
8778    // We know the result of AND is compared against zero. Try to match
8779    // it to BT.
8780    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8781      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
8782      if (NewSetCC.getNode()) {
8783        CC = NewSetCC.getOperand(0);
8784        Cond = NewSetCC.getOperand(1);
8785        addTest = false;
8786      }
8787    }
8788  }
8789
8790  if (addTest) {
8791    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8792    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8793  }
8794
8795  // a <  b ? -1 :  0 -> RES = ~setcc_carry
8796  // a <  b ?  0 : -1 -> RES = setcc_carry
8797  // a >= b ? -1 :  0 -> RES = setcc_carry
8798  // a >= b ?  0 : -1 -> RES = ~setcc_carry
8799  if (Cond.getOpcode() == X86ISD::CMP) {
8800    Cond = ConvertCmpIfNecessary(Cond, DAG);
8801    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
8802
8803    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
8804        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
8805      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8806                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
8807      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
8808        return DAG.getNOT(DL, Res, Res.getValueType());
8809      return Res;
8810    }
8811  }
8812
8813  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
8814  // condition is true.
8815  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
8816  SDValue Ops[] = { Op2, Op1, CC, Cond };
8817  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
8818}
8819
8820// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
8821// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
8822// from the AND / OR.
8823static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
8824  Opc = Op.getOpcode();
8825  if (Opc != ISD::OR && Opc != ISD::AND)
8826    return false;
8827  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8828          Op.getOperand(0).hasOneUse() &&
8829          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
8830          Op.getOperand(1).hasOneUse());
8831}
8832
8833// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
8834// 1 and that the SETCC node has a single use.
8835static bool isXor1OfSetCC(SDValue Op) {
8836  if (Op.getOpcode() != ISD::XOR)
8837    return false;
8838  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8839  if (N1C && N1C->getAPIntValue() == 1) {
8840    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8841      Op.getOperand(0).hasOneUse();
8842  }
8843  return false;
8844}
8845
8846SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
8847  bool addTest = true;
8848  SDValue Chain = Op.getOperand(0);
8849  SDValue Cond  = Op.getOperand(1);
8850  SDValue Dest  = Op.getOperand(2);
8851  DebugLoc dl = Op.getDebugLoc();
8852  SDValue CC;
8853  bool Inverted = false;
8854
8855  if (Cond.getOpcode() == ISD::SETCC) {
8856    // Check for setcc([su]{add,sub,mul}o == 0).
8857    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
8858        isa<ConstantSDNode>(Cond.getOperand(1)) &&
8859        cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
8860        Cond.getOperand(0).getResNo() == 1 &&
8861        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
8862         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
8863         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
8864         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
8865         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
8866         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
8867      Inverted = true;
8868      Cond = Cond.getOperand(0);
8869    } else {
8870      SDValue NewCond = LowerSETCC(Cond, DAG);
8871      if (NewCond.getNode())
8872        Cond = NewCond;
8873    }
8874  }
8875#if 0
8876  // FIXME: LowerXALUO doesn't handle these!!
8877  else if (Cond.getOpcode() == X86ISD::ADD  ||
8878           Cond.getOpcode() == X86ISD::SUB  ||
8879           Cond.getOpcode() == X86ISD::SMUL ||
8880           Cond.getOpcode() == X86ISD::UMUL)
8881    Cond = LowerXALUO(Cond, DAG);
8882#endif
8883
8884  // Look pass (and (setcc_carry (cmp ...)), 1).
8885  if (Cond.getOpcode() == ISD::AND &&
8886      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8887    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8888    if (C && C->getAPIntValue() == 1)
8889      Cond = Cond.getOperand(0);
8890  }
8891
8892  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8893  // setting operand in place of the X86ISD::SETCC.
8894  unsigned CondOpcode = Cond.getOpcode();
8895  if (CondOpcode == X86ISD::SETCC ||
8896      CondOpcode == X86ISD::SETCC_CARRY) {
8897    CC = Cond.getOperand(0);
8898
8899    SDValue Cmp = Cond.getOperand(1);
8900    unsigned Opc = Cmp.getOpcode();
8901    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
8902    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
8903      Cond = Cmp;
8904      addTest = false;
8905    } else {
8906      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
8907      default: break;
8908      case X86::COND_O:
8909      case X86::COND_B:
8910        // These can only come from an arithmetic instruction with overflow,
8911        // e.g. SADDO, UADDO.
8912        Cond = Cond.getNode()->getOperand(1);
8913        addTest = false;
8914        break;
8915      }
8916    }
8917  }
8918  CondOpcode = Cond.getOpcode();
8919  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8920      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8921      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8922       Cond.getOperand(0).getValueType() != MVT::i8)) {
8923    SDValue LHS = Cond.getOperand(0);
8924    SDValue RHS = Cond.getOperand(1);
8925    unsigned X86Opcode;
8926    unsigned X86Cond;
8927    SDVTList VTs;
8928    switch (CondOpcode) {
8929    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8930    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8931    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8932    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8933    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8934    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8935    default: llvm_unreachable("unexpected overflowing operator");
8936    }
8937    if (Inverted)
8938      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
8939    if (CondOpcode == ISD::UMULO)
8940      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8941                          MVT::i32);
8942    else
8943      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8944
8945    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
8946
8947    if (CondOpcode == ISD::UMULO)
8948      Cond = X86Op.getValue(2);
8949    else
8950      Cond = X86Op.getValue(1);
8951
8952    CC = DAG.getConstant(X86Cond, MVT::i8);
8953    addTest = false;
8954  } else {
8955    unsigned CondOpc;
8956    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
8957      SDValue Cmp = Cond.getOperand(0).getOperand(1);
8958      if (CondOpc == ISD::OR) {
8959        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
8960        // two branches instead of an explicit OR instruction with a
8961        // separate test.
8962        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8963            isX86LogicalCmp(Cmp)) {
8964          CC = Cond.getOperand(0).getOperand(0);
8965          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8966                              Chain, Dest, CC, Cmp);
8967          CC = Cond.getOperand(1).getOperand(0);
8968          Cond = Cmp;
8969          addTest = false;
8970        }
8971      } else { // ISD::AND
8972        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
8973        // two branches instead of an explicit AND instruction with a
8974        // separate test. However, we only do this if this block doesn't
8975        // have a fall-through edge, because this requires an explicit
8976        // jmp when the condition is false.
8977        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8978            isX86LogicalCmp(Cmp) &&
8979            Op.getNode()->hasOneUse()) {
8980          X86::CondCode CCode =
8981            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8982          CCode = X86::GetOppositeBranchCondition(CCode);
8983          CC = DAG.getConstant(CCode, MVT::i8);
8984          SDNode *User = *Op.getNode()->use_begin();
8985          // Look for an unconditional branch following this conditional branch.
8986          // We need this because we need to reverse the successors in order
8987          // to implement FCMP_OEQ.
8988          if (User->getOpcode() == ISD::BR) {
8989            SDValue FalseBB = User->getOperand(1);
8990            SDNode *NewBR =
8991              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8992            assert(NewBR == User);
8993            (void)NewBR;
8994            Dest = FalseBB;
8995
8996            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8997                                Chain, Dest, CC, Cmp);
8998            X86::CondCode CCode =
8999              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
9000            CCode = X86::GetOppositeBranchCondition(CCode);
9001            CC = DAG.getConstant(CCode, MVT::i8);
9002            Cond = Cmp;
9003            addTest = false;
9004          }
9005        }
9006      }
9007    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
9008      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
9009      // It should be transformed during dag combiner except when the condition
9010      // is set by a arithmetics with overflow node.
9011      X86::CondCode CCode =
9012        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
9013      CCode = X86::GetOppositeBranchCondition(CCode);
9014      CC = DAG.getConstant(CCode, MVT::i8);
9015      Cond = Cond.getOperand(0).getOperand(1);
9016      addTest = false;
9017    } else if (Cond.getOpcode() == ISD::SETCC &&
9018               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
9019      // For FCMP_OEQ, we can emit
9020      // two branches instead of an explicit AND instruction with a
9021      // separate test. However, we only do this if this block doesn't
9022      // have a fall-through edge, because this requires an explicit
9023      // jmp when the condition is false.
9024      if (Op.getNode()->hasOneUse()) {
9025        SDNode *User = *Op.getNode()->use_begin();
9026        // Look for an unconditional branch following this conditional branch.
9027        // We need this because we need to reverse the successors in order
9028        // to implement FCMP_OEQ.
9029        if (User->getOpcode() == ISD::BR) {
9030          SDValue FalseBB = User->getOperand(1);
9031          SDNode *NewBR =
9032            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9033          assert(NewBR == User);
9034          (void)NewBR;
9035          Dest = FalseBB;
9036
9037          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
9038                                    Cond.getOperand(0), Cond.getOperand(1));
9039          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9040          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9041          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9042                              Chain, Dest, CC, Cmp);
9043          CC = DAG.getConstant(X86::COND_P, MVT::i8);
9044          Cond = Cmp;
9045          addTest = false;
9046        }
9047      }
9048    } else if (Cond.getOpcode() == ISD::SETCC &&
9049               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
9050      // For FCMP_UNE, we can emit
9051      // two branches instead of an explicit AND instruction with a
9052      // separate test. However, we only do this if this block doesn't
9053      // have a fall-through edge, because this requires an explicit
9054      // jmp when the condition is false.
9055      if (Op.getNode()->hasOneUse()) {
9056        SDNode *User = *Op.getNode()->use_begin();
9057        // Look for an unconditional branch following this conditional branch.
9058        // We need this because we need to reverse the successors in order
9059        // to implement FCMP_UNE.
9060        if (User->getOpcode() == ISD::BR) {
9061          SDValue FalseBB = User->getOperand(1);
9062          SDNode *NewBR =
9063            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9064          assert(NewBR == User);
9065          (void)NewBR;
9066
9067          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
9068                                    Cond.getOperand(0), Cond.getOperand(1));
9069          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9070          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9071          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9072                              Chain, Dest, CC, Cmp);
9073          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
9074          Cond = Cmp;
9075          addTest = false;
9076          Dest = FalseBB;
9077        }
9078      }
9079    }
9080  }
9081
9082  if (addTest) {
9083    // Look pass the truncate.
9084    if (Cond.getOpcode() == ISD::TRUNCATE)
9085      Cond = Cond.getOperand(0);
9086
9087    // We know the result of AND is compared against zero. Try to match
9088    // it to BT.
9089    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
9090      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
9091      if (NewSetCC.getNode()) {
9092        CC = NewSetCC.getOperand(0);
9093        Cond = NewSetCC.getOperand(1);
9094        addTest = false;
9095      }
9096    }
9097  }
9098
9099  if (addTest) {
9100    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9101    Cond = EmitTest(Cond, X86::COND_NE, DAG);
9102  }
9103  Cond = ConvertCmpIfNecessary(Cond, DAG);
9104  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9105                     Chain, Dest, CC, Cond);
9106}
9107
9108
9109// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
9110// Calls to _alloca is needed to probe the stack when allocating more than 4k
9111// bytes in one go. Touching the stack at 4K increments is necessary to ensure
9112// that the guard pages used by the OS virtual memory manager are allocated in
9113// correct sequence.
9114SDValue
9115X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
9116                                           SelectionDAG &DAG) const {
9117  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
9118          getTargetMachine().Options.EnableSegmentedStacks) &&
9119         "This should be used only on Windows targets or when segmented stacks "
9120         "are being used");
9121  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
9122  DebugLoc dl = Op.getDebugLoc();
9123
9124  // Get the inputs.
9125  SDValue Chain = Op.getOperand(0);
9126  SDValue Size  = Op.getOperand(1);
9127  // FIXME: Ensure alignment here
9128
9129  bool Is64Bit = Subtarget->is64Bit();
9130  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
9131
9132  if (getTargetMachine().Options.EnableSegmentedStacks) {
9133    MachineFunction &MF = DAG.getMachineFunction();
9134    MachineRegisterInfo &MRI = MF.getRegInfo();
9135
9136    if (Is64Bit) {
9137      // The 64 bit implementation of segmented stacks needs to clobber both r10
9138      // r11. This makes it impossible to use it along with nested parameters.
9139      const Function *F = MF.getFunction();
9140
9141      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
9142           I != E; ++I)
9143        if (I->hasNestAttr())
9144          report_fatal_error("Cannot use segmented stacks with functions that "
9145                             "have nested arguments.");
9146    }
9147
9148    const TargetRegisterClass *AddrRegClass =
9149      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
9150    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
9151    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
9152    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
9153                                DAG.getRegister(Vreg, SPTy));
9154    SDValue Ops1[2] = { Value, Chain };
9155    return DAG.getMergeValues(Ops1, 2, dl);
9156  } else {
9157    SDValue Flag;
9158    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
9159
9160    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
9161    Flag = Chain.getValue(1);
9162    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9163
9164    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
9165    Flag = Chain.getValue(1);
9166
9167    Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
9168
9169    SDValue Ops1[2] = { Chain.getValue(0), Chain };
9170    return DAG.getMergeValues(Ops1, 2, dl);
9171  }
9172}
9173
9174SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
9175  MachineFunction &MF = DAG.getMachineFunction();
9176  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
9177
9178  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9179  DebugLoc DL = Op.getDebugLoc();
9180
9181  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
9182    // vastart just stores the address of the VarArgsFrameIndex slot into the
9183    // memory location argument.
9184    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9185                                   getPointerTy());
9186    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
9187                        MachinePointerInfo(SV), false, false, 0);
9188  }
9189
9190  // __va_list_tag:
9191  //   gp_offset         (0 - 6 * 8)
9192  //   fp_offset         (48 - 48 + 8 * 16)
9193  //   overflow_arg_area (point to parameters coming in memory).
9194  //   reg_save_area
9195  SmallVector<SDValue, 8> MemOps;
9196  SDValue FIN = Op.getOperand(1);
9197  // Store gp_offset
9198  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
9199                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
9200                                               MVT::i32),
9201                               FIN, MachinePointerInfo(SV), false, false, 0);
9202  MemOps.push_back(Store);
9203
9204  // Store fp_offset
9205  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9206                    FIN, DAG.getIntPtrConstant(4));
9207  Store = DAG.getStore(Op.getOperand(0), DL,
9208                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
9209                                       MVT::i32),
9210                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
9211  MemOps.push_back(Store);
9212
9213  // Store ptr to overflow_arg_area
9214  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9215                    FIN, DAG.getIntPtrConstant(4));
9216  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9217                                    getPointerTy());
9218  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
9219                       MachinePointerInfo(SV, 8),
9220                       false, false, 0);
9221  MemOps.push_back(Store);
9222
9223  // Store ptr to reg_save_area.
9224  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9225                    FIN, DAG.getIntPtrConstant(8));
9226  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
9227                                    getPointerTy());
9228  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
9229                       MachinePointerInfo(SV, 16), false, false, 0);
9230  MemOps.push_back(Store);
9231  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
9232                     &MemOps[0], MemOps.size());
9233}
9234
9235SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
9236  assert(Subtarget->is64Bit() &&
9237         "LowerVAARG only handles 64-bit va_arg!");
9238  assert((Subtarget->isTargetLinux() ||
9239          Subtarget->isTargetDarwin()) &&
9240          "Unhandled target in LowerVAARG");
9241  assert(Op.getNode()->getNumOperands() == 4);
9242  SDValue Chain = Op.getOperand(0);
9243  SDValue SrcPtr = Op.getOperand(1);
9244  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9245  unsigned Align = Op.getConstantOperandVal(3);
9246  DebugLoc dl = Op.getDebugLoc();
9247
9248  EVT ArgVT = Op.getNode()->getValueType(0);
9249  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9250  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
9251  uint8_t ArgMode;
9252
9253  // Decide which area this value should be read from.
9254  // TODO: Implement the AMD64 ABI in its entirety. This simple
9255  // selection mechanism works only for the basic types.
9256  if (ArgVT == MVT::f80) {
9257    llvm_unreachable("va_arg for f80 not yet implemented");
9258  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
9259    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
9260  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
9261    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
9262  } else {
9263    llvm_unreachable("Unhandled argument type in LowerVAARG");
9264  }
9265
9266  if (ArgMode == 2) {
9267    // Sanity Check: Make sure using fp_offset makes sense.
9268    assert(!getTargetMachine().Options.UseSoftFloat &&
9269           !(DAG.getMachineFunction()
9270                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
9271           Subtarget->hasSSE1());
9272  }
9273
9274  // Insert VAARG_64 node into the DAG
9275  // VAARG_64 returns two values: Variable Argument Address, Chain
9276  SmallVector<SDValue, 11> InstOps;
9277  InstOps.push_back(Chain);
9278  InstOps.push_back(SrcPtr);
9279  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
9280  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
9281  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
9282  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
9283  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
9284                                          VTs, &InstOps[0], InstOps.size(),
9285                                          MVT::i64,
9286                                          MachinePointerInfo(SV),
9287                                          /*Align=*/0,
9288                                          /*Volatile=*/false,
9289                                          /*ReadMem=*/true,
9290                                          /*WriteMem=*/true);
9291  Chain = VAARG.getValue(1);
9292
9293  // Load the next argument and return it
9294  return DAG.getLoad(ArgVT, dl,
9295                     Chain,
9296                     VAARG,
9297                     MachinePointerInfo(),
9298                     false, false, false, 0);
9299}
9300
9301SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
9302  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
9303  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
9304  SDValue Chain = Op.getOperand(0);
9305  SDValue DstPtr = Op.getOperand(1);
9306  SDValue SrcPtr = Op.getOperand(2);
9307  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
9308  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9309  DebugLoc DL = Op.getDebugLoc();
9310
9311  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
9312                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
9313                       false,
9314                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
9315}
9316
9317// getTargetVShiftNOde - Handle vector element shifts where the shift amount
9318// may or may not be a constant. Takes immediate version of shift as input.
9319static SDValue getTargetVShiftNode(unsigned Opc, DebugLoc dl, EVT VT,
9320                                   SDValue SrcOp, SDValue ShAmt,
9321                                   SelectionDAG &DAG) {
9322  assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32");
9323
9324  if (isa<ConstantSDNode>(ShAmt)) {
9325    switch (Opc) {
9326      default: llvm_unreachable("Unknown target vector shift node");
9327      case X86ISD::VSHLI:
9328      case X86ISD::VSRLI:
9329      case X86ISD::VSRAI:
9330        return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
9331    }
9332  }
9333
9334  // Change opcode to non-immediate version
9335  switch (Opc) {
9336    default: llvm_unreachable("Unknown target vector shift node");
9337    case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
9338    case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
9339    case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
9340  }
9341
9342  // Need to build a vector containing shift amount
9343  // Shift amount is 32-bits, but SSE instructions read 64-bit, so fill with 0
9344  SDValue ShOps[4];
9345  ShOps[0] = ShAmt;
9346  ShOps[1] = DAG.getConstant(0, MVT::i32);
9347  ShOps[2] = DAG.getUNDEF(MVT::i32);
9348  ShOps[3] = DAG.getUNDEF(MVT::i32);
9349  ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &ShOps[0], 4);
9350  ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9351  return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
9352}
9353
9354SDValue
9355X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
9356  DebugLoc dl = Op.getDebugLoc();
9357  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9358  switch (IntNo) {
9359  default: return SDValue();    // Don't custom lower most intrinsics.
9360  // Comparison intrinsics.
9361  case Intrinsic::x86_sse_comieq_ss:
9362  case Intrinsic::x86_sse_comilt_ss:
9363  case Intrinsic::x86_sse_comile_ss:
9364  case Intrinsic::x86_sse_comigt_ss:
9365  case Intrinsic::x86_sse_comige_ss:
9366  case Intrinsic::x86_sse_comineq_ss:
9367  case Intrinsic::x86_sse_ucomieq_ss:
9368  case Intrinsic::x86_sse_ucomilt_ss:
9369  case Intrinsic::x86_sse_ucomile_ss:
9370  case Intrinsic::x86_sse_ucomigt_ss:
9371  case Intrinsic::x86_sse_ucomige_ss:
9372  case Intrinsic::x86_sse_ucomineq_ss:
9373  case Intrinsic::x86_sse2_comieq_sd:
9374  case Intrinsic::x86_sse2_comilt_sd:
9375  case Intrinsic::x86_sse2_comile_sd:
9376  case Intrinsic::x86_sse2_comigt_sd:
9377  case Intrinsic::x86_sse2_comige_sd:
9378  case Intrinsic::x86_sse2_comineq_sd:
9379  case Intrinsic::x86_sse2_ucomieq_sd:
9380  case Intrinsic::x86_sse2_ucomilt_sd:
9381  case Intrinsic::x86_sse2_ucomile_sd:
9382  case Intrinsic::x86_sse2_ucomigt_sd:
9383  case Intrinsic::x86_sse2_ucomige_sd:
9384  case Intrinsic::x86_sse2_ucomineq_sd: {
9385    unsigned Opc = 0;
9386    ISD::CondCode CC = ISD::SETCC_INVALID;
9387    switch (IntNo) {
9388    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9389    case Intrinsic::x86_sse_comieq_ss:
9390    case Intrinsic::x86_sse2_comieq_sd:
9391      Opc = X86ISD::COMI;
9392      CC = ISD::SETEQ;
9393      break;
9394    case Intrinsic::x86_sse_comilt_ss:
9395    case Intrinsic::x86_sse2_comilt_sd:
9396      Opc = X86ISD::COMI;
9397      CC = ISD::SETLT;
9398      break;
9399    case Intrinsic::x86_sse_comile_ss:
9400    case Intrinsic::x86_sse2_comile_sd:
9401      Opc = X86ISD::COMI;
9402      CC = ISD::SETLE;
9403      break;
9404    case Intrinsic::x86_sse_comigt_ss:
9405    case Intrinsic::x86_sse2_comigt_sd:
9406      Opc = X86ISD::COMI;
9407      CC = ISD::SETGT;
9408      break;
9409    case Intrinsic::x86_sse_comige_ss:
9410    case Intrinsic::x86_sse2_comige_sd:
9411      Opc = X86ISD::COMI;
9412      CC = ISD::SETGE;
9413      break;
9414    case Intrinsic::x86_sse_comineq_ss:
9415    case Intrinsic::x86_sse2_comineq_sd:
9416      Opc = X86ISD::COMI;
9417      CC = ISD::SETNE;
9418      break;
9419    case Intrinsic::x86_sse_ucomieq_ss:
9420    case Intrinsic::x86_sse2_ucomieq_sd:
9421      Opc = X86ISD::UCOMI;
9422      CC = ISD::SETEQ;
9423      break;
9424    case Intrinsic::x86_sse_ucomilt_ss:
9425    case Intrinsic::x86_sse2_ucomilt_sd:
9426      Opc = X86ISD::UCOMI;
9427      CC = ISD::SETLT;
9428      break;
9429    case Intrinsic::x86_sse_ucomile_ss:
9430    case Intrinsic::x86_sse2_ucomile_sd:
9431      Opc = X86ISD::UCOMI;
9432      CC = ISD::SETLE;
9433      break;
9434    case Intrinsic::x86_sse_ucomigt_ss:
9435    case Intrinsic::x86_sse2_ucomigt_sd:
9436      Opc = X86ISD::UCOMI;
9437      CC = ISD::SETGT;
9438      break;
9439    case Intrinsic::x86_sse_ucomige_ss:
9440    case Intrinsic::x86_sse2_ucomige_sd:
9441      Opc = X86ISD::UCOMI;
9442      CC = ISD::SETGE;
9443      break;
9444    case Intrinsic::x86_sse_ucomineq_ss:
9445    case Intrinsic::x86_sse2_ucomineq_sd:
9446      Opc = X86ISD::UCOMI;
9447      CC = ISD::SETNE;
9448      break;
9449    }
9450
9451    SDValue LHS = Op.getOperand(1);
9452    SDValue RHS = Op.getOperand(2);
9453    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
9454    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
9455    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
9456    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9457                                DAG.getConstant(X86CC, MVT::i8), Cond);
9458    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9459  }
9460  // XOP comparison intrinsics
9461  case Intrinsic::x86_xop_vpcomltb:
9462  case Intrinsic::x86_xop_vpcomltw:
9463  case Intrinsic::x86_xop_vpcomltd:
9464  case Intrinsic::x86_xop_vpcomltq:
9465  case Intrinsic::x86_xop_vpcomltub:
9466  case Intrinsic::x86_xop_vpcomltuw:
9467  case Intrinsic::x86_xop_vpcomltud:
9468  case Intrinsic::x86_xop_vpcomltuq:
9469  case Intrinsic::x86_xop_vpcomleb:
9470  case Intrinsic::x86_xop_vpcomlew:
9471  case Intrinsic::x86_xop_vpcomled:
9472  case Intrinsic::x86_xop_vpcomleq:
9473  case Intrinsic::x86_xop_vpcomleub:
9474  case Intrinsic::x86_xop_vpcomleuw:
9475  case Intrinsic::x86_xop_vpcomleud:
9476  case Intrinsic::x86_xop_vpcomleuq:
9477  case Intrinsic::x86_xop_vpcomgtb:
9478  case Intrinsic::x86_xop_vpcomgtw:
9479  case Intrinsic::x86_xop_vpcomgtd:
9480  case Intrinsic::x86_xop_vpcomgtq:
9481  case Intrinsic::x86_xop_vpcomgtub:
9482  case Intrinsic::x86_xop_vpcomgtuw:
9483  case Intrinsic::x86_xop_vpcomgtud:
9484  case Intrinsic::x86_xop_vpcomgtuq:
9485  case Intrinsic::x86_xop_vpcomgeb:
9486  case Intrinsic::x86_xop_vpcomgew:
9487  case Intrinsic::x86_xop_vpcomged:
9488  case Intrinsic::x86_xop_vpcomgeq:
9489  case Intrinsic::x86_xop_vpcomgeub:
9490  case Intrinsic::x86_xop_vpcomgeuw:
9491  case Intrinsic::x86_xop_vpcomgeud:
9492  case Intrinsic::x86_xop_vpcomgeuq:
9493  case Intrinsic::x86_xop_vpcomeqb:
9494  case Intrinsic::x86_xop_vpcomeqw:
9495  case Intrinsic::x86_xop_vpcomeqd:
9496  case Intrinsic::x86_xop_vpcomeqq:
9497  case Intrinsic::x86_xop_vpcomequb:
9498  case Intrinsic::x86_xop_vpcomequw:
9499  case Intrinsic::x86_xop_vpcomequd:
9500  case Intrinsic::x86_xop_vpcomequq:
9501  case Intrinsic::x86_xop_vpcomneb:
9502  case Intrinsic::x86_xop_vpcomnew:
9503  case Intrinsic::x86_xop_vpcomned:
9504  case Intrinsic::x86_xop_vpcomneq:
9505  case Intrinsic::x86_xop_vpcomneub:
9506  case Intrinsic::x86_xop_vpcomneuw:
9507  case Intrinsic::x86_xop_vpcomneud:
9508  case Intrinsic::x86_xop_vpcomneuq:
9509  case Intrinsic::x86_xop_vpcomfalseb:
9510  case Intrinsic::x86_xop_vpcomfalsew:
9511  case Intrinsic::x86_xop_vpcomfalsed:
9512  case Intrinsic::x86_xop_vpcomfalseq:
9513  case Intrinsic::x86_xop_vpcomfalseub:
9514  case Intrinsic::x86_xop_vpcomfalseuw:
9515  case Intrinsic::x86_xop_vpcomfalseud:
9516  case Intrinsic::x86_xop_vpcomfalseuq:
9517  case Intrinsic::x86_xop_vpcomtrueb:
9518  case Intrinsic::x86_xop_vpcomtruew:
9519  case Intrinsic::x86_xop_vpcomtrued:
9520  case Intrinsic::x86_xop_vpcomtrueq:
9521  case Intrinsic::x86_xop_vpcomtrueub:
9522  case Intrinsic::x86_xop_vpcomtrueuw:
9523  case Intrinsic::x86_xop_vpcomtrueud:
9524  case Intrinsic::x86_xop_vpcomtrueuq: {
9525    unsigned CC = 0;
9526    unsigned Opc = 0;
9527
9528    switch (IntNo) {
9529    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9530    case Intrinsic::x86_xop_vpcomltb:
9531    case Intrinsic::x86_xop_vpcomltw:
9532    case Intrinsic::x86_xop_vpcomltd:
9533    case Intrinsic::x86_xop_vpcomltq:
9534      CC = 0;
9535      Opc = X86ISD::VPCOM;
9536      break;
9537    case Intrinsic::x86_xop_vpcomltub:
9538    case Intrinsic::x86_xop_vpcomltuw:
9539    case Intrinsic::x86_xop_vpcomltud:
9540    case Intrinsic::x86_xop_vpcomltuq:
9541      CC = 0;
9542      Opc = X86ISD::VPCOMU;
9543      break;
9544    case Intrinsic::x86_xop_vpcomleb:
9545    case Intrinsic::x86_xop_vpcomlew:
9546    case Intrinsic::x86_xop_vpcomled:
9547    case Intrinsic::x86_xop_vpcomleq:
9548      CC = 1;
9549      Opc = X86ISD::VPCOM;
9550      break;
9551    case Intrinsic::x86_xop_vpcomleub:
9552    case Intrinsic::x86_xop_vpcomleuw:
9553    case Intrinsic::x86_xop_vpcomleud:
9554    case Intrinsic::x86_xop_vpcomleuq:
9555      CC = 1;
9556      Opc = X86ISD::VPCOMU;
9557      break;
9558    case Intrinsic::x86_xop_vpcomgtb:
9559    case Intrinsic::x86_xop_vpcomgtw:
9560    case Intrinsic::x86_xop_vpcomgtd:
9561    case Intrinsic::x86_xop_vpcomgtq:
9562      CC = 2;
9563      Opc = X86ISD::VPCOM;
9564      break;
9565    case Intrinsic::x86_xop_vpcomgtub:
9566    case Intrinsic::x86_xop_vpcomgtuw:
9567    case Intrinsic::x86_xop_vpcomgtud:
9568    case Intrinsic::x86_xop_vpcomgtuq:
9569      CC = 2;
9570      Opc = X86ISD::VPCOMU;
9571      break;
9572    case Intrinsic::x86_xop_vpcomgeb:
9573    case Intrinsic::x86_xop_vpcomgew:
9574    case Intrinsic::x86_xop_vpcomged:
9575    case Intrinsic::x86_xop_vpcomgeq:
9576      CC = 3;
9577      Opc = X86ISD::VPCOM;
9578      break;
9579    case Intrinsic::x86_xop_vpcomgeub:
9580    case Intrinsic::x86_xop_vpcomgeuw:
9581    case Intrinsic::x86_xop_vpcomgeud:
9582    case Intrinsic::x86_xop_vpcomgeuq:
9583      CC = 3;
9584      Opc = X86ISD::VPCOMU;
9585      break;
9586    case Intrinsic::x86_xop_vpcomeqb:
9587    case Intrinsic::x86_xop_vpcomeqw:
9588    case Intrinsic::x86_xop_vpcomeqd:
9589    case Intrinsic::x86_xop_vpcomeqq:
9590      CC = 4;
9591      Opc = X86ISD::VPCOM;
9592      break;
9593    case Intrinsic::x86_xop_vpcomequb:
9594    case Intrinsic::x86_xop_vpcomequw:
9595    case Intrinsic::x86_xop_vpcomequd:
9596    case Intrinsic::x86_xop_vpcomequq:
9597      CC = 4;
9598      Opc = X86ISD::VPCOMU;
9599      break;
9600    case Intrinsic::x86_xop_vpcomneb:
9601    case Intrinsic::x86_xop_vpcomnew:
9602    case Intrinsic::x86_xop_vpcomned:
9603    case Intrinsic::x86_xop_vpcomneq:
9604      CC = 5;
9605      Opc = X86ISD::VPCOM;
9606      break;
9607    case Intrinsic::x86_xop_vpcomneub:
9608    case Intrinsic::x86_xop_vpcomneuw:
9609    case Intrinsic::x86_xop_vpcomneud:
9610    case Intrinsic::x86_xop_vpcomneuq:
9611      CC = 5;
9612      Opc = X86ISD::VPCOMU;
9613      break;
9614    case Intrinsic::x86_xop_vpcomfalseb:
9615    case Intrinsic::x86_xop_vpcomfalsew:
9616    case Intrinsic::x86_xop_vpcomfalsed:
9617    case Intrinsic::x86_xop_vpcomfalseq:
9618      CC = 6;
9619      Opc = X86ISD::VPCOM;
9620      break;
9621    case Intrinsic::x86_xop_vpcomfalseub:
9622    case Intrinsic::x86_xop_vpcomfalseuw:
9623    case Intrinsic::x86_xop_vpcomfalseud:
9624    case Intrinsic::x86_xop_vpcomfalseuq:
9625      CC = 6;
9626      Opc = X86ISD::VPCOMU;
9627      break;
9628    case Intrinsic::x86_xop_vpcomtrueb:
9629    case Intrinsic::x86_xop_vpcomtruew:
9630    case Intrinsic::x86_xop_vpcomtrued:
9631    case Intrinsic::x86_xop_vpcomtrueq:
9632      CC = 7;
9633      Opc = X86ISD::VPCOM;
9634      break;
9635    case Intrinsic::x86_xop_vpcomtrueub:
9636    case Intrinsic::x86_xop_vpcomtrueuw:
9637    case Intrinsic::x86_xop_vpcomtrueud:
9638    case Intrinsic::x86_xop_vpcomtrueuq:
9639      CC = 7;
9640      Opc = X86ISD::VPCOMU;
9641      break;
9642    }
9643
9644    SDValue LHS = Op.getOperand(1);
9645    SDValue RHS = Op.getOperand(2);
9646    return DAG.getNode(Opc, dl, Op.getValueType(), LHS, RHS,
9647                       DAG.getConstant(CC, MVT::i8));
9648  }
9649
9650  // Arithmetic intrinsics.
9651  case Intrinsic::x86_sse2_pmulu_dq:
9652  case Intrinsic::x86_avx2_pmulu_dq:
9653    return DAG.getNode(X86ISD::PMULUDQ, dl, Op.getValueType(),
9654                       Op.getOperand(1), Op.getOperand(2));
9655  case Intrinsic::x86_sse3_hadd_ps:
9656  case Intrinsic::x86_sse3_hadd_pd:
9657  case Intrinsic::x86_avx_hadd_ps_256:
9658  case Intrinsic::x86_avx_hadd_pd_256:
9659    return DAG.getNode(X86ISD::FHADD, dl, Op.getValueType(),
9660                       Op.getOperand(1), Op.getOperand(2));
9661  case Intrinsic::x86_sse3_hsub_ps:
9662  case Intrinsic::x86_sse3_hsub_pd:
9663  case Intrinsic::x86_avx_hsub_ps_256:
9664  case Intrinsic::x86_avx_hsub_pd_256:
9665    return DAG.getNode(X86ISD::FHSUB, dl, Op.getValueType(),
9666                       Op.getOperand(1), Op.getOperand(2));
9667  case Intrinsic::x86_ssse3_phadd_w_128:
9668  case Intrinsic::x86_ssse3_phadd_d_128:
9669  case Intrinsic::x86_avx2_phadd_w:
9670  case Intrinsic::x86_avx2_phadd_d:
9671    return DAG.getNode(X86ISD::HADD, dl, Op.getValueType(),
9672                       Op.getOperand(1), Op.getOperand(2));
9673  case Intrinsic::x86_ssse3_phsub_w_128:
9674  case Intrinsic::x86_ssse3_phsub_d_128:
9675  case Intrinsic::x86_avx2_phsub_w:
9676  case Intrinsic::x86_avx2_phsub_d:
9677    return DAG.getNode(X86ISD::HSUB, dl, Op.getValueType(),
9678                       Op.getOperand(1), Op.getOperand(2));
9679  case Intrinsic::x86_avx2_psllv_d:
9680  case Intrinsic::x86_avx2_psllv_q:
9681  case Intrinsic::x86_avx2_psllv_d_256:
9682  case Intrinsic::x86_avx2_psllv_q_256:
9683    return DAG.getNode(ISD::SHL, dl, Op.getValueType(),
9684                      Op.getOperand(1), Op.getOperand(2));
9685  case Intrinsic::x86_avx2_psrlv_d:
9686  case Intrinsic::x86_avx2_psrlv_q:
9687  case Intrinsic::x86_avx2_psrlv_d_256:
9688  case Intrinsic::x86_avx2_psrlv_q_256:
9689    return DAG.getNode(ISD::SRL, dl, Op.getValueType(),
9690                      Op.getOperand(1), Op.getOperand(2));
9691  case Intrinsic::x86_avx2_psrav_d:
9692  case Intrinsic::x86_avx2_psrav_d_256:
9693    return DAG.getNode(ISD::SRA, dl, Op.getValueType(),
9694                      Op.getOperand(1), Op.getOperand(2));
9695  case Intrinsic::x86_ssse3_pshuf_b_128:
9696  case Intrinsic::x86_avx2_pshuf_b:
9697    return DAG.getNode(X86ISD::PSHUFB, dl, Op.getValueType(),
9698                       Op.getOperand(1), Op.getOperand(2));
9699  case Intrinsic::x86_ssse3_psign_b_128:
9700  case Intrinsic::x86_ssse3_psign_w_128:
9701  case Intrinsic::x86_ssse3_psign_d_128:
9702  case Intrinsic::x86_avx2_psign_b:
9703  case Intrinsic::x86_avx2_psign_w:
9704  case Intrinsic::x86_avx2_psign_d:
9705    return DAG.getNode(X86ISD::PSIGN, dl, Op.getValueType(),
9706                       Op.getOperand(1), Op.getOperand(2));
9707  case Intrinsic::x86_sse41_insertps:
9708    return DAG.getNode(X86ISD::INSERTPS, dl, Op.getValueType(),
9709                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
9710  case Intrinsic::x86_avx_vperm2f128_ps_256:
9711  case Intrinsic::x86_avx_vperm2f128_pd_256:
9712  case Intrinsic::x86_avx_vperm2f128_si_256:
9713  case Intrinsic::x86_avx2_vperm2i128:
9714    return DAG.getNode(X86ISD::VPERM2X128, dl, Op.getValueType(),
9715                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
9716  case Intrinsic::x86_avx2_permd:
9717  case Intrinsic::x86_avx2_permps:
9718    // Operands intentionally swapped. Mask is last operand to intrinsic,
9719    // but second operand for node/intruction.
9720    return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(),
9721                       Op.getOperand(2), Op.getOperand(1));
9722
9723  // ptest and testp intrinsics. The intrinsic these come from are designed to
9724  // return an integer value, not just an instruction so lower it to the ptest
9725  // or testp pattern and a setcc for the result.
9726  case Intrinsic::x86_sse41_ptestz:
9727  case Intrinsic::x86_sse41_ptestc:
9728  case Intrinsic::x86_sse41_ptestnzc:
9729  case Intrinsic::x86_avx_ptestz_256:
9730  case Intrinsic::x86_avx_ptestc_256:
9731  case Intrinsic::x86_avx_ptestnzc_256:
9732  case Intrinsic::x86_avx_vtestz_ps:
9733  case Intrinsic::x86_avx_vtestc_ps:
9734  case Intrinsic::x86_avx_vtestnzc_ps:
9735  case Intrinsic::x86_avx_vtestz_pd:
9736  case Intrinsic::x86_avx_vtestc_pd:
9737  case Intrinsic::x86_avx_vtestnzc_pd:
9738  case Intrinsic::x86_avx_vtestz_ps_256:
9739  case Intrinsic::x86_avx_vtestc_ps_256:
9740  case Intrinsic::x86_avx_vtestnzc_ps_256:
9741  case Intrinsic::x86_avx_vtestz_pd_256:
9742  case Intrinsic::x86_avx_vtestc_pd_256:
9743  case Intrinsic::x86_avx_vtestnzc_pd_256: {
9744    bool IsTestPacked = false;
9745    unsigned X86CC = 0;
9746    switch (IntNo) {
9747    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
9748    case Intrinsic::x86_avx_vtestz_ps:
9749    case Intrinsic::x86_avx_vtestz_pd:
9750    case Intrinsic::x86_avx_vtestz_ps_256:
9751    case Intrinsic::x86_avx_vtestz_pd_256:
9752      IsTestPacked = true; // Fallthrough
9753    case Intrinsic::x86_sse41_ptestz:
9754    case Intrinsic::x86_avx_ptestz_256:
9755      // ZF = 1
9756      X86CC = X86::COND_E;
9757      break;
9758    case Intrinsic::x86_avx_vtestc_ps:
9759    case Intrinsic::x86_avx_vtestc_pd:
9760    case Intrinsic::x86_avx_vtestc_ps_256:
9761    case Intrinsic::x86_avx_vtestc_pd_256:
9762      IsTestPacked = true; // Fallthrough
9763    case Intrinsic::x86_sse41_ptestc:
9764    case Intrinsic::x86_avx_ptestc_256:
9765      // CF = 1
9766      X86CC = X86::COND_B;
9767      break;
9768    case Intrinsic::x86_avx_vtestnzc_ps:
9769    case Intrinsic::x86_avx_vtestnzc_pd:
9770    case Intrinsic::x86_avx_vtestnzc_ps_256:
9771    case Intrinsic::x86_avx_vtestnzc_pd_256:
9772      IsTestPacked = true; // Fallthrough
9773    case Intrinsic::x86_sse41_ptestnzc:
9774    case Intrinsic::x86_avx_ptestnzc_256:
9775      // ZF and CF = 0
9776      X86CC = X86::COND_A;
9777      break;
9778    }
9779
9780    SDValue LHS = Op.getOperand(1);
9781    SDValue RHS = Op.getOperand(2);
9782    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
9783    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
9784    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
9785    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
9786    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9787  }
9788
9789  // SSE/AVX shift intrinsics
9790  case Intrinsic::x86_sse2_psll_w:
9791  case Intrinsic::x86_sse2_psll_d:
9792  case Intrinsic::x86_sse2_psll_q:
9793  case Intrinsic::x86_avx2_psll_w:
9794  case Intrinsic::x86_avx2_psll_d:
9795  case Intrinsic::x86_avx2_psll_q:
9796    return DAG.getNode(X86ISD::VSHL, dl, Op.getValueType(),
9797                       Op.getOperand(1), Op.getOperand(2));
9798  case Intrinsic::x86_sse2_psrl_w:
9799  case Intrinsic::x86_sse2_psrl_d:
9800  case Intrinsic::x86_sse2_psrl_q:
9801  case Intrinsic::x86_avx2_psrl_w:
9802  case Intrinsic::x86_avx2_psrl_d:
9803  case Intrinsic::x86_avx2_psrl_q:
9804    return DAG.getNode(X86ISD::VSRL, dl, Op.getValueType(),
9805                       Op.getOperand(1), Op.getOperand(2));
9806  case Intrinsic::x86_sse2_psra_w:
9807  case Intrinsic::x86_sse2_psra_d:
9808  case Intrinsic::x86_avx2_psra_w:
9809  case Intrinsic::x86_avx2_psra_d:
9810    return DAG.getNode(X86ISD::VSRA, dl, Op.getValueType(),
9811                       Op.getOperand(1), Op.getOperand(2));
9812  case Intrinsic::x86_sse2_pslli_w:
9813  case Intrinsic::x86_sse2_pslli_d:
9814  case Intrinsic::x86_sse2_pslli_q:
9815  case Intrinsic::x86_avx2_pslli_w:
9816  case Intrinsic::x86_avx2_pslli_d:
9817  case Intrinsic::x86_avx2_pslli_q:
9818    return getTargetVShiftNode(X86ISD::VSHLI, dl, Op.getValueType(),
9819                               Op.getOperand(1), Op.getOperand(2), DAG);
9820  case Intrinsic::x86_sse2_psrli_w:
9821  case Intrinsic::x86_sse2_psrli_d:
9822  case Intrinsic::x86_sse2_psrli_q:
9823  case Intrinsic::x86_avx2_psrli_w:
9824  case Intrinsic::x86_avx2_psrli_d:
9825  case Intrinsic::x86_avx2_psrli_q:
9826    return getTargetVShiftNode(X86ISD::VSRLI, dl, Op.getValueType(),
9827                               Op.getOperand(1), Op.getOperand(2), DAG);
9828  case Intrinsic::x86_sse2_psrai_w:
9829  case Intrinsic::x86_sse2_psrai_d:
9830  case Intrinsic::x86_avx2_psrai_w:
9831  case Intrinsic::x86_avx2_psrai_d:
9832    return getTargetVShiftNode(X86ISD::VSRAI, dl, Op.getValueType(),
9833                               Op.getOperand(1), Op.getOperand(2), DAG);
9834  // Fix vector shift instructions where the last operand is a non-immediate
9835  // i32 value.
9836  case Intrinsic::x86_mmx_pslli_w:
9837  case Intrinsic::x86_mmx_pslli_d:
9838  case Intrinsic::x86_mmx_pslli_q:
9839  case Intrinsic::x86_mmx_psrli_w:
9840  case Intrinsic::x86_mmx_psrli_d:
9841  case Intrinsic::x86_mmx_psrli_q:
9842  case Intrinsic::x86_mmx_psrai_w:
9843  case Intrinsic::x86_mmx_psrai_d: {
9844    SDValue ShAmt = Op.getOperand(2);
9845    if (isa<ConstantSDNode>(ShAmt))
9846      return SDValue();
9847
9848    unsigned NewIntNo = 0;
9849    switch (IntNo) {
9850    case Intrinsic::x86_mmx_pslli_w:
9851      NewIntNo = Intrinsic::x86_mmx_psll_w;
9852      break;
9853    case Intrinsic::x86_mmx_pslli_d:
9854      NewIntNo = Intrinsic::x86_mmx_psll_d;
9855      break;
9856    case Intrinsic::x86_mmx_pslli_q:
9857      NewIntNo = Intrinsic::x86_mmx_psll_q;
9858      break;
9859    case Intrinsic::x86_mmx_psrli_w:
9860      NewIntNo = Intrinsic::x86_mmx_psrl_w;
9861      break;
9862    case Intrinsic::x86_mmx_psrli_d:
9863      NewIntNo = Intrinsic::x86_mmx_psrl_d;
9864      break;
9865    case Intrinsic::x86_mmx_psrli_q:
9866      NewIntNo = Intrinsic::x86_mmx_psrl_q;
9867      break;
9868    case Intrinsic::x86_mmx_psrai_w:
9869      NewIntNo = Intrinsic::x86_mmx_psra_w;
9870      break;
9871    case Intrinsic::x86_mmx_psrai_d:
9872      NewIntNo = Intrinsic::x86_mmx_psra_d;
9873      break;
9874    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9875    }
9876
9877    // The vector shift intrinsics with scalars uses 32b shift amounts but
9878    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
9879    // to be zero.
9880    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, ShAmt,
9881                         DAG.getConstant(0, MVT::i32));
9882// FIXME this must be lowered to get rid of the invalid type.
9883
9884    EVT VT = Op.getValueType();
9885    ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9886    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9887                       DAG.getConstant(NewIntNo, MVT::i32),
9888                       Op.getOperand(1), ShAmt);
9889  }
9890  }
9891}
9892
9893SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
9894                                           SelectionDAG &DAG) const {
9895  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9896  MFI->setReturnAddressIsTaken(true);
9897
9898  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9899  DebugLoc dl = Op.getDebugLoc();
9900
9901  if (Depth > 0) {
9902    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
9903    SDValue Offset =
9904      DAG.getConstant(TD->getPointerSize(),
9905                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
9906    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9907                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
9908                                   FrameAddr, Offset),
9909                       MachinePointerInfo(), false, false, false, 0);
9910  }
9911
9912  // Just load the return address.
9913  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
9914  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9915                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
9916}
9917
9918SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
9919  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9920  MFI->setFrameAddressIsTaken(true);
9921
9922  EVT VT = Op.getValueType();
9923  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
9924  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9925  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
9926  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
9927  while (Depth--)
9928    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
9929                            MachinePointerInfo(),
9930                            false, false, false, 0);
9931  return FrameAddr;
9932}
9933
9934SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
9935                                                     SelectionDAG &DAG) const {
9936  return DAG.getIntPtrConstant(2*TD->getPointerSize());
9937}
9938
9939SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
9940  MachineFunction &MF = DAG.getMachineFunction();
9941  SDValue Chain     = Op.getOperand(0);
9942  SDValue Offset    = Op.getOperand(1);
9943  SDValue Handler   = Op.getOperand(2);
9944  DebugLoc dl       = Op.getDebugLoc();
9945
9946  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
9947                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
9948                                     getPointerTy());
9949  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
9950
9951  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
9952                                  DAG.getIntPtrConstant(TD->getPointerSize()));
9953  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
9954  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
9955                       false, false, 0);
9956  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
9957  MF.getRegInfo().addLiveOut(StoreAddrReg);
9958
9959  return DAG.getNode(X86ISD::EH_RETURN, dl,
9960                     MVT::Other,
9961                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
9962}
9963
9964SDValue X86TargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
9965                                                  SelectionDAG &DAG) const {
9966  return Op.getOperand(0);
9967}
9968
9969SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
9970                                                SelectionDAG &DAG) const {
9971  SDValue Root = Op.getOperand(0);
9972  SDValue Trmp = Op.getOperand(1); // trampoline
9973  SDValue FPtr = Op.getOperand(2); // nested function
9974  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
9975  DebugLoc dl  = Op.getDebugLoc();
9976
9977  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9978
9979  if (Subtarget->is64Bit()) {
9980    SDValue OutChains[6];
9981
9982    // Large code-model.
9983    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
9984    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
9985
9986    const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
9987    const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
9988
9989    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
9990
9991    // Load the pointer to the nested function into R11.
9992    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
9993    SDValue Addr = Trmp;
9994    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9995                                Addr, MachinePointerInfo(TrmpAddr),
9996                                false, false, 0);
9997
9998    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9999                       DAG.getConstant(2, MVT::i64));
10000    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
10001                                MachinePointerInfo(TrmpAddr, 2),
10002                                false, false, 2);
10003
10004    // Load the 'nest' parameter value into R10.
10005    // R10 is specified in X86CallingConv.td
10006    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
10007    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10008                       DAG.getConstant(10, MVT::i64));
10009    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
10010                                Addr, MachinePointerInfo(TrmpAddr, 10),
10011                                false, false, 0);
10012
10013    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10014                       DAG.getConstant(12, MVT::i64));
10015    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
10016                                MachinePointerInfo(TrmpAddr, 12),
10017                                false, false, 2);
10018
10019    // Jump to the nested function.
10020    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
10021    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10022                       DAG.getConstant(20, MVT::i64));
10023    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
10024                                Addr, MachinePointerInfo(TrmpAddr, 20),
10025                                false, false, 0);
10026
10027    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
10028    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10029                       DAG.getConstant(22, MVT::i64));
10030    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
10031                                MachinePointerInfo(TrmpAddr, 22),
10032                                false, false, 0);
10033
10034    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
10035  } else {
10036    const Function *Func =
10037      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
10038    CallingConv::ID CC = Func->getCallingConv();
10039    unsigned NestReg;
10040
10041    switch (CC) {
10042    default:
10043      llvm_unreachable("Unsupported calling convention");
10044    case CallingConv::C:
10045    case CallingConv::X86_StdCall: {
10046      // Pass 'nest' parameter in ECX.
10047      // Must be kept in sync with X86CallingConv.td
10048      NestReg = X86::ECX;
10049
10050      // Check that ECX wasn't needed by an 'inreg' parameter.
10051      FunctionType *FTy = Func->getFunctionType();
10052      const AttrListPtr &Attrs = Func->getAttributes();
10053
10054      if (!Attrs.isEmpty() && !Func->isVarArg()) {
10055        unsigned InRegCount = 0;
10056        unsigned Idx = 1;
10057
10058        for (FunctionType::param_iterator I = FTy->param_begin(),
10059             E = FTy->param_end(); I != E; ++I, ++Idx)
10060          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
10061            // FIXME: should only count parameters that are lowered to integers.
10062            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
10063
10064        if (InRegCount > 2) {
10065          report_fatal_error("Nest register in use - reduce number of inreg"
10066                             " parameters!");
10067        }
10068      }
10069      break;
10070    }
10071    case CallingConv::X86_FastCall:
10072    case CallingConv::X86_ThisCall:
10073    case CallingConv::Fast:
10074      // Pass 'nest' parameter in EAX.
10075      // Must be kept in sync with X86CallingConv.td
10076      NestReg = X86::EAX;
10077      break;
10078    }
10079
10080    SDValue OutChains[4];
10081    SDValue Addr, Disp;
10082
10083    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10084                       DAG.getConstant(10, MVT::i32));
10085    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
10086
10087    // This is storing the opcode for MOV32ri.
10088    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
10089    const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
10090    OutChains[0] = DAG.getStore(Root, dl,
10091                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
10092                                Trmp, MachinePointerInfo(TrmpAddr),
10093                                false, false, 0);
10094
10095    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10096                       DAG.getConstant(1, MVT::i32));
10097    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
10098                                MachinePointerInfo(TrmpAddr, 1),
10099                                false, false, 1);
10100
10101    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
10102    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10103                       DAG.getConstant(5, MVT::i32));
10104    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
10105                                MachinePointerInfo(TrmpAddr, 5),
10106                                false, false, 1);
10107
10108    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10109                       DAG.getConstant(6, MVT::i32));
10110    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
10111                                MachinePointerInfo(TrmpAddr, 6),
10112                                false, false, 1);
10113
10114    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
10115  }
10116}
10117
10118SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
10119                                            SelectionDAG &DAG) const {
10120  /*
10121   The rounding mode is in bits 11:10 of FPSR, and has the following
10122   settings:
10123     00 Round to nearest
10124     01 Round to -inf
10125     10 Round to +inf
10126     11 Round to 0
10127
10128  FLT_ROUNDS, on the other hand, expects the following:
10129    -1 Undefined
10130     0 Round to 0
10131     1 Round to nearest
10132     2 Round to +inf
10133     3 Round to -inf
10134
10135  To perform the conversion, we do:
10136    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
10137  */
10138
10139  MachineFunction &MF = DAG.getMachineFunction();
10140  const TargetMachine &TM = MF.getTarget();
10141  const TargetFrameLowering &TFI = *TM.getFrameLowering();
10142  unsigned StackAlignment = TFI.getStackAlignment();
10143  EVT VT = Op.getValueType();
10144  DebugLoc DL = Op.getDebugLoc();
10145
10146  // Save FP Control Word to stack slot
10147  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
10148  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
10149
10150
10151  MachineMemOperand *MMO =
10152   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
10153                           MachineMemOperand::MOStore, 2, 2);
10154
10155  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
10156  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
10157                                          DAG.getVTList(MVT::Other),
10158                                          Ops, 2, MVT::i16, MMO);
10159
10160  // Load FP Control Word from stack slot
10161  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
10162                            MachinePointerInfo(), false, false, false, 0);
10163
10164  // Transform as necessary
10165  SDValue CWD1 =
10166    DAG.getNode(ISD::SRL, DL, MVT::i16,
10167                DAG.getNode(ISD::AND, DL, MVT::i16,
10168                            CWD, DAG.getConstant(0x800, MVT::i16)),
10169                DAG.getConstant(11, MVT::i8));
10170  SDValue CWD2 =
10171    DAG.getNode(ISD::SRL, DL, MVT::i16,
10172                DAG.getNode(ISD::AND, DL, MVT::i16,
10173                            CWD, DAG.getConstant(0x400, MVT::i16)),
10174                DAG.getConstant(9, MVT::i8));
10175
10176  SDValue RetVal =
10177    DAG.getNode(ISD::AND, DL, MVT::i16,
10178                DAG.getNode(ISD::ADD, DL, MVT::i16,
10179                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
10180                            DAG.getConstant(1, MVT::i16)),
10181                DAG.getConstant(3, MVT::i16));
10182
10183
10184  return DAG.getNode((VT.getSizeInBits() < 16 ?
10185                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
10186}
10187
10188SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
10189  EVT VT = Op.getValueType();
10190  EVT OpVT = VT;
10191  unsigned NumBits = VT.getSizeInBits();
10192  DebugLoc dl = Op.getDebugLoc();
10193
10194  Op = Op.getOperand(0);
10195  if (VT == MVT::i8) {
10196    // Zero extend to i32 since there is not an i8 bsr.
10197    OpVT = MVT::i32;
10198    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
10199  }
10200
10201  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
10202  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10203  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
10204
10205  // If src is zero (i.e. bsr sets ZF), returns NumBits.
10206  SDValue Ops[] = {
10207    Op,
10208    DAG.getConstant(NumBits+NumBits-1, OpVT),
10209    DAG.getConstant(X86::COND_E, MVT::i8),
10210    Op.getValue(1)
10211  };
10212  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
10213
10214  // Finally xor with NumBits-1.
10215  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
10216
10217  if (VT == MVT::i8)
10218    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10219  return Op;
10220}
10221
10222SDValue X86TargetLowering::LowerCTLZ_ZERO_UNDEF(SDValue Op,
10223                                                SelectionDAG &DAG) const {
10224  EVT VT = Op.getValueType();
10225  EVT OpVT = VT;
10226  unsigned NumBits = VT.getSizeInBits();
10227  DebugLoc dl = Op.getDebugLoc();
10228
10229  Op = Op.getOperand(0);
10230  if (VT == MVT::i8) {
10231    // Zero extend to i32 since there is not an i8 bsr.
10232    OpVT = MVT::i32;
10233    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
10234  }
10235
10236  // Issue a bsr (scan bits in reverse).
10237  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10238  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
10239
10240  // And xor with NumBits-1.
10241  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
10242
10243  if (VT == MVT::i8)
10244    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10245  return Op;
10246}
10247
10248SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
10249  EVT VT = Op.getValueType();
10250  unsigned NumBits = VT.getSizeInBits();
10251  DebugLoc dl = Op.getDebugLoc();
10252  Op = Op.getOperand(0);
10253
10254  // Issue a bsf (scan bits forward) which also sets EFLAGS.
10255  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10256  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
10257
10258  // If src is zero (i.e. bsf sets ZF), returns NumBits.
10259  SDValue Ops[] = {
10260    Op,
10261    DAG.getConstant(NumBits, VT),
10262    DAG.getConstant(X86::COND_E, MVT::i8),
10263    Op.getValue(1)
10264  };
10265  return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops));
10266}
10267
10268// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
10269// ones, and then concatenate the result back.
10270static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
10271  EVT VT = Op.getValueType();
10272
10273  assert(VT.getSizeInBits() == 256 && VT.isInteger() &&
10274         "Unsupported value type for operation");
10275
10276  unsigned NumElems = VT.getVectorNumElements();
10277  DebugLoc dl = Op.getDebugLoc();
10278
10279  // Extract the LHS vectors
10280  SDValue LHS = Op.getOperand(0);
10281  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
10282  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
10283
10284  // Extract the RHS vectors
10285  SDValue RHS = Op.getOperand(1);
10286  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
10287  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
10288
10289  MVT EltVT = VT.getVectorElementType().getSimpleVT();
10290  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10291
10292  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
10293                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
10294                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
10295}
10296
10297SDValue X86TargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
10298  assert(Op.getValueType().getSizeInBits() == 256 &&
10299         Op.getValueType().isInteger() &&
10300         "Only handle AVX 256-bit vector integer operation");
10301  return Lower256IntArith(Op, DAG);
10302}
10303
10304SDValue X86TargetLowering::LowerSUB(SDValue Op, SelectionDAG &DAG) const {
10305  assert(Op.getValueType().getSizeInBits() == 256 &&
10306         Op.getValueType().isInteger() &&
10307         "Only handle AVX 256-bit vector integer operation");
10308  return Lower256IntArith(Op, DAG);
10309}
10310
10311SDValue X86TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10312  EVT VT = Op.getValueType();
10313
10314  // Decompose 256-bit ops into smaller 128-bit ops.
10315  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
10316    return Lower256IntArith(Op, DAG);
10317
10318  assert((VT == MVT::v2i64 || VT == MVT::v4i64) &&
10319         "Only know how to lower V2I64/V4I64 multiply");
10320
10321  DebugLoc dl = Op.getDebugLoc();
10322
10323  //  Ahi = psrlqi(a, 32);
10324  //  Bhi = psrlqi(b, 32);
10325  //
10326  //  AloBlo = pmuludq(a, b);
10327  //  AloBhi = pmuludq(a, Bhi);
10328  //  AhiBlo = pmuludq(Ahi, b);
10329
10330  //  AloBhi = psllqi(AloBhi, 32);
10331  //  AhiBlo = psllqi(AhiBlo, 32);
10332  //  return AloBlo + AloBhi + AhiBlo;
10333
10334  SDValue A = Op.getOperand(0);
10335  SDValue B = Op.getOperand(1);
10336
10337  SDValue ShAmt = DAG.getConstant(32, MVT::i32);
10338
10339  SDValue Ahi = DAG.getNode(X86ISD::VSRLI, dl, VT, A, ShAmt);
10340  SDValue Bhi = DAG.getNode(X86ISD::VSRLI, dl, VT, B, ShAmt);
10341
10342  // Bit cast to 32-bit vectors for MULUDQ
10343  EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 : MVT::v8i32;
10344  A = DAG.getNode(ISD::BITCAST, dl, MulVT, A);
10345  B = DAG.getNode(ISD::BITCAST, dl, MulVT, B);
10346  Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi);
10347  Bhi = DAG.getNode(ISD::BITCAST, dl, MulVT, Bhi);
10348
10349  SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
10350  SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
10351  SDValue AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
10352
10353  AloBhi = DAG.getNode(X86ISD::VSHLI, dl, VT, AloBhi, ShAmt);
10354  AhiBlo = DAG.getNode(X86ISD::VSHLI, dl, VT, AhiBlo, ShAmt);
10355
10356  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
10357  return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
10358}
10359
10360SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
10361
10362  EVT VT = Op.getValueType();
10363  DebugLoc dl = Op.getDebugLoc();
10364  SDValue R = Op.getOperand(0);
10365  SDValue Amt = Op.getOperand(1);
10366  LLVMContext *Context = DAG.getContext();
10367
10368  if (!Subtarget->hasSSE2())
10369    return SDValue();
10370
10371  // Optimize shl/srl/sra with constant shift amount.
10372  if (isSplatVector(Amt.getNode())) {
10373    SDValue SclrAmt = Amt->getOperand(0);
10374    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
10375      uint64_t ShiftAmt = C->getZExtValue();
10376
10377      if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
10378          (Subtarget->hasAVX2() &&
10379           (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16))) {
10380        if (Op.getOpcode() == ISD::SHL)
10381          return DAG.getNode(X86ISD::VSHLI, dl, VT, R,
10382                             DAG.getConstant(ShiftAmt, MVT::i32));
10383        if (Op.getOpcode() == ISD::SRL)
10384          return DAG.getNode(X86ISD::VSRLI, dl, VT, R,
10385                             DAG.getConstant(ShiftAmt, MVT::i32));
10386        if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64)
10387          return DAG.getNode(X86ISD::VSRAI, dl, VT, R,
10388                             DAG.getConstant(ShiftAmt, MVT::i32));
10389      }
10390
10391      if (VT == MVT::v16i8) {
10392        if (Op.getOpcode() == ISD::SHL) {
10393          // Make a large shift.
10394          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, R,
10395                                    DAG.getConstant(ShiftAmt, MVT::i32));
10396          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
10397          // Zero out the rightmost bits.
10398          SmallVector<SDValue, 16> V(16,
10399                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
10400                                                     MVT::i8));
10401          return DAG.getNode(ISD::AND, dl, VT, SHL,
10402                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10403        }
10404        if (Op.getOpcode() == ISD::SRL) {
10405          // Make a large shift.
10406          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v8i16, R,
10407                                    DAG.getConstant(ShiftAmt, MVT::i32));
10408          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
10409          // Zero out the leftmost bits.
10410          SmallVector<SDValue, 16> V(16,
10411                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10412                                                     MVT::i8));
10413          return DAG.getNode(ISD::AND, dl, VT, SRL,
10414                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10415        }
10416        if (Op.getOpcode() == ISD::SRA) {
10417          if (ShiftAmt == 7) {
10418            // R s>> 7  ===  R s< 0
10419            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
10420            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
10421          }
10422
10423          // R s>> a === ((R u>> a) ^ m) - m
10424          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10425          SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
10426                                                         MVT::i8));
10427          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
10428          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10429          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10430          return Res;
10431        }
10432        llvm_unreachable("Unknown shift opcode.");
10433      }
10434
10435      if (Subtarget->hasAVX2() && VT == MVT::v32i8) {
10436        if (Op.getOpcode() == ISD::SHL) {
10437          // Make a large shift.
10438          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v16i16, R,
10439                                    DAG.getConstant(ShiftAmt, MVT::i32));
10440          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
10441          // Zero out the rightmost bits.
10442          SmallVector<SDValue, 32> V(32,
10443                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
10444                                                     MVT::i8));
10445          return DAG.getNode(ISD::AND, dl, VT, SHL,
10446                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10447        }
10448        if (Op.getOpcode() == ISD::SRL) {
10449          // Make a large shift.
10450          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v16i16, R,
10451                                    DAG.getConstant(ShiftAmt, MVT::i32));
10452          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
10453          // Zero out the leftmost bits.
10454          SmallVector<SDValue, 32> V(32,
10455                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10456                                                     MVT::i8));
10457          return DAG.getNode(ISD::AND, dl, VT, SRL,
10458                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10459        }
10460        if (Op.getOpcode() == ISD::SRA) {
10461          if (ShiftAmt == 7) {
10462            // R s>> 7  ===  R s< 0
10463            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
10464            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
10465          }
10466
10467          // R s>> a === ((R u>> a) ^ m) - m
10468          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10469          SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
10470                                                         MVT::i8));
10471          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
10472          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10473          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10474          return Res;
10475        }
10476        llvm_unreachable("Unknown shift opcode.");
10477      }
10478    }
10479  }
10480
10481  // Lower SHL with variable shift amount.
10482  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
10483    Op = DAG.getNode(X86ISD::VSHLI, dl, VT, Op.getOperand(1),
10484                     DAG.getConstant(23, MVT::i32));
10485
10486    const uint32_t CV[] = { 0x3f800000U, 0x3f800000U, 0x3f800000U, 0x3f800000U};
10487    Constant *C = ConstantDataVector::get(*Context, CV);
10488    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10489    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10490                                 MachinePointerInfo::getConstantPool(),
10491                                 false, false, false, 16);
10492
10493    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
10494    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
10495    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
10496    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
10497  }
10498  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
10499    assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
10500
10501    // a = a << 5;
10502    Op = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, Op.getOperand(1),
10503                     DAG.getConstant(5, MVT::i32));
10504    Op = DAG.getNode(ISD::BITCAST, dl, VT, Op);
10505
10506    // Turn 'a' into a mask suitable for VSELECT
10507    SDValue VSelM = DAG.getConstant(0x80, VT);
10508    SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10509    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10510
10511    SDValue CM1 = DAG.getConstant(0x0f, VT);
10512    SDValue CM2 = DAG.getConstant(0x3f, VT);
10513
10514    // r = VSELECT(r, psllw(r & (char16)15, 4), a);
10515    SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
10516    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
10517                            DAG.getConstant(4, MVT::i32), DAG);
10518    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
10519    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10520
10521    // a += a
10522    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10523    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10524    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10525
10526    // r = VSELECT(r, psllw(r & (char16)63, 2), a);
10527    M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
10528    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
10529                            DAG.getConstant(2, MVT::i32), DAG);
10530    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
10531    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10532
10533    // a += a
10534    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10535    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10536    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10537
10538    // return VSELECT(r, r+r, a);
10539    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
10540                    DAG.getNode(ISD::ADD, dl, VT, R, R), R);
10541    return R;
10542  }
10543
10544  // Decompose 256-bit shifts into smaller 128-bit shifts.
10545  if (VT.getSizeInBits() == 256) {
10546    unsigned NumElems = VT.getVectorNumElements();
10547    MVT EltVT = VT.getVectorElementType().getSimpleVT();
10548    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10549
10550    // Extract the two vectors
10551    SDValue V1 = Extract128BitVector(R, 0, DAG, dl);
10552    SDValue V2 = Extract128BitVector(R, NumElems/2, DAG, dl);
10553
10554    // Recreate the shift amount vectors
10555    SDValue Amt1, Amt2;
10556    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
10557      // Constant shift amount
10558      SmallVector<SDValue, 4> Amt1Csts;
10559      SmallVector<SDValue, 4> Amt2Csts;
10560      for (unsigned i = 0; i != NumElems/2; ++i)
10561        Amt1Csts.push_back(Amt->getOperand(i));
10562      for (unsigned i = NumElems/2; i != NumElems; ++i)
10563        Amt2Csts.push_back(Amt->getOperand(i));
10564
10565      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10566                                 &Amt1Csts[0], NumElems/2);
10567      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10568                                 &Amt2Csts[0], NumElems/2);
10569    } else {
10570      // Variable shift amount
10571      Amt1 = Extract128BitVector(Amt, 0, DAG, dl);
10572      Amt2 = Extract128BitVector(Amt, NumElems/2, DAG, dl);
10573    }
10574
10575    // Issue new vector shifts for the smaller types
10576    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
10577    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
10578
10579    // Concatenate the result back
10580    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
10581  }
10582
10583  return SDValue();
10584}
10585
10586SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
10587  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
10588  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
10589  // looks for this combo and may remove the "setcc" instruction if the "setcc"
10590  // has only one use.
10591  SDNode *N = Op.getNode();
10592  SDValue LHS = N->getOperand(0);
10593  SDValue RHS = N->getOperand(1);
10594  unsigned BaseOp = 0;
10595  unsigned Cond = 0;
10596  DebugLoc DL = Op.getDebugLoc();
10597  switch (Op.getOpcode()) {
10598  default: llvm_unreachable("Unknown ovf instruction!");
10599  case ISD::SADDO:
10600    // A subtract of one will be selected as a INC. Note that INC doesn't
10601    // set CF, so we can't do this for UADDO.
10602    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10603      if (C->isOne()) {
10604        BaseOp = X86ISD::INC;
10605        Cond = X86::COND_O;
10606        break;
10607      }
10608    BaseOp = X86ISD::ADD;
10609    Cond = X86::COND_O;
10610    break;
10611  case ISD::UADDO:
10612    BaseOp = X86ISD::ADD;
10613    Cond = X86::COND_B;
10614    break;
10615  case ISD::SSUBO:
10616    // A subtract of one will be selected as a DEC. Note that DEC doesn't
10617    // set CF, so we can't do this for USUBO.
10618    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10619      if (C->isOne()) {
10620        BaseOp = X86ISD::DEC;
10621        Cond = X86::COND_O;
10622        break;
10623      }
10624    BaseOp = X86ISD::SUB;
10625    Cond = X86::COND_O;
10626    break;
10627  case ISD::USUBO:
10628    BaseOp = X86ISD::SUB;
10629    Cond = X86::COND_B;
10630    break;
10631  case ISD::SMULO:
10632    BaseOp = X86ISD::SMUL;
10633    Cond = X86::COND_O;
10634    break;
10635  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
10636    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
10637                                 MVT::i32);
10638    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
10639
10640    SDValue SetCC =
10641      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10642                  DAG.getConstant(X86::COND_O, MVT::i32),
10643                  SDValue(Sum.getNode(), 2));
10644
10645    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10646  }
10647  }
10648
10649  // Also sets EFLAGS.
10650  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
10651  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
10652
10653  SDValue SetCC =
10654    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
10655                DAG.getConstant(Cond, MVT::i32),
10656                SDValue(Sum.getNode(), 1));
10657
10658  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10659}
10660
10661SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
10662                                                  SelectionDAG &DAG) const {
10663  DebugLoc dl = Op.getDebugLoc();
10664  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
10665  EVT VT = Op.getValueType();
10666
10667  if (!Subtarget->hasSSE2() || !VT.isVector())
10668    return SDValue();
10669
10670  unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
10671                      ExtraVT.getScalarType().getSizeInBits();
10672  SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
10673
10674  switch (VT.getSimpleVT().SimpleTy) {
10675    default: return SDValue();
10676    case MVT::v8i32:
10677    case MVT::v16i16:
10678      if (!Subtarget->hasAVX())
10679        return SDValue();
10680      if (!Subtarget->hasAVX2()) {
10681        // needs to be split
10682        unsigned NumElems = VT.getVectorNumElements();
10683
10684        // Extract the LHS vectors
10685        SDValue LHS = Op.getOperand(0);
10686        SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
10687        SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
10688
10689        MVT EltVT = VT.getVectorElementType().getSimpleVT();
10690        EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10691
10692        EVT ExtraEltVT = ExtraVT.getVectorElementType();
10693        unsigned ExtraNumElems = ExtraVT.getVectorNumElements();
10694        ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
10695                                   ExtraNumElems/2);
10696        SDValue Extra = DAG.getValueType(ExtraVT);
10697
10698        LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
10699        LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
10700
10701        return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);;
10702      }
10703      // fall through
10704    case MVT::v4i32:
10705    case MVT::v8i16: {
10706      SDValue Tmp1 = getTargetVShiftNode(X86ISD::VSHLI, dl, VT,
10707                                         Op.getOperand(0), ShAmt, DAG);
10708      return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, Tmp1, ShAmt, DAG);
10709    }
10710  }
10711}
10712
10713
10714SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
10715  DebugLoc dl = Op.getDebugLoc();
10716
10717  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
10718  // There isn't any reason to disable it if the target processor supports it.
10719  if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) {
10720    SDValue Chain = Op.getOperand(0);
10721    SDValue Zero = DAG.getConstant(0, MVT::i32);
10722    SDValue Ops[] = {
10723      DAG.getRegister(X86::ESP, MVT::i32), // Base
10724      DAG.getTargetConstant(1, MVT::i8),   // Scale
10725      DAG.getRegister(0, MVT::i32),        // Index
10726      DAG.getTargetConstant(0, MVT::i32),  // Disp
10727      DAG.getRegister(0, MVT::i32),        // Segment.
10728      Zero,
10729      Chain
10730    };
10731    SDNode *Res =
10732      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10733                          array_lengthof(Ops));
10734    return SDValue(Res, 0);
10735  }
10736
10737  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
10738  if (!isDev)
10739    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10740
10741  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10742  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
10743  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
10744  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
10745
10746  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
10747  if (!Op1 && !Op2 && !Op3 && Op4)
10748    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
10749
10750  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
10751  if (Op1 && !Op2 && !Op3 && !Op4)
10752    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
10753
10754  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
10755  //           (MFENCE)>;
10756  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10757}
10758
10759SDValue X86TargetLowering::LowerATOMIC_FENCE(SDValue Op,
10760                                             SelectionDAG &DAG) const {
10761  DebugLoc dl = Op.getDebugLoc();
10762  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
10763    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
10764  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
10765    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
10766
10767  // The only fence that needs an instruction is a sequentially-consistent
10768  // cross-thread fence.
10769  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
10770    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
10771    // no-sse2). There isn't any reason to disable it if the target processor
10772    // supports it.
10773    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
10774      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10775
10776    SDValue Chain = Op.getOperand(0);
10777    SDValue Zero = DAG.getConstant(0, MVT::i32);
10778    SDValue Ops[] = {
10779      DAG.getRegister(X86::ESP, MVT::i32), // Base
10780      DAG.getTargetConstant(1, MVT::i8),   // Scale
10781      DAG.getRegister(0, MVT::i32),        // Index
10782      DAG.getTargetConstant(0, MVT::i32),  // Disp
10783      DAG.getRegister(0, MVT::i32),        // Segment.
10784      Zero,
10785      Chain
10786    };
10787    SDNode *Res =
10788      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10789                         array_lengthof(Ops));
10790    return SDValue(Res, 0);
10791  }
10792
10793  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
10794  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10795}
10796
10797
10798SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
10799  EVT T = Op.getValueType();
10800  DebugLoc DL = Op.getDebugLoc();
10801  unsigned Reg = 0;
10802  unsigned size = 0;
10803  switch(T.getSimpleVT().SimpleTy) {
10804  default: llvm_unreachable("Invalid value type!");
10805  case MVT::i8:  Reg = X86::AL;  size = 1; break;
10806  case MVT::i16: Reg = X86::AX;  size = 2; break;
10807  case MVT::i32: Reg = X86::EAX; size = 4; break;
10808  case MVT::i64:
10809    assert(Subtarget->is64Bit() && "Node not type legal!");
10810    Reg = X86::RAX; size = 8;
10811    break;
10812  }
10813  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
10814                                    Op.getOperand(2), SDValue());
10815  SDValue Ops[] = { cpIn.getValue(0),
10816                    Op.getOperand(1),
10817                    Op.getOperand(3),
10818                    DAG.getTargetConstant(size, MVT::i8),
10819                    cpIn.getValue(1) };
10820  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10821  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
10822  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
10823                                           Ops, 5, T, MMO);
10824  SDValue cpOut =
10825    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
10826  return cpOut;
10827}
10828
10829SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
10830                                                 SelectionDAG &DAG) const {
10831  assert(Subtarget->is64Bit() && "Result not type legalized?");
10832  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10833  SDValue TheChain = Op.getOperand(0);
10834  DebugLoc dl = Op.getDebugLoc();
10835  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10836  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
10837  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
10838                                   rax.getValue(2));
10839  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
10840                            DAG.getConstant(32, MVT::i8));
10841  SDValue Ops[] = {
10842    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
10843    rdx.getValue(1)
10844  };
10845  return DAG.getMergeValues(Ops, 2, dl);
10846}
10847
10848SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
10849                                            SelectionDAG &DAG) const {
10850  EVT SrcVT = Op.getOperand(0).getValueType();
10851  EVT DstVT = Op.getValueType();
10852  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
10853         Subtarget->hasMMX() && "Unexpected custom BITCAST");
10854  assert((DstVT == MVT::i64 ||
10855          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
10856         "Unexpected custom BITCAST");
10857  // i64 <=> MMX conversions are Legal.
10858  if (SrcVT==MVT::i64 && DstVT.isVector())
10859    return Op;
10860  if (DstVT==MVT::i64 && SrcVT.isVector())
10861    return Op;
10862  // MMX <=> MMX conversions are Legal.
10863  if (SrcVT.isVector() && DstVT.isVector())
10864    return Op;
10865  // All other conversions need to be expanded.
10866  return SDValue();
10867}
10868
10869SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
10870  SDNode *Node = Op.getNode();
10871  DebugLoc dl = Node->getDebugLoc();
10872  EVT T = Node->getValueType(0);
10873  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
10874                              DAG.getConstant(0, T), Node->getOperand(2));
10875  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
10876                       cast<AtomicSDNode>(Node)->getMemoryVT(),
10877                       Node->getOperand(0),
10878                       Node->getOperand(1), negOp,
10879                       cast<AtomicSDNode>(Node)->getSrcValue(),
10880                       cast<AtomicSDNode>(Node)->getAlignment(),
10881                       cast<AtomicSDNode>(Node)->getOrdering(),
10882                       cast<AtomicSDNode>(Node)->getSynchScope());
10883}
10884
10885static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
10886  SDNode *Node = Op.getNode();
10887  DebugLoc dl = Node->getDebugLoc();
10888  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10889
10890  // Convert seq_cst store -> xchg
10891  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
10892  // FIXME: On 32-bit, store -> fist or movq would be more efficient
10893  //        (The only way to get a 16-byte store is cmpxchg16b)
10894  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
10895  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
10896      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
10897    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
10898                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
10899                                 Node->getOperand(0),
10900                                 Node->getOperand(1), Node->getOperand(2),
10901                                 cast<AtomicSDNode>(Node)->getMemOperand(),
10902                                 cast<AtomicSDNode>(Node)->getOrdering(),
10903                                 cast<AtomicSDNode>(Node)->getSynchScope());
10904    return Swap.getValue(1);
10905  }
10906  // Other atomic stores have a simple pattern.
10907  return Op;
10908}
10909
10910static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
10911  EVT VT = Op.getNode()->getValueType(0);
10912
10913  // Let legalize expand this if it isn't a legal type yet.
10914  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
10915    return SDValue();
10916
10917  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10918
10919  unsigned Opc;
10920  bool ExtraOp = false;
10921  switch (Op.getOpcode()) {
10922  default: llvm_unreachable("Invalid code");
10923  case ISD::ADDC: Opc = X86ISD::ADD; break;
10924  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
10925  case ISD::SUBC: Opc = X86ISD::SUB; break;
10926  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
10927  }
10928
10929  if (!ExtraOp)
10930    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10931                       Op.getOperand(1));
10932  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10933                     Op.getOperand(1), Op.getOperand(2));
10934}
10935
10936/// LowerOperation - Provide custom lowering hooks for some operations.
10937///
10938SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10939  switch (Op.getOpcode()) {
10940  default: llvm_unreachable("Should not custom lower this!");
10941  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
10942  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
10943  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op,DAG);
10944  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
10945  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
10946  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
10947  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10948  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
10949  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10950  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
10951  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10952  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
10953  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
10954  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10955  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10956  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10957  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10958  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
10959  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10960  case ISD::SHL_PARTS:
10961  case ISD::SRA_PARTS:
10962  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
10963  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
10964  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
10965  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
10966  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
10967  case ISD::FABS:               return LowerFABS(Op, DAG);
10968  case ISD::FNEG:               return LowerFNEG(Op, DAG);
10969  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
10970  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
10971  case ISD::SETCC:              return LowerSETCC(Op, DAG);
10972  case ISD::SELECT:             return LowerSELECT(Op, DAG);
10973  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
10974  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10975  case ISD::VASTART:            return LowerVASTART(Op, DAG);
10976  case ISD::VAARG:              return LowerVAARG(Op, DAG);
10977  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10978  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10979  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10980  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10981  case ISD::FRAME_TO_ARGS_OFFSET:
10982                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
10983  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10984  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
10985  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10986  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10987  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10988  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
10989  case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ_ZERO_UNDEF(Op, DAG);
10990  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
10991  case ISD::MUL:                return LowerMUL(Op, DAG);
10992  case ISD::SRA:
10993  case ISD::SRL:
10994  case ISD::SHL:                return LowerShift(Op, DAG);
10995  case ISD::SADDO:
10996  case ISD::UADDO:
10997  case ISD::SSUBO:
10998  case ISD::USUBO:
10999  case ISD::SMULO:
11000  case ISD::UMULO:              return LowerXALUO(Op, DAG);
11001  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
11002  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
11003  case ISD::ADDC:
11004  case ISD::ADDE:
11005  case ISD::SUBC:
11006  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
11007  case ISD::ADD:                return LowerADD(Op, DAG);
11008  case ISD::SUB:                return LowerSUB(Op, DAG);
11009  }
11010}
11011
11012static void ReplaceATOMIC_LOAD(SDNode *Node,
11013                                  SmallVectorImpl<SDValue> &Results,
11014                                  SelectionDAG &DAG) {
11015  DebugLoc dl = Node->getDebugLoc();
11016  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
11017
11018  // Convert wide load -> cmpxchg8b/cmpxchg16b
11019  // FIXME: On 32-bit, load -> fild or movq would be more efficient
11020  //        (The only way to get a 16-byte load is cmpxchg16b)
11021  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
11022  SDValue Zero = DAG.getConstant(0, VT);
11023  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
11024                               Node->getOperand(0),
11025                               Node->getOperand(1), Zero, Zero,
11026                               cast<AtomicSDNode>(Node)->getMemOperand(),
11027                               cast<AtomicSDNode>(Node)->getOrdering(),
11028                               cast<AtomicSDNode>(Node)->getSynchScope());
11029  Results.push_back(Swap.getValue(0));
11030  Results.push_back(Swap.getValue(1));
11031}
11032
11033void X86TargetLowering::
11034ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
11035                        SelectionDAG &DAG, unsigned NewOp) const {
11036  DebugLoc dl = Node->getDebugLoc();
11037  assert (Node->getValueType(0) == MVT::i64 &&
11038          "Only know how to expand i64 atomics");
11039
11040  SDValue Chain = Node->getOperand(0);
11041  SDValue In1 = Node->getOperand(1);
11042  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
11043                             Node->getOperand(2), DAG.getIntPtrConstant(0));
11044  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
11045                             Node->getOperand(2), DAG.getIntPtrConstant(1));
11046  SDValue Ops[] = { Chain, In1, In2L, In2H };
11047  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
11048  SDValue Result =
11049    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
11050                            cast<MemSDNode>(Node)->getMemOperand());
11051  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
11052  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
11053  Results.push_back(Result.getValue(2));
11054}
11055
11056/// ReplaceNodeResults - Replace a node with an illegal result type
11057/// with a new node built out of custom code.
11058void X86TargetLowering::ReplaceNodeResults(SDNode *N,
11059                                           SmallVectorImpl<SDValue>&Results,
11060                                           SelectionDAG &DAG) const {
11061  DebugLoc dl = N->getDebugLoc();
11062  switch (N->getOpcode()) {
11063  default:
11064    llvm_unreachable("Do not know how to custom type legalize this operation!");
11065  case ISD::SIGN_EXTEND_INREG:
11066  case ISD::ADDC:
11067  case ISD::ADDE:
11068  case ISD::SUBC:
11069  case ISD::SUBE:
11070    // We don't want to expand or promote these.
11071    return;
11072  case ISD::FP_TO_SINT:
11073  case ISD::FP_TO_UINT: {
11074    bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
11075
11076    if (!IsSigned && !isIntegerTypeFTOL(SDValue(N, 0).getValueType()))
11077      return;
11078
11079    std::pair<SDValue,SDValue> Vals =
11080        FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true);
11081    SDValue FIST = Vals.first, StackSlot = Vals.second;
11082    if (FIST.getNode() != 0) {
11083      EVT VT = N->getValueType(0);
11084      // Return a load from the stack slot.
11085      if (StackSlot.getNode() != 0)
11086        Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
11087                                      MachinePointerInfo(),
11088                                      false, false, false, 0));
11089      else
11090        Results.push_back(FIST);
11091    }
11092    return;
11093  }
11094  case ISD::READCYCLECOUNTER: {
11095    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11096    SDValue TheChain = N->getOperand(0);
11097    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
11098    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
11099                                     rd.getValue(1));
11100    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
11101                                     eax.getValue(2));
11102    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
11103    SDValue Ops[] = { eax, edx };
11104    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
11105    Results.push_back(edx.getValue(1));
11106    return;
11107  }
11108  case ISD::ATOMIC_CMP_SWAP: {
11109    EVT T = N->getValueType(0);
11110    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
11111    bool Regs64bit = T == MVT::i128;
11112    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
11113    SDValue cpInL, cpInH;
11114    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
11115                        DAG.getConstant(0, HalfT));
11116    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
11117                        DAG.getConstant(1, HalfT));
11118    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
11119                             Regs64bit ? X86::RAX : X86::EAX,
11120                             cpInL, SDValue());
11121    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
11122                             Regs64bit ? X86::RDX : X86::EDX,
11123                             cpInH, cpInL.getValue(1));
11124    SDValue swapInL, swapInH;
11125    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
11126                          DAG.getConstant(0, HalfT));
11127    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
11128                          DAG.getConstant(1, HalfT));
11129    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
11130                               Regs64bit ? X86::RBX : X86::EBX,
11131                               swapInL, cpInH.getValue(1));
11132    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
11133                               Regs64bit ? X86::RCX : X86::ECX,
11134                               swapInH, swapInL.getValue(1));
11135    SDValue Ops[] = { swapInH.getValue(0),
11136                      N->getOperand(1),
11137                      swapInH.getValue(1) };
11138    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11139    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
11140    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
11141                                  X86ISD::LCMPXCHG8_DAG;
11142    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
11143                                             Ops, 3, T, MMO);
11144    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
11145                                        Regs64bit ? X86::RAX : X86::EAX,
11146                                        HalfT, Result.getValue(1));
11147    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
11148                                        Regs64bit ? X86::RDX : X86::EDX,
11149                                        HalfT, cpOutL.getValue(2));
11150    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
11151    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
11152    Results.push_back(cpOutH.getValue(1));
11153    return;
11154  }
11155  case ISD::ATOMIC_LOAD_ADD:
11156    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
11157    return;
11158  case ISD::ATOMIC_LOAD_AND:
11159    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
11160    return;
11161  case ISD::ATOMIC_LOAD_NAND:
11162    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
11163    return;
11164  case ISD::ATOMIC_LOAD_OR:
11165    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
11166    return;
11167  case ISD::ATOMIC_LOAD_SUB:
11168    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
11169    return;
11170  case ISD::ATOMIC_LOAD_XOR:
11171    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
11172    return;
11173  case ISD::ATOMIC_SWAP:
11174    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
11175    return;
11176  case ISD::ATOMIC_LOAD:
11177    ReplaceATOMIC_LOAD(N, Results, DAG);
11178  }
11179}
11180
11181const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
11182  switch (Opcode) {
11183  default: return NULL;
11184  case X86ISD::BSF:                return "X86ISD::BSF";
11185  case X86ISD::BSR:                return "X86ISD::BSR";
11186  case X86ISD::SHLD:               return "X86ISD::SHLD";
11187  case X86ISD::SHRD:               return "X86ISD::SHRD";
11188  case X86ISD::FAND:               return "X86ISD::FAND";
11189  case X86ISD::FOR:                return "X86ISD::FOR";
11190  case X86ISD::FXOR:               return "X86ISD::FXOR";
11191  case X86ISD::FSRL:               return "X86ISD::FSRL";
11192  case X86ISD::FILD:               return "X86ISD::FILD";
11193  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
11194  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
11195  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
11196  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
11197  case X86ISD::FLD:                return "X86ISD::FLD";
11198  case X86ISD::FST:                return "X86ISD::FST";
11199  case X86ISD::CALL:               return "X86ISD::CALL";
11200  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
11201  case X86ISD::BT:                 return "X86ISD::BT";
11202  case X86ISD::CMP:                return "X86ISD::CMP";
11203  case X86ISD::COMI:               return "X86ISD::COMI";
11204  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
11205  case X86ISD::SETCC:              return "X86ISD::SETCC";
11206  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
11207  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
11208  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
11209  case X86ISD::CMOV:               return "X86ISD::CMOV";
11210  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
11211  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
11212  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
11213  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
11214  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
11215  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
11216  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
11217  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
11218  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
11219  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
11220  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
11221  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
11222  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
11223  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
11224  case X86ISD::PSIGN:              return "X86ISD::PSIGN";
11225  case X86ISD::BLENDV:             return "X86ISD::BLENDV";
11226  case X86ISD::BLENDPW:            return "X86ISD::BLENDPW";
11227  case X86ISD::BLENDPS:            return "X86ISD::BLENDPS";
11228  case X86ISD::BLENDPD:            return "X86ISD::BLENDPD";
11229  case X86ISD::HADD:               return "X86ISD::HADD";
11230  case X86ISD::HSUB:               return "X86ISD::HSUB";
11231  case X86ISD::FHADD:              return "X86ISD::FHADD";
11232  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
11233  case X86ISD::FMAX:               return "X86ISD::FMAX";
11234  case X86ISD::FMIN:               return "X86ISD::FMIN";
11235  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
11236  case X86ISD::FRCP:               return "X86ISD::FRCP";
11237  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
11238  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
11239  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
11240  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
11241  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
11242  case X86ISD::FNSTSW16r:          return "X86ISD::FNSTSW16r";
11243  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
11244  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
11245  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
11246  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
11247  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
11248  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
11249  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
11250  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
11251  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
11252  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
11253  case X86ISD::VSHLDQ:             return "X86ISD::VSHLDQ";
11254  case X86ISD::VSRLDQ:             return "X86ISD::VSRLDQ";
11255  case X86ISD::VSHL:               return "X86ISD::VSHL";
11256  case X86ISD::VSRL:               return "X86ISD::VSRL";
11257  case X86ISD::VSRA:               return "X86ISD::VSRA";
11258  case X86ISD::VSHLI:              return "X86ISD::VSHLI";
11259  case X86ISD::VSRLI:              return "X86ISD::VSRLI";
11260  case X86ISD::VSRAI:              return "X86ISD::VSRAI";
11261  case X86ISD::CMPP:               return "X86ISD::CMPP";
11262  case X86ISD::PCMPEQ:             return "X86ISD::PCMPEQ";
11263  case X86ISD::PCMPGT:             return "X86ISD::PCMPGT";
11264  case X86ISD::ADD:                return "X86ISD::ADD";
11265  case X86ISD::SUB:                return "X86ISD::SUB";
11266  case X86ISD::ADC:                return "X86ISD::ADC";
11267  case X86ISD::SBB:                return "X86ISD::SBB";
11268  case X86ISD::SMUL:               return "X86ISD::SMUL";
11269  case X86ISD::UMUL:               return "X86ISD::UMUL";
11270  case X86ISD::INC:                return "X86ISD::INC";
11271  case X86ISD::DEC:                return "X86ISD::DEC";
11272  case X86ISD::OR:                 return "X86ISD::OR";
11273  case X86ISD::XOR:                return "X86ISD::XOR";
11274  case X86ISD::AND:                return "X86ISD::AND";
11275  case X86ISD::ANDN:               return "X86ISD::ANDN";
11276  case X86ISD::BLSI:               return "X86ISD::BLSI";
11277  case X86ISD::BLSMSK:             return "X86ISD::BLSMSK";
11278  case X86ISD::BLSR:               return "X86ISD::BLSR";
11279  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
11280  case X86ISD::PTEST:              return "X86ISD::PTEST";
11281  case X86ISD::TESTP:              return "X86ISD::TESTP";
11282  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
11283  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
11284  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
11285  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
11286  case X86ISD::SHUFP:              return "X86ISD::SHUFP";
11287  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
11288  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
11289  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
11290  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
11291  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
11292  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
11293  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
11294  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
11295  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
11296  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
11297  case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
11298  case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
11299  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
11300  case X86ISD::VPERMILP:           return "X86ISD::VPERMILP";
11301  case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
11302  case X86ISD::VPERMV:             return "X86ISD::VPERMV";
11303  case X86ISD::VPERMI:             return "X86ISD::VPERMI";
11304  case X86ISD::PMULUDQ:            return "X86ISD::PMULUDQ";
11305  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
11306  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
11307  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
11308  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
11309  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
11310  case X86ISD::WIN_FTOL:           return "X86ISD::WIN_FTOL";
11311  case X86ISD::SAHF:               return "X86ISD::SAHF";
11312  }
11313}
11314
11315// isLegalAddressingMode - Return true if the addressing mode represented
11316// by AM is legal for this target, for a load/store of the specified type.
11317bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
11318                                              Type *Ty) const {
11319  // X86 supports extremely general addressing modes.
11320  CodeModel::Model M = getTargetMachine().getCodeModel();
11321  Reloc::Model R = getTargetMachine().getRelocationModel();
11322
11323  // X86 allows a sign-extended 32-bit immediate field as a displacement.
11324  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
11325    return false;
11326
11327  if (AM.BaseGV) {
11328    unsigned GVFlags =
11329      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
11330
11331    // If a reference to this global requires an extra load, we can't fold it.
11332    if (isGlobalStubReference(GVFlags))
11333      return false;
11334
11335    // If BaseGV requires a register for the PIC base, we cannot also have a
11336    // BaseReg specified.
11337    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
11338      return false;
11339
11340    // If lower 4G is not available, then we must use rip-relative addressing.
11341    if ((M != CodeModel::Small || R != Reloc::Static) &&
11342        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
11343      return false;
11344  }
11345
11346  switch (AM.Scale) {
11347  case 0:
11348  case 1:
11349  case 2:
11350  case 4:
11351  case 8:
11352    // These scales always work.
11353    break;
11354  case 3:
11355  case 5:
11356  case 9:
11357    // These scales are formed with basereg+scalereg.  Only accept if there is
11358    // no basereg yet.
11359    if (AM.HasBaseReg)
11360      return false;
11361    break;
11362  default:  // Other stuff never works.
11363    return false;
11364  }
11365
11366  return true;
11367}
11368
11369
11370bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
11371  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
11372    return false;
11373  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
11374  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
11375  if (NumBits1 <= NumBits2)
11376    return false;
11377  return true;
11378}
11379
11380bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
11381  if (!VT1.isInteger() || !VT2.isInteger())
11382    return false;
11383  unsigned NumBits1 = VT1.getSizeInBits();
11384  unsigned NumBits2 = VT2.getSizeInBits();
11385  if (NumBits1 <= NumBits2)
11386    return false;
11387  return true;
11388}
11389
11390bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
11391  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11392  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
11393}
11394
11395bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
11396  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11397  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
11398}
11399
11400bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
11401  // i16 instructions are longer (0x66 prefix) and potentially slower.
11402  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
11403}
11404
11405/// isShuffleMaskLegal - Targets can use this to indicate that they only
11406/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
11407/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
11408/// are assumed to be legal.
11409bool
11410X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
11411                                      EVT VT) const {
11412  // Very little shuffling can be done for 64-bit vectors right now.
11413  if (VT.getSizeInBits() == 64)
11414    return false;
11415
11416  // FIXME: pshufb, blends, shifts.
11417  return (VT.getVectorNumElements() == 2 ||
11418          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
11419          isMOVLMask(M, VT) ||
11420          isSHUFPMask(M, VT, Subtarget->hasAVX()) ||
11421          isPSHUFDMask(M, VT) ||
11422          isPSHUFHWMask(M, VT, Subtarget->hasAVX2()) ||
11423          isPSHUFLWMask(M, VT, Subtarget->hasAVX2()) ||
11424          isPALIGNRMask(M, VT, Subtarget) ||
11425          isUNPCKLMask(M, VT, Subtarget->hasAVX2()) ||
11426          isUNPCKHMask(M, VT, Subtarget->hasAVX2()) ||
11427          isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasAVX2()) ||
11428          isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasAVX2()));
11429}
11430
11431bool
11432X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
11433                                          EVT VT) const {
11434  unsigned NumElts = VT.getVectorNumElements();
11435  // FIXME: This collection of masks seems suspect.
11436  if (NumElts == 2)
11437    return true;
11438  if (NumElts == 4 && VT.getSizeInBits() == 128) {
11439    return (isMOVLMask(Mask, VT)  ||
11440            isCommutedMOVLMask(Mask, VT, true) ||
11441            isSHUFPMask(Mask, VT, Subtarget->hasAVX()) ||
11442            isSHUFPMask(Mask, VT, Subtarget->hasAVX(), /* Commuted */ true));
11443  }
11444  return false;
11445}
11446
11447//===----------------------------------------------------------------------===//
11448//                           X86 Scheduler Hooks
11449//===----------------------------------------------------------------------===//
11450
11451// private utility function
11452MachineBasicBlock *
11453X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
11454                                                       MachineBasicBlock *MBB,
11455                                                       unsigned regOpc,
11456                                                       unsigned immOpc,
11457                                                       unsigned LoadOpc,
11458                                                       unsigned CXchgOpc,
11459                                                       unsigned notOpc,
11460                                                       unsigned EAXreg,
11461                                                 const TargetRegisterClass *RC,
11462                                                       bool Invert) const {
11463  // For the atomic bitwise operator, we generate
11464  //   thisMBB:
11465  //   newMBB:
11466  //     ld  t1 = [bitinstr.addr]
11467  //     op  t2 = t1, [bitinstr.val]
11468  //     not t3 = t2  (if Invert)
11469  //     mov EAX = t1
11470  //     lcs dest = [bitinstr.addr], t3  [EAX is implicit]
11471  //     bz  newMBB
11472  //     fallthrough -->nextMBB
11473  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11474  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11475  MachineFunction::iterator MBBIter = MBB;
11476  ++MBBIter;
11477
11478  /// First build the CFG
11479  MachineFunction *F = MBB->getParent();
11480  MachineBasicBlock *thisMBB = MBB;
11481  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11482  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11483  F->insert(MBBIter, newMBB);
11484  F->insert(MBBIter, nextMBB);
11485
11486  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11487  nextMBB->splice(nextMBB->begin(), thisMBB,
11488                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11489                  thisMBB->end());
11490  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11491
11492  // Update thisMBB to fall through to newMBB
11493  thisMBB->addSuccessor(newMBB);
11494
11495  // newMBB jumps to itself and fall through to nextMBB
11496  newMBB->addSuccessor(nextMBB);
11497  newMBB->addSuccessor(newMBB);
11498
11499  // Insert instructions into newMBB based on incoming instruction
11500  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11501         "unexpected number of operands");
11502  DebugLoc dl = bInstr->getDebugLoc();
11503  MachineOperand& destOper = bInstr->getOperand(0);
11504  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11505  int numArgs = bInstr->getNumOperands() - 1;
11506  for (int i=0; i < numArgs; ++i)
11507    argOpers[i] = &bInstr->getOperand(i+1);
11508
11509  // x86 address has 4 operands: base, index, scale, and displacement
11510  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11511  int valArgIndx = lastAddrIndx + 1;
11512
11513  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11514  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
11515  for (int i=0; i <= lastAddrIndx; ++i)
11516    (*MIB).addOperand(*argOpers[i]);
11517
11518  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11519  assert((argOpers[valArgIndx]->isReg() ||
11520          argOpers[valArgIndx]->isImm()) &&
11521         "invalid operand");
11522  if (argOpers[valArgIndx]->isReg())
11523    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
11524  else
11525    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
11526  MIB.addReg(t1);
11527  (*MIB).addOperand(*argOpers[valArgIndx]);
11528
11529  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
11530  if (Invert) {
11531    MIB = BuildMI(newMBB, dl, TII->get(notOpc), t3).addReg(t2);
11532  }
11533  else
11534    t3 = t2;
11535
11536  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
11537  MIB.addReg(t1);
11538
11539  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
11540  for (int i=0; i <= lastAddrIndx; ++i)
11541    (*MIB).addOperand(*argOpers[i]);
11542  MIB.addReg(t3);
11543  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11544  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11545                    bInstr->memoperands_end());
11546
11547  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11548  MIB.addReg(EAXreg);
11549
11550  // insert branch
11551  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11552
11553  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11554  return nextMBB;
11555}
11556
11557// private utility function:  64 bit atomics on 32 bit host.
11558MachineBasicBlock *
11559X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
11560                                                       MachineBasicBlock *MBB,
11561                                                       unsigned regOpcL,
11562                                                       unsigned regOpcH,
11563                                                       unsigned immOpcL,
11564                                                       unsigned immOpcH,
11565                                                       bool Invert) const {
11566  // For the atomic bitwise operator, we generate
11567  //   thisMBB (instructions are in pairs, except cmpxchg8b)
11568  //     ld t1,t2 = [bitinstr.addr]
11569  //   newMBB:
11570  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
11571  //     op  t5, t6 <- out1, out2, [bitinstr.val]
11572  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
11573  //     neg t7, t8 < t5, t6  (if Invert)
11574  //     mov ECX, EBX <- t5, t6
11575  //     mov EAX, EDX <- t1, t2
11576  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
11577  //     mov t3, t4 <- EAX, EDX
11578  //     bz  newMBB
11579  //     result in out1, out2
11580  //     fallthrough -->nextMBB
11581
11582  const TargetRegisterClass *RC = &X86::GR32RegClass;
11583  const unsigned LoadOpc = X86::MOV32rm;
11584  const unsigned NotOpc = X86::NOT32r;
11585  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11586  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11587  MachineFunction::iterator MBBIter = MBB;
11588  ++MBBIter;
11589
11590  /// First build the CFG
11591  MachineFunction *F = MBB->getParent();
11592  MachineBasicBlock *thisMBB = MBB;
11593  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11594  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11595  F->insert(MBBIter, newMBB);
11596  F->insert(MBBIter, nextMBB);
11597
11598  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11599  nextMBB->splice(nextMBB->begin(), thisMBB,
11600                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11601                  thisMBB->end());
11602  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11603
11604  // Update thisMBB to fall through to newMBB
11605  thisMBB->addSuccessor(newMBB);
11606
11607  // newMBB jumps to itself and fall through to nextMBB
11608  newMBB->addSuccessor(nextMBB);
11609  newMBB->addSuccessor(newMBB);
11610
11611  DebugLoc dl = bInstr->getDebugLoc();
11612  // Insert instructions into newMBB based on incoming instruction
11613  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
11614  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
11615         "unexpected number of operands");
11616  MachineOperand& dest1Oper = bInstr->getOperand(0);
11617  MachineOperand& dest2Oper = bInstr->getOperand(1);
11618  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11619  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
11620    argOpers[i] = &bInstr->getOperand(i+2);
11621
11622    // We use some of the operands multiple times, so conservatively just
11623    // clear any kill flags that might be present.
11624    if (argOpers[i]->isReg() && argOpers[i]->isUse())
11625      argOpers[i]->setIsKill(false);
11626  }
11627
11628  // x86 address has 5 operands: base, index, scale, displacement, and segment.
11629  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11630
11631  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11632  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
11633  for (int i=0; i <= lastAddrIndx; ++i)
11634    (*MIB).addOperand(*argOpers[i]);
11635  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11636  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
11637  // add 4 to displacement.
11638  for (int i=0; i <= lastAddrIndx-2; ++i)
11639    (*MIB).addOperand(*argOpers[i]);
11640  MachineOperand newOp3 = *(argOpers[3]);
11641  if (newOp3.isImm())
11642    newOp3.setImm(newOp3.getImm()+4);
11643  else
11644    newOp3.setOffset(newOp3.getOffset()+4);
11645  (*MIB).addOperand(newOp3);
11646  (*MIB).addOperand(*argOpers[lastAddrIndx]);
11647
11648  // t3/4 are defined later, at the bottom of the loop
11649  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
11650  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
11651  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
11652    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
11653  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
11654    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
11655
11656  // The subsequent operations should be using the destination registers of
11657  // the PHI instructions.
11658  t1 = dest1Oper.getReg();
11659  t2 = dest2Oper.getReg();
11660
11661  int valArgIndx = lastAddrIndx + 1;
11662  assert((argOpers[valArgIndx]->isReg() ||
11663          argOpers[valArgIndx]->isImm()) &&
11664         "invalid operand");
11665  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
11666  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
11667  if (argOpers[valArgIndx]->isReg())
11668    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
11669  else
11670    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
11671  if (regOpcL != X86::MOV32rr)
11672    MIB.addReg(t1);
11673  (*MIB).addOperand(*argOpers[valArgIndx]);
11674  assert(argOpers[valArgIndx + 1]->isReg() ==
11675         argOpers[valArgIndx]->isReg());
11676  assert(argOpers[valArgIndx + 1]->isImm() ==
11677         argOpers[valArgIndx]->isImm());
11678  if (argOpers[valArgIndx + 1]->isReg())
11679    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
11680  else
11681    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
11682  if (regOpcH != X86::MOV32rr)
11683    MIB.addReg(t2);
11684  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
11685
11686  unsigned t7, t8;
11687  if (Invert) {
11688    t7 = F->getRegInfo().createVirtualRegister(RC);
11689    t8 = F->getRegInfo().createVirtualRegister(RC);
11690    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t7).addReg(t5);
11691    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t8).addReg(t6);
11692  } else {
11693    t7 = t5;
11694    t8 = t6;
11695  }
11696
11697  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11698  MIB.addReg(t1);
11699  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
11700  MIB.addReg(t2);
11701
11702  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
11703  MIB.addReg(t7);
11704  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
11705  MIB.addReg(t8);
11706
11707  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
11708  for (int i=0; i <= lastAddrIndx; ++i)
11709    (*MIB).addOperand(*argOpers[i]);
11710
11711  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11712  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11713                    bInstr->memoperands_end());
11714
11715  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
11716  MIB.addReg(X86::EAX);
11717  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
11718  MIB.addReg(X86::EDX);
11719
11720  // insert branch
11721  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11722
11723  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11724  return nextMBB;
11725}
11726
11727// private utility function
11728MachineBasicBlock *
11729X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
11730                                                      MachineBasicBlock *MBB,
11731                                                      unsigned cmovOpc) const {
11732  // For the atomic min/max operator, we generate
11733  //   thisMBB:
11734  //   newMBB:
11735  //     ld t1 = [min/max.addr]
11736  //     mov t2 = [min/max.val]
11737  //     cmp  t1, t2
11738  //     cmov[cond] t2 = t1
11739  //     mov EAX = t1
11740  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11741  //     bz   newMBB
11742  //     fallthrough -->nextMBB
11743  //
11744  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11745  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11746  MachineFunction::iterator MBBIter = MBB;
11747  ++MBBIter;
11748
11749  /// First build the CFG
11750  MachineFunction *F = MBB->getParent();
11751  MachineBasicBlock *thisMBB = MBB;
11752  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11753  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11754  F->insert(MBBIter, newMBB);
11755  F->insert(MBBIter, nextMBB);
11756
11757  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11758  nextMBB->splice(nextMBB->begin(), thisMBB,
11759                  llvm::next(MachineBasicBlock::iterator(mInstr)),
11760                  thisMBB->end());
11761  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11762
11763  // Update thisMBB to fall through to newMBB
11764  thisMBB->addSuccessor(newMBB);
11765
11766  // newMBB jumps to newMBB and fall through to nextMBB
11767  newMBB->addSuccessor(nextMBB);
11768  newMBB->addSuccessor(newMBB);
11769
11770  DebugLoc dl = mInstr->getDebugLoc();
11771  // Insert instructions into newMBB based on incoming instruction
11772  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11773         "unexpected number of operands");
11774  MachineOperand& destOper = mInstr->getOperand(0);
11775  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11776  int numArgs = mInstr->getNumOperands() - 1;
11777  for (int i=0; i < numArgs; ++i)
11778    argOpers[i] = &mInstr->getOperand(i+1);
11779
11780  // x86 address has 4 operands: base, index, scale, and displacement
11781  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11782  int valArgIndx = lastAddrIndx + 1;
11783
11784  unsigned t1 = F->getRegInfo().createVirtualRegister(&X86::GR32RegClass);
11785  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
11786  for (int i=0; i <= lastAddrIndx; ++i)
11787    (*MIB).addOperand(*argOpers[i]);
11788
11789  // We only support register and immediate values
11790  assert((argOpers[valArgIndx]->isReg() ||
11791          argOpers[valArgIndx]->isImm()) &&
11792         "invalid operand");
11793
11794  unsigned t2 = F->getRegInfo().createVirtualRegister(&X86::GR32RegClass);
11795  if (argOpers[valArgIndx]->isReg())
11796    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
11797  else
11798    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
11799  (*MIB).addOperand(*argOpers[valArgIndx]);
11800
11801  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11802  MIB.addReg(t1);
11803
11804  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
11805  MIB.addReg(t1);
11806  MIB.addReg(t2);
11807
11808  // Generate movc
11809  unsigned t3 = F->getRegInfo().createVirtualRegister(&X86::GR32RegClass);
11810  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
11811  MIB.addReg(t2);
11812  MIB.addReg(t1);
11813
11814  // Cmp and exchange if none has modified the memory location
11815  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
11816  for (int i=0; i <= lastAddrIndx; ++i)
11817    (*MIB).addOperand(*argOpers[i]);
11818  MIB.addReg(t3);
11819  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11820  (*MIB).setMemRefs(mInstr->memoperands_begin(),
11821                    mInstr->memoperands_end());
11822
11823  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11824  MIB.addReg(X86::EAX);
11825
11826  // insert branch
11827  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11828
11829  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
11830  return nextMBB;
11831}
11832
11833// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
11834// or XMM0_V32I8 in AVX all of this code can be replaced with that
11835// in the .td file.
11836MachineBasicBlock *
11837X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
11838                            unsigned numArgs, bool memArg) const {
11839  assert(Subtarget->hasSSE42() &&
11840         "Target must have SSE4.2 or AVX features enabled");
11841
11842  DebugLoc dl = MI->getDebugLoc();
11843  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11844  unsigned Opc;
11845  if (!Subtarget->hasAVX()) {
11846    if (memArg)
11847      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
11848    else
11849      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
11850  } else {
11851    if (memArg)
11852      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
11853    else
11854      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
11855  }
11856
11857  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
11858  for (unsigned i = 0; i < numArgs; ++i) {
11859    MachineOperand &Op = MI->getOperand(i+1);
11860    if (!(Op.isReg() && Op.isImplicit()))
11861      MIB.addOperand(Op);
11862  }
11863  BuildMI(*BB, MI, dl,
11864    TII->get(Subtarget->hasAVX() ? X86::VMOVAPSrr : X86::MOVAPSrr),
11865             MI->getOperand(0).getReg())
11866    .addReg(X86::XMM0);
11867
11868  MI->eraseFromParent();
11869  return BB;
11870}
11871
11872MachineBasicBlock *
11873X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
11874  DebugLoc dl = MI->getDebugLoc();
11875  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11876
11877  // Address into RAX/EAX, other two args into ECX, EDX.
11878  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
11879  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
11880  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
11881  for (int i = 0; i < X86::AddrNumOperands; ++i)
11882    MIB.addOperand(MI->getOperand(i));
11883
11884  unsigned ValOps = X86::AddrNumOperands;
11885  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11886    .addReg(MI->getOperand(ValOps).getReg());
11887  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
11888    .addReg(MI->getOperand(ValOps+1).getReg());
11889
11890  // The instruction doesn't actually take any operands though.
11891  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
11892
11893  MI->eraseFromParent(); // The pseudo is gone now.
11894  return BB;
11895}
11896
11897MachineBasicBlock *
11898X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
11899  DebugLoc dl = MI->getDebugLoc();
11900  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11901
11902  // First arg in ECX, the second in EAX.
11903  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11904    .addReg(MI->getOperand(0).getReg());
11905  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
11906    .addReg(MI->getOperand(1).getReg());
11907
11908  // The instruction doesn't actually take any operands though.
11909  BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
11910
11911  MI->eraseFromParent(); // The pseudo is gone now.
11912  return BB;
11913}
11914
11915MachineBasicBlock *
11916X86TargetLowering::EmitVAARG64WithCustomInserter(
11917                   MachineInstr *MI,
11918                   MachineBasicBlock *MBB) const {
11919  // Emit va_arg instruction on X86-64.
11920
11921  // Operands to this pseudo-instruction:
11922  // 0  ) Output        : destination address (reg)
11923  // 1-5) Input         : va_list address (addr, i64mem)
11924  // 6  ) ArgSize       : Size (in bytes) of vararg type
11925  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
11926  // 8  ) Align         : Alignment of type
11927  // 9  ) EFLAGS (implicit-def)
11928
11929  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
11930  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
11931
11932  unsigned DestReg = MI->getOperand(0).getReg();
11933  MachineOperand &Base = MI->getOperand(1);
11934  MachineOperand &Scale = MI->getOperand(2);
11935  MachineOperand &Index = MI->getOperand(3);
11936  MachineOperand &Disp = MI->getOperand(4);
11937  MachineOperand &Segment = MI->getOperand(5);
11938  unsigned ArgSize = MI->getOperand(6).getImm();
11939  unsigned ArgMode = MI->getOperand(7).getImm();
11940  unsigned Align = MI->getOperand(8).getImm();
11941
11942  // Memory Reference
11943  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
11944  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
11945  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
11946
11947  // Machine Information
11948  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11949  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
11950  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
11951  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
11952  DebugLoc DL = MI->getDebugLoc();
11953
11954  // struct va_list {
11955  //   i32   gp_offset
11956  //   i32   fp_offset
11957  //   i64   overflow_area (address)
11958  //   i64   reg_save_area (address)
11959  // }
11960  // sizeof(va_list) = 24
11961  // alignment(va_list) = 8
11962
11963  unsigned TotalNumIntRegs = 6;
11964  unsigned TotalNumXMMRegs = 8;
11965  bool UseGPOffset = (ArgMode == 1);
11966  bool UseFPOffset = (ArgMode == 2);
11967  unsigned MaxOffset = TotalNumIntRegs * 8 +
11968                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
11969
11970  /* Align ArgSize to a multiple of 8 */
11971  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
11972  bool NeedsAlign = (Align > 8);
11973
11974  MachineBasicBlock *thisMBB = MBB;
11975  MachineBasicBlock *overflowMBB;
11976  MachineBasicBlock *offsetMBB;
11977  MachineBasicBlock *endMBB;
11978
11979  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
11980  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
11981  unsigned OffsetReg = 0;
11982
11983  if (!UseGPOffset && !UseFPOffset) {
11984    // If we only pull from the overflow region, we don't create a branch.
11985    // We don't need to alter control flow.
11986    OffsetDestReg = 0; // unused
11987    OverflowDestReg = DestReg;
11988
11989    offsetMBB = NULL;
11990    overflowMBB = thisMBB;
11991    endMBB = thisMBB;
11992  } else {
11993    // First emit code to check if gp_offset (or fp_offset) is below the bound.
11994    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
11995    // If not, pull from overflow_area. (branch to overflowMBB)
11996    //
11997    //       thisMBB
11998    //         |     .
11999    //         |        .
12000    //     offsetMBB   overflowMBB
12001    //         |        .
12002    //         |     .
12003    //        endMBB
12004
12005    // Registers for the PHI in endMBB
12006    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
12007    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
12008
12009    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
12010    MachineFunction *MF = MBB->getParent();
12011    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12012    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12013    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12014
12015    MachineFunction::iterator MBBIter = MBB;
12016    ++MBBIter;
12017
12018    // Insert the new basic blocks
12019    MF->insert(MBBIter, offsetMBB);
12020    MF->insert(MBBIter, overflowMBB);
12021    MF->insert(MBBIter, endMBB);
12022
12023    // Transfer the remainder of MBB and its successor edges to endMBB.
12024    endMBB->splice(endMBB->begin(), thisMBB,
12025                    llvm::next(MachineBasicBlock::iterator(MI)),
12026                    thisMBB->end());
12027    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
12028
12029    // Make offsetMBB and overflowMBB successors of thisMBB
12030    thisMBB->addSuccessor(offsetMBB);
12031    thisMBB->addSuccessor(overflowMBB);
12032
12033    // endMBB is a successor of both offsetMBB and overflowMBB
12034    offsetMBB->addSuccessor(endMBB);
12035    overflowMBB->addSuccessor(endMBB);
12036
12037    // Load the offset value into a register
12038    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
12039    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
12040      .addOperand(Base)
12041      .addOperand(Scale)
12042      .addOperand(Index)
12043      .addDisp(Disp, UseFPOffset ? 4 : 0)
12044      .addOperand(Segment)
12045      .setMemRefs(MMOBegin, MMOEnd);
12046
12047    // Check if there is enough room left to pull this argument.
12048    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
12049      .addReg(OffsetReg)
12050      .addImm(MaxOffset + 8 - ArgSizeA8);
12051
12052    // Branch to "overflowMBB" if offset >= max
12053    // Fall through to "offsetMBB" otherwise
12054    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
12055      .addMBB(overflowMBB);
12056  }
12057
12058  // In offsetMBB, emit code to use the reg_save_area.
12059  if (offsetMBB) {
12060    assert(OffsetReg != 0);
12061
12062    // Read the reg_save_area address.
12063    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
12064    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
12065      .addOperand(Base)
12066      .addOperand(Scale)
12067      .addOperand(Index)
12068      .addDisp(Disp, 16)
12069      .addOperand(Segment)
12070      .setMemRefs(MMOBegin, MMOEnd);
12071
12072    // Zero-extend the offset
12073    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
12074      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
12075        .addImm(0)
12076        .addReg(OffsetReg)
12077        .addImm(X86::sub_32bit);
12078
12079    // Add the offset to the reg_save_area to get the final address.
12080    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
12081      .addReg(OffsetReg64)
12082      .addReg(RegSaveReg);
12083
12084    // Compute the offset for the next argument
12085    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
12086    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
12087      .addReg(OffsetReg)
12088      .addImm(UseFPOffset ? 16 : 8);
12089
12090    // Store it back into the va_list.
12091    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
12092      .addOperand(Base)
12093      .addOperand(Scale)
12094      .addOperand(Index)
12095      .addDisp(Disp, UseFPOffset ? 4 : 0)
12096      .addOperand(Segment)
12097      .addReg(NextOffsetReg)
12098      .setMemRefs(MMOBegin, MMOEnd);
12099
12100    // Jump to endMBB
12101    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
12102      .addMBB(endMBB);
12103  }
12104
12105  //
12106  // Emit code to use overflow area
12107  //
12108
12109  // Load the overflow_area address into a register.
12110  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
12111  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
12112    .addOperand(Base)
12113    .addOperand(Scale)
12114    .addOperand(Index)
12115    .addDisp(Disp, 8)
12116    .addOperand(Segment)
12117    .setMemRefs(MMOBegin, MMOEnd);
12118
12119  // If we need to align it, do so. Otherwise, just copy the address
12120  // to OverflowDestReg.
12121  if (NeedsAlign) {
12122    // Align the overflow address
12123    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
12124    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
12125
12126    // aligned_addr = (addr + (align-1)) & ~(align-1)
12127    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
12128      .addReg(OverflowAddrReg)
12129      .addImm(Align-1);
12130
12131    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
12132      .addReg(TmpReg)
12133      .addImm(~(uint64_t)(Align-1));
12134  } else {
12135    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
12136      .addReg(OverflowAddrReg);
12137  }
12138
12139  // Compute the next overflow address after this argument.
12140  // (the overflow address should be kept 8-byte aligned)
12141  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
12142  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
12143    .addReg(OverflowDestReg)
12144    .addImm(ArgSizeA8);
12145
12146  // Store the new overflow address.
12147  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
12148    .addOperand(Base)
12149    .addOperand(Scale)
12150    .addOperand(Index)
12151    .addDisp(Disp, 8)
12152    .addOperand(Segment)
12153    .addReg(NextAddrReg)
12154    .setMemRefs(MMOBegin, MMOEnd);
12155
12156  // If we branched, emit the PHI to the front of endMBB.
12157  if (offsetMBB) {
12158    BuildMI(*endMBB, endMBB->begin(), DL,
12159            TII->get(X86::PHI), DestReg)
12160      .addReg(OffsetDestReg).addMBB(offsetMBB)
12161      .addReg(OverflowDestReg).addMBB(overflowMBB);
12162  }
12163
12164  // Erase the pseudo instruction
12165  MI->eraseFromParent();
12166
12167  return endMBB;
12168}
12169
12170MachineBasicBlock *
12171X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
12172                                                 MachineInstr *MI,
12173                                                 MachineBasicBlock *MBB) const {
12174  // Emit code to save XMM registers to the stack. The ABI says that the
12175  // number of registers to save is given in %al, so it's theoretically
12176  // possible to do an indirect jump trick to avoid saving all of them,
12177  // however this code takes a simpler approach and just executes all
12178  // of the stores if %al is non-zero. It's less code, and it's probably
12179  // easier on the hardware branch predictor, and stores aren't all that
12180  // expensive anyway.
12181
12182  // Create the new basic blocks. One block contains all the XMM stores,
12183  // and one block is the final destination regardless of whether any
12184  // stores were performed.
12185  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
12186  MachineFunction *F = MBB->getParent();
12187  MachineFunction::iterator MBBIter = MBB;
12188  ++MBBIter;
12189  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
12190  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
12191  F->insert(MBBIter, XMMSaveMBB);
12192  F->insert(MBBIter, EndMBB);
12193
12194  // Transfer the remainder of MBB and its successor edges to EndMBB.
12195  EndMBB->splice(EndMBB->begin(), MBB,
12196                 llvm::next(MachineBasicBlock::iterator(MI)),
12197                 MBB->end());
12198  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
12199
12200  // The original block will now fall through to the XMM save block.
12201  MBB->addSuccessor(XMMSaveMBB);
12202  // The XMMSaveMBB will fall through to the end block.
12203  XMMSaveMBB->addSuccessor(EndMBB);
12204
12205  // Now add the instructions.
12206  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12207  DebugLoc DL = MI->getDebugLoc();
12208
12209  unsigned CountReg = MI->getOperand(0).getReg();
12210  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
12211  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
12212
12213  if (!Subtarget->isTargetWin64()) {
12214    // If %al is 0, branch around the XMM save block.
12215    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
12216    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
12217    MBB->addSuccessor(EndMBB);
12218  }
12219
12220  unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
12221  // In the XMM save block, save all the XMM argument registers.
12222  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
12223    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
12224    MachineMemOperand *MMO =
12225      F->getMachineMemOperand(
12226          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
12227        MachineMemOperand::MOStore,
12228        /*Size=*/16, /*Align=*/16);
12229    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
12230      .addFrameIndex(RegSaveFrameIndex)
12231      .addImm(/*Scale=*/1)
12232      .addReg(/*IndexReg=*/0)
12233      .addImm(/*Disp=*/Offset)
12234      .addReg(/*Segment=*/0)
12235      .addReg(MI->getOperand(i).getReg())
12236      .addMemOperand(MMO);
12237  }
12238
12239  MI->eraseFromParent();   // The pseudo instruction is gone now.
12240
12241  return EndMBB;
12242}
12243
12244// The EFLAGS operand of SelectItr might be missing a kill marker
12245// because there were multiple uses of EFLAGS, and ISel didn't know
12246// which to mark. Figure out whether SelectItr should have had a
12247// kill marker, and set it if it should. Returns the correct kill
12248// marker value.
12249static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
12250                                     MachineBasicBlock* BB,
12251                                     const TargetRegisterInfo* TRI) {
12252  // Scan forward through BB for a use/def of EFLAGS.
12253  MachineBasicBlock::iterator miI(llvm::next(SelectItr));
12254  for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
12255    const MachineInstr& mi = *miI;
12256    if (mi.readsRegister(X86::EFLAGS))
12257      return false;
12258    if (mi.definesRegister(X86::EFLAGS))
12259      break; // Should have kill-flag - update below.
12260  }
12261
12262  // If we hit the end of the block, check whether EFLAGS is live into a
12263  // successor.
12264  if (miI == BB->end()) {
12265    for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
12266                                          sEnd = BB->succ_end();
12267         sItr != sEnd; ++sItr) {
12268      MachineBasicBlock* succ = *sItr;
12269      if (succ->isLiveIn(X86::EFLAGS))
12270        return false;
12271    }
12272  }
12273
12274  // We found a def, or hit the end of the basic block and EFLAGS wasn't live
12275  // out. SelectMI should have a kill flag on EFLAGS.
12276  SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
12277  return true;
12278}
12279
12280MachineBasicBlock *
12281X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
12282                                     MachineBasicBlock *BB) const {
12283  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12284  DebugLoc DL = MI->getDebugLoc();
12285
12286  // To "insert" a SELECT_CC instruction, we actually have to insert the
12287  // diamond control-flow pattern.  The incoming instruction knows the
12288  // destination vreg to set, the condition code register to branch on, the
12289  // true/false values to select between, and a branch opcode to use.
12290  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12291  MachineFunction::iterator It = BB;
12292  ++It;
12293
12294  //  thisMBB:
12295  //  ...
12296  //   TrueVal = ...
12297  //   cmpTY ccX, r1, r2
12298  //   bCC copy1MBB
12299  //   fallthrough --> copy0MBB
12300  MachineBasicBlock *thisMBB = BB;
12301  MachineFunction *F = BB->getParent();
12302  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
12303  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
12304  F->insert(It, copy0MBB);
12305  F->insert(It, sinkMBB);
12306
12307  // If the EFLAGS register isn't dead in the terminator, then claim that it's
12308  // live into the sink and copy blocks.
12309  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
12310  if (!MI->killsRegister(X86::EFLAGS) &&
12311      !checkAndUpdateEFLAGSKill(MI, BB, TRI)) {
12312    copy0MBB->addLiveIn(X86::EFLAGS);
12313    sinkMBB->addLiveIn(X86::EFLAGS);
12314  }
12315
12316  // Transfer the remainder of BB and its successor edges to sinkMBB.
12317  sinkMBB->splice(sinkMBB->begin(), BB,
12318                  llvm::next(MachineBasicBlock::iterator(MI)),
12319                  BB->end());
12320  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12321
12322  // Add the true and fallthrough blocks as its successors.
12323  BB->addSuccessor(copy0MBB);
12324  BB->addSuccessor(sinkMBB);
12325
12326  // Create the conditional branch instruction.
12327  unsigned Opc =
12328    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
12329  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
12330
12331  //  copy0MBB:
12332  //   %FalseValue = ...
12333  //   # fallthrough to sinkMBB
12334  copy0MBB->addSuccessor(sinkMBB);
12335
12336  //  sinkMBB:
12337  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
12338  //  ...
12339  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12340          TII->get(X86::PHI), MI->getOperand(0).getReg())
12341    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
12342    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
12343
12344  MI->eraseFromParent();   // The pseudo instruction is gone now.
12345  return sinkMBB;
12346}
12347
12348MachineBasicBlock *
12349X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
12350                                        bool Is64Bit) const {
12351  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12352  DebugLoc DL = MI->getDebugLoc();
12353  MachineFunction *MF = BB->getParent();
12354  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12355
12356  assert(getTargetMachine().Options.EnableSegmentedStacks);
12357
12358  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
12359  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
12360
12361  // BB:
12362  //  ... [Till the alloca]
12363  // If stacklet is not large enough, jump to mallocMBB
12364  //
12365  // bumpMBB:
12366  //  Allocate by subtracting from RSP
12367  //  Jump to continueMBB
12368  //
12369  // mallocMBB:
12370  //  Allocate by call to runtime
12371  //
12372  // continueMBB:
12373  //  ...
12374  //  [rest of original BB]
12375  //
12376
12377  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12378  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12379  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12380
12381  MachineRegisterInfo &MRI = MF->getRegInfo();
12382  const TargetRegisterClass *AddrRegClass =
12383    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
12384
12385  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12386    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12387    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
12388    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
12389    sizeVReg = MI->getOperand(1).getReg(),
12390    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
12391
12392  MachineFunction::iterator MBBIter = BB;
12393  ++MBBIter;
12394
12395  MF->insert(MBBIter, bumpMBB);
12396  MF->insert(MBBIter, mallocMBB);
12397  MF->insert(MBBIter, continueMBB);
12398
12399  continueMBB->splice(continueMBB->begin(), BB, llvm::next
12400                      (MachineBasicBlock::iterator(MI)), BB->end());
12401  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
12402
12403  // Add code to the main basic block to check if the stack limit has been hit,
12404  // and if so, jump to mallocMBB otherwise to bumpMBB.
12405  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
12406  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
12407    .addReg(tmpSPVReg).addReg(sizeVReg);
12408  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
12409    .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
12410    .addReg(SPLimitVReg);
12411  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
12412
12413  // bumpMBB simply decreases the stack pointer, since we know the current
12414  // stacklet has enough space.
12415  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
12416    .addReg(SPLimitVReg);
12417  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
12418    .addReg(SPLimitVReg);
12419  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12420
12421  // Calls into a routine in libgcc to allocate more space from the heap.
12422  const uint32_t *RegMask =
12423    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
12424  if (Is64Bit) {
12425    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
12426      .addReg(sizeVReg);
12427    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
12428      .addExternalSymbol("__morestack_allocate_stack_space").addReg(X86::RDI)
12429      .addRegMask(RegMask)
12430      .addReg(X86::RAX, RegState::ImplicitDefine);
12431  } else {
12432    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
12433      .addImm(12);
12434    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
12435    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
12436      .addExternalSymbol("__morestack_allocate_stack_space")
12437      .addRegMask(RegMask)
12438      .addReg(X86::EAX, RegState::ImplicitDefine);
12439  }
12440
12441  if (!Is64Bit)
12442    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
12443      .addImm(16);
12444
12445  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
12446    .addReg(Is64Bit ? X86::RAX : X86::EAX);
12447  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12448
12449  // Set up the CFG correctly.
12450  BB->addSuccessor(bumpMBB);
12451  BB->addSuccessor(mallocMBB);
12452  mallocMBB->addSuccessor(continueMBB);
12453  bumpMBB->addSuccessor(continueMBB);
12454
12455  // Take care of the PHI nodes.
12456  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
12457          MI->getOperand(0).getReg())
12458    .addReg(mallocPtrVReg).addMBB(mallocMBB)
12459    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
12460
12461  // Delete the original pseudo instruction.
12462  MI->eraseFromParent();
12463
12464  // And we're done.
12465  return continueMBB;
12466}
12467
12468MachineBasicBlock *
12469X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
12470                                          MachineBasicBlock *BB) const {
12471  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12472  DebugLoc DL = MI->getDebugLoc();
12473
12474  assert(!Subtarget->isTargetEnvMacho());
12475
12476  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
12477  // non-trivial part is impdef of ESP.
12478
12479  if (Subtarget->isTargetWin64()) {
12480    if (Subtarget->isTargetCygMing()) {
12481      // ___chkstk(Mingw64):
12482      // Clobbers R10, R11, RAX and EFLAGS.
12483      // Updates RSP.
12484      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12485        .addExternalSymbol("___chkstk")
12486        .addReg(X86::RAX, RegState::Implicit)
12487        .addReg(X86::RSP, RegState::Implicit)
12488        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
12489        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
12490        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12491    } else {
12492      // __chkstk(MSVCRT): does not update stack pointer.
12493      // Clobbers R10, R11 and EFLAGS.
12494      // FIXME: RAX(allocated size) might be reused and not killed.
12495      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12496        .addExternalSymbol("__chkstk")
12497        .addReg(X86::RAX, RegState::Implicit)
12498        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12499      // RAX has the offset to subtracted from RSP.
12500      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
12501        .addReg(X86::RSP)
12502        .addReg(X86::RAX);
12503    }
12504  } else {
12505    const char *StackProbeSymbol =
12506      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
12507
12508    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
12509      .addExternalSymbol(StackProbeSymbol)
12510      .addReg(X86::EAX, RegState::Implicit)
12511      .addReg(X86::ESP, RegState::Implicit)
12512      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
12513      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
12514      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12515  }
12516
12517  MI->eraseFromParent();   // The pseudo instruction is gone now.
12518  return BB;
12519}
12520
12521MachineBasicBlock *
12522X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
12523                                      MachineBasicBlock *BB) const {
12524  // This is pretty easy.  We're taking the value that we received from
12525  // our load from the relocation, sticking it in either RDI (x86-64)
12526  // or EAX and doing an indirect call.  The return value will then
12527  // be in the normal return register.
12528  const X86InstrInfo *TII
12529    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
12530  DebugLoc DL = MI->getDebugLoc();
12531  MachineFunction *F = BB->getParent();
12532
12533  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
12534  assert(MI->getOperand(3).isGlobal() && "This should be a global");
12535
12536  // Get a register mask for the lowered call.
12537  // FIXME: The 32-bit calls have non-standard calling conventions. Use a
12538  // proper register mask.
12539  const uint32_t *RegMask =
12540    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
12541  if (Subtarget->is64Bit()) {
12542    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12543                                      TII->get(X86::MOV64rm), X86::RDI)
12544    .addReg(X86::RIP)
12545    .addImm(0).addReg(0)
12546    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12547                      MI->getOperand(3).getTargetFlags())
12548    .addReg(0);
12549    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
12550    addDirectMem(MIB, X86::RDI);
12551    MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask);
12552  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
12553    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12554                                      TII->get(X86::MOV32rm), X86::EAX)
12555    .addReg(0)
12556    .addImm(0).addReg(0)
12557    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12558                      MI->getOperand(3).getTargetFlags())
12559    .addReg(0);
12560    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12561    addDirectMem(MIB, X86::EAX);
12562    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
12563  } else {
12564    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12565                                      TII->get(X86::MOV32rm), X86::EAX)
12566    .addReg(TII->getGlobalBaseReg(F))
12567    .addImm(0).addReg(0)
12568    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12569                      MI->getOperand(3).getTargetFlags())
12570    .addReg(0);
12571    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12572    addDirectMem(MIB, X86::EAX);
12573    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
12574  }
12575
12576  MI->eraseFromParent(); // The pseudo instruction is gone now.
12577  return BB;
12578}
12579
12580MachineBasicBlock *
12581X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
12582                                               MachineBasicBlock *BB) const {
12583  switch (MI->getOpcode()) {
12584  default: llvm_unreachable("Unexpected instr type to insert");
12585  case X86::TAILJMPd64:
12586  case X86::TAILJMPr64:
12587  case X86::TAILJMPm64:
12588    llvm_unreachable("TAILJMP64 would not be touched here.");
12589  case X86::TCRETURNdi64:
12590  case X86::TCRETURNri64:
12591  case X86::TCRETURNmi64:
12592    return BB;
12593  case X86::WIN_ALLOCA:
12594    return EmitLoweredWinAlloca(MI, BB);
12595  case X86::SEG_ALLOCA_32:
12596    return EmitLoweredSegAlloca(MI, BB, false);
12597  case X86::SEG_ALLOCA_64:
12598    return EmitLoweredSegAlloca(MI, BB, true);
12599  case X86::TLSCall_32:
12600  case X86::TLSCall_64:
12601    return EmitLoweredTLSCall(MI, BB);
12602  case X86::CMOV_GR8:
12603  case X86::CMOV_FR32:
12604  case X86::CMOV_FR64:
12605  case X86::CMOV_V4F32:
12606  case X86::CMOV_V2F64:
12607  case X86::CMOV_V2I64:
12608  case X86::CMOV_V8F32:
12609  case X86::CMOV_V4F64:
12610  case X86::CMOV_V4I64:
12611  case X86::CMOV_GR16:
12612  case X86::CMOV_GR32:
12613  case X86::CMOV_RFP32:
12614  case X86::CMOV_RFP64:
12615  case X86::CMOV_RFP80:
12616    return EmitLoweredSelect(MI, BB);
12617
12618  case X86::FP32_TO_INT16_IN_MEM:
12619  case X86::FP32_TO_INT32_IN_MEM:
12620  case X86::FP32_TO_INT64_IN_MEM:
12621  case X86::FP64_TO_INT16_IN_MEM:
12622  case X86::FP64_TO_INT32_IN_MEM:
12623  case X86::FP64_TO_INT64_IN_MEM:
12624  case X86::FP80_TO_INT16_IN_MEM:
12625  case X86::FP80_TO_INT32_IN_MEM:
12626  case X86::FP80_TO_INT64_IN_MEM: {
12627    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12628    DebugLoc DL = MI->getDebugLoc();
12629
12630    // Change the floating point control register to use "round towards zero"
12631    // mode when truncating to an integer value.
12632    MachineFunction *F = BB->getParent();
12633    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
12634    addFrameReference(BuildMI(*BB, MI, DL,
12635                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
12636
12637    // Load the old value of the high byte of the control word...
12638    unsigned OldCW =
12639      F->getRegInfo().createVirtualRegister(&X86::GR16RegClass);
12640    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
12641                      CWFrameIdx);
12642
12643    // Set the high part to be round to zero...
12644    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
12645      .addImm(0xC7F);
12646
12647    // Reload the modified control word now...
12648    addFrameReference(BuildMI(*BB, MI, DL,
12649                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12650
12651    // Restore the memory image of control word to original value
12652    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
12653      .addReg(OldCW);
12654
12655    // Get the X86 opcode to use.
12656    unsigned Opc;
12657    switch (MI->getOpcode()) {
12658    default: llvm_unreachable("illegal opcode!");
12659    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
12660    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
12661    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
12662    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
12663    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
12664    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
12665    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
12666    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
12667    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
12668    }
12669
12670    X86AddressMode AM;
12671    MachineOperand &Op = MI->getOperand(0);
12672    if (Op.isReg()) {
12673      AM.BaseType = X86AddressMode::RegBase;
12674      AM.Base.Reg = Op.getReg();
12675    } else {
12676      AM.BaseType = X86AddressMode::FrameIndexBase;
12677      AM.Base.FrameIndex = Op.getIndex();
12678    }
12679    Op = MI->getOperand(1);
12680    if (Op.isImm())
12681      AM.Scale = Op.getImm();
12682    Op = MI->getOperand(2);
12683    if (Op.isImm())
12684      AM.IndexReg = Op.getImm();
12685    Op = MI->getOperand(3);
12686    if (Op.isGlobal()) {
12687      AM.GV = Op.getGlobal();
12688    } else {
12689      AM.Disp = Op.getImm();
12690    }
12691    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
12692                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
12693
12694    // Reload the original control word now.
12695    addFrameReference(BuildMI(*BB, MI, DL,
12696                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12697
12698    MI->eraseFromParent();   // The pseudo instruction is gone now.
12699    return BB;
12700  }
12701    // String/text processing lowering.
12702  case X86::PCMPISTRM128REG:
12703  case X86::VPCMPISTRM128REG:
12704    return EmitPCMP(MI, BB, 3, false /* in-mem */);
12705  case X86::PCMPISTRM128MEM:
12706  case X86::VPCMPISTRM128MEM:
12707    return EmitPCMP(MI, BB, 3, true /* in-mem */);
12708  case X86::PCMPESTRM128REG:
12709  case X86::VPCMPESTRM128REG:
12710    return EmitPCMP(MI, BB, 5, false /* in mem */);
12711  case X86::PCMPESTRM128MEM:
12712  case X86::VPCMPESTRM128MEM:
12713    return EmitPCMP(MI, BB, 5, true /* in mem */);
12714
12715    // Thread synchronization.
12716  case X86::MONITOR:
12717    return EmitMonitor(MI, BB);
12718  case X86::MWAIT:
12719    return EmitMwait(MI, BB);
12720
12721    // Atomic Lowering.
12722  case X86::ATOMAND32:
12723    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12724                                               X86::AND32ri, X86::MOV32rm,
12725                                               X86::LCMPXCHG32,
12726                                               X86::NOT32r, X86::EAX,
12727                                               &X86::GR32RegClass);
12728  case X86::ATOMOR32:
12729    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
12730                                               X86::OR32ri, X86::MOV32rm,
12731                                               X86::LCMPXCHG32,
12732                                               X86::NOT32r, X86::EAX,
12733                                               &X86::GR32RegClass);
12734  case X86::ATOMXOR32:
12735    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
12736                                               X86::XOR32ri, X86::MOV32rm,
12737                                               X86::LCMPXCHG32,
12738                                               X86::NOT32r, X86::EAX,
12739                                               &X86::GR32RegClass);
12740  case X86::ATOMNAND32:
12741    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12742                                               X86::AND32ri, X86::MOV32rm,
12743                                               X86::LCMPXCHG32,
12744                                               X86::NOT32r, X86::EAX,
12745                                               &X86::GR32RegClass, true);
12746  case X86::ATOMMIN32:
12747    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
12748  case X86::ATOMMAX32:
12749    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
12750  case X86::ATOMUMIN32:
12751    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
12752  case X86::ATOMUMAX32:
12753    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
12754
12755  case X86::ATOMAND16:
12756    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12757                                               X86::AND16ri, X86::MOV16rm,
12758                                               X86::LCMPXCHG16,
12759                                               X86::NOT16r, X86::AX,
12760                                               &X86::GR16RegClass);
12761  case X86::ATOMOR16:
12762    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
12763                                               X86::OR16ri, X86::MOV16rm,
12764                                               X86::LCMPXCHG16,
12765                                               X86::NOT16r, X86::AX,
12766                                               &X86::GR16RegClass);
12767  case X86::ATOMXOR16:
12768    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
12769                                               X86::XOR16ri, X86::MOV16rm,
12770                                               X86::LCMPXCHG16,
12771                                               X86::NOT16r, X86::AX,
12772                                               &X86::GR16RegClass);
12773  case X86::ATOMNAND16:
12774    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12775                                               X86::AND16ri, X86::MOV16rm,
12776                                               X86::LCMPXCHG16,
12777                                               X86::NOT16r, X86::AX,
12778                                               &X86::GR16RegClass, true);
12779  case X86::ATOMMIN16:
12780    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
12781  case X86::ATOMMAX16:
12782    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
12783  case X86::ATOMUMIN16:
12784    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
12785  case X86::ATOMUMAX16:
12786    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
12787
12788  case X86::ATOMAND8:
12789    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12790                                               X86::AND8ri, X86::MOV8rm,
12791                                               X86::LCMPXCHG8,
12792                                               X86::NOT8r, X86::AL,
12793                                               &X86::GR8RegClass);
12794  case X86::ATOMOR8:
12795    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
12796                                               X86::OR8ri, X86::MOV8rm,
12797                                               X86::LCMPXCHG8,
12798                                               X86::NOT8r, X86::AL,
12799                                               &X86::GR8RegClass);
12800  case X86::ATOMXOR8:
12801    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
12802                                               X86::XOR8ri, X86::MOV8rm,
12803                                               X86::LCMPXCHG8,
12804                                               X86::NOT8r, X86::AL,
12805                                               &X86::GR8RegClass);
12806  case X86::ATOMNAND8:
12807    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12808                                               X86::AND8ri, X86::MOV8rm,
12809                                               X86::LCMPXCHG8,
12810                                               X86::NOT8r, X86::AL,
12811                                               &X86::GR8RegClass, true);
12812  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
12813  // This group is for 64-bit host.
12814  case X86::ATOMAND64:
12815    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12816                                               X86::AND64ri32, X86::MOV64rm,
12817                                               X86::LCMPXCHG64,
12818                                               X86::NOT64r, X86::RAX,
12819                                               &X86::GR64RegClass);
12820  case X86::ATOMOR64:
12821    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
12822                                               X86::OR64ri32, X86::MOV64rm,
12823                                               X86::LCMPXCHG64,
12824                                               X86::NOT64r, X86::RAX,
12825                                               &X86::GR64RegClass);
12826  case X86::ATOMXOR64:
12827    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
12828                                               X86::XOR64ri32, X86::MOV64rm,
12829                                               X86::LCMPXCHG64,
12830                                               X86::NOT64r, X86::RAX,
12831                                               &X86::GR64RegClass);
12832  case X86::ATOMNAND64:
12833    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12834                                               X86::AND64ri32, X86::MOV64rm,
12835                                               X86::LCMPXCHG64,
12836                                               X86::NOT64r, X86::RAX,
12837                                               &X86::GR64RegClass, true);
12838  case X86::ATOMMIN64:
12839    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
12840  case X86::ATOMMAX64:
12841    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
12842  case X86::ATOMUMIN64:
12843    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
12844  case X86::ATOMUMAX64:
12845    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
12846
12847  // This group does 64-bit operations on a 32-bit host.
12848  case X86::ATOMAND6432:
12849    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12850                                               X86::AND32rr, X86::AND32rr,
12851                                               X86::AND32ri, X86::AND32ri,
12852                                               false);
12853  case X86::ATOMOR6432:
12854    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12855                                               X86::OR32rr, X86::OR32rr,
12856                                               X86::OR32ri, X86::OR32ri,
12857                                               false);
12858  case X86::ATOMXOR6432:
12859    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12860                                               X86::XOR32rr, X86::XOR32rr,
12861                                               X86::XOR32ri, X86::XOR32ri,
12862                                               false);
12863  case X86::ATOMNAND6432:
12864    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12865                                               X86::AND32rr, X86::AND32rr,
12866                                               X86::AND32ri, X86::AND32ri,
12867                                               true);
12868  case X86::ATOMADD6432:
12869    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12870                                               X86::ADD32rr, X86::ADC32rr,
12871                                               X86::ADD32ri, X86::ADC32ri,
12872                                               false);
12873  case X86::ATOMSUB6432:
12874    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12875                                               X86::SUB32rr, X86::SBB32rr,
12876                                               X86::SUB32ri, X86::SBB32ri,
12877                                               false);
12878  case X86::ATOMSWAP6432:
12879    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12880                                               X86::MOV32rr, X86::MOV32rr,
12881                                               X86::MOV32ri, X86::MOV32ri,
12882                                               false);
12883  case X86::VASTART_SAVE_XMM_REGS:
12884    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
12885
12886  case X86::VAARG_64:
12887    return EmitVAARG64WithCustomInserter(MI, BB);
12888  }
12889}
12890
12891//===----------------------------------------------------------------------===//
12892//                           X86 Optimization Hooks
12893//===----------------------------------------------------------------------===//
12894
12895void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
12896                                                       APInt &KnownZero,
12897                                                       APInt &KnownOne,
12898                                                       const SelectionDAG &DAG,
12899                                                       unsigned Depth) const {
12900  unsigned BitWidth = KnownZero.getBitWidth();
12901  unsigned Opc = Op.getOpcode();
12902  assert((Opc >= ISD::BUILTIN_OP_END ||
12903          Opc == ISD::INTRINSIC_WO_CHAIN ||
12904          Opc == ISD::INTRINSIC_W_CHAIN ||
12905          Opc == ISD::INTRINSIC_VOID) &&
12906         "Should use MaskedValueIsZero if you don't know whether Op"
12907         " is a target node!");
12908
12909  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
12910  switch (Opc) {
12911  default: break;
12912  case X86ISD::ADD:
12913  case X86ISD::SUB:
12914  case X86ISD::ADC:
12915  case X86ISD::SBB:
12916  case X86ISD::SMUL:
12917  case X86ISD::UMUL:
12918  case X86ISD::INC:
12919  case X86ISD::DEC:
12920  case X86ISD::OR:
12921  case X86ISD::XOR:
12922  case X86ISD::AND:
12923    // These nodes' second result is a boolean.
12924    if (Op.getResNo() == 0)
12925      break;
12926    // Fallthrough
12927  case X86ISD::SETCC:
12928    KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
12929    break;
12930  case ISD::INTRINSIC_WO_CHAIN: {
12931    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
12932    unsigned NumLoBits = 0;
12933    switch (IntId) {
12934    default: break;
12935    case Intrinsic::x86_sse_movmsk_ps:
12936    case Intrinsic::x86_avx_movmsk_ps_256:
12937    case Intrinsic::x86_sse2_movmsk_pd:
12938    case Intrinsic::x86_avx_movmsk_pd_256:
12939    case Intrinsic::x86_mmx_pmovmskb:
12940    case Intrinsic::x86_sse2_pmovmskb_128:
12941    case Intrinsic::x86_avx2_pmovmskb: {
12942      // High bits of movmskp{s|d}, pmovmskb are known zero.
12943      switch (IntId) {
12944        default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
12945        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
12946        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
12947        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
12948        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
12949        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
12950        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
12951        case Intrinsic::x86_avx2_pmovmskb:      NumLoBits = 32; break;
12952      }
12953      KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits);
12954      break;
12955    }
12956    }
12957    break;
12958  }
12959  }
12960}
12961
12962unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
12963                                                         unsigned Depth) const {
12964  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
12965  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
12966    return Op.getValueType().getScalarType().getSizeInBits();
12967
12968  // Fallback case.
12969  return 1;
12970}
12971
12972/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
12973/// node is a GlobalAddress + offset.
12974bool X86TargetLowering::isGAPlusOffset(SDNode *N,
12975                                       const GlobalValue* &GA,
12976                                       int64_t &Offset) const {
12977  if (N->getOpcode() == X86ISD::Wrapper) {
12978    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
12979      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
12980      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
12981      return true;
12982    }
12983  }
12984  return TargetLowering::isGAPlusOffset(N, GA, Offset);
12985}
12986
12987/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
12988/// same as extracting the high 128-bit part of 256-bit vector and then
12989/// inserting the result into the low part of a new 256-bit vector
12990static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
12991  EVT VT = SVOp->getValueType(0);
12992  unsigned NumElems = VT.getVectorNumElements();
12993
12994  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12995  for (unsigned i = 0, j = NumElems/2; i != NumElems/2; ++i, ++j)
12996    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12997        SVOp->getMaskElt(j) >= 0)
12998      return false;
12999
13000  return true;
13001}
13002
13003/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
13004/// same as extracting the low 128-bit part of 256-bit vector and then
13005/// inserting the result into the high part of a new 256-bit vector
13006static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
13007  EVT VT = SVOp->getValueType(0);
13008  unsigned NumElems = VT.getVectorNumElements();
13009
13010  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
13011  for (unsigned i = NumElems/2, j = 0; i != NumElems; ++i, ++j)
13012    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
13013        SVOp->getMaskElt(j) >= 0)
13014      return false;
13015
13016  return true;
13017}
13018
13019/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
13020static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
13021                                        TargetLowering::DAGCombinerInfo &DCI,
13022                                        const X86Subtarget* Subtarget) {
13023  DebugLoc dl = N->getDebugLoc();
13024  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
13025  SDValue V1 = SVOp->getOperand(0);
13026  SDValue V2 = SVOp->getOperand(1);
13027  EVT VT = SVOp->getValueType(0);
13028  unsigned NumElems = VT.getVectorNumElements();
13029
13030  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
13031      V2.getOpcode() == ISD::CONCAT_VECTORS) {
13032    //
13033    //                   0,0,0,...
13034    //                      |
13035    //    V      UNDEF    BUILD_VECTOR    UNDEF
13036    //     \      /           \           /
13037    //  CONCAT_VECTOR         CONCAT_VECTOR
13038    //         \                  /
13039    //          \                /
13040    //          RESULT: V + zero extended
13041    //
13042    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
13043        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
13044        V1.getOperand(1).getOpcode() != ISD::UNDEF)
13045      return SDValue();
13046
13047    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
13048      return SDValue();
13049
13050    // To match the shuffle mask, the first half of the mask should
13051    // be exactly the first vector, and all the rest a splat with the
13052    // first element of the second one.
13053    for (unsigned i = 0; i != NumElems/2; ++i)
13054      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
13055          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
13056        return SDValue();
13057
13058    // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
13059    if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
13060      if (Ld->hasNUsesOfValue(1, 0)) {
13061        SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
13062        SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
13063        SDValue ResNode =
13064          DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2,
13065                                  Ld->getMemoryVT(),
13066                                  Ld->getPointerInfo(),
13067                                  Ld->getAlignment(),
13068                                  false/*isVolatile*/, true/*ReadMem*/,
13069                                  false/*WriteMem*/);
13070        return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
13071      }
13072    }
13073
13074    // Emit a zeroed vector and insert the desired subvector on its
13075    // first half.
13076    SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
13077    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0), 0, DAG, dl);
13078    return DCI.CombineTo(N, InsV);
13079  }
13080
13081  //===--------------------------------------------------------------------===//
13082  // Combine some shuffles into subvector extracts and inserts:
13083  //
13084
13085  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
13086  if (isShuffleHigh128VectorInsertLow(SVOp)) {
13087    SDValue V = Extract128BitVector(V1, NumElems/2, DAG, dl);
13088    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, 0, DAG, dl);
13089    return DCI.CombineTo(N, InsV);
13090  }
13091
13092  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
13093  if (isShuffleLow128VectorInsertHigh(SVOp)) {
13094    SDValue V = Extract128BitVector(V1, 0, DAG, dl);
13095    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, NumElems/2, DAG, dl);
13096    return DCI.CombineTo(N, InsV);
13097  }
13098
13099  return SDValue();
13100}
13101
13102/// PerformShuffleCombine - Performs several different shuffle combines.
13103static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
13104                                     TargetLowering::DAGCombinerInfo &DCI,
13105                                     const X86Subtarget *Subtarget) {
13106  DebugLoc dl = N->getDebugLoc();
13107  EVT VT = N->getValueType(0);
13108
13109  // Don't create instructions with illegal types after legalize types has run.
13110  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13111  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
13112    return SDValue();
13113
13114  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
13115  if (Subtarget->hasAVX() && VT.getSizeInBits() == 256 &&
13116      N->getOpcode() == ISD::VECTOR_SHUFFLE)
13117    return PerformShuffleCombine256(N, DAG, DCI, Subtarget);
13118
13119  // Only handle 128 wide vector from here on.
13120  if (VT.getSizeInBits() != 128)
13121    return SDValue();
13122
13123  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
13124  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
13125  // consecutive, non-overlapping, and in the right order.
13126  SmallVector<SDValue, 16> Elts;
13127  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
13128    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
13129
13130  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
13131}
13132
13133
13134/// DCI, PerformTruncateCombine - Converts truncate operation to
13135/// a sequence of vector shuffle operations.
13136/// It is possible when we truncate 256-bit vector to 128-bit vector
13137
13138SDValue X86TargetLowering::PerformTruncateCombine(SDNode *N, SelectionDAG &DAG,
13139                                                  DAGCombinerInfo &DCI) const {
13140  if (!DCI.isBeforeLegalizeOps())
13141    return SDValue();
13142
13143  if (!Subtarget->hasAVX())
13144    return SDValue();
13145
13146  EVT VT = N->getValueType(0);
13147  SDValue Op = N->getOperand(0);
13148  EVT OpVT = Op.getValueType();
13149  DebugLoc dl = N->getDebugLoc();
13150
13151  if ((VT == MVT::v4i32) && (OpVT == MVT::v4i64)) {
13152
13153    if (Subtarget->hasAVX2()) {
13154      // AVX2: v4i64 -> v4i32
13155
13156      // VPERMD
13157      static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1};
13158
13159      Op = DAG.getNode(ISD::BITCAST, dl, MVT::v8i32, Op);
13160      Op = DAG.getVectorShuffle(MVT::v8i32, dl, Op, DAG.getUNDEF(MVT::v8i32),
13161                                ShufMask);
13162
13163      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Op,
13164                         DAG.getIntPtrConstant(0));
13165    }
13166
13167    // AVX: v4i64 -> v4i32
13168    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
13169                               DAG.getIntPtrConstant(0));
13170
13171    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
13172                               DAG.getIntPtrConstant(2));
13173
13174    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
13175    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
13176
13177    // PSHUFD
13178    static const int ShufMask1[] = {0, 2, 0, 0};
13179
13180    OpLo = DAG.getVectorShuffle(VT, dl, OpLo, DAG.getUNDEF(VT), ShufMask1);
13181    OpHi = DAG.getVectorShuffle(VT, dl, OpHi, DAG.getUNDEF(VT), ShufMask1);
13182
13183    // MOVLHPS
13184    static const int ShufMask2[] = {0, 1, 4, 5};
13185
13186    return DAG.getVectorShuffle(VT, dl, OpLo, OpHi, ShufMask2);
13187  }
13188
13189  if ((VT == MVT::v8i16) && (OpVT == MVT::v8i32)) {
13190
13191    if (Subtarget->hasAVX2()) {
13192      // AVX2: v8i32 -> v8i16
13193
13194      Op = DAG.getNode(ISD::BITCAST, dl, MVT::v32i8, Op);
13195
13196      // PSHUFB
13197      SmallVector<SDValue,32> pshufbMask;
13198      for (unsigned i = 0; i < 2; ++i) {
13199        pshufbMask.push_back(DAG.getConstant(0x0, MVT::i8));
13200        pshufbMask.push_back(DAG.getConstant(0x1, MVT::i8));
13201        pshufbMask.push_back(DAG.getConstant(0x4, MVT::i8));
13202        pshufbMask.push_back(DAG.getConstant(0x5, MVT::i8));
13203        pshufbMask.push_back(DAG.getConstant(0x8, MVT::i8));
13204        pshufbMask.push_back(DAG.getConstant(0x9, MVT::i8));
13205        pshufbMask.push_back(DAG.getConstant(0xc, MVT::i8));
13206        pshufbMask.push_back(DAG.getConstant(0xd, MVT::i8));
13207        for (unsigned j = 0; j < 8; ++j)
13208          pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
13209      }
13210      SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v32i8,
13211                               &pshufbMask[0], 32);
13212      Op = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v32i8, Op, BV);
13213
13214      Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i64, Op);
13215
13216      static const int ShufMask[] = {0,  2,  -1,  -1};
13217      Op = DAG.getVectorShuffle(MVT::v4i64, dl,  Op, DAG.getUNDEF(MVT::v4i64),
13218                                &ShufMask[0]);
13219
13220      Op = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
13221                       DAG.getIntPtrConstant(0));
13222
13223      return DAG.getNode(ISD::BITCAST, dl, VT, Op);
13224    }
13225
13226    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
13227                               DAG.getIntPtrConstant(0));
13228
13229    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
13230                               DAG.getIntPtrConstant(4));
13231
13232    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLo);
13233    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpHi);
13234
13235    // PSHUFB
13236    static const int ShufMask1[] = {0,  1,  4,  5,  8,  9, 12, 13,
13237                                   -1, -1, -1, -1, -1, -1, -1, -1};
13238
13239    OpLo = DAG.getVectorShuffle(MVT::v16i8, dl, OpLo, DAG.getUNDEF(MVT::v16i8),
13240                                ShufMask1);
13241    OpHi = DAG.getVectorShuffle(MVT::v16i8, dl, OpHi, DAG.getUNDEF(MVT::v16i8),
13242                                ShufMask1);
13243
13244    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
13245    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
13246
13247    // MOVLHPS
13248    static const int ShufMask2[] = {0, 1, 4, 5};
13249
13250    SDValue res = DAG.getVectorShuffle(MVT::v4i32, dl, OpLo, OpHi, ShufMask2);
13251    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, res);
13252  }
13253
13254  return SDValue();
13255}
13256
13257/// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target
13258/// specific shuffle of a load can be folded into a single element load.
13259/// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but
13260/// shuffles have been customed lowered so we need to handle those here.
13261static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
13262                                         TargetLowering::DAGCombinerInfo &DCI) {
13263  if (DCI.isBeforeLegalizeOps())
13264    return SDValue();
13265
13266  SDValue InVec = N->getOperand(0);
13267  SDValue EltNo = N->getOperand(1);
13268
13269  if (!isa<ConstantSDNode>(EltNo))
13270    return SDValue();
13271
13272  EVT VT = InVec.getValueType();
13273
13274  bool HasShuffleIntoBitcast = false;
13275  if (InVec.getOpcode() == ISD::BITCAST) {
13276    // Don't duplicate a load with other uses.
13277    if (!InVec.hasOneUse())
13278      return SDValue();
13279    EVT BCVT = InVec.getOperand(0).getValueType();
13280    if (BCVT.getVectorNumElements() != VT.getVectorNumElements())
13281      return SDValue();
13282    InVec = InVec.getOperand(0);
13283    HasShuffleIntoBitcast = true;
13284  }
13285
13286  if (!isTargetShuffle(InVec.getOpcode()))
13287    return SDValue();
13288
13289  // Don't duplicate a load with other uses.
13290  if (!InVec.hasOneUse())
13291    return SDValue();
13292
13293  SmallVector<int, 16> ShuffleMask;
13294  bool UnaryShuffle;
13295  if (!getTargetShuffleMask(InVec.getNode(), VT.getSimpleVT(), ShuffleMask,
13296                            UnaryShuffle))
13297    return SDValue();
13298
13299  // Select the input vector, guarding against out of range extract vector.
13300  unsigned NumElems = VT.getVectorNumElements();
13301  int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
13302  int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt];
13303  SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0)
13304                                         : InVec.getOperand(1);
13305
13306  // If inputs to shuffle are the same for both ops, then allow 2 uses
13307  unsigned AllowedUses = InVec.getOperand(0) == InVec.getOperand(1) ? 2 : 1;
13308
13309  if (LdNode.getOpcode() == ISD::BITCAST) {
13310    // Don't duplicate a load with other uses.
13311    if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0))
13312      return SDValue();
13313
13314    AllowedUses = 1; // only allow 1 load use if we have a bitcast
13315    LdNode = LdNode.getOperand(0);
13316  }
13317
13318  if (!ISD::isNormalLoad(LdNode.getNode()))
13319    return SDValue();
13320
13321  LoadSDNode *LN0 = cast<LoadSDNode>(LdNode);
13322
13323  if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile())
13324    return SDValue();
13325
13326  if (HasShuffleIntoBitcast) {
13327    // If there's a bitcast before the shuffle, check if the load type and
13328    // alignment is valid.
13329    unsigned Align = LN0->getAlignment();
13330    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13331    unsigned NewAlign = TLI.getTargetData()->
13332      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
13333
13334    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
13335      return SDValue();
13336  }
13337
13338  // All checks match so transform back to vector_shuffle so that DAG combiner
13339  // can finish the job
13340  DebugLoc dl = N->getDebugLoc();
13341
13342  // Create shuffle node taking into account the case that its a unary shuffle
13343  SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(VT) : InVec.getOperand(1);
13344  Shuffle = DAG.getVectorShuffle(InVec.getValueType(), dl,
13345                                 InVec.getOperand(0), Shuffle,
13346                                 &ShuffleMask[0]);
13347  Shuffle = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
13348  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle,
13349                     EltNo);
13350}
13351
13352/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
13353/// generation and convert it from being a bunch of shuffles and extracts
13354/// to a simple store and scalar loads to extract the elements.
13355static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
13356                                         TargetLowering::DAGCombinerInfo &DCI) {
13357  SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI);
13358  if (NewOp.getNode())
13359    return NewOp;
13360
13361  SDValue InputVector = N->getOperand(0);
13362
13363  // Only operate on vectors of 4 elements, where the alternative shuffling
13364  // gets to be more expensive.
13365  if (InputVector.getValueType() != MVT::v4i32)
13366    return SDValue();
13367
13368  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
13369  // single use which is a sign-extend or zero-extend, and all elements are
13370  // used.
13371  SmallVector<SDNode *, 4> Uses;
13372  unsigned ExtractedElements = 0;
13373  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
13374       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
13375    if (UI.getUse().getResNo() != InputVector.getResNo())
13376      return SDValue();
13377
13378    SDNode *Extract = *UI;
13379    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13380      return SDValue();
13381
13382    if (Extract->getValueType(0) != MVT::i32)
13383      return SDValue();
13384    if (!Extract->hasOneUse())
13385      return SDValue();
13386    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
13387        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
13388      return SDValue();
13389    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
13390      return SDValue();
13391
13392    // Record which element was extracted.
13393    ExtractedElements |=
13394      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
13395
13396    Uses.push_back(Extract);
13397  }
13398
13399  // If not all the elements were used, this may not be worthwhile.
13400  if (ExtractedElements != 15)
13401    return SDValue();
13402
13403  // Ok, we've now decided to do the transformation.
13404  DebugLoc dl = InputVector.getDebugLoc();
13405
13406  // Store the value to a temporary stack slot.
13407  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
13408  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
13409                            MachinePointerInfo(), false, false, 0);
13410
13411  // Replace each use (extract) with a load of the appropriate element.
13412  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
13413       UE = Uses.end(); UI != UE; ++UI) {
13414    SDNode *Extract = *UI;
13415
13416    // cOMpute the element's address.
13417    SDValue Idx = Extract->getOperand(1);
13418    unsigned EltSize =
13419        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
13420    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
13421    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13422    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
13423
13424    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
13425                                     StackPtr, OffsetVal);
13426
13427    // Load the scalar.
13428    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
13429                                     ScalarAddr, MachinePointerInfo(),
13430                                     false, false, false, 0);
13431
13432    // Replace the exact with the load.
13433    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
13434  }
13435
13436  // The replacement was made in place; don't return anything.
13437  return SDValue();
13438}
13439
13440/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
13441/// nodes.
13442static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
13443                                    TargetLowering::DAGCombinerInfo &DCI,
13444                                    const X86Subtarget *Subtarget) {
13445
13446
13447  DebugLoc DL = N->getDebugLoc();
13448  SDValue Cond = N->getOperand(0);
13449  // Get the LHS/RHS of the select.
13450  SDValue LHS = N->getOperand(1);
13451  SDValue RHS = N->getOperand(2);
13452  EVT VT = LHS.getValueType();
13453
13454  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
13455  // instructions match the semantics of the common C idiom x<y?x:y but not
13456  // x<=y?x:y, because of how they handle negative zero (which can be
13457  // ignored in unsafe-math mode).
13458  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
13459      VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
13460      (Subtarget->hasSSE2() ||
13461       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
13462    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13463
13464    unsigned Opcode = 0;
13465    // Check for x CC y ? x : y.
13466    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
13467        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
13468      switch (CC) {
13469      default: break;
13470      case ISD::SETULT:
13471        // Converting this to a min would handle NaNs incorrectly, and swapping
13472        // the operands would cause it to handle comparisons between positive
13473        // and negative zero incorrectly.
13474        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
13475          if (!DAG.getTarget().Options.UnsafeFPMath &&
13476              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
13477            break;
13478          std::swap(LHS, RHS);
13479        }
13480        Opcode = X86ISD::FMIN;
13481        break;
13482      case ISD::SETOLE:
13483        // Converting this to a min would handle comparisons between positive
13484        // and negative zero incorrectly.
13485        if (!DAG.getTarget().Options.UnsafeFPMath &&
13486            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
13487          break;
13488        Opcode = X86ISD::FMIN;
13489        break;
13490      case ISD::SETULE:
13491        // Converting this to a min would handle both negative zeros and NaNs
13492        // incorrectly, but we can swap the operands to fix both.
13493        std::swap(LHS, RHS);
13494      case ISD::SETOLT:
13495      case ISD::SETLT:
13496      case ISD::SETLE:
13497        Opcode = X86ISD::FMIN;
13498        break;
13499
13500      case ISD::SETOGE:
13501        // Converting this to a max would handle comparisons between positive
13502        // and negative zero incorrectly.
13503        if (!DAG.getTarget().Options.UnsafeFPMath &&
13504            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
13505          break;
13506        Opcode = X86ISD::FMAX;
13507        break;
13508      case ISD::SETUGT:
13509        // Converting this to a max would handle NaNs incorrectly, and swapping
13510        // the operands would cause it to handle comparisons between positive
13511        // and negative zero incorrectly.
13512        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
13513          if (!DAG.getTarget().Options.UnsafeFPMath &&
13514              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
13515            break;
13516          std::swap(LHS, RHS);
13517        }
13518        Opcode = X86ISD::FMAX;
13519        break;
13520      case ISD::SETUGE:
13521        // Converting this to a max would handle both negative zeros and NaNs
13522        // incorrectly, but we can swap the operands to fix both.
13523        std::swap(LHS, RHS);
13524      case ISD::SETOGT:
13525      case ISD::SETGT:
13526      case ISD::SETGE:
13527        Opcode = X86ISD::FMAX;
13528        break;
13529      }
13530    // Check for x CC y ? y : x -- a min/max with reversed arms.
13531    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
13532               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
13533      switch (CC) {
13534      default: break;
13535      case ISD::SETOGE:
13536        // Converting this to a min would handle comparisons between positive
13537        // and negative zero incorrectly, and swapping the operands would
13538        // cause it to handle NaNs incorrectly.
13539        if (!DAG.getTarget().Options.UnsafeFPMath &&
13540            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
13541          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13542            break;
13543          std::swap(LHS, RHS);
13544        }
13545        Opcode = X86ISD::FMIN;
13546        break;
13547      case ISD::SETUGT:
13548        // Converting this to a min would handle NaNs incorrectly.
13549        if (!DAG.getTarget().Options.UnsafeFPMath &&
13550            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
13551          break;
13552        Opcode = X86ISD::FMIN;
13553        break;
13554      case ISD::SETUGE:
13555        // Converting this to a min would handle both negative zeros and NaNs
13556        // incorrectly, but we can swap the operands to fix both.
13557        std::swap(LHS, RHS);
13558      case ISD::SETOGT:
13559      case ISD::SETGT:
13560      case ISD::SETGE:
13561        Opcode = X86ISD::FMIN;
13562        break;
13563
13564      case ISD::SETULT:
13565        // Converting this to a max would handle NaNs incorrectly.
13566        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13567          break;
13568        Opcode = X86ISD::FMAX;
13569        break;
13570      case ISD::SETOLE:
13571        // Converting this to a max would handle comparisons between positive
13572        // and negative zero incorrectly, and swapping the operands would
13573        // cause it to handle NaNs incorrectly.
13574        if (!DAG.getTarget().Options.UnsafeFPMath &&
13575            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
13576          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13577            break;
13578          std::swap(LHS, RHS);
13579        }
13580        Opcode = X86ISD::FMAX;
13581        break;
13582      case ISD::SETULE:
13583        // Converting this to a max would handle both negative zeros and NaNs
13584        // incorrectly, but we can swap the operands to fix both.
13585        std::swap(LHS, RHS);
13586      case ISD::SETOLT:
13587      case ISD::SETLT:
13588      case ISD::SETLE:
13589        Opcode = X86ISD::FMAX;
13590        break;
13591      }
13592    }
13593
13594    if (Opcode)
13595      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
13596  }
13597
13598  // If this is a select between two integer constants, try to do some
13599  // optimizations.
13600  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
13601    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
13602      // Don't do this for crazy integer types.
13603      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
13604        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
13605        // so that TrueC (the true value) is larger than FalseC.
13606        bool NeedsCondInvert = false;
13607
13608        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
13609            // Efficiently invertible.
13610            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
13611             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
13612              isa<ConstantSDNode>(Cond.getOperand(1))))) {
13613          NeedsCondInvert = true;
13614          std::swap(TrueC, FalseC);
13615        }
13616
13617        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
13618        if (FalseC->getAPIntValue() == 0 &&
13619            TrueC->getAPIntValue().isPowerOf2()) {
13620          if (NeedsCondInvert) // Invert the condition if needed.
13621            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13622                               DAG.getConstant(1, Cond.getValueType()));
13623
13624          // Zero extend the condition if needed.
13625          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
13626
13627          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13628          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
13629                             DAG.getConstant(ShAmt, MVT::i8));
13630        }
13631
13632        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
13633        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13634          if (NeedsCondInvert) // Invert the condition if needed.
13635            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13636                               DAG.getConstant(1, Cond.getValueType()));
13637
13638          // Zero extend the condition if needed.
13639          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13640                             FalseC->getValueType(0), Cond);
13641          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13642                             SDValue(FalseC, 0));
13643        }
13644
13645        // Optimize cases that will turn into an LEA instruction.  This requires
13646        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13647        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13648          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13649          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13650
13651          bool isFastMultiplier = false;
13652          if (Diff < 10) {
13653            switch ((unsigned char)Diff) {
13654              default: break;
13655              case 1:  // result = add base, cond
13656              case 2:  // result = lea base(    , cond*2)
13657              case 3:  // result = lea base(cond, cond*2)
13658              case 4:  // result = lea base(    , cond*4)
13659              case 5:  // result = lea base(cond, cond*4)
13660              case 8:  // result = lea base(    , cond*8)
13661              case 9:  // result = lea base(cond, cond*8)
13662                isFastMultiplier = true;
13663                break;
13664            }
13665          }
13666
13667          if (isFastMultiplier) {
13668            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13669            if (NeedsCondInvert) // Invert the condition if needed.
13670              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13671                                 DAG.getConstant(1, Cond.getValueType()));
13672
13673            // Zero extend the condition if needed.
13674            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13675                               Cond);
13676            // Scale the condition by the difference.
13677            if (Diff != 1)
13678              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13679                                 DAG.getConstant(Diff, Cond.getValueType()));
13680
13681            // Add the base if non-zero.
13682            if (FalseC->getAPIntValue() != 0)
13683              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13684                                 SDValue(FalseC, 0));
13685            return Cond;
13686          }
13687        }
13688      }
13689  }
13690
13691  // Canonicalize max and min:
13692  // (x > y) ? x : y -> (x >= y) ? x : y
13693  // (x < y) ? x : y -> (x <= y) ? x : y
13694  // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
13695  // the need for an extra compare
13696  // against zero. e.g.
13697  // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
13698  // subl   %esi, %edi
13699  // testl  %edi, %edi
13700  // movl   $0, %eax
13701  // cmovgl %edi, %eax
13702  // =>
13703  // xorl   %eax, %eax
13704  // subl   %esi, $edi
13705  // cmovsl %eax, %edi
13706  if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
13707      DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
13708      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
13709    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13710    switch (CC) {
13711    default: break;
13712    case ISD::SETLT:
13713    case ISD::SETGT: {
13714      ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
13715      Cond = DAG.getSetCC(Cond.getDebugLoc(), Cond.getValueType(),
13716                          Cond.getOperand(0), Cond.getOperand(1), NewCC);
13717      return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
13718    }
13719    }
13720  }
13721
13722  // If we know that this node is legal then we know that it is going to be
13723  // matched by one of the SSE/AVX BLEND instructions. These instructions only
13724  // depend on the highest bit in each word. Try to use SimplifyDemandedBits
13725  // to simplify previous instructions.
13726  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13727  if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
13728      !DCI.isBeforeLegalize() &&
13729      TLI.isOperationLegal(ISD::VSELECT, VT)) {
13730    unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
13731    assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
13732    APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
13733
13734    APInt KnownZero, KnownOne;
13735    TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
13736                                          DCI.isBeforeLegalizeOps());
13737    if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
13738        TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO))
13739      DCI.CommitTargetLoweringOpt(TLO);
13740  }
13741
13742  return SDValue();
13743}
13744
13745/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
13746static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
13747                                  TargetLowering::DAGCombinerInfo &DCI) {
13748  DebugLoc DL = N->getDebugLoc();
13749
13750  // If the flag operand isn't dead, don't touch this CMOV.
13751  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
13752    return SDValue();
13753
13754  SDValue FalseOp = N->getOperand(0);
13755  SDValue TrueOp = N->getOperand(1);
13756  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
13757  SDValue Cond = N->getOperand(3);
13758  if (CC == X86::COND_E || CC == X86::COND_NE) {
13759    switch (Cond.getOpcode()) {
13760    default: break;
13761    case X86ISD::BSR:
13762    case X86ISD::BSF:
13763      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
13764      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
13765        return (CC == X86::COND_E) ? FalseOp : TrueOp;
13766    }
13767  }
13768
13769  // If this is a select between two integer constants, try to do some
13770  // optimizations.  Note that the operands are ordered the opposite of SELECT
13771  // operands.
13772  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
13773    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
13774      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
13775      // larger than FalseC (the false value).
13776      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
13777        CC = X86::GetOppositeBranchCondition(CC);
13778        std::swap(TrueC, FalseC);
13779      }
13780
13781      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
13782      // This is efficient for any integer data type (including i8/i16) and
13783      // shift amount.
13784      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
13785        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13786                           DAG.getConstant(CC, MVT::i8), Cond);
13787
13788        // Zero extend the condition if needed.
13789        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
13790
13791        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13792        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
13793                           DAG.getConstant(ShAmt, MVT::i8));
13794        if (N->getNumValues() == 2)  // Dead flag value?
13795          return DCI.CombineTo(N, Cond, SDValue());
13796        return Cond;
13797      }
13798
13799      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
13800      // for any integer data type, including i8/i16.
13801      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13802        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13803                           DAG.getConstant(CC, MVT::i8), Cond);
13804
13805        // Zero extend the condition if needed.
13806        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13807                           FalseC->getValueType(0), Cond);
13808        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13809                           SDValue(FalseC, 0));
13810
13811        if (N->getNumValues() == 2)  // Dead flag value?
13812          return DCI.CombineTo(N, Cond, SDValue());
13813        return Cond;
13814      }
13815
13816      // Optimize cases that will turn into an LEA instruction.  This requires
13817      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13818      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13819        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13820        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13821
13822        bool isFastMultiplier = false;
13823        if (Diff < 10) {
13824          switch ((unsigned char)Diff) {
13825          default: break;
13826          case 1:  // result = add base, cond
13827          case 2:  // result = lea base(    , cond*2)
13828          case 3:  // result = lea base(cond, cond*2)
13829          case 4:  // result = lea base(    , cond*4)
13830          case 5:  // result = lea base(cond, cond*4)
13831          case 8:  // result = lea base(    , cond*8)
13832          case 9:  // result = lea base(cond, cond*8)
13833            isFastMultiplier = true;
13834            break;
13835          }
13836        }
13837
13838        if (isFastMultiplier) {
13839          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13840          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13841                             DAG.getConstant(CC, MVT::i8), Cond);
13842          // Zero extend the condition if needed.
13843          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13844                             Cond);
13845          // Scale the condition by the difference.
13846          if (Diff != 1)
13847            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13848                               DAG.getConstant(Diff, Cond.getValueType()));
13849
13850          // Add the base if non-zero.
13851          if (FalseC->getAPIntValue() != 0)
13852            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13853                               SDValue(FalseC, 0));
13854          if (N->getNumValues() == 2)  // Dead flag value?
13855            return DCI.CombineTo(N, Cond, SDValue());
13856          return Cond;
13857        }
13858      }
13859    }
13860  }
13861  return SDValue();
13862}
13863
13864
13865/// PerformMulCombine - Optimize a single multiply with constant into two
13866/// in order to implement it with two cheaper instructions, e.g.
13867/// LEA + SHL, LEA + LEA.
13868static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
13869                                 TargetLowering::DAGCombinerInfo &DCI) {
13870  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
13871    return SDValue();
13872
13873  EVT VT = N->getValueType(0);
13874  if (VT != MVT::i64)
13875    return SDValue();
13876
13877  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
13878  if (!C)
13879    return SDValue();
13880  uint64_t MulAmt = C->getZExtValue();
13881  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
13882    return SDValue();
13883
13884  uint64_t MulAmt1 = 0;
13885  uint64_t MulAmt2 = 0;
13886  if ((MulAmt % 9) == 0) {
13887    MulAmt1 = 9;
13888    MulAmt2 = MulAmt / 9;
13889  } else if ((MulAmt % 5) == 0) {
13890    MulAmt1 = 5;
13891    MulAmt2 = MulAmt / 5;
13892  } else if ((MulAmt % 3) == 0) {
13893    MulAmt1 = 3;
13894    MulAmt2 = MulAmt / 3;
13895  }
13896  if (MulAmt2 &&
13897      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
13898    DebugLoc DL = N->getDebugLoc();
13899
13900    if (isPowerOf2_64(MulAmt2) &&
13901        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
13902      // If second multiplifer is pow2, issue it first. We want the multiply by
13903      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
13904      // is an add.
13905      std::swap(MulAmt1, MulAmt2);
13906
13907    SDValue NewMul;
13908    if (isPowerOf2_64(MulAmt1))
13909      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
13910                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
13911    else
13912      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
13913                           DAG.getConstant(MulAmt1, VT));
13914
13915    if (isPowerOf2_64(MulAmt2))
13916      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
13917                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
13918    else
13919      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
13920                           DAG.getConstant(MulAmt2, VT));
13921
13922    // Do not add new nodes to DAG combiner worklist.
13923    DCI.CombineTo(N, NewMul, false);
13924  }
13925  return SDValue();
13926}
13927
13928static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
13929  SDValue N0 = N->getOperand(0);
13930  SDValue N1 = N->getOperand(1);
13931  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
13932  EVT VT = N0.getValueType();
13933
13934  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
13935  // since the result of setcc_c is all zero's or all ones.
13936  if (VT.isInteger() && !VT.isVector() &&
13937      N1C && N0.getOpcode() == ISD::AND &&
13938      N0.getOperand(1).getOpcode() == ISD::Constant) {
13939    SDValue N00 = N0.getOperand(0);
13940    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
13941        ((N00.getOpcode() == ISD::ANY_EXTEND ||
13942          N00.getOpcode() == ISD::ZERO_EXTEND) &&
13943         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
13944      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
13945      APInt ShAmt = N1C->getAPIntValue();
13946      Mask = Mask.shl(ShAmt);
13947      if (Mask != 0)
13948        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
13949                           N00, DAG.getConstant(Mask, VT));
13950    }
13951  }
13952
13953
13954  // Hardware support for vector shifts is sparse which makes us scalarize the
13955  // vector operations in many cases. Also, on sandybridge ADD is faster than
13956  // shl.
13957  // (shl V, 1) -> add V,V
13958  if (isSplatVector(N1.getNode())) {
13959    assert(N0.getValueType().isVector() && "Invalid vector shift type");
13960    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
13961    // We shift all of the values by one. In many cases we do not have
13962    // hardware support for this operation. This is better expressed as an ADD
13963    // of two values.
13964    if (N1C && (1 == N1C->getZExtValue())) {
13965      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0);
13966    }
13967  }
13968
13969  return SDValue();
13970}
13971
13972/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
13973///                       when possible.
13974static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
13975                                   TargetLowering::DAGCombinerInfo &DCI,
13976                                   const X86Subtarget *Subtarget) {
13977  EVT VT = N->getValueType(0);
13978  if (N->getOpcode() == ISD::SHL) {
13979    SDValue V = PerformSHLCombine(N, DAG);
13980    if (V.getNode()) return V;
13981  }
13982
13983  // On X86 with SSE2 support, we can transform this to a vector shift if
13984  // all elements are shifted by the same amount.  We can't do this in legalize
13985  // because the a constant vector is typically transformed to a constant pool
13986  // so we have no knowledge of the shift amount.
13987  if (!Subtarget->hasSSE2())
13988    return SDValue();
13989
13990  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
13991      (!Subtarget->hasAVX2() ||
13992       (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
13993    return SDValue();
13994
13995  SDValue ShAmtOp = N->getOperand(1);
13996  EVT EltVT = VT.getVectorElementType();
13997  DebugLoc DL = N->getDebugLoc();
13998  SDValue BaseShAmt = SDValue();
13999  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
14000    unsigned NumElts = VT.getVectorNumElements();
14001    unsigned i = 0;
14002    for (; i != NumElts; ++i) {
14003      SDValue Arg = ShAmtOp.getOperand(i);
14004      if (Arg.getOpcode() == ISD::UNDEF) continue;
14005      BaseShAmt = Arg;
14006      break;
14007    }
14008    // Handle the case where the build_vector is all undef
14009    // FIXME: Should DAG allow this?
14010    if (i == NumElts)
14011      return SDValue();
14012
14013    for (; i != NumElts; ++i) {
14014      SDValue Arg = ShAmtOp.getOperand(i);
14015      if (Arg.getOpcode() == ISD::UNDEF) continue;
14016      if (Arg != BaseShAmt) {
14017        return SDValue();
14018      }
14019    }
14020  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
14021             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
14022    SDValue InVec = ShAmtOp.getOperand(0);
14023    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
14024      unsigned NumElts = InVec.getValueType().getVectorNumElements();
14025      unsigned i = 0;
14026      for (; i != NumElts; ++i) {
14027        SDValue Arg = InVec.getOperand(i);
14028        if (Arg.getOpcode() == ISD::UNDEF) continue;
14029        BaseShAmt = Arg;
14030        break;
14031      }
14032    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
14033       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
14034         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
14035         if (C->getZExtValue() == SplatIdx)
14036           BaseShAmt = InVec.getOperand(1);
14037       }
14038    }
14039    if (BaseShAmt.getNode() == 0) {
14040      // Don't create instructions with illegal types after legalize
14041      // types has run.
14042      if (!DAG.getTargetLoweringInfo().isTypeLegal(EltVT) &&
14043          !DCI.isBeforeLegalize())
14044        return SDValue();
14045
14046      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
14047                              DAG.getIntPtrConstant(0));
14048    }
14049  } else
14050    return SDValue();
14051
14052  // The shift amount is an i32.
14053  if (EltVT.bitsGT(MVT::i32))
14054    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
14055  else if (EltVT.bitsLT(MVT::i32))
14056    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
14057
14058  // The shift amount is identical so we can do a vector shift.
14059  SDValue  ValOp = N->getOperand(0);
14060  switch (N->getOpcode()) {
14061  default:
14062    llvm_unreachable("Unknown shift opcode!");
14063  case ISD::SHL:
14064    switch (VT.getSimpleVT().SimpleTy) {
14065    default: return SDValue();
14066    case MVT::v2i64:
14067    case MVT::v4i32:
14068    case MVT::v8i16:
14069    case MVT::v4i64:
14070    case MVT::v8i32:
14071    case MVT::v16i16:
14072      return getTargetVShiftNode(X86ISD::VSHLI, DL, VT, ValOp, BaseShAmt, DAG);
14073    }
14074  case ISD::SRA:
14075    switch (VT.getSimpleVT().SimpleTy) {
14076    default: return SDValue();
14077    case MVT::v4i32:
14078    case MVT::v8i16:
14079    case MVT::v8i32:
14080    case MVT::v16i16:
14081      return getTargetVShiftNode(X86ISD::VSRAI, DL, VT, ValOp, BaseShAmt, DAG);
14082    }
14083  case ISD::SRL:
14084    switch (VT.getSimpleVT().SimpleTy) {
14085    default: return SDValue();
14086    case MVT::v2i64:
14087    case MVT::v4i32:
14088    case MVT::v8i16:
14089    case MVT::v4i64:
14090    case MVT::v8i32:
14091    case MVT::v16i16:
14092      return getTargetVShiftNode(X86ISD::VSRLI, DL, VT, ValOp, BaseShAmt, DAG);
14093    }
14094  }
14095}
14096
14097
14098// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
14099// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
14100// and friends.  Likewise for OR -> CMPNEQSS.
14101static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
14102                            TargetLowering::DAGCombinerInfo &DCI,
14103                            const X86Subtarget *Subtarget) {
14104  unsigned opcode;
14105
14106  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
14107  // we're requiring SSE2 for both.
14108  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
14109    SDValue N0 = N->getOperand(0);
14110    SDValue N1 = N->getOperand(1);
14111    SDValue CMP0 = N0->getOperand(1);
14112    SDValue CMP1 = N1->getOperand(1);
14113    DebugLoc DL = N->getDebugLoc();
14114
14115    // The SETCCs should both refer to the same CMP.
14116    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
14117      return SDValue();
14118
14119    SDValue CMP00 = CMP0->getOperand(0);
14120    SDValue CMP01 = CMP0->getOperand(1);
14121    EVT     VT    = CMP00.getValueType();
14122
14123    if (VT == MVT::f32 || VT == MVT::f64) {
14124      bool ExpectingFlags = false;
14125      // Check for any users that want flags:
14126      for (SDNode::use_iterator UI = N->use_begin(),
14127             UE = N->use_end();
14128           !ExpectingFlags && UI != UE; ++UI)
14129        switch (UI->getOpcode()) {
14130        default:
14131        case ISD::BR_CC:
14132        case ISD::BRCOND:
14133        case ISD::SELECT:
14134          ExpectingFlags = true;
14135          break;
14136        case ISD::CopyToReg:
14137        case ISD::SIGN_EXTEND:
14138        case ISD::ZERO_EXTEND:
14139        case ISD::ANY_EXTEND:
14140          break;
14141        }
14142
14143      if (!ExpectingFlags) {
14144        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
14145        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
14146
14147        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
14148          X86::CondCode tmp = cc0;
14149          cc0 = cc1;
14150          cc1 = tmp;
14151        }
14152
14153        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
14154            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
14155          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
14156          X86ISD::NodeType NTOperator = is64BitFP ?
14157            X86ISD::FSETCCsd : X86ISD::FSETCCss;
14158          // FIXME: need symbolic constants for these magic numbers.
14159          // See X86ATTInstPrinter.cpp:printSSECC().
14160          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
14161          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
14162                                              DAG.getConstant(x86cc, MVT::i8));
14163          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
14164                                              OnesOrZeroesF);
14165          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
14166                                      DAG.getConstant(1, MVT::i32));
14167          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
14168          return OneBitOfTruth;
14169        }
14170      }
14171    }
14172  }
14173  return SDValue();
14174}
14175
14176/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
14177/// so it can be folded inside ANDNP.
14178static bool CanFoldXORWithAllOnes(const SDNode *N) {
14179  EVT VT = N->getValueType(0);
14180
14181  // Match direct AllOnes for 128 and 256-bit vectors
14182  if (ISD::isBuildVectorAllOnes(N))
14183    return true;
14184
14185  // Look through a bit convert.
14186  if (N->getOpcode() == ISD::BITCAST)
14187    N = N->getOperand(0).getNode();
14188
14189  // Sometimes the operand may come from a insert_subvector building a 256-bit
14190  // allones vector
14191  if (VT.getSizeInBits() == 256 &&
14192      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
14193    SDValue V1 = N->getOperand(0);
14194    SDValue V2 = N->getOperand(1);
14195
14196    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
14197        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
14198        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
14199        ISD::isBuildVectorAllOnes(V2.getNode()))
14200      return true;
14201  }
14202
14203  return false;
14204}
14205
14206static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
14207                                 TargetLowering::DAGCombinerInfo &DCI,
14208                                 const X86Subtarget *Subtarget) {
14209  if (DCI.isBeforeLegalizeOps())
14210    return SDValue();
14211
14212  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
14213  if (R.getNode())
14214    return R;
14215
14216  EVT VT = N->getValueType(0);
14217
14218  // Create ANDN, BLSI, and BLSR instructions
14219  // BLSI is X & (-X)
14220  // BLSR is X & (X-1)
14221  if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
14222    SDValue N0 = N->getOperand(0);
14223    SDValue N1 = N->getOperand(1);
14224    DebugLoc DL = N->getDebugLoc();
14225
14226    // Check LHS for not
14227    if (N0.getOpcode() == ISD::XOR && isAllOnes(N0.getOperand(1)))
14228      return DAG.getNode(X86ISD::ANDN, DL, VT, N0.getOperand(0), N1);
14229    // Check RHS for not
14230    if (N1.getOpcode() == ISD::XOR && isAllOnes(N1.getOperand(1)))
14231      return DAG.getNode(X86ISD::ANDN, DL, VT, N1.getOperand(0), N0);
14232
14233    // Check LHS for neg
14234    if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
14235        isZero(N0.getOperand(0)))
14236      return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
14237
14238    // Check RHS for neg
14239    if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
14240        isZero(N1.getOperand(0)))
14241      return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
14242
14243    // Check LHS for X-1
14244    if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
14245        isAllOnes(N0.getOperand(1)))
14246      return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
14247
14248    // Check RHS for X-1
14249    if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
14250        isAllOnes(N1.getOperand(1)))
14251      return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
14252
14253    return SDValue();
14254  }
14255
14256  // Want to form ANDNP nodes:
14257  // 1) In the hopes of then easily combining them with OR and AND nodes
14258  //    to form PBLEND/PSIGN.
14259  // 2) To match ANDN packed intrinsics
14260  if (VT != MVT::v2i64 && VT != MVT::v4i64)
14261    return SDValue();
14262
14263  SDValue N0 = N->getOperand(0);
14264  SDValue N1 = N->getOperand(1);
14265  DebugLoc DL = N->getDebugLoc();
14266
14267  // Check LHS for vnot
14268  if (N0.getOpcode() == ISD::XOR &&
14269      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
14270      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
14271    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
14272
14273  // Check RHS for vnot
14274  if (N1.getOpcode() == ISD::XOR &&
14275      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
14276      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
14277    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
14278
14279  return SDValue();
14280}
14281
14282static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
14283                                TargetLowering::DAGCombinerInfo &DCI,
14284                                const X86Subtarget *Subtarget) {
14285  if (DCI.isBeforeLegalizeOps())
14286    return SDValue();
14287
14288  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
14289  if (R.getNode())
14290    return R;
14291
14292  EVT VT = N->getValueType(0);
14293
14294  SDValue N0 = N->getOperand(0);
14295  SDValue N1 = N->getOperand(1);
14296
14297  // look for psign/blend
14298  if (VT == MVT::v2i64 || VT == MVT::v4i64) {
14299    if (!Subtarget->hasSSSE3() ||
14300        (VT == MVT::v4i64 && !Subtarget->hasAVX2()))
14301      return SDValue();
14302
14303    // Canonicalize pandn to RHS
14304    if (N0.getOpcode() == X86ISD::ANDNP)
14305      std::swap(N0, N1);
14306    // or (and (m, y), (pandn m, x))
14307    if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
14308      SDValue Mask = N1.getOperand(0);
14309      SDValue X    = N1.getOperand(1);
14310      SDValue Y;
14311      if (N0.getOperand(0) == Mask)
14312        Y = N0.getOperand(1);
14313      if (N0.getOperand(1) == Mask)
14314        Y = N0.getOperand(0);
14315
14316      // Check to see if the mask appeared in both the AND and ANDNP and
14317      if (!Y.getNode())
14318        return SDValue();
14319
14320      // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
14321      // Look through mask bitcast.
14322      if (Mask.getOpcode() == ISD::BITCAST)
14323        Mask = Mask.getOperand(0);
14324      if (X.getOpcode() == ISD::BITCAST)
14325        X = X.getOperand(0);
14326      if (Y.getOpcode() == ISD::BITCAST)
14327        Y = Y.getOperand(0);
14328
14329      EVT MaskVT = Mask.getValueType();
14330
14331      // Validate that the Mask operand is a vector sra node.
14332      // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
14333      // there is no psrai.b
14334      if (Mask.getOpcode() != X86ISD::VSRAI)
14335        return SDValue();
14336
14337      // Check that the SRA is all signbits.
14338      SDValue SraC = Mask.getOperand(1);
14339      unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
14340      unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
14341      if ((SraAmt + 1) != EltBits)
14342        return SDValue();
14343
14344      DebugLoc DL = N->getDebugLoc();
14345
14346      // Now we know we at least have a plendvb with the mask val.  See if
14347      // we can form a psignb/w/d.
14348      // psign = x.type == y.type == mask.type && y = sub(0, x);
14349      if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
14350          ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
14351          X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
14352        assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
14353               "Unsupported VT for PSIGN");
14354        Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0));
14355        return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
14356      }
14357      // PBLENDVB only available on SSE 4.1
14358      if (!Subtarget->hasSSE41())
14359        return SDValue();
14360
14361      EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
14362
14363      X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
14364      Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
14365      Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
14366      Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
14367      return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
14368    }
14369  }
14370
14371  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
14372    return SDValue();
14373
14374  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
14375  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
14376    std::swap(N0, N1);
14377  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
14378    return SDValue();
14379  if (!N0.hasOneUse() || !N1.hasOneUse())
14380    return SDValue();
14381
14382  SDValue ShAmt0 = N0.getOperand(1);
14383  if (ShAmt0.getValueType() != MVT::i8)
14384    return SDValue();
14385  SDValue ShAmt1 = N1.getOperand(1);
14386  if (ShAmt1.getValueType() != MVT::i8)
14387    return SDValue();
14388  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
14389    ShAmt0 = ShAmt0.getOperand(0);
14390  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
14391    ShAmt1 = ShAmt1.getOperand(0);
14392
14393  DebugLoc DL = N->getDebugLoc();
14394  unsigned Opc = X86ISD::SHLD;
14395  SDValue Op0 = N0.getOperand(0);
14396  SDValue Op1 = N1.getOperand(0);
14397  if (ShAmt0.getOpcode() == ISD::SUB) {
14398    Opc = X86ISD::SHRD;
14399    std::swap(Op0, Op1);
14400    std::swap(ShAmt0, ShAmt1);
14401  }
14402
14403  unsigned Bits = VT.getSizeInBits();
14404  if (ShAmt1.getOpcode() == ISD::SUB) {
14405    SDValue Sum = ShAmt1.getOperand(0);
14406    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
14407      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
14408      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
14409        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
14410      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
14411        return DAG.getNode(Opc, DL, VT,
14412                           Op0, Op1,
14413                           DAG.getNode(ISD::TRUNCATE, DL,
14414                                       MVT::i8, ShAmt0));
14415    }
14416  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
14417    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
14418    if (ShAmt0C &&
14419        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
14420      return DAG.getNode(Opc, DL, VT,
14421                         N0.getOperand(0), N1.getOperand(0),
14422                         DAG.getNode(ISD::TRUNCATE, DL,
14423                                       MVT::i8, ShAmt0));
14424  }
14425
14426  return SDValue();
14427}
14428
14429// PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
14430static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
14431                                 TargetLowering::DAGCombinerInfo &DCI,
14432                                 const X86Subtarget *Subtarget) {
14433  if (DCI.isBeforeLegalizeOps())
14434    return SDValue();
14435
14436  EVT VT = N->getValueType(0);
14437
14438  if (VT != MVT::i32 && VT != MVT::i64)
14439    return SDValue();
14440
14441  assert(Subtarget->hasBMI() && "Creating BLSMSK requires BMI instructions");
14442
14443  // Create BLSMSK instructions by finding X ^ (X-1)
14444  SDValue N0 = N->getOperand(0);
14445  SDValue N1 = N->getOperand(1);
14446  DebugLoc DL = N->getDebugLoc();
14447
14448  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
14449      isAllOnes(N0.getOperand(1)))
14450    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
14451
14452  if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
14453      isAllOnes(N1.getOperand(1)))
14454    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
14455
14456  return SDValue();
14457}
14458
14459/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
14460static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
14461                                   const X86Subtarget *Subtarget) {
14462  LoadSDNode *Ld = cast<LoadSDNode>(N);
14463  EVT RegVT = Ld->getValueType(0);
14464  EVT MemVT = Ld->getMemoryVT();
14465  DebugLoc dl = Ld->getDebugLoc();
14466  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14467
14468  ISD::LoadExtType Ext = Ld->getExtensionType();
14469
14470  // If this is a vector EXT Load then attempt to optimize it using a
14471  // shuffle. We need SSE4 for the shuffles.
14472  // TODO: It is possible to support ZExt by zeroing the undef values
14473  // during the shuffle phase or after the shuffle.
14474  if (RegVT.isVector() && RegVT.isInteger() &&
14475      Ext == ISD::EXTLOAD && Subtarget->hasSSE41()) {
14476    assert(MemVT != RegVT && "Cannot extend to the same type");
14477    assert(MemVT.isVector() && "Must load a vector from memory");
14478
14479    unsigned NumElems = RegVT.getVectorNumElements();
14480    unsigned RegSz = RegVT.getSizeInBits();
14481    unsigned MemSz = MemVT.getSizeInBits();
14482    assert(RegSz > MemSz && "Register size must be greater than the mem size");
14483    // All sizes must be a power of two
14484    if (!isPowerOf2_32(RegSz * MemSz * NumElems)) return SDValue();
14485
14486    // Attempt to load the original value using a single load op.
14487    // Find a scalar type which is equal to the loaded word size.
14488    MVT SclrLoadTy = MVT::i8;
14489    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14490         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14491      MVT Tp = (MVT::SimpleValueType)tp;
14492      if (TLI.isTypeLegal(Tp) &&  Tp.getSizeInBits() == MemSz) {
14493        SclrLoadTy = Tp;
14494        break;
14495      }
14496    }
14497
14498    // Proceed if a load word is found.
14499    if (SclrLoadTy.getSizeInBits() != MemSz) return SDValue();
14500
14501    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
14502      RegSz/SclrLoadTy.getSizeInBits());
14503
14504    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
14505                                  RegSz/MemVT.getScalarType().getSizeInBits());
14506    // Can't shuffle using an illegal type.
14507    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
14508
14509    // Perform a single load.
14510    SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
14511                                  Ld->getBasePtr(),
14512                                  Ld->getPointerInfo(), Ld->isVolatile(),
14513                                  Ld->isNonTemporal(), Ld->isInvariant(),
14514                                  Ld->getAlignment());
14515
14516    // Insert the word loaded into a vector.
14517    SDValue ScalarInVector = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
14518      LoadUnitVecVT, ScalarLoad);
14519
14520    // Bitcast the loaded value to a vector of the original element type, in
14521    // the size of the target vector type.
14522    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT,
14523                                    ScalarInVector);
14524    unsigned SizeRatio = RegSz/MemSz;
14525
14526    // Redistribute the loaded elements into the different locations.
14527    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14528    for (unsigned i = 0; i != NumElems; ++i)
14529      ShuffleVec[i*SizeRatio] = i;
14530
14531    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
14532                                         DAG.getUNDEF(WideVecVT),
14533                                         &ShuffleVec[0]);
14534
14535    // Bitcast to the requested type.
14536    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
14537    // Replace the original load with the new sequence
14538    // and return the new chain.
14539    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Shuff);
14540    return SDValue(ScalarLoad.getNode(), 1);
14541  }
14542
14543  return SDValue();
14544}
14545
14546/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
14547static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
14548                                   const X86Subtarget *Subtarget) {
14549  StoreSDNode *St = cast<StoreSDNode>(N);
14550  EVT VT = St->getValue().getValueType();
14551  EVT StVT = St->getMemoryVT();
14552  DebugLoc dl = St->getDebugLoc();
14553  SDValue StoredVal = St->getOperand(1);
14554  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14555
14556  // If we are saving a concatenation of two XMM registers, perform two stores.
14557  // This is better in Sandy Bridge cause one 256-bit mem op is done via two
14558  // 128-bit ones. If in the future the cost becomes only one memory access the
14559  // first version would be better.
14560  if (VT.getSizeInBits() == 256 &&
14561      StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
14562      StoredVal.getNumOperands() == 2) {
14563
14564    SDValue Value0 = StoredVal.getOperand(0);
14565    SDValue Value1 = StoredVal.getOperand(1);
14566
14567    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
14568    SDValue Ptr0 = St->getBasePtr();
14569    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
14570
14571    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
14572                                St->getPointerInfo(), St->isVolatile(),
14573                                St->isNonTemporal(), St->getAlignment());
14574    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
14575                                St->getPointerInfo(), St->isVolatile(),
14576                                St->isNonTemporal(), St->getAlignment());
14577    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
14578  }
14579
14580  // Optimize trunc store (of multiple scalars) to shuffle and store.
14581  // First, pack all of the elements in one place. Next, store to memory
14582  // in fewer chunks.
14583  if (St->isTruncatingStore() && VT.isVector()) {
14584    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14585    unsigned NumElems = VT.getVectorNumElements();
14586    assert(StVT != VT && "Cannot truncate to the same type");
14587    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
14588    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
14589
14590    // From, To sizes and ElemCount must be pow of two
14591    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
14592    // We are going to use the original vector elt for storing.
14593    // Accumulated smaller vector elements must be a multiple of the store size.
14594    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
14595
14596    unsigned SizeRatio  = FromSz / ToSz;
14597
14598    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
14599
14600    // Create a type on which we perform the shuffle
14601    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
14602            StVT.getScalarType(), NumElems*SizeRatio);
14603
14604    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
14605
14606    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
14607    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14608    for (unsigned i = 0; i != NumElems; ++i)
14609      ShuffleVec[i] = i * SizeRatio;
14610
14611    // Can't shuffle using an illegal type
14612    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
14613
14614    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
14615                                         DAG.getUNDEF(WideVecVT),
14616                                         &ShuffleVec[0]);
14617    // At this point all of the data is stored at the bottom of the
14618    // register. We now need to save it to mem.
14619
14620    // Find the largest store unit
14621    MVT StoreType = MVT::i8;
14622    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14623         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14624      MVT Tp = (MVT::SimpleValueType)tp;
14625      if (TLI.isTypeLegal(Tp) && StoreType.getSizeInBits() < NumElems * ToSz)
14626        StoreType = Tp;
14627    }
14628
14629    // Bitcast the original vector into a vector of store-size units
14630    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
14631            StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
14632    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
14633    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
14634    SmallVector<SDValue, 8> Chains;
14635    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
14636                                        TLI.getPointerTy());
14637    SDValue Ptr = St->getBasePtr();
14638
14639    // Perform one or more big stores into memory.
14640    for (unsigned i=0, e=(ToSz*NumElems)/StoreType.getSizeInBits(); i!=e; ++i) {
14641      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
14642                                   StoreType, ShuffWide,
14643                                   DAG.getIntPtrConstant(i));
14644      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
14645                                St->getPointerInfo(), St->isVolatile(),
14646                                St->isNonTemporal(), St->getAlignment());
14647      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14648      Chains.push_back(Ch);
14649    }
14650
14651    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
14652                               Chains.size());
14653  }
14654
14655
14656  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
14657  // the FP state in cases where an emms may be missing.
14658  // A preferable solution to the general problem is to figure out the right
14659  // places to insert EMMS.  This qualifies as a quick hack.
14660
14661  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
14662  if (VT.getSizeInBits() != 64)
14663    return SDValue();
14664
14665  const Function *F = DAG.getMachineFunction().getFunction();
14666  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
14667  bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
14668                     && Subtarget->hasSSE2();
14669  if ((VT.isVector() ||
14670       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
14671      isa<LoadSDNode>(St->getValue()) &&
14672      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
14673      St->getChain().hasOneUse() && !St->isVolatile()) {
14674    SDNode* LdVal = St->getValue().getNode();
14675    LoadSDNode *Ld = 0;
14676    int TokenFactorIndex = -1;
14677    SmallVector<SDValue, 8> Ops;
14678    SDNode* ChainVal = St->getChain().getNode();
14679    // Must be a store of a load.  We currently handle two cases:  the load
14680    // is a direct child, and it's under an intervening TokenFactor.  It is
14681    // possible to dig deeper under nested TokenFactors.
14682    if (ChainVal == LdVal)
14683      Ld = cast<LoadSDNode>(St->getChain());
14684    else if (St->getValue().hasOneUse() &&
14685             ChainVal->getOpcode() == ISD::TokenFactor) {
14686      for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) {
14687        if (ChainVal->getOperand(i).getNode() == LdVal) {
14688          TokenFactorIndex = i;
14689          Ld = cast<LoadSDNode>(St->getValue());
14690        } else
14691          Ops.push_back(ChainVal->getOperand(i));
14692      }
14693    }
14694
14695    if (!Ld || !ISD::isNormalLoad(Ld))
14696      return SDValue();
14697
14698    // If this is not the MMX case, i.e. we are just turning i64 load/store
14699    // into f64 load/store, avoid the transformation if there are multiple
14700    // uses of the loaded value.
14701    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
14702      return SDValue();
14703
14704    DebugLoc LdDL = Ld->getDebugLoc();
14705    DebugLoc StDL = N->getDebugLoc();
14706    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
14707    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
14708    // pair instead.
14709    if (Subtarget->is64Bit() || F64IsLegal) {
14710      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
14711      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
14712                                  Ld->getPointerInfo(), Ld->isVolatile(),
14713                                  Ld->isNonTemporal(), Ld->isInvariant(),
14714                                  Ld->getAlignment());
14715      SDValue NewChain = NewLd.getValue(1);
14716      if (TokenFactorIndex != -1) {
14717        Ops.push_back(NewChain);
14718        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14719                               Ops.size());
14720      }
14721      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
14722                          St->getPointerInfo(),
14723                          St->isVolatile(), St->isNonTemporal(),
14724                          St->getAlignment());
14725    }
14726
14727    // Otherwise, lower to two pairs of 32-bit loads / stores.
14728    SDValue LoAddr = Ld->getBasePtr();
14729    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
14730                                 DAG.getConstant(4, MVT::i32));
14731
14732    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
14733                               Ld->getPointerInfo(),
14734                               Ld->isVolatile(), Ld->isNonTemporal(),
14735                               Ld->isInvariant(), Ld->getAlignment());
14736    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
14737                               Ld->getPointerInfo().getWithOffset(4),
14738                               Ld->isVolatile(), Ld->isNonTemporal(),
14739                               Ld->isInvariant(),
14740                               MinAlign(Ld->getAlignment(), 4));
14741
14742    SDValue NewChain = LoLd.getValue(1);
14743    if (TokenFactorIndex != -1) {
14744      Ops.push_back(LoLd);
14745      Ops.push_back(HiLd);
14746      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14747                             Ops.size());
14748    }
14749
14750    LoAddr = St->getBasePtr();
14751    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
14752                         DAG.getConstant(4, MVT::i32));
14753
14754    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
14755                                St->getPointerInfo(),
14756                                St->isVolatile(), St->isNonTemporal(),
14757                                St->getAlignment());
14758    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
14759                                St->getPointerInfo().getWithOffset(4),
14760                                St->isVolatile(),
14761                                St->isNonTemporal(),
14762                                MinAlign(St->getAlignment(), 4));
14763    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
14764  }
14765  return SDValue();
14766}
14767
14768/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
14769/// and return the operands for the horizontal operation in LHS and RHS.  A
14770/// horizontal operation performs the binary operation on successive elements
14771/// of its first operand, then on successive elements of its second operand,
14772/// returning the resulting values in a vector.  For example, if
14773///   A = < float a0, float a1, float a2, float a3 >
14774/// and
14775///   B = < float b0, float b1, float b2, float b3 >
14776/// then the result of doing a horizontal operation on A and B is
14777///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
14778/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
14779/// A horizontal-op B, for some already available A and B, and if so then LHS is
14780/// set to A, RHS to B, and the routine returns 'true'.
14781/// Note that the binary operation should have the property that if one of the
14782/// operands is UNDEF then the result is UNDEF.
14783static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
14784  // Look for the following pattern: if
14785  //   A = < float a0, float a1, float a2, float a3 >
14786  //   B = < float b0, float b1, float b2, float b3 >
14787  // and
14788  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
14789  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
14790  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
14791  // which is A horizontal-op B.
14792
14793  // At least one of the operands should be a vector shuffle.
14794  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
14795      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
14796    return false;
14797
14798  EVT VT = LHS.getValueType();
14799
14800  assert((VT.is128BitVector() || VT.is256BitVector()) &&
14801         "Unsupported vector type for horizontal add/sub");
14802
14803  // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
14804  // operate independently on 128-bit lanes.
14805  unsigned NumElts = VT.getVectorNumElements();
14806  unsigned NumLanes = VT.getSizeInBits()/128;
14807  unsigned NumLaneElts = NumElts / NumLanes;
14808  assert((NumLaneElts % 2 == 0) &&
14809         "Vector type should have an even number of elements in each lane");
14810  unsigned HalfLaneElts = NumLaneElts/2;
14811
14812  // View LHS in the form
14813  //   LHS = VECTOR_SHUFFLE A, B, LMask
14814  // If LHS is not a shuffle then pretend it is the shuffle
14815  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
14816  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
14817  // type VT.
14818  SDValue A, B;
14819  SmallVector<int, 16> LMask(NumElts);
14820  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14821    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
14822      A = LHS.getOperand(0);
14823    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
14824      B = LHS.getOperand(1);
14825    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
14826    std::copy(Mask.begin(), Mask.end(), LMask.begin());
14827  } else {
14828    if (LHS.getOpcode() != ISD::UNDEF)
14829      A = LHS;
14830    for (unsigned i = 0; i != NumElts; ++i)
14831      LMask[i] = i;
14832  }
14833
14834  // Likewise, view RHS in the form
14835  //   RHS = VECTOR_SHUFFLE C, D, RMask
14836  SDValue C, D;
14837  SmallVector<int, 16> RMask(NumElts);
14838  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14839    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
14840      C = RHS.getOperand(0);
14841    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
14842      D = RHS.getOperand(1);
14843    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
14844    std::copy(Mask.begin(), Mask.end(), RMask.begin());
14845  } else {
14846    if (RHS.getOpcode() != ISD::UNDEF)
14847      C = RHS;
14848    for (unsigned i = 0; i != NumElts; ++i)
14849      RMask[i] = i;
14850  }
14851
14852  // Check that the shuffles are both shuffling the same vectors.
14853  if (!(A == C && B == D) && !(A == D && B == C))
14854    return false;
14855
14856  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
14857  if (!A.getNode() && !B.getNode())
14858    return false;
14859
14860  // If A and B occur in reverse order in RHS, then "swap" them (which means
14861  // rewriting the mask).
14862  if (A != C)
14863    CommuteVectorShuffleMask(RMask, NumElts);
14864
14865  // At this point LHS and RHS are equivalent to
14866  //   LHS = VECTOR_SHUFFLE A, B, LMask
14867  //   RHS = VECTOR_SHUFFLE A, B, RMask
14868  // Check that the masks correspond to performing a horizontal operation.
14869  for (unsigned i = 0; i != NumElts; ++i) {
14870    int LIdx = LMask[i], RIdx = RMask[i];
14871
14872    // Ignore any UNDEF components.
14873    if (LIdx < 0 || RIdx < 0 ||
14874        (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
14875        (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
14876      continue;
14877
14878    // Check that successive elements are being operated on.  If not, this is
14879    // not a horizontal operation.
14880    unsigned Src = (i/HalfLaneElts) % 2; // each lane is split between srcs
14881    unsigned LaneStart = (i/NumLaneElts) * NumLaneElts;
14882    int Index = 2*(i%HalfLaneElts) + NumElts*Src + LaneStart;
14883    if (!(LIdx == Index && RIdx == Index + 1) &&
14884        !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
14885      return false;
14886  }
14887
14888  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
14889  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
14890  return true;
14891}
14892
14893/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
14894static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
14895                                  const X86Subtarget *Subtarget) {
14896  EVT VT = N->getValueType(0);
14897  SDValue LHS = N->getOperand(0);
14898  SDValue RHS = N->getOperand(1);
14899
14900  // Try to synthesize horizontal adds from adds of shuffles.
14901  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14902       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14903      isHorizontalBinOp(LHS, RHS, true))
14904    return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
14905  return SDValue();
14906}
14907
14908/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
14909static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
14910                                  const X86Subtarget *Subtarget) {
14911  EVT VT = N->getValueType(0);
14912  SDValue LHS = N->getOperand(0);
14913  SDValue RHS = N->getOperand(1);
14914
14915  // Try to synthesize horizontal subs from subs of shuffles.
14916  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14917       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14918      isHorizontalBinOp(LHS, RHS, false))
14919    return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
14920  return SDValue();
14921}
14922
14923/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
14924/// X86ISD::FXOR nodes.
14925static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
14926  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
14927  // F[X]OR(0.0, x) -> x
14928  // F[X]OR(x, 0.0) -> x
14929  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14930    if (C->getValueAPF().isPosZero())
14931      return N->getOperand(1);
14932  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14933    if (C->getValueAPF().isPosZero())
14934      return N->getOperand(0);
14935  return SDValue();
14936}
14937
14938/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
14939static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
14940  // FAND(0.0, x) -> 0.0
14941  // FAND(x, 0.0) -> 0.0
14942  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14943    if (C->getValueAPF().isPosZero())
14944      return N->getOperand(0);
14945  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14946    if (C->getValueAPF().isPosZero())
14947      return N->getOperand(1);
14948  return SDValue();
14949}
14950
14951static SDValue PerformBTCombine(SDNode *N,
14952                                SelectionDAG &DAG,
14953                                TargetLowering::DAGCombinerInfo &DCI) {
14954  // BT ignores high bits in the bit index operand.
14955  SDValue Op1 = N->getOperand(1);
14956  if (Op1.hasOneUse()) {
14957    unsigned BitWidth = Op1.getValueSizeInBits();
14958    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
14959    APInt KnownZero, KnownOne;
14960    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
14961                                          !DCI.isBeforeLegalizeOps());
14962    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14963    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
14964        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
14965      DCI.CommitTargetLoweringOpt(TLO);
14966  }
14967  return SDValue();
14968}
14969
14970static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
14971  SDValue Op = N->getOperand(0);
14972  if (Op.getOpcode() == ISD::BITCAST)
14973    Op = Op.getOperand(0);
14974  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
14975  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
14976      VT.getVectorElementType().getSizeInBits() ==
14977      OpVT.getVectorElementType().getSizeInBits()) {
14978    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
14979  }
14980  return SDValue();
14981}
14982
14983static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG,
14984                                  TargetLowering::DAGCombinerInfo &DCI,
14985                                  const X86Subtarget *Subtarget) {
14986  if (!DCI.isBeforeLegalizeOps())
14987    return SDValue();
14988
14989  if (!Subtarget->hasAVX())
14990    return SDValue();
14991
14992  EVT VT = N->getValueType(0);
14993  SDValue Op = N->getOperand(0);
14994  EVT OpVT = Op.getValueType();
14995  DebugLoc dl = N->getDebugLoc();
14996
14997  if ((VT == MVT::v4i64 && OpVT == MVT::v4i32) ||
14998      (VT == MVT::v8i32 && OpVT == MVT::v8i16)) {
14999
15000    if (Subtarget->hasAVX2())
15001      return DAG.getNode(X86ISD::VSEXT_MOVL, dl, VT, Op);
15002
15003    // Optimize vectors in AVX mode
15004    // Sign extend  v8i16 to v8i32 and
15005    //              v4i32 to v4i64
15006    //
15007    // Divide input vector into two parts
15008    // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1}
15009    // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
15010    // concat the vectors to original VT
15011
15012    unsigned NumElems = OpVT.getVectorNumElements();
15013    SmallVector<int,8> ShufMask1(NumElems, -1);
15014    for (unsigned i = 0; i != NumElems/2; ++i)
15015      ShufMask1[i] = i;
15016
15017    SDValue OpLo = DAG.getVectorShuffle(OpVT, dl, Op, DAG.getUNDEF(OpVT),
15018                                        &ShufMask1[0]);
15019
15020    SmallVector<int,8> ShufMask2(NumElems, -1);
15021    for (unsigned i = 0; i != NumElems/2; ++i)
15022      ShufMask2[i] = i + NumElems/2;
15023
15024    SDValue OpHi = DAG.getVectorShuffle(OpVT, dl, Op, DAG.getUNDEF(OpVT),
15025                                        &ShufMask2[0]);
15026
15027    EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
15028                                  VT.getVectorNumElements()/2);
15029
15030    OpLo = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpLo);
15031    OpHi = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpHi);
15032
15033    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
15034  }
15035  return SDValue();
15036}
15037
15038static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
15039                                  TargetLowering::DAGCombinerInfo &DCI,
15040                                  const X86Subtarget *Subtarget) {
15041  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
15042  //           (and (i32 x86isd::setcc_carry), 1)
15043  // This eliminates the zext. This transformation is necessary because
15044  // ISD::SETCC is always legalized to i8.
15045  DebugLoc dl = N->getDebugLoc();
15046  SDValue N0 = N->getOperand(0);
15047  EVT VT = N->getValueType(0);
15048  EVT OpVT = N0.getValueType();
15049
15050  if (N0.getOpcode() == ISD::AND &&
15051      N0.hasOneUse() &&
15052      N0.getOperand(0).hasOneUse()) {
15053    SDValue N00 = N0.getOperand(0);
15054    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
15055      return SDValue();
15056    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
15057    if (!C || C->getZExtValue() != 1)
15058      return SDValue();
15059    return DAG.getNode(ISD::AND, dl, VT,
15060                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
15061                                   N00.getOperand(0), N00.getOperand(1)),
15062                       DAG.getConstant(1, VT));
15063  }
15064
15065  // Optimize vectors in AVX mode:
15066  //
15067  //   v8i16 -> v8i32
15068  //   Use vpunpcklwd for 4 lower elements  v8i16 -> v4i32.
15069  //   Use vpunpckhwd for 4 upper elements  v8i16 -> v4i32.
15070  //   Concat upper and lower parts.
15071  //
15072  //   v4i32 -> v4i64
15073  //   Use vpunpckldq for 4 lower elements  v4i32 -> v2i64.
15074  //   Use vpunpckhdq for 4 upper elements  v4i32 -> v2i64.
15075  //   Concat upper and lower parts.
15076  //
15077  if (!DCI.isBeforeLegalizeOps())
15078    return SDValue();
15079
15080  if (!Subtarget->hasAVX())
15081    return SDValue();
15082
15083  if (((VT == MVT::v8i32) && (OpVT == MVT::v8i16)) ||
15084      ((VT == MVT::v4i64) && (OpVT == MVT::v4i32)))  {
15085
15086    if (Subtarget->hasAVX2())
15087      return DAG.getNode(X86ISD::VZEXT_MOVL, dl, VT, N0);
15088
15089    SDValue ZeroVec = getZeroVector(OpVT, Subtarget, DAG, dl);
15090    SDValue OpLo = getUnpackl(DAG, dl, OpVT, N0, ZeroVec);
15091    SDValue OpHi = getUnpackh(DAG, dl, OpVT, N0, ZeroVec);
15092
15093    EVT HVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
15094                               VT.getVectorNumElements()/2);
15095
15096    OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo);
15097    OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi);
15098
15099    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
15100  }
15101
15102  return SDValue();
15103}
15104
15105// Optimize x == -y --> x+y == 0
15106//          x != -y --> x+y != 0
15107static SDValue PerformISDSETCCCombine(SDNode *N, SelectionDAG &DAG) {
15108  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
15109  SDValue LHS = N->getOperand(0);
15110  SDValue RHS = N->getOperand(1);
15111
15112  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && LHS.getOpcode() == ISD::SUB)
15113    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(LHS.getOperand(0)))
15114      if (C->getAPIntValue() == 0 && LHS.hasOneUse()) {
15115        SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(),
15116                                   LHS.getValueType(), RHS, LHS.getOperand(1));
15117        return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0),
15118                            addV, DAG.getConstant(0, addV.getValueType()), CC);
15119      }
15120  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && RHS.getOpcode() == ISD::SUB)
15121    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS.getOperand(0)))
15122      if (C->getAPIntValue() == 0 && RHS.hasOneUse()) {
15123        SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(),
15124                                   RHS.getValueType(), LHS, RHS.getOperand(1));
15125        return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0),
15126                            addV, DAG.getConstant(0, addV.getValueType()), CC);
15127      }
15128  return SDValue();
15129}
15130
15131// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
15132static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
15133  unsigned X86CC = N->getConstantOperandVal(0);
15134  SDValue EFLAG = N->getOperand(1);
15135  DebugLoc DL = N->getDebugLoc();
15136
15137  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
15138  // a zext and produces an all-ones bit which is more useful than 0/1 in some
15139  // cases.
15140  if (X86CC == X86::COND_B)
15141    return DAG.getNode(ISD::AND, DL, MVT::i8,
15142                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
15143                                   DAG.getConstant(X86CC, MVT::i8), EFLAG),
15144                       DAG.getConstant(1, MVT::i8));
15145
15146  return SDValue();
15147}
15148
15149static SDValue PerformUINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG) {
15150  SDValue Op0 = N->getOperand(0);
15151  EVT InVT = Op0->getValueType(0);
15152
15153  // UINT_TO_FP(v4i8) -> SINT_TO_FP(ZEXT(v4i8 to v4i32))
15154  if (InVT == MVT::v8i8 || InVT == MVT::v4i8) {
15155    DebugLoc dl = N->getDebugLoc();
15156    MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
15157    SDValue P = DAG.getNode(ISD::ZERO_EXTEND, dl, DstVT, Op0);
15158    // Notice that we use SINT_TO_FP because we know that the high bits
15159    // are zero and SINT_TO_FP is better supported by the hardware.
15160    return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P);
15161  }
15162
15163  return SDValue();
15164}
15165
15166static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
15167                                        const X86TargetLowering *XTLI) {
15168  SDValue Op0 = N->getOperand(0);
15169  EVT InVT = Op0->getValueType(0);
15170
15171  // SINT_TO_FP(v4i8) -> SINT_TO_FP(SEXT(v4i8 to v4i32))
15172  if (InVT == MVT::v8i8 || InVT == MVT::v4i8) {
15173    DebugLoc dl = N->getDebugLoc();
15174    MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
15175    SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0);
15176    return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P);
15177  }
15178
15179  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
15180  // a 32-bit target where SSE doesn't support i64->FP operations.
15181  if (Op0.getOpcode() == ISD::LOAD) {
15182    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
15183    EVT VT = Ld->getValueType(0);
15184    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
15185        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
15186        !XTLI->getSubtarget()->is64Bit() &&
15187        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
15188      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
15189                                          Ld->getChain(), Op0, DAG);
15190      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
15191      return FILDChain;
15192    }
15193  }
15194  return SDValue();
15195}
15196
15197static SDValue PerformFP_TO_SINTCombine(SDNode *N, SelectionDAG &DAG) {
15198  EVT VT = N->getValueType(0);
15199
15200  // v4i8 = FP_TO_SINT() -> v4i8 = TRUNCATE (V4i32 = FP_TO_SINT()
15201  if (VT == MVT::v8i8 || VT == MVT::v4i8) {
15202    DebugLoc dl = N->getDebugLoc();
15203    MVT DstVT = VT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
15204    SDValue I = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, N->getOperand(0));
15205    return DAG.getNode(ISD::TRUNCATE, dl, VT, I);
15206  }
15207
15208  return SDValue();
15209}
15210
15211// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
15212static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
15213                                 X86TargetLowering::DAGCombinerInfo &DCI) {
15214  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
15215  // the result is either zero or one (depending on the input carry bit).
15216  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
15217  if (X86::isZeroNode(N->getOperand(0)) &&
15218      X86::isZeroNode(N->getOperand(1)) &&
15219      // We don't have a good way to replace an EFLAGS use, so only do this when
15220      // dead right now.
15221      SDValue(N, 1).use_empty()) {
15222    DebugLoc DL = N->getDebugLoc();
15223    EVT VT = N->getValueType(0);
15224    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
15225    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
15226                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
15227                                           DAG.getConstant(X86::COND_B,MVT::i8),
15228                                           N->getOperand(2)),
15229                               DAG.getConstant(1, VT));
15230    return DCI.CombineTo(N, Res1, CarryOut);
15231  }
15232
15233  return SDValue();
15234}
15235
15236// fold (add Y, (sete  X, 0)) -> adc  0, Y
15237//      (add Y, (setne X, 0)) -> sbb -1, Y
15238//      (sub (sete  X, 0), Y) -> sbb  0, Y
15239//      (sub (setne X, 0), Y) -> adc -1, Y
15240static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
15241  DebugLoc DL = N->getDebugLoc();
15242
15243  // Look through ZExts.
15244  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
15245  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
15246    return SDValue();
15247
15248  SDValue SetCC = Ext.getOperand(0);
15249  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
15250    return SDValue();
15251
15252  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
15253  if (CC != X86::COND_E && CC != X86::COND_NE)
15254    return SDValue();
15255
15256  SDValue Cmp = SetCC.getOperand(1);
15257  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
15258      !X86::isZeroNode(Cmp.getOperand(1)) ||
15259      !Cmp.getOperand(0).getValueType().isInteger())
15260    return SDValue();
15261
15262  SDValue CmpOp0 = Cmp.getOperand(0);
15263  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
15264                               DAG.getConstant(1, CmpOp0.getValueType()));
15265
15266  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
15267  if (CC == X86::COND_NE)
15268    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
15269                       DL, OtherVal.getValueType(), OtherVal,
15270                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
15271  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
15272                     DL, OtherVal.getValueType(), OtherVal,
15273                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
15274}
15275
15276/// PerformADDCombine - Do target-specific dag combines on integer adds.
15277static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
15278                                 const X86Subtarget *Subtarget) {
15279  EVT VT = N->getValueType(0);
15280  SDValue Op0 = N->getOperand(0);
15281  SDValue Op1 = N->getOperand(1);
15282
15283  // Try to synthesize horizontal adds from adds of shuffles.
15284  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
15285       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
15286      isHorizontalBinOp(Op0, Op1, true))
15287    return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1);
15288
15289  return OptimizeConditionalInDecrement(N, DAG);
15290}
15291
15292static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
15293                                 const X86Subtarget *Subtarget) {
15294  SDValue Op0 = N->getOperand(0);
15295  SDValue Op1 = N->getOperand(1);
15296
15297  // X86 can't encode an immediate LHS of a sub. See if we can push the
15298  // negation into a preceding instruction.
15299  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
15300    // If the RHS of the sub is a XOR with one use and a constant, invert the
15301    // immediate. Then add one to the LHS of the sub so we can turn
15302    // X-Y -> X+~Y+1, saving one register.
15303    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
15304        isa<ConstantSDNode>(Op1.getOperand(1))) {
15305      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
15306      EVT VT = Op0.getValueType();
15307      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
15308                                   Op1.getOperand(0),
15309                                   DAG.getConstant(~XorC, VT));
15310      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
15311                         DAG.getConstant(C->getAPIntValue()+1, VT));
15312    }
15313  }
15314
15315  // Try to synthesize horizontal adds from adds of shuffles.
15316  EVT VT = N->getValueType(0);
15317  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
15318       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
15319      isHorizontalBinOp(Op0, Op1, true))
15320    return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1);
15321
15322  return OptimizeConditionalInDecrement(N, DAG);
15323}
15324
15325SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
15326                                             DAGCombinerInfo &DCI) const {
15327  SelectionDAG &DAG = DCI.DAG;
15328  switch (N->getOpcode()) {
15329  default: break;
15330  case ISD::EXTRACT_VECTOR_ELT:
15331    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI);
15332  case ISD::VSELECT:
15333  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, DCI, Subtarget);
15334  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
15335  case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
15336  case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
15337  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
15338  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
15339  case ISD::SHL:
15340  case ISD::SRA:
15341  case ISD::SRL:            return PerformShiftCombine(N, DAG, DCI, Subtarget);
15342  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
15343  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
15344  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
15345  case ISD::LOAD:           return PerformLOADCombine(N, DAG, Subtarget);
15346  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
15347  case ISD::UINT_TO_FP:     return PerformUINT_TO_FPCombine(N, DAG);
15348  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
15349  case ISD::FP_TO_SINT:     return PerformFP_TO_SINTCombine(N, DAG);
15350  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
15351  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
15352  case X86ISD::FXOR:
15353  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
15354  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
15355  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
15356  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
15357  case ISD::ANY_EXTEND:
15358  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG, DCI, Subtarget);
15359  case ISD::SIGN_EXTEND:    return PerformSExtCombine(N, DAG, DCI, Subtarget);
15360  case ISD::TRUNCATE:       return PerformTruncateCombine(N, DAG, DCI);
15361  case ISD::SETCC:          return PerformISDSETCCCombine(N, DAG);
15362  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
15363  case X86ISD::SHUFP:       // Handle all target specific shuffles
15364  case X86ISD::PALIGN:
15365  case X86ISD::UNPCKH:
15366  case X86ISD::UNPCKL:
15367  case X86ISD::MOVHLPS:
15368  case X86ISD::MOVLHPS:
15369  case X86ISD::PSHUFD:
15370  case X86ISD::PSHUFHW:
15371  case X86ISD::PSHUFLW:
15372  case X86ISD::MOVSS:
15373  case X86ISD::MOVSD:
15374  case X86ISD::VPERMILP:
15375  case X86ISD::VPERM2X128:
15376  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
15377  }
15378
15379  return SDValue();
15380}
15381
15382/// isTypeDesirableForOp - Return true if the target has native support for
15383/// the specified value type and it is 'desirable' to use the type for the
15384/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
15385/// instruction encodings are longer and some i16 instructions are slow.
15386bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
15387  if (!isTypeLegal(VT))
15388    return false;
15389  if (VT != MVT::i16)
15390    return true;
15391
15392  switch (Opc) {
15393  default:
15394    return true;
15395  case ISD::LOAD:
15396  case ISD::SIGN_EXTEND:
15397  case ISD::ZERO_EXTEND:
15398  case ISD::ANY_EXTEND:
15399  case ISD::SHL:
15400  case ISD::SRL:
15401  case ISD::SUB:
15402  case ISD::ADD:
15403  case ISD::MUL:
15404  case ISD::AND:
15405  case ISD::OR:
15406  case ISD::XOR:
15407    return false;
15408  }
15409}
15410
15411/// IsDesirableToPromoteOp - This method query the target whether it is
15412/// beneficial for dag combiner to promote the specified node. If true, it
15413/// should return the desired promotion type by reference.
15414bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
15415  EVT VT = Op.getValueType();
15416  if (VT != MVT::i16)
15417    return false;
15418
15419  bool Promote = false;
15420  bool Commute = false;
15421  switch (Op.getOpcode()) {
15422  default: break;
15423  case ISD::LOAD: {
15424    LoadSDNode *LD = cast<LoadSDNode>(Op);
15425    // If the non-extending load has a single use and it's not live out, then it
15426    // might be folded.
15427    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
15428                                                     Op.hasOneUse()*/) {
15429      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
15430             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
15431        // The only case where we'd want to promote LOAD (rather then it being
15432        // promoted as an operand is when it's only use is liveout.
15433        if (UI->getOpcode() != ISD::CopyToReg)
15434          return false;
15435      }
15436    }
15437    Promote = true;
15438    break;
15439  }
15440  case ISD::SIGN_EXTEND:
15441  case ISD::ZERO_EXTEND:
15442  case ISD::ANY_EXTEND:
15443    Promote = true;
15444    break;
15445  case ISD::SHL:
15446  case ISD::SRL: {
15447    SDValue N0 = Op.getOperand(0);
15448    // Look out for (store (shl (load), x)).
15449    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
15450      return false;
15451    Promote = true;
15452    break;
15453  }
15454  case ISD::ADD:
15455  case ISD::MUL:
15456  case ISD::AND:
15457  case ISD::OR:
15458  case ISD::XOR:
15459    Commute = true;
15460    // fallthrough
15461  case ISD::SUB: {
15462    SDValue N0 = Op.getOperand(0);
15463    SDValue N1 = Op.getOperand(1);
15464    if (!Commute && MayFoldLoad(N1))
15465      return false;
15466    // Avoid disabling potential load folding opportunities.
15467    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
15468      return false;
15469    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
15470      return false;
15471    Promote = true;
15472  }
15473  }
15474
15475  PVT = MVT::i32;
15476  return Promote;
15477}
15478
15479//===----------------------------------------------------------------------===//
15480//                           X86 Inline Assembly Support
15481//===----------------------------------------------------------------------===//
15482
15483namespace {
15484  // Helper to match a string separated by whitespace.
15485  bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
15486    s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
15487
15488    for (unsigned i = 0, e = args.size(); i != e; ++i) {
15489      StringRef piece(*args[i]);
15490      if (!s.startswith(piece)) // Check if the piece matches.
15491        return false;
15492
15493      s = s.substr(piece.size());
15494      StringRef::size_type pos = s.find_first_not_of(" \t");
15495      if (pos == 0) // We matched a prefix.
15496        return false;
15497
15498      s = s.substr(pos);
15499    }
15500
15501    return s.empty();
15502  }
15503  const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
15504}
15505
15506bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
15507  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
15508
15509  std::string AsmStr = IA->getAsmString();
15510
15511  IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
15512  if (!Ty || Ty->getBitWidth() % 16 != 0)
15513    return false;
15514
15515  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
15516  SmallVector<StringRef, 4> AsmPieces;
15517  SplitString(AsmStr, AsmPieces, ";\n");
15518
15519  switch (AsmPieces.size()) {
15520  default: return false;
15521  case 1:
15522    // FIXME: this should verify that we are targeting a 486 or better.  If not,
15523    // we will turn this bswap into something that will be lowered to logical
15524    // ops instead of emitting the bswap asm.  For now, we don't support 486 or
15525    // lower so don't worry about this.
15526    // bswap $0
15527    if (matchAsm(AsmPieces[0], "bswap", "$0") ||
15528        matchAsm(AsmPieces[0], "bswapl", "$0") ||
15529        matchAsm(AsmPieces[0], "bswapq", "$0") ||
15530        matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
15531        matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
15532        matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
15533      // No need to check constraints, nothing other than the equivalent of
15534      // "=r,0" would be valid here.
15535      return IntrinsicLowering::LowerToByteSwap(CI);
15536    }
15537
15538    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
15539    if (CI->getType()->isIntegerTy(16) &&
15540        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
15541        (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
15542         matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
15543      AsmPieces.clear();
15544      const std::string &ConstraintsStr = IA->getConstraintString();
15545      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
15546      std::sort(AsmPieces.begin(), AsmPieces.end());
15547      if (AsmPieces.size() == 4 &&
15548          AsmPieces[0] == "~{cc}" &&
15549          AsmPieces[1] == "~{dirflag}" &&
15550          AsmPieces[2] == "~{flags}" &&
15551          AsmPieces[3] == "~{fpsr}")
15552      return IntrinsicLowering::LowerToByteSwap(CI);
15553    }
15554    break;
15555  case 3:
15556    if (CI->getType()->isIntegerTy(32) &&
15557        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
15558        matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
15559        matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
15560        matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
15561      AsmPieces.clear();
15562      const std::string &ConstraintsStr = IA->getConstraintString();
15563      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
15564      std::sort(AsmPieces.begin(), AsmPieces.end());
15565      if (AsmPieces.size() == 4 &&
15566          AsmPieces[0] == "~{cc}" &&
15567          AsmPieces[1] == "~{dirflag}" &&
15568          AsmPieces[2] == "~{flags}" &&
15569          AsmPieces[3] == "~{fpsr}")
15570        return IntrinsicLowering::LowerToByteSwap(CI);
15571    }
15572
15573    if (CI->getType()->isIntegerTy(64)) {
15574      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
15575      if (Constraints.size() >= 2 &&
15576          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
15577          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
15578        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
15579        if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
15580            matchAsm(AsmPieces[1], "bswap", "%edx") &&
15581            matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
15582          return IntrinsicLowering::LowerToByteSwap(CI);
15583      }
15584    }
15585    break;
15586  }
15587  return false;
15588}
15589
15590
15591
15592/// getConstraintType - Given a constraint letter, return the type of
15593/// constraint it is for this target.
15594X86TargetLowering::ConstraintType
15595X86TargetLowering::getConstraintType(const std::string &Constraint) const {
15596  if (Constraint.size() == 1) {
15597    switch (Constraint[0]) {
15598    case 'R':
15599    case 'q':
15600    case 'Q':
15601    case 'f':
15602    case 't':
15603    case 'u':
15604    case 'y':
15605    case 'x':
15606    case 'Y':
15607    case 'l':
15608      return C_RegisterClass;
15609    case 'a':
15610    case 'b':
15611    case 'c':
15612    case 'd':
15613    case 'S':
15614    case 'D':
15615    case 'A':
15616      return C_Register;
15617    case 'I':
15618    case 'J':
15619    case 'K':
15620    case 'L':
15621    case 'M':
15622    case 'N':
15623    case 'G':
15624    case 'C':
15625    case 'e':
15626    case 'Z':
15627      return C_Other;
15628    default:
15629      break;
15630    }
15631  }
15632  return TargetLowering::getConstraintType(Constraint);
15633}
15634
15635/// Examine constraint type and operand type and determine a weight value.
15636/// This object must already have been set up with the operand type
15637/// and the current alternative constraint selected.
15638TargetLowering::ConstraintWeight
15639  X86TargetLowering::getSingleConstraintMatchWeight(
15640    AsmOperandInfo &info, const char *constraint) const {
15641  ConstraintWeight weight = CW_Invalid;
15642  Value *CallOperandVal = info.CallOperandVal;
15643    // If we don't have a value, we can't do a match,
15644    // but allow it at the lowest weight.
15645  if (CallOperandVal == NULL)
15646    return CW_Default;
15647  Type *type = CallOperandVal->getType();
15648  // Look at the constraint type.
15649  switch (*constraint) {
15650  default:
15651    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
15652  case 'R':
15653  case 'q':
15654  case 'Q':
15655  case 'a':
15656  case 'b':
15657  case 'c':
15658  case 'd':
15659  case 'S':
15660  case 'D':
15661  case 'A':
15662    if (CallOperandVal->getType()->isIntegerTy())
15663      weight = CW_SpecificReg;
15664    break;
15665  case 'f':
15666  case 't':
15667  case 'u':
15668      if (type->isFloatingPointTy())
15669        weight = CW_SpecificReg;
15670      break;
15671  case 'y':
15672      if (type->isX86_MMXTy() && Subtarget->hasMMX())
15673        weight = CW_SpecificReg;
15674      break;
15675  case 'x':
15676  case 'Y':
15677    if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
15678        ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasAVX()))
15679      weight = CW_Register;
15680    break;
15681  case 'I':
15682    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
15683      if (C->getZExtValue() <= 31)
15684        weight = CW_Constant;
15685    }
15686    break;
15687  case 'J':
15688    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15689      if (C->getZExtValue() <= 63)
15690        weight = CW_Constant;
15691    }
15692    break;
15693  case 'K':
15694    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15695      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
15696        weight = CW_Constant;
15697    }
15698    break;
15699  case 'L':
15700    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15701      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
15702        weight = CW_Constant;
15703    }
15704    break;
15705  case 'M':
15706    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15707      if (C->getZExtValue() <= 3)
15708        weight = CW_Constant;
15709    }
15710    break;
15711  case 'N':
15712    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15713      if (C->getZExtValue() <= 0xff)
15714        weight = CW_Constant;
15715    }
15716    break;
15717  case 'G':
15718  case 'C':
15719    if (dyn_cast<ConstantFP>(CallOperandVal)) {
15720      weight = CW_Constant;
15721    }
15722    break;
15723  case 'e':
15724    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15725      if ((C->getSExtValue() >= -0x80000000LL) &&
15726          (C->getSExtValue() <= 0x7fffffffLL))
15727        weight = CW_Constant;
15728    }
15729    break;
15730  case 'Z':
15731    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15732      if (C->getZExtValue() <= 0xffffffff)
15733        weight = CW_Constant;
15734    }
15735    break;
15736  }
15737  return weight;
15738}
15739
15740/// LowerXConstraint - try to replace an X constraint, which matches anything,
15741/// with another that has more specific requirements based on the type of the
15742/// corresponding operand.
15743const char *X86TargetLowering::
15744LowerXConstraint(EVT ConstraintVT) const {
15745  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
15746  // 'f' like normal targets.
15747  if (ConstraintVT.isFloatingPoint()) {
15748    if (Subtarget->hasSSE2())
15749      return "Y";
15750    if (Subtarget->hasSSE1())
15751      return "x";
15752  }
15753
15754  return TargetLowering::LowerXConstraint(ConstraintVT);
15755}
15756
15757/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15758/// vector.  If it is invalid, don't add anything to Ops.
15759void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
15760                                                     std::string &Constraint,
15761                                                     std::vector<SDValue>&Ops,
15762                                                     SelectionDAG &DAG) const {
15763  SDValue Result(0, 0);
15764
15765  // Only support length 1 constraints for now.
15766  if (Constraint.length() > 1) return;
15767
15768  char ConstraintLetter = Constraint[0];
15769  switch (ConstraintLetter) {
15770  default: break;
15771  case 'I':
15772    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15773      if (C->getZExtValue() <= 31) {
15774        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15775        break;
15776      }
15777    }
15778    return;
15779  case 'J':
15780    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15781      if (C->getZExtValue() <= 63) {
15782        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15783        break;
15784      }
15785    }
15786    return;
15787  case 'K':
15788    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15789      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
15790        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15791        break;
15792      }
15793    }
15794    return;
15795  case 'N':
15796    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15797      if (C->getZExtValue() <= 255) {
15798        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15799        break;
15800      }
15801    }
15802    return;
15803  case 'e': {
15804    // 32-bit signed value
15805    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15806      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15807                                           C->getSExtValue())) {
15808        // Widen to 64 bits here to get it sign extended.
15809        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
15810        break;
15811      }
15812    // FIXME gcc accepts some relocatable values here too, but only in certain
15813    // memory models; it's complicated.
15814    }
15815    return;
15816  }
15817  case 'Z': {
15818    // 32-bit unsigned value
15819    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15820      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15821                                           C->getZExtValue())) {
15822        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15823        break;
15824      }
15825    }
15826    // FIXME gcc accepts some relocatable values here too, but only in certain
15827    // memory models; it's complicated.
15828    return;
15829  }
15830  case 'i': {
15831    // Literal immediates are always ok.
15832    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
15833      // Widen to 64 bits here to get it sign extended.
15834      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
15835      break;
15836    }
15837
15838    // In any sort of PIC mode addresses need to be computed at runtime by
15839    // adding in a register or some sort of table lookup.  These can't
15840    // be used as immediates.
15841    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
15842      return;
15843
15844    // If we are in non-pic codegen mode, we allow the address of a global (with
15845    // an optional displacement) to be used with 'i'.
15846    GlobalAddressSDNode *GA = 0;
15847    int64_t Offset = 0;
15848
15849    // Match either (GA), (GA+C), (GA+C1+C2), etc.
15850    while (1) {
15851      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
15852        Offset += GA->getOffset();
15853        break;
15854      } else if (Op.getOpcode() == ISD::ADD) {
15855        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15856          Offset += C->getZExtValue();
15857          Op = Op.getOperand(0);
15858          continue;
15859        }
15860      } else if (Op.getOpcode() == ISD::SUB) {
15861        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15862          Offset += -C->getZExtValue();
15863          Op = Op.getOperand(0);
15864          continue;
15865        }
15866      }
15867
15868      // Otherwise, this isn't something we can handle, reject it.
15869      return;
15870    }
15871
15872    const GlobalValue *GV = GA->getGlobal();
15873    // If we require an extra load to get this address, as in PIC mode, we
15874    // can't accept it.
15875    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
15876                                                        getTargetMachine())))
15877      return;
15878
15879    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
15880                                        GA->getValueType(0), Offset);
15881    break;
15882  }
15883  }
15884
15885  if (Result.getNode()) {
15886    Ops.push_back(Result);
15887    return;
15888  }
15889  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
15890}
15891
15892std::pair<unsigned, const TargetRegisterClass*>
15893X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
15894                                                EVT VT) const {
15895  // First, see if this is a constraint that directly corresponds to an LLVM
15896  // register class.
15897  if (Constraint.size() == 1) {
15898    // GCC Constraint Letters
15899    switch (Constraint[0]) {
15900    default: break;
15901      // TODO: Slight differences here in allocation order and leaving
15902      // RIP in the class. Do they matter any more here than they do
15903      // in the normal allocation?
15904    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
15905      if (Subtarget->is64Bit()) {
15906        if (VT == MVT::i32 || VT == MVT::f32)
15907          return std::make_pair(0U, &X86::GR32RegClass);
15908        if (VT == MVT::i16)
15909          return std::make_pair(0U, &X86::GR16RegClass);
15910        if (VT == MVT::i8 || VT == MVT::i1)
15911          return std::make_pair(0U, &X86::GR8RegClass);
15912        if (VT == MVT::i64 || VT == MVT::f64)
15913          return std::make_pair(0U, &X86::GR64RegClass);
15914        break;
15915      }
15916      // 32-bit fallthrough
15917    case 'Q':   // Q_REGS
15918      if (VT == MVT::i32 || VT == MVT::f32)
15919        return std::make_pair(0U, &X86::GR32_ABCDRegClass);
15920      if (VT == MVT::i16)
15921        return std::make_pair(0U, &X86::GR16_ABCDRegClass);
15922      if (VT == MVT::i8 || VT == MVT::i1)
15923        return std::make_pair(0U, &X86::GR8_ABCD_LRegClass);
15924      if (VT == MVT::i64)
15925        return std::make_pair(0U, &X86::GR64_ABCDRegClass);
15926      break;
15927    case 'r':   // GENERAL_REGS
15928    case 'l':   // INDEX_REGS
15929      if (VT == MVT::i8 || VT == MVT::i1)
15930        return std::make_pair(0U, &X86::GR8RegClass);
15931      if (VT == MVT::i16)
15932        return std::make_pair(0U, &X86::GR16RegClass);
15933      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
15934        return std::make_pair(0U, &X86::GR32RegClass);
15935      return std::make_pair(0U, &X86::GR64RegClass);
15936    case 'R':   // LEGACY_REGS
15937      if (VT == MVT::i8 || VT == MVT::i1)
15938        return std::make_pair(0U, &X86::GR8_NOREXRegClass);
15939      if (VT == MVT::i16)
15940        return std::make_pair(0U, &X86::GR16_NOREXRegClass);
15941      if (VT == MVT::i32 || !Subtarget->is64Bit())
15942        return std::make_pair(0U, &X86::GR32_NOREXRegClass);
15943      return std::make_pair(0U, &X86::GR64_NOREXRegClass);
15944    case 'f':  // FP Stack registers.
15945      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
15946      // value to the correct fpstack register class.
15947      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
15948        return std::make_pair(0U, &X86::RFP32RegClass);
15949      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
15950        return std::make_pair(0U, &X86::RFP64RegClass);
15951      return std::make_pair(0U, &X86::RFP80RegClass);
15952    case 'y':   // MMX_REGS if MMX allowed.
15953      if (!Subtarget->hasMMX()) break;
15954      return std::make_pair(0U, &X86::VR64RegClass);
15955    case 'Y':   // SSE_REGS if SSE2 allowed
15956      if (!Subtarget->hasSSE2()) break;
15957      // FALL THROUGH.
15958    case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
15959      if (!Subtarget->hasSSE1()) break;
15960
15961      switch (VT.getSimpleVT().SimpleTy) {
15962      default: break;
15963      // Scalar SSE types.
15964      case MVT::f32:
15965      case MVT::i32:
15966        return std::make_pair(0U, &X86::FR32RegClass);
15967      case MVT::f64:
15968      case MVT::i64:
15969        return std::make_pair(0U, &X86::FR64RegClass);
15970      // Vector types.
15971      case MVT::v16i8:
15972      case MVT::v8i16:
15973      case MVT::v4i32:
15974      case MVT::v2i64:
15975      case MVT::v4f32:
15976      case MVT::v2f64:
15977        return std::make_pair(0U, &X86::VR128RegClass);
15978      // AVX types.
15979      case MVT::v32i8:
15980      case MVT::v16i16:
15981      case MVT::v8i32:
15982      case MVT::v4i64:
15983      case MVT::v8f32:
15984      case MVT::v4f64:
15985        return std::make_pair(0U, &X86::VR256RegClass);
15986      }
15987      break;
15988    }
15989  }
15990
15991  // Use the default implementation in TargetLowering to convert the register
15992  // constraint into a member of a register class.
15993  std::pair<unsigned, const TargetRegisterClass*> Res;
15994  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
15995
15996  // Not found as a standard register?
15997  if (Res.second == 0) {
15998    // Map st(0) -> st(7) -> ST0
15999    if (Constraint.size() == 7 && Constraint[0] == '{' &&
16000        tolower(Constraint[1]) == 's' &&
16001        tolower(Constraint[2]) == 't' &&
16002        Constraint[3] == '(' &&
16003        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
16004        Constraint[5] == ')' &&
16005        Constraint[6] == '}') {
16006
16007      Res.first = X86::ST0+Constraint[4]-'0';
16008      Res.second = &X86::RFP80RegClass;
16009      return Res;
16010    }
16011
16012    // GCC allows "st(0)" to be called just plain "st".
16013    if (StringRef("{st}").equals_lower(Constraint)) {
16014      Res.first = X86::ST0;
16015      Res.second = &X86::RFP80RegClass;
16016      return Res;
16017    }
16018
16019    // flags -> EFLAGS
16020    if (StringRef("{flags}").equals_lower(Constraint)) {
16021      Res.first = X86::EFLAGS;
16022      Res.second = &X86::CCRRegClass;
16023      return Res;
16024    }
16025
16026    // 'A' means EAX + EDX.
16027    if (Constraint == "A") {
16028      Res.first = X86::EAX;
16029      Res.second = &X86::GR32_ADRegClass;
16030      return Res;
16031    }
16032    return Res;
16033  }
16034
16035  // Otherwise, check to see if this is a register class of the wrong value
16036  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
16037  // turn into {ax},{dx}.
16038  if (Res.second->hasType(VT))
16039    return Res;   // Correct type already, nothing to do.
16040
16041  // All of the single-register GCC register classes map their values onto
16042  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
16043  // really want an 8-bit or 32-bit register, map to the appropriate register
16044  // class and return the appropriate register.
16045  if (Res.second == &X86::GR16RegClass) {
16046    if (VT == MVT::i8) {
16047      unsigned DestReg = 0;
16048      switch (Res.first) {
16049      default: break;
16050      case X86::AX: DestReg = X86::AL; break;
16051      case X86::DX: DestReg = X86::DL; break;
16052      case X86::CX: DestReg = X86::CL; break;
16053      case X86::BX: DestReg = X86::BL; break;
16054      }
16055      if (DestReg) {
16056        Res.first = DestReg;
16057        Res.second = &X86::GR8RegClass;
16058      }
16059    } else if (VT == MVT::i32) {
16060      unsigned DestReg = 0;
16061      switch (Res.first) {
16062      default: break;
16063      case X86::AX: DestReg = X86::EAX; break;
16064      case X86::DX: DestReg = X86::EDX; break;
16065      case X86::CX: DestReg = X86::ECX; break;
16066      case X86::BX: DestReg = X86::EBX; break;
16067      case X86::SI: DestReg = X86::ESI; break;
16068      case X86::DI: DestReg = X86::EDI; break;
16069      case X86::BP: DestReg = X86::EBP; break;
16070      case X86::SP: DestReg = X86::ESP; break;
16071      }
16072      if (DestReg) {
16073        Res.first = DestReg;
16074        Res.second = &X86::GR32RegClass;
16075      }
16076    } else if (VT == MVT::i64) {
16077      unsigned DestReg = 0;
16078      switch (Res.first) {
16079      default: break;
16080      case X86::AX: DestReg = X86::RAX; break;
16081      case X86::DX: DestReg = X86::RDX; break;
16082      case X86::CX: DestReg = X86::RCX; break;
16083      case X86::BX: DestReg = X86::RBX; break;
16084      case X86::SI: DestReg = X86::RSI; break;
16085      case X86::DI: DestReg = X86::RDI; break;
16086      case X86::BP: DestReg = X86::RBP; break;
16087      case X86::SP: DestReg = X86::RSP; break;
16088      }
16089      if (DestReg) {
16090        Res.first = DestReg;
16091        Res.second = &X86::GR64RegClass;
16092      }
16093    }
16094  } else if (Res.second == &X86::FR32RegClass ||
16095             Res.second == &X86::FR64RegClass ||
16096             Res.second == &X86::VR128RegClass) {
16097    // Handle references to XMM physical registers that got mapped into the
16098    // wrong class.  This can happen with constraints like {xmm0} where the
16099    // target independent register mapper will just pick the first match it can
16100    // find, ignoring the required type.
16101    if (VT == MVT::f32)
16102      Res.second = &X86::FR32RegClass;
16103    else if (VT == MVT::f64)
16104      Res.second = &X86::FR64RegClass;
16105    else if (X86::VR128RegClass.hasType(VT))
16106      Res.second = &X86::VR128RegClass;
16107  }
16108
16109  return Res;
16110}
16111