X86ISelLowering.cpp revision 23946fcaaefaf3c1a9d1ef86a3786f622c005f1a
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/PseudoSourceValue.h"
39#include "llvm/MC/MCAsmInfo.h"
40#include "llvm/MC/MCContext.h"
41#include "llvm/MC/MCExpr.h"
42#include "llvm/MC/MCSymbol.h"
43#include "llvm/ADT/BitVector.h"
44#include "llvm/ADT/SmallSet.h"
45#include "llvm/ADT/Statistic.h"
46#include "llvm/ADT/StringExtras.h"
47#include "llvm/ADT/VectorExtras.h"
48#include "llvm/Support/CallSite.h"
49#include "llvm/Support/Debug.h"
50#include "llvm/Support/Dwarf.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/raw_ostream.h"
54#include "llvm/Target/TargetOptions.h"
55using namespace llvm;
56using namespace dwarf;
57
58STATISTIC(NumTailCalls, "Number of tail calls");
59
60// Forward declarations.
61static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
62                       SDValue V2);
63
64static SDValue Insert128BitVector(SDValue Result,
65                                  SDValue Vec,
66                                  SDValue Idx,
67                                  SelectionDAG &DAG,
68                                  DebugLoc dl);
69
70static SDValue Extract128BitVector(SDValue Vec,
71                                   SDValue Idx,
72                                   SelectionDAG &DAG,
73                                   DebugLoc dl);
74
75/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
76/// sets things up to match to an AVX VEXTRACTF128 instruction or a
77/// simple subregister reference.  Idx is an index in the 128 bits we
78/// want.  It need not be aligned to a 128-bit bounday.  That makes
79/// lowering EXTRACT_VECTOR_ELT operations easier.
80static SDValue Extract128BitVector(SDValue Vec,
81                                   SDValue Idx,
82                                   SelectionDAG &DAG,
83                                   DebugLoc dl) {
84  EVT VT = Vec.getValueType();
85  assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
86  EVT ElVT = VT.getVectorElementType();
87  int Factor = VT.getSizeInBits()/128;
88  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
89                                  VT.getVectorNumElements()/Factor);
90
91  // Extract from UNDEF is UNDEF.
92  if (Vec.getOpcode() == ISD::UNDEF)
93    return DAG.getNode(ISD::UNDEF, dl, ResultVT);
94
95  if (isa<ConstantSDNode>(Idx)) {
96    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
97
98    // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
99    // we can match to VEXTRACTF128.
100    unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
101
102    // This is the index of the first element of the 128-bit chunk
103    // we want.
104    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
105                                 * ElemsPerChunk);
106
107    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
108    SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
109                                 VecIdx);
110
111    return Result;
112  }
113
114  return SDValue();
115}
116
117/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
118/// sets things up to match to an AVX VINSERTF128 instruction or a
119/// simple superregister reference.  Idx is an index in the 128 bits
120/// we want.  It need not be aligned to a 128-bit bounday.  That makes
121/// lowering INSERT_VECTOR_ELT operations easier.
122static SDValue Insert128BitVector(SDValue Result,
123                                  SDValue Vec,
124                                  SDValue Idx,
125                                  SelectionDAG &DAG,
126                                  DebugLoc dl) {
127  if (isa<ConstantSDNode>(Idx)) {
128    EVT VT = Vec.getValueType();
129    assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
130
131    EVT ElVT = VT.getVectorElementType();
132    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
133    EVT ResultVT = Result.getValueType();
134
135    // Insert the relevant 128 bits.
136    unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
137
138    // This is the index of the first element of the 128-bit chunk
139    // we want.
140    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
141                                 * ElemsPerChunk);
142
143    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
144    Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
145                         VecIdx);
146    return Result;
147  }
148
149  return SDValue();
150}
151
152static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
153  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
154  bool is64Bit = Subtarget->is64Bit();
155
156  if (Subtarget->isTargetEnvMacho()) {
157    if (is64Bit)
158      return new X8664_MachoTargetObjectFile();
159    return new TargetLoweringObjectFileMachO();
160  }
161
162  if (Subtarget->isTargetELF())
163    return new TargetLoweringObjectFileELF();
164  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
165    return new TargetLoweringObjectFileCOFF();
166  llvm_unreachable("unknown subtarget type");
167}
168
169X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
170  : TargetLowering(TM, createTLOF(TM)) {
171  Subtarget = &TM.getSubtarget<X86Subtarget>();
172  X86ScalarSSEf64 = Subtarget->hasXMMInt();
173  X86ScalarSSEf32 = Subtarget->hasXMM();
174  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
175
176  RegInfo = TM.getRegisterInfo();
177  TD = getTargetData();
178
179  // Set up the TargetLowering object.
180  static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
181
182  // X86 is weird, it always uses i8 for shift amounts and setcc results.
183  setBooleanContents(ZeroOrOneBooleanContent);
184  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
185  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
186
187  // For 64-bit since we have so many registers use the ILP scheduler, for
188  // 32-bit code use the register pressure specific scheduling.
189  if (Subtarget->is64Bit())
190    setSchedulingPreference(Sched::ILP);
191  else
192    setSchedulingPreference(Sched::RegPressure);
193  setStackPointerRegisterToSaveRestore(X86StackPtr);
194
195  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
196    // Setup Windows compiler runtime calls.
197    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
198    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
199    setLibcallName(RTLIB::SREM_I64, "_allrem");
200    setLibcallName(RTLIB::UREM_I64, "_aullrem");
201    setLibcallName(RTLIB::MUL_I64, "_allmul");
202    setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2");
203    setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2");
204    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
205    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
206    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
207    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
208    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
209    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C);
210    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C);
211  }
212
213  if (Subtarget->isTargetDarwin()) {
214    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
215    setUseUnderscoreSetJmp(false);
216    setUseUnderscoreLongJmp(false);
217  } else if (Subtarget->isTargetMingw()) {
218    // MS runtime is weird: it exports _setjmp, but longjmp!
219    setUseUnderscoreSetJmp(true);
220    setUseUnderscoreLongJmp(false);
221  } else {
222    setUseUnderscoreSetJmp(true);
223    setUseUnderscoreLongJmp(true);
224  }
225
226  // Set up the register classes.
227  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
228  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
229  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
230  if (Subtarget->is64Bit())
231    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
232
233  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
234
235  // We don't accept any truncstore of integer registers.
236  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
237  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
238  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
239  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
240  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
241  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
242
243  // SETOEQ and SETUNE require checking two conditions.
244  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
245  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
246  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
247  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
248  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
249  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
250
251  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
252  // operation.
253  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
254  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
255  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
256
257  if (Subtarget->is64Bit()) {
258    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
259    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
260  } else if (!UseSoftFloat) {
261    // We have an algorithm for SSE2->double, and we turn this into a
262    // 64-bit FILD followed by conditional FADD for other targets.
263    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
264    // We have an algorithm for SSE2, and we turn this into a 64-bit
265    // FILD for other targets.
266    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
267  }
268
269  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
270  // this operation.
271  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
272  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
273
274  if (!UseSoftFloat) {
275    // SSE has no i16 to fp conversion, only i32
276    if (X86ScalarSSEf32) {
277      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
278      // f32 and f64 cases are Legal, f80 case is not
279      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
280    } else {
281      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
282      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
283    }
284  } else {
285    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
286    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
287  }
288
289  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
290  // are Legal, f80 is custom lowered.
291  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
292  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
293
294  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
295  // this operation.
296  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
297  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
298
299  if (X86ScalarSSEf32) {
300    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
301    // f32 and f64 cases are Legal, f80 case is not
302    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
303  } else {
304    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
305    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
306  }
307
308  // Handle FP_TO_UINT by promoting the destination to a larger signed
309  // conversion.
310  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
311  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
312  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
313
314  if (Subtarget->is64Bit()) {
315    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
316    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
317  } else if (!UseSoftFloat) {
318    // Since AVX is a superset of SSE3, only check for SSE here.
319    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
320      // Expand FP_TO_UINT into a select.
321      // FIXME: We would like to use a Custom expander here eventually to do
322      // the optimal thing for SSE vs. the default expansion in the legalizer.
323      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
324    else
325      // With SSE3 we can use fisttpll to convert to a signed i64; without
326      // SSE, we're stuck with a fistpll.
327      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
328  }
329
330  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
331  if (!X86ScalarSSEf64) {
332    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
333    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
334    if (Subtarget->is64Bit()) {
335      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
336      // Without SSE, i64->f64 goes through memory.
337      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
338    }
339  }
340
341  // Scalar integer divide and remainder are lowered to use operations that
342  // produce two results, to match the available instructions. This exposes
343  // the two-result form to trivial CSE, which is able to combine x/y and x%y
344  // into a single instruction.
345  //
346  // Scalar integer multiply-high is also lowered to use two-result
347  // operations, to match the available instructions. However, plain multiply
348  // (low) operations are left as Legal, as there are single-result
349  // instructions for this in x86. Using the two-result multiply instructions
350  // when both high and low results are needed must be arranged by dagcombine.
351  for (unsigned i = 0, e = 4; i != e; ++i) {
352    MVT VT = IntVTs[i];
353    setOperationAction(ISD::MULHS, VT, Expand);
354    setOperationAction(ISD::MULHU, VT, Expand);
355    setOperationAction(ISD::SDIV, VT, Expand);
356    setOperationAction(ISD::UDIV, VT, Expand);
357    setOperationAction(ISD::SREM, VT, Expand);
358    setOperationAction(ISD::UREM, VT, Expand);
359
360    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
361    setOperationAction(ISD::ADDC, VT, Custom);
362    setOperationAction(ISD::ADDE, VT, Custom);
363    setOperationAction(ISD::SUBC, VT, Custom);
364    setOperationAction(ISD::SUBE, VT, Custom);
365  }
366
367  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
368  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
369  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
370  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
371  if (Subtarget->is64Bit())
372    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
373  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
374  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
375  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
376  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
377  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
378  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
379  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
380  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
381
382  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
383  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
384  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
385  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
386  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
387  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
388  if (Subtarget->is64Bit()) {
389    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
390    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
391  }
392
393  if (Subtarget->hasPOPCNT()) {
394    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
395  } else {
396    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
397    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
398    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
399    if (Subtarget->is64Bit())
400      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
401  }
402
403  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
404  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
405
406  // These should be promoted to a larger select which is supported.
407  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
408  // X86 wants to expand cmov itself.
409  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
410  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
411  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
412  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
413  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
414  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
415  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
416  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
417  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
418  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
419  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
420  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
421  if (Subtarget->is64Bit()) {
422    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
423    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
424  }
425  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
426
427  // Darwin ABI issue.
428  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
429  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
430  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
431  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
432  if (Subtarget->is64Bit())
433    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
434  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
435  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
436  if (Subtarget->is64Bit()) {
437    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
438    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
439    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
440    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
441    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
442  }
443  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
444  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
445  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
446  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
447  if (Subtarget->is64Bit()) {
448    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
449    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
450    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
451  }
452
453  if (Subtarget->hasXMM())
454    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
455
456  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
457  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
458
459  // On X86 and X86-64, atomic operations are lowered to locked instructions.
460  // Locked instructions, in turn, have implicit fence semantics (all memory
461  // operations are flushed before issuing the locked instruction, and they
462  // are not buffered), so we can fold away the common pattern of
463  // fence-atomic-fence.
464  setShouldFoldAtomicFences(true);
465
466  // Expand certain atomics
467  for (unsigned i = 0, e = 4; i != e; ++i) {
468    MVT VT = IntVTs[i];
469    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
470    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
471    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
472  }
473
474  if (!Subtarget->is64Bit()) {
475    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
476    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
477    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
478    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
479    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
480    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
481    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
482    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
483  }
484
485  if (Subtarget->hasCmpxchg16b()) {
486    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
487  }
488
489  // FIXME - use subtarget debug flags
490  if (!Subtarget->isTargetDarwin() &&
491      !Subtarget->isTargetELF() &&
492      !Subtarget->isTargetCygMing()) {
493    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
494  }
495
496  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
497  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
498  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
499  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
500  if (Subtarget->is64Bit()) {
501    setExceptionPointerRegister(X86::RAX);
502    setExceptionSelectorRegister(X86::RDX);
503  } else {
504    setExceptionPointerRegister(X86::EAX);
505    setExceptionSelectorRegister(X86::EDX);
506  }
507  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
508  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
509
510  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
511  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
512
513  setOperationAction(ISD::TRAP, MVT::Other, Legal);
514
515  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
516  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
517  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
518  if (Subtarget->is64Bit()) {
519    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
520    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
521  } else {
522    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
523    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
524  }
525
526  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
527  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
528
529  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
530    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
531                       MVT::i64 : MVT::i32, Custom);
532  else if (EnableSegmentedStacks)
533    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
534                       MVT::i64 : MVT::i32, Custom);
535  else
536    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
537                       MVT::i64 : MVT::i32, Expand);
538
539  if (!UseSoftFloat && X86ScalarSSEf64) {
540    // f32 and f64 use SSE.
541    // Set up the FP register classes.
542    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
543    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
544
545    // Use ANDPD to simulate FABS.
546    setOperationAction(ISD::FABS , MVT::f64, Custom);
547    setOperationAction(ISD::FABS , MVT::f32, Custom);
548
549    // Use XORP to simulate FNEG.
550    setOperationAction(ISD::FNEG , MVT::f64, Custom);
551    setOperationAction(ISD::FNEG , MVT::f32, Custom);
552
553    // Use ANDPD and ORPD to simulate FCOPYSIGN.
554    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
555    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
556
557    // Lower this to FGETSIGNx86 plus an AND.
558    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
559    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
560
561    // We don't support sin/cos/fmod
562    setOperationAction(ISD::FSIN , MVT::f64, Expand);
563    setOperationAction(ISD::FCOS , MVT::f64, Expand);
564    setOperationAction(ISD::FSIN , MVT::f32, Expand);
565    setOperationAction(ISD::FCOS , MVT::f32, Expand);
566
567    // Expand FP immediates into loads from the stack, except for the special
568    // cases we handle.
569    addLegalFPImmediate(APFloat(+0.0)); // xorpd
570    addLegalFPImmediate(APFloat(+0.0f)); // xorps
571  } else if (!UseSoftFloat && X86ScalarSSEf32) {
572    // Use SSE for f32, x87 for f64.
573    // Set up the FP register classes.
574    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
575    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
576
577    // Use ANDPS to simulate FABS.
578    setOperationAction(ISD::FABS , MVT::f32, Custom);
579
580    // Use XORP to simulate FNEG.
581    setOperationAction(ISD::FNEG , MVT::f32, Custom);
582
583    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
584
585    // Use ANDPS and ORPS to simulate FCOPYSIGN.
586    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
587    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
588
589    // We don't support sin/cos/fmod
590    setOperationAction(ISD::FSIN , MVT::f32, Expand);
591    setOperationAction(ISD::FCOS , MVT::f32, Expand);
592
593    // Special cases we handle for FP constants.
594    addLegalFPImmediate(APFloat(+0.0f)); // xorps
595    addLegalFPImmediate(APFloat(+0.0)); // FLD0
596    addLegalFPImmediate(APFloat(+1.0)); // FLD1
597    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
598    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
599
600    if (!UnsafeFPMath) {
601      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
602      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
603    }
604  } else if (!UseSoftFloat) {
605    // f32 and f64 in x87.
606    // Set up the FP register classes.
607    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
608    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
609
610    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
611    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
612    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
613    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
614
615    if (!UnsafeFPMath) {
616      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
617      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
618    }
619    addLegalFPImmediate(APFloat(+0.0)); // FLD0
620    addLegalFPImmediate(APFloat(+1.0)); // FLD1
621    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
622    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
623    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
624    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
625    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
626    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
627  }
628
629  // We don't support FMA.
630  setOperationAction(ISD::FMA, MVT::f64, Expand);
631  setOperationAction(ISD::FMA, MVT::f32, Expand);
632
633  // Long double always uses X87.
634  if (!UseSoftFloat) {
635    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
636    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
637    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
638    {
639      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
640      addLegalFPImmediate(TmpFlt);  // FLD0
641      TmpFlt.changeSign();
642      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
643
644      bool ignored;
645      APFloat TmpFlt2(+1.0);
646      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
647                      &ignored);
648      addLegalFPImmediate(TmpFlt2);  // FLD1
649      TmpFlt2.changeSign();
650      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
651    }
652
653    if (!UnsafeFPMath) {
654      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
655      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
656    }
657
658    setOperationAction(ISD::FMA, MVT::f80, Expand);
659  }
660
661  // Always use a library call for pow.
662  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
663  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
664  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
665
666  setOperationAction(ISD::FLOG, MVT::f80, Expand);
667  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
668  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
669  setOperationAction(ISD::FEXP, MVT::f80, Expand);
670  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
671
672  // First set operation action for all vector types to either promote
673  // (for widening) or expand (for scalarization). Then we will selectively
674  // turn on ones that can be effectively codegen'd.
675  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
676       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
677    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
678    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
679    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
680    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
681    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
682    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
683    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
684    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
685    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
686    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
687    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
688    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
689    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
690    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
691    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
692    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
693    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
694    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
695    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
696    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
697    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
698    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
699    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
700    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
701    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
702    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
703    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
704    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
705    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
706    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
707    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
708    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
709    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
710    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
711    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
712    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
713    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
714    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
715    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
716    setOperationAction(ISD::SETCC, (MVT::SimpleValueType)VT, Expand);
717    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
718    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
719    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
720    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
721    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
722    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
723    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
724    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
725    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
726    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
727    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
728    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
729    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
730    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
731    setOperationAction(ISD::VSELECT,  (MVT::SimpleValueType)VT, Expand);
732    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
733         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
734      setTruncStoreAction((MVT::SimpleValueType)VT,
735                          (MVT::SimpleValueType)InnerVT, Expand);
736    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
737    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
738    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
739  }
740
741  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
742  // with -msoft-float, disable use of MMX as well.
743  if (!UseSoftFloat && Subtarget->hasMMX()) {
744    addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
745    // No operations on x86mmx supported, everything uses intrinsics.
746  }
747
748  // MMX-sized vectors (other than x86mmx) are expected to be expanded
749  // into smaller operations.
750  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
751  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
752  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
753  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
754  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
755  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
756  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
757  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
758  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
759  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
760  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
761  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
762  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
763  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
764  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
765  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
766  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
767  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
768  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
769  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
770  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
771  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
772  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
773  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
774  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
775  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
776  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
777  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
778  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
779
780  if (!UseSoftFloat && Subtarget->hasXMM()) {
781    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
782
783    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
784    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
785    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
786    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
787    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
788    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
789    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
790    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
791    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
792    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
793    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
794    setOperationAction(ISD::SETCC,              MVT::v4f32, Custom);
795  }
796
797  if (!UseSoftFloat && Subtarget->hasXMMInt()) {
798    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
799
800    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
801    // registers cannot be used even for integer operations.
802    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
803    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
804    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
805    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
806
807    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
808    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
809    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
810    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
811    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
812    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
813    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
814    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
815    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
816    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
817    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
818    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
819    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
820    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
821    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
822    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
823
824    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
825    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
826    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
827    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
828
829    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
830    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
831    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
832    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
833    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
834
835    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
836    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
837    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
838    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
839    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
840
841    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
842    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
843      EVT VT = (MVT::SimpleValueType)i;
844      // Do not attempt to custom lower non-power-of-2 vectors
845      if (!isPowerOf2_32(VT.getVectorNumElements()))
846        continue;
847      // Do not attempt to custom lower non-128-bit vectors
848      if (!VT.is128BitVector())
849        continue;
850      setOperationAction(ISD::BUILD_VECTOR,
851                         VT.getSimpleVT().SimpleTy, Custom);
852      setOperationAction(ISD::VECTOR_SHUFFLE,
853                         VT.getSimpleVT().SimpleTy, Custom);
854      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
855                         VT.getSimpleVT().SimpleTy, Custom);
856    }
857
858    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
859    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
860    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
861    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
862    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
863    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
864
865    if (Subtarget->is64Bit()) {
866      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
867      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
868    }
869
870    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
871    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
872      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
873      EVT VT = SVT;
874
875      // Do not attempt to promote non-128-bit vectors
876      if (!VT.is128BitVector())
877        continue;
878
879      setOperationAction(ISD::AND,    SVT, Promote);
880      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
881      setOperationAction(ISD::OR,     SVT, Promote);
882      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
883      setOperationAction(ISD::XOR,    SVT, Promote);
884      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
885      setOperationAction(ISD::LOAD,   SVT, Promote);
886      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
887      setOperationAction(ISD::SELECT, SVT, Promote);
888      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
889    }
890
891    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
892
893    // Custom lower v2i64 and v2f64 selects.
894    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
895    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
896    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
897    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
898
899    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
900    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
901  }
902
903  if (Subtarget->hasSSE41() || Subtarget->hasAVX()) {
904    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
905    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
906    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
907    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
908    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
909    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
910    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
911    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
912    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
913    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
914
915    // FIXME: Do we need to handle scalar-to-vector here?
916    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
917
918    // Can turn SHL into an integer multiply.
919    setOperationAction(ISD::SHL,                MVT::v4i32, Custom);
920    setOperationAction(ISD::SHL,                MVT::v16i8, Custom);
921
922    setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
923    setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
924    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
925    setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
926    setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
927
928    // i8 and i16 vectors are custom , because the source register and source
929    // source memory operand types are not the same width.  f32 vectors are
930    // custom since the immediate controlling the insert encodes additional
931    // information.
932    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
933    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
934    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
935    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
936
937    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
938    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
939    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
940    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
941
942    if (Subtarget->is64Bit()) {
943      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
944      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
945    }
946  }
947
948  if (Subtarget->hasXMMInt()) {
949    setOperationAction(ISD::SRL,               MVT::v2i64, Custom);
950    setOperationAction(ISD::SRL,               MVT::v4i32, Custom);
951    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
952    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
953
954    setOperationAction(ISD::SHL,               MVT::v2i64, Custom);
955    setOperationAction(ISD::SHL,               MVT::v4i32, Custom);
956    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
957
958    setOperationAction(ISD::SRA,               MVT::v4i32, Custom);
959    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
960  }
961
962  if (Subtarget->hasSSE42() || Subtarget->hasAVX())
963    setOperationAction(ISD::SETCC,             MVT::v2i64, Custom);
964
965  if (!UseSoftFloat && Subtarget->hasAVX()) {
966    addRegisterClass(MVT::v32i8,  X86::VR256RegisterClass);
967    addRegisterClass(MVT::v16i16, X86::VR256RegisterClass);
968    addRegisterClass(MVT::v8i32,  X86::VR256RegisterClass);
969    addRegisterClass(MVT::v8f32,  X86::VR256RegisterClass);
970    addRegisterClass(MVT::v4i64,  X86::VR256RegisterClass);
971    addRegisterClass(MVT::v4f64,  X86::VR256RegisterClass);
972
973    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
974    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
975    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
976
977    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
978    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
979    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
980    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
981    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
982    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
983
984    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
985    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
986    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
987    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
988    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
989    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
990
991    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
992    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
993    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
994
995    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4f64,  Custom);
996    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i64,  Custom);
997    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f32,  Custom);
998    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i32,  Custom);
999    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v32i8,  Custom);
1000    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i16, Custom);
1001
1002    setOperationAction(ISD::SRL,               MVT::v4i64, Custom);
1003    setOperationAction(ISD::SRL,               MVT::v8i32, Custom);
1004    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1005    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1006
1007    setOperationAction(ISD::SHL,               MVT::v4i64, Custom);
1008    setOperationAction(ISD::SHL,               MVT::v8i32, Custom);
1009    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1010    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1011
1012    setOperationAction(ISD::SRA,               MVT::v8i32, Custom);
1013    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1014
1015    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1016    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1017    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1018    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1019
1020    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1021    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1022    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1023
1024    setOperationAction(ISD::VSELECT,            MVT::v4f64, Legal);
1025    setOperationAction(ISD::VSELECT,            MVT::v4i64, Legal);
1026    setOperationAction(ISD::VSELECT,            MVT::v8i32, Legal);
1027    setOperationAction(ISD::VSELECT,            MVT::v8f32, Legal);
1028
1029    setOperationAction(ISD::ADD,               MVT::v4i64, Custom);
1030    setOperationAction(ISD::ADD,               MVT::v8i32, Custom);
1031    setOperationAction(ISD::ADD,               MVT::v16i16, Custom);
1032    setOperationAction(ISD::ADD,               MVT::v32i8, Custom);
1033
1034    setOperationAction(ISD::SUB,               MVT::v4i64, Custom);
1035    setOperationAction(ISD::SUB,               MVT::v8i32, Custom);
1036    setOperationAction(ISD::SUB,               MVT::v16i16, Custom);
1037    setOperationAction(ISD::SUB,               MVT::v32i8, Custom);
1038
1039    setOperationAction(ISD::MUL,               MVT::v4i64, Custom);
1040    setOperationAction(ISD::MUL,               MVT::v8i32, Custom);
1041    setOperationAction(ISD::MUL,               MVT::v16i16, Custom);
1042    // Don't lower v32i8 because there is no 128-bit byte mul
1043
1044    // Custom lower several nodes for 256-bit types.
1045    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1046                  i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1047      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1048      EVT VT = SVT;
1049
1050      // Extract subvector is special because the value type
1051      // (result) is 128-bit but the source is 256-bit wide.
1052      if (VT.is128BitVector())
1053        setOperationAction(ISD::EXTRACT_SUBVECTOR, SVT, Custom);
1054
1055      // Do not attempt to custom lower other non-256-bit vectors
1056      if (!VT.is256BitVector())
1057        continue;
1058
1059      setOperationAction(ISD::BUILD_VECTOR,       SVT, Custom);
1060      setOperationAction(ISD::VECTOR_SHUFFLE,     SVT, Custom);
1061      setOperationAction(ISD::INSERT_VECTOR_ELT,  SVT, Custom);
1062      setOperationAction(ISD::EXTRACT_VECTOR_ELT, SVT, Custom);
1063      setOperationAction(ISD::SCALAR_TO_VECTOR,   SVT, Custom);
1064      setOperationAction(ISD::INSERT_SUBVECTOR,   SVT, Custom);
1065    }
1066
1067    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1068    for (unsigned i = (unsigned)MVT::v32i8; i != (unsigned)MVT::v4i64; ++i) {
1069      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1070      EVT VT = SVT;
1071
1072      // Do not attempt to promote non-256-bit vectors
1073      if (!VT.is256BitVector())
1074        continue;
1075
1076      setOperationAction(ISD::AND,    SVT, Promote);
1077      AddPromotedToType (ISD::AND,    SVT, MVT::v4i64);
1078      setOperationAction(ISD::OR,     SVT, Promote);
1079      AddPromotedToType (ISD::OR,     SVT, MVT::v4i64);
1080      setOperationAction(ISD::XOR,    SVT, Promote);
1081      AddPromotedToType (ISD::XOR,    SVT, MVT::v4i64);
1082      setOperationAction(ISD::LOAD,   SVT, Promote);
1083      AddPromotedToType (ISD::LOAD,   SVT, MVT::v4i64);
1084      setOperationAction(ISD::SELECT, SVT, Promote);
1085      AddPromotedToType (ISD::SELECT, SVT, MVT::v4i64);
1086    }
1087  }
1088
1089  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1090  // of this type with custom code.
1091  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1092         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; VT++) {
1093    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT, Custom);
1094  }
1095
1096  // We want to custom lower some of our intrinsics.
1097  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1098
1099
1100  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1101  // handle type legalization for these operations here.
1102  //
1103  // FIXME: We really should do custom legalization for addition and
1104  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1105  // than generic legalization for 64-bit multiplication-with-overflow, though.
1106  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1107    // Add/Sub/Mul with overflow operations are custom lowered.
1108    MVT VT = IntVTs[i];
1109    setOperationAction(ISD::SADDO, VT, Custom);
1110    setOperationAction(ISD::UADDO, VT, Custom);
1111    setOperationAction(ISD::SSUBO, VT, Custom);
1112    setOperationAction(ISD::USUBO, VT, Custom);
1113    setOperationAction(ISD::SMULO, VT, Custom);
1114    setOperationAction(ISD::UMULO, VT, Custom);
1115  }
1116
1117  // There are no 8-bit 3-address imul/mul instructions
1118  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1119  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1120
1121  if (!Subtarget->is64Bit()) {
1122    // These libcalls are not available in 32-bit.
1123    setLibcallName(RTLIB::SHL_I128, 0);
1124    setLibcallName(RTLIB::SRL_I128, 0);
1125    setLibcallName(RTLIB::SRA_I128, 0);
1126  }
1127
1128  // We have target-specific dag combine patterns for the following nodes:
1129  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1130  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1131  setTargetDAGCombine(ISD::BUILD_VECTOR);
1132  setTargetDAGCombine(ISD::VSELECT);
1133  setTargetDAGCombine(ISD::SELECT);
1134  setTargetDAGCombine(ISD::SHL);
1135  setTargetDAGCombine(ISD::SRA);
1136  setTargetDAGCombine(ISD::SRL);
1137  setTargetDAGCombine(ISD::OR);
1138  setTargetDAGCombine(ISD::AND);
1139  setTargetDAGCombine(ISD::ADD);
1140  setTargetDAGCombine(ISD::SUB);
1141  setTargetDAGCombine(ISD::LOAD);
1142  setTargetDAGCombine(ISD::STORE);
1143  setTargetDAGCombine(ISD::ZERO_EXTEND);
1144  setTargetDAGCombine(ISD::SINT_TO_FP);
1145  if (Subtarget->is64Bit())
1146    setTargetDAGCombine(ISD::MUL);
1147
1148  computeRegisterProperties();
1149
1150  // On Darwin, -Os means optimize for size without hurting performance,
1151  // do not reduce the limit.
1152  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1153  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1154  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1155  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1156  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1157  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1158  setPrefLoopAlignment(16);
1159  benefitFromCodePlacementOpt = true;
1160
1161  setPrefFunctionAlignment(4);
1162}
1163
1164
1165EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1166  if (!VT.isVector()) return MVT::i8;
1167  return VT.changeVectorElementTypeToInteger();
1168}
1169
1170
1171/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1172/// the desired ByVal argument alignment.
1173static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1174  if (MaxAlign == 16)
1175    return;
1176  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1177    if (VTy->getBitWidth() == 128)
1178      MaxAlign = 16;
1179  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1180    unsigned EltAlign = 0;
1181    getMaxByValAlign(ATy->getElementType(), EltAlign);
1182    if (EltAlign > MaxAlign)
1183      MaxAlign = EltAlign;
1184  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1185    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1186      unsigned EltAlign = 0;
1187      getMaxByValAlign(STy->getElementType(i), EltAlign);
1188      if (EltAlign > MaxAlign)
1189        MaxAlign = EltAlign;
1190      if (MaxAlign == 16)
1191        break;
1192    }
1193  }
1194  return;
1195}
1196
1197/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1198/// function arguments in the caller parameter area. For X86, aggregates
1199/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1200/// are at 4-byte boundaries.
1201unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1202  if (Subtarget->is64Bit()) {
1203    // Max of 8 and alignment of type.
1204    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1205    if (TyAlign > 8)
1206      return TyAlign;
1207    return 8;
1208  }
1209
1210  unsigned Align = 4;
1211  if (Subtarget->hasXMM())
1212    getMaxByValAlign(Ty, Align);
1213  return Align;
1214}
1215
1216/// getOptimalMemOpType - Returns the target specific optimal type for load
1217/// and store operations as a result of memset, memcpy, and memmove
1218/// lowering. If DstAlign is zero that means it's safe to destination
1219/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1220/// means there isn't a need to check it against alignment requirement,
1221/// probably because the source does not need to be loaded. If
1222/// 'NonScalarIntSafe' is true, that means it's safe to return a
1223/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1224/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1225/// constant so it does not need to be loaded.
1226/// It returns EVT::Other if the type should be determined using generic
1227/// target-independent logic.
1228EVT
1229X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1230                                       unsigned DstAlign, unsigned SrcAlign,
1231                                       bool NonScalarIntSafe,
1232                                       bool MemcpyStrSrc,
1233                                       MachineFunction &MF) const {
1234  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1235  // linux.  This is because the stack realignment code can't handle certain
1236  // cases like PR2962.  This should be removed when PR2962 is fixed.
1237  const Function *F = MF.getFunction();
1238  if (NonScalarIntSafe &&
1239      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1240    if (Size >= 16 &&
1241        (Subtarget->isUnalignedMemAccessFast() ||
1242         ((DstAlign == 0 || DstAlign >= 16) &&
1243          (SrcAlign == 0 || SrcAlign >= 16))) &&
1244        Subtarget->getStackAlignment() >= 16) {
1245      if (Subtarget->hasAVX() &&
1246          Subtarget->getStackAlignment() >= 32)
1247        return MVT::v8f32;
1248      if (Subtarget->hasXMMInt())
1249        return MVT::v4i32;
1250      if (Subtarget->hasXMM())
1251        return MVT::v4f32;
1252    } else if (!MemcpyStrSrc && Size >= 8 &&
1253               !Subtarget->is64Bit() &&
1254               Subtarget->getStackAlignment() >= 8 &&
1255               Subtarget->hasXMMInt()) {
1256      // Do not use f64 to lower memcpy if source is string constant. It's
1257      // better to use i32 to avoid the loads.
1258      return MVT::f64;
1259    }
1260  }
1261  if (Subtarget->is64Bit() && Size >= 8)
1262    return MVT::i64;
1263  return MVT::i32;
1264}
1265
1266/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1267/// current function.  The returned value is a member of the
1268/// MachineJumpTableInfo::JTEntryKind enum.
1269unsigned X86TargetLowering::getJumpTableEncoding() const {
1270  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1271  // symbol.
1272  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1273      Subtarget->isPICStyleGOT())
1274    return MachineJumpTableInfo::EK_Custom32;
1275
1276  // Otherwise, use the normal jump table encoding heuristics.
1277  return TargetLowering::getJumpTableEncoding();
1278}
1279
1280const MCExpr *
1281X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1282                                             const MachineBasicBlock *MBB,
1283                                             unsigned uid,MCContext &Ctx) const{
1284  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1285         Subtarget->isPICStyleGOT());
1286  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1287  // entries.
1288  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1289                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1290}
1291
1292/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1293/// jumptable.
1294SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1295                                                    SelectionDAG &DAG) const {
1296  if (!Subtarget->is64Bit())
1297    // This doesn't have DebugLoc associated with it, but is not really the
1298    // same as a Register.
1299    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1300  return Table;
1301}
1302
1303/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1304/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1305/// MCExpr.
1306const MCExpr *X86TargetLowering::
1307getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1308                             MCContext &Ctx) const {
1309  // X86-64 uses RIP relative addressing based on the jump table label.
1310  if (Subtarget->isPICStyleRIPRel())
1311    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1312
1313  // Otherwise, the reference is relative to the PIC base.
1314  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1315}
1316
1317// FIXME: Why this routine is here? Move to RegInfo!
1318std::pair<const TargetRegisterClass*, uint8_t>
1319X86TargetLowering::findRepresentativeClass(EVT VT) const{
1320  const TargetRegisterClass *RRC = 0;
1321  uint8_t Cost = 1;
1322  switch (VT.getSimpleVT().SimpleTy) {
1323  default:
1324    return TargetLowering::findRepresentativeClass(VT);
1325  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1326    RRC = (Subtarget->is64Bit()
1327           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1328    break;
1329  case MVT::x86mmx:
1330    RRC = X86::VR64RegisterClass;
1331    break;
1332  case MVT::f32: case MVT::f64:
1333  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1334  case MVT::v4f32: case MVT::v2f64:
1335  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1336  case MVT::v4f64:
1337    RRC = X86::VR128RegisterClass;
1338    break;
1339  }
1340  return std::make_pair(RRC, Cost);
1341}
1342
1343bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1344                                               unsigned &Offset) const {
1345  if (!Subtarget->isTargetLinux())
1346    return false;
1347
1348  if (Subtarget->is64Bit()) {
1349    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1350    Offset = 0x28;
1351    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1352      AddressSpace = 256;
1353    else
1354      AddressSpace = 257;
1355  } else {
1356    // %gs:0x14 on i386
1357    Offset = 0x14;
1358    AddressSpace = 256;
1359  }
1360  return true;
1361}
1362
1363
1364//===----------------------------------------------------------------------===//
1365//               Return Value Calling Convention Implementation
1366//===----------------------------------------------------------------------===//
1367
1368#include "X86GenCallingConv.inc"
1369
1370bool
1371X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1372				  MachineFunction &MF, bool isVarArg,
1373                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1374                        LLVMContext &Context) const {
1375  SmallVector<CCValAssign, 16> RVLocs;
1376  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1377                 RVLocs, Context);
1378  return CCInfo.CheckReturn(Outs, RetCC_X86);
1379}
1380
1381SDValue
1382X86TargetLowering::LowerReturn(SDValue Chain,
1383                               CallingConv::ID CallConv, bool isVarArg,
1384                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1385                               const SmallVectorImpl<SDValue> &OutVals,
1386                               DebugLoc dl, SelectionDAG &DAG) const {
1387  MachineFunction &MF = DAG.getMachineFunction();
1388  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1389
1390  SmallVector<CCValAssign, 16> RVLocs;
1391  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1392                 RVLocs, *DAG.getContext());
1393  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1394
1395  // Add the regs to the liveout set for the function.
1396  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1397  for (unsigned i = 0; i != RVLocs.size(); ++i)
1398    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1399      MRI.addLiveOut(RVLocs[i].getLocReg());
1400
1401  SDValue Flag;
1402
1403  SmallVector<SDValue, 6> RetOps;
1404  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1405  // Operand #1 = Bytes To Pop
1406  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1407                   MVT::i16));
1408
1409  // Copy the result values into the output registers.
1410  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1411    CCValAssign &VA = RVLocs[i];
1412    assert(VA.isRegLoc() && "Can only return in registers!");
1413    SDValue ValToCopy = OutVals[i];
1414    EVT ValVT = ValToCopy.getValueType();
1415
1416    // If this is x86-64, and we disabled SSE, we can't return FP values,
1417    // or SSE or MMX vectors.
1418    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1419         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1420          (Subtarget->is64Bit() && !Subtarget->hasXMM())) {
1421      report_fatal_error("SSE register return with SSE disabled");
1422    }
1423    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1424    // llvm-gcc has never done it right and no one has noticed, so this
1425    // should be OK for now.
1426    if (ValVT == MVT::f64 &&
1427        (Subtarget->is64Bit() && !Subtarget->hasXMMInt()))
1428      report_fatal_error("SSE2 register return with SSE2 disabled");
1429
1430    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1431    // the RET instruction and handled by the FP Stackifier.
1432    if (VA.getLocReg() == X86::ST0 ||
1433        VA.getLocReg() == X86::ST1) {
1434      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1435      // change the value to the FP stack register class.
1436      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1437        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1438      RetOps.push_back(ValToCopy);
1439      // Don't emit a copytoreg.
1440      continue;
1441    }
1442
1443    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1444    // which is returned in RAX / RDX.
1445    if (Subtarget->is64Bit()) {
1446      if (ValVT == MVT::x86mmx) {
1447        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1448          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1449          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1450                                  ValToCopy);
1451          // If we don't have SSE2 available, convert to v4f32 so the generated
1452          // register is legal.
1453          if (!Subtarget->hasXMMInt())
1454            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1455        }
1456      }
1457    }
1458
1459    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1460    Flag = Chain.getValue(1);
1461  }
1462
1463  // The x86-64 ABI for returning structs by value requires that we copy
1464  // the sret argument into %rax for the return. We saved the argument into
1465  // a virtual register in the entry block, so now we copy the value out
1466  // and into %rax.
1467  if (Subtarget->is64Bit() &&
1468      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1469    MachineFunction &MF = DAG.getMachineFunction();
1470    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1471    unsigned Reg = FuncInfo->getSRetReturnReg();
1472    assert(Reg &&
1473           "SRetReturnReg should have been set in LowerFormalArguments().");
1474    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1475
1476    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1477    Flag = Chain.getValue(1);
1478
1479    // RAX now acts like a return value.
1480    MRI.addLiveOut(X86::RAX);
1481  }
1482
1483  RetOps[0] = Chain;  // Update chain.
1484
1485  // Add the flag if we have it.
1486  if (Flag.getNode())
1487    RetOps.push_back(Flag);
1488
1489  return DAG.getNode(X86ISD::RET_FLAG, dl,
1490                     MVT::Other, &RetOps[0], RetOps.size());
1491}
1492
1493bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const {
1494  if (N->getNumValues() != 1)
1495    return false;
1496  if (!N->hasNUsesOfValue(1, 0))
1497    return false;
1498
1499  SDNode *Copy = *N->use_begin();
1500  if (Copy->getOpcode() != ISD::CopyToReg &&
1501      Copy->getOpcode() != ISD::FP_EXTEND)
1502    return false;
1503
1504  bool HasRet = false;
1505  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1506       UI != UE; ++UI) {
1507    if (UI->getOpcode() != X86ISD::RET_FLAG)
1508      return false;
1509    HasRet = true;
1510  }
1511
1512  return HasRet;
1513}
1514
1515EVT
1516X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1517                                            ISD::NodeType ExtendKind) const {
1518  MVT ReturnMVT;
1519  // TODO: Is this also valid on 32-bit?
1520  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1521    ReturnMVT = MVT::i8;
1522  else
1523    ReturnMVT = MVT::i32;
1524
1525  EVT MinVT = getRegisterType(Context, ReturnMVT);
1526  return VT.bitsLT(MinVT) ? MinVT : VT;
1527}
1528
1529/// LowerCallResult - Lower the result values of a call into the
1530/// appropriate copies out of appropriate physical registers.
1531///
1532SDValue
1533X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1534                                   CallingConv::ID CallConv, bool isVarArg,
1535                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1536                                   DebugLoc dl, SelectionDAG &DAG,
1537                                   SmallVectorImpl<SDValue> &InVals) const {
1538
1539  // Assign locations to each value returned by this call.
1540  SmallVector<CCValAssign, 16> RVLocs;
1541  bool Is64Bit = Subtarget->is64Bit();
1542  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1543		 getTargetMachine(), RVLocs, *DAG.getContext());
1544  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1545
1546  // Copy all of the result registers out of their specified physreg.
1547  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1548    CCValAssign &VA = RVLocs[i];
1549    EVT CopyVT = VA.getValVT();
1550
1551    // If this is x86-64, and we disabled SSE, we can't return FP values
1552    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1553        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasXMM())) {
1554      report_fatal_error("SSE register return with SSE disabled");
1555    }
1556
1557    SDValue Val;
1558
1559    // If this is a call to a function that returns an fp value on the floating
1560    // point stack, we must guarantee the the value is popped from the stack, so
1561    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1562    // if the return value is not used. We use the FpPOP_RETVAL instruction
1563    // instead.
1564    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1565      // If we prefer to use the value in xmm registers, copy it out as f80 and
1566      // use a truncate to move it from fp stack reg to xmm reg.
1567      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1568      SDValue Ops[] = { Chain, InFlag };
1569      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1570                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1571      Val = Chain.getValue(0);
1572
1573      // Round the f80 to the right size, which also moves it to the appropriate
1574      // xmm register.
1575      if (CopyVT != VA.getValVT())
1576        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1577                          // This truncation won't change the value.
1578                          DAG.getIntPtrConstant(1));
1579    } else {
1580      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1581                                 CopyVT, InFlag).getValue(1);
1582      Val = Chain.getValue(0);
1583    }
1584    InFlag = Chain.getValue(2);
1585    InVals.push_back(Val);
1586  }
1587
1588  return Chain;
1589}
1590
1591
1592//===----------------------------------------------------------------------===//
1593//                C & StdCall & Fast Calling Convention implementation
1594//===----------------------------------------------------------------------===//
1595//  StdCall calling convention seems to be standard for many Windows' API
1596//  routines and around. It differs from C calling convention just a little:
1597//  callee should clean up the stack, not caller. Symbols should be also
1598//  decorated in some fancy way :) It doesn't support any vector arguments.
1599//  For info on fast calling convention see Fast Calling Convention (tail call)
1600//  implementation LowerX86_32FastCCCallTo.
1601
1602/// CallIsStructReturn - Determines whether a call uses struct return
1603/// semantics.
1604static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1605  if (Outs.empty())
1606    return false;
1607
1608  return Outs[0].Flags.isSRet();
1609}
1610
1611/// ArgsAreStructReturn - Determines whether a function uses struct
1612/// return semantics.
1613static bool
1614ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1615  if (Ins.empty())
1616    return false;
1617
1618  return Ins[0].Flags.isSRet();
1619}
1620
1621/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1622/// by "Src" to address "Dst" with size and alignment information specified by
1623/// the specific parameter attribute. The copy will be passed as a byval
1624/// function parameter.
1625static SDValue
1626CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1627                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1628                          DebugLoc dl) {
1629  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1630
1631  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1632                       /*isVolatile*/false, /*AlwaysInline=*/true,
1633                       MachinePointerInfo(), MachinePointerInfo());
1634}
1635
1636/// IsTailCallConvention - Return true if the calling convention is one that
1637/// supports tail call optimization.
1638static bool IsTailCallConvention(CallingConv::ID CC) {
1639  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1640}
1641
1642bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1643  if (!CI->isTailCall())
1644    return false;
1645
1646  CallSite CS(CI);
1647  CallingConv::ID CalleeCC = CS.getCallingConv();
1648  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1649    return false;
1650
1651  return true;
1652}
1653
1654/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1655/// a tailcall target by changing its ABI.
1656static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1657  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1658}
1659
1660SDValue
1661X86TargetLowering::LowerMemArgument(SDValue Chain,
1662                                    CallingConv::ID CallConv,
1663                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1664                                    DebugLoc dl, SelectionDAG &DAG,
1665                                    const CCValAssign &VA,
1666                                    MachineFrameInfo *MFI,
1667                                    unsigned i) const {
1668  // Create the nodes corresponding to a load from this parameter slot.
1669  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1670  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1671  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1672  EVT ValVT;
1673
1674  // If value is passed by pointer we have address passed instead of the value
1675  // itself.
1676  if (VA.getLocInfo() == CCValAssign::Indirect)
1677    ValVT = VA.getLocVT();
1678  else
1679    ValVT = VA.getValVT();
1680
1681  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1682  // changed with more analysis.
1683  // In case of tail call optimization mark all arguments mutable. Since they
1684  // could be overwritten by lowering of arguments in case of a tail call.
1685  if (Flags.isByVal()) {
1686    unsigned Bytes = Flags.getByValSize();
1687    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1688    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1689    return DAG.getFrameIndex(FI, getPointerTy());
1690  } else {
1691    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1692                                    VA.getLocMemOffset(), isImmutable);
1693    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1694    return DAG.getLoad(ValVT, dl, Chain, FIN,
1695                       MachinePointerInfo::getFixedStack(FI),
1696                       false, false, 0);
1697  }
1698}
1699
1700SDValue
1701X86TargetLowering::LowerFormalArguments(SDValue Chain,
1702                                        CallingConv::ID CallConv,
1703                                        bool isVarArg,
1704                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1705                                        DebugLoc dl,
1706                                        SelectionDAG &DAG,
1707                                        SmallVectorImpl<SDValue> &InVals)
1708                                          const {
1709  MachineFunction &MF = DAG.getMachineFunction();
1710  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1711
1712  const Function* Fn = MF.getFunction();
1713  if (Fn->hasExternalLinkage() &&
1714      Subtarget->isTargetCygMing() &&
1715      Fn->getName() == "main")
1716    FuncInfo->setForceFramePointer(true);
1717
1718  MachineFrameInfo *MFI = MF.getFrameInfo();
1719  bool Is64Bit = Subtarget->is64Bit();
1720  bool IsWin64 = Subtarget->isTargetWin64();
1721
1722  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1723         "Var args not supported with calling convention fastcc or ghc");
1724
1725  // Assign locations to all of the incoming arguments.
1726  SmallVector<CCValAssign, 16> ArgLocs;
1727  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1728                 ArgLocs, *DAG.getContext());
1729
1730  // Allocate shadow area for Win64
1731  if (IsWin64) {
1732    CCInfo.AllocateStack(32, 8);
1733  }
1734
1735  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1736
1737  unsigned LastVal = ~0U;
1738  SDValue ArgValue;
1739  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1740    CCValAssign &VA = ArgLocs[i];
1741    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1742    // places.
1743    assert(VA.getValNo() != LastVal &&
1744           "Don't support value assigned to multiple locs yet");
1745    LastVal = VA.getValNo();
1746
1747    if (VA.isRegLoc()) {
1748      EVT RegVT = VA.getLocVT();
1749      TargetRegisterClass *RC = NULL;
1750      if (RegVT == MVT::i32)
1751        RC = X86::GR32RegisterClass;
1752      else if (Is64Bit && RegVT == MVT::i64)
1753        RC = X86::GR64RegisterClass;
1754      else if (RegVT == MVT::f32)
1755        RC = X86::FR32RegisterClass;
1756      else if (RegVT == MVT::f64)
1757        RC = X86::FR64RegisterClass;
1758      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1759        RC = X86::VR256RegisterClass;
1760      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1761        RC = X86::VR128RegisterClass;
1762      else if (RegVT == MVT::x86mmx)
1763        RC = X86::VR64RegisterClass;
1764      else
1765        llvm_unreachable("Unknown argument type!");
1766
1767      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1768      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1769
1770      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1771      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1772      // right size.
1773      if (VA.getLocInfo() == CCValAssign::SExt)
1774        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1775                               DAG.getValueType(VA.getValVT()));
1776      else if (VA.getLocInfo() == CCValAssign::ZExt)
1777        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1778                               DAG.getValueType(VA.getValVT()));
1779      else if (VA.getLocInfo() == CCValAssign::BCvt)
1780        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1781
1782      if (VA.isExtInLoc()) {
1783        // Handle MMX values passed in XMM regs.
1784        if (RegVT.isVector()) {
1785          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1786                                 ArgValue);
1787        } else
1788          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1789      }
1790    } else {
1791      assert(VA.isMemLoc());
1792      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1793    }
1794
1795    // If value is passed via pointer - do a load.
1796    if (VA.getLocInfo() == CCValAssign::Indirect)
1797      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1798                             MachinePointerInfo(), false, false, 0);
1799
1800    InVals.push_back(ArgValue);
1801  }
1802
1803  // The x86-64 ABI for returning structs by value requires that we copy
1804  // the sret argument into %rax for the return. Save the argument into
1805  // a virtual register so that we can access it from the return points.
1806  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1807    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1808    unsigned Reg = FuncInfo->getSRetReturnReg();
1809    if (!Reg) {
1810      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1811      FuncInfo->setSRetReturnReg(Reg);
1812    }
1813    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1814    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1815  }
1816
1817  unsigned StackSize = CCInfo.getNextStackOffset();
1818  // Align stack specially for tail calls.
1819  if (FuncIsMadeTailCallSafe(CallConv))
1820    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1821
1822  // If the function takes variable number of arguments, make a frame index for
1823  // the start of the first vararg value... for expansion of llvm.va_start.
1824  if (isVarArg) {
1825    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1826                    CallConv != CallingConv::X86_ThisCall)) {
1827      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1828    }
1829    if (Is64Bit) {
1830      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1831
1832      // FIXME: We should really autogenerate these arrays
1833      static const unsigned GPR64ArgRegsWin64[] = {
1834        X86::RCX, X86::RDX, X86::R8,  X86::R9
1835      };
1836      static const unsigned GPR64ArgRegs64Bit[] = {
1837        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1838      };
1839      static const unsigned XMMArgRegs64Bit[] = {
1840        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1841        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1842      };
1843      const unsigned *GPR64ArgRegs;
1844      unsigned NumXMMRegs = 0;
1845
1846      if (IsWin64) {
1847        // The XMM registers which might contain var arg parameters are shadowed
1848        // in their paired GPR.  So we only need to save the GPR to their home
1849        // slots.
1850        TotalNumIntRegs = 4;
1851        GPR64ArgRegs = GPR64ArgRegsWin64;
1852      } else {
1853        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1854        GPR64ArgRegs = GPR64ArgRegs64Bit;
1855
1856        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit, TotalNumXMMRegs);
1857      }
1858      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1859                                                       TotalNumIntRegs);
1860
1861      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1862      assert(!(NumXMMRegs && !Subtarget->hasXMM()) &&
1863             "SSE register cannot be used when SSE is disabled!");
1864      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1865             "SSE register cannot be used when SSE is disabled!");
1866      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasXMM())
1867        // Kernel mode asks for SSE to be disabled, so don't push them
1868        // on the stack.
1869        TotalNumXMMRegs = 0;
1870
1871      if (IsWin64) {
1872        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1873        // Get to the caller-allocated home save location.  Add 8 to account
1874        // for the return address.
1875        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1876        FuncInfo->setRegSaveFrameIndex(
1877          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1878        // Fixup to set vararg frame on shadow area (4 x i64).
1879        if (NumIntRegs < 4)
1880          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1881      } else {
1882        // For X86-64, if there are vararg parameters that are passed via
1883        // registers, then we must store them to their spots on the stack so they
1884        // may be loaded by deferencing the result of va_next.
1885        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1886        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1887        FuncInfo->setRegSaveFrameIndex(
1888          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1889                               false));
1890      }
1891
1892      // Store the integer parameter registers.
1893      SmallVector<SDValue, 8> MemOps;
1894      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1895                                        getPointerTy());
1896      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1897      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1898        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1899                                  DAG.getIntPtrConstant(Offset));
1900        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1901                                     X86::GR64RegisterClass);
1902        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1903        SDValue Store =
1904          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1905                       MachinePointerInfo::getFixedStack(
1906                         FuncInfo->getRegSaveFrameIndex(), Offset),
1907                       false, false, 0);
1908        MemOps.push_back(Store);
1909        Offset += 8;
1910      }
1911
1912      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1913        // Now store the XMM (fp + vector) parameter registers.
1914        SmallVector<SDValue, 11> SaveXMMOps;
1915        SaveXMMOps.push_back(Chain);
1916
1917        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1918        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1919        SaveXMMOps.push_back(ALVal);
1920
1921        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1922                               FuncInfo->getRegSaveFrameIndex()));
1923        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1924                               FuncInfo->getVarArgsFPOffset()));
1925
1926        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1927          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
1928                                       X86::VR128RegisterClass);
1929          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1930          SaveXMMOps.push_back(Val);
1931        }
1932        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1933                                     MVT::Other,
1934                                     &SaveXMMOps[0], SaveXMMOps.size()));
1935      }
1936
1937      if (!MemOps.empty())
1938        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1939                            &MemOps[0], MemOps.size());
1940    }
1941  }
1942
1943  // Some CCs need callee pop.
1944  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, GuaranteedTailCallOpt)) {
1945    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
1946  } else {
1947    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
1948    // If this is an sret function, the return should pop the hidden pointer.
1949    if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
1950      FuncInfo->setBytesToPopOnReturn(4);
1951  }
1952
1953  if (!Is64Bit) {
1954    // RegSaveFrameIndex is X86-64 only.
1955    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
1956    if (CallConv == CallingConv::X86_FastCall ||
1957        CallConv == CallingConv::X86_ThisCall)
1958      // fastcc functions can't have varargs.
1959      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
1960  }
1961
1962  FuncInfo->setArgumentStackSize(StackSize);
1963
1964  return Chain;
1965}
1966
1967SDValue
1968X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1969                                    SDValue StackPtr, SDValue Arg,
1970                                    DebugLoc dl, SelectionDAG &DAG,
1971                                    const CCValAssign &VA,
1972                                    ISD::ArgFlagsTy Flags) const {
1973  unsigned LocMemOffset = VA.getLocMemOffset();
1974  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1975  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1976  if (Flags.isByVal())
1977    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1978
1979  return DAG.getStore(Chain, dl, Arg, PtrOff,
1980                      MachinePointerInfo::getStack(LocMemOffset),
1981                      false, false, 0);
1982}
1983
1984/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1985/// optimization is performed and it is required.
1986SDValue
1987X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1988                                           SDValue &OutRetAddr, SDValue Chain,
1989                                           bool IsTailCall, bool Is64Bit,
1990                                           int FPDiff, DebugLoc dl) const {
1991  // Adjust the Return address stack slot.
1992  EVT VT = getPointerTy();
1993  OutRetAddr = getReturnAddressFrameIndex(DAG);
1994
1995  // Load the "old" Return address.
1996  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
1997                           false, false, 0);
1998  return SDValue(OutRetAddr.getNode(), 1);
1999}
2000
2001/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2002/// optimization is performed and it is required (FPDiff!=0).
2003static SDValue
2004EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2005                         SDValue Chain, SDValue RetAddrFrIdx,
2006                         bool Is64Bit, int FPDiff, DebugLoc dl) {
2007  // Store the return address to the appropriate stack slot.
2008  if (!FPDiff) return Chain;
2009  // Calculate the new stack slot for the return address.
2010  int SlotSize = Is64Bit ? 8 : 4;
2011  int NewReturnAddrFI =
2012    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2013  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2014  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
2015  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2016                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2017                       false, false, 0);
2018  return Chain;
2019}
2020
2021SDValue
2022X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2023                             CallingConv::ID CallConv, bool isVarArg,
2024                             bool &isTailCall,
2025                             const SmallVectorImpl<ISD::OutputArg> &Outs,
2026                             const SmallVectorImpl<SDValue> &OutVals,
2027                             const SmallVectorImpl<ISD::InputArg> &Ins,
2028                             DebugLoc dl, SelectionDAG &DAG,
2029                             SmallVectorImpl<SDValue> &InVals) const {
2030  MachineFunction &MF = DAG.getMachineFunction();
2031  bool Is64Bit        = Subtarget->is64Bit();
2032  bool IsWin64        = Subtarget->isTargetWin64();
2033  bool IsStructRet    = CallIsStructReturn(Outs);
2034  bool IsSibcall      = false;
2035
2036  if (isTailCall) {
2037    // Check if it's really possible to do a tail call.
2038    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2039                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
2040                                                   Outs, OutVals, Ins, DAG);
2041
2042    // Sibcalls are automatically detected tailcalls which do not require
2043    // ABI changes.
2044    if (!GuaranteedTailCallOpt && isTailCall)
2045      IsSibcall = true;
2046
2047    if (isTailCall)
2048      ++NumTailCalls;
2049  }
2050
2051  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2052         "Var args not supported with calling convention fastcc or ghc");
2053
2054  // Analyze operands of the call, assigning locations to each operand.
2055  SmallVector<CCValAssign, 16> ArgLocs;
2056  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2057                 ArgLocs, *DAG.getContext());
2058
2059  // Allocate shadow area for Win64
2060  if (IsWin64) {
2061    CCInfo.AllocateStack(32, 8);
2062  }
2063
2064  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2065
2066  // Get a count of how many bytes are to be pushed on the stack.
2067  unsigned NumBytes = CCInfo.getNextStackOffset();
2068  if (IsSibcall)
2069    // This is a sibcall. The memory operands are available in caller's
2070    // own caller's stack.
2071    NumBytes = 0;
2072  else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
2073    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2074
2075  int FPDiff = 0;
2076  if (isTailCall && !IsSibcall) {
2077    // Lower arguments at fp - stackoffset + fpdiff.
2078    unsigned NumBytesCallerPushed =
2079      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2080    FPDiff = NumBytesCallerPushed - NumBytes;
2081
2082    // Set the delta of movement of the returnaddr stackslot.
2083    // But only set if delta is greater than previous delta.
2084    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2085      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2086  }
2087
2088  if (!IsSibcall)
2089    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2090
2091  SDValue RetAddrFrIdx;
2092  // Load return address for tail calls.
2093  if (isTailCall && FPDiff)
2094    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2095                                    Is64Bit, FPDiff, dl);
2096
2097  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2098  SmallVector<SDValue, 8> MemOpChains;
2099  SDValue StackPtr;
2100
2101  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2102  // of tail call optimization arguments are handle later.
2103  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2104    CCValAssign &VA = ArgLocs[i];
2105    EVT RegVT = VA.getLocVT();
2106    SDValue Arg = OutVals[i];
2107    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2108    bool isByVal = Flags.isByVal();
2109
2110    // Promote the value if needed.
2111    switch (VA.getLocInfo()) {
2112    default: llvm_unreachable("Unknown loc info!");
2113    case CCValAssign::Full: break;
2114    case CCValAssign::SExt:
2115      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2116      break;
2117    case CCValAssign::ZExt:
2118      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2119      break;
2120    case CCValAssign::AExt:
2121      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2122        // Special case: passing MMX values in XMM registers.
2123        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2124        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2125        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2126      } else
2127        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2128      break;
2129    case CCValAssign::BCvt:
2130      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2131      break;
2132    case CCValAssign::Indirect: {
2133      // Store the argument.
2134      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2135      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2136      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2137                           MachinePointerInfo::getFixedStack(FI),
2138                           false, false, 0);
2139      Arg = SpillSlot;
2140      break;
2141    }
2142    }
2143
2144    if (VA.isRegLoc()) {
2145      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2146      if (isVarArg && IsWin64) {
2147        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2148        // shadow reg if callee is a varargs function.
2149        unsigned ShadowReg = 0;
2150        switch (VA.getLocReg()) {
2151        case X86::XMM0: ShadowReg = X86::RCX; break;
2152        case X86::XMM1: ShadowReg = X86::RDX; break;
2153        case X86::XMM2: ShadowReg = X86::R8; break;
2154        case X86::XMM3: ShadowReg = X86::R9; break;
2155        }
2156        if (ShadowReg)
2157          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2158      }
2159    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2160      assert(VA.isMemLoc());
2161      if (StackPtr.getNode() == 0)
2162        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2163      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2164                                             dl, DAG, VA, Flags));
2165    }
2166  }
2167
2168  if (!MemOpChains.empty())
2169    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2170                        &MemOpChains[0], MemOpChains.size());
2171
2172  // Build a sequence of copy-to-reg nodes chained together with token chain
2173  // and flag operands which copy the outgoing args into registers.
2174  SDValue InFlag;
2175  // Tail call byval lowering might overwrite argument registers so in case of
2176  // tail call optimization the copies to registers are lowered later.
2177  if (!isTailCall)
2178    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2179      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2180                               RegsToPass[i].second, InFlag);
2181      InFlag = Chain.getValue(1);
2182    }
2183
2184  if (Subtarget->isPICStyleGOT()) {
2185    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2186    // GOT pointer.
2187    if (!isTailCall) {
2188      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2189                               DAG.getNode(X86ISD::GlobalBaseReg,
2190                                           DebugLoc(), getPointerTy()),
2191                               InFlag);
2192      InFlag = Chain.getValue(1);
2193    } else {
2194      // If we are tail calling and generating PIC/GOT style code load the
2195      // address of the callee into ECX. The value in ecx is used as target of
2196      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2197      // for tail calls on PIC/GOT architectures. Normally we would just put the
2198      // address of GOT into ebx and then call target@PLT. But for tail calls
2199      // ebx would be restored (since ebx is callee saved) before jumping to the
2200      // target@PLT.
2201
2202      // Note: The actual moving to ECX is done further down.
2203      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2204      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2205          !G->getGlobal()->hasProtectedVisibility())
2206        Callee = LowerGlobalAddress(Callee, DAG);
2207      else if (isa<ExternalSymbolSDNode>(Callee))
2208        Callee = LowerExternalSymbol(Callee, DAG);
2209    }
2210  }
2211
2212  if (Is64Bit && isVarArg && !IsWin64) {
2213    // From AMD64 ABI document:
2214    // For calls that may call functions that use varargs or stdargs
2215    // (prototype-less calls or calls to functions containing ellipsis (...) in
2216    // the declaration) %al is used as hidden argument to specify the number
2217    // of SSE registers used. The contents of %al do not need to match exactly
2218    // the number of registers, but must be an ubound on the number of SSE
2219    // registers used and is in the range 0 - 8 inclusive.
2220
2221    // Count the number of XMM registers allocated.
2222    static const unsigned XMMArgRegs[] = {
2223      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2224      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2225    };
2226    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2227    assert((Subtarget->hasXMM() || !NumXMMRegs)
2228           && "SSE registers cannot be used when SSE is disabled");
2229
2230    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2231                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2232    InFlag = Chain.getValue(1);
2233  }
2234
2235
2236  // For tail calls lower the arguments to the 'real' stack slot.
2237  if (isTailCall) {
2238    // Force all the incoming stack arguments to be loaded from the stack
2239    // before any new outgoing arguments are stored to the stack, because the
2240    // outgoing stack slots may alias the incoming argument stack slots, and
2241    // the alias isn't otherwise explicit. This is slightly more conservative
2242    // than necessary, because it means that each store effectively depends
2243    // on every argument instead of just those arguments it would clobber.
2244    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2245
2246    SmallVector<SDValue, 8> MemOpChains2;
2247    SDValue FIN;
2248    int FI = 0;
2249    // Do not flag preceding copytoreg stuff together with the following stuff.
2250    InFlag = SDValue();
2251    if (GuaranteedTailCallOpt) {
2252      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2253        CCValAssign &VA = ArgLocs[i];
2254        if (VA.isRegLoc())
2255          continue;
2256        assert(VA.isMemLoc());
2257        SDValue Arg = OutVals[i];
2258        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2259        // Create frame index.
2260        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2261        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2262        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2263        FIN = DAG.getFrameIndex(FI, getPointerTy());
2264
2265        if (Flags.isByVal()) {
2266          // Copy relative to framepointer.
2267          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2268          if (StackPtr.getNode() == 0)
2269            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2270                                          getPointerTy());
2271          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2272
2273          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2274                                                           ArgChain,
2275                                                           Flags, DAG, dl));
2276        } else {
2277          // Store relative to framepointer.
2278          MemOpChains2.push_back(
2279            DAG.getStore(ArgChain, dl, Arg, FIN,
2280                         MachinePointerInfo::getFixedStack(FI),
2281                         false, false, 0));
2282        }
2283      }
2284    }
2285
2286    if (!MemOpChains2.empty())
2287      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2288                          &MemOpChains2[0], MemOpChains2.size());
2289
2290    // Copy arguments to their registers.
2291    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2292      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2293                               RegsToPass[i].second, InFlag);
2294      InFlag = Chain.getValue(1);
2295    }
2296    InFlag =SDValue();
2297
2298    // Store the return address to the appropriate stack slot.
2299    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2300                                     FPDiff, dl);
2301  }
2302
2303  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2304    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2305    // In the 64-bit large code model, we have to make all calls
2306    // through a register, since the call instruction's 32-bit
2307    // pc-relative offset may not be large enough to hold the whole
2308    // address.
2309  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2310    // If the callee is a GlobalAddress node (quite common, every direct call
2311    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2312    // it.
2313
2314    // We should use extra load for direct calls to dllimported functions in
2315    // non-JIT mode.
2316    const GlobalValue *GV = G->getGlobal();
2317    if (!GV->hasDLLImportLinkage()) {
2318      unsigned char OpFlags = 0;
2319      bool ExtraLoad = false;
2320      unsigned WrapperKind = ISD::DELETED_NODE;
2321
2322      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2323      // external symbols most go through the PLT in PIC mode.  If the symbol
2324      // has hidden or protected visibility, or if it is static or local, then
2325      // we don't need to use the PLT - we can directly call it.
2326      if (Subtarget->isTargetELF() &&
2327          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2328          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2329        OpFlags = X86II::MO_PLT;
2330      } else if (Subtarget->isPICStyleStubAny() &&
2331                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2332                 (!Subtarget->getTargetTriple().isMacOSX() ||
2333                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2334        // PC-relative references to external symbols should go through $stub,
2335        // unless we're building with the leopard linker or later, which
2336        // automatically synthesizes these stubs.
2337        OpFlags = X86II::MO_DARWIN_STUB;
2338      } else if (Subtarget->isPICStyleRIPRel() &&
2339                 isa<Function>(GV) &&
2340                 cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
2341        // If the function is marked as non-lazy, generate an indirect call
2342        // which loads from the GOT directly. This avoids runtime overhead
2343        // at the cost of eager binding (and one extra byte of encoding).
2344        OpFlags = X86II::MO_GOTPCREL;
2345        WrapperKind = X86ISD::WrapperRIP;
2346        ExtraLoad = true;
2347      }
2348
2349      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2350                                          G->getOffset(), OpFlags);
2351
2352      // Add a wrapper if needed.
2353      if (WrapperKind != ISD::DELETED_NODE)
2354        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2355      // Add extra indirection if needed.
2356      if (ExtraLoad)
2357        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2358                             MachinePointerInfo::getGOT(),
2359                             false, false, 0);
2360    }
2361  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2362    unsigned char OpFlags = 0;
2363
2364    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2365    // external symbols should go through the PLT.
2366    if (Subtarget->isTargetELF() &&
2367        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2368      OpFlags = X86II::MO_PLT;
2369    } else if (Subtarget->isPICStyleStubAny() &&
2370               (!Subtarget->getTargetTriple().isMacOSX() ||
2371                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2372      // PC-relative references to external symbols should go through $stub,
2373      // unless we're building with the leopard linker or later, which
2374      // automatically synthesizes these stubs.
2375      OpFlags = X86II::MO_DARWIN_STUB;
2376    }
2377
2378    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2379                                         OpFlags);
2380  }
2381
2382  // Returns a chain & a flag for retval copy to use.
2383  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2384  SmallVector<SDValue, 8> Ops;
2385
2386  if (!IsSibcall && isTailCall) {
2387    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2388                           DAG.getIntPtrConstant(0, true), InFlag);
2389    InFlag = Chain.getValue(1);
2390  }
2391
2392  Ops.push_back(Chain);
2393  Ops.push_back(Callee);
2394
2395  if (isTailCall)
2396    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2397
2398  // Add argument registers to the end of the list so that they are known live
2399  // into the call.
2400  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2401    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2402                                  RegsToPass[i].second.getValueType()));
2403
2404  // Add an implicit use GOT pointer in EBX.
2405  if (!isTailCall && Subtarget->isPICStyleGOT())
2406    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2407
2408  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2409  if (Is64Bit && isVarArg && !IsWin64)
2410    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2411
2412  if (InFlag.getNode())
2413    Ops.push_back(InFlag);
2414
2415  if (isTailCall) {
2416    // We used to do:
2417    //// If this is the first return lowered for this function, add the regs
2418    //// to the liveout set for the function.
2419    // This isn't right, although it's probably harmless on x86; liveouts
2420    // should be computed from returns not tail calls.  Consider a void
2421    // function making a tail call to a function returning int.
2422    return DAG.getNode(X86ISD::TC_RETURN, dl,
2423                       NodeTys, &Ops[0], Ops.size());
2424  }
2425
2426  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2427  InFlag = Chain.getValue(1);
2428
2429  // Create the CALLSEQ_END node.
2430  unsigned NumBytesForCalleeToPush;
2431  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, GuaranteedTailCallOpt))
2432    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2433  else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2434    // If this is a call to a struct-return function, the callee
2435    // pops the hidden struct pointer, so we have to push it back.
2436    // This is common for Darwin/X86, Linux & Mingw32 targets.
2437    NumBytesForCalleeToPush = 4;
2438  else
2439    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2440
2441  // Returns a flag for retval copy to use.
2442  if (!IsSibcall) {
2443    Chain = DAG.getCALLSEQ_END(Chain,
2444                               DAG.getIntPtrConstant(NumBytes, true),
2445                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2446                                                     true),
2447                               InFlag);
2448    InFlag = Chain.getValue(1);
2449  }
2450
2451  // Handle result values, copying them out of physregs into vregs that we
2452  // return.
2453  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2454                         Ins, dl, DAG, InVals);
2455}
2456
2457
2458//===----------------------------------------------------------------------===//
2459//                Fast Calling Convention (tail call) implementation
2460//===----------------------------------------------------------------------===//
2461
2462//  Like std call, callee cleans arguments, convention except that ECX is
2463//  reserved for storing the tail called function address. Only 2 registers are
2464//  free for argument passing (inreg). Tail call optimization is performed
2465//  provided:
2466//                * tailcallopt is enabled
2467//                * caller/callee are fastcc
2468//  On X86_64 architecture with GOT-style position independent code only local
2469//  (within module) calls are supported at the moment.
2470//  To keep the stack aligned according to platform abi the function
2471//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2472//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2473//  If a tail called function callee has more arguments than the caller the
2474//  caller needs to make sure that there is room to move the RETADDR to. This is
2475//  achieved by reserving an area the size of the argument delta right after the
2476//  original REtADDR, but before the saved framepointer or the spilled registers
2477//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2478//  stack layout:
2479//    arg1
2480//    arg2
2481//    RETADDR
2482//    [ new RETADDR
2483//      move area ]
2484//    (possible EBP)
2485//    ESI
2486//    EDI
2487//    local1 ..
2488
2489/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2490/// for a 16 byte align requirement.
2491unsigned
2492X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2493                                               SelectionDAG& DAG) const {
2494  MachineFunction &MF = DAG.getMachineFunction();
2495  const TargetMachine &TM = MF.getTarget();
2496  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2497  unsigned StackAlignment = TFI.getStackAlignment();
2498  uint64_t AlignMask = StackAlignment - 1;
2499  int64_t Offset = StackSize;
2500  uint64_t SlotSize = TD->getPointerSize();
2501  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2502    // Number smaller than 12 so just add the difference.
2503    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2504  } else {
2505    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2506    Offset = ((~AlignMask) & Offset) + StackAlignment +
2507      (StackAlignment-SlotSize);
2508  }
2509  return Offset;
2510}
2511
2512/// MatchingStackOffset - Return true if the given stack call argument is
2513/// already available in the same position (relatively) of the caller's
2514/// incoming argument stack.
2515static
2516bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2517                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2518                         const X86InstrInfo *TII) {
2519  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2520  int FI = INT_MAX;
2521  if (Arg.getOpcode() == ISD::CopyFromReg) {
2522    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2523    if (!TargetRegisterInfo::isVirtualRegister(VR))
2524      return false;
2525    MachineInstr *Def = MRI->getVRegDef(VR);
2526    if (!Def)
2527      return false;
2528    if (!Flags.isByVal()) {
2529      if (!TII->isLoadFromStackSlot(Def, FI))
2530        return false;
2531    } else {
2532      unsigned Opcode = Def->getOpcode();
2533      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2534          Def->getOperand(1).isFI()) {
2535        FI = Def->getOperand(1).getIndex();
2536        Bytes = Flags.getByValSize();
2537      } else
2538        return false;
2539    }
2540  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2541    if (Flags.isByVal())
2542      // ByVal argument is passed in as a pointer but it's now being
2543      // dereferenced. e.g.
2544      // define @foo(%struct.X* %A) {
2545      //   tail call @bar(%struct.X* byval %A)
2546      // }
2547      return false;
2548    SDValue Ptr = Ld->getBasePtr();
2549    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2550    if (!FINode)
2551      return false;
2552    FI = FINode->getIndex();
2553  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2554    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2555    FI = FINode->getIndex();
2556    Bytes = Flags.getByValSize();
2557  } else
2558    return false;
2559
2560  assert(FI != INT_MAX);
2561  if (!MFI->isFixedObjectIndex(FI))
2562    return false;
2563  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2564}
2565
2566/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2567/// for tail call optimization. Targets which want to do tail call
2568/// optimization should implement this function.
2569bool
2570X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2571                                                     CallingConv::ID CalleeCC,
2572                                                     bool isVarArg,
2573                                                     bool isCalleeStructRet,
2574                                                     bool isCallerStructRet,
2575                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2576                                    const SmallVectorImpl<SDValue> &OutVals,
2577                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2578                                                     SelectionDAG& DAG) const {
2579  if (!IsTailCallConvention(CalleeCC) &&
2580      CalleeCC != CallingConv::C)
2581    return false;
2582
2583  // If -tailcallopt is specified, make fastcc functions tail-callable.
2584  const MachineFunction &MF = DAG.getMachineFunction();
2585  const Function *CallerF = DAG.getMachineFunction().getFunction();
2586  CallingConv::ID CallerCC = CallerF->getCallingConv();
2587  bool CCMatch = CallerCC == CalleeCC;
2588
2589  if (GuaranteedTailCallOpt) {
2590    if (IsTailCallConvention(CalleeCC) && CCMatch)
2591      return true;
2592    return false;
2593  }
2594
2595  // Look for obvious safe cases to perform tail call optimization that do not
2596  // require ABI changes. This is what gcc calls sibcall.
2597
2598  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2599  // emit a special epilogue.
2600  if (RegInfo->needsStackRealignment(MF))
2601    return false;
2602
2603  // Also avoid sibcall optimization if either caller or callee uses struct
2604  // return semantics.
2605  if (isCalleeStructRet || isCallerStructRet)
2606    return false;
2607
2608  // An stdcall caller is expected to clean up its arguments; the callee
2609  // isn't going to do that.
2610  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2611    return false;
2612
2613  // Do not sibcall optimize vararg calls unless all arguments are passed via
2614  // registers.
2615  if (isVarArg && !Outs.empty()) {
2616
2617    // Optimizing for varargs on Win64 is unlikely to be safe without
2618    // additional testing.
2619    if (Subtarget->isTargetWin64())
2620      return false;
2621
2622    SmallVector<CCValAssign, 16> ArgLocs;
2623    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2624		   getTargetMachine(), ArgLocs, *DAG.getContext());
2625
2626    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2627    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2628      if (!ArgLocs[i].isRegLoc())
2629        return false;
2630  }
2631
2632  // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2633  // Therefore if it's not used by the call it is not safe to optimize this into
2634  // a sibcall.
2635  bool Unused = false;
2636  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2637    if (!Ins[i].Used) {
2638      Unused = true;
2639      break;
2640    }
2641  }
2642  if (Unused) {
2643    SmallVector<CCValAssign, 16> RVLocs;
2644    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2645		   getTargetMachine(), RVLocs, *DAG.getContext());
2646    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2647    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2648      CCValAssign &VA = RVLocs[i];
2649      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2650        return false;
2651    }
2652  }
2653
2654  // If the calling conventions do not match, then we'd better make sure the
2655  // results are returned in the same way as what the caller expects.
2656  if (!CCMatch) {
2657    SmallVector<CCValAssign, 16> RVLocs1;
2658    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2659		    getTargetMachine(), RVLocs1, *DAG.getContext());
2660    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2661
2662    SmallVector<CCValAssign, 16> RVLocs2;
2663    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2664		    getTargetMachine(), RVLocs2, *DAG.getContext());
2665    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2666
2667    if (RVLocs1.size() != RVLocs2.size())
2668      return false;
2669    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2670      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2671        return false;
2672      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2673        return false;
2674      if (RVLocs1[i].isRegLoc()) {
2675        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2676          return false;
2677      } else {
2678        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2679          return false;
2680      }
2681    }
2682  }
2683
2684  // If the callee takes no arguments then go on to check the results of the
2685  // call.
2686  if (!Outs.empty()) {
2687    // Check if stack adjustment is needed. For now, do not do this if any
2688    // argument is passed on the stack.
2689    SmallVector<CCValAssign, 16> ArgLocs;
2690    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2691		   getTargetMachine(), ArgLocs, *DAG.getContext());
2692
2693    // Allocate shadow area for Win64
2694    if (Subtarget->isTargetWin64()) {
2695      CCInfo.AllocateStack(32, 8);
2696    }
2697
2698    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2699    if (CCInfo.getNextStackOffset()) {
2700      MachineFunction &MF = DAG.getMachineFunction();
2701      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2702        return false;
2703
2704      // Check if the arguments are already laid out in the right way as
2705      // the caller's fixed stack objects.
2706      MachineFrameInfo *MFI = MF.getFrameInfo();
2707      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2708      const X86InstrInfo *TII =
2709        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2710      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2711        CCValAssign &VA = ArgLocs[i];
2712        SDValue Arg = OutVals[i];
2713        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2714        if (VA.getLocInfo() == CCValAssign::Indirect)
2715          return false;
2716        if (!VA.isRegLoc()) {
2717          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2718                                   MFI, MRI, TII))
2719            return false;
2720        }
2721      }
2722    }
2723
2724    // If the tailcall address may be in a register, then make sure it's
2725    // possible to register allocate for it. In 32-bit, the call address can
2726    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2727    // callee-saved registers are restored. These happen to be the same
2728    // registers used to pass 'inreg' arguments so watch out for those.
2729    if (!Subtarget->is64Bit() &&
2730        !isa<GlobalAddressSDNode>(Callee) &&
2731        !isa<ExternalSymbolSDNode>(Callee)) {
2732      unsigned NumInRegs = 0;
2733      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2734        CCValAssign &VA = ArgLocs[i];
2735        if (!VA.isRegLoc())
2736          continue;
2737        unsigned Reg = VA.getLocReg();
2738        switch (Reg) {
2739        default: break;
2740        case X86::EAX: case X86::EDX: case X86::ECX:
2741          if (++NumInRegs == 3)
2742            return false;
2743          break;
2744        }
2745      }
2746    }
2747  }
2748
2749  return true;
2750}
2751
2752FastISel *
2753X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2754  return X86::createFastISel(funcInfo);
2755}
2756
2757
2758//===----------------------------------------------------------------------===//
2759//                           Other Lowering Hooks
2760//===----------------------------------------------------------------------===//
2761
2762static bool MayFoldLoad(SDValue Op) {
2763  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2764}
2765
2766static bool MayFoldIntoStore(SDValue Op) {
2767  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2768}
2769
2770static bool isTargetShuffle(unsigned Opcode) {
2771  switch(Opcode) {
2772  default: return false;
2773  case X86ISD::PSHUFD:
2774  case X86ISD::PSHUFHW:
2775  case X86ISD::PSHUFLW:
2776  case X86ISD::SHUFPD:
2777  case X86ISD::PALIGN:
2778  case X86ISD::SHUFPS:
2779  case X86ISD::MOVLHPS:
2780  case X86ISD::MOVLHPD:
2781  case X86ISD::MOVHLPS:
2782  case X86ISD::MOVLPS:
2783  case X86ISD::MOVLPD:
2784  case X86ISD::MOVSHDUP:
2785  case X86ISD::MOVSLDUP:
2786  case X86ISD::MOVDDUP:
2787  case X86ISD::MOVSS:
2788  case X86ISD::MOVSD:
2789  case X86ISD::UNPCKLPS:
2790  case X86ISD::UNPCKLPD:
2791  case X86ISD::VUNPCKLPSY:
2792  case X86ISD::VUNPCKLPDY:
2793  case X86ISD::PUNPCKLWD:
2794  case X86ISD::PUNPCKLBW:
2795  case X86ISD::PUNPCKLDQ:
2796  case X86ISD::PUNPCKLQDQ:
2797  case X86ISD::UNPCKHPS:
2798  case X86ISD::UNPCKHPD:
2799  case X86ISD::VUNPCKHPSY:
2800  case X86ISD::VUNPCKHPDY:
2801  case X86ISD::PUNPCKHWD:
2802  case X86ISD::PUNPCKHBW:
2803  case X86ISD::PUNPCKHDQ:
2804  case X86ISD::PUNPCKHQDQ:
2805  case X86ISD::VPERMILPS:
2806  case X86ISD::VPERMILPSY:
2807  case X86ISD::VPERMILPD:
2808  case X86ISD::VPERMILPDY:
2809  case X86ISD::VPERM2F128:
2810    return true;
2811  }
2812  return false;
2813}
2814
2815static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2816                                               SDValue V1, SelectionDAG &DAG) {
2817  switch(Opc) {
2818  default: llvm_unreachable("Unknown x86 shuffle node");
2819  case X86ISD::MOVSHDUP:
2820  case X86ISD::MOVSLDUP:
2821  case X86ISD::MOVDDUP:
2822    return DAG.getNode(Opc, dl, VT, V1);
2823  }
2824
2825  return SDValue();
2826}
2827
2828static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2829                          SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2830  switch(Opc) {
2831  default: llvm_unreachable("Unknown x86 shuffle node");
2832  case X86ISD::PSHUFD:
2833  case X86ISD::PSHUFHW:
2834  case X86ISD::PSHUFLW:
2835  case X86ISD::VPERMILPS:
2836  case X86ISD::VPERMILPSY:
2837  case X86ISD::VPERMILPD:
2838  case X86ISD::VPERMILPDY:
2839    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2840  }
2841
2842  return SDValue();
2843}
2844
2845static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2846               SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2847  switch(Opc) {
2848  default: llvm_unreachable("Unknown x86 shuffle node");
2849  case X86ISD::PALIGN:
2850  case X86ISD::SHUFPD:
2851  case X86ISD::SHUFPS:
2852  case X86ISD::VPERM2F128:
2853    return DAG.getNode(Opc, dl, VT, V1, V2,
2854                       DAG.getConstant(TargetMask, MVT::i8));
2855  }
2856  return SDValue();
2857}
2858
2859static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2860                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2861  switch(Opc) {
2862  default: llvm_unreachable("Unknown x86 shuffle node");
2863  case X86ISD::MOVLHPS:
2864  case X86ISD::MOVLHPD:
2865  case X86ISD::MOVHLPS:
2866  case X86ISD::MOVLPS:
2867  case X86ISD::MOVLPD:
2868  case X86ISD::MOVSS:
2869  case X86ISD::MOVSD:
2870  case X86ISD::UNPCKLPS:
2871  case X86ISD::UNPCKLPD:
2872  case X86ISD::VUNPCKLPSY:
2873  case X86ISD::VUNPCKLPDY:
2874  case X86ISD::PUNPCKLWD:
2875  case X86ISD::PUNPCKLBW:
2876  case X86ISD::PUNPCKLDQ:
2877  case X86ISD::PUNPCKLQDQ:
2878  case X86ISD::UNPCKHPS:
2879  case X86ISD::UNPCKHPD:
2880  case X86ISD::VUNPCKHPSY:
2881  case X86ISD::VUNPCKHPDY:
2882  case X86ISD::PUNPCKHWD:
2883  case X86ISD::PUNPCKHBW:
2884  case X86ISD::PUNPCKHDQ:
2885  case X86ISD::PUNPCKHQDQ:
2886    return DAG.getNode(Opc, dl, VT, V1, V2);
2887  }
2888  return SDValue();
2889}
2890
2891SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2892  MachineFunction &MF = DAG.getMachineFunction();
2893  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2894  int ReturnAddrIndex = FuncInfo->getRAIndex();
2895
2896  if (ReturnAddrIndex == 0) {
2897    // Set up a frame object for the return address.
2898    uint64_t SlotSize = TD->getPointerSize();
2899    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2900                                                           false);
2901    FuncInfo->setRAIndex(ReturnAddrIndex);
2902  }
2903
2904  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2905}
2906
2907
2908bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2909                                       bool hasSymbolicDisplacement) {
2910  // Offset should fit into 32 bit immediate field.
2911  if (!isInt<32>(Offset))
2912    return false;
2913
2914  // If we don't have a symbolic displacement - we don't have any extra
2915  // restrictions.
2916  if (!hasSymbolicDisplacement)
2917    return true;
2918
2919  // FIXME: Some tweaks might be needed for medium code model.
2920  if (M != CodeModel::Small && M != CodeModel::Kernel)
2921    return false;
2922
2923  // For small code model we assume that latest object is 16MB before end of 31
2924  // bits boundary. We may also accept pretty large negative constants knowing
2925  // that all objects are in the positive half of address space.
2926  if (M == CodeModel::Small && Offset < 16*1024*1024)
2927    return true;
2928
2929  // For kernel code model we know that all object resist in the negative half
2930  // of 32bits address space. We may not accept negative offsets, since they may
2931  // be just off and we may accept pretty large positive ones.
2932  if (M == CodeModel::Kernel && Offset > 0)
2933    return true;
2934
2935  return false;
2936}
2937
2938/// isCalleePop - Determines whether the callee is required to pop its
2939/// own arguments. Callee pop is necessary to support tail calls.
2940bool X86::isCalleePop(CallingConv::ID CallingConv,
2941                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
2942  if (IsVarArg)
2943    return false;
2944
2945  switch (CallingConv) {
2946  default:
2947    return false;
2948  case CallingConv::X86_StdCall:
2949    return !is64Bit;
2950  case CallingConv::X86_FastCall:
2951    return !is64Bit;
2952  case CallingConv::X86_ThisCall:
2953    return !is64Bit;
2954  case CallingConv::Fast:
2955    return TailCallOpt;
2956  case CallingConv::GHC:
2957    return TailCallOpt;
2958  }
2959}
2960
2961/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2962/// specific condition code, returning the condition code and the LHS/RHS of the
2963/// comparison to make.
2964static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2965                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2966  if (!isFP) {
2967    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2968      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2969        // X > -1   -> X == 0, jump !sign.
2970        RHS = DAG.getConstant(0, RHS.getValueType());
2971        return X86::COND_NS;
2972      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2973        // X < 0   -> X == 0, jump on sign.
2974        return X86::COND_S;
2975      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2976        // X < 1   -> X <= 0
2977        RHS = DAG.getConstant(0, RHS.getValueType());
2978        return X86::COND_LE;
2979      }
2980    }
2981
2982    switch (SetCCOpcode) {
2983    default: llvm_unreachable("Invalid integer condition!");
2984    case ISD::SETEQ:  return X86::COND_E;
2985    case ISD::SETGT:  return X86::COND_G;
2986    case ISD::SETGE:  return X86::COND_GE;
2987    case ISD::SETLT:  return X86::COND_L;
2988    case ISD::SETLE:  return X86::COND_LE;
2989    case ISD::SETNE:  return X86::COND_NE;
2990    case ISD::SETULT: return X86::COND_B;
2991    case ISD::SETUGT: return X86::COND_A;
2992    case ISD::SETULE: return X86::COND_BE;
2993    case ISD::SETUGE: return X86::COND_AE;
2994    }
2995  }
2996
2997  // First determine if it is required or is profitable to flip the operands.
2998
2999  // If LHS is a foldable load, but RHS is not, flip the condition.
3000  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3001      !ISD::isNON_EXTLoad(RHS.getNode())) {
3002    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3003    std::swap(LHS, RHS);
3004  }
3005
3006  switch (SetCCOpcode) {
3007  default: break;
3008  case ISD::SETOLT:
3009  case ISD::SETOLE:
3010  case ISD::SETUGT:
3011  case ISD::SETUGE:
3012    std::swap(LHS, RHS);
3013    break;
3014  }
3015
3016  // On a floating point condition, the flags are set as follows:
3017  // ZF  PF  CF   op
3018  //  0 | 0 | 0 | X > Y
3019  //  0 | 0 | 1 | X < Y
3020  //  1 | 0 | 0 | X == Y
3021  //  1 | 1 | 1 | unordered
3022  switch (SetCCOpcode) {
3023  default: llvm_unreachable("Condcode should be pre-legalized away");
3024  case ISD::SETUEQ:
3025  case ISD::SETEQ:   return X86::COND_E;
3026  case ISD::SETOLT:              // flipped
3027  case ISD::SETOGT:
3028  case ISD::SETGT:   return X86::COND_A;
3029  case ISD::SETOLE:              // flipped
3030  case ISD::SETOGE:
3031  case ISD::SETGE:   return X86::COND_AE;
3032  case ISD::SETUGT:              // flipped
3033  case ISD::SETULT:
3034  case ISD::SETLT:   return X86::COND_B;
3035  case ISD::SETUGE:              // flipped
3036  case ISD::SETULE:
3037  case ISD::SETLE:   return X86::COND_BE;
3038  case ISD::SETONE:
3039  case ISD::SETNE:   return X86::COND_NE;
3040  case ISD::SETUO:   return X86::COND_P;
3041  case ISD::SETO:    return X86::COND_NP;
3042  case ISD::SETOEQ:
3043  case ISD::SETUNE:  return X86::COND_INVALID;
3044  }
3045}
3046
3047/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3048/// code. Current x86 isa includes the following FP cmov instructions:
3049/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3050static bool hasFPCMov(unsigned X86CC) {
3051  switch (X86CC) {
3052  default:
3053    return false;
3054  case X86::COND_B:
3055  case X86::COND_BE:
3056  case X86::COND_E:
3057  case X86::COND_P:
3058  case X86::COND_A:
3059  case X86::COND_AE:
3060  case X86::COND_NE:
3061  case X86::COND_NP:
3062    return true;
3063  }
3064}
3065
3066/// isFPImmLegal - Returns true if the target can instruction select the
3067/// specified FP immediate natively. If false, the legalizer will
3068/// materialize the FP immediate as a load from a constant pool.
3069bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3070  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3071    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3072      return true;
3073  }
3074  return false;
3075}
3076
3077/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3078/// the specified range (L, H].
3079static bool isUndefOrInRange(int Val, int Low, int Hi) {
3080  return (Val < 0) || (Val >= Low && Val < Hi);
3081}
3082
3083/// isUndefOrInRange - Return true if every element in Mask, begining
3084/// from position Pos and ending in Pos+Size, falls within the specified
3085/// range (L, L+Pos]. or is undef.
3086static bool isUndefOrInRange(const SmallVectorImpl<int> &Mask,
3087                             int Pos, int Size, int Low, int Hi) {
3088  for (int i = Pos, e = Pos+Size; i != e; ++i)
3089    if (!isUndefOrInRange(Mask[i], Low, Hi))
3090      return false;
3091  return true;
3092}
3093
3094/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3095/// specified value.
3096static bool isUndefOrEqual(int Val, int CmpVal) {
3097  if (Val < 0 || Val == CmpVal)
3098    return true;
3099  return false;
3100}
3101
3102/// isSequentialOrUndefInRange - Return true if every element in Mask, begining
3103/// from position Pos and ending in Pos+Size, falls within the specified
3104/// sequential range (L, L+Pos]. or is undef.
3105static bool isSequentialOrUndefInRange(const SmallVectorImpl<int> &Mask,
3106                                       int Pos, int Size, int Low) {
3107  for (int i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3108    if (!isUndefOrEqual(Mask[i], Low))
3109      return false;
3110  return true;
3111}
3112
3113/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3114/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3115/// the second operand.
3116static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3117  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3118    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3119  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3120    return (Mask[0] < 2 && Mask[1] < 2);
3121  return false;
3122}
3123
3124bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
3125  SmallVector<int, 8> M;
3126  N->getMask(M);
3127  return ::isPSHUFDMask(M, N->getValueType(0));
3128}
3129
3130/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3131/// is suitable for input to PSHUFHW.
3132static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3133  if (VT != MVT::v8i16)
3134    return false;
3135
3136  // Lower quadword copied in order or undef.
3137  for (int i = 0; i != 4; ++i)
3138    if (Mask[i] >= 0 && Mask[i] != i)
3139      return false;
3140
3141  // Upper quadword shuffled.
3142  for (int i = 4; i != 8; ++i)
3143    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
3144      return false;
3145
3146  return true;
3147}
3148
3149bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
3150  SmallVector<int, 8> M;
3151  N->getMask(M);
3152  return ::isPSHUFHWMask(M, N->getValueType(0));
3153}
3154
3155/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3156/// is suitable for input to PSHUFLW.
3157static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3158  if (VT != MVT::v8i16)
3159    return false;
3160
3161  // Upper quadword copied in order.
3162  for (int i = 4; i != 8; ++i)
3163    if (Mask[i] >= 0 && Mask[i] != i)
3164      return false;
3165
3166  // Lower quadword shuffled.
3167  for (int i = 0; i != 4; ++i)
3168    if (Mask[i] >= 4)
3169      return false;
3170
3171  return true;
3172}
3173
3174bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
3175  SmallVector<int, 8> M;
3176  N->getMask(M);
3177  return ::isPSHUFLWMask(M, N->getValueType(0));
3178}
3179
3180/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3181/// is suitable for input to PALIGNR.
3182static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
3183                          bool hasSSSE3OrAVX) {
3184  int i, e = VT.getVectorNumElements();
3185  if (VT.getSizeInBits() != 128 && VT.getSizeInBits() != 64)
3186    return false;
3187
3188  // Do not handle v2i64 / v2f64 shuffles with palignr.
3189  if (e < 4 || !hasSSSE3OrAVX)
3190    return false;
3191
3192  for (i = 0; i != e; ++i)
3193    if (Mask[i] >= 0)
3194      break;
3195
3196  // All undef, not a palignr.
3197  if (i == e)
3198    return false;
3199
3200  // Make sure we're shifting in the right direction.
3201  if (Mask[i] <= i)
3202    return false;
3203
3204  int s = Mask[i] - i;
3205
3206  // Check the rest of the elements to see if they are consecutive.
3207  for (++i; i != e; ++i) {
3208    int m = Mask[i];
3209    if (m >= 0 && m != s+i)
3210      return false;
3211  }
3212  return true;
3213}
3214
3215/// isVSHUFPSYMask - Return true if the specified VECTOR_SHUFFLE operand
3216/// specifies a shuffle of elements that is suitable for input to 256-bit
3217/// VSHUFPSY.
3218static bool isVSHUFPSYMask(const SmallVectorImpl<int> &Mask, EVT VT,
3219                          const X86Subtarget *Subtarget) {
3220  int NumElems = VT.getVectorNumElements();
3221
3222  if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256)
3223    return false;
3224
3225  if (NumElems != 8)
3226    return false;
3227
3228  // VSHUFPSY divides the resulting vector into 4 chunks.
3229  // The sources are also splitted into 4 chunks, and each destination
3230  // chunk must come from a different source chunk.
3231  //
3232  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3233  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3234  //
3235  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3236  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3237  //
3238  int QuarterSize = NumElems/4;
3239  int HalfSize = QuarterSize*2;
3240  for (int i = 0; i < QuarterSize; ++i)
3241    if (!isUndefOrInRange(Mask[i], 0, HalfSize))
3242      return false;
3243  for (int i = QuarterSize; i < QuarterSize*2; ++i)
3244    if (!isUndefOrInRange(Mask[i], NumElems, NumElems+HalfSize))
3245      return false;
3246
3247  // The mask of the second half must be the same as the first but with
3248  // the appropriate offsets. This works in the same way as VPERMILPS
3249  // works with masks.
3250  for (int i = QuarterSize*2; i < QuarterSize*3; ++i) {
3251    if (!isUndefOrInRange(Mask[i], HalfSize, NumElems))
3252      return false;
3253    int FstHalfIdx = i-HalfSize;
3254    if (Mask[FstHalfIdx] < 0)
3255      continue;
3256    if (!isUndefOrEqual(Mask[i], Mask[FstHalfIdx]+HalfSize))
3257      return false;
3258  }
3259  for (int i = QuarterSize*3; i < NumElems; ++i) {
3260    if (!isUndefOrInRange(Mask[i], NumElems+HalfSize, NumElems*2))
3261      return false;
3262    int FstHalfIdx = i-HalfSize;
3263    if (Mask[FstHalfIdx] < 0)
3264      continue;
3265    if (!isUndefOrEqual(Mask[i], Mask[FstHalfIdx]+HalfSize))
3266      return false;
3267
3268  }
3269
3270  return true;
3271}
3272
3273/// getShuffleVSHUFPSYImmediate - Return the appropriate immediate to shuffle
3274/// the specified VECTOR_MASK mask with VSHUFPSY instruction.
3275static unsigned getShuffleVSHUFPSYImmediate(SDNode *N) {
3276  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3277  EVT VT = SVOp->getValueType(0);
3278  int NumElems = VT.getVectorNumElements();
3279
3280  assert(NumElems == 8 && VT.getSizeInBits() == 256 &&
3281         "Only supports v8i32 and v8f32 types");
3282
3283  int HalfSize = NumElems/2;
3284  unsigned Mask = 0;
3285  for (int i = 0; i != NumElems ; ++i) {
3286    if (SVOp->getMaskElt(i) < 0)
3287      continue;
3288    // The mask of the first half must be equal to the second one.
3289    unsigned Shamt = (i%HalfSize)*2;
3290    unsigned Elt = SVOp->getMaskElt(i) % HalfSize;
3291    Mask |= Elt << Shamt;
3292  }
3293
3294  return Mask;
3295}
3296
3297/// isVSHUFPDYMask - Return true if the specified VECTOR_SHUFFLE operand
3298/// specifies a shuffle of elements that is suitable for input to 256-bit
3299/// VSHUFPDY. This shuffle doesn't have the same restriction as the PS
3300/// version and the mask of the second half isn't binded with the first
3301/// one.
3302static bool isVSHUFPDYMask(const SmallVectorImpl<int> &Mask, EVT VT,
3303                           const X86Subtarget *Subtarget) {
3304  int NumElems = VT.getVectorNumElements();
3305
3306  if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256)
3307    return false;
3308
3309  if (NumElems != 4)
3310    return false;
3311
3312  // VSHUFPSY divides the resulting vector into 4 chunks.
3313  // The sources are also splitted into 4 chunks, and each destination
3314  // chunk must come from a different source chunk.
3315  //
3316  //  SRC1 =>      X3       X2       X1       X0
3317  //  SRC2 =>      Y3       Y2       Y1       Y0
3318  //
3319  //  DST  =>  Y2..Y3,  X2..X3,  Y1..Y0,  X1..X0
3320  //
3321  int QuarterSize = NumElems/4;
3322  int HalfSize = QuarterSize*2;
3323  for (int i = 0; i < QuarterSize; ++i)
3324    if (!isUndefOrInRange(Mask[i], 0, HalfSize))
3325      return false;
3326  for (int i = QuarterSize; i < QuarterSize*2; ++i)
3327    if (!isUndefOrInRange(Mask[i], NumElems, NumElems+HalfSize))
3328      return false;
3329  for (int i = QuarterSize*2; i < QuarterSize*3; ++i)
3330    if (!isUndefOrInRange(Mask[i], HalfSize, NumElems))
3331      return false;
3332  for (int i = QuarterSize*3; i < NumElems; ++i)
3333    if (!isUndefOrInRange(Mask[i], NumElems+HalfSize, NumElems*2))
3334      return false;
3335
3336  return true;
3337}
3338
3339/// getShuffleVSHUFPDYImmediate - Return the appropriate immediate to shuffle
3340/// the specified VECTOR_MASK mask with VSHUFPDY instruction.
3341static unsigned getShuffleVSHUFPDYImmediate(SDNode *N) {
3342  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3343  EVT VT = SVOp->getValueType(0);
3344  int NumElems = VT.getVectorNumElements();
3345
3346  assert(NumElems == 4 && VT.getSizeInBits() == 256 &&
3347         "Only supports v4i64 and v4f64 types");
3348
3349  int HalfSize = NumElems/2;
3350  unsigned Mask = 0;
3351  for (int i = 0; i != NumElems ; ++i) {
3352    if (SVOp->getMaskElt(i) < 0)
3353      continue;
3354    int Elt = SVOp->getMaskElt(i) % HalfSize;
3355    Mask |= Elt << i;
3356  }
3357
3358  return Mask;
3359}
3360
3361/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3362/// specifies a shuffle of elements that is suitable for input to 128-bit
3363/// SHUFPS and SHUFPD.
3364static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3365  int NumElems = VT.getVectorNumElements();
3366
3367  if (VT.getSizeInBits() != 128)
3368    return false;
3369
3370  if (NumElems != 2 && NumElems != 4)
3371    return false;
3372
3373  int Half = NumElems / 2;
3374  for (int i = 0; i < Half; ++i)
3375    if (!isUndefOrInRange(Mask[i], 0, NumElems))
3376      return false;
3377  for (int i = Half; i < NumElems; ++i)
3378    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3379      return false;
3380
3381  return true;
3382}
3383
3384bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
3385  SmallVector<int, 8> M;
3386  N->getMask(M);
3387  return ::isSHUFPMask(M, N->getValueType(0));
3388}
3389
3390/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
3391/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
3392/// half elements to come from vector 1 (which would equal the dest.) and
3393/// the upper half to come from vector 2.
3394static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3395  int NumElems = VT.getVectorNumElements();
3396
3397  if (NumElems != 2 && NumElems != 4)
3398    return false;
3399
3400  int Half = NumElems / 2;
3401  for (int i = 0; i < Half; ++i)
3402    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3403      return false;
3404  for (int i = Half; i < NumElems; ++i)
3405    if (!isUndefOrInRange(Mask[i], 0, NumElems))
3406      return false;
3407  return true;
3408}
3409
3410static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
3411  SmallVector<int, 8> M;
3412  N->getMask(M);
3413  return isCommutedSHUFPMask(M, N->getValueType(0));
3414}
3415
3416/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3417/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3418bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
3419  EVT VT = N->getValueType(0);
3420  unsigned NumElems = VT.getVectorNumElements();
3421
3422  if (VT.getSizeInBits() != 128)
3423    return false;
3424
3425  if (NumElems != 4)
3426    return false;
3427
3428  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3429  return isUndefOrEqual(N->getMaskElt(0), 6) &&
3430         isUndefOrEqual(N->getMaskElt(1), 7) &&
3431         isUndefOrEqual(N->getMaskElt(2), 2) &&
3432         isUndefOrEqual(N->getMaskElt(3), 3);
3433}
3434
3435/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3436/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3437/// <2, 3, 2, 3>
3438bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
3439  EVT VT = N->getValueType(0);
3440  unsigned NumElems = VT.getVectorNumElements();
3441
3442  if (VT.getSizeInBits() != 128)
3443    return false;
3444
3445  if (NumElems != 4)
3446    return false;
3447
3448  return isUndefOrEqual(N->getMaskElt(0), 2) &&
3449         isUndefOrEqual(N->getMaskElt(1), 3) &&
3450         isUndefOrEqual(N->getMaskElt(2), 2) &&
3451         isUndefOrEqual(N->getMaskElt(3), 3);
3452}
3453
3454/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3455/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3456bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
3457  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3458
3459  if (NumElems != 2 && NumElems != 4)
3460    return false;
3461
3462  for (unsigned i = 0; i < NumElems/2; ++i)
3463    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
3464      return false;
3465
3466  for (unsigned i = NumElems/2; i < NumElems; ++i)
3467    if (!isUndefOrEqual(N->getMaskElt(i), i))
3468      return false;
3469
3470  return true;
3471}
3472
3473/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3474/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3475bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
3476  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3477
3478  if ((NumElems != 2 && NumElems != 4)
3479      || N->getValueType(0).getSizeInBits() > 128)
3480    return false;
3481
3482  for (unsigned i = 0; i < NumElems/2; ++i)
3483    if (!isUndefOrEqual(N->getMaskElt(i), i))
3484      return false;
3485
3486  for (unsigned i = 0; i < NumElems/2; ++i)
3487    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3488      return false;
3489
3490  return true;
3491}
3492
3493/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3494/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3495static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3496                         bool V2IsSplat = false) {
3497  int NumElts = VT.getVectorNumElements();
3498
3499  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3500         "Unsupported vector type for unpckh");
3501
3502  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8)
3503    return false;
3504
3505  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3506  // independently on 128-bit lanes.
3507  unsigned NumLanes = VT.getSizeInBits()/128;
3508  unsigned NumLaneElts = NumElts/NumLanes;
3509
3510  unsigned Start = 0;
3511  unsigned End = NumLaneElts;
3512  for (unsigned s = 0; s < NumLanes; ++s) {
3513    for (unsigned i = Start, j = s * NumLaneElts;
3514         i != End;
3515         i += 2, ++j) {
3516      int BitI  = Mask[i];
3517      int BitI1 = Mask[i+1];
3518      if (!isUndefOrEqual(BitI, j))
3519        return false;
3520      if (V2IsSplat) {
3521        if (!isUndefOrEqual(BitI1, NumElts))
3522          return false;
3523      } else {
3524        if (!isUndefOrEqual(BitI1, j + NumElts))
3525          return false;
3526      }
3527    }
3528    // Process the next 128 bits.
3529    Start += NumLaneElts;
3530    End += NumLaneElts;
3531  }
3532
3533  return true;
3534}
3535
3536bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3537  SmallVector<int, 8> M;
3538  N->getMask(M);
3539  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
3540}
3541
3542/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3543/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3544static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
3545                         bool V2IsSplat = false) {
3546  int NumElts = VT.getVectorNumElements();
3547
3548  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3549         "Unsupported vector type for unpckh");
3550
3551  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8)
3552    return false;
3553
3554  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3555  // independently on 128-bit lanes.
3556  unsigned NumLanes = VT.getSizeInBits()/128;
3557  unsigned NumLaneElts = NumElts/NumLanes;
3558
3559  unsigned Start = 0;
3560  unsigned End = NumLaneElts;
3561  for (unsigned l = 0; l != NumLanes; ++l) {
3562    for (unsigned i = Start, j = (l*NumLaneElts)+NumLaneElts/2;
3563                             i != End; i += 2, ++j) {
3564      int BitI  = Mask[i];
3565      int BitI1 = Mask[i+1];
3566      if (!isUndefOrEqual(BitI, j))
3567        return false;
3568      if (V2IsSplat) {
3569        if (isUndefOrEqual(BitI1, NumElts))
3570          return false;
3571      } else {
3572        if (!isUndefOrEqual(BitI1, j+NumElts))
3573          return false;
3574      }
3575    }
3576    // Process the next 128 bits.
3577    Start += NumLaneElts;
3578    End += NumLaneElts;
3579  }
3580  return true;
3581}
3582
3583bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3584  SmallVector<int, 8> M;
3585  N->getMask(M);
3586  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
3587}
3588
3589/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3590/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3591/// <0, 0, 1, 1>
3592static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3593  int NumElems = VT.getVectorNumElements();
3594  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3595    return false;
3596
3597  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3598  // FIXME: Need a better way to get rid of this, there's no latency difference
3599  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3600  // the former later. We should also remove the "_undef" special mask.
3601  if (NumElems == 4 && VT.getSizeInBits() == 256)
3602    return false;
3603
3604  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3605  // independently on 128-bit lanes.
3606  unsigned NumLanes = VT.getSizeInBits() / 128;
3607  unsigned NumLaneElts = NumElems / NumLanes;
3608
3609  for (unsigned s = 0; s < NumLanes; ++s) {
3610    for (unsigned i = s * NumLaneElts, j = s * NumLaneElts;
3611         i != NumLaneElts * (s + 1);
3612         i += 2, ++j) {
3613      int BitI  = Mask[i];
3614      int BitI1 = Mask[i+1];
3615
3616      if (!isUndefOrEqual(BitI, j))
3617        return false;
3618      if (!isUndefOrEqual(BitI1, j))
3619        return false;
3620    }
3621  }
3622
3623  return true;
3624}
3625
3626bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
3627  SmallVector<int, 8> M;
3628  N->getMask(M);
3629  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
3630}
3631
3632/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3633/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3634/// <2, 2, 3, 3>
3635static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3636  int NumElems = VT.getVectorNumElements();
3637  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3638    return false;
3639
3640  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
3641    int BitI  = Mask[i];
3642    int BitI1 = Mask[i+1];
3643    if (!isUndefOrEqual(BitI, j))
3644      return false;
3645    if (!isUndefOrEqual(BitI1, j))
3646      return false;
3647  }
3648  return true;
3649}
3650
3651bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
3652  SmallVector<int, 8> M;
3653  N->getMask(M);
3654  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
3655}
3656
3657/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3658/// specifies a shuffle of elements that is suitable for input to MOVSS,
3659/// MOVSD, and MOVD, i.e. setting the lowest element.
3660static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3661  if (VT.getVectorElementType().getSizeInBits() < 32)
3662    return false;
3663
3664  int NumElts = VT.getVectorNumElements();
3665
3666  if (!isUndefOrEqual(Mask[0], NumElts))
3667    return false;
3668
3669  for (int i = 1; i < NumElts; ++i)
3670    if (!isUndefOrEqual(Mask[i], i))
3671      return false;
3672
3673  return true;
3674}
3675
3676bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3677  SmallVector<int, 8> M;
3678  N->getMask(M);
3679  return ::isMOVLMask(M, N->getValueType(0));
3680}
3681
3682/// isVPERM2F128Mask - Match 256-bit shuffles where the elements are considered
3683/// as permutations between 128-bit chunks or halves. As an example: this
3684/// shuffle bellow:
3685///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3686/// The first half comes from the second half of V1 and the second half from the
3687/// the second half of V2.
3688static bool isVPERM2F128Mask(const SmallVectorImpl<int> &Mask, EVT VT,
3689                             const X86Subtarget *Subtarget) {
3690  if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256)
3691    return false;
3692
3693  // The shuffle result is divided into half A and half B. In total the two
3694  // sources have 4 halves, namely: C, D, E, F. The final values of A and
3695  // B must come from C, D, E or F.
3696  int HalfSize = VT.getVectorNumElements()/2;
3697  bool MatchA = false, MatchB = false;
3698
3699  // Check if A comes from one of C, D, E, F.
3700  for (int Half = 0; Half < 4; ++Half) {
3701    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3702      MatchA = true;
3703      break;
3704    }
3705  }
3706
3707  // Check if B comes from one of C, D, E, F.
3708  for (int Half = 0; Half < 4; ++Half) {
3709    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3710      MatchB = true;
3711      break;
3712    }
3713  }
3714
3715  return MatchA && MatchB;
3716}
3717
3718/// getShuffleVPERM2F128Immediate - Return the appropriate immediate to shuffle
3719/// the specified VECTOR_MASK mask with VPERM2F128 instructions.
3720static unsigned getShuffleVPERM2F128Immediate(SDNode *N) {
3721  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3722  EVT VT = SVOp->getValueType(0);
3723
3724  int HalfSize = VT.getVectorNumElements()/2;
3725
3726  int FstHalf = 0, SndHalf = 0;
3727  for (int i = 0; i < HalfSize; ++i) {
3728    if (SVOp->getMaskElt(i) > 0) {
3729      FstHalf = SVOp->getMaskElt(i)/HalfSize;
3730      break;
3731    }
3732  }
3733  for (int i = HalfSize; i < HalfSize*2; ++i) {
3734    if (SVOp->getMaskElt(i) > 0) {
3735      SndHalf = SVOp->getMaskElt(i)/HalfSize;
3736      break;
3737    }
3738  }
3739
3740  return (FstHalf | (SndHalf << 4));
3741}
3742
3743/// isVPERMILPDMask - Return true if the specified VECTOR_SHUFFLE operand
3744/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3745/// Note that VPERMIL mask matching is different depending whether theunderlying
3746/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3747/// to the same elements of the low, but to the higher half of the source.
3748/// In VPERMILPD the two lanes could be shuffled independently of each other
3749/// with the same restriction that lanes can't be crossed.
3750static bool isVPERMILPDMask(const SmallVectorImpl<int> &Mask, EVT VT,
3751                            const X86Subtarget *Subtarget) {
3752  int NumElts = VT.getVectorNumElements();
3753  int NumLanes = VT.getSizeInBits()/128;
3754
3755  if (!Subtarget->hasAVX())
3756    return false;
3757
3758  // Match any permutation of 128-bit vector with 64-bit types
3759  if (NumLanes == 1 && NumElts != 2)
3760    return false;
3761
3762  // Only match 256-bit with 32 types
3763  if (VT.getSizeInBits() == 256 && NumElts != 4)
3764    return false;
3765
3766  // The mask on the high lane is independent of the low. Both can match
3767  // any element in inside its own lane, but can't cross.
3768  int LaneSize = NumElts/NumLanes;
3769  for (int l = 0; l < NumLanes; ++l)
3770    for (int i = l*LaneSize; i < LaneSize*(l+1); ++i) {
3771      int LaneStart = l*LaneSize;
3772      if (!isUndefOrInRange(Mask[i], LaneStart, LaneStart+LaneSize))
3773        return false;
3774    }
3775
3776  return true;
3777}
3778
3779/// isVPERMILPSMask - Return true if the specified VECTOR_SHUFFLE operand
3780/// specifies a shuffle of elements that is suitable for input to VPERMILPS*.
3781/// Note that VPERMIL mask matching is different depending whether theunderlying
3782/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3783/// to the same elements of the low, but to the higher half of the source.
3784/// In VPERMILPD the two lanes could be shuffled independently of each other
3785/// with the same restriction that lanes can't be crossed.
3786static bool isVPERMILPSMask(const SmallVectorImpl<int> &Mask, EVT VT,
3787                            const X86Subtarget *Subtarget) {
3788  unsigned NumElts = VT.getVectorNumElements();
3789  unsigned NumLanes = VT.getSizeInBits()/128;
3790
3791  if (!Subtarget->hasAVX())
3792    return false;
3793
3794  // Match any permutation of 128-bit vector with 32-bit types
3795  if (NumLanes == 1 && NumElts != 4)
3796    return false;
3797
3798  // Only match 256-bit with 32 types
3799  if (VT.getSizeInBits() == 256 && NumElts != 8)
3800    return false;
3801
3802  // The mask on the high lane should be the same as the low. Actually,
3803  // they can differ if any of the corresponding index in a lane is undef
3804  // and the other stays in range.
3805  int LaneSize = NumElts/NumLanes;
3806  for (int i = 0; i < LaneSize; ++i) {
3807    int HighElt = i+LaneSize;
3808    bool HighValid = isUndefOrInRange(Mask[HighElt], LaneSize, NumElts);
3809    bool LowValid = isUndefOrInRange(Mask[i], 0, LaneSize);
3810
3811    if (!HighValid || !LowValid)
3812      return false;
3813    if (Mask[i] < 0 || Mask[HighElt] < 0)
3814      continue;
3815    if (Mask[HighElt]-Mask[i] != LaneSize)
3816      return false;
3817  }
3818
3819  return true;
3820}
3821
3822/// getShuffleVPERMILPSImmediate - Return the appropriate immediate to shuffle
3823/// the specified VECTOR_MASK mask with VPERMILPS* instructions.
3824static unsigned getShuffleVPERMILPSImmediate(SDNode *N) {
3825  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3826  EVT VT = SVOp->getValueType(0);
3827
3828  int NumElts = VT.getVectorNumElements();
3829  int NumLanes = VT.getSizeInBits()/128;
3830  int LaneSize = NumElts/NumLanes;
3831
3832  // Although the mask is equal for both lanes do it twice to get the cases
3833  // where a mask will match because the same mask element is undef on the
3834  // first half but valid on the second. This would get pathological cases
3835  // such as: shuffle <u, 0, 1, 2, 4, 4, 5, 6>, which is completely valid.
3836  unsigned Mask = 0;
3837  for (int l = 0; l < NumLanes; ++l) {
3838    for (int i = 0; i < LaneSize; ++i) {
3839      int MaskElt = SVOp->getMaskElt(i+(l*LaneSize));
3840      if (MaskElt < 0)
3841        continue;
3842      if (MaskElt >= LaneSize)
3843        MaskElt -= LaneSize;
3844      Mask |= MaskElt << (i*2);
3845    }
3846  }
3847
3848  return Mask;
3849}
3850
3851/// getShuffleVPERMILPDImmediate - Return the appropriate immediate to shuffle
3852/// the specified VECTOR_MASK mask with VPERMILPD* instructions.
3853static unsigned getShuffleVPERMILPDImmediate(SDNode *N) {
3854  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3855  EVT VT = SVOp->getValueType(0);
3856
3857  int NumElts = VT.getVectorNumElements();
3858  int NumLanes = VT.getSizeInBits()/128;
3859
3860  unsigned Mask = 0;
3861  int LaneSize = NumElts/NumLanes;
3862  for (int l = 0; l < NumLanes; ++l)
3863    for (int i = l*LaneSize; i < LaneSize*(l+1); ++i) {
3864      int MaskElt = SVOp->getMaskElt(i);
3865      if (MaskElt < 0)
3866        continue;
3867      Mask |= (MaskElt-l*LaneSize) << i;
3868    }
3869
3870  return Mask;
3871}
3872
3873/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3874/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3875/// element of vector 2 and the other elements to come from vector 1 in order.
3876static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3877                               bool V2IsSplat = false, bool V2IsUndef = false) {
3878  int NumOps = VT.getVectorNumElements();
3879  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3880    return false;
3881
3882  if (!isUndefOrEqual(Mask[0], 0))
3883    return false;
3884
3885  for (int i = 1; i < NumOps; ++i)
3886    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3887          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3888          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3889      return false;
3890
3891  return true;
3892}
3893
3894static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3895                           bool V2IsUndef = false) {
3896  SmallVector<int, 8> M;
3897  N->getMask(M);
3898  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
3899}
3900
3901/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3902/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3903/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3904bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N,
3905                         const X86Subtarget *Subtarget) {
3906  if (!Subtarget->hasSSE3() && !Subtarget->hasAVX())
3907    return false;
3908
3909  // The second vector must be undef
3910  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3911    return false;
3912
3913  EVT VT = N->getValueType(0);
3914  unsigned NumElems = VT.getVectorNumElements();
3915
3916  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3917      (VT.getSizeInBits() == 256 && NumElems != 8))
3918    return false;
3919
3920  // "i+1" is the value the indexed mask element must have
3921  for (unsigned i = 0; i < NumElems; i += 2)
3922    if (!isUndefOrEqual(N->getMaskElt(i), i+1) ||
3923        !isUndefOrEqual(N->getMaskElt(i+1), i+1))
3924      return false;
3925
3926  return true;
3927}
3928
3929/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3930/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3931/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3932bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N,
3933                         const X86Subtarget *Subtarget) {
3934  if (!Subtarget->hasSSE3() && !Subtarget->hasAVX())
3935    return false;
3936
3937  // The second vector must be undef
3938  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3939    return false;
3940
3941  EVT VT = N->getValueType(0);
3942  unsigned NumElems = VT.getVectorNumElements();
3943
3944  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3945      (VT.getSizeInBits() == 256 && NumElems != 8))
3946    return false;
3947
3948  // "i" is the value the indexed mask element must have
3949  for (unsigned i = 0; i < NumElems; i += 2)
3950    if (!isUndefOrEqual(N->getMaskElt(i), i) ||
3951        !isUndefOrEqual(N->getMaskElt(i+1), i))
3952      return false;
3953
3954  return true;
3955}
3956
3957/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
3958/// specifies a shuffle of elements that is suitable for input to 256-bit
3959/// version of MOVDDUP.
3960static bool isMOVDDUPYMask(ShuffleVectorSDNode *N,
3961                           const X86Subtarget *Subtarget) {
3962  EVT VT = N->getValueType(0);
3963  int NumElts = VT.getVectorNumElements();
3964  bool V2IsUndef = N->getOperand(1).getOpcode() == ISD::UNDEF;
3965
3966  if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256 ||
3967      !V2IsUndef || NumElts != 4)
3968    return false;
3969
3970  for (int i = 0; i != NumElts/2; ++i)
3971    if (!isUndefOrEqual(N->getMaskElt(i), 0))
3972      return false;
3973  for (int i = NumElts/2; i != NumElts; ++i)
3974    if (!isUndefOrEqual(N->getMaskElt(i), NumElts/2))
3975      return false;
3976  return true;
3977}
3978
3979/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3980/// specifies a shuffle of elements that is suitable for input to 128-bit
3981/// version of MOVDDUP.
3982bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3983  EVT VT = N->getValueType(0);
3984
3985  if (VT.getSizeInBits() != 128)
3986    return false;
3987
3988  int e = VT.getVectorNumElements() / 2;
3989  for (int i = 0; i < e; ++i)
3990    if (!isUndefOrEqual(N->getMaskElt(i), i))
3991      return false;
3992  for (int i = 0; i < e; ++i)
3993    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3994      return false;
3995  return true;
3996}
3997
3998/// isVEXTRACTF128Index - Return true if the specified
3999/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
4000/// suitable for input to VEXTRACTF128.
4001bool X86::isVEXTRACTF128Index(SDNode *N) {
4002  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4003    return false;
4004
4005  // The index should be aligned on a 128-bit boundary.
4006  uint64_t Index =
4007    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4008
4009  unsigned VL = N->getValueType(0).getVectorNumElements();
4010  unsigned VBits = N->getValueType(0).getSizeInBits();
4011  unsigned ElSize = VBits / VL;
4012  bool Result = (Index * ElSize) % 128 == 0;
4013
4014  return Result;
4015}
4016
4017/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
4018/// operand specifies a subvector insert that is suitable for input to
4019/// VINSERTF128.
4020bool X86::isVINSERTF128Index(SDNode *N) {
4021  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4022    return false;
4023
4024  // The index should be aligned on a 128-bit boundary.
4025  uint64_t Index =
4026    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4027
4028  unsigned VL = N->getValueType(0).getVectorNumElements();
4029  unsigned VBits = N->getValueType(0).getSizeInBits();
4030  unsigned ElSize = VBits / VL;
4031  bool Result = (Index * ElSize) % 128 == 0;
4032
4033  return Result;
4034}
4035
4036/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
4037/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
4038unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
4039  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4040  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
4041
4042  unsigned Shift = (NumOperands == 4) ? 2 : 1;
4043  unsigned Mask = 0;
4044  for (int i = 0; i < NumOperands; ++i) {
4045    int Val = SVOp->getMaskElt(NumOperands-i-1);
4046    if (Val < 0) Val = 0;
4047    if (Val >= NumOperands) Val -= NumOperands;
4048    Mask |= Val;
4049    if (i != NumOperands - 1)
4050      Mask <<= Shift;
4051  }
4052  return Mask;
4053}
4054
4055/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
4056/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
4057unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
4058  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4059  unsigned Mask = 0;
4060  // 8 nodes, but we only care about the last 4.
4061  for (unsigned i = 7; i >= 4; --i) {
4062    int Val = SVOp->getMaskElt(i);
4063    if (Val >= 0)
4064      Mask |= (Val - 4);
4065    if (i != 4)
4066      Mask <<= 2;
4067  }
4068  return Mask;
4069}
4070
4071/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
4072/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
4073unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
4074  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4075  unsigned Mask = 0;
4076  // 8 nodes, but we only care about the first 4.
4077  for (int i = 3; i >= 0; --i) {
4078    int Val = SVOp->getMaskElt(i);
4079    if (Val >= 0)
4080      Mask |= Val;
4081    if (i != 0)
4082      Mask <<= 2;
4083  }
4084  return Mask;
4085}
4086
4087/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
4088/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
4089unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
4090  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4091  EVT VVT = N->getValueType(0);
4092  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
4093  int Val = 0;
4094
4095  unsigned i, e;
4096  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
4097    Val = SVOp->getMaskElt(i);
4098    if (Val >= 0)
4099      break;
4100  }
4101  assert(Val - i > 0 && "PALIGNR imm should be positive");
4102  return (Val - i) * EltSize;
4103}
4104
4105/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
4106/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
4107/// instructions.
4108unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
4109  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4110    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
4111
4112  uint64_t Index =
4113    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4114
4115  EVT VecVT = N->getOperand(0).getValueType();
4116  EVT ElVT = VecVT.getVectorElementType();
4117
4118  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4119  return Index / NumElemsPerChunk;
4120}
4121
4122/// getInsertVINSERTF128Immediate - Return the appropriate immediate
4123/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4124/// instructions.
4125unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
4126  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4127    llvm_unreachable("Illegal insert subvector for VINSERTF128");
4128
4129  uint64_t Index =
4130    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4131
4132  EVT VecVT = N->getValueType(0);
4133  EVT ElVT = VecVT.getVectorElementType();
4134
4135  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4136  return Index / NumElemsPerChunk;
4137}
4138
4139/// isZeroNode - Returns true if Elt is a constant zero or a floating point
4140/// constant +0.0.
4141bool X86::isZeroNode(SDValue Elt) {
4142  return ((isa<ConstantSDNode>(Elt) &&
4143           cast<ConstantSDNode>(Elt)->isNullValue()) ||
4144          (isa<ConstantFPSDNode>(Elt) &&
4145           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
4146}
4147
4148/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4149/// their permute mask.
4150static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4151                                    SelectionDAG &DAG) {
4152  EVT VT = SVOp->getValueType(0);
4153  unsigned NumElems = VT.getVectorNumElements();
4154  SmallVector<int, 8> MaskVec;
4155
4156  for (unsigned i = 0; i != NumElems; ++i) {
4157    int idx = SVOp->getMaskElt(i);
4158    if (idx < 0)
4159      MaskVec.push_back(idx);
4160    else if (idx < (int)NumElems)
4161      MaskVec.push_back(idx + NumElems);
4162    else
4163      MaskVec.push_back(idx - NumElems);
4164  }
4165  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4166                              SVOp->getOperand(0), &MaskVec[0]);
4167}
4168
4169/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
4170/// the two vector operands have swapped position.
4171static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
4172  unsigned NumElems = VT.getVectorNumElements();
4173  for (unsigned i = 0; i != NumElems; ++i) {
4174    int idx = Mask[i];
4175    if (idx < 0)
4176      continue;
4177    else if (idx < (int)NumElems)
4178      Mask[i] = idx + NumElems;
4179    else
4180      Mask[i] = idx - NumElems;
4181  }
4182}
4183
4184/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4185/// match movhlps. The lower half elements should come from upper half of
4186/// V1 (and in order), and the upper half elements should come from the upper
4187/// half of V2 (and in order).
4188static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
4189  EVT VT = Op->getValueType(0);
4190  if (VT.getSizeInBits() != 128)
4191    return false;
4192  if (VT.getVectorNumElements() != 4)
4193    return false;
4194  for (unsigned i = 0, e = 2; i != e; ++i)
4195    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
4196      return false;
4197  for (unsigned i = 2; i != 4; ++i)
4198    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
4199      return false;
4200  return true;
4201}
4202
4203/// isScalarLoadToVector - Returns true if the node is a scalar load that
4204/// is promoted to a vector. It also returns the LoadSDNode by reference if
4205/// required.
4206static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4207  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4208    return false;
4209  N = N->getOperand(0).getNode();
4210  if (!ISD::isNON_EXTLoad(N))
4211    return false;
4212  if (LD)
4213    *LD = cast<LoadSDNode>(N);
4214  return true;
4215}
4216
4217/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4218/// match movlp{s|d}. The lower half elements should come from lower half of
4219/// V1 (and in order), and the upper half elements should come from the upper
4220/// half of V2 (and in order). And since V1 will become the source of the
4221/// MOVLP, it must be either a vector load or a scalar load to vector.
4222static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4223                               ShuffleVectorSDNode *Op) {
4224  EVT VT = Op->getValueType(0);
4225  if (VT.getSizeInBits() != 128)
4226    return false;
4227
4228  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4229    return false;
4230  // Is V2 is a vector load, don't do this transformation. We will try to use
4231  // load folding shufps op.
4232  if (ISD::isNON_EXTLoad(V2))
4233    return false;
4234
4235  unsigned NumElems = VT.getVectorNumElements();
4236
4237  if (NumElems != 2 && NumElems != 4)
4238    return false;
4239  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4240    if (!isUndefOrEqual(Op->getMaskElt(i), i))
4241      return false;
4242  for (unsigned i = NumElems/2; i != NumElems; ++i)
4243    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
4244      return false;
4245  return true;
4246}
4247
4248/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4249/// all the same.
4250static bool isSplatVector(SDNode *N) {
4251  if (N->getOpcode() != ISD::BUILD_VECTOR)
4252    return false;
4253
4254  SDValue SplatValue = N->getOperand(0);
4255  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4256    if (N->getOperand(i) != SplatValue)
4257      return false;
4258  return true;
4259}
4260
4261/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4262/// to an zero vector.
4263/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4264static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4265  SDValue V1 = N->getOperand(0);
4266  SDValue V2 = N->getOperand(1);
4267  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4268  for (unsigned i = 0; i != NumElems; ++i) {
4269    int Idx = N->getMaskElt(i);
4270    if (Idx >= (int)NumElems) {
4271      unsigned Opc = V2.getOpcode();
4272      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4273        continue;
4274      if (Opc != ISD::BUILD_VECTOR ||
4275          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4276        return false;
4277    } else if (Idx >= 0) {
4278      unsigned Opc = V1.getOpcode();
4279      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4280        continue;
4281      if (Opc != ISD::BUILD_VECTOR ||
4282          !X86::isZeroNode(V1.getOperand(Idx)))
4283        return false;
4284    }
4285  }
4286  return true;
4287}
4288
4289/// getZeroVector - Returns a vector of specified type with all zero elements.
4290///
4291static SDValue getZeroVector(EVT VT, bool HasXMMInt, SelectionDAG &DAG,
4292                             DebugLoc dl) {
4293  assert(VT.isVector() && "Expected a vector type");
4294
4295  // Always build SSE zero vectors as <4 x i32> bitcasted
4296  // to their dest type. This ensures they get CSE'd.
4297  SDValue Vec;
4298  if (VT.getSizeInBits() == 128) {  // SSE
4299    if (HasXMMInt) {  // SSE2
4300      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4301      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4302    } else { // SSE1
4303      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4304      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4305    }
4306  } else if (VT.getSizeInBits() == 256) { // AVX
4307    // 256-bit logic and arithmetic instructions in AVX are
4308    // all floating-point, no support for integer ops. Default
4309    // to emitting fp zeroed vectors then.
4310    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4311    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4312    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4313  }
4314  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4315}
4316
4317/// getOnesVector - Returns a vector of specified type with all bits set.
4318/// Always build ones vectors as <4 x i32>. For 256-bit types, use two
4319/// <4 x i32> inserted in a <8 x i32> appropriately. Then bitcast to their
4320/// original type, ensuring they get CSE'd.
4321static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
4322  assert(VT.isVector() && "Expected a vector type");
4323  assert((VT.is128BitVector() || VT.is256BitVector())
4324         && "Expected a 128-bit or 256-bit vector type");
4325
4326  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4327  SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
4328                            Cst, Cst, Cst, Cst);
4329
4330  if (VT.is256BitVector()) {
4331    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, MVT::v8i32),
4332                              Vec, DAG.getConstant(0, MVT::i32), DAG, dl);
4333    Vec = Insert128BitVector(InsV, Vec,
4334                  DAG.getConstant(4 /* NumElems/2 */, MVT::i32), DAG, dl);
4335  }
4336
4337  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4338}
4339
4340/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4341/// that point to V2 points to its first element.
4342static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4343  EVT VT = SVOp->getValueType(0);
4344  unsigned NumElems = VT.getVectorNumElements();
4345
4346  bool Changed = false;
4347  SmallVector<int, 8> MaskVec;
4348  SVOp->getMask(MaskVec);
4349
4350  for (unsigned i = 0; i != NumElems; ++i) {
4351    if (MaskVec[i] > (int)NumElems) {
4352      MaskVec[i] = NumElems;
4353      Changed = true;
4354    }
4355  }
4356  if (Changed)
4357    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
4358                                SVOp->getOperand(1), &MaskVec[0]);
4359  return SDValue(SVOp, 0);
4360}
4361
4362/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4363/// operation of specified width.
4364static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4365                       SDValue V2) {
4366  unsigned NumElems = VT.getVectorNumElements();
4367  SmallVector<int, 8> Mask;
4368  Mask.push_back(NumElems);
4369  for (unsigned i = 1; i != NumElems; ++i)
4370    Mask.push_back(i);
4371  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4372}
4373
4374/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4375static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4376                          SDValue V2) {
4377  unsigned NumElems = VT.getVectorNumElements();
4378  SmallVector<int, 8> Mask;
4379  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4380    Mask.push_back(i);
4381    Mask.push_back(i + NumElems);
4382  }
4383  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4384}
4385
4386/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4387static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4388                          SDValue V2) {
4389  unsigned NumElems = VT.getVectorNumElements();
4390  unsigned Half = NumElems/2;
4391  SmallVector<int, 8> Mask;
4392  for (unsigned i = 0; i != Half; ++i) {
4393    Mask.push_back(i + Half);
4394    Mask.push_back(i + NumElems + Half);
4395  }
4396  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4397}
4398
4399// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4400// a generic shuffle instruction because the target has no such instructions.
4401// Generate shuffles which repeat i16 and i8 several times until they can be
4402// represented by v4f32 and then be manipulated by target suported shuffles.
4403static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4404  EVT VT = V.getValueType();
4405  int NumElems = VT.getVectorNumElements();
4406  DebugLoc dl = V.getDebugLoc();
4407
4408  while (NumElems > 4) {
4409    if (EltNo < NumElems/2) {
4410      V = getUnpackl(DAG, dl, VT, V, V);
4411    } else {
4412      V = getUnpackh(DAG, dl, VT, V, V);
4413      EltNo -= NumElems/2;
4414    }
4415    NumElems >>= 1;
4416  }
4417  return V;
4418}
4419
4420/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4421static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4422  EVT VT = V.getValueType();
4423  DebugLoc dl = V.getDebugLoc();
4424  assert((VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256)
4425         && "Vector size not supported");
4426
4427  if (VT.getSizeInBits() == 128) {
4428    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4429    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4430    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4431                             &SplatMask[0]);
4432  } else {
4433    // To use VPERMILPS to splat scalars, the second half of indicies must
4434    // refer to the higher part, which is a duplication of the lower one,
4435    // because VPERMILPS can only handle in-lane permutations.
4436    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4437                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4438
4439    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4440    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4441                             &SplatMask[0]);
4442  }
4443
4444  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4445}
4446
4447/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4448static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4449  EVT SrcVT = SV->getValueType(0);
4450  SDValue V1 = SV->getOperand(0);
4451  DebugLoc dl = SV->getDebugLoc();
4452
4453  int EltNo = SV->getSplatIndex();
4454  int NumElems = SrcVT.getVectorNumElements();
4455  unsigned Size = SrcVT.getSizeInBits();
4456
4457  assert(((Size == 128 && NumElems > 4) || Size == 256) &&
4458          "Unknown how to promote splat for type");
4459
4460  // Extract the 128-bit part containing the splat element and update
4461  // the splat element index when it refers to the higher register.
4462  if (Size == 256) {
4463    unsigned Idx = (EltNo > NumElems/2) ? NumElems/2 : 0;
4464    V1 = Extract128BitVector(V1, DAG.getConstant(Idx, MVT::i32), DAG, dl);
4465    if (Idx > 0)
4466      EltNo -= NumElems/2;
4467  }
4468
4469  // All i16 and i8 vector types can't be used directly by a generic shuffle
4470  // instruction because the target has no such instruction. Generate shuffles
4471  // which repeat i16 and i8 several times until they fit in i32, and then can
4472  // be manipulated by target suported shuffles.
4473  EVT EltVT = SrcVT.getVectorElementType();
4474  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4475    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4476
4477  // Recreate the 256-bit vector and place the same 128-bit vector
4478  // into the low and high part. This is necessary because we want
4479  // to use VPERM* to shuffle the vectors
4480  if (Size == 256) {
4481    SDValue InsV = Insert128BitVector(DAG.getUNDEF(SrcVT), V1,
4482                         DAG.getConstant(0, MVT::i32), DAG, dl);
4483    V1 = Insert128BitVector(InsV, V1,
4484               DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
4485  }
4486
4487  return getLegalSplat(DAG, V1, EltNo);
4488}
4489
4490/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4491/// vector of zero or undef vector.  This produces a shuffle where the low
4492/// element of V2 is swizzled into the zero/undef vector, landing at element
4493/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4494static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4495                                           bool isZero, bool HasXMMInt,
4496                                           SelectionDAG &DAG) {
4497  EVT VT = V2.getValueType();
4498  SDValue V1 = isZero
4499    ? getZeroVector(VT, HasXMMInt, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4500  unsigned NumElems = VT.getVectorNumElements();
4501  SmallVector<int, 16> MaskVec;
4502  for (unsigned i = 0; i != NumElems; ++i)
4503    // If this is the insertion idx, put the low elt of V2 here.
4504    MaskVec.push_back(i == Idx ? NumElems : i);
4505  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4506}
4507
4508/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4509/// element of the result of the vector shuffle.
4510static SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
4511                                   unsigned Depth) {
4512  if (Depth == 6)
4513    return SDValue();  // Limit search depth.
4514
4515  SDValue V = SDValue(N, 0);
4516  EVT VT = V.getValueType();
4517  unsigned Opcode = V.getOpcode();
4518
4519  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4520  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4521    Index = SV->getMaskElt(Index);
4522
4523    if (Index < 0)
4524      return DAG.getUNDEF(VT.getVectorElementType());
4525
4526    int NumElems = VT.getVectorNumElements();
4527    SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
4528    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
4529  }
4530
4531  // Recurse into target specific vector shuffles to find scalars.
4532  if (isTargetShuffle(Opcode)) {
4533    int NumElems = VT.getVectorNumElements();
4534    SmallVector<unsigned, 16> ShuffleMask;
4535    SDValue ImmN;
4536
4537    switch(Opcode) {
4538    case X86ISD::SHUFPS:
4539    case X86ISD::SHUFPD:
4540      ImmN = N->getOperand(N->getNumOperands()-1);
4541      DecodeSHUFPSMask(NumElems,
4542                       cast<ConstantSDNode>(ImmN)->getZExtValue(),
4543                       ShuffleMask);
4544      break;
4545    case X86ISD::PUNPCKHBW:
4546    case X86ISD::PUNPCKHWD:
4547    case X86ISD::PUNPCKHDQ:
4548    case X86ISD::PUNPCKHQDQ:
4549      DecodePUNPCKHMask(NumElems, ShuffleMask);
4550      break;
4551    case X86ISD::UNPCKHPS:
4552    case X86ISD::UNPCKHPD:
4553    case X86ISD::VUNPCKHPSY:
4554    case X86ISD::VUNPCKHPDY:
4555      DecodeUNPCKHPMask(NumElems, ShuffleMask);
4556      break;
4557    case X86ISD::PUNPCKLBW:
4558    case X86ISD::PUNPCKLWD:
4559    case X86ISD::PUNPCKLDQ:
4560    case X86ISD::PUNPCKLQDQ:
4561      DecodePUNPCKLMask(VT, ShuffleMask);
4562      break;
4563    case X86ISD::UNPCKLPS:
4564    case X86ISD::UNPCKLPD:
4565    case X86ISD::VUNPCKLPSY:
4566    case X86ISD::VUNPCKLPDY:
4567      DecodeUNPCKLPMask(VT, ShuffleMask);
4568      break;
4569    case X86ISD::MOVHLPS:
4570      DecodeMOVHLPSMask(NumElems, ShuffleMask);
4571      break;
4572    case X86ISD::MOVLHPS:
4573      DecodeMOVLHPSMask(NumElems, ShuffleMask);
4574      break;
4575    case X86ISD::PSHUFD:
4576      ImmN = N->getOperand(N->getNumOperands()-1);
4577      DecodePSHUFMask(NumElems,
4578                      cast<ConstantSDNode>(ImmN)->getZExtValue(),
4579                      ShuffleMask);
4580      break;
4581    case X86ISD::PSHUFHW:
4582      ImmN = N->getOperand(N->getNumOperands()-1);
4583      DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4584                        ShuffleMask);
4585      break;
4586    case X86ISD::PSHUFLW:
4587      ImmN = N->getOperand(N->getNumOperands()-1);
4588      DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4589                        ShuffleMask);
4590      break;
4591    case X86ISD::MOVSS:
4592    case X86ISD::MOVSD: {
4593      // The index 0 always comes from the first element of the second source,
4594      // this is why MOVSS and MOVSD are used in the first place. The other
4595      // elements come from the other positions of the first source vector.
4596      unsigned OpNum = (Index == 0) ? 1 : 0;
4597      return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
4598                                 Depth+1);
4599    }
4600    case X86ISD::VPERMILPS:
4601      ImmN = N->getOperand(N->getNumOperands()-1);
4602      DecodeVPERMILPSMask(4, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4603                        ShuffleMask);
4604      break;
4605    case X86ISD::VPERMILPSY:
4606      ImmN = N->getOperand(N->getNumOperands()-1);
4607      DecodeVPERMILPSMask(8, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4608                        ShuffleMask);
4609      break;
4610    case X86ISD::VPERMILPD:
4611      ImmN = N->getOperand(N->getNumOperands()-1);
4612      DecodeVPERMILPDMask(2, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4613                        ShuffleMask);
4614      break;
4615    case X86ISD::VPERMILPDY:
4616      ImmN = N->getOperand(N->getNumOperands()-1);
4617      DecodeVPERMILPDMask(4, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4618                        ShuffleMask);
4619      break;
4620    case X86ISD::VPERM2F128:
4621      ImmN = N->getOperand(N->getNumOperands()-1);
4622      DecodeVPERM2F128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4623                           ShuffleMask);
4624      break;
4625    case X86ISD::MOVDDUP:
4626    case X86ISD::MOVLHPD:
4627    case X86ISD::MOVLPD:
4628    case X86ISD::MOVLPS:
4629    case X86ISD::MOVSHDUP:
4630    case X86ISD::MOVSLDUP:
4631    case X86ISD::PALIGN:
4632      return SDValue(); // Not yet implemented.
4633    default:
4634      assert(0 && "unknown target shuffle node");
4635      return SDValue();
4636    }
4637
4638    Index = ShuffleMask[Index];
4639    if (Index < 0)
4640      return DAG.getUNDEF(VT.getVectorElementType());
4641
4642    SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
4643    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
4644                               Depth+1);
4645  }
4646
4647  // Actual nodes that may contain scalar elements
4648  if (Opcode == ISD::BITCAST) {
4649    V = V.getOperand(0);
4650    EVT SrcVT = V.getValueType();
4651    unsigned NumElems = VT.getVectorNumElements();
4652
4653    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4654      return SDValue();
4655  }
4656
4657  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4658    return (Index == 0) ? V.getOperand(0)
4659                          : DAG.getUNDEF(VT.getVectorElementType());
4660
4661  if (V.getOpcode() == ISD::BUILD_VECTOR)
4662    return V.getOperand(Index);
4663
4664  return SDValue();
4665}
4666
4667/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4668/// shuffle operation which come from a consecutively from a zero. The
4669/// search can start in two different directions, from left or right.
4670static
4671unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
4672                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4673  int i = 0;
4674
4675  while (i < NumElems) {
4676    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4677    SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
4678    if (!(Elt.getNode() &&
4679         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4680      break;
4681    ++i;
4682  }
4683
4684  return i;
4685}
4686
4687/// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
4688/// MaskE correspond consecutively to elements from one of the vector operands,
4689/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4690static
4691bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
4692                              int OpIdx, int NumElems, unsigned &OpNum) {
4693  bool SeenV1 = false;
4694  bool SeenV2 = false;
4695
4696  for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
4697    int Idx = SVOp->getMaskElt(i);
4698    // Ignore undef indicies
4699    if (Idx < 0)
4700      continue;
4701
4702    if (Idx < NumElems)
4703      SeenV1 = true;
4704    else
4705      SeenV2 = true;
4706
4707    // Only accept consecutive elements from the same vector
4708    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4709      return false;
4710  }
4711
4712  OpNum = SeenV1 ? 0 : 1;
4713  return true;
4714}
4715
4716/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4717/// logical left shift of a vector.
4718static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4719                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4720  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4721  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4722              false /* check zeros from right */, DAG);
4723  unsigned OpSrc;
4724
4725  if (!NumZeros)
4726    return false;
4727
4728  // Considering the elements in the mask that are not consecutive zeros,
4729  // check if they consecutively come from only one of the source vectors.
4730  //
4731  //               V1 = {X, A, B, C}     0
4732  //                         \  \  \    /
4733  //   vector_shuffle V1, V2 <1, 2, 3, X>
4734  //
4735  if (!isShuffleMaskConsecutive(SVOp,
4736            0,                   // Mask Start Index
4737            NumElems-NumZeros-1, // Mask End Index
4738            NumZeros,            // Where to start looking in the src vector
4739            NumElems,            // Number of elements in vector
4740            OpSrc))              // Which source operand ?
4741    return false;
4742
4743  isLeft = false;
4744  ShAmt = NumZeros;
4745  ShVal = SVOp->getOperand(OpSrc);
4746  return true;
4747}
4748
4749/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4750/// logical left shift of a vector.
4751static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4752                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4753  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4754  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4755              true /* check zeros from left */, DAG);
4756  unsigned OpSrc;
4757
4758  if (!NumZeros)
4759    return false;
4760
4761  // Considering the elements in the mask that are not consecutive zeros,
4762  // check if they consecutively come from only one of the source vectors.
4763  //
4764  //                           0    { A, B, X, X } = V2
4765  //                          / \    /  /
4766  //   vector_shuffle V1, V2 <X, X, 4, 5>
4767  //
4768  if (!isShuffleMaskConsecutive(SVOp,
4769            NumZeros,     // Mask Start Index
4770            NumElems-1,   // Mask End Index
4771            0,            // Where to start looking in the src vector
4772            NumElems,     // Number of elements in vector
4773            OpSrc))       // Which source operand ?
4774    return false;
4775
4776  isLeft = true;
4777  ShAmt = NumZeros;
4778  ShVal = SVOp->getOperand(OpSrc);
4779  return true;
4780}
4781
4782/// isVectorShift - Returns true if the shuffle can be implemented as a
4783/// logical left or right shift of a vector.
4784static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4785                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4786  // Although the logic below support any bitwidth size, there are no
4787  // shift instructions which handle more than 128-bit vectors.
4788  if (SVOp->getValueType(0).getSizeInBits() > 128)
4789    return false;
4790
4791  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4792      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4793    return true;
4794
4795  return false;
4796}
4797
4798/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4799///
4800static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4801                                       unsigned NumNonZero, unsigned NumZero,
4802                                       SelectionDAG &DAG,
4803                                       const TargetLowering &TLI) {
4804  if (NumNonZero > 8)
4805    return SDValue();
4806
4807  DebugLoc dl = Op.getDebugLoc();
4808  SDValue V(0, 0);
4809  bool First = true;
4810  for (unsigned i = 0; i < 16; ++i) {
4811    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4812    if (ThisIsNonZero && First) {
4813      if (NumZero)
4814        V = getZeroVector(MVT::v8i16, true, DAG, dl);
4815      else
4816        V = DAG.getUNDEF(MVT::v8i16);
4817      First = false;
4818    }
4819
4820    if ((i & 1) != 0) {
4821      SDValue ThisElt(0, 0), LastElt(0, 0);
4822      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4823      if (LastIsNonZero) {
4824        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4825                              MVT::i16, Op.getOperand(i-1));
4826      }
4827      if (ThisIsNonZero) {
4828        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4829        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4830                              ThisElt, DAG.getConstant(8, MVT::i8));
4831        if (LastIsNonZero)
4832          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4833      } else
4834        ThisElt = LastElt;
4835
4836      if (ThisElt.getNode())
4837        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4838                        DAG.getIntPtrConstant(i/2));
4839    }
4840  }
4841
4842  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4843}
4844
4845/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4846///
4847static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4848                                     unsigned NumNonZero, unsigned NumZero,
4849                                     SelectionDAG &DAG,
4850                                     const TargetLowering &TLI) {
4851  if (NumNonZero > 4)
4852    return SDValue();
4853
4854  DebugLoc dl = Op.getDebugLoc();
4855  SDValue V(0, 0);
4856  bool First = true;
4857  for (unsigned i = 0; i < 8; ++i) {
4858    bool isNonZero = (NonZeros & (1 << i)) != 0;
4859    if (isNonZero) {
4860      if (First) {
4861        if (NumZero)
4862          V = getZeroVector(MVT::v8i16, true, DAG, dl);
4863        else
4864          V = DAG.getUNDEF(MVT::v8i16);
4865        First = false;
4866      }
4867      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4868                      MVT::v8i16, V, Op.getOperand(i),
4869                      DAG.getIntPtrConstant(i));
4870    }
4871  }
4872
4873  return V;
4874}
4875
4876/// getVShift - Return a vector logical shift node.
4877///
4878static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4879                         unsigned NumBits, SelectionDAG &DAG,
4880                         const TargetLowering &TLI, DebugLoc dl) {
4881  assert(VT.getSizeInBits() == 128 && "Unknown type for VShift");
4882  EVT ShVT = MVT::v2i64;
4883  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
4884  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4885  return DAG.getNode(ISD::BITCAST, dl, VT,
4886                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4887                             DAG.getConstant(NumBits,
4888                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4889}
4890
4891SDValue
4892X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4893                                          SelectionDAG &DAG) const {
4894
4895  // Check if the scalar load can be widened into a vector load. And if
4896  // the address is "base + cst" see if the cst can be "absorbed" into
4897  // the shuffle mask.
4898  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4899    SDValue Ptr = LD->getBasePtr();
4900    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4901      return SDValue();
4902    EVT PVT = LD->getValueType(0);
4903    if (PVT != MVT::i32 && PVT != MVT::f32)
4904      return SDValue();
4905
4906    int FI = -1;
4907    int64_t Offset = 0;
4908    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4909      FI = FINode->getIndex();
4910      Offset = 0;
4911    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4912               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4913      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4914      Offset = Ptr.getConstantOperandVal(1);
4915      Ptr = Ptr.getOperand(0);
4916    } else {
4917      return SDValue();
4918    }
4919
4920    // FIXME: 256-bit vector instructions don't require a strict alignment,
4921    // improve this code to support it better.
4922    unsigned RequiredAlign = VT.getSizeInBits()/8;
4923    SDValue Chain = LD->getChain();
4924    // Make sure the stack object alignment is at least 16 or 32.
4925    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4926    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4927      if (MFI->isFixedObjectIndex(FI)) {
4928        // Can't change the alignment. FIXME: It's possible to compute
4929        // the exact stack offset and reference FI + adjust offset instead.
4930        // If someone *really* cares about this. That's the way to implement it.
4931        return SDValue();
4932      } else {
4933        MFI->setObjectAlignment(FI, RequiredAlign);
4934      }
4935    }
4936
4937    // (Offset % 16 or 32) must be multiple of 4. Then address is then
4938    // Ptr + (Offset & ~15).
4939    if (Offset < 0)
4940      return SDValue();
4941    if ((Offset % RequiredAlign) & 3)
4942      return SDValue();
4943    int64_t StartOffset = Offset & ~(RequiredAlign-1);
4944    if (StartOffset)
4945      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4946                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4947
4948    int EltNo = (Offset - StartOffset) >> 2;
4949    int NumElems = VT.getVectorNumElements();
4950
4951    EVT CanonVT = VT.getSizeInBits() == 128 ? MVT::v4i32 : MVT::v8i32;
4952    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4953    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4954                             LD->getPointerInfo().getWithOffset(StartOffset),
4955                             false, false, 0);
4956
4957    // Canonicalize it to a v4i32 or v8i32 shuffle.
4958    SmallVector<int, 8> Mask;
4959    for (int i = 0; i < NumElems; ++i)
4960      Mask.push_back(EltNo);
4961
4962    V1 = DAG.getNode(ISD::BITCAST, dl, CanonVT, V1);
4963    return DAG.getNode(ISD::BITCAST, dl, NVT,
4964                       DAG.getVectorShuffle(CanonVT, dl, V1,
4965                                            DAG.getUNDEF(CanonVT),&Mask[0]));
4966  }
4967
4968  return SDValue();
4969}
4970
4971/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4972/// vector of type 'VT', see if the elements can be replaced by a single large
4973/// load which has the same value as a build_vector whose operands are 'elts'.
4974///
4975/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4976///
4977/// FIXME: we'd also like to handle the case where the last elements are zero
4978/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4979/// There's even a handy isZeroNode for that purpose.
4980static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4981                                        DebugLoc &DL, SelectionDAG &DAG) {
4982  EVT EltVT = VT.getVectorElementType();
4983  unsigned NumElems = Elts.size();
4984
4985  LoadSDNode *LDBase = NULL;
4986  unsigned LastLoadedElt = -1U;
4987
4988  // For each element in the initializer, see if we've found a load or an undef.
4989  // If we don't find an initial load element, or later load elements are
4990  // non-consecutive, bail out.
4991  for (unsigned i = 0; i < NumElems; ++i) {
4992    SDValue Elt = Elts[i];
4993
4994    if (!Elt.getNode() ||
4995        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4996      return SDValue();
4997    if (!LDBase) {
4998      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4999        return SDValue();
5000      LDBase = cast<LoadSDNode>(Elt.getNode());
5001      LastLoadedElt = i;
5002      continue;
5003    }
5004    if (Elt.getOpcode() == ISD::UNDEF)
5005      continue;
5006
5007    LoadSDNode *LD = cast<LoadSDNode>(Elt);
5008    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
5009      return SDValue();
5010    LastLoadedElt = i;
5011  }
5012
5013  // If we have found an entire vector of loads and undefs, then return a large
5014  // load of the entire vector width starting at the base pointer.  If we found
5015  // consecutive loads for the low half, generate a vzext_load node.
5016  if (LastLoadedElt == NumElems - 1) {
5017    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
5018      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5019                         LDBase->getPointerInfo(),
5020                         LDBase->isVolatile(), LDBase->isNonTemporal(), 0);
5021    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5022                       LDBase->getPointerInfo(),
5023                       LDBase->isVolatile(), LDBase->isNonTemporal(),
5024                       LDBase->getAlignment());
5025  } else if (NumElems == 4 && LastLoadedElt == 1 &&
5026             DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
5027    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
5028    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
5029    SDValue ResNode =
5030        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
5031                                LDBase->getPointerInfo(),
5032                                LDBase->getAlignment(),
5033                                false/*isVolatile*/, true/*ReadMem*/,
5034                                false/*WriteMem*/);
5035    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
5036  }
5037  return SDValue();
5038}
5039
5040SDValue
5041X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5042  DebugLoc dl = Op.getDebugLoc();
5043
5044  EVT VT = Op.getValueType();
5045  EVT ExtVT = VT.getVectorElementType();
5046  unsigned NumElems = Op.getNumOperands();
5047
5048  // Vectors containing all zeros can be matched by pxor and xorps later
5049  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5050    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5051    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5052    if (Op.getValueType() == MVT::v4i32 ||
5053        Op.getValueType() == MVT::v8i32)
5054      return Op;
5055
5056    return getZeroVector(Op.getValueType(), Subtarget->hasXMMInt(), DAG, dl);
5057  }
5058
5059  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5060  // vectors or broken into v4i32 operations on 256-bit vectors.
5061  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5062    if (Op.getValueType() == MVT::v4i32)
5063      return Op;
5064
5065    return getOnesVector(Op.getValueType(), DAG, dl);
5066  }
5067
5068  unsigned EVTBits = ExtVT.getSizeInBits();
5069
5070  unsigned NumZero  = 0;
5071  unsigned NumNonZero = 0;
5072  unsigned NonZeros = 0;
5073  bool IsAllConstants = true;
5074  SmallSet<SDValue, 8> Values;
5075  for (unsigned i = 0; i < NumElems; ++i) {
5076    SDValue Elt = Op.getOperand(i);
5077    if (Elt.getOpcode() == ISD::UNDEF)
5078      continue;
5079    Values.insert(Elt);
5080    if (Elt.getOpcode() != ISD::Constant &&
5081        Elt.getOpcode() != ISD::ConstantFP)
5082      IsAllConstants = false;
5083    if (X86::isZeroNode(Elt))
5084      NumZero++;
5085    else {
5086      NonZeros |= (1 << i);
5087      NumNonZero++;
5088    }
5089  }
5090
5091  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5092  if (NumNonZero == 0)
5093    return DAG.getUNDEF(VT);
5094
5095  // Special case for single non-zero, non-undef, element.
5096  if (NumNonZero == 1) {
5097    unsigned Idx = CountTrailingZeros_32(NonZeros);
5098    SDValue Item = Op.getOperand(Idx);
5099
5100    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5101    // the value are obviously zero, truncate the value to i32 and do the
5102    // insertion that way.  Only do this if the value is non-constant or if the
5103    // value is a constant being inserted into element 0.  It is cheaper to do
5104    // a constant pool load than it is to do a movd + shuffle.
5105    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5106        (!IsAllConstants || Idx == 0)) {
5107      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5108        // Handle SSE only.
5109        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5110        EVT VecVT = MVT::v4i32;
5111        unsigned VecElts = 4;
5112
5113        // Truncate the value (which may itself be a constant) to i32, and
5114        // convert it to a vector with movd (S2V+shuffle to zero extend).
5115        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5116        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5117        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
5118                                           Subtarget->hasXMMInt(), DAG);
5119
5120        // Now we have our 32-bit value zero extended in the low element of
5121        // a vector.  If Idx != 0, swizzle it into place.
5122        if (Idx != 0) {
5123          SmallVector<int, 4> Mask;
5124          Mask.push_back(Idx);
5125          for (unsigned i = 1; i != VecElts; ++i)
5126            Mask.push_back(i);
5127          Item = DAG.getVectorShuffle(VecVT, dl, Item,
5128                                      DAG.getUNDEF(Item.getValueType()),
5129                                      &Mask[0]);
5130        }
5131        return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Item);
5132      }
5133    }
5134
5135    // If we have a constant or non-constant insertion into the low element of
5136    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5137    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5138    // depending on what the source datatype is.
5139    if (Idx == 0) {
5140      if (NumZero == 0) {
5141        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5142      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5143          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5144        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5145        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5146        return getShuffleVectorZeroOrUndef(Item, 0, true,Subtarget->hasXMMInt(),
5147                                           DAG);
5148      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5149        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5150        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5151        EVT MiddleVT = MVT::v4i32;
5152        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
5153        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
5154                                           Subtarget->hasXMMInt(), DAG);
5155        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5156      }
5157    }
5158
5159    // Is it a vector logical left shift?
5160    if (NumElems == 2 && Idx == 1 &&
5161        X86::isZeroNode(Op.getOperand(0)) &&
5162        !X86::isZeroNode(Op.getOperand(1))) {
5163      unsigned NumBits = VT.getSizeInBits();
5164      return getVShift(true, VT,
5165                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5166                                   VT, Op.getOperand(1)),
5167                       NumBits/2, DAG, *this, dl);
5168    }
5169
5170    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5171      return SDValue();
5172
5173    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5174    // is a non-constant being inserted into an element other than the low one,
5175    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5176    // movd/movss) to move this into the low element, then shuffle it into
5177    // place.
5178    if (EVTBits == 32) {
5179      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5180
5181      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5182      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
5183                                         Subtarget->hasXMMInt(), DAG);
5184      SmallVector<int, 8> MaskVec;
5185      for (unsigned i = 0; i < NumElems; i++)
5186        MaskVec.push_back(i == Idx ? 0 : 1);
5187      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5188    }
5189  }
5190
5191  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5192  if (Values.size() == 1) {
5193    if (EVTBits == 32) {
5194      // Instead of a shuffle like this:
5195      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5196      // Check if it's possible to issue this instead.
5197      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5198      unsigned Idx = CountTrailingZeros_32(NonZeros);
5199      SDValue Item = Op.getOperand(Idx);
5200      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5201        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5202    }
5203    return SDValue();
5204  }
5205
5206  // A vector full of immediates; various special cases are already
5207  // handled, so this is best done with a single constant-pool load.
5208  if (IsAllConstants)
5209    return SDValue();
5210
5211  // For AVX-length vectors, build the individual 128-bit pieces and use
5212  // shuffles to put them in place.
5213  if (VT.getSizeInBits() == 256 && !ISD::isBuildVectorAllZeros(Op.getNode())) {
5214    SmallVector<SDValue, 32> V;
5215    for (unsigned i = 0; i < NumElems; ++i)
5216      V.push_back(Op.getOperand(i));
5217
5218    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5219
5220    // Build both the lower and upper subvector.
5221    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5222    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5223                                NumElems/2);
5224
5225    // Recreate the wider vector with the lower and upper part.
5226    SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Lower,
5227                                DAG.getConstant(0, MVT::i32), DAG, dl);
5228    return Insert128BitVector(Vec, Upper, DAG.getConstant(NumElems/2, MVT::i32),
5229                              DAG, dl);
5230  }
5231
5232  // Let legalizer expand 2-wide build_vectors.
5233  if (EVTBits == 64) {
5234    if (NumNonZero == 1) {
5235      // One half is zero or undef.
5236      unsigned Idx = CountTrailingZeros_32(NonZeros);
5237      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5238                                 Op.getOperand(Idx));
5239      return getShuffleVectorZeroOrUndef(V2, Idx, true,
5240                                         Subtarget->hasXMMInt(), DAG);
5241    }
5242    return SDValue();
5243  }
5244
5245  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5246  if (EVTBits == 8 && NumElems == 16) {
5247    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5248                                        *this);
5249    if (V.getNode()) return V;
5250  }
5251
5252  if (EVTBits == 16 && NumElems == 8) {
5253    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5254                                      *this);
5255    if (V.getNode()) return V;
5256  }
5257
5258  // If element VT is == 32 bits, turn it into a number of shuffles.
5259  SmallVector<SDValue, 8> V;
5260  V.resize(NumElems);
5261  if (NumElems == 4 && NumZero > 0) {
5262    for (unsigned i = 0; i < 4; ++i) {
5263      bool isZero = !(NonZeros & (1 << i));
5264      if (isZero)
5265        V[i] = getZeroVector(VT, Subtarget->hasXMMInt(), DAG, dl);
5266      else
5267        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5268    }
5269
5270    for (unsigned i = 0; i < 2; ++i) {
5271      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5272        default: break;
5273        case 0:
5274          V[i] = V[i*2];  // Must be a zero vector.
5275          break;
5276        case 1:
5277          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5278          break;
5279        case 2:
5280          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5281          break;
5282        case 3:
5283          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5284          break;
5285      }
5286    }
5287
5288    SmallVector<int, 8> MaskVec;
5289    bool Reverse = (NonZeros & 0x3) == 2;
5290    for (unsigned i = 0; i < 2; ++i)
5291      MaskVec.push_back(Reverse ? 1-i : i);
5292    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5293    for (unsigned i = 0; i < 2; ++i)
5294      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
5295    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5296  }
5297
5298  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
5299    // Check for a build vector of consecutive loads.
5300    for (unsigned i = 0; i < NumElems; ++i)
5301      V[i] = Op.getOperand(i);
5302
5303    // Check for elements which are consecutive loads.
5304    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5305    if (LD.getNode())
5306      return LD;
5307
5308    // For SSE 4.1, use insertps to put the high elements into the low element.
5309    if (getSubtarget()->hasSSE41() || getSubtarget()->hasAVX()) {
5310      SDValue Result;
5311      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5312        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5313      else
5314        Result = DAG.getUNDEF(VT);
5315
5316      for (unsigned i = 1; i < NumElems; ++i) {
5317        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5318        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5319                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5320      }
5321      return Result;
5322    }
5323
5324    // Otherwise, expand into a number of unpckl*, start by extending each of
5325    // our (non-undef) elements to the full vector width with the element in the
5326    // bottom slot of the vector (which generates no code for SSE).
5327    for (unsigned i = 0; i < NumElems; ++i) {
5328      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5329        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5330      else
5331        V[i] = DAG.getUNDEF(VT);
5332    }
5333
5334    // Next, we iteratively mix elements, e.g. for v4f32:
5335    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5336    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5337    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5338    unsigned EltStride = NumElems >> 1;
5339    while (EltStride != 0) {
5340      for (unsigned i = 0; i < EltStride; ++i) {
5341        // If V[i+EltStride] is undef and this is the first round of mixing,
5342        // then it is safe to just drop this shuffle: V[i] is already in the
5343        // right place, the one element (since it's the first round) being
5344        // inserted as undef can be dropped.  This isn't safe for successive
5345        // rounds because they will permute elements within both vectors.
5346        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5347            EltStride == NumElems/2)
5348          continue;
5349
5350        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5351      }
5352      EltStride >>= 1;
5353    }
5354    return V[0];
5355  }
5356  return SDValue();
5357}
5358
5359// LowerMMXCONCAT_VECTORS - We support concatenate two MMX registers and place
5360// them in a MMX register.  This is better than doing a stack convert.
5361static SDValue LowerMMXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5362  DebugLoc dl = Op.getDebugLoc();
5363  EVT ResVT = Op.getValueType();
5364
5365  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
5366         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
5367  int Mask[2];
5368  SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
5369  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5370  InVec = Op.getOperand(1);
5371  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5372    unsigned NumElts = ResVT.getVectorNumElements();
5373    VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5374    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
5375                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
5376  } else {
5377    InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
5378    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5379    Mask[0] = 0; Mask[1] = 2;
5380    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
5381  }
5382  return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5383}
5384
5385// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5386// to create 256-bit vectors from two other 128-bit ones.
5387static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5388  DebugLoc dl = Op.getDebugLoc();
5389  EVT ResVT = Op.getValueType();
5390
5391  assert(ResVT.getSizeInBits() == 256 && "Value type must be 256-bit wide");
5392
5393  SDValue V1 = Op.getOperand(0);
5394  SDValue V2 = Op.getOperand(1);
5395  unsigned NumElems = ResVT.getVectorNumElements();
5396
5397  SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, ResVT), V1,
5398                                 DAG.getConstant(0, MVT::i32), DAG, dl);
5399  return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
5400                            DAG, dl);
5401}
5402
5403SDValue
5404X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
5405  EVT ResVT = Op.getValueType();
5406
5407  assert(Op.getNumOperands() == 2);
5408  assert((ResVT.getSizeInBits() == 128 || ResVT.getSizeInBits() == 256) &&
5409         "Unsupported CONCAT_VECTORS for value type");
5410
5411  // We support concatenate two MMX registers and place them in a MMX register.
5412  // This is better than doing a stack convert.
5413  if (ResVT.is128BitVector())
5414    return LowerMMXCONCAT_VECTORS(Op, DAG);
5415
5416  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5417  // from two other 128-bit ones.
5418  return LowerAVXCONCAT_VECTORS(Op, DAG);
5419}
5420
5421// v8i16 shuffles - Prefer shuffles in the following order:
5422// 1. [all]   pshuflw, pshufhw, optional move
5423// 2. [ssse3] 1 x pshufb
5424// 3. [ssse3] 2 x pshufb + 1 x por
5425// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5426SDValue
5427X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
5428                                            SelectionDAG &DAG) const {
5429  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5430  SDValue V1 = SVOp->getOperand(0);
5431  SDValue V2 = SVOp->getOperand(1);
5432  DebugLoc dl = SVOp->getDebugLoc();
5433  SmallVector<int, 8> MaskVals;
5434
5435  // Determine if more than 1 of the words in each of the low and high quadwords
5436  // of the result come from the same quadword of one of the two inputs.  Undef
5437  // mask values count as coming from any quadword, for better codegen.
5438  SmallVector<unsigned, 4> LoQuad(4);
5439  SmallVector<unsigned, 4> HiQuad(4);
5440  BitVector InputQuads(4);
5441  for (unsigned i = 0; i < 8; ++i) {
5442    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
5443    int EltIdx = SVOp->getMaskElt(i);
5444    MaskVals.push_back(EltIdx);
5445    if (EltIdx < 0) {
5446      ++Quad[0];
5447      ++Quad[1];
5448      ++Quad[2];
5449      ++Quad[3];
5450      continue;
5451    }
5452    ++Quad[EltIdx / 4];
5453    InputQuads.set(EltIdx / 4);
5454  }
5455
5456  int BestLoQuad = -1;
5457  unsigned MaxQuad = 1;
5458  for (unsigned i = 0; i < 4; ++i) {
5459    if (LoQuad[i] > MaxQuad) {
5460      BestLoQuad = i;
5461      MaxQuad = LoQuad[i];
5462    }
5463  }
5464
5465  int BestHiQuad = -1;
5466  MaxQuad = 1;
5467  for (unsigned i = 0; i < 4; ++i) {
5468    if (HiQuad[i] > MaxQuad) {
5469      BestHiQuad = i;
5470      MaxQuad = HiQuad[i];
5471    }
5472  }
5473
5474  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5475  // of the two input vectors, shuffle them into one input vector so only a
5476  // single pshufb instruction is necessary. If There are more than 2 input
5477  // quads, disable the next transformation since it does not help SSSE3.
5478  bool V1Used = InputQuads[0] || InputQuads[1];
5479  bool V2Used = InputQuads[2] || InputQuads[3];
5480  if (Subtarget->hasSSSE3() || Subtarget->hasAVX()) {
5481    if (InputQuads.count() == 2 && V1Used && V2Used) {
5482      BestLoQuad = InputQuads.find_first();
5483      BestHiQuad = InputQuads.find_next(BestLoQuad);
5484    }
5485    if (InputQuads.count() > 2) {
5486      BestLoQuad = -1;
5487      BestHiQuad = -1;
5488    }
5489  }
5490
5491  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5492  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5493  // words from all 4 input quadwords.
5494  SDValue NewV;
5495  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5496    SmallVector<int, 8> MaskV;
5497    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
5498    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
5499    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5500                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5501                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5502    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5503
5504    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5505    // source words for the shuffle, to aid later transformations.
5506    bool AllWordsInNewV = true;
5507    bool InOrder[2] = { true, true };
5508    for (unsigned i = 0; i != 8; ++i) {
5509      int idx = MaskVals[i];
5510      if (idx != (int)i)
5511        InOrder[i/4] = false;
5512      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5513        continue;
5514      AllWordsInNewV = false;
5515      break;
5516    }
5517
5518    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5519    if (AllWordsInNewV) {
5520      for (int i = 0; i != 8; ++i) {
5521        int idx = MaskVals[i];
5522        if (idx < 0)
5523          continue;
5524        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5525        if ((idx != i) && idx < 4)
5526          pshufhw = false;
5527        if ((idx != i) && idx > 3)
5528          pshuflw = false;
5529      }
5530      V1 = NewV;
5531      V2Used = false;
5532      BestLoQuad = 0;
5533      BestHiQuad = 1;
5534    }
5535
5536    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5537    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5538    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5539      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5540      unsigned TargetMask = 0;
5541      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5542                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5543      TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
5544                             X86::getShufflePSHUFLWImmediate(NewV.getNode());
5545      V1 = NewV.getOperand(0);
5546      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5547    }
5548  }
5549
5550  // If we have SSSE3, and all words of the result are from 1 input vector,
5551  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5552  // is present, fall back to case 4.
5553  if (Subtarget->hasSSSE3() || Subtarget->hasAVX()) {
5554    SmallVector<SDValue,16> pshufbMask;
5555
5556    // If we have elements from both input vectors, set the high bit of the
5557    // shuffle mask element to zero out elements that come from V2 in the V1
5558    // mask, and elements that come from V1 in the V2 mask, so that the two
5559    // results can be OR'd together.
5560    bool TwoInputs = V1Used && V2Used;
5561    for (unsigned i = 0; i != 8; ++i) {
5562      int EltIdx = MaskVals[i] * 2;
5563      if (TwoInputs && (EltIdx >= 16)) {
5564        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5565        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5566        continue;
5567      }
5568      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
5569      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
5570    }
5571    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5572    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5573                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5574                                 MVT::v16i8, &pshufbMask[0], 16));
5575    if (!TwoInputs)
5576      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5577
5578    // Calculate the shuffle mask for the second input, shuffle it, and
5579    // OR it with the first shuffled input.
5580    pshufbMask.clear();
5581    for (unsigned i = 0; i != 8; ++i) {
5582      int EltIdx = MaskVals[i] * 2;
5583      if (EltIdx < 16) {
5584        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5585        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5586        continue;
5587      }
5588      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5589      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
5590    }
5591    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5592    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5593                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5594                                 MVT::v16i8, &pshufbMask[0], 16));
5595    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5596    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5597  }
5598
5599  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5600  // and update MaskVals with new element order.
5601  BitVector InOrder(8);
5602  if (BestLoQuad >= 0) {
5603    SmallVector<int, 8> MaskV;
5604    for (int i = 0; i != 4; ++i) {
5605      int idx = MaskVals[i];
5606      if (idx < 0) {
5607        MaskV.push_back(-1);
5608        InOrder.set(i);
5609      } else if ((idx / 4) == BestLoQuad) {
5610        MaskV.push_back(idx & 3);
5611        InOrder.set(i);
5612      } else {
5613        MaskV.push_back(-1);
5614      }
5615    }
5616    for (unsigned i = 4; i != 8; ++i)
5617      MaskV.push_back(i);
5618    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5619                                &MaskV[0]);
5620
5621    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE &&
5622        (Subtarget->hasSSSE3() || Subtarget->hasAVX()))
5623      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5624                               NewV.getOperand(0),
5625                               X86::getShufflePSHUFLWImmediate(NewV.getNode()),
5626                               DAG);
5627  }
5628
5629  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5630  // and update MaskVals with the new element order.
5631  if (BestHiQuad >= 0) {
5632    SmallVector<int, 8> MaskV;
5633    for (unsigned i = 0; i != 4; ++i)
5634      MaskV.push_back(i);
5635    for (unsigned i = 4; i != 8; ++i) {
5636      int idx = MaskVals[i];
5637      if (idx < 0) {
5638        MaskV.push_back(-1);
5639        InOrder.set(i);
5640      } else if ((idx / 4) == BestHiQuad) {
5641        MaskV.push_back((idx & 3) + 4);
5642        InOrder.set(i);
5643      } else {
5644        MaskV.push_back(-1);
5645      }
5646    }
5647    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5648                                &MaskV[0]);
5649
5650    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE &&
5651        (Subtarget->hasSSSE3() || Subtarget->hasAVX()))
5652      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5653                              NewV.getOperand(0),
5654                              X86::getShufflePSHUFHWImmediate(NewV.getNode()),
5655                              DAG);
5656  }
5657
5658  // In case BestHi & BestLo were both -1, which means each quadword has a word
5659  // from each of the four input quadwords, calculate the InOrder bitvector now
5660  // before falling through to the insert/extract cleanup.
5661  if (BestLoQuad == -1 && BestHiQuad == -1) {
5662    NewV = V1;
5663    for (int i = 0; i != 8; ++i)
5664      if (MaskVals[i] < 0 || MaskVals[i] == i)
5665        InOrder.set(i);
5666  }
5667
5668  // The other elements are put in the right place using pextrw and pinsrw.
5669  for (unsigned i = 0; i != 8; ++i) {
5670    if (InOrder[i])
5671      continue;
5672    int EltIdx = MaskVals[i];
5673    if (EltIdx < 0)
5674      continue;
5675    SDValue ExtOp = (EltIdx < 8)
5676    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5677                  DAG.getIntPtrConstant(EltIdx))
5678    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5679                  DAG.getIntPtrConstant(EltIdx - 8));
5680    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5681                       DAG.getIntPtrConstant(i));
5682  }
5683  return NewV;
5684}
5685
5686// v16i8 shuffles - Prefer shuffles in the following order:
5687// 1. [ssse3] 1 x pshufb
5688// 2. [ssse3] 2 x pshufb + 1 x por
5689// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5690static
5691SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5692                                 SelectionDAG &DAG,
5693                                 const X86TargetLowering &TLI) {
5694  SDValue V1 = SVOp->getOperand(0);
5695  SDValue V2 = SVOp->getOperand(1);
5696  DebugLoc dl = SVOp->getDebugLoc();
5697  SmallVector<int, 16> MaskVals;
5698  SVOp->getMask(MaskVals);
5699
5700  // If we have SSSE3, case 1 is generated when all result bytes come from
5701  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5702  // present, fall back to case 3.
5703  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
5704  bool V1Only = true;
5705  bool V2Only = true;
5706  for (unsigned i = 0; i < 16; ++i) {
5707    int EltIdx = MaskVals[i];
5708    if (EltIdx < 0)
5709      continue;
5710    if (EltIdx < 16)
5711      V2Only = false;
5712    else
5713      V1Only = false;
5714  }
5715
5716  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5717  if (TLI.getSubtarget()->hasSSSE3() || TLI.getSubtarget()->hasAVX()) {
5718    SmallVector<SDValue,16> pshufbMask;
5719
5720    // If all result elements are from one input vector, then only translate
5721    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5722    //
5723    // Otherwise, we have elements from both input vectors, and must zero out
5724    // elements that come from V2 in the first mask, and V1 in the second mask
5725    // so that we can OR them together.
5726    bool TwoInputs = !(V1Only || V2Only);
5727    for (unsigned i = 0; i != 16; ++i) {
5728      int EltIdx = MaskVals[i];
5729      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
5730        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5731        continue;
5732      }
5733      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5734    }
5735    // If all the elements are from V2, assign it to V1 and return after
5736    // building the first pshufb.
5737    if (V2Only)
5738      V1 = V2;
5739    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5740                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5741                                 MVT::v16i8, &pshufbMask[0], 16));
5742    if (!TwoInputs)
5743      return V1;
5744
5745    // Calculate the shuffle mask for the second input, shuffle it, and
5746    // OR it with the first shuffled input.
5747    pshufbMask.clear();
5748    for (unsigned i = 0; i != 16; ++i) {
5749      int EltIdx = MaskVals[i];
5750      if (EltIdx < 16) {
5751        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5752        continue;
5753      }
5754      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5755    }
5756    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5757                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5758                                 MVT::v16i8, &pshufbMask[0], 16));
5759    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5760  }
5761
5762  // No SSSE3 - Calculate in place words and then fix all out of place words
5763  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5764  // the 16 different words that comprise the two doublequadword input vectors.
5765  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5766  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5767  SDValue NewV = V2Only ? V2 : V1;
5768  for (int i = 0; i != 8; ++i) {
5769    int Elt0 = MaskVals[i*2];
5770    int Elt1 = MaskVals[i*2+1];
5771
5772    // This word of the result is all undef, skip it.
5773    if (Elt0 < 0 && Elt1 < 0)
5774      continue;
5775
5776    // This word of the result is already in the correct place, skip it.
5777    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
5778      continue;
5779    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
5780      continue;
5781
5782    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5783    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5784    SDValue InsElt;
5785
5786    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5787    // using a single extract together, load it and store it.
5788    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5789      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5790                           DAG.getIntPtrConstant(Elt1 / 2));
5791      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5792                        DAG.getIntPtrConstant(i));
5793      continue;
5794    }
5795
5796    // If Elt1 is defined, extract it from the appropriate source.  If the
5797    // source byte is not also odd, shift the extracted word left 8 bits
5798    // otherwise clear the bottom 8 bits if we need to do an or.
5799    if (Elt1 >= 0) {
5800      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5801                           DAG.getIntPtrConstant(Elt1 / 2));
5802      if ((Elt1 & 1) == 0)
5803        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5804                             DAG.getConstant(8,
5805                                  TLI.getShiftAmountTy(InsElt.getValueType())));
5806      else if (Elt0 >= 0)
5807        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5808                             DAG.getConstant(0xFF00, MVT::i16));
5809    }
5810    // If Elt0 is defined, extract it from the appropriate source.  If the
5811    // source byte is not also even, shift the extracted word right 8 bits. If
5812    // Elt1 was also defined, OR the extracted values together before
5813    // inserting them in the result.
5814    if (Elt0 >= 0) {
5815      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5816                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5817      if ((Elt0 & 1) != 0)
5818        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5819                              DAG.getConstant(8,
5820                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
5821      else if (Elt1 >= 0)
5822        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5823                             DAG.getConstant(0x00FF, MVT::i16));
5824      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5825                         : InsElt0;
5826    }
5827    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5828                       DAG.getIntPtrConstant(i));
5829  }
5830  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5831}
5832
5833/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5834/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5835/// done when every pair / quad of shuffle mask elements point to elements in
5836/// the right sequence. e.g.
5837/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5838static
5839SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5840                                 SelectionDAG &DAG, DebugLoc dl) {
5841  EVT VT = SVOp->getValueType(0);
5842  SDValue V1 = SVOp->getOperand(0);
5843  SDValue V2 = SVOp->getOperand(1);
5844  unsigned NumElems = VT.getVectorNumElements();
5845  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
5846  EVT NewVT;
5847  switch (VT.getSimpleVT().SimpleTy) {
5848  default: assert(false && "Unexpected!");
5849  case MVT::v4f32: NewVT = MVT::v2f64; break;
5850  case MVT::v4i32: NewVT = MVT::v2i64; break;
5851  case MVT::v8i16: NewVT = MVT::v4i32; break;
5852  case MVT::v16i8: NewVT = MVT::v4i32; break;
5853  }
5854
5855  int Scale = NumElems / NewWidth;
5856  SmallVector<int, 8> MaskVec;
5857  for (unsigned i = 0; i < NumElems; i += Scale) {
5858    int StartIdx = -1;
5859    for (int j = 0; j < Scale; ++j) {
5860      int EltIdx = SVOp->getMaskElt(i+j);
5861      if (EltIdx < 0)
5862        continue;
5863      if (StartIdx == -1)
5864        StartIdx = EltIdx - (EltIdx % Scale);
5865      if (EltIdx != StartIdx + j)
5866        return SDValue();
5867    }
5868    if (StartIdx == -1)
5869      MaskVec.push_back(-1);
5870    else
5871      MaskVec.push_back(StartIdx / Scale);
5872  }
5873
5874  V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
5875  V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
5876  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
5877}
5878
5879/// getVZextMovL - Return a zero-extending vector move low node.
5880///
5881static SDValue getVZextMovL(EVT VT, EVT OpVT,
5882                            SDValue SrcOp, SelectionDAG &DAG,
5883                            const X86Subtarget *Subtarget, DebugLoc dl) {
5884  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
5885    LoadSDNode *LD = NULL;
5886    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
5887      LD = dyn_cast<LoadSDNode>(SrcOp);
5888    if (!LD) {
5889      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
5890      // instead.
5891      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
5892      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
5893          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5894          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
5895          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
5896        // PR2108
5897        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
5898        return DAG.getNode(ISD::BITCAST, dl, VT,
5899                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5900                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5901                                                   OpVT,
5902                                                   SrcOp.getOperand(0)
5903                                                          .getOperand(0))));
5904      }
5905    }
5906  }
5907
5908  return DAG.getNode(ISD::BITCAST, dl, VT,
5909                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5910                                 DAG.getNode(ISD::BITCAST, dl,
5911                                             OpVT, SrcOp)));
5912}
5913
5914/// areShuffleHalvesWithinDisjointLanes - Check whether each half of a vector
5915/// shuffle node referes to only one lane in the sources.
5916static bool areShuffleHalvesWithinDisjointLanes(ShuffleVectorSDNode *SVOp) {
5917  EVT VT = SVOp->getValueType(0);
5918  int NumElems = VT.getVectorNumElements();
5919  int HalfSize = NumElems/2;
5920  SmallVector<int, 16> M;
5921  SVOp->getMask(M);
5922  bool MatchA = false, MatchB = false;
5923
5924  for (int l = 0; l < NumElems*2; l += HalfSize) {
5925    if (isUndefOrInRange(M, 0, HalfSize, l, l+HalfSize)) {
5926      MatchA = true;
5927      break;
5928    }
5929  }
5930
5931  for (int l = 0; l < NumElems*2; l += HalfSize) {
5932    if (isUndefOrInRange(M, HalfSize, HalfSize, l, l+HalfSize)) {
5933      MatchB = true;
5934      break;
5935    }
5936  }
5937
5938  return MatchA && MatchB;
5939}
5940
5941/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
5942/// which could not be matched by any known target speficic shuffle
5943static SDValue
5944LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5945  if (areShuffleHalvesWithinDisjointLanes(SVOp)) {
5946    // If each half of a vector shuffle node referes to only one lane in the
5947    // source vectors, extract each used 128-bit lane and shuffle them using
5948    // 128-bit shuffles. Then, concatenate the results. Otherwise leave
5949    // the work to the legalizer.
5950    DebugLoc dl = SVOp->getDebugLoc();
5951    EVT VT = SVOp->getValueType(0);
5952    int NumElems = VT.getVectorNumElements();
5953    int HalfSize = NumElems/2;
5954
5955    // Extract the reference for each half
5956    int FstVecExtractIdx = 0, SndVecExtractIdx = 0;
5957    int FstVecOpNum = 0, SndVecOpNum = 0;
5958    for (int i = 0; i < HalfSize; ++i) {
5959      int Elt = SVOp->getMaskElt(i);
5960      if (SVOp->getMaskElt(i) < 0)
5961        continue;
5962      FstVecOpNum = Elt/NumElems;
5963      FstVecExtractIdx = Elt % NumElems < HalfSize ? 0 : HalfSize;
5964      break;
5965    }
5966    for (int i = HalfSize; i < NumElems; ++i) {
5967      int Elt = SVOp->getMaskElt(i);
5968      if (SVOp->getMaskElt(i) < 0)
5969        continue;
5970      SndVecOpNum = Elt/NumElems;
5971      SndVecExtractIdx = Elt % NumElems < HalfSize ? 0 : HalfSize;
5972      break;
5973    }
5974
5975    // Extract the subvectors
5976    SDValue V1 = Extract128BitVector(SVOp->getOperand(FstVecOpNum),
5977                      DAG.getConstant(FstVecExtractIdx, MVT::i32), DAG, dl);
5978    SDValue V2 = Extract128BitVector(SVOp->getOperand(SndVecOpNum),
5979                      DAG.getConstant(SndVecExtractIdx, MVT::i32), DAG, dl);
5980
5981    // Generate 128-bit shuffles
5982    SmallVector<int, 16> MaskV1, MaskV2;
5983    for (int i = 0; i < HalfSize; ++i) {
5984      int Elt = SVOp->getMaskElt(i);
5985      MaskV1.push_back(Elt < 0 ? Elt : Elt % HalfSize);
5986    }
5987    for (int i = HalfSize; i < NumElems; ++i) {
5988      int Elt = SVOp->getMaskElt(i);
5989      MaskV2.push_back(Elt < 0 ? Elt : Elt % HalfSize);
5990    }
5991
5992    EVT NVT = V1.getValueType();
5993    V1 = DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &MaskV1[0]);
5994    V2 = DAG.getVectorShuffle(NVT, dl, V2, DAG.getUNDEF(NVT), &MaskV2[0]);
5995
5996    // Concatenate the result back
5997    SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), V1,
5998                                   DAG.getConstant(0, MVT::i32), DAG, dl);
5999    return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
6000                              DAG, dl);
6001  }
6002
6003  return SDValue();
6004}
6005
6006/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6007/// 4 elements, and match them with several different shuffle types.
6008static SDValue
6009LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6010  SDValue V1 = SVOp->getOperand(0);
6011  SDValue V2 = SVOp->getOperand(1);
6012  DebugLoc dl = SVOp->getDebugLoc();
6013  EVT VT = SVOp->getValueType(0);
6014
6015  assert(VT.getSizeInBits() == 128 && "Unsupported vector size");
6016
6017  SmallVector<std::pair<int, int>, 8> Locs;
6018  Locs.resize(4);
6019  SmallVector<int, 8> Mask1(4U, -1);
6020  SmallVector<int, 8> PermMask;
6021  SVOp->getMask(PermMask);
6022
6023  unsigned NumHi = 0;
6024  unsigned NumLo = 0;
6025  for (unsigned i = 0; i != 4; ++i) {
6026    int Idx = PermMask[i];
6027    if (Idx < 0) {
6028      Locs[i] = std::make_pair(-1, -1);
6029    } else {
6030      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6031      if (Idx < 4) {
6032        Locs[i] = std::make_pair(0, NumLo);
6033        Mask1[NumLo] = Idx;
6034        NumLo++;
6035      } else {
6036        Locs[i] = std::make_pair(1, NumHi);
6037        if (2+NumHi < 4)
6038          Mask1[2+NumHi] = Idx;
6039        NumHi++;
6040      }
6041    }
6042  }
6043
6044  if (NumLo <= 2 && NumHi <= 2) {
6045    // If no more than two elements come from either vector. This can be
6046    // implemented with two shuffles. First shuffle gather the elements.
6047    // The second shuffle, which takes the first shuffle as both of its
6048    // vector operands, put the elements into the right order.
6049    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6050
6051    SmallVector<int, 8> Mask2(4U, -1);
6052
6053    for (unsigned i = 0; i != 4; ++i) {
6054      if (Locs[i].first == -1)
6055        continue;
6056      else {
6057        unsigned Idx = (i < 2) ? 0 : 4;
6058        Idx += Locs[i].first * 2 + Locs[i].second;
6059        Mask2[i] = Idx;
6060      }
6061    }
6062
6063    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6064  } else if (NumLo == 3 || NumHi == 3) {
6065    // Otherwise, we must have three elements from one vector, call it X, and
6066    // one element from the other, call it Y.  First, use a shufps to build an
6067    // intermediate vector with the one element from Y and the element from X
6068    // that will be in the same half in the final destination (the indexes don't
6069    // matter). Then, use a shufps to build the final vector, taking the half
6070    // containing the element from Y from the intermediate, and the other half
6071    // from X.
6072    if (NumHi == 3) {
6073      // Normalize it so the 3 elements come from V1.
6074      CommuteVectorShuffleMask(PermMask, VT);
6075      std::swap(V1, V2);
6076    }
6077
6078    // Find the element from V2.
6079    unsigned HiIndex;
6080    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6081      int Val = PermMask[HiIndex];
6082      if (Val < 0)
6083        continue;
6084      if (Val >= 4)
6085        break;
6086    }
6087
6088    Mask1[0] = PermMask[HiIndex];
6089    Mask1[1] = -1;
6090    Mask1[2] = PermMask[HiIndex^1];
6091    Mask1[3] = -1;
6092    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6093
6094    if (HiIndex >= 2) {
6095      Mask1[0] = PermMask[0];
6096      Mask1[1] = PermMask[1];
6097      Mask1[2] = HiIndex & 1 ? 6 : 4;
6098      Mask1[3] = HiIndex & 1 ? 4 : 6;
6099      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6100    } else {
6101      Mask1[0] = HiIndex & 1 ? 2 : 0;
6102      Mask1[1] = HiIndex & 1 ? 0 : 2;
6103      Mask1[2] = PermMask[2];
6104      Mask1[3] = PermMask[3];
6105      if (Mask1[2] >= 0)
6106        Mask1[2] += 4;
6107      if (Mask1[3] >= 0)
6108        Mask1[3] += 4;
6109      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6110    }
6111  }
6112
6113  // Break it into (shuffle shuffle_hi, shuffle_lo).
6114  Locs.clear();
6115  Locs.resize(4);
6116  SmallVector<int,8> LoMask(4U, -1);
6117  SmallVector<int,8> HiMask(4U, -1);
6118
6119  SmallVector<int,8> *MaskPtr = &LoMask;
6120  unsigned MaskIdx = 0;
6121  unsigned LoIdx = 0;
6122  unsigned HiIdx = 2;
6123  for (unsigned i = 0; i != 4; ++i) {
6124    if (i == 2) {
6125      MaskPtr = &HiMask;
6126      MaskIdx = 1;
6127      LoIdx = 0;
6128      HiIdx = 2;
6129    }
6130    int Idx = PermMask[i];
6131    if (Idx < 0) {
6132      Locs[i] = std::make_pair(-1, -1);
6133    } else if (Idx < 4) {
6134      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6135      (*MaskPtr)[LoIdx] = Idx;
6136      LoIdx++;
6137    } else {
6138      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6139      (*MaskPtr)[HiIdx] = Idx;
6140      HiIdx++;
6141    }
6142  }
6143
6144  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6145  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6146  SmallVector<int, 8> MaskOps;
6147  for (unsigned i = 0; i != 4; ++i) {
6148    if (Locs[i].first == -1) {
6149      MaskOps.push_back(-1);
6150    } else {
6151      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
6152      MaskOps.push_back(Idx);
6153    }
6154  }
6155  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6156}
6157
6158static bool MayFoldVectorLoad(SDValue V) {
6159  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6160    V = V.getOperand(0);
6161  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6162    V = V.getOperand(0);
6163  if (MayFoldLoad(V))
6164    return true;
6165  return false;
6166}
6167
6168// FIXME: the version above should always be used. Since there's
6169// a bug where several vector shuffles can't be folded because the
6170// DAG is not updated during lowering and a node claims to have two
6171// uses while it only has one, use this version, and let isel match
6172// another instruction if the load really happens to have more than
6173// one use. Remove this version after this bug get fixed.
6174// rdar://8434668, PR8156
6175static bool RelaxedMayFoldVectorLoad(SDValue V) {
6176  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6177    V = V.getOperand(0);
6178  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6179    V = V.getOperand(0);
6180  if (ISD::isNormalLoad(V.getNode()))
6181    return true;
6182  return false;
6183}
6184
6185/// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
6186/// a vector extract, and if both can be later optimized into a single load.
6187/// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
6188/// here because otherwise a target specific shuffle node is going to be
6189/// emitted for this shuffle, and the optimization not done.
6190/// FIXME: This is probably not the best approach, but fix the problem
6191/// until the right path is decided.
6192static
6193bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
6194                                         const TargetLowering &TLI) {
6195  EVT VT = V.getValueType();
6196  ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
6197
6198  // Be sure that the vector shuffle is present in a pattern like this:
6199  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
6200  if (!V.hasOneUse())
6201    return false;
6202
6203  SDNode *N = *V.getNode()->use_begin();
6204  if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
6205    return false;
6206
6207  SDValue EltNo = N->getOperand(1);
6208  if (!isa<ConstantSDNode>(EltNo))
6209    return false;
6210
6211  // If the bit convert changed the number of elements, it is unsafe
6212  // to examine the mask.
6213  bool HasShuffleIntoBitcast = false;
6214  if (V.getOpcode() == ISD::BITCAST) {
6215    EVT SrcVT = V.getOperand(0).getValueType();
6216    if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
6217      return false;
6218    V = V.getOperand(0);
6219    HasShuffleIntoBitcast = true;
6220  }
6221
6222  // Select the input vector, guarding against out of range extract vector.
6223  unsigned NumElems = VT.getVectorNumElements();
6224  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
6225  int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
6226  V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
6227
6228  // Skip one more bit_convert if necessary
6229  if (V.getOpcode() == ISD::BITCAST)
6230    V = V.getOperand(0);
6231
6232  if (ISD::isNormalLoad(V.getNode())) {
6233    // Is the original load suitable?
6234    LoadSDNode *LN0 = cast<LoadSDNode>(V);
6235
6236    // FIXME: avoid the multi-use bug that is preventing lots of
6237    // of foldings to be detected, this is still wrong of course, but
6238    // give the temporary desired behavior, and if it happens that
6239    // the load has real more uses, during isel it will not fold, and
6240    // will generate poor code.
6241    if (!LN0 || LN0->isVolatile()) // || !LN0->hasOneUse()
6242      return false;
6243
6244    if (!HasShuffleIntoBitcast)
6245      return true;
6246
6247    // If there's a bitcast before the shuffle, check if the load type and
6248    // alignment is valid.
6249    unsigned Align = LN0->getAlignment();
6250    unsigned NewAlign =
6251      TLI.getTargetData()->getABITypeAlignment(
6252                                    VT.getTypeForEVT(*DAG.getContext()));
6253
6254    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
6255      return false;
6256  }
6257
6258  return true;
6259}
6260
6261static
6262SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6263  EVT VT = Op.getValueType();
6264
6265  // Canonizalize to v2f64.
6266  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6267  return DAG.getNode(ISD::BITCAST, dl, VT,
6268                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6269                                          V1, DAG));
6270}
6271
6272static
6273SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6274                        bool HasXMMInt) {
6275  SDValue V1 = Op.getOperand(0);
6276  SDValue V2 = Op.getOperand(1);
6277  EVT VT = Op.getValueType();
6278
6279  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6280
6281  if (HasXMMInt && VT == MVT::v2f64)
6282    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6283
6284  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6285  return DAG.getNode(ISD::BITCAST, dl, VT,
6286                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6287                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6288                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6289}
6290
6291static
6292SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6293  SDValue V1 = Op.getOperand(0);
6294  SDValue V2 = Op.getOperand(1);
6295  EVT VT = Op.getValueType();
6296
6297  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6298         "unsupported shuffle type");
6299
6300  if (V2.getOpcode() == ISD::UNDEF)
6301    V2 = V1;
6302
6303  // v4i32 or v4f32
6304  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6305}
6306
6307static inline unsigned getSHUFPOpcode(EVT VT) {
6308  switch(VT.getSimpleVT().SimpleTy) {
6309  case MVT::v8i32: // Use fp unit for int unpack.
6310  case MVT::v8f32:
6311  case MVT::v4i32: // Use fp unit for int unpack.
6312  case MVT::v4f32: return X86ISD::SHUFPS;
6313  case MVT::v4i64: // Use fp unit for int unpack.
6314  case MVT::v4f64:
6315  case MVT::v2i64: // Use fp unit for int unpack.
6316  case MVT::v2f64: return X86ISD::SHUFPD;
6317  default:
6318    llvm_unreachable("Unknown type for shufp*");
6319  }
6320  return 0;
6321}
6322
6323static
6324SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasXMMInt) {
6325  SDValue V1 = Op.getOperand(0);
6326  SDValue V2 = Op.getOperand(1);
6327  EVT VT = Op.getValueType();
6328  unsigned NumElems = VT.getVectorNumElements();
6329
6330  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6331  // operand of these instructions is only memory, so check if there's a
6332  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6333  // same masks.
6334  bool CanFoldLoad = false;
6335
6336  // Trivial case, when V2 comes from a load.
6337  if (MayFoldVectorLoad(V2))
6338    CanFoldLoad = true;
6339
6340  // When V1 is a load, it can be folded later into a store in isel, example:
6341  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6342  //    turns into:
6343  //  (MOVLPSmr addr:$src1, VR128:$src2)
6344  // So, recognize this potential and also use MOVLPS or MOVLPD
6345  if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6346    CanFoldLoad = true;
6347
6348  // Both of them can't be memory operations though.
6349  if (MayFoldVectorLoad(V1) && MayFoldVectorLoad(V2))
6350    CanFoldLoad = false;
6351
6352  if (CanFoldLoad) {
6353    if (HasXMMInt && NumElems == 2)
6354      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6355
6356    if (NumElems == 4)
6357      return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6358  }
6359
6360  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6361  // movl and movlp will both match v2i64, but v2i64 is never matched by
6362  // movl earlier because we make it strict to avoid messing with the movlp load
6363  // folding logic (see the code above getMOVLP call). Match it here then,
6364  // this is horrible, but will stay like this until we move all shuffle
6365  // matching to x86 specific nodes. Note that for the 1st condition all
6366  // types are matched with movsd.
6367  if (HasXMMInt) {
6368    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6369    // as to remove this logic from here, as much as possible
6370    if (NumElems == 2 || !X86::isMOVLMask(SVOp))
6371      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6372    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6373  }
6374
6375  assert(VT != MVT::v4i32 && "unsupported shuffle type");
6376
6377  // Invert the operand order and use SHUFPS to match it.
6378  return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V2, V1,
6379                              X86::getShuffleSHUFImmediate(SVOp), DAG);
6380}
6381
6382static inline unsigned getUNPCKLOpcode(EVT VT) {
6383  switch(VT.getSimpleVT().SimpleTy) {
6384  case MVT::v4i32: return X86ISD::PUNPCKLDQ;
6385  case MVT::v2i64: return X86ISD::PUNPCKLQDQ;
6386  case MVT::v4f32: return X86ISD::UNPCKLPS;
6387  case MVT::v2f64: return X86ISD::UNPCKLPD;
6388  case MVT::v8i32: // Use fp unit for int unpack.
6389  case MVT::v8f32: return X86ISD::VUNPCKLPSY;
6390  case MVT::v4i64: // Use fp unit for int unpack.
6391  case MVT::v4f64: return X86ISD::VUNPCKLPDY;
6392  case MVT::v16i8: return X86ISD::PUNPCKLBW;
6393  case MVT::v8i16: return X86ISD::PUNPCKLWD;
6394  default:
6395    llvm_unreachable("Unknown type for unpckl");
6396  }
6397  return 0;
6398}
6399
6400static inline unsigned getUNPCKHOpcode(EVT VT) {
6401  switch(VT.getSimpleVT().SimpleTy) {
6402  case MVT::v4i32: return X86ISD::PUNPCKHDQ;
6403  case MVT::v2i64: return X86ISD::PUNPCKHQDQ;
6404  case MVT::v4f32: return X86ISD::UNPCKHPS;
6405  case MVT::v2f64: return X86ISD::UNPCKHPD;
6406  case MVT::v8i32: // Use fp unit for int unpack.
6407  case MVT::v8f32: return X86ISD::VUNPCKHPSY;
6408  case MVT::v4i64: // Use fp unit for int unpack.
6409  case MVT::v4f64: return X86ISD::VUNPCKHPDY;
6410  case MVT::v16i8: return X86ISD::PUNPCKHBW;
6411  case MVT::v8i16: return X86ISD::PUNPCKHWD;
6412  default:
6413    llvm_unreachable("Unknown type for unpckh");
6414  }
6415  return 0;
6416}
6417
6418static inline unsigned getVPERMILOpcode(EVT VT) {
6419  switch(VT.getSimpleVT().SimpleTy) {
6420  case MVT::v4i32:
6421  case MVT::v4f32: return X86ISD::VPERMILPS;
6422  case MVT::v2i64:
6423  case MVT::v2f64: return X86ISD::VPERMILPD;
6424  case MVT::v8i32:
6425  case MVT::v8f32: return X86ISD::VPERMILPSY;
6426  case MVT::v4i64:
6427  case MVT::v4f64: return X86ISD::VPERMILPDY;
6428  default:
6429    llvm_unreachable("Unknown type for vpermil");
6430  }
6431  return 0;
6432}
6433
6434/// isVectorBroadcast - Check if the node chain is suitable to be xformed to
6435/// a vbroadcast node. The nodes are suitable whenever we can fold a load coming
6436/// from a 32 or 64 bit scalar. Update Op to the desired load to be folded.
6437static bool isVectorBroadcast(SDValue &Op) {
6438  EVT VT = Op.getValueType();
6439  bool Is256 = VT.getSizeInBits() == 256;
6440
6441  assert((VT.getSizeInBits() == 128 || Is256) &&
6442         "Unsupported type for vbroadcast node");
6443
6444  SDValue V = Op;
6445  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6446    V = V.getOperand(0);
6447
6448  if (Is256 && !(V.hasOneUse() &&
6449                 V.getOpcode() == ISD::INSERT_SUBVECTOR &&
6450                 V.getOperand(0).getOpcode() == ISD::UNDEF))
6451    return false;
6452
6453  if (Is256)
6454    V = V.getOperand(1);
6455
6456  if (!V.hasOneUse())
6457    return false;
6458
6459  // Check the source scalar_to_vector type. 256-bit broadcasts are
6460  // supported for 32/64-bit sizes, while 128-bit ones are only supported
6461  // for 32-bit scalars.
6462  if (V.getOpcode() != ISD::SCALAR_TO_VECTOR)
6463    return false;
6464
6465  unsigned ScalarSize = V.getOperand(0).getValueType().getSizeInBits();
6466  if (ScalarSize != 32 && ScalarSize != 64)
6467    return false;
6468  if (!Is256 && ScalarSize == 64)
6469    return false;
6470
6471  V = V.getOperand(0);
6472  if (!MayFoldLoad(V))
6473    return false;
6474
6475  // Return the load node
6476  Op = V;
6477  return true;
6478}
6479
6480static
6481SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
6482                               const TargetLowering &TLI,
6483                               const X86Subtarget *Subtarget) {
6484  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6485  EVT VT = Op.getValueType();
6486  DebugLoc dl = Op.getDebugLoc();
6487  SDValue V1 = Op.getOperand(0);
6488  SDValue V2 = Op.getOperand(1);
6489
6490  if (isZeroShuffle(SVOp))
6491    return getZeroVector(VT, Subtarget->hasXMMInt(), DAG, dl);
6492
6493  // Handle splat operations
6494  if (SVOp->isSplat()) {
6495    unsigned NumElem = VT.getVectorNumElements();
6496    int Size = VT.getSizeInBits();
6497    // Special case, this is the only place now where it's allowed to return
6498    // a vector_shuffle operation without using a target specific node, because
6499    // *hopefully* it will be optimized away by the dag combiner. FIXME: should
6500    // this be moved to DAGCombine instead?
6501    if (NumElem <= 4 && CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
6502      return Op;
6503
6504    // Use vbroadcast whenever the splat comes from a foldable load
6505    if (Subtarget->hasAVX() && isVectorBroadcast(V1))
6506      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, V1);
6507
6508    // Handle splats by matching through known shuffle masks
6509    if ((Size == 128 && NumElem <= 4) ||
6510        (Size == 256 && NumElem < 8))
6511      return SDValue();
6512
6513    // All remaning splats are promoted to target supported vector shuffles.
6514    return PromoteSplat(SVOp, DAG);
6515  }
6516
6517  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6518  // do it!
6519  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
6520    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6521    if (NewOp.getNode())
6522      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6523  } else if ((VT == MVT::v4i32 ||
6524             (VT == MVT::v4f32 && Subtarget->hasXMMInt()))) {
6525    // FIXME: Figure out a cleaner way to do this.
6526    // Try to make use of movq to zero out the top part.
6527    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6528      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6529      if (NewOp.getNode()) {
6530        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
6531          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
6532                              DAG, Subtarget, dl);
6533      }
6534    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6535      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6536      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
6537        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
6538                            DAG, Subtarget, dl);
6539    }
6540  }
6541  return SDValue();
6542}
6543
6544SDValue
6545X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6546  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6547  SDValue V1 = Op.getOperand(0);
6548  SDValue V2 = Op.getOperand(1);
6549  EVT VT = Op.getValueType();
6550  DebugLoc dl = Op.getDebugLoc();
6551  unsigned NumElems = VT.getVectorNumElements();
6552  bool isMMX = VT.getSizeInBits() == 64;
6553  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6554  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6555  bool V1IsSplat = false;
6556  bool V2IsSplat = false;
6557  bool HasXMMInt = Subtarget->hasXMMInt();
6558  MachineFunction &MF = DAG.getMachineFunction();
6559  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
6560
6561  // Shuffle operations on MMX not supported.
6562  if (isMMX)
6563    return Op;
6564
6565  // Vector shuffle lowering takes 3 steps:
6566  //
6567  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6568  //    narrowing and commutation of operands should be handled.
6569  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6570  //    shuffle nodes.
6571  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6572  //    so the shuffle can be broken into other shuffles and the legalizer can
6573  //    try the lowering again.
6574  //
6575  // The general ideia is that no vector_shuffle operation should be left to
6576  // be matched during isel, all of them must be converted to a target specific
6577  // node here.
6578
6579  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6580  // narrowing and commutation of operands should be handled. The actual code
6581  // doesn't include all of those, work in progress...
6582  SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
6583  if (NewOp.getNode())
6584    return NewOp;
6585
6586  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6587  // unpckh_undef). Only use pshufd if speed is more important than size.
6588  if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp))
6589    return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
6590  if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp))
6591    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
6592
6593  if (X86::isMOVDDUPMask(SVOp) &&
6594      (Subtarget->hasSSE3() || Subtarget->hasAVX()) &&
6595      V2IsUndef && RelaxedMayFoldVectorLoad(V1))
6596    return getMOVDDup(Op, dl, V1, DAG);
6597
6598  if (X86::isMOVHLPS_v_undef_Mask(SVOp))
6599    return getMOVHighToLow(Op, dl, DAG);
6600
6601  // Use to match splats
6602  if (HasXMMInt && X86::isUNPCKHMask(SVOp) && V2IsUndef &&
6603      (VT == MVT::v2f64 || VT == MVT::v2i64))
6604    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
6605
6606  if (X86::isPSHUFDMask(SVOp)) {
6607    // The actual implementation will match the mask in the if above and then
6608    // during isel it can match several different instructions, not only pshufd
6609    // as its name says, sad but true, emulate the behavior for now...
6610    if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6611        return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6612
6613    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
6614
6615    if (HasXMMInt && (VT == MVT::v4f32 || VT == MVT::v4i32))
6616      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6617
6618    return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V1,
6619                                TargetMask, DAG);
6620  }
6621
6622  // Check if this can be converted into a logical shift.
6623  bool isLeft = false;
6624  unsigned ShAmt = 0;
6625  SDValue ShVal;
6626  bool isShift = getSubtarget()->hasXMMInt() &&
6627                 isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6628  if (isShift && ShVal.hasOneUse()) {
6629    // If the shifted value has multiple uses, it may be cheaper to use
6630    // v_set0 + movlhps or movhlps, etc.
6631    EVT EltVT = VT.getVectorElementType();
6632    ShAmt *= EltVT.getSizeInBits();
6633    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6634  }
6635
6636  if (X86::isMOVLMask(SVOp)) {
6637    if (V1IsUndef)
6638      return V2;
6639    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6640      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6641    if (!X86::isMOVLPMask(SVOp)) {
6642      if (HasXMMInt && (VT == MVT::v2i64 || VT == MVT::v2f64))
6643        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6644
6645      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6646        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6647    }
6648  }
6649
6650  // FIXME: fold these into legal mask.
6651  if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp))
6652    return getMOVLowToHigh(Op, dl, DAG, HasXMMInt);
6653
6654  if (X86::isMOVHLPSMask(SVOp))
6655    return getMOVHighToLow(Op, dl, DAG);
6656
6657  if (X86::isMOVSHDUPMask(SVOp, Subtarget))
6658    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6659
6660  if (X86::isMOVSLDUPMask(SVOp, Subtarget))
6661    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6662
6663  if (X86::isMOVLPMask(SVOp))
6664    return getMOVLP(Op, dl, DAG, HasXMMInt);
6665
6666  if (ShouldXformToMOVHLPS(SVOp) ||
6667      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
6668    return CommuteVectorShuffle(SVOp, DAG);
6669
6670  if (isShift) {
6671    // No better options. Use a vshl / vsrl.
6672    EVT EltVT = VT.getVectorElementType();
6673    ShAmt *= EltVT.getSizeInBits();
6674    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6675  }
6676
6677  bool Commuted = false;
6678  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6679  // 1,1,1,1 -> v8i16 though.
6680  V1IsSplat = isSplatVector(V1.getNode());
6681  V2IsSplat = isSplatVector(V2.getNode());
6682
6683  // Canonicalize the splat or undef, if present, to be on the RHS.
6684  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
6685    Op = CommuteVectorShuffle(SVOp, DAG);
6686    SVOp = cast<ShuffleVectorSDNode>(Op);
6687    V1 = SVOp->getOperand(0);
6688    V2 = SVOp->getOperand(1);
6689    std::swap(V1IsSplat, V2IsSplat);
6690    std::swap(V1IsUndef, V2IsUndef);
6691    Commuted = true;
6692  }
6693
6694  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
6695    // Shuffling low element of v1 into undef, just return v1.
6696    if (V2IsUndef)
6697      return V1;
6698    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6699    // the instruction selector will not match, so get a canonical MOVL with
6700    // swapped operands to undo the commute.
6701    return getMOVL(DAG, dl, VT, V2, V1);
6702  }
6703
6704  if (X86::isUNPCKLMask(SVOp))
6705    return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V2, DAG);
6706
6707  if (X86::isUNPCKHMask(SVOp))
6708    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V2, DAG);
6709
6710  if (V2IsSplat) {
6711    // Normalize mask so all entries that point to V2 points to its first
6712    // element then try to match unpck{h|l} again. If match, return a
6713    // new vector_shuffle with the corrected mask.
6714    SDValue NewMask = NormalizeMask(SVOp, DAG);
6715    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
6716    if (NSVOp != SVOp) {
6717      if (X86::isUNPCKLMask(NSVOp, true)) {
6718        return NewMask;
6719      } else if (X86::isUNPCKHMask(NSVOp, true)) {
6720        return NewMask;
6721      }
6722    }
6723  }
6724
6725  if (Commuted) {
6726    // Commute is back and try unpck* again.
6727    // FIXME: this seems wrong.
6728    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
6729    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
6730
6731    if (X86::isUNPCKLMask(NewSVOp))
6732      return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V2, V1, DAG);
6733
6734    if (X86::isUNPCKHMask(NewSVOp))
6735      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V2, V1, DAG);
6736  }
6737
6738  // Normalize the node to match x86 shuffle ops if needed
6739  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
6740    return CommuteVectorShuffle(SVOp, DAG);
6741
6742  // The checks below are all present in isShuffleMaskLegal, but they are
6743  // inlined here right now to enable us to directly emit target specific
6744  // nodes, and remove one by one until they don't return Op anymore.
6745  SmallVector<int, 16> M;
6746  SVOp->getMask(M);
6747
6748  if (isPALIGNRMask(M, VT, Subtarget->hasSSSE3() || Subtarget->hasAVX()))
6749    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6750                                X86::getShufflePALIGNRImmediate(SVOp),
6751                                DAG);
6752
6753  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6754      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6755    if (VT == MVT::v2f64)
6756      return getTargetShuffleNode(X86ISD::UNPCKLPD, dl, VT, V1, V1, DAG);
6757    if (VT == MVT::v2i64)
6758      return getTargetShuffleNode(X86ISD::PUNPCKLQDQ, dl, VT, V1, V1, DAG);
6759  }
6760
6761  if (isPSHUFHWMask(M, VT))
6762    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6763                                X86::getShufflePSHUFHWImmediate(SVOp),
6764                                DAG);
6765
6766  if (isPSHUFLWMask(M, VT))
6767    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6768                                X86::getShufflePSHUFLWImmediate(SVOp),
6769                                DAG);
6770
6771  if (isSHUFPMask(M, VT))
6772    return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
6773                                X86::getShuffleSHUFImmediate(SVOp), DAG);
6774
6775  if (X86::isUNPCKL_v_undef_Mask(SVOp))
6776    return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
6777  if (X86::isUNPCKH_v_undef_Mask(SVOp))
6778    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
6779
6780  //===--------------------------------------------------------------------===//
6781  // Generate target specific nodes for 128 or 256-bit shuffles only
6782  // supported in the AVX instruction set.
6783  //
6784
6785  // Handle VMOVDDUPY permutations
6786  if (isMOVDDUPYMask(SVOp, Subtarget))
6787    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
6788
6789  // Handle VPERMILPS* permutations
6790  if (isVPERMILPSMask(M, VT, Subtarget))
6791    return getTargetShuffleNode(getVPERMILOpcode(VT), dl, VT, V1,
6792                                getShuffleVPERMILPSImmediate(SVOp), DAG);
6793
6794  // Handle VPERMILPD* permutations
6795  if (isVPERMILPDMask(M, VT, Subtarget))
6796    return getTargetShuffleNode(getVPERMILOpcode(VT), dl, VT, V1,
6797                                getShuffleVPERMILPDImmediate(SVOp), DAG);
6798
6799  // Handle VPERM2F128 permutations
6800  if (isVPERM2F128Mask(M, VT, Subtarget))
6801    return getTargetShuffleNode(X86ISD::VPERM2F128, dl, VT, V1, V2,
6802                                getShuffleVPERM2F128Immediate(SVOp), DAG);
6803
6804  // Handle VSHUFPSY permutations
6805  if (isVSHUFPSYMask(M, VT, Subtarget))
6806    return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
6807                                getShuffleVSHUFPSYImmediate(SVOp), DAG);
6808
6809  // Handle VSHUFPDY permutations
6810  if (isVSHUFPDYMask(M, VT, Subtarget))
6811    return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
6812                                getShuffleVSHUFPDYImmediate(SVOp), DAG);
6813
6814  //===--------------------------------------------------------------------===//
6815  // Since no target specific shuffle was selected for this generic one,
6816  // lower it into other known shuffles. FIXME: this isn't true yet, but
6817  // this is the plan.
6818  //
6819
6820  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6821  if (VT == MVT::v8i16) {
6822    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
6823    if (NewOp.getNode())
6824      return NewOp;
6825  }
6826
6827  if (VT == MVT::v16i8) {
6828    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6829    if (NewOp.getNode())
6830      return NewOp;
6831  }
6832
6833  // Handle all 128-bit wide vectors with 4 elements, and match them with
6834  // several different shuffle types.
6835  if (NumElems == 4 && VT.getSizeInBits() == 128)
6836    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6837
6838  // Handle general 256-bit shuffles
6839  if (VT.is256BitVector())
6840    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6841
6842  return SDValue();
6843}
6844
6845SDValue
6846X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6847                                                SelectionDAG &DAG) const {
6848  EVT VT = Op.getValueType();
6849  DebugLoc dl = Op.getDebugLoc();
6850
6851  if (Op.getOperand(0).getValueType().getSizeInBits() != 128)
6852    return SDValue();
6853
6854  if (VT.getSizeInBits() == 8) {
6855    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6856                                    Op.getOperand(0), Op.getOperand(1));
6857    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6858                                    DAG.getValueType(VT));
6859    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6860  } else if (VT.getSizeInBits() == 16) {
6861    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6862    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6863    if (Idx == 0)
6864      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6865                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6866                                     DAG.getNode(ISD::BITCAST, dl,
6867                                                 MVT::v4i32,
6868                                                 Op.getOperand(0)),
6869                                     Op.getOperand(1)));
6870    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6871                                    Op.getOperand(0), Op.getOperand(1));
6872    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6873                                    DAG.getValueType(VT));
6874    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6875  } else if (VT == MVT::f32) {
6876    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6877    // the result back to FR32 register. It's only worth matching if the
6878    // result has a single use which is a store or a bitcast to i32.  And in
6879    // the case of a store, it's not worth it if the index is a constant 0,
6880    // because a MOVSSmr can be used instead, which is smaller and faster.
6881    if (!Op.hasOneUse())
6882      return SDValue();
6883    SDNode *User = *Op.getNode()->use_begin();
6884    if ((User->getOpcode() != ISD::STORE ||
6885         (isa<ConstantSDNode>(Op.getOperand(1)) &&
6886          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6887        (User->getOpcode() != ISD::BITCAST ||
6888         User->getValueType(0) != MVT::i32))
6889      return SDValue();
6890    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6891                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
6892                                              Op.getOperand(0)),
6893                                              Op.getOperand(1));
6894    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
6895  } else if (VT == MVT::i32) {
6896    // ExtractPS works with constant index.
6897    if (isa<ConstantSDNode>(Op.getOperand(1)))
6898      return Op;
6899  }
6900  return SDValue();
6901}
6902
6903
6904SDValue
6905X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6906                                           SelectionDAG &DAG) const {
6907  if (!isa<ConstantSDNode>(Op.getOperand(1)))
6908    return SDValue();
6909
6910  SDValue Vec = Op.getOperand(0);
6911  EVT VecVT = Vec.getValueType();
6912
6913  // If this is a 256-bit vector result, first extract the 128-bit vector and
6914  // then extract the element from the 128-bit vector.
6915  if (VecVT.getSizeInBits() == 256) {
6916    DebugLoc dl = Op.getNode()->getDebugLoc();
6917    unsigned NumElems = VecVT.getVectorNumElements();
6918    SDValue Idx = Op.getOperand(1);
6919    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6920
6921    // Get the 128-bit vector.
6922    bool Upper = IdxVal >= NumElems/2;
6923    Vec = Extract128BitVector(Vec,
6924                    DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32), DAG, dl);
6925
6926    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6927                    Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : Idx);
6928  }
6929
6930  assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
6931
6932  if (Subtarget->hasSSE41() || Subtarget->hasAVX()) {
6933    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6934    if (Res.getNode())
6935      return Res;
6936  }
6937
6938  EVT VT = Op.getValueType();
6939  DebugLoc dl = Op.getDebugLoc();
6940  // TODO: handle v16i8.
6941  if (VT.getSizeInBits() == 16) {
6942    SDValue Vec = Op.getOperand(0);
6943    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6944    if (Idx == 0)
6945      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6946                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6947                                     DAG.getNode(ISD::BITCAST, dl,
6948                                                 MVT::v4i32, Vec),
6949                                     Op.getOperand(1)));
6950    // Transform it so it match pextrw which produces a 32-bit result.
6951    EVT EltVT = MVT::i32;
6952    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6953                                    Op.getOperand(0), Op.getOperand(1));
6954    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6955                                    DAG.getValueType(VT));
6956    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6957  } else if (VT.getSizeInBits() == 32) {
6958    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6959    if (Idx == 0)
6960      return Op;
6961
6962    // SHUFPS the element to the lowest double word, then movss.
6963    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
6964    EVT VVT = Op.getOperand(0).getValueType();
6965    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6966                                       DAG.getUNDEF(VVT), Mask);
6967    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6968                       DAG.getIntPtrConstant(0));
6969  } else if (VT.getSizeInBits() == 64) {
6970    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6971    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6972    //        to match extract_elt for f64.
6973    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6974    if (Idx == 0)
6975      return Op;
6976
6977    // UNPCKHPD the element to the lowest double word, then movsd.
6978    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6979    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6980    int Mask[2] = { 1, -1 };
6981    EVT VVT = Op.getOperand(0).getValueType();
6982    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6983                                       DAG.getUNDEF(VVT), Mask);
6984    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6985                       DAG.getIntPtrConstant(0));
6986  }
6987
6988  return SDValue();
6989}
6990
6991SDValue
6992X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
6993                                               SelectionDAG &DAG) const {
6994  EVT VT = Op.getValueType();
6995  EVT EltVT = VT.getVectorElementType();
6996  DebugLoc dl = Op.getDebugLoc();
6997
6998  SDValue N0 = Op.getOperand(0);
6999  SDValue N1 = Op.getOperand(1);
7000  SDValue N2 = Op.getOperand(2);
7001
7002  if (VT.getSizeInBits() == 256)
7003    return SDValue();
7004
7005  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
7006      isa<ConstantSDNode>(N2)) {
7007    unsigned Opc;
7008    if (VT == MVT::v8i16)
7009      Opc = X86ISD::PINSRW;
7010    else if (VT == MVT::v16i8)
7011      Opc = X86ISD::PINSRB;
7012    else
7013      Opc = X86ISD::PINSRB;
7014
7015    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
7016    // argument.
7017    if (N1.getValueType() != MVT::i32)
7018      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7019    if (N2.getValueType() != MVT::i32)
7020      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7021    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
7022  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
7023    // Bits [7:6] of the constant are the source select.  This will always be
7024    //  zero here.  The DAG Combiner may combine an extract_elt index into these
7025    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
7026    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
7027    // Bits [5:4] of the constant are the destination select.  This is the
7028    //  value of the incoming immediate.
7029    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
7030    //   combine either bitwise AND or insert of float 0.0 to set these bits.
7031    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
7032    // Create this as a scalar to vector..
7033    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
7034    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
7035  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
7036    // PINSR* works with constant index.
7037    return Op;
7038  }
7039  return SDValue();
7040}
7041
7042SDValue
7043X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
7044  EVT VT = Op.getValueType();
7045  EVT EltVT = VT.getVectorElementType();
7046
7047  DebugLoc dl = Op.getDebugLoc();
7048  SDValue N0 = Op.getOperand(0);
7049  SDValue N1 = Op.getOperand(1);
7050  SDValue N2 = Op.getOperand(2);
7051
7052  // If this is a 256-bit vector result, first extract the 128-bit vector,
7053  // insert the element into the extracted half and then place it back.
7054  if (VT.getSizeInBits() == 256) {
7055    if (!isa<ConstantSDNode>(N2))
7056      return SDValue();
7057
7058    // Get the desired 128-bit vector half.
7059    unsigned NumElems = VT.getVectorNumElements();
7060    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
7061    bool Upper = IdxVal >= NumElems/2;
7062    SDValue Ins128Idx = DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32);
7063    SDValue V = Extract128BitVector(N0, Ins128Idx, DAG, dl);
7064
7065    // Insert the element into the desired half.
7066    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V,
7067                 N1, Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : N2);
7068
7069    // Insert the changed part back to the 256-bit vector
7070    return Insert128BitVector(N0, V, Ins128Idx, DAG, dl);
7071  }
7072
7073  if (Subtarget->hasSSE41() || Subtarget->hasAVX())
7074    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
7075
7076  if (EltVT == MVT::i8)
7077    return SDValue();
7078
7079  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
7080    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
7081    // as its second argument.
7082    if (N1.getValueType() != MVT::i32)
7083      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7084    if (N2.getValueType() != MVT::i32)
7085      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7086    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
7087  }
7088  return SDValue();
7089}
7090
7091SDValue
7092X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
7093  LLVMContext *Context = DAG.getContext();
7094  DebugLoc dl = Op.getDebugLoc();
7095  EVT OpVT = Op.getValueType();
7096
7097  // If this is a 256-bit vector result, first insert into a 128-bit
7098  // vector and then insert into the 256-bit vector.
7099  if (OpVT.getSizeInBits() > 128) {
7100    // Insert into a 128-bit vector.
7101    EVT VT128 = EVT::getVectorVT(*Context,
7102                                 OpVT.getVectorElementType(),
7103                                 OpVT.getVectorNumElements() / 2);
7104
7105    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
7106
7107    // Insert the 128-bit vector.
7108    return Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, OpVT), Op,
7109                              DAG.getConstant(0, MVT::i32),
7110                              DAG, dl);
7111  }
7112
7113  if (Op.getValueType() == MVT::v1i64 &&
7114      Op.getOperand(0).getValueType() == MVT::i64)
7115    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
7116
7117  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
7118  assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
7119         "Expected an SSE type!");
7120  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
7121                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
7122}
7123
7124// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
7125// a simple subregister reference or explicit instructions to grab
7126// upper bits of a vector.
7127SDValue
7128X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7129  if (Subtarget->hasAVX()) {
7130    DebugLoc dl = Op.getNode()->getDebugLoc();
7131    SDValue Vec = Op.getNode()->getOperand(0);
7132    SDValue Idx = Op.getNode()->getOperand(1);
7133
7134    if (Op.getNode()->getValueType(0).getSizeInBits() == 128
7135        && Vec.getNode()->getValueType(0).getSizeInBits() == 256) {
7136        return Extract128BitVector(Vec, Idx, DAG, dl);
7137    }
7138  }
7139  return SDValue();
7140}
7141
7142// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
7143// simple superregister reference or explicit instructions to insert
7144// the upper bits of a vector.
7145SDValue
7146X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7147  if (Subtarget->hasAVX()) {
7148    DebugLoc dl = Op.getNode()->getDebugLoc();
7149    SDValue Vec = Op.getNode()->getOperand(0);
7150    SDValue SubVec = Op.getNode()->getOperand(1);
7151    SDValue Idx = Op.getNode()->getOperand(2);
7152
7153    if (Op.getNode()->getValueType(0).getSizeInBits() == 256
7154        && SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
7155      return Insert128BitVector(Vec, SubVec, Idx, DAG, dl);
7156    }
7157  }
7158  return SDValue();
7159}
7160
7161// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7162// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7163// one of the above mentioned nodes. It has to be wrapped because otherwise
7164// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7165// be used to form addressing mode. These wrapped nodes will be selected
7166// into MOV32ri.
7167SDValue
7168X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7169  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7170
7171  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7172  // global base reg.
7173  unsigned char OpFlag = 0;
7174  unsigned WrapperKind = X86ISD::Wrapper;
7175  CodeModel::Model M = getTargetMachine().getCodeModel();
7176
7177  if (Subtarget->isPICStyleRIPRel() &&
7178      (M == CodeModel::Small || M == CodeModel::Kernel))
7179    WrapperKind = X86ISD::WrapperRIP;
7180  else if (Subtarget->isPICStyleGOT())
7181    OpFlag = X86II::MO_GOTOFF;
7182  else if (Subtarget->isPICStyleStubPIC())
7183    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7184
7185  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7186                                             CP->getAlignment(),
7187                                             CP->getOffset(), OpFlag);
7188  DebugLoc DL = CP->getDebugLoc();
7189  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7190  // With PIC, the address is actually $g + Offset.
7191  if (OpFlag) {
7192    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7193                         DAG.getNode(X86ISD::GlobalBaseReg,
7194                                     DebugLoc(), getPointerTy()),
7195                         Result);
7196  }
7197
7198  return Result;
7199}
7200
7201SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7202  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7203
7204  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7205  // global base reg.
7206  unsigned char OpFlag = 0;
7207  unsigned WrapperKind = X86ISD::Wrapper;
7208  CodeModel::Model M = getTargetMachine().getCodeModel();
7209
7210  if (Subtarget->isPICStyleRIPRel() &&
7211      (M == CodeModel::Small || M == CodeModel::Kernel))
7212    WrapperKind = X86ISD::WrapperRIP;
7213  else if (Subtarget->isPICStyleGOT())
7214    OpFlag = X86II::MO_GOTOFF;
7215  else if (Subtarget->isPICStyleStubPIC())
7216    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7217
7218  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7219                                          OpFlag);
7220  DebugLoc DL = JT->getDebugLoc();
7221  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7222
7223  // With PIC, the address is actually $g + Offset.
7224  if (OpFlag)
7225    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7226                         DAG.getNode(X86ISD::GlobalBaseReg,
7227                                     DebugLoc(), getPointerTy()),
7228                         Result);
7229
7230  return Result;
7231}
7232
7233SDValue
7234X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7235  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7236
7237  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7238  // global base reg.
7239  unsigned char OpFlag = 0;
7240  unsigned WrapperKind = X86ISD::Wrapper;
7241  CodeModel::Model M = getTargetMachine().getCodeModel();
7242
7243  if (Subtarget->isPICStyleRIPRel() &&
7244      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7245    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7246      OpFlag = X86II::MO_GOTPCREL;
7247    WrapperKind = X86ISD::WrapperRIP;
7248  } else if (Subtarget->isPICStyleGOT()) {
7249    OpFlag = X86II::MO_GOT;
7250  } else if (Subtarget->isPICStyleStubPIC()) {
7251    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7252  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7253    OpFlag = X86II::MO_DARWIN_NONLAZY;
7254  }
7255
7256  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7257
7258  DebugLoc DL = Op.getDebugLoc();
7259  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7260
7261
7262  // With PIC, the address is actually $g + Offset.
7263  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7264      !Subtarget->is64Bit()) {
7265    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7266                         DAG.getNode(X86ISD::GlobalBaseReg,
7267                                     DebugLoc(), getPointerTy()),
7268                         Result);
7269  }
7270
7271  // For symbols that require a load from a stub to get the address, emit the
7272  // load.
7273  if (isGlobalStubReference(OpFlag))
7274    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7275                         MachinePointerInfo::getGOT(), false, false, 0);
7276
7277  return Result;
7278}
7279
7280SDValue
7281X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7282  // Create the TargetBlockAddressAddress node.
7283  unsigned char OpFlags =
7284    Subtarget->ClassifyBlockAddressReference();
7285  CodeModel::Model M = getTargetMachine().getCodeModel();
7286  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7287  DebugLoc dl = Op.getDebugLoc();
7288  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
7289                                       /*isTarget=*/true, OpFlags);
7290
7291  if (Subtarget->isPICStyleRIPRel() &&
7292      (M == CodeModel::Small || M == CodeModel::Kernel))
7293    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7294  else
7295    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7296
7297  // With PIC, the address is actually $g + Offset.
7298  if (isGlobalRelativeToPICBase(OpFlags)) {
7299    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7300                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7301                         Result);
7302  }
7303
7304  return Result;
7305}
7306
7307SDValue
7308X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7309                                      int64_t Offset,
7310                                      SelectionDAG &DAG) const {
7311  // Create the TargetGlobalAddress node, folding in the constant
7312  // offset if it is legal.
7313  unsigned char OpFlags =
7314    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7315  CodeModel::Model M = getTargetMachine().getCodeModel();
7316  SDValue Result;
7317  if (OpFlags == X86II::MO_NO_FLAG &&
7318      X86::isOffsetSuitableForCodeModel(Offset, M)) {
7319    // A direct static reference to a global.
7320    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7321    Offset = 0;
7322  } else {
7323    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7324  }
7325
7326  if (Subtarget->isPICStyleRIPRel() &&
7327      (M == CodeModel::Small || M == CodeModel::Kernel))
7328    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7329  else
7330    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7331
7332  // With PIC, the address is actually $g + Offset.
7333  if (isGlobalRelativeToPICBase(OpFlags)) {
7334    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7335                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7336                         Result);
7337  }
7338
7339  // For globals that require a load from a stub to get the address, emit the
7340  // load.
7341  if (isGlobalStubReference(OpFlags))
7342    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7343                         MachinePointerInfo::getGOT(), false, false, 0);
7344
7345  // If there was a non-zero offset that we didn't fold, create an explicit
7346  // addition for it.
7347  if (Offset != 0)
7348    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7349                         DAG.getConstant(Offset, getPointerTy()));
7350
7351  return Result;
7352}
7353
7354SDValue
7355X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7356  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7357  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7358  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7359}
7360
7361static SDValue
7362GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7363           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7364           unsigned char OperandFlags) {
7365  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7366  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7367  DebugLoc dl = GA->getDebugLoc();
7368  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7369                                           GA->getValueType(0),
7370                                           GA->getOffset(),
7371                                           OperandFlags);
7372  if (InFlag) {
7373    SDValue Ops[] = { Chain,  TGA, *InFlag };
7374    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
7375  } else {
7376    SDValue Ops[]  = { Chain, TGA };
7377    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
7378  }
7379
7380  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7381  MFI->setAdjustsStack(true);
7382
7383  SDValue Flag = Chain.getValue(1);
7384  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7385}
7386
7387// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7388static SDValue
7389LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7390                                const EVT PtrVT) {
7391  SDValue InFlag;
7392  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
7393  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7394                                     DAG.getNode(X86ISD::GlobalBaseReg,
7395                                                 DebugLoc(), PtrVT), InFlag);
7396  InFlag = Chain.getValue(1);
7397
7398  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7399}
7400
7401// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7402static SDValue
7403LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7404                                const EVT PtrVT) {
7405  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7406                    X86::RAX, X86II::MO_TLSGD);
7407}
7408
7409// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
7410// "local exec" model.
7411static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7412                                   const EVT PtrVT, TLSModel::Model model,
7413                                   bool is64Bit) {
7414  DebugLoc dl = GA->getDebugLoc();
7415
7416  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7417  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7418                                                         is64Bit ? 257 : 256));
7419
7420  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7421                                      DAG.getIntPtrConstant(0),
7422                                      MachinePointerInfo(Ptr), false, false, 0);
7423
7424  unsigned char OperandFlags = 0;
7425  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7426  // initialexec.
7427  unsigned WrapperKind = X86ISD::Wrapper;
7428  if (model == TLSModel::LocalExec) {
7429    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7430  } else if (is64Bit) {
7431    assert(model == TLSModel::InitialExec);
7432    OperandFlags = X86II::MO_GOTTPOFF;
7433    WrapperKind = X86ISD::WrapperRIP;
7434  } else {
7435    assert(model == TLSModel::InitialExec);
7436    OperandFlags = X86II::MO_INDNTPOFF;
7437  }
7438
7439  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
7440  // exec)
7441  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7442                                           GA->getValueType(0),
7443                                           GA->getOffset(), OperandFlags);
7444  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7445
7446  if (model == TLSModel::InitialExec)
7447    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7448                         MachinePointerInfo::getGOT(), false, false, 0);
7449
7450  // The address of the thread local variable is the add of the thread
7451  // pointer with the offset of the variable.
7452  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7453}
7454
7455SDValue
7456X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7457
7458  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7459  const GlobalValue *GV = GA->getGlobal();
7460
7461  if (Subtarget->isTargetELF()) {
7462    // TODO: implement the "local dynamic" model
7463    // TODO: implement the "initial exec"model for pic executables
7464
7465    // If GV is an alias then use the aliasee for determining
7466    // thread-localness.
7467    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7468      GV = GA->resolveAliasedGlobal(false);
7469
7470    TLSModel::Model model
7471      = getTLSModel(GV, getTargetMachine().getRelocationModel());
7472
7473    switch (model) {
7474      case TLSModel::GeneralDynamic:
7475      case TLSModel::LocalDynamic: // not implemented
7476        if (Subtarget->is64Bit())
7477          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7478        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7479
7480      case TLSModel::InitialExec:
7481      case TLSModel::LocalExec:
7482        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7483                                   Subtarget->is64Bit());
7484    }
7485  } else if (Subtarget->isTargetDarwin()) {
7486    // Darwin only has one model of TLS.  Lower to that.
7487    unsigned char OpFlag = 0;
7488    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7489                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7490
7491    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7492    // global base reg.
7493    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7494                  !Subtarget->is64Bit();
7495    if (PIC32)
7496      OpFlag = X86II::MO_TLVP_PIC_BASE;
7497    else
7498      OpFlag = X86II::MO_TLVP;
7499    DebugLoc DL = Op.getDebugLoc();
7500    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7501                                                GA->getValueType(0),
7502                                                GA->getOffset(), OpFlag);
7503    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7504
7505    // With PIC32, the address is actually $g + Offset.
7506    if (PIC32)
7507      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7508                           DAG.getNode(X86ISD::GlobalBaseReg,
7509                                       DebugLoc(), getPointerTy()),
7510                           Offset);
7511
7512    // Lowering the machine isd will make sure everything is in the right
7513    // location.
7514    SDValue Chain = DAG.getEntryNode();
7515    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7516    SDValue Args[] = { Chain, Offset };
7517    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7518
7519    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7520    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7521    MFI->setAdjustsStack(true);
7522
7523    // And our return value (tls address) is in the standard call return value
7524    // location.
7525    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7526    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
7527  }
7528
7529  assert(false &&
7530         "TLS not implemented for this target.");
7531
7532  llvm_unreachable("Unreachable");
7533  return SDValue();
7534}
7535
7536
7537/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values and
7538/// take a 2 x i32 value to shift plus a shift amount.
7539SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const {
7540  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7541  EVT VT = Op.getValueType();
7542  unsigned VTBits = VT.getSizeInBits();
7543  DebugLoc dl = Op.getDebugLoc();
7544  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7545  SDValue ShOpLo = Op.getOperand(0);
7546  SDValue ShOpHi = Op.getOperand(1);
7547  SDValue ShAmt  = Op.getOperand(2);
7548  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7549                                     DAG.getConstant(VTBits - 1, MVT::i8))
7550                       : DAG.getConstant(0, VT);
7551
7552  SDValue Tmp2, Tmp3;
7553  if (Op.getOpcode() == ISD::SHL_PARTS) {
7554    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7555    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7556  } else {
7557    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7558    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7559  }
7560
7561  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7562                                DAG.getConstant(VTBits, MVT::i8));
7563  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7564                             AndNode, DAG.getConstant(0, MVT::i8));
7565
7566  SDValue Hi, Lo;
7567  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7568  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7569  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7570
7571  if (Op.getOpcode() == ISD::SHL_PARTS) {
7572    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7573    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7574  } else {
7575    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7576    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7577  }
7578
7579  SDValue Ops[2] = { Lo, Hi };
7580  return DAG.getMergeValues(Ops, 2, dl);
7581}
7582
7583SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7584                                           SelectionDAG &DAG) const {
7585  EVT SrcVT = Op.getOperand(0).getValueType();
7586
7587  if (SrcVT.isVector())
7588    return SDValue();
7589
7590  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7591         "Unknown SINT_TO_FP to lower!");
7592
7593  // These are really Legal; return the operand so the caller accepts it as
7594  // Legal.
7595  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7596    return Op;
7597  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7598      Subtarget->is64Bit()) {
7599    return Op;
7600  }
7601
7602  DebugLoc dl = Op.getDebugLoc();
7603  unsigned Size = SrcVT.getSizeInBits()/8;
7604  MachineFunction &MF = DAG.getMachineFunction();
7605  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7606  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7607  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7608                               StackSlot,
7609                               MachinePointerInfo::getFixedStack(SSFI),
7610                               false, false, 0);
7611  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7612}
7613
7614SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7615                                     SDValue StackSlot,
7616                                     SelectionDAG &DAG) const {
7617  // Build the FILD
7618  DebugLoc DL = Op.getDebugLoc();
7619  SDVTList Tys;
7620  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7621  if (useSSE)
7622    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7623  else
7624    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7625
7626  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7627
7628  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7629  MachineMemOperand *MMO;
7630  if (FI) {
7631    int SSFI = FI->getIndex();
7632    MMO =
7633      DAG.getMachineFunction()
7634      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7635                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7636  } else {
7637    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7638    StackSlot = StackSlot.getOperand(1);
7639  }
7640  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7641  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7642                                           X86ISD::FILD, DL,
7643                                           Tys, Ops, array_lengthof(Ops),
7644                                           SrcVT, MMO);
7645
7646  if (useSSE) {
7647    Chain = Result.getValue(1);
7648    SDValue InFlag = Result.getValue(2);
7649
7650    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7651    // shouldn't be necessary except that RFP cannot be live across
7652    // multiple blocks. When stackifier is fixed, they can be uncoupled.
7653    MachineFunction &MF = DAG.getMachineFunction();
7654    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7655    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7656    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7657    Tys = DAG.getVTList(MVT::Other);
7658    SDValue Ops[] = {
7659      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7660    };
7661    MachineMemOperand *MMO =
7662      DAG.getMachineFunction()
7663      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7664                            MachineMemOperand::MOStore, SSFISize, SSFISize);
7665
7666    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7667                                    Ops, array_lengthof(Ops),
7668                                    Op.getValueType(), MMO);
7669    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7670                         MachinePointerInfo::getFixedStack(SSFI),
7671                         false, false, 0);
7672  }
7673
7674  return Result;
7675}
7676
7677// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7678SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7679                                               SelectionDAG &DAG) const {
7680  // This algorithm is not obvious. Here it is in C code, more or less:
7681  /*
7682    double uint64_to_double( uint32_t hi, uint32_t lo ) {
7683      static const __m128i exp = { 0x4330000045300000ULL, 0 };
7684      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
7685
7686      // Copy ints to xmm registers.
7687      __m128i xh = _mm_cvtsi32_si128( hi );
7688      __m128i xl = _mm_cvtsi32_si128( lo );
7689
7690      // Combine into low half of a single xmm register.
7691      __m128i x = _mm_unpacklo_epi32( xh, xl );
7692      __m128d d;
7693      double sd;
7694
7695      // Merge in appropriate exponents to give the integer bits the right
7696      // magnitude.
7697      x = _mm_unpacklo_epi32( x, exp );
7698
7699      // Subtract away the biases to deal with the IEEE-754 double precision
7700      // implicit 1.
7701      d = _mm_sub_pd( (__m128d) x, bias );
7702
7703      // All conversions up to here are exact. The correctly rounded result is
7704      // calculated using the current rounding mode using the following
7705      // horizontal add.
7706      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
7707      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
7708                                // store doesn't really need to be here (except
7709                                // maybe to zero the other double)
7710      return sd;
7711    }
7712  */
7713
7714  DebugLoc dl = Op.getDebugLoc();
7715  LLVMContext *Context = DAG.getContext();
7716
7717  // Build some magic constants.
7718  std::vector<Constant*> CV0;
7719  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
7720  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
7721  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7722  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7723  Constant *C0 = ConstantVector::get(CV0);
7724  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7725
7726  std::vector<Constant*> CV1;
7727  CV1.push_back(
7728    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7729  CV1.push_back(
7730    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7731  Constant *C1 = ConstantVector::get(CV1);
7732  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7733
7734  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7735                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7736                                        Op.getOperand(0),
7737                                        DAG.getIntPtrConstant(1)));
7738  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7739                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7740                                        Op.getOperand(0),
7741                                        DAG.getIntPtrConstant(0)));
7742  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
7743  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7744                              MachinePointerInfo::getConstantPool(),
7745                              false, false, 16);
7746  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
7747  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck2);
7748  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7749                              MachinePointerInfo::getConstantPool(),
7750                              false, false, 16);
7751  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7752
7753  // Add the halves; easiest way is to swap them into another reg first.
7754  int ShufMask[2] = { 1, -1 };
7755  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
7756                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
7757  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
7758  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
7759                     DAG.getIntPtrConstant(0));
7760}
7761
7762// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
7763SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7764                                               SelectionDAG &DAG) const {
7765  DebugLoc dl = Op.getDebugLoc();
7766  // FP constant to bias correct the final result.
7767  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7768                                   MVT::f64);
7769
7770  // Load the 32-bit value into an XMM register.
7771  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7772                             Op.getOperand(0));
7773
7774  // Zero out the upper parts of the register.
7775  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget->hasXMMInt(),
7776                                     DAG);
7777
7778  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7779                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7780                     DAG.getIntPtrConstant(0));
7781
7782  // Or the load with the bias.
7783  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7784                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7785                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7786                                                   MVT::v2f64, Load)),
7787                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7788                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7789                                                   MVT::v2f64, Bias)));
7790  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7791                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7792                   DAG.getIntPtrConstant(0));
7793
7794  // Subtract the bias.
7795  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7796
7797  // Handle final rounding.
7798  EVT DestVT = Op.getValueType();
7799
7800  if (DestVT.bitsLT(MVT::f64)) {
7801    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7802                       DAG.getIntPtrConstant(0));
7803  } else if (DestVT.bitsGT(MVT::f64)) {
7804    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7805  }
7806
7807  // Handle final rounding.
7808  return Sub;
7809}
7810
7811SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
7812                                           SelectionDAG &DAG) const {
7813  SDValue N0 = Op.getOperand(0);
7814  DebugLoc dl = Op.getDebugLoc();
7815
7816  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
7817  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
7818  // the optimization here.
7819  if (DAG.SignBitIsZero(N0))
7820    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
7821
7822  EVT SrcVT = N0.getValueType();
7823  EVT DstVT = Op.getValueType();
7824  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
7825    return LowerUINT_TO_FP_i64(Op, DAG);
7826  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
7827    return LowerUINT_TO_FP_i32(Op, DAG);
7828
7829  // Make a 64-bit buffer, and use it to build an FILD.
7830  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
7831  if (SrcVT == MVT::i32) {
7832    SDValue WordOff = DAG.getConstant(4, getPointerTy());
7833    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
7834                                     getPointerTy(), StackSlot, WordOff);
7835    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7836                                  StackSlot, MachinePointerInfo(),
7837                                  false, false, 0);
7838    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
7839                                  OffsetSlot, MachinePointerInfo(),
7840                                  false, false, 0);
7841    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
7842    return Fild;
7843  }
7844
7845  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
7846  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7847                                StackSlot, MachinePointerInfo(),
7848                               false, false, 0);
7849  // For i64 source, we need to add the appropriate power of 2 if the input
7850  // was negative.  This is the same as the optimization in
7851  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
7852  // we must be careful to do the computation in x87 extended precision, not
7853  // in SSE. (The generic code can't know it's OK to do this, or how to.)
7854  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
7855  MachineMemOperand *MMO =
7856    DAG.getMachineFunction()
7857    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7858                          MachineMemOperand::MOLoad, 8, 8);
7859
7860  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
7861  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
7862  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
7863                                         MVT::i64, MMO);
7864
7865  APInt FF(32, 0x5F800000ULL);
7866
7867  // Check whether the sign bit is set.
7868  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
7869                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
7870                                 ISD::SETLT);
7871
7872  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
7873  SDValue FudgePtr = DAG.getConstantPool(
7874                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
7875                                         getPointerTy());
7876
7877  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
7878  SDValue Zero = DAG.getIntPtrConstant(0);
7879  SDValue Four = DAG.getIntPtrConstant(4);
7880  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
7881                               Zero, Four);
7882  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
7883
7884  // Load the value out, extending it from f32 to f80.
7885  // FIXME: Avoid the extend by constructing the right constant pool?
7886  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
7887                                 FudgePtr, MachinePointerInfo::getConstantPool(),
7888                                 MVT::f32, false, false, 4);
7889  // Extend everything to 80 bits to force it to be done on x87.
7890  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
7891  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
7892}
7893
7894std::pair<SDValue,SDValue> X86TargetLowering::
7895FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
7896  DebugLoc DL = Op.getDebugLoc();
7897
7898  EVT DstTy = Op.getValueType();
7899
7900  if (!IsSigned) {
7901    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
7902    DstTy = MVT::i64;
7903  }
7904
7905  assert(DstTy.getSimpleVT() <= MVT::i64 &&
7906         DstTy.getSimpleVT() >= MVT::i16 &&
7907         "Unknown FP_TO_SINT to lower!");
7908
7909  // These are really Legal.
7910  if (DstTy == MVT::i32 &&
7911      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7912    return std::make_pair(SDValue(), SDValue());
7913  if (Subtarget->is64Bit() &&
7914      DstTy == MVT::i64 &&
7915      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7916    return std::make_pair(SDValue(), SDValue());
7917
7918  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
7919  // stack slot.
7920  MachineFunction &MF = DAG.getMachineFunction();
7921  unsigned MemSize = DstTy.getSizeInBits()/8;
7922  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7923  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7924
7925
7926
7927  unsigned Opc;
7928  switch (DstTy.getSimpleVT().SimpleTy) {
7929  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
7930  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
7931  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
7932  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
7933  }
7934
7935  SDValue Chain = DAG.getEntryNode();
7936  SDValue Value = Op.getOperand(0);
7937  EVT TheVT = Op.getOperand(0).getValueType();
7938  if (isScalarFPTypeInSSEReg(TheVT)) {
7939    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
7940    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
7941                         MachinePointerInfo::getFixedStack(SSFI),
7942                         false, false, 0);
7943    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
7944    SDValue Ops[] = {
7945      Chain, StackSlot, DAG.getValueType(TheVT)
7946    };
7947
7948    MachineMemOperand *MMO =
7949      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7950                              MachineMemOperand::MOLoad, MemSize, MemSize);
7951    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
7952                                    DstTy, MMO);
7953    Chain = Value.getValue(1);
7954    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7955    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7956  }
7957
7958  MachineMemOperand *MMO =
7959    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7960                            MachineMemOperand::MOStore, MemSize, MemSize);
7961
7962  // Build the FP_TO_INT*_IN_MEM
7963  SDValue Ops[] = { Chain, Value, StackSlot };
7964  SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
7965                                         Ops, 3, DstTy, MMO);
7966
7967  return std::make_pair(FIST, StackSlot);
7968}
7969
7970SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
7971                                           SelectionDAG &DAG) const {
7972  if (Op.getValueType().isVector())
7973    return SDValue();
7974
7975  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
7976  SDValue FIST = Vals.first, StackSlot = Vals.second;
7977  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
7978  if (FIST.getNode() == 0) return Op;
7979
7980  // Load the result.
7981  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7982                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
7983}
7984
7985SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
7986                                           SelectionDAG &DAG) const {
7987  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
7988  SDValue FIST = Vals.first, StackSlot = Vals.second;
7989  assert(FIST.getNode() && "Unexpected failure");
7990
7991  // Load the result.
7992  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7993                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
7994}
7995
7996SDValue X86TargetLowering::LowerFABS(SDValue Op,
7997                                     SelectionDAG &DAG) const {
7998  LLVMContext *Context = DAG.getContext();
7999  DebugLoc dl = Op.getDebugLoc();
8000  EVT VT = Op.getValueType();
8001  EVT EltVT = VT;
8002  if (VT.isVector())
8003    EltVT = VT.getVectorElementType();
8004  std::vector<Constant*> CV;
8005  if (EltVT == MVT::f64) {
8006    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
8007    CV.push_back(C);
8008    CV.push_back(C);
8009  } else {
8010    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
8011    CV.push_back(C);
8012    CV.push_back(C);
8013    CV.push_back(C);
8014    CV.push_back(C);
8015  }
8016  Constant *C = ConstantVector::get(CV);
8017  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8018  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8019                             MachinePointerInfo::getConstantPool(),
8020                             false, false, 16);
8021  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
8022}
8023
8024SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
8025  LLVMContext *Context = DAG.getContext();
8026  DebugLoc dl = Op.getDebugLoc();
8027  EVT VT = Op.getValueType();
8028  EVT EltVT = VT;
8029  if (VT.isVector())
8030    EltVT = VT.getVectorElementType();
8031  std::vector<Constant*> CV;
8032  if (EltVT == MVT::f64) {
8033    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
8034    CV.push_back(C);
8035    CV.push_back(C);
8036  } else {
8037    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
8038    CV.push_back(C);
8039    CV.push_back(C);
8040    CV.push_back(C);
8041    CV.push_back(C);
8042  }
8043  Constant *C = ConstantVector::get(CV);
8044  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8045  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8046                             MachinePointerInfo::getConstantPool(),
8047                             false, false, 16);
8048  if (VT.isVector()) {
8049    return DAG.getNode(ISD::BITCAST, dl, VT,
8050                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
8051                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
8052                                Op.getOperand(0)),
8053                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Mask)));
8054  } else {
8055    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
8056  }
8057}
8058
8059SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
8060  LLVMContext *Context = DAG.getContext();
8061  SDValue Op0 = Op.getOperand(0);
8062  SDValue Op1 = Op.getOperand(1);
8063  DebugLoc dl = Op.getDebugLoc();
8064  EVT VT = Op.getValueType();
8065  EVT SrcVT = Op1.getValueType();
8066
8067  // If second operand is smaller, extend it first.
8068  if (SrcVT.bitsLT(VT)) {
8069    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
8070    SrcVT = VT;
8071  }
8072  // And if it is bigger, shrink it first.
8073  if (SrcVT.bitsGT(VT)) {
8074    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
8075    SrcVT = VT;
8076  }
8077
8078  // At this point the operands and the result should have the same
8079  // type, and that won't be f80 since that is not custom lowered.
8080
8081  // First get the sign bit of second operand.
8082  std::vector<Constant*> CV;
8083  if (SrcVT == MVT::f64) {
8084    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
8085    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8086  } else {
8087    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
8088    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8089    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8090    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8091  }
8092  Constant *C = ConstantVector::get(CV);
8093  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8094  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
8095                              MachinePointerInfo::getConstantPool(),
8096                              false, false, 16);
8097  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
8098
8099  // Shift sign bit right or left if the two operands have different types.
8100  if (SrcVT.bitsGT(VT)) {
8101    // Op0 is MVT::f32, Op1 is MVT::f64.
8102    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
8103    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
8104                          DAG.getConstant(32, MVT::i32));
8105    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
8106    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
8107                          DAG.getIntPtrConstant(0));
8108  }
8109
8110  // Clear first operand sign bit.
8111  CV.clear();
8112  if (VT == MVT::f64) {
8113    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
8114    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8115  } else {
8116    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
8117    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8118    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8119    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8120  }
8121  C = ConstantVector::get(CV);
8122  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8123  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8124                              MachinePointerInfo::getConstantPool(),
8125                              false, false, 16);
8126  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
8127
8128  // Or the value with the sign bit.
8129  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
8130}
8131
8132SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
8133  SDValue N0 = Op.getOperand(0);
8134  DebugLoc dl = Op.getDebugLoc();
8135  EVT VT = Op.getValueType();
8136
8137  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
8138  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
8139                                  DAG.getConstant(1, VT));
8140  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
8141}
8142
8143/// Emit nodes that will be selected as "test Op0,Op0", or something
8144/// equivalent.
8145SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
8146                                    SelectionDAG &DAG) const {
8147  DebugLoc dl = Op.getDebugLoc();
8148
8149  // CF and OF aren't always set the way we want. Determine which
8150  // of these we need.
8151  bool NeedCF = false;
8152  bool NeedOF = false;
8153  switch (X86CC) {
8154  default: break;
8155  case X86::COND_A: case X86::COND_AE:
8156  case X86::COND_B: case X86::COND_BE:
8157    NeedCF = true;
8158    break;
8159  case X86::COND_G: case X86::COND_GE:
8160  case X86::COND_L: case X86::COND_LE:
8161  case X86::COND_O: case X86::COND_NO:
8162    NeedOF = true;
8163    break;
8164  }
8165
8166  // See if we can use the EFLAGS value from the operand instead of
8167  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8168  // we prove that the arithmetic won't overflow, we can't use OF or CF.
8169  if (Op.getResNo() != 0 || NeedOF || NeedCF)
8170    // Emit a CMP with 0, which is the TEST pattern.
8171    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8172                       DAG.getConstant(0, Op.getValueType()));
8173
8174  unsigned Opcode = 0;
8175  unsigned NumOperands = 0;
8176  switch (Op.getNode()->getOpcode()) {
8177  case ISD::ADD:
8178    // Due to an isel shortcoming, be conservative if this add is likely to be
8179    // selected as part of a load-modify-store instruction. When the root node
8180    // in a match is a store, isel doesn't know how to remap non-chain non-flag
8181    // uses of other nodes in the match, such as the ADD in this case. This
8182    // leads to the ADD being left around and reselected, with the result being
8183    // two adds in the output.  Alas, even if none our users are stores, that
8184    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
8185    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
8186    // climbing the DAG back to the root, and it doesn't seem to be worth the
8187    // effort.
8188    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8189           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8190      if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC)
8191        goto default_case;
8192
8193    if (ConstantSDNode *C =
8194        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
8195      // An add of one will be selected as an INC.
8196      if (C->getAPIntValue() == 1) {
8197        Opcode = X86ISD::INC;
8198        NumOperands = 1;
8199        break;
8200      }
8201
8202      // An add of negative one (subtract of one) will be selected as a DEC.
8203      if (C->getAPIntValue().isAllOnesValue()) {
8204        Opcode = X86ISD::DEC;
8205        NumOperands = 1;
8206        break;
8207      }
8208    }
8209
8210    // Otherwise use a regular EFLAGS-setting add.
8211    Opcode = X86ISD::ADD;
8212    NumOperands = 2;
8213    break;
8214  case ISD::AND: {
8215    // If the primary and result isn't used, don't bother using X86ISD::AND,
8216    // because a TEST instruction will be better.
8217    bool NonFlagUse = false;
8218    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8219           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8220      SDNode *User = *UI;
8221      unsigned UOpNo = UI.getOperandNo();
8222      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8223        // Look pass truncate.
8224        UOpNo = User->use_begin().getOperandNo();
8225        User = *User->use_begin();
8226      }
8227
8228      if (User->getOpcode() != ISD::BRCOND &&
8229          User->getOpcode() != ISD::SETCC &&
8230          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
8231        NonFlagUse = true;
8232        break;
8233      }
8234    }
8235
8236    if (!NonFlagUse)
8237      break;
8238  }
8239    // FALL THROUGH
8240  case ISD::SUB:
8241  case ISD::OR:
8242  case ISD::XOR:
8243    // Due to the ISEL shortcoming noted above, be conservative if this op is
8244    // likely to be selected as part of a load-modify-store instruction.
8245    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8246           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8247      if (UI->getOpcode() == ISD::STORE)
8248        goto default_case;
8249
8250    // Otherwise use a regular EFLAGS-setting instruction.
8251    switch (Op.getNode()->getOpcode()) {
8252    default: llvm_unreachable("unexpected operator!");
8253    case ISD::SUB: Opcode = X86ISD::SUB; break;
8254    case ISD::OR:  Opcode = X86ISD::OR;  break;
8255    case ISD::XOR: Opcode = X86ISD::XOR; break;
8256    case ISD::AND: Opcode = X86ISD::AND; break;
8257    }
8258
8259    NumOperands = 2;
8260    break;
8261  case X86ISD::ADD:
8262  case X86ISD::SUB:
8263  case X86ISD::INC:
8264  case X86ISD::DEC:
8265  case X86ISD::OR:
8266  case X86ISD::XOR:
8267  case X86ISD::AND:
8268    return SDValue(Op.getNode(), 1);
8269  default:
8270  default_case:
8271    break;
8272  }
8273
8274  if (Opcode == 0)
8275    // Emit a CMP with 0, which is the TEST pattern.
8276    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8277                       DAG.getConstant(0, Op.getValueType()));
8278
8279  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
8280  SmallVector<SDValue, 4> Ops;
8281  for (unsigned i = 0; i != NumOperands; ++i)
8282    Ops.push_back(Op.getOperand(i));
8283
8284  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
8285  DAG.ReplaceAllUsesWith(Op, New);
8286  return SDValue(New.getNode(), 1);
8287}
8288
8289/// Emit nodes that will be selected as "cmp Op0,Op1", or something
8290/// equivalent.
8291SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
8292                                   SelectionDAG &DAG) const {
8293  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
8294    if (C->getAPIntValue() == 0)
8295      return EmitTest(Op0, X86CC, DAG);
8296
8297  DebugLoc dl = Op0.getDebugLoc();
8298  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
8299}
8300
8301/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
8302/// if it's possible.
8303SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
8304                                     DebugLoc dl, SelectionDAG &DAG) const {
8305  SDValue Op0 = And.getOperand(0);
8306  SDValue Op1 = And.getOperand(1);
8307  if (Op0.getOpcode() == ISD::TRUNCATE)
8308    Op0 = Op0.getOperand(0);
8309  if (Op1.getOpcode() == ISD::TRUNCATE)
8310    Op1 = Op1.getOperand(0);
8311
8312  SDValue LHS, RHS;
8313  if (Op1.getOpcode() == ISD::SHL)
8314    std::swap(Op0, Op1);
8315  if (Op0.getOpcode() == ISD::SHL) {
8316    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
8317      if (And00C->getZExtValue() == 1) {
8318        // If we looked past a truncate, check that it's only truncating away
8319        // known zeros.
8320        unsigned BitWidth = Op0.getValueSizeInBits();
8321        unsigned AndBitWidth = And.getValueSizeInBits();
8322        if (BitWidth > AndBitWidth) {
8323          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
8324          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
8325          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
8326            return SDValue();
8327        }
8328        LHS = Op1;
8329        RHS = Op0.getOperand(1);
8330      }
8331  } else if (Op1.getOpcode() == ISD::Constant) {
8332    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
8333    SDValue AndLHS = Op0;
8334    if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
8335      LHS = AndLHS.getOperand(0);
8336      RHS = AndLHS.getOperand(1);
8337    }
8338  }
8339
8340  if (LHS.getNode()) {
8341    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
8342    // instruction.  Since the shift amount is in-range-or-undefined, we know
8343    // that doing a bittest on the i32 value is ok.  We extend to i32 because
8344    // the encoding for the i16 version is larger than the i32 version.
8345    // Also promote i16 to i32 for performance / code size reason.
8346    if (LHS.getValueType() == MVT::i8 ||
8347        LHS.getValueType() == MVT::i16)
8348      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
8349
8350    // If the operand types disagree, extend the shift amount to match.  Since
8351    // BT ignores high bits (like shifts) we can use anyextend.
8352    if (LHS.getValueType() != RHS.getValueType())
8353      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
8354
8355    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
8356    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
8357    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8358                       DAG.getConstant(Cond, MVT::i8), BT);
8359  }
8360
8361  return SDValue();
8362}
8363
8364SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
8365
8366  if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
8367
8368  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
8369  SDValue Op0 = Op.getOperand(0);
8370  SDValue Op1 = Op.getOperand(1);
8371  DebugLoc dl = Op.getDebugLoc();
8372  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8373
8374  // Optimize to BT if possible.
8375  // Lower (X & (1 << N)) == 0 to BT(X, N).
8376  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
8377  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
8378  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
8379      Op1.getOpcode() == ISD::Constant &&
8380      cast<ConstantSDNode>(Op1)->isNullValue() &&
8381      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8382    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
8383    if (NewSetCC.getNode())
8384      return NewSetCC;
8385  }
8386
8387  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
8388  // these.
8389  if (Op1.getOpcode() == ISD::Constant &&
8390      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
8391       cast<ConstantSDNode>(Op1)->isNullValue()) &&
8392      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8393
8394    // If the input is a setcc, then reuse the input setcc or use a new one with
8395    // the inverted condition.
8396    if (Op0.getOpcode() == X86ISD::SETCC) {
8397      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
8398      bool Invert = (CC == ISD::SETNE) ^
8399        cast<ConstantSDNode>(Op1)->isNullValue();
8400      if (!Invert) return Op0;
8401
8402      CCode = X86::GetOppositeBranchCondition(CCode);
8403      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8404                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
8405    }
8406  }
8407
8408  bool isFP = Op1.getValueType().isFloatingPoint();
8409  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
8410  if (X86CC == X86::COND_INVALID)
8411    return SDValue();
8412
8413  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
8414  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8415                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
8416}
8417
8418// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
8419// ones, and then concatenate the result back.
8420static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
8421  EVT VT = Op.getValueType();
8422
8423  assert(VT.getSizeInBits() == 256 && Op.getOpcode() == ISD::SETCC &&
8424         "Unsupported value type for operation");
8425
8426  int NumElems = VT.getVectorNumElements();
8427  DebugLoc dl = Op.getDebugLoc();
8428  SDValue CC = Op.getOperand(2);
8429  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
8430  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
8431
8432  // Extract the LHS vectors
8433  SDValue LHS = Op.getOperand(0);
8434  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
8435  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
8436
8437  // Extract the RHS vectors
8438  SDValue RHS = Op.getOperand(1);
8439  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
8440  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
8441
8442  // Issue the operation on the smaller types and concatenate the result back
8443  MVT EltVT = VT.getVectorElementType().getSimpleVT();
8444  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
8445  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8446                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
8447                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
8448}
8449
8450
8451SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
8452  SDValue Cond;
8453  SDValue Op0 = Op.getOperand(0);
8454  SDValue Op1 = Op.getOperand(1);
8455  SDValue CC = Op.getOperand(2);
8456  EVT VT = Op.getValueType();
8457  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
8458  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
8459  DebugLoc dl = Op.getDebugLoc();
8460
8461  if (isFP) {
8462    unsigned SSECC = 8;
8463    EVT EltVT = Op0.getValueType().getVectorElementType();
8464    assert(EltVT == MVT::f32 || EltVT == MVT::f64);
8465
8466    unsigned Opc = EltVT == MVT::f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
8467    bool Swap = false;
8468
8469    // SSE Condition code mapping:
8470    //  0 - EQ
8471    //  1 - LT
8472    //  2 - LE
8473    //  3 - UNORD
8474    //  4 - NEQ
8475    //  5 - NLT
8476    //  6 - NLE
8477    //  7 - ORD
8478    switch (SetCCOpcode) {
8479    default: break;
8480    case ISD::SETOEQ:
8481    case ISD::SETEQ:  SSECC = 0; break;
8482    case ISD::SETOGT:
8483    case ISD::SETGT: Swap = true; // Fallthrough
8484    case ISD::SETLT:
8485    case ISD::SETOLT: SSECC = 1; break;
8486    case ISD::SETOGE:
8487    case ISD::SETGE: Swap = true; // Fallthrough
8488    case ISD::SETLE:
8489    case ISD::SETOLE: SSECC = 2; break;
8490    case ISD::SETUO:  SSECC = 3; break;
8491    case ISD::SETUNE:
8492    case ISD::SETNE:  SSECC = 4; break;
8493    case ISD::SETULE: Swap = true;
8494    case ISD::SETUGE: SSECC = 5; break;
8495    case ISD::SETULT: Swap = true;
8496    case ISD::SETUGT: SSECC = 6; break;
8497    case ISD::SETO:   SSECC = 7; break;
8498    }
8499    if (Swap)
8500      std::swap(Op0, Op1);
8501
8502    // In the two special cases we can't handle, emit two comparisons.
8503    if (SSECC == 8) {
8504      if (SetCCOpcode == ISD::SETUEQ) {
8505        SDValue UNORD, EQ;
8506        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
8507        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
8508        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
8509      }
8510      else if (SetCCOpcode == ISD::SETONE) {
8511        SDValue ORD, NEQ;
8512        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
8513        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
8514        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
8515      }
8516      llvm_unreachable("Illegal FP comparison");
8517    }
8518    // Handle all other FP comparisons here.
8519    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
8520  }
8521
8522  // Break 256-bit integer vector compare into smaller ones.
8523  if (!isFP && VT.getSizeInBits() == 256)
8524    return Lower256IntVSETCC(Op, DAG);
8525
8526  // We are handling one of the integer comparisons here.  Since SSE only has
8527  // GT and EQ comparisons for integer, swapping operands and multiple
8528  // operations may be required for some comparisons.
8529  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
8530  bool Swap = false, Invert = false, FlipSigns = false;
8531
8532  switch (VT.getSimpleVT().SimpleTy) {
8533  default: break;
8534  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
8535  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
8536  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
8537  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
8538  }
8539
8540  switch (SetCCOpcode) {
8541  default: break;
8542  case ISD::SETNE:  Invert = true;
8543  case ISD::SETEQ:  Opc = EQOpc; break;
8544  case ISD::SETLT:  Swap = true;
8545  case ISD::SETGT:  Opc = GTOpc; break;
8546  case ISD::SETGE:  Swap = true;
8547  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
8548  case ISD::SETULT: Swap = true;
8549  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
8550  case ISD::SETUGE: Swap = true;
8551  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
8552  }
8553  if (Swap)
8554    std::swap(Op0, Op1);
8555
8556  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
8557  // bits of the inputs before performing those operations.
8558  if (FlipSigns) {
8559    EVT EltVT = VT.getVectorElementType();
8560    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
8561                                      EltVT);
8562    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
8563    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
8564                                    SignBits.size());
8565    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
8566    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
8567  }
8568
8569  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
8570
8571  // If the logical-not of the result is required, perform that now.
8572  if (Invert)
8573    Result = DAG.getNOT(dl, Result, VT);
8574
8575  return Result;
8576}
8577
8578// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
8579static bool isX86LogicalCmp(SDValue Op) {
8580  unsigned Opc = Op.getNode()->getOpcode();
8581  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
8582    return true;
8583  if (Op.getResNo() == 1 &&
8584      (Opc == X86ISD::ADD ||
8585       Opc == X86ISD::SUB ||
8586       Opc == X86ISD::ADC ||
8587       Opc == X86ISD::SBB ||
8588       Opc == X86ISD::SMUL ||
8589       Opc == X86ISD::UMUL ||
8590       Opc == X86ISD::INC ||
8591       Opc == X86ISD::DEC ||
8592       Opc == X86ISD::OR ||
8593       Opc == X86ISD::XOR ||
8594       Opc == X86ISD::AND))
8595    return true;
8596
8597  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
8598    return true;
8599
8600  return false;
8601}
8602
8603static bool isZero(SDValue V) {
8604  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8605  return C && C->isNullValue();
8606}
8607
8608static bool isAllOnes(SDValue V) {
8609  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8610  return C && C->isAllOnesValue();
8611}
8612
8613SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8614  bool addTest = true;
8615  SDValue Cond  = Op.getOperand(0);
8616  SDValue Op1 = Op.getOperand(1);
8617  SDValue Op2 = Op.getOperand(2);
8618  DebugLoc DL = Op.getDebugLoc();
8619  SDValue CC;
8620
8621  if (Cond.getOpcode() == ISD::SETCC) {
8622    SDValue NewCond = LowerSETCC(Cond, DAG);
8623    if (NewCond.getNode())
8624      Cond = NewCond;
8625  }
8626
8627  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
8628  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
8629  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
8630  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
8631  if (Cond.getOpcode() == X86ISD::SETCC &&
8632      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
8633      isZero(Cond.getOperand(1).getOperand(1))) {
8634    SDValue Cmp = Cond.getOperand(1);
8635
8636    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
8637
8638    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
8639        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
8640      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
8641
8642      SDValue CmpOp0 = Cmp.getOperand(0);
8643      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
8644                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
8645
8646      SDValue Res =   // Res = 0 or -1.
8647        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8648                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
8649
8650      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
8651        Res = DAG.getNOT(DL, Res, Res.getValueType());
8652
8653      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
8654      if (N2C == 0 || !N2C->isNullValue())
8655        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
8656      return Res;
8657    }
8658  }
8659
8660  // Look past (and (setcc_carry (cmp ...)), 1).
8661  if (Cond.getOpcode() == ISD::AND &&
8662      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8663    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8664    if (C && C->getAPIntValue() == 1)
8665      Cond = Cond.getOperand(0);
8666  }
8667
8668  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8669  // setting operand in place of the X86ISD::SETCC.
8670  if (Cond.getOpcode() == X86ISD::SETCC ||
8671      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
8672    CC = Cond.getOperand(0);
8673
8674    SDValue Cmp = Cond.getOperand(1);
8675    unsigned Opc = Cmp.getOpcode();
8676    EVT VT = Op.getValueType();
8677
8678    bool IllegalFPCMov = false;
8679    if (VT.isFloatingPoint() && !VT.isVector() &&
8680        !isScalarFPTypeInSSEReg(VT))  // FPStack?
8681      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
8682
8683    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
8684        Opc == X86ISD::BT) { // FIXME
8685      Cond = Cmp;
8686      addTest = false;
8687    }
8688  }
8689
8690  if (addTest) {
8691    // Look pass the truncate.
8692    if (Cond.getOpcode() == ISD::TRUNCATE)
8693      Cond = Cond.getOperand(0);
8694
8695    // We know the result of AND is compared against zero. Try to match
8696    // it to BT.
8697    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8698      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
8699      if (NewSetCC.getNode()) {
8700        CC = NewSetCC.getOperand(0);
8701        Cond = NewSetCC.getOperand(1);
8702        addTest = false;
8703      }
8704    }
8705  }
8706
8707  if (addTest) {
8708    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8709    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8710  }
8711
8712  // a <  b ? -1 :  0 -> RES = ~setcc_carry
8713  // a <  b ?  0 : -1 -> RES = setcc_carry
8714  // a >= b ? -1 :  0 -> RES = setcc_carry
8715  // a >= b ?  0 : -1 -> RES = ~setcc_carry
8716  if (Cond.getOpcode() == X86ISD::CMP) {
8717    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
8718
8719    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
8720        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
8721      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8722                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
8723      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
8724        return DAG.getNOT(DL, Res, Res.getValueType());
8725      return Res;
8726    }
8727  }
8728
8729  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
8730  // condition is true.
8731  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
8732  SDValue Ops[] = { Op2, Op1, CC, Cond };
8733  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
8734}
8735
8736// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
8737// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
8738// from the AND / OR.
8739static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
8740  Opc = Op.getOpcode();
8741  if (Opc != ISD::OR && Opc != ISD::AND)
8742    return false;
8743  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8744          Op.getOperand(0).hasOneUse() &&
8745          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
8746          Op.getOperand(1).hasOneUse());
8747}
8748
8749// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
8750// 1 and that the SETCC node has a single use.
8751static bool isXor1OfSetCC(SDValue Op) {
8752  if (Op.getOpcode() != ISD::XOR)
8753    return false;
8754  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8755  if (N1C && N1C->getAPIntValue() == 1) {
8756    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8757      Op.getOperand(0).hasOneUse();
8758  }
8759  return false;
8760}
8761
8762SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
8763  bool addTest = true;
8764  SDValue Chain = Op.getOperand(0);
8765  SDValue Cond  = Op.getOperand(1);
8766  SDValue Dest  = Op.getOperand(2);
8767  DebugLoc dl = Op.getDebugLoc();
8768  SDValue CC;
8769
8770  if (Cond.getOpcode() == ISD::SETCC) {
8771    SDValue NewCond = LowerSETCC(Cond, DAG);
8772    if (NewCond.getNode())
8773      Cond = NewCond;
8774  }
8775#if 0
8776  // FIXME: LowerXALUO doesn't handle these!!
8777  else if (Cond.getOpcode() == X86ISD::ADD  ||
8778           Cond.getOpcode() == X86ISD::SUB  ||
8779           Cond.getOpcode() == X86ISD::SMUL ||
8780           Cond.getOpcode() == X86ISD::UMUL)
8781    Cond = LowerXALUO(Cond, DAG);
8782#endif
8783
8784  // Look pass (and (setcc_carry (cmp ...)), 1).
8785  if (Cond.getOpcode() == ISD::AND &&
8786      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8787    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8788    if (C && C->getAPIntValue() == 1)
8789      Cond = Cond.getOperand(0);
8790  }
8791
8792  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8793  // setting operand in place of the X86ISD::SETCC.
8794  if (Cond.getOpcode() == X86ISD::SETCC ||
8795      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
8796    CC = Cond.getOperand(0);
8797
8798    SDValue Cmp = Cond.getOperand(1);
8799    unsigned Opc = Cmp.getOpcode();
8800    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
8801    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
8802      Cond = Cmp;
8803      addTest = false;
8804    } else {
8805      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
8806      default: break;
8807      case X86::COND_O:
8808      case X86::COND_B:
8809        // These can only come from an arithmetic instruction with overflow,
8810        // e.g. SADDO, UADDO.
8811        Cond = Cond.getNode()->getOperand(1);
8812        addTest = false;
8813        break;
8814      }
8815    }
8816  } else {
8817    unsigned CondOpc;
8818    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
8819      SDValue Cmp = Cond.getOperand(0).getOperand(1);
8820      if (CondOpc == ISD::OR) {
8821        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
8822        // two branches instead of an explicit OR instruction with a
8823        // separate test.
8824        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8825            isX86LogicalCmp(Cmp)) {
8826          CC = Cond.getOperand(0).getOperand(0);
8827          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8828                              Chain, Dest, CC, Cmp);
8829          CC = Cond.getOperand(1).getOperand(0);
8830          Cond = Cmp;
8831          addTest = false;
8832        }
8833      } else { // ISD::AND
8834        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
8835        // two branches instead of an explicit AND instruction with a
8836        // separate test. However, we only do this if this block doesn't
8837        // have a fall-through edge, because this requires an explicit
8838        // jmp when the condition is false.
8839        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8840            isX86LogicalCmp(Cmp) &&
8841            Op.getNode()->hasOneUse()) {
8842          X86::CondCode CCode =
8843            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8844          CCode = X86::GetOppositeBranchCondition(CCode);
8845          CC = DAG.getConstant(CCode, MVT::i8);
8846          SDNode *User = *Op.getNode()->use_begin();
8847          // Look for an unconditional branch following this conditional branch.
8848          // We need this because we need to reverse the successors in order
8849          // to implement FCMP_OEQ.
8850          if (User->getOpcode() == ISD::BR) {
8851            SDValue FalseBB = User->getOperand(1);
8852            SDNode *NewBR =
8853              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8854            assert(NewBR == User);
8855            (void)NewBR;
8856            Dest = FalseBB;
8857
8858            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8859                                Chain, Dest, CC, Cmp);
8860            X86::CondCode CCode =
8861              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
8862            CCode = X86::GetOppositeBranchCondition(CCode);
8863            CC = DAG.getConstant(CCode, MVT::i8);
8864            Cond = Cmp;
8865            addTest = false;
8866          }
8867        }
8868      }
8869    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
8870      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
8871      // It should be transformed during dag combiner except when the condition
8872      // is set by a arithmetics with overflow node.
8873      X86::CondCode CCode =
8874        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8875      CCode = X86::GetOppositeBranchCondition(CCode);
8876      CC = DAG.getConstant(CCode, MVT::i8);
8877      Cond = Cond.getOperand(0).getOperand(1);
8878      addTest = false;
8879    }
8880  }
8881
8882  if (addTest) {
8883    // Look pass the truncate.
8884    if (Cond.getOpcode() == ISD::TRUNCATE)
8885      Cond = Cond.getOperand(0);
8886
8887    // We know the result of AND is compared against zero. Try to match
8888    // it to BT.
8889    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8890      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
8891      if (NewSetCC.getNode()) {
8892        CC = NewSetCC.getOperand(0);
8893        Cond = NewSetCC.getOperand(1);
8894        addTest = false;
8895      }
8896    }
8897  }
8898
8899  if (addTest) {
8900    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8901    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8902  }
8903  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8904                     Chain, Dest, CC, Cond);
8905}
8906
8907
8908// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
8909// Calls to _alloca is needed to probe the stack when allocating more than 4k
8910// bytes in one go. Touching the stack at 4K increments is necessary to ensure
8911// that the guard pages used by the OS virtual memory manager are allocated in
8912// correct sequence.
8913SDValue
8914X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
8915                                           SelectionDAG &DAG) const {
8916  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
8917          EnableSegmentedStacks) &&
8918         "This should be used only on Windows targets or when segmented stacks "
8919         "are being used");
8920  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
8921  DebugLoc dl = Op.getDebugLoc();
8922
8923  // Get the inputs.
8924  SDValue Chain = Op.getOperand(0);
8925  SDValue Size  = Op.getOperand(1);
8926  // FIXME: Ensure alignment here
8927
8928  bool Is64Bit = Subtarget->is64Bit();
8929  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
8930
8931  if (EnableSegmentedStacks) {
8932    MachineFunction &MF = DAG.getMachineFunction();
8933    MachineRegisterInfo &MRI = MF.getRegInfo();
8934
8935    if (Is64Bit) {
8936      // The 64 bit implementation of segmented stacks needs to clobber both r10
8937      // r11. This makes it impossible to use it along with nested parameters.
8938      const Function *F = MF.getFunction();
8939
8940      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
8941           I != E; I++)
8942        if (I->hasNestAttr())
8943          report_fatal_error("Cannot use segmented stacks with functions that "
8944                             "have nested arguments.");
8945    }
8946
8947    const TargetRegisterClass *AddrRegClass =
8948      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
8949    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
8950    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
8951    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
8952                                DAG.getRegister(Vreg, SPTy));
8953    SDValue Ops1[2] = { Value, Chain };
8954    return DAG.getMergeValues(Ops1, 2, dl);
8955  } else {
8956    SDValue Flag;
8957    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
8958
8959    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
8960    Flag = Chain.getValue(1);
8961    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8962
8963    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
8964    Flag = Chain.getValue(1);
8965
8966    Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
8967
8968    SDValue Ops1[2] = { Chain.getValue(0), Chain };
8969    return DAG.getMergeValues(Ops1, 2, dl);
8970  }
8971}
8972
8973SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
8974  MachineFunction &MF = DAG.getMachineFunction();
8975  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
8976
8977  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
8978  DebugLoc DL = Op.getDebugLoc();
8979
8980  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
8981    // vastart just stores the address of the VarArgsFrameIndex slot into the
8982    // memory location argument.
8983    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
8984                                   getPointerTy());
8985    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
8986                        MachinePointerInfo(SV), false, false, 0);
8987  }
8988
8989  // __va_list_tag:
8990  //   gp_offset         (0 - 6 * 8)
8991  //   fp_offset         (48 - 48 + 8 * 16)
8992  //   overflow_arg_area (point to parameters coming in memory).
8993  //   reg_save_area
8994  SmallVector<SDValue, 8> MemOps;
8995  SDValue FIN = Op.getOperand(1);
8996  // Store gp_offset
8997  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
8998                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
8999                                               MVT::i32),
9000                               FIN, MachinePointerInfo(SV), false, false, 0);
9001  MemOps.push_back(Store);
9002
9003  // Store fp_offset
9004  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9005                    FIN, DAG.getIntPtrConstant(4));
9006  Store = DAG.getStore(Op.getOperand(0), DL,
9007                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
9008                                       MVT::i32),
9009                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
9010  MemOps.push_back(Store);
9011
9012  // Store ptr to overflow_arg_area
9013  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9014                    FIN, DAG.getIntPtrConstant(4));
9015  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9016                                    getPointerTy());
9017  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
9018                       MachinePointerInfo(SV, 8),
9019                       false, false, 0);
9020  MemOps.push_back(Store);
9021
9022  // Store ptr to reg_save_area.
9023  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9024                    FIN, DAG.getIntPtrConstant(8));
9025  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
9026                                    getPointerTy());
9027  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
9028                       MachinePointerInfo(SV, 16), false, false, 0);
9029  MemOps.push_back(Store);
9030  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
9031                     &MemOps[0], MemOps.size());
9032}
9033
9034SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
9035  assert(Subtarget->is64Bit() &&
9036         "LowerVAARG only handles 64-bit va_arg!");
9037  assert((Subtarget->isTargetLinux() ||
9038          Subtarget->isTargetDarwin()) &&
9039          "Unhandled target in LowerVAARG");
9040  assert(Op.getNode()->getNumOperands() == 4);
9041  SDValue Chain = Op.getOperand(0);
9042  SDValue SrcPtr = Op.getOperand(1);
9043  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9044  unsigned Align = Op.getConstantOperandVal(3);
9045  DebugLoc dl = Op.getDebugLoc();
9046
9047  EVT ArgVT = Op.getNode()->getValueType(0);
9048  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9049  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
9050  uint8_t ArgMode;
9051
9052  // Decide which area this value should be read from.
9053  // TODO: Implement the AMD64 ABI in its entirety. This simple
9054  // selection mechanism works only for the basic types.
9055  if (ArgVT == MVT::f80) {
9056    llvm_unreachable("va_arg for f80 not yet implemented");
9057  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
9058    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
9059  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
9060    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
9061  } else {
9062    llvm_unreachable("Unhandled argument type in LowerVAARG");
9063  }
9064
9065  if (ArgMode == 2) {
9066    // Sanity Check: Make sure using fp_offset makes sense.
9067    assert(!UseSoftFloat &&
9068           !(DAG.getMachineFunction()
9069                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
9070           Subtarget->hasXMM());
9071  }
9072
9073  // Insert VAARG_64 node into the DAG
9074  // VAARG_64 returns two values: Variable Argument Address, Chain
9075  SmallVector<SDValue, 11> InstOps;
9076  InstOps.push_back(Chain);
9077  InstOps.push_back(SrcPtr);
9078  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
9079  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
9080  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
9081  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
9082  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
9083                                          VTs, &InstOps[0], InstOps.size(),
9084                                          MVT::i64,
9085                                          MachinePointerInfo(SV),
9086                                          /*Align=*/0,
9087                                          /*Volatile=*/false,
9088                                          /*ReadMem=*/true,
9089                                          /*WriteMem=*/true);
9090  Chain = VAARG.getValue(1);
9091
9092  // Load the next argument and return it
9093  return DAG.getLoad(ArgVT, dl,
9094                     Chain,
9095                     VAARG,
9096                     MachinePointerInfo(),
9097                     false, false, 0);
9098}
9099
9100SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
9101  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
9102  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
9103  SDValue Chain = Op.getOperand(0);
9104  SDValue DstPtr = Op.getOperand(1);
9105  SDValue SrcPtr = Op.getOperand(2);
9106  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
9107  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9108  DebugLoc DL = Op.getDebugLoc();
9109
9110  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
9111                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
9112                       false,
9113                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
9114}
9115
9116SDValue
9117X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
9118  DebugLoc dl = Op.getDebugLoc();
9119  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9120  switch (IntNo) {
9121  default: return SDValue();    // Don't custom lower most intrinsics.
9122  // Comparison intrinsics.
9123  case Intrinsic::x86_sse_comieq_ss:
9124  case Intrinsic::x86_sse_comilt_ss:
9125  case Intrinsic::x86_sse_comile_ss:
9126  case Intrinsic::x86_sse_comigt_ss:
9127  case Intrinsic::x86_sse_comige_ss:
9128  case Intrinsic::x86_sse_comineq_ss:
9129  case Intrinsic::x86_sse_ucomieq_ss:
9130  case Intrinsic::x86_sse_ucomilt_ss:
9131  case Intrinsic::x86_sse_ucomile_ss:
9132  case Intrinsic::x86_sse_ucomigt_ss:
9133  case Intrinsic::x86_sse_ucomige_ss:
9134  case Intrinsic::x86_sse_ucomineq_ss:
9135  case Intrinsic::x86_sse2_comieq_sd:
9136  case Intrinsic::x86_sse2_comilt_sd:
9137  case Intrinsic::x86_sse2_comile_sd:
9138  case Intrinsic::x86_sse2_comigt_sd:
9139  case Intrinsic::x86_sse2_comige_sd:
9140  case Intrinsic::x86_sse2_comineq_sd:
9141  case Intrinsic::x86_sse2_ucomieq_sd:
9142  case Intrinsic::x86_sse2_ucomilt_sd:
9143  case Intrinsic::x86_sse2_ucomile_sd:
9144  case Intrinsic::x86_sse2_ucomigt_sd:
9145  case Intrinsic::x86_sse2_ucomige_sd:
9146  case Intrinsic::x86_sse2_ucomineq_sd: {
9147    unsigned Opc = 0;
9148    ISD::CondCode CC = ISD::SETCC_INVALID;
9149    switch (IntNo) {
9150    default: break;
9151    case Intrinsic::x86_sse_comieq_ss:
9152    case Intrinsic::x86_sse2_comieq_sd:
9153      Opc = X86ISD::COMI;
9154      CC = ISD::SETEQ;
9155      break;
9156    case Intrinsic::x86_sse_comilt_ss:
9157    case Intrinsic::x86_sse2_comilt_sd:
9158      Opc = X86ISD::COMI;
9159      CC = ISD::SETLT;
9160      break;
9161    case Intrinsic::x86_sse_comile_ss:
9162    case Intrinsic::x86_sse2_comile_sd:
9163      Opc = X86ISD::COMI;
9164      CC = ISD::SETLE;
9165      break;
9166    case Intrinsic::x86_sse_comigt_ss:
9167    case Intrinsic::x86_sse2_comigt_sd:
9168      Opc = X86ISD::COMI;
9169      CC = ISD::SETGT;
9170      break;
9171    case Intrinsic::x86_sse_comige_ss:
9172    case Intrinsic::x86_sse2_comige_sd:
9173      Opc = X86ISD::COMI;
9174      CC = ISD::SETGE;
9175      break;
9176    case Intrinsic::x86_sse_comineq_ss:
9177    case Intrinsic::x86_sse2_comineq_sd:
9178      Opc = X86ISD::COMI;
9179      CC = ISD::SETNE;
9180      break;
9181    case Intrinsic::x86_sse_ucomieq_ss:
9182    case Intrinsic::x86_sse2_ucomieq_sd:
9183      Opc = X86ISD::UCOMI;
9184      CC = ISD::SETEQ;
9185      break;
9186    case Intrinsic::x86_sse_ucomilt_ss:
9187    case Intrinsic::x86_sse2_ucomilt_sd:
9188      Opc = X86ISD::UCOMI;
9189      CC = ISD::SETLT;
9190      break;
9191    case Intrinsic::x86_sse_ucomile_ss:
9192    case Intrinsic::x86_sse2_ucomile_sd:
9193      Opc = X86ISD::UCOMI;
9194      CC = ISD::SETLE;
9195      break;
9196    case Intrinsic::x86_sse_ucomigt_ss:
9197    case Intrinsic::x86_sse2_ucomigt_sd:
9198      Opc = X86ISD::UCOMI;
9199      CC = ISD::SETGT;
9200      break;
9201    case Intrinsic::x86_sse_ucomige_ss:
9202    case Intrinsic::x86_sse2_ucomige_sd:
9203      Opc = X86ISD::UCOMI;
9204      CC = ISD::SETGE;
9205      break;
9206    case Intrinsic::x86_sse_ucomineq_ss:
9207    case Intrinsic::x86_sse2_ucomineq_sd:
9208      Opc = X86ISD::UCOMI;
9209      CC = ISD::SETNE;
9210      break;
9211    }
9212
9213    SDValue LHS = Op.getOperand(1);
9214    SDValue RHS = Op.getOperand(2);
9215    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
9216    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
9217    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
9218    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9219                                DAG.getConstant(X86CC, MVT::i8), Cond);
9220    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9221  }
9222  // ptest and testp intrinsics. The intrinsic these come from are designed to
9223  // return an integer value, not just an instruction so lower it to the ptest
9224  // or testp pattern and a setcc for the result.
9225  case Intrinsic::x86_sse41_ptestz:
9226  case Intrinsic::x86_sse41_ptestc:
9227  case Intrinsic::x86_sse41_ptestnzc:
9228  case Intrinsic::x86_avx_ptestz_256:
9229  case Intrinsic::x86_avx_ptestc_256:
9230  case Intrinsic::x86_avx_ptestnzc_256:
9231  case Intrinsic::x86_avx_vtestz_ps:
9232  case Intrinsic::x86_avx_vtestc_ps:
9233  case Intrinsic::x86_avx_vtestnzc_ps:
9234  case Intrinsic::x86_avx_vtestz_pd:
9235  case Intrinsic::x86_avx_vtestc_pd:
9236  case Intrinsic::x86_avx_vtestnzc_pd:
9237  case Intrinsic::x86_avx_vtestz_ps_256:
9238  case Intrinsic::x86_avx_vtestc_ps_256:
9239  case Intrinsic::x86_avx_vtestnzc_ps_256:
9240  case Intrinsic::x86_avx_vtestz_pd_256:
9241  case Intrinsic::x86_avx_vtestc_pd_256:
9242  case Intrinsic::x86_avx_vtestnzc_pd_256: {
9243    bool IsTestPacked = false;
9244    unsigned X86CC = 0;
9245    switch (IntNo) {
9246    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
9247    case Intrinsic::x86_avx_vtestz_ps:
9248    case Intrinsic::x86_avx_vtestz_pd:
9249    case Intrinsic::x86_avx_vtestz_ps_256:
9250    case Intrinsic::x86_avx_vtestz_pd_256:
9251      IsTestPacked = true; // Fallthrough
9252    case Intrinsic::x86_sse41_ptestz:
9253    case Intrinsic::x86_avx_ptestz_256:
9254      // ZF = 1
9255      X86CC = X86::COND_E;
9256      break;
9257    case Intrinsic::x86_avx_vtestc_ps:
9258    case Intrinsic::x86_avx_vtestc_pd:
9259    case Intrinsic::x86_avx_vtestc_ps_256:
9260    case Intrinsic::x86_avx_vtestc_pd_256:
9261      IsTestPacked = true; // Fallthrough
9262    case Intrinsic::x86_sse41_ptestc:
9263    case Intrinsic::x86_avx_ptestc_256:
9264      // CF = 1
9265      X86CC = X86::COND_B;
9266      break;
9267    case Intrinsic::x86_avx_vtestnzc_ps:
9268    case Intrinsic::x86_avx_vtestnzc_pd:
9269    case Intrinsic::x86_avx_vtestnzc_ps_256:
9270    case Intrinsic::x86_avx_vtestnzc_pd_256:
9271      IsTestPacked = true; // Fallthrough
9272    case Intrinsic::x86_sse41_ptestnzc:
9273    case Intrinsic::x86_avx_ptestnzc_256:
9274      // ZF and CF = 0
9275      X86CC = X86::COND_A;
9276      break;
9277    }
9278
9279    SDValue LHS = Op.getOperand(1);
9280    SDValue RHS = Op.getOperand(2);
9281    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
9282    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
9283    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
9284    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
9285    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9286  }
9287
9288  // Fix vector shift instructions where the last operand is a non-immediate
9289  // i32 value.
9290  case Intrinsic::x86_sse2_pslli_w:
9291  case Intrinsic::x86_sse2_pslli_d:
9292  case Intrinsic::x86_sse2_pslli_q:
9293  case Intrinsic::x86_sse2_psrli_w:
9294  case Intrinsic::x86_sse2_psrli_d:
9295  case Intrinsic::x86_sse2_psrli_q:
9296  case Intrinsic::x86_sse2_psrai_w:
9297  case Intrinsic::x86_sse2_psrai_d:
9298  case Intrinsic::x86_mmx_pslli_w:
9299  case Intrinsic::x86_mmx_pslli_d:
9300  case Intrinsic::x86_mmx_pslli_q:
9301  case Intrinsic::x86_mmx_psrli_w:
9302  case Intrinsic::x86_mmx_psrli_d:
9303  case Intrinsic::x86_mmx_psrli_q:
9304  case Intrinsic::x86_mmx_psrai_w:
9305  case Intrinsic::x86_mmx_psrai_d: {
9306    SDValue ShAmt = Op.getOperand(2);
9307    if (isa<ConstantSDNode>(ShAmt))
9308      return SDValue();
9309
9310    unsigned NewIntNo = 0;
9311    EVT ShAmtVT = MVT::v4i32;
9312    switch (IntNo) {
9313    case Intrinsic::x86_sse2_pslli_w:
9314      NewIntNo = Intrinsic::x86_sse2_psll_w;
9315      break;
9316    case Intrinsic::x86_sse2_pslli_d:
9317      NewIntNo = Intrinsic::x86_sse2_psll_d;
9318      break;
9319    case Intrinsic::x86_sse2_pslli_q:
9320      NewIntNo = Intrinsic::x86_sse2_psll_q;
9321      break;
9322    case Intrinsic::x86_sse2_psrli_w:
9323      NewIntNo = Intrinsic::x86_sse2_psrl_w;
9324      break;
9325    case Intrinsic::x86_sse2_psrli_d:
9326      NewIntNo = Intrinsic::x86_sse2_psrl_d;
9327      break;
9328    case Intrinsic::x86_sse2_psrli_q:
9329      NewIntNo = Intrinsic::x86_sse2_psrl_q;
9330      break;
9331    case Intrinsic::x86_sse2_psrai_w:
9332      NewIntNo = Intrinsic::x86_sse2_psra_w;
9333      break;
9334    case Intrinsic::x86_sse2_psrai_d:
9335      NewIntNo = Intrinsic::x86_sse2_psra_d;
9336      break;
9337    default: {
9338      ShAmtVT = MVT::v2i32;
9339      switch (IntNo) {
9340      case Intrinsic::x86_mmx_pslli_w:
9341        NewIntNo = Intrinsic::x86_mmx_psll_w;
9342        break;
9343      case Intrinsic::x86_mmx_pslli_d:
9344        NewIntNo = Intrinsic::x86_mmx_psll_d;
9345        break;
9346      case Intrinsic::x86_mmx_pslli_q:
9347        NewIntNo = Intrinsic::x86_mmx_psll_q;
9348        break;
9349      case Intrinsic::x86_mmx_psrli_w:
9350        NewIntNo = Intrinsic::x86_mmx_psrl_w;
9351        break;
9352      case Intrinsic::x86_mmx_psrli_d:
9353        NewIntNo = Intrinsic::x86_mmx_psrl_d;
9354        break;
9355      case Intrinsic::x86_mmx_psrli_q:
9356        NewIntNo = Intrinsic::x86_mmx_psrl_q;
9357        break;
9358      case Intrinsic::x86_mmx_psrai_w:
9359        NewIntNo = Intrinsic::x86_mmx_psra_w;
9360        break;
9361      case Intrinsic::x86_mmx_psrai_d:
9362        NewIntNo = Intrinsic::x86_mmx_psra_d;
9363        break;
9364      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9365      }
9366      break;
9367    }
9368    }
9369
9370    // The vector shift intrinsics with scalars uses 32b shift amounts but
9371    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
9372    // to be zero.
9373    SDValue ShOps[4];
9374    ShOps[0] = ShAmt;
9375    ShOps[1] = DAG.getConstant(0, MVT::i32);
9376    if (ShAmtVT == MVT::v4i32) {
9377      ShOps[2] = DAG.getUNDEF(MVT::i32);
9378      ShOps[3] = DAG.getUNDEF(MVT::i32);
9379      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
9380    } else {
9381      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
9382// FIXME this must be lowered to get rid of the invalid type.
9383    }
9384
9385    EVT VT = Op.getValueType();
9386    ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9387    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9388                       DAG.getConstant(NewIntNo, MVT::i32),
9389                       Op.getOperand(1), ShAmt);
9390  }
9391  }
9392}
9393
9394SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
9395                                           SelectionDAG &DAG) const {
9396  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9397  MFI->setReturnAddressIsTaken(true);
9398
9399  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9400  DebugLoc dl = Op.getDebugLoc();
9401
9402  if (Depth > 0) {
9403    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
9404    SDValue Offset =
9405      DAG.getConstant(TD->getPointerSize(),
9406                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
9407    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9408                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
9409                                   FrameAddr, Offset),
9410                       MachinePointerInfo(), false, false, 0);
9411  }
9412
9413  // Just load the return address.
9414  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
9415  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9416                     RetAddrFI, MachinePointerInfo(), false, false, 0);
9417}
9418
9419SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
9420  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9421  MFI->setFrameAddressIsTaken(true);
9422
9423  EVT VT = Op.getValueType();
9424  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
9425  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9426  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
9427  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
9428  while (Depth--)
9429    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
9430                            MachinePointerInfo(),
9431                            false, false, 0);
9432  return FrameAddr;
9433}
9434
9435SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
9436                                                     SelectionDAG &DAG) const {
9437  return DAG.getIntPtrConstant(2*TD->getPointerSize());
9438}
9439
9440SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
9441  MachineFunction &MF = DAG.getMachineFunction();
9442  SDValue Chain     = Op.getOperand(0);
9443  SDValue Offset    = Op.getOperand(1);
9444  SDValue Handler   = Op.getOperand(2);
9445  DebugLoc dl       = Op.getDebugLoc();
9446
9447  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
9448                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
9449                                     getPointerTy());
9450  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
9451
9452  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
9453                                  DAG.getIntPtrConstant(TD->getPointerSize()));
9454  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
9455  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
9456                       false, false, 0);
9457  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
9458  MF.getRegInfo().addLiveOut(StoreAddrReg);
9459
9460  return DAG.getNode(X86ISD::EH_RETURN, dl,
9461                     MVT::Other,
9462                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
9463}
9464
9465SDValue X86TargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
9466                                                  SelectionDAG &DAG) const {
9467  return Op.getOperand(0);
9468}
9469
9470SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
9471                                                SelectionDAG &DAG) const {
9472  SDValue Root = Op.getOperand(0);
9473  SDValue Trmp = Op.getOperand(1); // trampoline
9474  SDValue FPtr = Op.getOperand(2); // nested function
9475  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
9476  DebugLoc dl  = Op.getDebugLoc();
9477
9478  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9479
9480  if (Subtarget->is64Bit()) {
9481    SDValue OutChains[6];
9482
9483    // Large code-model.
9484    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
9485    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
9486
9487    const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
9488    const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
9489
9490    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
9491
9492    // Load the pointer to the nested function into R11.
9493    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
9494    SDValue Addr = Trmp;
9495    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9496                                Addr, MachinePointerInfo(TrmpAddr),
9497                                false, false, 0);
9498
9499    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9500                       DAG.getConstant(2, MVT::i64));
9501    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
9502                                MachinePointerInfo(TrmpAddr, 2),
9503                                false, false, 2);
9504
9505    // Load the 'nest' parameter value into R10.
9506    // R10 is specified in X86CallingConv.td
9507    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
9508    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9509                       DAG.getConstant(10, MVT::i64));
9510    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9511                                Addr, MachinePointerInfo(TrmpAddr, 10),
9512                                false, false, 0);
9513
9514    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9515                       DAG.getConstant(12, MVT::i64));
9516    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
9517                                MachinePointerInfo(TrmpAddr, 12),
9518                                false, false, 2);
9519
9520    // Jump to the nested function.
9521    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
9522    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9523                       DAG.getConstant(20, MVT::i64));
9524    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9525                                Addr, MachinePointerInfo(TrmpAddr, 20),
9526                                false, false, 0);
9527
9528    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
9529    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9530                       DAG.getConstant(22, MVT::i64));
9531    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
9532                                MachinePointerInfo(TrmpAddr, 22),
9533                                false, false, 0);
9534
9535    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
9536  } else {
9537    const Function *Func =
9538      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
9539    CallingConv::ID CC = Func->getCallingConv();
9540    unsigned NestReg;
9541
9542    switch (CC) {
9543    default:
9544      llvm_unreachable("Unsupported calling convention");
9545    case CallingConv::C:
9546    case CallingConv::X86_StdCall: {
9547      // Pass 'nest' parameter in ECX.
9548      // Must be kept in sync with X86CallingConv.td
9549      NestReg = X86::ECX;
9550
9551      // Check that ECX wasn't needed by an 'inreg' parameter.
9552      FunctionType *FTy = Func->getFunctionType();
9553      const AttrListPtr &Attrs = Func->getAttributes();
9554
9555      if (!Attrs.isEmpty() && !Func->isVarArg()) {
9556        unsigned InRegCount = 0;
9557        unsigned Idx = 1;
9558
9559        for (FunctionType::param_iterator I = FTy->param_begin(),
9560             E = FTy->param_end(); I != E; ++I, ++Idx)
9561          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
9562            // FIXME: should only count parameters that are lowered to integers.
9563            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
9564
9565        if (InRegCount > 2) {
9566          report_fatal_error("Nest register in use - reduce number of inreg"
9567                             " parameters!");
9568        }
9569      }
9570      break;
9571    }
9572    case CallingConv::X86_FastCall:
9573    case CallingConv::X86_ThisCall:
9574    case CallingConv::Fast:
9575      // Pass 'nest' parameter in EAX.
9576      // Must be kept in sync with X86CallingConv.td
9577      NestReg = X86::EAX;
9578      break;
9579    }
9580
9581    SDValue OutChains[4];
9582    SDValue Addr, Disp;
9583
9584    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9585                       DAG.getConstant(10, MVT::i32));
9586    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
9587
9588    // This is storing the opcode for MOV32ri.
9589    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
9590    const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
9591    OutChains[0] = DAG.getStore(Root, dl,
9592                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
9593                                Trmp, MachinePointerInfo(TrmpAddr),
9594                                false, false, 0);
9595
9596    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9597                       DAG.getConstant(1, MVT::i32));
9598    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
9599                                MachinePointerInfo(TrmpAddr, 1),
9600                                false, false, 1);
9601
9602    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
9603    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9604                       DAG.getConstant(5, MVT::i32));
9605    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
9606                                MachinePointerInfo(TrmpAddr, 5),
9607                                false, false, 1);
9608
9609    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9610                       DAG.getConstant(6, MVT::i32));
9611    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
9612                                MachinePointerInfo(TrmpAddr, 6),
9613                                false, false, 1);
9614
9615    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
9616  }
9617}
9618
9619SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
9620                                            SelectionDAG &DAG) const {
9621  /*
9622   The rounding mode is in bits 11:10 of FPSR, and has the following
9623   settings:
9624     00 Round to nearest
9625     01 Round to -inf
9626     10 Round to +inf
9627     11 Round to 0
9628
9629  FLT_ROUNDS, on the other hand, expects the following:
9630    -1 Undefined
9631     0 Round to 0
9632     1 Round to nearest
9633     2 Round to +inf
9634     3 Round to -inf
9635
9636  To perform the conversion, we do:
9637    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
9638  */
9639
9640  MachineFunction &MF = DAG.getMachineFunction();
9641  const TargetMachine &TM = MF.getTarget();
9642  const TargetFrameLowering &TFI = *TM.getFrameLowering();
9643  unsigned StackAlignment = TFI.getStackAlignment();
9644  EVT VT = Op.getValueType();
9645  DebugLoc DL = Op.getDebugLoc();
9646
9647  // Save FP Control Word to stack slot
9648  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
9649  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
9650
9651
9652  MachineMemOperand *MMO =
9653   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
9654                           MachineMemOperand::MOStore, 2, 2);
9655
9656  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
9657  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
9658                                          DAG.getVTList(MVT::Other),
9659                                          Ops, 2, MVT::i16, MMO);
9660
9661  // Load FP Control Word from stack slot
9662  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
9663                            MachinePointerInfo(), false, false, 0);
9664
9665  // Transform as necessary
9666  SDValue CWD1 =
9667    DAG.getNode(ISD::SRL, DL, MVT::i16,
9668                DAG.getNode(ISD::AND, DL, MVT::i16,
9669                            CWD, DAG.getConstant(0x800, MVT::i16)),
9670                DAG.getConstant(11, MVT::i8));
9671  SDValue CWD2 =
9672    DAG.getNode(ISD::SRL, DL, MVT::i16,
9673                DAG.getNode(ISD::AND, DL, MVT::i16,
9674                            CWD, DAG.getConstant(0x400, MVT::i16)),
9675                DAG.getConstant(9, MVT::i8));
9676
9677  SDValue RetVal =
9678    DAG.getNode(ISD::AND, DL, MVT::i16,
9679                DAG.getNode(ISD::ADD, DL, MVT::i16,
9680                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
9681                            DAG.getConstant(1, MVT::i16)),
9682                DAG.getConstant(3, MVT::i16));
9683
9684
9685  return DAG.getNode((VT.getSizeInBits() < 16 ?
9686                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
9687}
9688
9689SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
9690  EVT VT = Op.getValueType();
9691  EVT OpVT = VT;
9692  unsigned NumBits = VT.getSizeInBits();
9693  DebugLoc dl = Op.getDebugLoc();
9694
9695  Op = Op.getOperand(0);
9696  if (VT == MVT::i8) {
9697    // Zero extend to i32 since there is not an i8 bsr.
9698    OpVT = MVT::i32;
9699    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9700  }
9701
9702  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
9703  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9704  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
9705
9706  // If src is zero (i.e. bsr sets ZF), returns NumBits.
9707  SDValue Ops[] = {
9708    Op,
9709    DAG.getConstant(NumBits+NumBits-1, OpVT),
9710    DAG.getConstant(X86::COND_E, MVT::i8),
9711    Op.getValue(1)
9712  };
9713  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
9714
9715  // Finally xor with NumBits-1.
9716  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
9717
9718  if (VT == MVT::i8)
9719    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9720  return Op;
9721}
9722
9723SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
9724  EVT VT = Op.getValueType();
9725  EVT OpVT = VT;
9726  unsigned NumBits = VT.getSizeInBits();
9727  DebugLoc dl = Op.getDebugLoc();
9728
9729  Op = Op.getOperand(0);
9730  if (VT == MVT::i8) {
9731    OpVT = MVT::i32;
9732    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9733  }
9734
9735  // Issue a bsf (scan bits forward) which also sets EFLAGS.
9736  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9737  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
9738
9739  // If src is zero (i.e. bsf sets ZF), returns NumBits.
9740  SDValue Ops[] = {
9741    Op,
9742    DAG.getConstant(NumBits, OpVT),
9743    DAG.getConstant(X86::COND_E, MVT::i8),
9744    Op.getValue(1)
9745  };
9746  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
9747
9748  if (VT == MVT::i8)
9749    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9750  return Op;
9751}
9752
9753// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
9754// ones, and then concatenate the result back.
9755static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
9756  EVT VT = Op.getValueType();
9757
9758  assert(VT.getSizeInBits() == 256 && VT.isInteger() &&
9759         "Unsupported value type for operation");
9760
9761  int NumElems = VT.getVectorNumElements();
9762  DebugLoc dl = Op.getDebugLoc();
9763  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
9764  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
9765
9766  // Extract the LHS vectors
9767  SDValue LHS = Op.getOperand(0);
9768  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
9769  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
9770
9771  // Extract the RHS vectors
9772  SDValue RHS = Op.getOperand(1);
9773  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
9774  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
9775
9776  MVT EltVT = VT.getVectorElementType().getSimpleVT();
9777  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
9778
9779  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
9780                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
9781                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
9782}
9783
9784SDValue X86TargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
9785  assert(Op.getValueType().getSizeInBits() == 256 &&
9786         Op.getValueType().isInteger() &&
9787         "Only handle AVX 256-bit vector integer operation");
9788  return Lower256IntArith(Op, DAG);
9789}
9790
9791SDValue X86TargetLowering::LowerSUB(SDValue Op, SelectionDAG &DAG) const {
9792  assert(Op.getValueType().getSizeInBits() == 256 &&
9793         Op.getValueType().isInteger() &&
9794         "Only handle AVX 256-bit vector integer operation");
9795  return Lower256IntArith(Op, DAG);
9796}
9797
9798SDValue X86TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
9799  EVT VT = Op.getValueType();
9800
9801  // Decompose 256-bit ops into smaller 128-bit ops.
9802  if (VT.getSizeInBits() == 256)
9803    return Lower256IntArith(Op, DAG);
9804
9805  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
9806  DebugLoc dl = Op.getDebugLoc();
9807
9808  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
9809  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
9810  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
9811  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
9812  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
9813  //
9814  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
9815  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
9816  //  return AloBlo + AloBhi + AhiBlo;
9817
9818  SDValue A = Op.getOperand(0);
9819  SDValue B = Op.getOperand(1);
9820
9821  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9822                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9823                       A, DAG.getConstant(32, MVT::i32));
9824  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9825                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9826                       B, DAG.getConstant(32, MVT::i32));
9827  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9828                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9829                       A, B);
9830  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9831                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9832                       A, Bhi);
9833  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9834                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9835                       Ahi, B);
9836  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9837                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9838                       AloBhi, DAG.getConstant(32, MVT::i32));
9839  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9840                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9841                       AhiBlo, DAG.getConstant(32, MVT::i32));
9842  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
9843  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
9844  return Res;
9845}
9846
9847SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
9848
9849  EVT VT = Op.getValueType();
9850  DebugLoc dl = Op.getDebugLoc();
9851  SDValue R = Op.getOperand(0);
9852  SDValue Amt = Op.getOperand(1);
9853  LLVMContext *Context = DAG.getContext();
9854
9855  if (!Subtarget->hasXMMInt())
9856    return SDValue();
9857
9858  // Decompose 256-bit shifts into smaller 128-bit shifts.
9859  if (VT.getSizeInBits() == 256) {
9860    int NumElems = VT.getVectorNumElements();
9861    MVT EltVT = VT.getVectorElementType().getSimpleVT();
9862    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
9863
9864    // Extract the two vectors
9865    SDValue V1 = Extract128BitVector(R, DAG.getConstant(0, MVT::i32), DAG, dl);
9866    SDValue V2 = Extract128BitVector(R, DAG.getConstant(NumElems/2, MVT::i32),
9867                                     DAG, dl);
9868
9869    // Recreate the shift amount vectors
9870    SDValue Amt1, Amt2;
9871    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
9872      // Constant shift amount
9873      SmallVector<SDValue, 4> Amt1Csts;
9874      SmallVector<SDValue, 4> Amt2Csts;
9875      for (int i = 0; i < NumElems/2; ++i)
9876        Amt1Csts.push_back(Amt->getOperand(i));
9877      for (int i = NumElems/2; i < NumElems; ++i)
9878        Amt2Csts.push_back(Amt->getOperand(i));
9879
9880      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
9881                                 &Amt1Csts[0], NumElems/2);
9882      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
9883                                 &Amt2Csts[0], NumElems/2);
9884    } else {
9885      // Variable shift amount
9886      Amt1 = Extract128BitVector(Amt, DAG.getConstant(0, MVT::i32), DAG, dl);
9887      Amt2 = Extract128BitVector(Amt, DAG.getConstant(NumElems/2, MVT::i32),
9888                                 DAG, dl);
9889    }
9890
9891    // Issue new vector shifts for the smaller types
9892    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
9893    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
9894
9895    // Concatenate the result back
9896    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
9897  }
9898
9899  // Optimize shl/srl/sra with constant shift amount.
9900  if (isSplatVector(Amt.getNode())) {
9901    SDValue SclrAmt = Amt->getOperand(0);
9902    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
9903      uint64_t ShiftAmt = C->getZExtValue();
9904
9905      if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SHL)
9906       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9907                     DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9908                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9909
9910      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SHL)
9911       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9912                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
9913                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9914
9915      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SHL)
9916       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9917                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
9918                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9919
9920      if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SRL)
9921       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9922                     DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9923                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9924
9925      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRL)
9926       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9927                     DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
9928                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9929
9930      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRL)
9931       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9932                     DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
9933                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9934
9935      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRA)
9936       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9937                     DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
9938                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9939
9940      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRA)
9941       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9942                     DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
9943                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9944    }
9945  }
9946
9947  // Lower SHL with variable shift amount.
9948  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
9949    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9950                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
9951                     Op.getOperand(1), DAG.getConstant(23, MVT::i32));
9952
9953    ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
9954
9955    std::vector<Constant*> CV(4, CI);
9956    Constant *C = ConstantVector::get(CV);
9957    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
9958    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9959                                 MachinePointerInfo::getConstantPool(),
9960                                 false, false, 16);
9961
9962    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
9963    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
9964    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
9965    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
9966  }
9967  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
9968    // a = a << 5;
9969    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9970                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
9971                     Op.getOperand(1), DAG.getConstant(5, MVT::i32));
9972
9973    ConstantInt *CM1 = ConstantInt::get(*Context, APInt(8, 15));
9974    ConstantInt *CM2 = ConstantInt::get(*Context, APInt(8, 63));
9975
9976    std::vector<Constant*> CVM1(16, CM1);
9977    std::vector<Constant*> CVM2(16, CM2);
9978    Constant *C = ConstantVector::get(CVM1);
9979    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
9980    SDValue M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9981                            MachinePointerInfo::getConstantPool(),
9982                            false, false, 16);
9983
9984    // r = pblendv(r, psllw(r & (char16)15, 4), a);
9985    M = DAG.getNode(ISD::AND, dl, VT, R, M);
9986    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9987                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
9988                    DAG.getConstant(4, MVT::i32));
9989    R = DAG.getNode(ISD::VSELECT, dl, VT, Op, R, M);
9990    // a += a
9991    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
9992
9993    C = ConstantVector::get(CVM2);
9994    CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
9995    M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9996                    MachinePointerInfo::getConstantPool(),
9997                    false, false, 16);
9998
9999    // r = pblendv(r, psllw(r & (char16)63, 2), a);
10000    M = DAG.getNode(ISD::AND, dl, VT, R, M);
10001    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10002                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
10003                    DAG.getConstant(2, MVT::i32));
10004    R = DAG.getNode(ISD::VSELECT, dl, VT, Op, R, M);
10005    // a += a
10006    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10007
10008    // return pblendv(r, r+r, a);
10009    R = DAG.getNode(ISD::VSELECT, dl, VT, Op,
10010                    R, DAG.getNode(ISD::ADD, dl, VT, R, R));
10011    return R;
10012  }
10013  return SDValue();
10014}
10015
10016SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
10017  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
10018  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
10019  // looks for this combo and may remove the "setcc" instruction if the "setcc"
10020  // has only one use.
10021  SDNode *N = Op.getNode();
10022  SDValue LHS = N->getOperand(0);
10023  SDValue RHS = N->getOperand(1);
10024  unsigned BaseOp = 0;
10025  unsigned Cond = 0;
10026  DebugLoc DL = Op.getDebugLoc();
10027  switch (Op.getOpcode()) {
10028  default: llvm_unreachable("Unknown ovf instruction!");
10029  case ISD::SADDO:
10030    // A subtract of one will be selected as a INC. Note that INC doesn't
10031    // set CF, so we can't do this for UADDO.
10032    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10033      if (C->isOne()) {
10034        BaseOp = X86ISD::INC;
10035        Cond = X86::COND_O;
10036        break;
10037      }
10038    BaseOp = X86ISD::ADD;
10039    Cond = X86::COND_O;
10040    break;
10041  case ISD::UADDO:
10042    BaseOp = X86ISD::ADD;
10043    Cond = X86::COND_B;
10044    break;
10045  case ISD::SSUBO:
10046    // A subtract of one will be selected as a DEC. Note that DEC doesn't
10047    // set CF, so we can't do this for USUBO.
10048    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10049      if (C->isOne()) {
10050        BaseOp = X86ISD::DEC;
10051        Cond = X86::COND_O;
10052        break;
10053      }
10054    BaseOp = X86ISD::SUB;
10055    Cond = X86::COND_O;
10056    break;
10057  case ISD::USUBO:
10058    BaseOp = X86ISD::SUB;
10059    Cond = X86::COND_B;
10060    break;
10061  case ISD::SMULO:
10062    BaseOp = X86ISD::SMUL;
10063    Cond = X86::COND_O;
10064    break;
10065  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
10066    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
10067                                 MVT::i32);
10068    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
10069
10070    SDValue SetCC =
10071      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10072                  DAG.getConstant(X86::COND_O, MVT::i32),
10073                  SDValue(Sum.getNode(), 2));
10074
10075    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10076  }
10077  }
10078
10079  // Also sets EFLAGS.
10080  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
10081  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
10082
10083  SDValue SetCC =
10084    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
10085                DAG.getConstant(Cond, MVT::i32),
10086                SDValue(Sum.getNode(), 1));
10087
10088  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10089}
10090
10091SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const{
10092  DebugLoc dl = Op.getDebugLoc();
10093  SDNode* Node = Op.getNode();
10094  EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
10095  EVT VT = Node->getValueType(0);
10096  if (Subtarget->hasXMMInt() && VT.isVector()) {
10097    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
10098                        ExtraVT.getScalarType().getSizeInBits();
10099    SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
10100
10101    unsigned SHLIntrinsicsID = 0;
10102    unsigned SRAIntrinsicsID = 0;
10103    switch (VT.getSimpleVT().SimpleTy) {
10104      default:
10105        return SDValue();
10106      case MVT::v2i64: {
10107        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_q;
10108        SRAIntrinsicsID = 0;
10109        break;
10110      }
10111      case MVT::v4i32: {
10112        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_d;
10113        SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_d;
10114        break;
10115      }
10116      case MVT::v8i16: {
10117        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_w;
10118        SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_w;
10119        break;
10120      }
10121    }
10122
10123    SDValue Tmp1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10124                         DAG.getConstant(SHLIntrinsicsID, MVT::i32),
10125                         Node->getOperand(0), ShAmt);
10126
10127    // In case of 1 bit sext, no need to shr
10128    if (ExtraVT.getScalarType().getSizeInBits() == 1) return Tmp1;
10129
10130    if (SRAIntrinsicsID) {
10131      Tmp1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10132                         DAG.getConstant(SRAIntrinsicsID, MVT::i32),
10133                         Tmp1, ShAmt);
10134    }
10135    return Tmp1;
10136  }
10137
10138  return SDValue();
10139}
10140
10141
10142SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
10143  DebugLoc dl = Op.getDebugLoc();
10144
10145  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
10146  // There isn't any reason to disable it if the target processor supports it.
10147  if (!Subtarget->hasXMMInt() && !Subtarget->is64Bit()) {
10148    SDValue Chain = Op.getOperand(0);
10149    SDValue Zero = DAG.getConstant(0, MVT::i32);
10150    SDValue Ops[] = {
10151      DAG.getRegister(X86::ESP, MVT::i32), // Base
10152      DAG.getTargetConstant(1, MVT::i8),   // Scale
10153      DAG.getRegister(0, MVT::i32),        // Index
10154      DAG.getTargetConstant(0, MVT::i32),  // Disp
10155      DAG.getRegister(0, MVT::i32),        // Segment.
10156      Zero,
10157      Chain
10158    };
10159    SDNode *Res =
10160      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10161                          array_lengthof(Ops));
10162    return SDValue(Res, 0);
10163  }
10164
10165  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
10166  if (!isDev)
10167    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10168
10169  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10170  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
10171  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
10172  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
10173
10174  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
10175  if (!Op1 && !Op2 && !Op3 && Op4)
10176    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
10177
10178  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
10179  if (Op1 && !Op2 && !Op3 && !Op4)
10180    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
10181
10182  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
10183  //           (MFENCE)>;
10184  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10185}
10186
10187SDValue X86TargetLowering::LowerATOMIC_FENCE(SDValue Op,
10188                                             SelectionDAG &DAG) const {
10189  DebugLoc dl = Op.getDebugLoc();
10190  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
10191    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
10192  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
10193    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
10194
10195  // The only fence that needs an instruction is a sequentially-consistent
10196  // cross-thread fence.
10197  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
10198    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
10199    // no-sse2). There isn't any reason to disable it if the target processor
10200    // supports it.
10201    if (Subtarget->hasXMMInt() || Subtarget->is64Bit())
10202      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10203
10204    SDValue Chain = Op.getOperand(0);
10205    SDValue Zero = DAG.getConstant(0, MVT::i32);
10206    SDValue Ops[] = {
10207      DAG.getRegister(X86::ESP, MVT::i32), // Base
10208      DAG.getTargetConstant(1, MVT::i8),   // Scale
10209      DAG.getRegister(0, MVT::i32),        // Index
10210      DAG.getTargetConstant(0, MVT::i32),  // Disp
10211      DAG.getRegister(0, MVT::i32),        // Segment.
10212      Zero,
10213      Chain
10214    };
10215    SDNode *Res =
10216      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10217                         array_lengthof(Ops));
10218    return SDValue(Res, 0);
10219  }
10220
10221  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
10222  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10223}
10224
10225
10226SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
10227  EVT T = Op.getValueType();
10228  DebugLoc DL = Op.getDebugLoc();
10229  unsigned Reg = 0;
10230  unsigned size = 0;
10231  switch(T.getSimpleVT().SimpleTy) {
10232  default:
10233    assert(false && "Invalid value type!");
10234  case MVT::i8:  Reg = X86::AL;  size = 1; break;
10235  case MVT::i16: Reg = X86::AX;  size = 2; break;
10236  case MVT::i32: Reg = X86::EAX; size = 4; break;
10237  case MVT::i64:
10238    assert(Subtarget->is64Bit() && "Node not type legal!");
10239    Reg = X86::RAX; size = 8;
10240    break;
10241  }
10242  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
10243                                    Op.getOperand(2), SDValue());
10244  SDValue Ops[] = { cpIn.getValue(0),
10245                    Op.getOperand(1),
10246                    Op.getOperand(3),
10247                    DAG.getTargetConstant(size, MVT::i8),
10248                    cpIn.getValue(1) };
10249  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10250  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
10251  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
10252                                           Ops, 5, T, MMO);
10253  SDValue cpOut =
10254    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
10255  return cpOut;
10256}
10257
10258SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
10259                                                 SelectionDAG &DAG) const {
10260  assert(Subtarget->is64Bit() && "Result not type legalized?");
10261  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10262  SDValue TheChain = Op.getOperand(0);
10263  DebugLoc dl = Op.getDebugLoc();
10264  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10265  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
10266  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
10267                                   rax.getValue(2));
10268  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
10269                            DAG.getConstant(32, MVT::i8));
10270  SDValue Ops[] = {
10271    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
10272    rdx.getValue(1)
10273  };
10274  return DAG.getMergeValues(Ops, 2, dl);
10275}
10276
10277SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
10278                                            SelectionDAG &DAG) const {
10279  EVT SrcVT = Op.getOperand(0).getValueType();
10280  EVT DstVT = Op.getValueType();
10281  assert(Subtarget->is64Bit() && !Subtarget->hasXMMInt() &&
10282         Subtarget->hasMMX() && "Unexpected custom BITCAST");
10283  assert((DstVT == MVT::i64 ||
10284          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
10285         "Unexpected custom BITCAST");
10286  // i64 <=> MMX conversions are Legal.
10287  if (SrcVT==MVT::i64 && DstVT.isVector())
10288    return Op;
10289  if (DstVT==MVT::i64 && SrcVT.isVector())
10290    return Op;
10291  // MMX <=> MMX conversions are Legal.
10292  if (SrcVT.isVector() && DstVT.isVector())
10293    return Op;
10294  // All other conversions need to be expanded.
10295  return SDValue();
10296}
10297
10298SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
10299  SDNode *Node = Op.getNode();
10300  DebugLoc dl = Node->getDebugLoc();
10301  EVT T = Node->getValueType(0);
10302  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
10303                              DAG.getConstant(0, T), Node->getOperand(2));
10304  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
10305                       cast<AtomicSDNode>(Node)->getMemoryVT(),
10306                       Node->getOperand(0),
10307                       Node->getOperand(1), negOp,
10308                       cast<AtomicSDNode>(Node)->getSrcValue(),
10309                       cast<AtomicSDNode>(Node)->getAlignment(),
10310                       cast<AtomicSDNode>(Node)->getOrdering(),
10311                       cast<AtomicSDNode>(Node)->getSynchScope());
10312}
10313
10314static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
10315  SDNode *Node = Op.getNode();
10316  DebugLoc dl = Node->getDebugLoc();
10317  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10318
10319  // Convert seq_cst store -> xchg
10320  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
10321  // FIXME: On 32-bit, store -> fist or movq would be more efficient
10322  //        (The only way to get a 16-byte store is cmpxchg16b)
10323  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
10324  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
10325      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
10326    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
10327                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
10328                                 Node->getOperand(0),
10329                                 Node->getOperand(1), Node->getOperand(2),
10330                                 cast<AtomicSDNode>(Node)->getMemOperand(),
10331                                 cast<AtomicSDNode>(Node)->getOrdering(),
10332                                 cast<AtomicSDNode>(Node)->getSynchScope());
10333    return Swap.getValue(1);
10334  }
10335  // Other atomic stores have a simple pattern.
10336  return Op;
10337}
10338
10339static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
10340  EVT VT = Op.getNode()->getValueType(0);
10341
10342  // Let legalize expand this if it isn't a legal type yet.
10343  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
10344    return SDValue();
10345
10346  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10347
10348  unsigned Opc;
10349  bool ExtraOp = false;
10350  switch (Op.getOpcode()) {
10351  default: assert(0 && "Invalid code");
10352  case ISD::ADDC: Opc = X86ISD::ADD; break;
10353  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
10354  case ISD::SUBC: Opc = X86ISD::SUB; break;
10355  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
10356  }
10357
10358  if (!ExtraOp)
10359    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10360                       Op.getOperand(1));
10361  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10362                     Op.getOperand(1), Op.getOperand(2));
10363}
10364
10365/// LowerOperation - Provide custom lowering hooks for some operations.
10366///
10367SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10368  switch (Op.getOpcode()) {
10369  default: llvm_unreachable("Should not custom lower this!");
10370  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
10371  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
10372  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op,DAG);
10373  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
10374  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
10375  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
10376  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10377  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
10378  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10379  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
10380  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10381  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
10382  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
10383  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10384  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10385  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10386  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10387  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
10388  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10389  case ISD::SHL_PARTS:
10390  case ISD::SRA_PARTS:
10391  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
10392  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
10393  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
10394  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
10395  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
10396  case ISD::FABS:               return LowerFABS(Op, DAG);
10397  case ISD::FNEG:               return LowerFNEG(Op, DAG);
10398  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
10399  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
10400  case ISD::SETCC:              return LowerSETCC(Op, DAG);
10401  case ISD::SELECT:             return LowerSELECT(Op, DAG);
10402  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
10403  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10404  case ISD::VASTART:            return LowerVASTART(Op, DAG);
10405  case ISD::VAARG:              return LowerVAARG(Op, DAG);
10406  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10407  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10408  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10409  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10410  case ISD::FRAME_TO_ARGS_OFFSET:
10411                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
10412  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10413  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
10414  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10415  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10416  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10417  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
10418  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
10419  case ISD::MUL:                return LowerMUL(Op, DAG);
10420  case ISD::SRA:
10421  case ISD::SRL:
10422  case ISD::SHL:                return LowerShift(Op, DAG);
10423  case ISD::SADDO:
10424  case ISD::UADDO:
10425  case ISD::SSUBO:
10426  case ISD::USUBO:
10427  case ISD::SMULO:
10428  case ISD::UMULO:              return LowerXALUO(Op, DAG);
10429  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
10430  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10431  case ISD::ADDC:
10432  case ISD::ADDE:
10433  case ISD::SUBC:
10434  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
10435  case ISD::ADD:                return LowerADD(Op, DAG);
10436  case ISD::SUB:                return LowerSUB(Op, DAG);
10437  }
10438}
10439
10440static void ReplaceATOMIC_LOAD(SDNode *Node,
10441                                  SmallVectorImpl<SDValue> &Results,
10442                                  SelectionDAG &DAG) {
10443  DebugLoc dl = Node->getDebugLoc();
10444  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10445
10446  // Convert wide load -> cmpxchg8b/cmpxchg16b
10447  // FIXME: On 32-bit, load -> fild or movq would be more efficient
10448  //        (The only way to get a 16-byte load is cmpxchg16b)
10449  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
10450  SDValue Zero = DAG.getConstant(0, VT);
10451  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
10452                               Node->getOperand(0),
10453                               Node->getOperand(1), Zero, Zero,
10454                               cast<AtomicSDNode>(Node)->getMemOperand(),
10455                               cast<AtomicSDNode>(Node)->getOrdering(),
10456                               cast<AtomicSDNode>(Node)->getSynchScope());
10457  Results.push_back(Swap.getValue(0));
10458  Results.push_back(Swap.getValue(1));
10459}
10460
10461void X86TargetLowering::
10462ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
10463                        SelectionDAG &DAG, unsigned NewOp) const {
10464  EVT T = Node->getValueType(0);
10465  DebugLoc dl = Node->getDebugLoc();
10466  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
10467
10468  SDValue Chain = Node->getOperand(0);
10469  SDValue In1 = Node->getOperand(1);
10470  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10471                             Node->getOperand(2), DAG.getIntPtrConstant(0));
10472  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10473                             Node->getOperand(2), DAG.getIntPtrConstant(1));
10474  SDValue Ops[] = { Chain, In1, In2L, In2H };
10475  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10476  SDValue Result =
10477    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
10478                            cast<MemSDNode>(Node)->getMemOperand());
10479  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
10480  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
10481  Results.push_back(Result.getValue(2));
10482}
10483
10484/// ReplaceNodeResults - Replace a node with an illegal result type
10485/// with a new node built out of custom code.
10486void X86TargetLowering::ReplaceNodeResults(SDNode *N,
10487                                           SmallVectorImpl<SDValue>&Results,
10488                                           SelectionDAG &DAG) const {
10489  DebugLoc dl = N->getDebugLoc();
10490  switch (N->getOpcode()) {
10491  default:
10492    assert(false && "Do not know how to custom type legalize this operation!");
10493    return;
10494  case ISD::SIGN_EXTEND_INREG:
10495  case ISD::ADDC:
10496  case ISD::ADDE:
10497  case ISD::SUBC:
10498  case ISD::SUBE:
10499    // We don't want to expand or promote these.
10500    return;
10501  case ISD::FP_TO_SINT: {
10502    std::pair<SDValue,SDValue> Vals =
10503        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
10504    SDValue FIST = Vals.first, StackSlot = Vals.second;
10505    if (FIST.getNode() != 0) {
10506      EVT VT = N->getValueType(0);
10507      // Return a load from the stack slot.
10508      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
10509                                    MachinePointerInfo(), false, false, 0));
10510    }
10511    return;
10512  }
10513  case ISD::READCYCLECOUNTER: {
10514    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10515    SDValue TheChain = N->getOperand(0);
10516    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10517    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
10518                                     rd.getValue(1));
10519    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
10520                                     eax.getValue(2));
10521    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
10522    SDValue Ops[] = { eax, edx };
10523    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
10524    Results.push_back(edx.getValue(1));
10525    return;
10526  }
10527  case ISD::ATOMIC_CMP_SWAP: {
10528    EVT T = N->getValueType(0);
10529    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
10530    bool Regs64bit = T == MVT::i128;
10531    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
10532    SDValue cpInL, cpInH;
10533    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10534                        DAG.getConstant(0, HalfT));
10535    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10536                        DAG.getConstant(1, HalfT));
10537    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
10538                             Regs64bit ? X86::RAX : X86::EAX,
10539                             cpInL, SDValue());
10540    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
10541                             Regs64bit ? X86::RDX : X86::EDX,
10542                             cpInH, cpInL.getValue(1));
10543    SDValue swapInL, swapInH;
10544    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10545                          DAG.getConstant(0, HalfT));
10546    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10547                          DAG.getConstant(1, HalfT));
10548    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
10549                               Regs64bit ? X86::RBX : X86::EBX,
10550                               swapInL, cpInH.getValue(1));
10551    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
10552                               Regs64bit ? X86::RCX : X86::ECX,
10553                               swapInH, swapInL.getValue(1));
10554    SDValue Ops[] = { swapInH.getValue(0),
10555                      N->getOperand(1),
10556                      swapInH.getValue(1) };
10557    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10558    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
10559    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
10560                                  X86ISD::LCMPXCHG8_DAG;
10561    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
10562                                             Ops, 3, T, MMO);
10563    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
10564                                        Regs64bit ? X86::RAX : X86::EAX,
10565                                        HalfT, Result.getValue(1));
10566    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
10567                                        Regs64bit ? X86::RDX : X86::EDX,
10568                                        HalfT, cpOutL.getValue(2));
10569    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
10570    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
10571    Results.push_back(cpOutH.getValue(1));
10572    return;
10573  }
10574  case ISD::ATOMIC_LOAD_ADD:
10575    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
10576    return;
10577  case ISD::ATOMIC_LOAD_AND:
10578    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
10579    return;
10580  case ISD::ATOMIC_LOAD_NAND:
10581    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
10582    return;
10583  case ISD::ATOMIC_LOAD_OR:
10584    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
10585    return;
10586  case ISD::ATOMIC_LOAD_SUB:
10587    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
10588    return;
10589  case ISD::ATOMIC_LOAD_XOR:
10590    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
10591    return;
10592  case ISD::ATOMIC_SWAP:
10593    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
10594    return;
10595  case ISD::ATOMIC_LOAD:
10596    ReplaceATOMIC_LOAD(N, Results, DAG);
10597  }
10598}
10599
10600const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
10601  switch (Opcode) {
10602  default: return NULL;
10603  case X86ISD::BSF:                return "X86ISD::BSF";
10604  case X86ISD::BSR:                return "X86ISD::BSR";
10605  case X86ISD::SHLD:               return "X86ISD::SHLD";
10606  case X86ISD::SHRD:               return "X86ISD::SHRD";
10607  case X86ISD::FAND:               return "X86ISD::FAND";
10608  case X86ISD::FOR:                return "X86ISD::FOR";
10609  case X86ISD::FXOR:               return "X86ISD::FXOR";
10610  case X86ISD::FSRL:               return "X86ISD::FSRL";
10611  case X86ISD::FILD:               return "X86ISD::FILD";
10612  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
10613  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
10614  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
10615  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
10616  case X86ISD::FLD:                return "X86ISD::FLD";
10617  case X86ISD::FST:                return "X86ISD::FST";
10618  case X86ISD::CALL:               return "X86ISD::CALL";
10619  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
10620  case X86ISD::BT:                 return "X86ISD::BT";
10621  case X86ISD::CMP:                return "X86ISD::CMP";
10622  case X86ISD::COMI:               return "X86ISD::COMI";
10623  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
10624  case X86ISD::SETCC:              return "X86ISD::SETCC";
10625  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
10626  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
10627  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
10628  case X86ISD::CMOV:               return "X86ISD::CMOV";
10629  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
10630  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
10631  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
10632  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
10633  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
10634  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
10635  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
10636  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
10637  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
10638  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
10639  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
10640  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
10641  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
10642  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
10643  case X86ISD::PSIGNB:             return "X86ISD::PSIGNB";
10644  case X86ISD::PSIGNW:             return "X86ISD::PSIGNW";
10645  case X86ISD::PSIGND:             return "X86ISD::PSIGND";
10646  case X86ISD::FMAX:               return "X86ISD::FMAX";
10647  case X86ISD::FMIN:               return "X86ISD::FMIN";
10648  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
10649  case X86ISD::FRCP:               return "X86ISD::FRCP";
10650  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
10651  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
10652  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
10653  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
10654  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
10655  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
10656  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
10657  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
10658  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
10659  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
10660  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
10661  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
10662  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
10663  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
10664  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
10665  case X86ISD::VSHL:               return "X86ISD::VSHL";
10666  case X86ISD::VSRL:               return "X86ISD::VSRL";
10667  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
10668  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
10669  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
10670  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
10671  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
10672  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
10673  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
10674  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
10675  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
10676  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
10677  case X86ISD::ADD:                return "X86ISD::ADD";
10678  case X86ISD::SUB:                return "X86ISD::SUB";
10679  case X86ISD::ADC:                return "X86ISD::ADC";
10680  case X86ISD::SBB:                return "X86ISD::SBB";
10681  case X86ISD::SMUL:               return "X86ISD::SMUL";
10682  case X86ISD::UMUL:               return "X86ISD::UMUL";
10683  case X86ISD::INC:                return "X86ISD::INC";
10684  case X86ISD::DEC:                return "X86ISD::DEC";
10685  case X86ISD::OR:                 return "X86ISD::OR";
10686  case X86ISD::XOR:                return "X86ISD::XOR";
10687  case X86ISD::AND:                return "X86ISD::AND";
10688  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
10689  case X86ISD::PTEST:              return "X86ISD::PTEST";
10690  case X86ISD::TESTP:              return "X86ISD::TESTP";
10691  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
10692  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
10693  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
10694  case X86ISD::PSHUFHW_LD:         return "X86ISD::PSHUFHW_LD";
10695  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
10696  case X86ISD::PSHUFLW_LD:         return "X86ISD::PSHUFLW_LD";
10697  case X86ISD::SHUFPS:             return "X86ISD::SHUFPS";
10698  case X86ISD::SHUFPD:             return "X86ISD::SHUFPD";
10699  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
10700  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
10701  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
10702  case X86ISD::MOVHLPD:            return "X86ISD::MOVHLPD";
10703  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
10704  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
10705  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
10706  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
10707  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
10708  case X86ISD::MOVSHDUP_LD:        return "X86ISD::MOVSHDUP_LD";
10709  case X86ISD::MOVSLDUP_LD:        return "X86ISD::MOVSLDUP_LD";
10710  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
10711  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
10712  case X86ISD::UNPCKLPS:           return "X86ISD::UNPCKLPS";
10713  case X86ISD::UNPCKLPD:           return "X86ISD::UNPCKLPD";
10714  case X86ISD::VUNPCKLPDY:         return "X86ISD::VUNPCKLPDY";
10715  case X86ISD::UNPCKHPS:           return "X86ISD::UNPCKHPS";
10716  case X86ISD::UNPCKHPD:           return "X86ISD::UNPCKHPD";
10717  case X86ISD::PUNPCKLBW:          return "X86ISD::PUNPCKLBW";
10718  case X86ISD::PUNPCKLWD:          return "X86ISD::PUNPCKLWD";
10719  case X86ISD::PUNPCKLDQ:          return "X86ISD::PUNPCKLDQ";
10720  case X86ISD::PUNPCKLQDQ:         return "X86ISD::PUNPCKLQDQ";
10721  case X86ISD::PUNPCKHBW:          return "X86ISD::PUNPCKHBW";
10722  case X86ISD::PUNPCKHWD:          return "X86ISD::PUNPCKHWD";
10723  case X86ISD::PUNPCKHDQ:          return "X86ISD::PUNPCKHDQ";
10724  case X86ISD::PUNPCKHQDQ:         return "X86ISD::PUNPCKHQDQ";
10725  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
10726  case X86ISD::VPERMILPS:          return "X86ISD::VPERMILPS";
10727  case X86ISD::VPERMILPSY:         return "X86ISD::VPERMILPSY";
10728  case X86ISD::VPERMILPD:          return "X86ISD::VPERMILPD";
10729  case X86ISD::VPERMILPDY:         return "X86ISD::VPERMILPDY";
10730  case X86ISD::VPERM2F128:         return "X86ISD::VPERM2F128";
10731  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
10732  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
10733  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
10734  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
10735  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
10736  }
10737}
10738
10739// isLegalAddressingMode - Return true if the addressing mode represented
10740// by AM is legal for this target, for a load/store of the specified type.
10741bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
10742                                              Type *Ty) const {
10743  // X86 supports extremely general addressing modes.
10744  CodeModel::Model M = getTargetMachine().getCodeModel();
10745  Reloc::Model R = getTargetMachine().getRelocationModel();
10746
10747  // X86 allows a sign-extended 32-bit immediate field as a displacement.
10748  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
10749    return false;
10750
10751  if (AM.BaseGV) {
10752    unsigned GVFlags =
10753      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
10754
10755    // If a reference to this global requires an extra load, we can't fold it.
10756    if (isGlobalStubReference(GVFlags))
10757      return false;
10758
10759    // If BaseGV requires a register for the PIC base, we cannot also have a
10760    // BaseReg specified.
10761    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
10762      return false;
10763
10764    // If lower 4G is not available, then we must use rip-relative addressing.
10765    if ((M != CodeModel::Small || R != Reloc::Static) &&
10766        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
10767      return false;
10768  }
10769
10770  switch (AM.Scale) {
10771  case 0:
10772  case 1:
10773  case 2:
10774  case 4:
10775  case 8:
10776    // These scales always work.
10777    break;
10778  case 3:
10779  case 5:
10780  case 9:
10781    // These scales are formed with basereg+scalereg.  Only accept if there is
10782    // no basereg yet.
10783    if (AM.HasBaseReg)
10784      return false;
10785    break;
10786  default:  // Other stuff never works.
10787    return false;
10788  }
10789
10790  return true;
10791}
10792
10793
10794bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
10795  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
10796    return false;
10797  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
10798  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
10799  if (NumBits1 <= NumBits2)
10800    return false;
10801  return true;
10802}
10803
10804bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
10805  if (!VT1.isInteger() || !VT2.isInteger())
10806    return false;
10807  unsigned NumBits1 = VT1.getSizeInBits();
10808  unsigned NumBits2 = VT2.getSizeInBits();
10809  if (NumBits1 <= NumBits2)
10810    return false;
10811  return true;
10812}
10813
10814bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
10815  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
10816  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
10817}
10818
10819bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
10820  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
10821  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
10822}
10823
10824bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
10825  // i16 instructions are longer (0x66 prefix) and potentially slower.
10826  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
10827}
10828
10829/// isShuffleMaskLegal - Targets can use this to indicate that they only
10830/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
10831/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
10832/// are assumed to be legal.
10833bool
10834X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
10835                                      EVT VT) const {
10836  // Very little shuffling can be done for 64-bit vectors right now.
10837  if (VT.getSizeInBits() == 64)
10838    return isPALIGNRMask(M, VT, Subtarget->hasSSSE3() || Subtarget->hasAVX());
10839
10840  // FIXME: pshufb, blends, shifts.
10841  return (VT.getVectorNumElements() == 2 ||
10842          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
10843          isMOVLMask(M, VT) ||
10844          isSHUFPMask(M, VT) ||
10845          isPSHUFDMask(M, VT) ||
10846          isPSHUFHWMask(M, VT) ||
10847          isPSHUFLWMask(M, VT) ||
10848          isPALIGNRMask(M, VT, Subtarget->hasSSSE3() || Subtarget->hasAVX()) ||
10849          isUNPCKLMask(M, VT) ||
10850          isUNPCKHMask(M, VT) ||
10851          isUNPCKL_v_undef_Mask(M, VT) ||
10852          isUNPCKH_v_undef_Mask(M, VT));
10853}
10854
10855bool
10856X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
10857                                          EVT VT) const {
10858  unsigned NumElts = VT.getVectorNumElements();
10859  // FIXME: This collection of masks seems suspect.
10860  if (NumElts == 2)
10861    return true;
10862  if (NumElts == 4 && VT.getSizeInBits() == 128) {
10863    return (isMOVLMask(Mask, VT)  ||
10864            isCommutedMOVLMask(Mask, VT, true) ||
10865            isSHUFPMask(Mask, VT) ||
10866            isCommutedSHUFPMask(Mask, VT));
10867  }
10868  return false;
10869}
10870
10871//===----------------------------------------------------------------------===//
10872//                           X86 Scheduler Hooks
10873//===----------------------------------------------------------------------===//
10874
10875// private utility function
10876MachineBasicBlock *
10877X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
10878                                                       MachineBasicBlock *MBB,
10879                                                       unsigned regOpc,
10880                                                       unsigned immOpc,
10881                                                       unsigned LoadOpc,
10882                                                       unsigned CXchgOpc,
10883                                                       unsigned notOpc,
10884                                                       unsigned EAXreg,
10885                                                       TargetRegisterClass *RC,
10886                                                       bool invSrc) const {
10887  // For the atomic bitwise operator, we generate
10888  //   thisMBB:
10889  //   newMBB:
10890  //     ld  t1 = [bitinstr.addr]
10891  //     op  t2 = t1, [bitinstr.val]
10892  //     mov EAX = t1
10893  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
10894  //     bz  newMBB
10895  //     fallthrough -->nextMBB
10896  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10897  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10898  MachineFunction::iterator MBBIter = MBB;
10899  ++MBBIter;
10900
10901  /// First build the CFG
10902  MachineFunction *F = MBB->getParent();
10903  MachineBasicBlock *thisMBB = MBB;
10904  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
10905  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
10906  F->insert(MBBIter, newMBB);
10907  F->insert(MBBIter, nextMBB);
10908
10909  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
10910  nextMBB->splice(nextMBB->begin(), thisMBB,
10911                  llvm::next(MachineBasicBlock::iterator(bInstr)),
10912                  thisMBB->end());
10913  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
10914
10915  // Update thisMBB to fall through to newMBB
10916  thisMBB->addSuccessor(newMBB);
10917
10918  // newMBB jumps to itself and fall through to nextMBB
10919  newMBB->addSuccessor(nextMBB);
10920  newMBB->addSuccessor(newMBB);
10921
10922  // Insert instructions into newMBB based on incoming instruction
10923  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
10924         "unexpected number of operands");
10925  DebugLoc dl = bInstr->getDebugLoc();
10926  MachineOperand& destOper = bInstr->getOperand(0);
10927  MachineOperand* argOpers[2 + X86::AddrNumOperands];
10928  int numArgs = bInstr->getNumOperands() - 1;
10929  for (int i=0; i < numArgs; ++i)
10930    argOpers[i] = &bInstr->getOperand(i+1);
10931
10932  // x86 address has 4 operands: base, index, scale, and displacement
10933  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
10934  int valArgIndx = lastAddrIndx + 1;
10935
10936  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
10937  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
10938  for (int i=0; i <= lastAddrIndx; ++i)
10939    (*MIB).addOperand(*argOpers[i]);
10940
10941  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
10942  if (invSrc) {
10943    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
10944  }
10945  else
10946    tt = t1;
10947
10948  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
10949  assert((argOpers[valArgIndx]->isReg() ||
10950          argOpers[valArgIndx]->isImm()) &&
10951         "invalid operand");
10952  if (argOpers[valArgIndx]->isReg())
10953    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
10954  else
10955    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
10956  MIB.addReg(tt);
10957  (*MIB).addOperand(*argOpers[valArgIndx]);
10958
10959  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
10960  MIB.addReg(t1);
10961
10962  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
10963  for (int i=0; i <= lastAddrIndx; ++i)
10964    (*MIB).addOperand(*argOpers[i]);
10965  MIB.addReg(t2);
10966  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
10967  (*MIB).setMemRefs(bInstr->memoperands_begin(),
10968                    bInstr->memoperands_end());
10969
10970  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
10971  MIB.addReg(EAXreg);
10972
10973  // insert branch
10974  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
10975
10976  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
10977  return nextMBB;
10978}
10979
10980// private utility function:  64 bit atomics on 32 bit host.
10981MachineBasicBlock *
10982X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
10983                                                       MachineBasicBlock *MBB,
10984                                                       unsigned regOpcL,
10985                                                       unsigned regOpcH,
10986                                                       unsigned immOpcL,
10987                                                       unsigned immOpcH,
10988                                                       bool invSrc) const {
10989  // For the atomic bitwise operator, we generate
10990  //   thisMBB (instructions are in pairs, except cmpxchg8b)
10991  //     ld t1,t2 = [bitinstr.addr]
10992  //   newMBB:
10993  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
10994  //     op  t5, t6 <- out1, out2, [bitinstr.val]
10995  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
10996  //     mov ECX, EBX <- t5, t6
10997  //     mov EAX, EDX <- t1, t2
10998  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
10999  //     mov t3, t4 <- EAX, EDX
11000  //     bz  newMBB
11001  //     result in out1, out2
11002  //     fallthrough -->nextMBB
11003
11004  const TargetRegisterClass *RC = X86::GR32RegisterClass;
11005  const unsigned LoadOpc = X86::MOV32rm;
11006  const unsigned NotOpc = X86::NOT32r;
11007  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11008  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11009  MachineFunction::iterator MBBIter = MBB;
11010  ++MBBIter;
11011
11012  /// First build the CFG
11013  MachineFunction *F = MBB->getParent();
11014  MachineBasicBlock *thisMBB = MBB;
11015  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11016  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11017  F->insert(MBBIter, newMBB);
11018  F->insert(MBBIter, nextMBB);
11019
11020  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11021  nextMBB->splice(nextMBB->begin(), thisMBB,
11022                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11023                  thisMBB->end());
11024  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11025
11026  // Update thisMBB to fall through to newMBB
11027  thisMBB->addSuccessor(newMBB);
11028
11029  // newMBB jumps to itself and fall through to nextMBB
11030  newMBB->addSuccessor(nextMBB);
11031  newMBB->addSuccessor(newMBB);
11032
11033  DebugLoc dl = bInstr->getDebugLoc();
11034  // Insert instructions into newMBB based on incoming instruction
11035  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
11036  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
11037         "unexpected number of operands");
11038  MachineOperand& dest1Oper = bInstr->getOperand(0);
11039  MachineOperand& dest2Oper = bInstr->getOperand(1);
11040  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11041  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
11042    argOpers[i] = &bInstr->getOperand(i+2);
11043
11044    // We use some of the operands multiple times, so conservatively just
11045    // clear any kill flags that might be present.
11046    if (argOpers[i]->isReg() && argOpers[i]->isUse())
11047      argOpers[i]->setIsKill(false);
11048  }
11049
11050  // x86 address has 5 operands: base, index, scale, displacement, and segment.
11051  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11052
11053  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11054  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
11055  for (int i=0; i <= lastAddrIndx; ++i)
11056    (*MIB).addOperand(*argOpers[i]);
11057  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11058  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
11059  // add 4 to displacement.
11060  for (int i=0; i <= lastAddrIndx-2; ++i)
11061    (*MIB).addOperand(*argOpers[i]);
11062  MachineOperand newOp3 = *(argOpers[3]);
11063  if (newOp3.isImm())
11064    newOp3.setImm(newOp3.getImm()+4);
11065  else
11066    newOp3.setOffset(newOp3.getOffset()+4);
11067  (*MIB).addOperand(newOp3);
11068  (*MIB).addOperand(*argOpers[lastAddrIndx]);
11069
11070  // t3/4 are defined later, at the bottom of the loop
11071  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
11072  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
11073  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
11074    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
11075  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
11076    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
11077
11078  // The subsequent operations should be using the destination registers of
11079  //the PHI instructions.
11080  if (invSrc) {
11081    t1 = F->getRegInfo().createVirtualRegister(RC);
11082    t2 = F->getRegInfo().createVirtualRegister(RC);
11083    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
11084    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
11085  } else {
11086    t1 = dest1Oper.getReg();
11087    t2 = dest2Oper.getReg();
11088  }
11089
11090  int valArgIndx = lastAddrIndx + 1;
11091  assert((argOpers[valArgIndx]->isReg() ||
11092          argOpers[valArgIndx]->isImm()) &&
11093         "invalid operand");
11094  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
11095  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
11096  if (argOpers[valArgIndx]->isReg())
11097    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
11098  else
11099    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
11100  if (regOpcL != X86::MOV32rr)
11101    MIB.addReg(t1);
11102  (*MIB).addOperand(*argOpers[valArgIndx]);
11103  assert(argOpers[valArgIndx + 1]->isReg() ==
11104         argOpers[valArgIndx]->isReg());
11105  assert(argOpers[valArgIndx + 1]->isImm() ==
11106         argOpers[valArgIndx]->isImm());
11107  if (argOpers[valArgIndx + 1]->isReg())
11108    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
11109  else
11110    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
11111  if (regOpcH != X86::MOV32rr)
11112    MIB.addReg(t2);
11113  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
11114
11115  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11116  MIB.addReg(t1);
11117  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
11118  MIB.addReg(t2);
11119
11120  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
11121  MIB.addReg(t5);
11122  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
11123  MIB.addReg(t6);
11124
11125  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
11126  for (int i=0; i <= lastAddrIndx; ++i)
11127    (*MIB).addOperand(*argOpers[i]);
11128
11129  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11130  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11131                    bInstr->memoperands_end());
11132
11133  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
11134  MIB.addReg(X86::EAX);
11135  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
11136  MIB.addReg(X86::EDX);
11137
11138  // insert branch
11139  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11140
11141  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11142  return nextMBB;
11143}
11144
11145// private utility function
11146MachineBasicBlock *
11147X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
11148                                                      MachineBasicBlock *MBB,
11149                                                      unsigned cmovOpc) const {
11150  // For the atomic min/max operator, we generate
11151  //   thisMBB:
11152  //   newMBB:
11153  //     ld t1 = [min/max.addr]
11154  //     mov t2 = [min/max.val]
11155  //     cmp  t1, t2
11156  //     cmov[cond] t2 = t1
11157  //     mov EAX = t1
11158  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11159  //     bz   newMBB
11160  //     fallthrough -->nextMBB
11161  //
11162  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11163  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11164  MachineFunction::iterator MBBIter = MBB;
11165  ++MBBIter;
11166
11167  /// First build the CFG
11168  MachineFunction *F = MBB->getParent();
11169  MachineBasicBlock *thisMBB = MBB;
11170  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11171  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11172  F->insert(MBBIter, newMBB);
11173  F->insert(MBBIter, nextMBB);
11174
11175  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11176  nextMBB->splice(nextMBB->begin(), thisMBB,
11177                  llvm::next(MachineBasicBlock::iterator(mInstr)),
11178                  thisMBB->end());
11179  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11180
11181  // Update thisMBB to fall through to newMBB
11182  thisMBB->addSuccessor(newMBB);
11183
11184  // newMBB jumps to newMBB and fall through to nextMBB
11185  newMBB->addSuccessor(nextMBB);
11186  newMBB->addSuccessor(newMBB);
11187
11188  DebugLoc dl = mInstr->getDebugLoc();
11189  // Insert instructions into newMBB based on incoming instruction
11190  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11191         "unexpected number of operands");
11192  MachineOperand& destOper = mInstr->getOperand(0);
11193  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11194  int numArgs = mInstr->getNumOperands() - 1;
11195  for (int i=0; i < numArgs; ++i)
11196    argOpers[i] = &mInstr->getOperand(i+1);
11197
11198  // x86 address has 4 operands: base, index, scale, and displacement
11199  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11200  int valArgIndx = lastAddrIndx + 1;
11201
11202  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11203  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
11204  for (int i=0; i <= lastAddrIndx; ++i)
11205    (*MIB).addOperand(*argOpers[i]);
11206
11207  // We only support register and immediate values
11208  assert((argOpers[valArgIndx]->isReg() ||
11209          argOpers[valArgIndx]->isImm()) &&
11210         "invalid operand");
11211
11212  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11213  if (argOpers[valArgIndx]->isReg())
11214    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
11215  else
11216    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
11217  (*MIB).addOperand(*argOpers[valArgIndx]);
11218
11219  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11220  MIB.addReg(t1);
11221
11222  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
11223  MIB.addReg(t1);
11224  MIB.addReg(t2);
11225
11226  // Generate movc
11227  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11228  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
11229  MIB.addReg(t2);
11230  MIB.addReg(t1);
11231
11232  // Cmp and exchange if none has modified the memory location
11233  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
11234  for (int i=0; i <= lastAddrIndx; ++i)
11235    (*MIB).addOperand(*argOpers[i]);
11236  MIB.addReg(t3);
11237  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11238  (*MIB).setMemRefs(mInstr->memoperands_begin(),
11239                    mInstr->memoperands_end());
11240
11241  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11242  MIB.addReg(X86::EAX);
11243
11244  // insert branch
11245  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11246
11247  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
11248  return nextMBB;
11249}
11250
11251// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
11252// or XMM0_V32I8 in AVX all of this code can be replaced with that
11253// in the .td file.
11254MachineBasicBlock *
11255X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
11256                            unsigned numArgs, bool memArg) const {
11257  assert((Subtarget->hasSSE42() || Subtarget->hasAVX()) &&
11258         "Target must have SSE4.2 or AVX features enabled");
11259
11260  DebugLoc dl = MI->getDebugLoc();
11261  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11262  unsigned Opc;
11263  if (!Subtarget->hasAVX()) {
11264    if (memArg)
11265      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
11266    else
11267      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
11268  } else {
11269    if (memArg)
11270      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
11271    else
11272      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
11273  }
11274
11275  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
11276  for (unsigned i = 0; i < numArgs; ++i) {
11277    MachineOperand &Op = MI->getOperand(i+1);
11278    if (!(Op.isReg() && Op.isImplicit()))
11279      MIB.addOperand(Op);
11280  }
11281  BuildMI(*BB, MI, dl,
11282    TII->get(Subtarget->hasAVX() ? X86::VMOVAPSrr : X86::MOVAPSrr),
11283             MI->getOperand(0).getReg())
11284    .addReg(X86::XMM0);
11285
11286  MI->eraseFromParent();
11287  return BB;
11288}
11289
11290MachineBasicBlock *
11291X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
11292  DebugLoc dl = MI->getDebugLoc();
11293  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11294
11295  // Address into RAX/EAX, other two args into ECX, EDX.
11296  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
11297  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
11298  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
11299  for (int i = 0; i < X86::AddrNumOperands; ++i)
11300    MIB.addOperand(MI->getOperand(i));
11301
11302  unsigned ValOps = X86::AddrNumOperands;
11303  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11304    .addReg(MI->getOperand(ValOps).getReg());
11305  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
11306    .addReg(MI->getOperand(ValOps+1).getReg());
11307
11308  // The instruction doesn't actually take any operands though.
11309  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
11310
11311  MI->eraseFromParent(); // The pseudo is gone now.
11312  return BB;
11313}
11314
11315MachineBasicBlock *
11316X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
11317  DebugLoc dl = MI->getDebugLoc();
11318  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11319
11320  // First arg in ECX, the second in EAX.
11321  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11322    .addReg(MI->getOperand(0).getReg());
11323  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
11324    .addReg(MI->getOperand(1).getReg());
11325
11326  // The instruction doesn't actually take any operands though.
11327  BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
11328
11329  MI->eraseFromParent(); // The pseudo is gone now.
11330  return BB;
11331}
11332
11333MachineBasicBlock *
11334X86TargetLowering::EmitVAARG64WithCustomInserter(
11335                   MachineInstr *MI,
11336                   MachineBasicBlock *MBB) const {
11337  // Emit va_arg instruction on X86-64.
11338
11339  // Operands to this pseudo-instruction:
11340  // 0  ) Output        : destination address (reg)
11341  // 1-5) Input         : va_list address (addr, i64mem)
11342  // 6  ) ArgSize       : Size (in bytes) of vararg type
11343  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
11344  // 8  ) Align         : Alignment of type
11345  // 9  ) EFLAGS (implicit-def)
11346
11347  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
11348  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
11349
11350  unsigned DestReg = MI->getOperand(0).getReg();
11351  MachineOperand &Base = MI->getOperand(1);
11352  MachineOperand &Scale = MI->getOperand(2);
11353  MachineOperand &Index = MI->getOperand(3);
11354  MachineOperand &Disp = MI->getOperand(4);
11355  MachineOperand &Segment = MI->getOperand(5);
11356  unsigned ArgSize = MI->getOperand(6).getImm();
11357  unsigned ArgMode = MI->getOperand(7).getImm();
11358  unsigned Align = MI->getOperand(8).getImm();
11359
11360  // Memory Reference
11361  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
11362  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
11363  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
11364
11365  // Machine Information
11366  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11367  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
11368  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
11369  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
11370  DebugLoc DL = MI->getDebugLoc();
11371
11372  // struct va_list {
11373  //   i32   gp_offset
11374  //   i32   fp_offset
11375  //   i64   overflow_area (address)
11376  //   i64   reg_save_area (address)
11377  // }
11378  // sizeof(va_list) = 24
11379  // alignment(va_list) = 8
11380
11381  unsigned TotalNumIntRegs = 6;
11382  unsigned TotalNumXMMRegs = 8;
11383  bool UseGPOffset = (ArgMode == 1);
11384  bool UseFPOffset = (ArgMode == 2);
11385  unsigned MaxOffset = TotalNumIntRegs * 8 +
11386                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
11387
11388  /* Align ArgSize to a multiple of 8 */
11389  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
11390  bool NeedsAlign = (Align > 8);
11391
11392  MachineBasicBlock *thisMBB = MBB;
11393  MachineBasicBlock *overflowMBB;
11394  MachineBasicBlock *offsetMBB;
11395  MachineBasicBlock *endMBB;
11396
11397  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
11398  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
11399  unsigned OffsetReg = 0;
11400
11401  if (!UseGPOffset && !UseFPOffset) {
11402    // If we only pull from the overflow region, we don't create a branch.
11403    // We don't need to alter control flow.
11404    OffsetDestReg = 0; // unused
11405    OverflowDestReg = DestReg;
11406
11407    offsetMBB = NULL;
11408    overflowMBB = thisMBB;
11409    endMBB = thisMBB;
11410  } else {
11411    // First emit code to check if gp_offset (or fp_offset) is below the bound.
11412    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
11413    // If not, pull from overflow_area. (branch to overflowMBB)
11414    //
11415    //       thisMBB
11416    //         |     .
11417    //         |        .
11418    //     offsetMBB   overflowMBB
11419    //         |        .
11420    //         |     .
11421    //        endMBB
11422
11423    // Registers for the PHI in endMBB
11424    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
11425    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
11426
11427    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11428    MachineFunction *MF = MBB->getParent();
11429    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11430    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11431    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11432
11433    MachineFunction::iterator MBBIter = MBB;
11434    ++MBBIter;
11435
11436    // Insert the new basic blocks
11437    MF->insert(MBBIter, offsetMBB);
11438    MF->insert(MBBIter, overflowMBB);
11439    MF->insert(MBBIter, endMBB);
11440
11441    // Transfer the remainder of MBB and its successor edges to endMBB.
11442    endMBB->splice(endMBB->begin(), thisMBB,
11443                    llvm::next(MachineBasicBlock::iterator(MI)),
11444                    thisMBB->end());
11445    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11446
11447    // Make offsetMBB and overflowMBB successors of thisMBB
11448    thisMBB->addSuccessor(offsetMBB);
11449    thisMBB->addSuccessor(overflowMBB);
11450
11451    // endMBB is a successor of both offsetMBB and overflowMBB
11452    offsetMBB->addSuccessor(endMBB);
11453    overflowMBB->addSuccessor(endMBB);
11454
11455    // Load the offset value into a register
11456    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11457    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
11458      .addOperand(Base)
11459      .addOperand(Scale)
11460      .addOperand(Index)
11461      .addDisp(Disp, UseFPOffset ? 4 : 0)
11462      .addOperand(Segment)
11463      .setMemRefs(MMOBegin, MMOEnd);
11464
11465    // Check if there is enough room left to pull this argument.
11466    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
11467      .addReg(OffsetReg)
11468      .addImm(MaxOffset + 8 - ArgSizeA8);
11469
11470    // Branch to "overflowMBB" if offset >= max
11471    // Fall through to "offsetMBB" otherwise
11472    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
11473      .addMBB(overflowMBB);
11474  }
11475
11476  // In offsetMBB, emit code to use the reg_save_area.
11477  if (offsetMBB) {
11478    assert(OffsetReg != 0);
11479
11480    // Read the reg_save_area address.
11481    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
11482    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
11483      .addOperand(Base)
11484      .addOperand(Scale)
11485      .addOperand(Index)
11486      .addDisp(Disp, 16)
11487      .addOperand(Segment)
11488      .setMemRefs(MMOBegin, MMOEnd);
11489
11490    // Zero-extend the offset
11491    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
11492      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
11493        .addImm(0)
11494        .addReg(OffsetReg)
11495        .addImm(X86::sub_32bit);
11496
11497    // Add the offset to the reg_save_area to get the final address.
11498    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
11499      .addReg(OffsetReg64)
11500      .addReg(RegSaveReg);
11501
11502    // Compute the offset for the next argument
11503    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11504    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
11505      .addReg(OffsetReg)
11506      .addImm(UseFPOffset ? 16 : 8);
11507
11508    // Store it back into the va_list.
11509    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
11510      .addOperand(Base)
11511      .addOperand(Scale)
11512      .addOperand(Index)
11513      .addDisp(Disp, UseFPOffset ? 4 : 0)
11514      .addOperand(Segment)
11515      .addReg(NextOffsetReg)
11516      .setMemRefs(MMOBegin, MMOEnd);
11517
11518    // Jump to endMBB
11519    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
11520      .addMBB(endMBB);
11521  }
11522
11523  //
11524  // Emit code to use overflow area
11525  //
11526
11527  // Load the overflow_area address into a register.
11528  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
11529  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
11530    .addOperand(Base)
11531    .addOperand(Scale)
11532    .addOperand(Index)
11533    .addDisp(Disp, 8)
11534    .addOperand(Segment)
11535    .setMemRefs(MMOBegin, MMOEnd);
11536
11537  // If we need to align it, do so. Otherwise, just copy the address
11538  // to OverflowDestReg.
11539  if (NeedsAlign) {
11540    // Align the overflow address
11541    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
11542    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
11543
11544    // aligned_addr = (addr + (align-1)) & ~(align-1)
11545    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
11546      .addReg(OverflowAddrReg)
11547      .addImm(Align-1);
11548
11549    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
11550      .addReg(TmpReg)
11551      .addImm(~(uint64_t)(Align-1));
11552  } else {
11553    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
11554      .addReg(OverflowAddrReg);
11555  }
11556
11557  // Compute the next overflow address after this argument.
11558  // (the overflow address should be kept 8-byte aligned)
11559  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
11560  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
11561    .addReg(OverflowDestReg)
11562    .addImm(ArgSizeA8);
11563
11564  // Store the new overflow address.
11565  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
11566    .addOperand(Base)
11567    .addOperand(Scale)
11568    .addOperand(Index)
11569    .addDisp(Disp, 8)
11570    .addOperand(Segment)
11571    .addReg(NextAddrReg)
11572    .setMemRefs(MMOBegin, MMOEnd);
11573
11574  // If we branched, emit the PHI to the front of endMBB.
11575  if (offsetMBB) {
11576    BuildMI(*endMBB, endMBB->begin(), DL,
11577            TII->get(X86::PHI), DestReg)
11578      .addReg(OffsetDestReg).addMBB(offsetMBB)
11579      .addReg(OverflowDestReg).addMBB(overflowMBB);
11580  }
11581
11582  // Erase the pseudo instruction
11583  MI->eraseFromParent();
11584
11585  return endMBB;
11586}
11587
11588MachineBasicBlock *
11589X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
11590                                                 MachineInstr *MI,
11591                                                 MachineBasicBlock *MBB) const {
11592  // Emit code to save XMM registers to the stack. The ABI says that the
11593  // number of registers to save is given in %al, so it's theoretically
11594  // possible to do an indirect jump trick to avoid saving all of them,
11595  // however this code takes a simpler approach and just executes all
11596  // of the stores if %al is non-zero. It's less code, and it's probably
11597  // easier on the hardware branch predictor, and stores aren't all that
11598  // expensive anyway.
11599
11600  // Create the new basic blocks. One block contains all the XMM stores,
11601  // and one block is the final destination regardless of whether any
11602  // stores were performed.
11603  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11604  MachineFunction *F = MBB->getParent();
11605  MachineFunction::iterator MBBIter = MBB;
11606  ++MBBIter;
11607  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
11608  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
11609  F->insert(MBBIter, XMMSaveMBB);
11610  F->insert(MBBIter, EndMBB);
11611
11612  // Transfer the remainder of MBB and its successor edges to EndMBB.
11613  EndMBB->splice(EndMBB->begin(), MBB,
11614                 llvm::next(MachineBasicBlock::iterator(MI)),
11615                 MBB->end());
11616  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
11617
11618  // The original block will now fall through to the XMM save block.
11619  MBB->addSuccessor(XMMSaveMBB);
11620  // The XMMSaveMBB will fall through to the end block.
11621  XMMSaveMBB->addSuccessor(EndMBB);
11622
11623  // Now add the instructions.
11624  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11625  DebugLoc DL = MI->getDebugLoc();
11626
11627  unsigned CountReg = MI->getOperand(0).getReg();
11628  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
11629  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
11630
11631  if (!Subtarget->isTargetWin64()) {
11632    // If %al is 0, branch around the XMM save block.
11633    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
11634    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
11635    MBB->addSuccessor(EndMBB);
11636  }
11637
11638  unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
11639  // In the XMM save block, save all the XMM argument registers.
11640  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
11641    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
11642    MachineMemOperand *MMO =
11643      F->getMachineMemOperand(
11644          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
11645        MachineMemOperand::MOStore,
11646        /*Size=*/16, /*Align=*/16);
11647    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
11648      .addFrameIndex(RegSaveFrameIndex)
11649      .addImm(/*Scale=*/1)
11650      .addReg(/*IndexReg=*/0)
11651      .addImm(/*Disp=*/Offset)
11652      .addReg(/*Segment=*/0)
11653      .addReg(MI->getOperand(i).getReg())
11654      .addMemOperand(MMO);
11655  }
11656
11657  MI->eraseFromParent();   // The pseudo instruction is gone now.
11658
11659  return EndMBB;
11660}
11661
11662MachineBasicBlock *
11663X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
11664                                     MachineBasicBlock *BB) const {
11665  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11666  DebugLoc DL = MI->getDebugLoc();
11667
11668  // To "insert" a SELECT_CC instruction, we actually have to insert the
11669  // diamond control-flow pattern.  The incoming instruction knows the
11670  // destination vreg to set, the condition code register to branch on, the
11671  // true/false values to select between, and a branch opcode to use.
11672  const BasicBlock *LLVM_BB = BB->getBasicBlock();
11673  MachineFunction::iterator It = BB;
11674  ++It;
11675
11676  //  thisMBB:
11677  //  ...
11678  //   TrueVal = ...
11679  //   cmpTY ccX, r1, r2
11680  //   bCC copy1MBB
11681  //   fallthrough --> copy0MBB
11682  MachineBasicBlock *thisMBB = BB;
11683  MachineFunction *F = BB->getParent();
11684  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
11685  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11686  F->insert(It, copy0MBB);
11687  F->insert(It, sinkMBB);
11688
11689  // If the EFLAGS register isn't dead in the terminator, then claim that it's
11690  // live into the sink and copy blocks.
11691  if (!MI->killsRegister(X86::EFLAGS)) {
11692    copy0MBB->addLiveIn(X86::EFLAGS);
11693    sinkMBB->addLiveIn(X86::EFLAGS);
11694  }
11695
11696  // Transfer the remainder of BB and its successor edges to sinkMBB.
11697  sinkMBB->splice(sinkMBB->begin(), BB,
11698                  llvm::next(MachineBasicBlock::iterator(MI)),
11699                  BB->end());
11700  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11701
11702  // Add the true and fallthrough blocks as its successors.
11703  BB->addSuccessor(copy0MBB);
11704  BB->addSuccessor(sinkMBB);
11705
11706  // Create the conditional branch instruction.
11707  unsigned Opc =
11708    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
11709  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
11710
11711  //  copy0MBB:
11712  //   %FalseValue = ...
11713  //   # fallthrough to sinkMBB
11714  copy0MBB->addSuccessor(sinkMBB);
11715
11716  //  sinkMBB:
11717  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
11718  //  ...
11719  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
11720          TII->get(X86::PHI), MI->getOperand(0).getReg())
11721    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
11722    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
11723
11724  MI->eraseFromParent();   // The pseudo instruction is gone now.
11725  return sinkMBB;
11726}
11727
11728MachineBasicBlock *
11729X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
11730                                        bool Is64Bit) const {
11731  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11732  DebugLoc DL = MI->getDebugLoc();
11733  MachineFunction *MF = BB->getParent();
11734  const BasicBlock *LLVM_BB = BB->getBasicBlock();
11735
11736  assert(EnableSegmentedStacks);
11737
11738  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
11739  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
11740
11741  // BB:
11742  //  ... [Till the alloca]
11743  // If stacklet is not large enough, jump to mallocMBB
11744  //
11745  // bumpMBB:
11746  //  Allocate by subtracting from RSP
11747  //  Jump to continueMBB
11748  //
11749  // mallocMBB:
11750  //  Allocate by call to runtime
11751  //
11752  // continueMBB:
11753  //  ...
11754  //  [rest of original BB]
11755  //
11756
11757  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11758  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11759  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11760
11761  MachineRegisterInfo &MRI = MF->getRegInfo();
11762  const TargetRegisterClass *AddrRegClass =
11763    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
11764
11765  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
11766    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
11767    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
11768    sizeVReg = MI->getOperand(1).getReg(),
11769    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
11770
11771  MachineFunction::iterator MBBIter = BB;
11772  ++MBBIter;
11773
11774  MF->insert(MBBIter, bumpMBB);
11775  MF->insert(MBBIter, mallocMBB);
11776  MF->insert(MBBIter, continueMBB);
11777
11778  continueMBB->splice(continueMBB->begin(), BB, llvm::next
11779                      (MachineBasicBlock::iterator(MI)), BB->end());
11780  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
11781
11782  // Add code to the main basic block to check if the stack limit has been hit,
11783  // and if so, jump to mallocMBB otherwise to bumpMBB.
11784  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
11785  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), tmpSPVReg)
11786    .addReg(tmpSPVReg).addReg(sizeVReg);
11787  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
11788    .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg)
11789    .addReg(tmpSPVReg);
11790  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
11791
11792  // bumpMBB simply decreases the stack pointer, since we know the current
11793  // stacklet has enough space.
11794  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
11795    .addReg(tmpSPVReg);
11796  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
11797    .addReg(tmpSPVReg);
11798  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
11799
11800  // Calls into a routine in libgcc to allocate more space from the heap.
11801  if (Is64Bit) {
11802    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
11803      .addReg(sizeVReg);
11804    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
11805    .addExternalSymbol("__morestack_allocate_stack_space").addReg(X86::RDI);
11806  } else {
11807    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
11808      .addImm(12);
11809    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
11810    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
11811      .addExternalSymbol("__morestack_allocate_stack_space");
11812  }
11813
11814  if (!Is64Bit)
11815    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
11816      .addImm(16);
11817
11818  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
11819    .addReg(Is64Bit ? X86::RAX : X86::EAX);
11820  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
11821
11822  // Set up the CFG correctly.
11823  BB->addSuccessor(bumpMBB);
11824  BB->addSuccessor(mallocMBB);
11825  mallocMBB->addSuccessor(continueMBB);
11826  bumpMBB->addSuccessor(continueMBB);
11827
11828  // Take care of the PHI nodes.
11829  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
11830          MI->getOperand(0).getReg())
11831    .addReg(mallocPtrVReg).addMBB(mallocMBB)
11832    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
11833
11834  // Delete the original pseudo instruction.
11835  MI->eraseFromParent();
11836
11837  // And we're done.
11838  return continueMBB;
11839}
11840
11841MachineBasicBlock *
11842X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
11843                                          MachineBasicBlock *BB) const {
11844  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11845  DebugLoc DL = MI->getDebugLoc();
11846
11847  assert(!Subtarget->isTargetEnvMacho());
11848
11849  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
11850  // non-trivial part is impdef of ESP.
11851
11852  if (Subtarget->isTargetWin64()) {
11853    if (Subtarget->isTargetCygMing()) {
11854      // ___chkstk(Mingw64):
11855      // Clobbers R10, R11, RAX and EFLAGS.
11856      // Updates RSP.
11857      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
11858        .addExternalSymbol("___chkstk")
11859        .addReg(X86::RAX, RegState::Implicit)
11860        .addReg(X86::RSP, RegState::Implicit)
11861        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
11862        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
11863        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
11864    } else {
11865      // __chkstk(MSVCRT): does not update stack pointer.
11866      // Clobbers R10, R11 and EFLAGS.
11867      // FIXME: RAX(allocated size) might be reused and not killed.
11868      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
11869        .addExternalSymbol("__chkstk")
11870        .addReg(X86::RAX, RegState::Implicit)
11871        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
11872      // RAX has the offset to subtracted from RSP.
11873      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
11874        .addReg(X86::RSP)
11875        .addReg(X86::RAX);
11876    }
11877  } else {
11878    const char *StackProbeSymbol =
11879      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
11880
11881    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
11882      .addExternalSymbol(StackProbeSymbol)
11883      .addReg(X86::EAX, RegState::Implicit)
11884      .addReg(X86::ESP, RegState::Implicit)
11885      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
11886      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
11887      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
11888  }
11889
11890  MI->eraseFromParent();   // The pseudo instruction is gone now.
11891  return BB;
11892}
11893
11894MachineBasicBlock *
11895X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
11896                                      MachineBasicBlock *BB) const {
11897  // This is pretty easy.  We're taking the value that we received from
11898  // our load from the relocation, sticking it in either RDI (x86-64)
11899  // or EAX and doing an indirect call.  The return value will then
11900  // be in the normal return register.
11901  const X86InstrInfo *TII
11902    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
11903  DebugLoc DL = MI->getDebugLoc();
11904  MachineFunction *F = BB->getParent();
11905
11906  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
11907  assert(MI->getOperand(3).isGlobal() && "This should be a global");
11908
11909  if (Subtarget->is64Bit()) {
11910    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
11911                                      TII->get(X86::MOV64rm), X86::RDI)
11912    .addReg(X86::RIP)
11913    .addImm(0).addReg(0)
11914    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
11915                      MI->getOperand(3).getTargetFlags())
11916    .addReg(0);
11917    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
11918    addDirectMem(MIB, X86::RDI);
11919  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
11920    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
11921                                      TII->get(X86::MOV32rm), X86::EAX)
11922    .addReg(0)
11923    .addImm(0).addReg(0)
11924    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
11925                      MI->getOperand(3).getTargetFlags())
11926    .addReg(0);
11927    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
11928    addDirectMem(MIB, X86::EAX);
11929  } else {
11930    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
11931                                      TII->get(X86::MOV32rm), X86::EAX)
11932    .addReg(TII->getGlobalBaseReg(F))
11933    .addImm(0).addReg(0)
11934    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
11935                      MI->getOperand(3).getTargetFlags())
11936    .addReg(0);
11937    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
11938    addDirectMem(MIB, X86::EAX);
11939  }
11940
11941  MI->eraseFromParent(); // The pseudo instruction is gone now.
11942  return BB;
11943}
11944
11945MachineBasicBlock *
11946X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
11947                                               MachineBasicBlock *BB) const {
11948  switch (MI->getOpcode()) {
11949  default: assert(0 && "Unexpected instr type to insert");
11950  case X86::TAILJMPd64:
11951  case X86::TAILJMPr64:
11952  case X86::TAILJMPm64:
11953    assert(0 && "TAILJMP64 would not be touched here.");
11954  case X86::TCRETURNdi64:
11955  case X86::TCRETURNri64:
11956  case X86::TCRETURNmi64:
11957    // Defs of TCRETURNxx64 has Win64's callee-saved registers, as subset.
11958    // On AMD64, additional defs should be added before register allocation.
11959    if (!Subtarget->isTargetWin64()) {
11960      MI->addRegisterDefined(X86::RSI);
11961      MI->addRegisterDefined(X86::RDI);
11962      MI->addRegisterDefined(X86::XMM6);
11963      MI->addRegisterDefined(X86::XMM7);
11964      MI->addRegisterDefined(X86::XMM8);
11965      MI->addRegisterDefined(X86::XMM9);
11966      MI->addRegisterDefined(X86::XMM10);
11967      MI->addRegisterDefined(X86::XMM11);
11968      MI->addRegisterDefined(X86::XMM12);
11969      MI->addRegisterDefined(X86::XMM13);
11970      MI->addRegisterDefined(X86::XMM14);
11971      MI->addRegisterDefined(X86::XMM15);
11972    }
11973    return BB;
11974  case X86::WIN_ALLOCA:
11975    return EmitLoweredWinAlloca(MI, BB);
11976  case X86::SEG_ALLOCA_32:
11977    return EmitLoweredSegAlloca(MI, BB, false);
11978  case X86::SEG_ALLOCA_64:
11979    return EmitLoweredSegAlloca(MI, BB, true);
11980  case X86::TLSCall_32:
11981  case X86::TLSCall_64:
11982    return EmitLoweredTLSCall(MI, BB);
11983  case X86::CMOV_GR8:
11984  case X86::CMOV_FR32:
11985  case X86::CMOV_FR64:
11986  case X86::CMOV_V4F32:
11987  case X86::CMOV_V2F64:
11988  case X86::CMOV_V2I64:
11989  case X86::CMOV_V8F32:
11990  case X86::CMOV_V4F64:
11991  case X86::CMOV_V4I64:
11992  case X86::CMOV_GR16:
11993  case X86::CMOV_GR32:
11994  case X86::CMOV_RFP32:
11995  case X86::CMOV_RFP64:
11996  case X86::CMOV_RFP80:
11997    return EmitLoweredSelect(MI, BB);
11998
11999  case X86::FP32_TO_INT16_IN_MEM:
12000  case X86::FP32_TO_INT32_IN_MEM:
12001  case X86::FP32_TO_INT64_IN_MEM:
12002  case X86::FP64_TO_INT16_IN_MEM:
12003  case X86::FP64_TO_INT32_IN_MEM:
12004  case X86::FP64_TO_INT64_IN_MEM:
12005  case X86::FP80_TO_INT16_IN_MEM:
12006  case X86::FP80_TO_INT32_IN_MEM:
12007  case X86::FP80_TO_INT64_IN_MEM: {
12008    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12009    DebugLoc DL = MI->getDebugLoc();
12010
12011    // Change the floating point control register to use "round towards zero"
12012    // mode when truncating to an integer value.
12013    MachineFunction *F = BB->getParent();
12014    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
12015    addFrameReference(BuildMI(*BB, MI, DL,
12016                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
12017
12018    // Load the old value of the high byte of the control word...
12019    unsigned OldCW =
12020      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
12021    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
12022                      CWFrameIdx);
12023
12024    // Set the high part to be round to zero...
12025    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
12026      .addImm(0xC7F);
12027
12028    // Reload the modified control word now...
12029    addFrameReference(BuildMI(*BB, MI, DL,
12030                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12031
12032    // Restore the memory image of control word to original value
12033    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
12034      .addReg(OldCW);
12035
12036    // Get the X86 opcode to use.
12037    unsigned Opc;
12038    switch (MI->getOpcode()) {
12039    default: llvm_unreachable("illegal opcode!");
12040    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
12041    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
12042    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
12043    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
12044    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
12045    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
12046    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
12047    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
12048    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
12049    }
12050
12051    X86AddressMode AM;
12052    MachineOperand &Op = MI->getOperand(0);
12053    if (Op.isReg()) {
12054      AM.BaseType = X86AddressMode::RegBase;
12055      AM.Base.Reg = Op.getReg();
12056    } else {
12057      AM.BaseType = X86AddressMode::FrameIndexBase;
12058      AM.Base.FrameIndex = Op.getIndex();
12059    }
12060    Op = MI->getOperand(1);
12061    if (Op.isImm())
12062      AM.Scale = Op.getImm();
12063    Op = MI->getOperand(2);
12064    if (Op.isImm())
12065      AM.IndexReg = Op.getImm();
12066    Op = MI->getOperand(3);
12067    if (Op.isGlobal()) {
12068      AM.GV = Op.getGlobal();
12069    } else {
12070      AM.Disp = Op.getImm();
12071    }
12072    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
12073                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
12074
12075    // Reload the original control word now.
12076    addFrameReference(BuildMI(*BB, MI, DL,
12077                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12078
12079    MI->eraseFromParent();   // The pseudo instruction is gone now.
12080    return BB;
12081  }
12082    // String/text processing lowering.
12083  case X86::PCMPISTRM128REG:
12084  case X86::VPCMPISTRM128REG:
12085    return EmitPCMP(MI, BB, 3, false /* in-mem */);
12086  case X86::PCMPISTRM128MEM:
12087  case X86::VPCMPISTRM128MEM:
12088    return EmitPCMP(MI, BB, 3, true /* in-mem */);
12089  case X86::PCMPESTRM128REG:
12090  case X86::VPCMPESTRM128REG:
12091    return EmitPCMP(MI, BB, 5, false /* in mem */);
12092  case X86::PCMPESTRM128MEM:
12093  case X86::VPCMPESTRM128MEM:
12094    return EmitPCMP(MI, BB, 5, true /* in mem */);
12095
12096    // Thread synchronization.
12097  case X86::MONITOR:
12098    return EmitMonitor(MI, BB);
12099  case X86::MWAIT:
12100    return EmitMwait(MI, BB);
12101
12102    // Atomic Lowering.
12103  case X86::ATOMAND32:
12104    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12105                                               X86::AND32ri, X86::MOV32rm,
12106                                               X86::LCMPXCHG32,
12107                                               X86::NOT32r, X86::EAX,
12108                                               X86::GR32RegisterClass);
12109  case X86::ATOMOR32:
12110    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
12111                                               X86::OR32ri, X86::MOV32rm,
12112                                               X86::LCMPXCHG32,
12113                                               X86::NOT32r, X86::EAX,
12114                                               X86::GR32RegisterClass);
12115  case X86::ATOMXOR32:
12116    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
12117                                               X86::XOR32ri, X86::MOV32rm,
12118                                               X86::LCMPXCHG32,
12119                                               X86::NOT32r, X86::EAX,
12120                                               X86::GR32RegisterClass);
12121  case X86::ATOMNAND32:
12122    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12123                                               X86::AND32ri, X86::MOV32rm,
12124                                               X86::LCMPXCHG32,
12125                                               X86::NOT32r, X86::EAX,
12126                                               X86::GR32RegisterClass, true);
12127  case X86::ATOMMIN32:
12128    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
12129  case X86::ATOMMAX32:
12130    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
12131  case X86::ATOMUMIN32:
12132    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
12133  case X86::ATOMUMAX32:
12134    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
12135
12136  case X86::ATOMAND16:
12137    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12138                                               X86::AND16ri, X86::MOV16rm,
12139                                               X86::LCMPXCHG16,
12140                                               X86::NOT16r, X86::AX,
12141                                               X86::GR16RegisterClass);
12142  case X86::ATOMOR16:
12143    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
12144                                               X86::OR16ri, X86::MOV16rm,
12145                                               X86::LCMPXCHG16,
12146                                               X86::NOT16r, X86::AX,
12147                                               X86::GR16RegisterClass);
12148  case X86::ATOMXOR16:
12149    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
12150                                               X86::XOR16ri, X86::MOV16rm,
12151                                               X86::LCMPXCHG16,
12152                                               X86::NOT16r, X86::AX,
12153                                               X86::GR16RegisterClass);
12154  case X86::ATOMNAND16:
12155    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12156                                               X86::AND16ri, X86::MOV16rm,
12157                                               X86::LCMPXCHG16,
12158                                               X86::NOT16r, X86::AX,
12159                                               X86::GR16RegisterClass, true);
12160  case X86::ATOMMIN16:
12161    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
12162  case X86::ATOMMAX16:
12163    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
12164  case X86::ATOMUMIN16:
12165    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
12166  case X86::ATOMUMAX16:
12167    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
12168
12169  case X86::ATOMAND8:
12170    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12171                                               X86::AND8ri, X86::MOV8rm,
12172                                               X86::LCMPXCHG8,
12173                                               X86::NOT8r, X86::AL,
12174                                               X86::GR8RegisterClass);
12175  case X86::ATOMOR8:
12176    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
12177                                               X86::OR8ri, X86::MOV8rm,
12178                                               X86::LCMPXCHG8,
12179                                               X86::NOT8r, X86::AL,
12180                                               X86::GR8RegisterClass);
12181  case X86::ATOMXOR8:
12182    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
12183                                               X86::XOR8ri, X86::MOV8rm,
12184                                               X86::LCMPXCHG8,
12185                                               X86::NOT8r, X86::AL,
12186                                               X86::GR8RegisterClass);
12187  case X86::ATOMNAND8:
12188    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12189                                               X86::AND8ri, X86::MOV8rm,
12190                                               X86::LCMPXCHG8,
12191                                               X86::NOT8r, X86::AL,
12192                                               X86::GR8RegisterClass, true);
12193  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
12194  // This group is for 64-bit host.
12195  case X86::ATOMAND64:
12196    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12197                                               X86::AND64ri32, X86::MOV64rm,
12198                                               X86::LCMPXCHG64,
12199                                               X86::NOT64r, X86::RAX,
12200                                               X86::GR64RegisterClass);
12201  case X86::ATOMOR64:
12202    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
12203                                               X86::OR64ri32, X86::MOV64rm,
12204                                               X86::LCMPXCHG64,
12205                                               X86::NOT64r, X86::RAX,
12206                                               X86::GR64RegisterClass);
12207  case X86::ATOMXOR64:
12208    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
12209                                               X86::XOR64ri32, X86::MOV64rm,
12210                                               X86::LCMPXCHG64,
12211                                               X86::NOT64r, X86::RAX,
12212                                               X86::GR64RegisterClass);
12213  case X86::ATOMNAND64:
12214    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12215                                               X86::AND64ri32, X86::MOV64rm,
12216                                               X86::LCMPXCHG64,
12217                                               X86::NOT64r, X86::RAX,
12218                                               X86::GR64RegisterClass, true);
12219  case X86::ATOMMIN64:
12220    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
12221  case X86::ATOMMAX64:
12222    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
12223  case X86::ATOMUMIN64:
12224    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
12225  case X86::ATOMUMAX64:
12226    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
12227
12228  // This group does 64-bit operations on a 32-bit host.
12229  case X86::ATOMAND6432:
12230    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12231                                               X86::AND32rr, X86::AND32rr,
12232                                               X86::AND32ri, X86::AND32ri,
12233                                               false);
12234  case X86::ATOMOR6432:
12235    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12236                                               X86::OR32rr, X86::OR32rr,
12237                                               X86::OR32ri, X86::OR32ri,
12238                                               false);
12239  case X86::ATOMXOR6432:
12240    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12241                                               X86::XOR32rr, X86::XOR32rr,
12242                                               X86::XOR32ri, X86::XOR32ri,
12243                                               false);
12244  case X86::ATOMNAND6432:
12245    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12246                                               X86::AND32rr, X86::AND32rr,
12247                                               X86::AND32ri, X86::AND32ri,
12248                                               true);
12249  case X86::ATOMADD6432:
12250    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12251                                               X86::ADD32rr, X86::ADC32rr,
12252                                               X86::ADD32ri, X86::ADC32ri,
12253                                               false);
12254  case X86::ATOMSUB6432:
12255    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12256                                               X86::SUB32rr, X86::SBB32rr,
12257                                               X86::SUB32ri, X86::SBB32ri,
12258                                               false);
12259  case X86::ATOMSWAP6432:
12260    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12261                                               X86::MOV32rr, X86::MOV32rr,
12262                                               X86::MOV32ri, X86::MOV32ri,
12263                                               false);
12264  case X86::VASTART_SAVE_XMM_REGS:
12265    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
12266
12267  case X86::VAARG_64:
12268    return EmitVAARG64WithCustomInserter(MI, BB);
12269  }
12270}
12271
12272//===----------------------------------------------------------------------===//
12273//                           X86 Optimization Hooks
12274//===----------------------------------------------------------------------===//
12275
12276void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
12277                                                       const APInt &Mask,
12278                                                       APInt &KnownZero,
12279                                                       APInt &KnownOne,
12280                                                       const SelectionDAG &DAG,
12281                                                       unsigned Depth) const {
12282  unsigned Opc = Op.getOpcode();
12283  assert((Opc >= ISD::BUILTIN_OP_END ||
12284          Opc == ISD::INTRINSIC_WO_CHAIN ||
12285          Opc == ISD::INTRINSIC_W_CHAIN ||
12286          Opc == ISD::INTRINSIC_VOID) &&
12287         "Should use MaskedValueIsZero if you don't know whether Op"
12288         " is a target node!");
12289
12290  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
12291  switch (Opc) {
12292  default: break;
12293  case X86ISD::ADD:
12294  case X86ISD::SUB:
12295  case X86ISD::ADC:
12296  case X86ISD::SBB:
12297  case X86ISD::SMUL:
12298  case X86ISD::UMUL:
12299  case X86ISD::INC:
12300  case X86ISD::DEC:
12301  case X86ISD::OR:
12302  case X86ISD::XOR:
12303  case X86ISD::AND:
12304    // These nodes' second result is a boolean.
12305    if (Op.getResNo() == 0)
12306      break;
12307    // Fallthrough
12308  case X86ISD::SETCC:
12309    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
12310                                       Mask.getBitWidth() - 1);
12311    break;
12312  }
12313}
12314
12315unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
12316                                                         unsigned Depth) const {
12317  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
12318  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
12319    return Op.getValueType().getScalarType().getSizeInBits();
12320
12321  // Fallback case.
12322  return 1;
12323}
12324
12325/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
12326/// node is a GlobalAddress + offset.
12327bool X86TargetLowering::isGAPlusOffset(SDNode *N,
12328                                       const GlobalValue* &GA,
12329                                       int64_t &Offset) const {
12330  if (N->getOpcode() == X86ISD::Wrapper) {
12331    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
12332      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
12333      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
12334      return true;
12335    }
12336  }
12337  return TargetLowering::isGAPlusOffset(N, GA, Offset);
12338}
12339
12340/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
12341/// same as extracting the high 128-bit part of 256-bit vector and then
12342/// inserting the result into the low part of a new 256-bit vector
12343static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
12344  EVT VT = SVOp->getValueType(0);
12345  int NumElems = VT.getVectorNumElements();
12346
12347  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12348  for (int i = 0, j = NumElems/2; i < NumElems/2; ++i, ++j)
12349    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12350        SVOp->getMaskElt(j) >= 0)
12351      return false;
12352
12353  return true;
12354}
12355
12356/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
12357/// same as extracting the low 128-bit part of 256-bit vector and then
12358/// inserting the result into the high part of a new 256-bit vector
12359static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
12360  EVT VT = SVOp->getValueType(0);
12361  int NumElems = VT.getVectorNumElements();
12362
12363  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12364  for (int i = NumElems/2, j = 0; i < NumElems; ++i, ++j)
12365    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12366        SVOp->getMaskElt(j) >= 0)
12367      return false;
12368
12369  return true;
12370}
12371
12372/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
12373static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
12374                                        TargetLowering::DAGCombinerInfo &DCI) {
12375  DebugLoc dl = N->getDebugLoc();
12376  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
12377  SDValue V1 = SVOp->getOperand(0);
12378  SDValue V2 = SVOp->getOperand(1);
12379  EVT VT = SVOp->getValueType(0);
12380  int NumElems = VT.getVectorNumElements();
12381
12382  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
12383      V2.getOpcode() == ISD::CONCAT_VECTORS) {
12384    //
12385    //                   0,0,0,...
12386    //                      |
12387    //    V      UNDEF    BUILD_VECTOR    UNDEF
12388    //     \      /           \           /
12389    //  CONCAT_VECTOR         CONCAT_VECTOR
12390    //         \                  /
12391    //          \                /
12392    //          RESULT: V + zero extended
12393    //
12394    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
12395        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
12396        V1.getOperand(1).getOpcode() != ISD::UNDEF)
12397      return SDValue();
12398
12399    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
12400      return SDValue();
12401
12402    // To match the shuffle mask, the first half of the mask should
12403    // be exactly the first vector, and all the rest a splat with the
12404    // first element of the second one.
12405    for (int i = 0; i < NumElems/2; ++i)
12406      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
12407          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
12408        return SDValue();
12409
12410    // Emit a zeroed vector and insert the desired subvector on its
12411    // first half.
12412    SDValue Zeros = getZeroVector(VT, true /* HasXMMInt */, DAG, dl);
12413    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0),
12414                         DAG.getConstant(0, MVT::i32), DAG, dl);
12415    return DCI.CombineTo(N, InsV);
12416  }
12417
12418  //===--------------------------------------------------------------------===//
12419  // Combine some shuffles into subvector extracts and inserts:
12420  //
12421
12422  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12423  if (isShuffleHigh128VectorInsertLow(SVOp)) {
12424    SDValue V = Extract128BitVector(V1, DAG.getConstant(NumElems/2, MVT::i32),
12425                                    DAG, dl);
12426    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12427                                      V, DAG.getConstant(0, MVT::i32), DAG, dl);
12428    return DCI.CombineTo(N, InsV);
12429  }
12430
12431  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12432  if (isShuffleLow128VectorInsertHigh(SVOp)) {
12433    SDValue V = Extract128BitVector(V1, DAG.getConstant(0, MVT::i32), DAG, dl);
12434    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12435                             V, DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
12436    return DCI.CombineTo(N, InsV);
12437  }
12438
12439  return SDValue();
12440}
12441
12442/// PerformShuffleCombine - Performs several different shuffle combines.
12443static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
12444                                     TargetLowering::DAGCombinerInfo &DCI,
12445                                     const X86Subtarget *Subtarget) {
12446  DebugLoc dl = N->getDebugLoc();
12447  EVT VT = N->getValueType(0);
12448
12449  // Don't create instructions with illegal types after legalize types has run.
12450  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12451  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
12452    return SDValue();
12453
12454  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
12455  if (Subtarget->hasAVX() && VT.getSizeInBits() == 256 &&
12456      N->getOpcode() == ISD::VECTOR_SHUFFLE)
12457    return PerformShuffleCombine256(N, DAG, DCI);
12458
12459  // Only handle 128 wide vector from here on.
12460  if (VT.getSizeInBits() != 128)
12461    return SDValue();
12462
12463  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
12464  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
12465  // consecutive, non-overlapping, and in the right order.
12466  SmallVector<SDValue, 16> Elts;
12467  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
12468    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
12469
12470  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
12471}
12472
12473/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
12474/// generation and convert it from being a bunch of shuffles and extracts
12475/// to a simple store and scalar loads to extract the elements.
12476static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
12477                                                const TargetLowering &TLI) {
12478  SDValue InputVector = N->getOperand(0);
12479
12480  // Only operate on vectors of 4 elements, where the alternative shuffling
12481  // gets to be more expensive.
12482  if (InputVector.getValueType() != MVT::v4i32)
12483    return SDValue();
12484
12485  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
12486  // single use which is a sign-extend or zero-extend, and all elements are
12487  // used.
12488  SmallVector<SDNode *, 4> Uses;
12489  unsigned ExtractedElements = 0;
12490  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
12491       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
12492    if (UI.getUse().getResNo() != InputVector.getResNo())
12493      return SDValue();
12494
12495    SDNode *Extract = *UI;
12496    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12497      return SDValue();
12498
12499    if (Extract->getValueType(0) != MVT::i32)
12500      return SDValue();
12501    if (!Extract->hasOneUse())
12502      return SDValue();
12503    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
12504        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
12505      return SDValue();
12506    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
12507      return SDValue();
12508
12509    // Record which element was extracted.
12510    ExtractedElements |=
12511      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
12512
12513    Uses.push_back(Extract);
12514  }
12515
12516  // If not all the elements were used, this may not be worthwhile.
12517  if (ExtractedElements != 15)
12518    return SDValue();
12519
12520  // Ok, we've now decided to do the transformation.
12521  DebugLoc dl = InputVector.getDebugLoc();
12522
12523  // Store the value to a temporary stack slot.
12524  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
12525  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
12526                            MachinePointerInfo(), false, false, 0);
12527
12528  // Replace each use (extract) with a load of the appropriate element.
12529  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
12530       UE = Uses.end(); UI != UE; ++UI) {
12531    SDNode *Extract = *UI;
12532
12533    // cOMpute the element's address.
12534    SDValue Idx = Extract->getOperand(1);
12535    unsigned EltSize =
12536        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
12537    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
12538    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
12539
12540    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
12541                                     StackPtr, OffsetVal);
12542
12543    // Load the scalar.
12544    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
12545                                     ScalarAddr, MachinePointerInfo(),
12546                                     false, false, 0);
12547
12548    // Replace the exact with the load.
12549    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
12550  }
12551
12552  // The replacement was made in place; don't return anything.
12553  return SDValue();
12554}
12555
12556/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
12557/// nodes.
12558static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
12559                                    const X86Subtarget *Subtarget) {
12560  DebugLoc DL = N->getDebugLoc();
12561  SDValue Cond = N->getOperand(0);
12562  // Get the LHS/RHS of the select.
12563  SDValue LHS = N->getOperand(1);
12564  SDValue RHS = N->getOperand(2);
12565  EVT VT = LHS.getValueType();
12566
12567  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
12568  // instructions match the semantics of the common C idiom x<y?x:y but not
12569  // x<=y?x:y, because of how they handle negative zero (which can be
12570  // ignored in unsafe-math mode).
12571  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
12572      VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
12573    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
12574
12575    unsigned Opcode = 0;
12576    // Check for x CC y ? x : y.
12577    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
12578        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
12579      switch (CC) {
12580      default: break;
12581      case ISD::SETULT:
12582        // Converting this to a min would handle NaNs incorrectly, and swapping
12583        // the operands would cause it to handle comparisons between positive
12584        // and negative zero incorrectly.
12585        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
12586          if (!UnsafeFPMath &&
12587              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
12588            break;
12589          std::swap(LHS, RHS);
12590        }
12591        Opcode = X86ISD::FMIN;
12592        break;
12593      case ISD::SETOLE:
12594        // Converting this to a min would handle comparisons between positive
12595        // and negative zero incorrectly.
12596        if (!UnsafeFPMath &&
12597            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
12598          break;
12599        Opcode = X86ISD::FMIN;
12600        break;
12601      case ISD::SETULE:
12602        // Converting this to a min would handle both negative zeros and NaNs
12603        // incorrectly, but we can swap the operands to fix both.
12604        std::swap(LHS, RHS);
12605      case ISD::SETOLT:
12606      case ISD::SETLT:
12607      case ISD::SETLE:
12608        Opcode = X86ISD::FMIN;
12609        break;
12610
12611      case ISD::SETOGE:
12612        // Converting this to a max would handle comparisons between positive
12613        // and negative zero incorrectly.
12614        if (!UnsafeFPMath &&
12615            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
12616          break;
12617        Opcode = X86ISD::FMAX;
12618        break;
12619      case ISD::SETUGT:
12620        // Converting this to a max would handle NaNs incorrectly, and swapping
12621        // the operands would cause it to handle comparisons between positive
12622        // and negative zero incorrectly.
12623        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
12624          if (!UnsafeFPMath &&
12625              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
12626            break;
12627          std::swap(LHS, RHS);
12628        }
12629        Opcode = X86ISD::FMAX;
12630        break;
12631      case ISD::SETUGE:
12632        // Converting this to a max would handle both negative zeros and NaNs
12633        // incorrectly, but we can swap the operands to fix both.
12634        std::swap(LHS, RHS);
12635      case ISD::SETOGT:
12636      case ISD::SETGT:
12637      case ISD::SETGE:
12638        Opcode = X86ISD::FMAX;
12639        break;
12640      }
12641    // Check for x CC y ? y : x -- a min/max with reversed arms.
12642    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
12643               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
12644      switch (CC) {
12645      default: break;
12646      case ISD::SETOGE:
12647        // Converting this to a min would handle comparisons between positive
12648        // and negative zero incorrectly, and swapping the operands would
12649        // cause it to handle NaNs incorrectly.
12650        if (!UnsafeFPMath &&
12651            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
12652          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
12653            break;
12654          std::swap(LHS, RHS);
12655        }
12656        Opcode = X86ISD::FMIN;
12657        break;
12658      case ISD::SETUGT:
12659        // Converting this to a min would handle NaNs incorrectly.
12660        if (!UnsafeFPMath &&
12661            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
12662          break;
12663        Opcode = X86ISD::FMIN;
12664        break;
12665      case ISD::SETUGE:
12666        // Converting this to a min would handle both negative zeros and NaNs
12667        // incorrectly, but we can swap the operands to fix both.
12668        std::swap(LHS, RHS);
12669      case ISD::SETOGT:
12670      case ISD::SETGT:
12671      case ISD::SETGE:
12672        Opcode = X86ISD::FMIN;
12673        break;
12674
12675      case ISD::SETULT:
12676        // Converting this to a max would handle NaNs incorrectly.
12677        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
12678          break;
12679        Opcode = X86ISD::FMAX;
12680        break;
12681      case ISD::SETOLE:
12682        // Converting this to a max would handle comparisons between positive
12683        // and negative zero incorrectly, and swapping the operands would
12684        // cause it to handle NaNs incorrectly.
12685        if (!UnsafeFPMath &&
12686            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
12687          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
12688            break;
12689          std::swap(LHS, RHS);
12690        }
12691        Opcode = X86ISD::FMAX;
12692        break;
12693      case ISD::SETULE:
12694        // Converting this to a max would handle both negative zeros and NaNs
12695        // incorrectly, but we can swap the operands to fix both.
12696        std::swap(LHS, RHS);
12697      case ISD::SETOLT:
12698      case ISD::SETLT:
12699      case ISD::SETLE:
12700        Opcode = X86ISD::FMAX;
12701        break;
12702      }
12703    }
12704
12705    if (Opcode)
12706      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
12707  }
12708
12709  // If this is a select between two integer constants, try to do some
12710  // optimizations.
12711  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
12712    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
12713      // Don't do this for crazy integer types.
12714      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
12715        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
12716        // so that TrueC (the true value) is larger than FalseC.
12717        bool NeedsCondInvert = false;
12718
12719        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
12720            // Efficiently invertible.
12721            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
12722             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
12723              isa<ConstantSDNode>(Cond.getOperand(1))))) {
12724          NeedsCondInvert = true;
12725          std::swap(TrueC, FalseC);
12726        }
12727
12728        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
12729        if (FalseC->getAPIntValue() == 0 &&
12730            TrueC->getAPIntValue().isPowerOf2()) {
12731          if (NeedsCondInvert) // Invert the condition if needed.
12732            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
12733                               DAG.getConstant(1, Cond.getValueType()));
12734
12735          // Zero extend the condition if needed.
12736          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
12737
12738          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
12739          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
12740                             DAG.getConstant(ShAmt, MVT::i8));
12741        }
12742
12743        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
12744        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
12745          if (NeedsCondInvert) // Invert the condition if needed.
12746            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
12747                               DAG.getConstant(1, Cond.getValueType()));
12748
12749          // Zero extend the condition if needed.
12750          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
12751                             FalseC->getValueType(0), Cond);
12752          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
12753                             SDValue(FalseC, 0));
12754        }
12755
12756        // Optimize cases that will turn into an LEA instruction.  This requires
12757        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
12758        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
12759          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
12760          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
12761
12762          bool isFastMultiplier = false;
12763          if (Diff < 10) {
12764            switch ((unsigned char)Diff) {
12765              default: break;
12766              case 1:  // result = add base, cond
12767              case 2:  // result = lea base(    , cond*2)
12768              case 3:  // result = lea base(cond, cond*2)
12769              case 4:  // result = lea base(    , cond*4)
12770              case 5:  // result = lea base(cond, cond*4)
12771              case 8:  // result = lea base(    , cond*8)
12772              case 9:  // result = lea base(cond, cond*8)
12773                isFastMultiplier = true;
12774                break;
12775            }
12776          }
12777
12778          if (isFastMultiplier) {
12779            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
12780            if (NeedsCondInvert) // Invert the condition if needed.
12781              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
12782                                 DAG.getConstant(1, Cond.getValueType()));
12783
12784            // Zero extend the condition if needed.
12785            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
12786                               Cond);
12787            // Scale the condition by the difference.
12788            if (Diff != 1)
12789              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
12790                                 DAG.getConstant(Diff, Cond.getValueType()));
12791
12792            // Add the base if non-zero.
12793            if (FalseC->getAPIntValue() != 0)
12794              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
12795                                 SDValue(FalseC, 0));
12796            return Cond;
12797          }
12798        }
12799      }
12800  }
12801
12802  return SDValue();
12803}
12804
12805/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
12806static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
12807                                  TargetLowering::DAGCombinerInfo &DCI) {
12808  DebugLoc DL = N->getDebugLoc();
12809
12810  // If the flag operand isn't dead, don't touch this CMOV.
12811  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
12812    return SDValue();
12813
12814  SDValue FalseOp = N->getOperand(0);
12815  SDValue TrueOp = N->getOperand(1);
12816  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
12817  SDValue Cond = N->getOperand(3);
12818  if (CC == X86::COND_E || CC == X86::COND_NE) {
12819    switch (Cond.getOpcode()) {
12820    default: break;
12821    case X86ISD::BSR:
12822    case X86ISD::BSF:
12823      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
12824      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
12825        return (CC == X86::COND_E) ? FalseOp : TrueOp;
12826    }
12827  }
12828
12829  // If this is a select between two integer constants, try to do some
12830  // optimizations.  Note that the operands are ordered the opposite of SELECT
12831  // operands.
12832  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
12833    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
12834      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
12835      // larger than FalseC (the false value).
12836      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
12837        CC = X86::GetOppositeBranchCondition(CC);
12838        std::swap(TrueC, FalseC);
12839      }
12840
12841      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
12842      // This is efficient for any integer data type (including i8/i16) and
12843      // shift amount.
12844      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
12845        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
12846                           DAG.getConstant(CC, MVT::i8), Cond);
12847
12848        // Zero extend the condition if needed.
12849        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
12850
12851        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
12852        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
12853                           DAG.getConstant(ShAmt, MVT::i8));
12854        if (N->getNumValues() == 2)  // Dead flag value?
12855          return DCI.CombineTo(N, Cond, SDValue());
12856        return Cond;
12857      }
12858
12859      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
12860      // for any integer data type, including i8/i16.
12861      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
12862        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
12863                           DAG.getConstant(CC, MVT::i8), Cond);
12864
12865        // Zero extend the condition if needed.
12866        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
12867                           FalseC->getValueType(0), Cond);
12868        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
12869                           SDValue(FalseC, 0));
12870
12871        if (N->getNumValues() == 2)  // Dead flag value?
12872          return DCI.CombineTo(N, Cond, SDValue());
12873        return Cond;
12874      }
12875
12876      // Optimize cases that will turn into an LEA instruction.  This requires
12877      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
12878      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
12879        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
12880        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
12881
12882        bool isFastMultiplier = false;
12883        if (Diff < 10) {
12884          switch ((unsigned char)Diff) {
12885          default: break;
12886          case 1:  // result = add base, cond
12887          case 2:  // result = lea base(    , cond*2)
12888          case 3:  // result = lea base(cond, cond*2)
12889          case 4:  // result = lea base(    , cond*4)
12890          case 5:  // result = lea base(cond, cond*4)
12891          case 8:  // result = lea base(    , cond*8)
12892          case 9:  // result = lea base(cond, cond*8)
12893            isFastMultiplier = true;
12894            break;
12895          }
12896        }
12897
12898        if (isFastMultiplier) {
12899          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
12900          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
12901                             DAG.getConstant(CC, MVT::i8), Cond);
12902          // Zero extend the condition if needed.
12903          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
12904                             Cond);
12905          // Scale the condition by the difference.
12906          if (Diff != 1)
12907            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
12908                               DAG.getConstant(Diff, Cond.getValueType()));
12909
12910          // Add the base if non-zero.
12911          if (FalseC->getAPIntValue() != 0)
12912            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
12913                               SDValue(FalseC, 0));
12914          if (N->getNumValues() == 2)  // Dead flag value?
12915            return DCI.CombineTo(N, Cond, SDValue());
12916          return Cond;
12917        }
12918      }
12919    }
12920  }
12921  return SDValue();
12922}
12923
12924
12925/// PerformMulCombine - Optimize a single multiply with constant into two
12926/// in order to implement it with two cheaper instructions, e.g.
12927/// LEA + SHL, LEA + LEA.
12928static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
12929                                 TargetLowering::DAGCombinerInfo &DCI) {
12930  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
12931    return SDValue();
12932
12933  EVT VT = N->getValueType(0);
12934  if (VT != MVT::i64)
12935    return SDValue();
12936
12937  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
12938  if (!C)
12939    return SDValue();
12940  uint64_t MulAmt = C->getZExtValue();
12941  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
12942    return SDValue();
12943
12944  uint64_t MulAmt1 = 0;
12945  uint64_t MulAmt2 = 0;
12946  if ((MulAmt % 9) == 0) {
12947    MulAmt1 = 9;
12948    MulAmt2 = MulAmt / 9;
12949  } else if ((MulAmt % 5) == 0) {
12950    MulAmt1 = 5;
12951    MulAmt2 = MulAmt / 5;
12952  } else if ((MulAmt % 3) == 0) {
12953    MulAmt1 = 3;
12954    MulAmt2 = MulAmt / 3;
12955  }
12956  if (MulAmt2 &&
12957      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
12958    DebugLoc DL = N->getDebugLoc();
12959
12960    if (isPowerOf2_64(MulAmt2) &&
12961        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
12962      // If second multiplifer is pow2, issue it first. We want the multiply by
12963      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
12964      // is an add.
12965      std::swap(MulAmt1, MulAmt2);
12966
12967    SDValue NewMul;
12968    if (isPowerOf2_64(MulAmt1))
12969      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
12970                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
12971    else
12972      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
12973                           DAG.getConstant(MulAmt1, VT));
12974
12975    if (isPowerOf2_64(MulAmt2))
12976      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
12977                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
12978    else
12979      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
12980                           DAG.getConstant(MulAmt2, VT));
12981
12982    // Do not add new nodes to DAG combiner worklist.
12983    DCI.CombineTo(N, NewMul, false);
12984  }
12985  return SDValue();
12986}
12987
12988static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
12989  SDValue N0 = N->getOperand(0);
12990  SDValue N1 = N->getOperand(1);
12991  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
12992  EVT VT = N0.getValueType();
12993
12994  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
12995  // since the result of setcc_c is all zero's or all ones.
12996  if (N1C && N0.getOpcode() == ISD::AND &&
12997      N0.getOperand(1).getOpcode() == ISD::Constant) {
12998    SDValue N00 = N0.getOperand(0);
12999    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
13000        ((N00.getOpcode() == ISD::ANY_EXTEND ||
13001          N00.getOpcode() == ISD::ZERO_EXTEND) &&
13002         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
13003      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
13004      APInt ShAmt = N1C->getAPIntValue();
13005      Mask = Mask.shl(ShAmt);
13006      if (Mask != 0)
13007        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
13008                           N00, DAG.getConstant(Mask, VT));
13009    }
13010  }
13011
13012  return SDValue();
13013}
13014
13015/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
13016///                       when possible.
13017static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
13018                                   const X86Subtarget *Subtarget) {
13019  EVT VT = N->getValueType(0);
13020  if (!VT.isVector() && VT.isInteger() &&
13021      N->getOpcode() == ISD::SHL)
13022    return PerformSHLCombine(N, DAG);
13023
13024  // On X86 with SSE2 support, we can transform this to a vector shift if
13025  // all elements are shifted by the same amount.  We can't do this in legalize
13026  // because the a constant vector is typically transformed to a constant pool
13027  // so we have no knowledge of the shift amount.
13028  if (!Subtarget->hasXMMInt())
13029    return SDValue();
13030
13031  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
13032    return SDValue();
13033
13034  SDValue ShAmtOp = N->getOperand(1);
13035  EVT EltVT = VT.getVectorElementType();
13036  DebugLoc DL = N->getDebugLoc();
13037  SDValue BaseShAmt = SDValue();
13038  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
13039    unsigned NumElts = VT.getVectorNumElements();
13040    unsigned i = 0;
13041    for (; i != NumElts; ++i) {
13042      SDValue Arg = ShAmtOp.getOperand(i);
13043      if (Arg.getOpcode() == ISD::UNDEF) continue;
13044      BaseShAmt = Arg;
13045      break;
13046    }
13047    for (; i != NumElts; ++i) {
13048      SDValue Arg = ShAmtOp.getOperand(i);
13049      if (Arg.getOpcode() == ISD::UNDEF) continue;
13050      if (Arg != BaseShAmt) {
13051        return SDValue();
13052      }
13053    }
13054  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
13055             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
13056    SDValue InVec = ShAmtOp.getOperand(0);
13057    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
13058      unsigned NumElts = InVec.getValueType().getVectorNumElements();
13059      unsigned i = 0;
13060      for (; i != NumElts; ++i) {
13061        SDValue Arg = InVec.getOperand(i);
13062        if (Arg.getOpcode() == ISD::UNDEF) continue;
13063        BaseShAmt = Arg;
13064        break;
13065      }
13066    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
13067       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
13068         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
13069         if (C->getZExtValue() == SplatIdx)
13070           BaseShAmt = InVec.getOperand(1);
13071       }
13072    }
13073    if (BaseShAmt.getNode() == 0)
13074      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
13075                              DAG.getIntPtrConstant(0));
13076  } else
13077    return SDValue();
13078
13079  // The shift amount is an i32.
13080  if (EltVT.bitsGT(MVT::i32))
13081    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
13082  else if (EltVT.bitsLT(MVT::i32))
13083    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
13084
13085  // The shift amount is identical so we can do a vector shift.
13086  SDValue  ValOp = N->getOperand(0);
13087  switch (N->getOpcode()) {
13088  default:
13089    llvm_unreachable("Unknown shift opcode!");
13090    break;
13091  case ISD::SHL:
13092    if (VT == MVT::v2i64)
13093      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13094                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
13095                         ValOp, BaseShAmt);
13096    if (VT == MVT::v4i32)
13097      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13098                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
13099                         ValOp, BaseShAmt);
13100    if (VT == MVT::v8i16)
13101      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13102                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
13103                         ValOp, BaseShAmt);
13104    break;
13105  case ISD::SRA:
13106    if (VT == MVT::v4i32)
13107      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13108                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
13109                         ValOp, BaseShAmt);
13110    if (VT == MVT::v8i16)
13111      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13112                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
13113                         ValOp, BaseShAmt);
13114    break;
13115  case ISD::SRL:
13116    if (VT == MVT::v2i64)
13117      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13118                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
13119                         ValOp, BaseShAmt);
13120    if (VT == MVT::v4i32)
13121      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13122                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
13123                         ValOp, BaseShAmt);
13124    if (VT ==  MVT::v8i16)
13125      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13126                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
13127                         ValOp, BaseShAmt);
13128    break;
13129  }
13130  return SDValue();
13131}
13132
13133
13134// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
13135// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
13136// and friends.  Likewise for OR -> CMPNEQSS.
13137static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
13138                            TargetLowering::DAGCombinerInfo &DCI,
13139                            const X86Subtarget *Subtarget) {
13140  unsigned opcode;
13141
13142  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
13143  // we're requiring SSE2 for both.
13144  if (Subtarget->hasXMMInt() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
13145    SDValue N0 = N->getOperand(0);
13146    SDValue N1 = N->getOperand(1);
13147    SDValue CMP0 = N0->getOperand(1);
13148    SDValue CMP1 = N1->getOperand(1);
13149    DebugLoc DL = N->getDebugLoc();
13150
13151    // The SETCCs should both refer to the same CMP.
13152    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
13153      return SDValue();
13154
13155    SDValue CMP00 = CMP0->getOperand(0);
13156    SDValue CMP01 = CMP0->getOperand(1);
13157    EVT     VT    = CMP00.getValueType();
13158
13159    if (VT == MVT::f32 || VT == MVT::f64) {
13160      bool ExpectingFlags = false;
13161      // Check for any users that want flags:
13162      for (SDNode::use_iterator UI = N->use_begin(),
13163             UE = N->use_end();
13164           !ExpectingFlags && UI != UE; ++UI)
13165        switch (UI->getOpcode()) {
13166        default:
13167        case ISD::BR_CC:
13168        case ISD::BRCOND:
13169        case ISD::SELECT:
13170          ExpectingFlags = true;
13171          break;
13172        case ISD::CopyToReg:
13173        case ISD::SIGN_EXTEND:
13174        case ISD::ZERO_EXTEND:
13175        case ISD::ANY_EXTEND:
13176          break;
13177        }
13178
13179      if (!ExpectingFlags) {
13180        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
13181        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
13182
13183        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
13184          X86::CondCode tmp = cc0;
13185          cc0 = cc1;
13186          cc1 = tmp;
13187        }
13188
13189        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
13190            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
13191          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
13192          X86ISD::NodeType NTOperator = is64BitFP ?
13193            X86ISD::FSETCCsd : X86ISD::FSETCCss;
13194          // FIXME: need symbolic constants for these magic numbers.
13195          // See X86ATTInstPrinter.cpp:printSSECC().
13196          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
13197          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
13198                                              DAG.getConstant(x86cc, MVT::i8));
13199          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
13200                                              OnesOrZeroesF);
13201          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
13202                                      DAG.getConstant(1, MVT::i32));
13203          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
13204          return OneBitOfTruth;
13205        }
13206      }
13207    }
13208  }
13209  return SDValue();
13210}
13211
13212/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
13213/// so it can be folded inside ANDNP.
13214static bool CanFoldXORWithAllOnes(const SDNode *N) {
13215  EVT VT = N->getValueType(0);
13216
13217  // Match direct AllOnes for 128 and 256-bit vectors
13218  if (ISD::isBuildVectorAllOnes(N))
13219    return true;
13220
13221  // Look through a bit convert.
13222  if (N->getOpcode() == ISD::BITCAST)
13223    N = N->getOperand(0).getNode();
13224
13225  // Sometimes the operand may come from a insert_subvector building a 256-bit
13226  // allones vector
13227  if (VT.getSizeInBits() == 256 &&
13228      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
13229    SDValue V1 = N->getOperand(0);
13230    SDValue V2 = N->getOperand(1);
13231
13232    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
13233        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
13234        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
13235        ISD::isBuildVectorAllOnes(V2.getNode()))
13236      return true;
13237  }
13238
13239  return false;
13240}
13241
13242static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
13243                                 TargetLowering::DAGCombinerInfo &DCI,
13244                                 const X86Subtarget *Subtarget) {
13245  if (DCI.isBeforeLegalizeOps())
13246    return SDValue();
13247
13248  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13249  if (R.getNode())
13250    return R;
13251
13252  // Want to form ANDNP nodes:
13253  // 1) In the hopes of then easily combining them with OR and AND nodes
13254  //    to form PBLEND/PSIGN.
13255  // 2) To match ANDN packed intrinsics
13256  EVT VT = N->getValueType(0);
13257  if (VT != MVT::v2i64 && VT != MVT::v4i64)
13258    return SDValue();
13259
13260  SDValue N0 = N->getOperand(0);
13261  SDValue N1 = N->getOperand(1);
13262  DebugLoc DL = N->getDebugLoc();
13263
13264  // Check LHS for vnot
13265  if (N0.getOpcode() == ISD::XOR &&
13266      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
13267      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
13268    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
13269
13270  // Check RHS for vnot
13271  if (N1.getOpcode() == ISD::XOR &&
13272      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
13273      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
13274    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
13275
13276  return SDValue();
13277}
13278
13279static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
13280                                TargetLowering::DAGCombinerInfo &DCI,
13281                                const X86Subtarget *Subtarget) {
13282  if (DCI.isBeforeLegalizeOps())
13283    return SDValue();
13284
13285  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13286  if (R.getNode())
13287    return R;
13288
13289  EVT VT = N->getValueType(0);
13290  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64 && VT != MVT::v2i64)
13291    return SDValue();
13292
13293  SDValue N0 = N->getOperand(0);
13294  SDValue N1 = N->getOperand(1);
13295
13296  // look for psign/blend
13297  if (Subtarget->hasSSSE3() || Subtarget->hasAVX()) {
13298    if (VT == MVT::v2i64) {
13299      // Canonicalize pandn to RHS
13300      if (N0.getOpcode() == X86ISD::ANDNP)
13301        std::swap(N0, N1);
13302      // or (and (m, x), (pandn m, y))
13303      if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
13304        SDValue Mask = N1.getOperand(0);
13305        SDValue X    = N1.getOperand(1);
13306        SDValue Y;
13307        if (N0.getOperand(0) == Mask)
13308          Y = N0.getOperand(1);
13309        if (N0.getOperand(1) == Mask)
13310          Y = N0.getOperand(0);
13311
13312        // Check to see if the mask appeared in both the AND and ANDNP and
13313        if (!Y.getNode())
13314          return SDValue();
13315
13316        // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
13317        if (Mask.getOpcode() != ISD::BITCAST ||
13318            X.getOpcode() != ISD::BITCAST ||
13319            Y.getOpcode() != ISD::BITCAST)
13320          return SDValue();
13321
13322        // Look through mask bitcast.
13323        Mask = Mask.getOperand(0);
13324        EVT MaskVT = Mask.getValueType();
13325
13326        // Validate that the Mask operand is a vector sra node.  The sra node
13327        // will be an intrinsic.
13328        if (Mask.getOpcode() != ISD::INTRINSIC_WO_CHAIN)
13329          return SDValue();
13330
13331        // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
13332        // there is no psrai.b
13333        switch (cast<ConstantSDNode>(Mask.getOperand(0))->getZExtValue()) {
13334        case Intrinsic::x86_sse2_psrai_w:
13335        case Intrinsic::x86_sse2_psrai_d:
13336          break;
13337        default: return SDValue();
13338        }
13339
13340        // Check that the SRA is all signbits.
13341        SDValue SraC = Mask.getOperand(2);
13342        unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
13343        unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
13344        if ((SraAmt + 1) != EltBits)
13345          return SDValue();
13346
13347        DebugLoc DL = N->getDebugLoc();
13348
13349        // Now we know we at least have a plendvb with the mask val.  See if
13350        // we can form a psignb/w/d.
13351        // psign = x.type == y.type == mask.type && y = sub(0, x);
13352        X = X.getOperand(0);
13353        Y = Y.getOperand(0);
13354        if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
13355            ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
13356            X.getValueType() == MaskVT && X.getValueType() == Y.getValueType()){
13357          unsigned Opc = 0;
13358          switch (EltBits) {
13359          case 8: Opc = X86ISD::PSIGNB; break;
13360          case 16: Opc = X86ISD::PSIGNW; break;
13361          case 32: Opc = X86ISD::PSIGND; break;
13362          default: break;
13363          }
13364          if (Opc) {
13365            SDValue Sign = DAG.getNode(Opc, DL, MaskVT, X, Mask.getOperand(1));
13366            return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Sign);
13367          }
13368        }
13369        // PBLENDVB only available on SSE 4.1
13370        if (!(Subtarget->hasSSE41() || Subtarget->hasAVX()))
13371          return SDValue();
13372
13373        X = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, X);
13374        Y = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Y);
13375        Mask = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Mask);
13376        Mask = DAG.getNode(ISD::VSELECT, DL, MVT::v16i8, Mask, X, Y);
13377        return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Mask);
13378      }
13379    }
13380  }
13381
13382  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
13383  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
13384    std::swap(N0, N1);
13385  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
13386    return SDValue();
13387  if (!N0.hasOneUse() || !N1.hasOneUse())
13388    return SDValue();
13389
13390  SDValue ShAmt0 = N0.getOperand(1);
13391  if (ShAmt0.getValueType() != MVT::i8)
13392    return SDValue();
13393  SDValue ShAmt1 = N1.getOperand(1);
13394  if (ShAmt1.getValueType() != MVT::i8)
13395    return SDValue();
13396  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
13397    ShAmt0 = ShAmt0.getOperand(0);
13398  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
13399    ShAmt1 = ShAmt1.getOperand(0);
13400
13401  DebugLoc DL = N->getDebugLoc();
13402  unsigned Opc = X86ISD::SHLD;
13403  SDValue Op0 = N0.getOperand(0);
13404  SDValue Op1 = N1.getOperand(0);
13405  if (ShAmt0.getOpcode() == ISD::SUB) {
13406    Opc = X86ISD::SHRD;
13407    std::swap(Op0, Op1);
13408    std::swap(ShAmt0, ShAmt1);
13409  }
13410
13411  unsigned Bits = VT.getSizeInBits();
13412  if (ShAmt1.getOpcode() == ISD::SUB) {
13413    SDValue Sum = ShAmt1.getOperand(0);
13414    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
13415      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
13416      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
13417        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
13418      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
13419        return DAG.getNode(Opc, DL, VT,
13420                           Op0, Op1,
13421                           DAG.getNode(ISD::TRUNCATE, DL,
13422                                       MVT::i8, ShAmt0));
13423    }
13424  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
13425    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
13426    if (ShAmt0C &&
13427        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
13428      return DAG.getNode(Opc, DL, VT,
13429                         N0.getOperand(0), N1.getOperand(0),
13430                         DAG.getNode(ISD::TRUNCATE, DL,
13431                                       MVT::i8, ShAmt0));
13432  }
13433
13434  return SDValue();
13435}
13436
13437/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
13438static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
13439                                   const X86Subtarget *Subtarget) {
13440  LoadSDNode *Ld = cast<LoadSDNode>(N);
13441  EVT RegVT = Ld->getValueType(0);
13442  EVT MemVT = Ld->getMemoryVT();
13443  DebugLoc dl = Ld->getDebugLoc();
13444  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13445
13446  ISD::LoadExtType Ext = Ld->getExtensionType();
13447
13448  // If this is a vector EXT Load then attempt to optimize it using a
13449  // shuffle. We need SSE4 for the shuffles.
13450  // TODO: It is possible to support ZExt by zeroing the undef values
13451  // during the shuffle phase or after the shuffle.
13452  if (RegVT.isVector() && Ext == ISD::EXTLOAD && Subtarget->hasSSE41()) {
13453    assert(MemVT != RegVT && "Cannot extend to the same type");
13454    assert(MemVT.isVector() && "Must load a vector from memory");
13455
13456    unsigned NumElems = RegVT.getVectorNumElements();
13457    unsigned RegSz = RegVT.getSizeInBits();
13458    unsigned MemSz = MemVT.getSizeInBits();
13459    assert(RegSz > MemSz && "Register size must be greater than the mem size");
13460    // All sizes must be a power of two
13461    if (!isPowerOf2_32(RegSz * MemSz * NumElems)) return SDValue();
13462
13463    // Attempt to load the original value using a single load op.
13464    // Find a scalar type which is equal to the loaded word size.
13465    MVT SclrLoadTy = MVT::i8;
13466    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
13467         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
13468      MVT Tp = (MVT::SimpleValueType)tp;
13469      if (TLI.isTypeLegal(Tp) &&  Tp.getSizeInBits() == MemSz) {
13470        SclrLoadTy = Tp;
13471        break;
13472      }
13473    }
13474
13475    // Proceed if a load word is found.
13476    if (SclrLoadTy.getSizeInBits() != MemSz) return SDValue();
13477
13478    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
13479      RegSz/SclrLoadTy.getSizeInBits());
13480
13481    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
13482                                  RegSz/MemVT.getScalarType().getSizeInBits());
13483    // Can't shuffle using an illegal type.
13484    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
13485
13486    // Perform a single load.
13487    SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
13488                                  Ld->getBasePtr(),
13489                                  Ld->getPointerInfo(), Ld->isVolatile(),
13490                                  Ld->isNonTemporal(), Ld->getAlignment());
13491
13492    // Insert the word loaded into a vector.
13493    SDValue ScalarInVector = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
13494      LoadUnitVecVT, ScalarLoad);
13495
13496    // Bitcast the loaded value to a vector of the original element type, in
13497    // the size of the target vector type.
13498    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, ScalarInVector);
13499    unsigned SizeRatio = RegSz/MemSz;
13500
13501    // Redistribute the loaded elements into the different locations.
13502    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
13503    for (unsigned i = 0; i < NumElems; i++) ShuffleVec[i*SizeRatio] = i;
13504
13505    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
13506                                DAG.getUNDEF(SlicedVec.getValueType()),
13507                                ShuffleVec.data());
13508
13509    // Bitcast to the requested type.
13510    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
13511    // Replace the original load with the new sequence
13512    // and return the new chain.
13513    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Shuff);
13514    return SDValue(ScalarLoad.getNode(), 1);
13515  }
13516
13517  return SDValue();
13518}
13519
13520/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
13521static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
13522                                   const X86Subtarget *Subtarget) {
13523  StoreSDNode *St = cast<StoreSDNode>(N);
13524  EVT VT = St->getValue().getValueType();
13525  EVT StVT = St->getMemoryVT();
13526  DebugLoc dl = St->getDebugLoc();
13527  SDValue StoredVal = St->getOperand(1);
13528  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13529
13530  // If we are saving a concatination of two XMM registers, perform two stores.
13531  // This is better in Sandy Bridge cause one 256-bit mem op is done via two
13532  // 128-bit ones. If in the future the cost becomes only one memory access the
13533  // first version would be better.
13534  if (VT.getSizeInBits() == 256 &&
13535    StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
13536    StoredVal.getNumOperands() == 2) {
13537
13538    SDValue Value0 = StoredVal.getOperand(0);
13539    SDValue Value1 = StoredVal.getOperand(1);
13540
13541    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
13542    SDValue Ptr0 = St->getBasePtr();
13543    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
13544
13545    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
13546                                St->getPointerInfo(), St->isVolatile(),
13547                                St->isNonTemporal(), St->getAlignment());
13548    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
13549                                St->getPointerInfo(), St->isVolatile(),
13550                                St->isNonTemporal(), St->getAlignment());
13551    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
13552  }
13553
13554  // Optimize trunc store (of multiple scalars) to shuffle and store.
13555  // First, pack all of the elements in one place. Next, store to memory
13556  // in fewer chunks.
13557  if (St->isTruncatingStore() && VT.isVector()) {
13558    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13559    unsigned NumElems = VT.getVectorNumElements();
13560    assert(StVT != VT && "Cannot truncate to the same type");
13561    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
13562    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
13563
13564    // From, To sizes and ElemCount must be pow of two
13565    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
13566
13567    unsigned SizeRatio  = FromSz / ToSz;
13568
13569    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
13570
13571    // Create a type on which we perform the shuffle
13572    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
13573            StVT.getScalarType(), NumElems*SizeRatio);
13574
13575    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
13576
13577    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
13578    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
13579    for (unsigned i = 0; i < NumElems; i++ ) ShuffleVec[i] = i * SizeRatio;
13580
13581    // Can't shuffle using an illegal type
13582    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
13583
13584    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
13585                                DAG.getUNDEF(WideVec.getValueType()),
13586                                ShuffleVec.data());
13587    // At this point all of the data is stored at the bottom of the
13588    // register. We now need to save it to mem.
13589
13590    // Find the largest store unit
13591    MVT StoreType = MVT::i8;
13592    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
13593         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
13594      MVT Tp = (MVT::SimpleValueType)tp;
13595      if (TLI.isTypeLegal(Tp) && StoreType.getSizeInBits() < NumElems * ToSz)
13596        StoreType = Tp;
13597    }
13598
13599    // Bitcast the original vector into a vector of store-size units
13600    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
13601            StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
13602    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
13603    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
13604    SmallVector<SDValue, 8> Chains;
13605    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
13606                                        TLI.getPointerTy());
13607    SDValue Ptr = St->getBasePtr();
13608
13609    // Perform one or more big stores into memory.
13610    for (unsigned i = 0; i < (ToSz*NumElems)/StoreType.getSizeInBits() ; i++) {
13611      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
13612                                   StoreType, ShuffWide,
13613                                   DAG.getIntPtrConstant(i));
13614      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
13615                                St->getPointerInfo(), St->isVolatile(),
13616                                St->isNonTemporal(), St->getAlignment());
13617      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
13618      Chains.push_back(Ch);
13619    }
13620
13621    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
13622                               Chains.size());
13623  }
13624
13625
13626  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
13627  // the FP state in cases where an emms may be missing.
13628  // A preferable solution to the general problem is to figure out the right
13629  // places to insert EMMS.  This qualifies as a quick hack.
13630
13631  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
13632  if (VT.getSizeInBits() != 64)
13633    return SDValue();
13634
13635  const Function *F = DAG.getMachineFunction().getFunction();
13636  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
13637  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
13638                     && Subtarget->hasXMMInt();
13639  if ((VT.isVector() ||
13640       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
13641      isa<LoadSDNode>(St->getValue()) &&
13642      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
13643      St->getChain().hasOneUse() && !St->isVolatile()) {
13644    SDNode* LdVal = St->getValue().getNode();
13645    LoadSDNode *Ld = 0;
13646    int TokenFactorIndex = -1;
13647    SmallVector<SDValue, 8> Ops;
13648    SDNode* ChainVal = St->getChain().getNode();
13649    // Must be a store of a load.  We currently handle two cases:  the load
13650    // is a direct child, and it's under an intervening TokenFactor.  It is
13651    // possible to dig deeper under nested TokenFactors.
13652    if (ChainVal == LdVal)
13653      Ld = cast<LoadSDNode>(St->getChain());
13654    else if (St->getValue().hasOneUse() &&
13655             ChainVal->getOpcode() == ISD::TokenFactor) {
13656      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
13657        if (ChainVal->getOperand(i).getNode() == LdVal) {
13658          TokenFactorIndex = i;
13659          Ld = cast<LoadSDNode>(St->getValue());
13660        } else
13661          Ops.push_back(ChainVal->getOperand(i));
13662      }
13663    }
13664
13665    if (!Ld || !ISD::isNormalLoad(Ld))
13666      return SDValue();
13667
13668    // If this is not the MMX case, i.e. we are just turning i64 load/store
13669    // into f64 load/store, avoid the transformation if there are multiple
13670    // uses of the loaded value.
13671    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
13672      return SDValue();
13673
13674    DebugLoc LdDL = Ld->getDebugLoc();
13675    DebugLoc StDL = N->getDebugLoc();
13676    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
13677    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
13678    // pair instead.
13679    if (Subtarget->is64Bit() || F64IsLegal) {
13680      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
13681      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
13682                                  Ld->getPointerInfo(), Ld->isVolatile(),
13683                                  Ld->isNonTemporal(), Ld->getAlignment());
13684      SDValue NewChain = NewLd.getValue(1);
13685      if (TokenFactorIndex != -1) {
13686        Ops.push_back(NewChain);
13687        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
13688                               Ops.size());
13689      }
13690      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
13691                          St->getPointerInfo(),
13692                          St->isVolatile(), St->isNonTemporal(),
13693                          St->getAlignment());
13694    }
13695
13696    // Otherwise, lower to two pairs of 32-bit loads / stores.
13697    SDValue LoAddr = Ld->getBasePtr();
13698    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
13699                                 DAG.getConstant(4, MVT::i32));
13700
13701    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
13702                               Ld->getPointerInfo(),
13703                               Ld->isVolatile(), Ld->isNonTemporal(),
13704                               Ld->getAlignment());
13705    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
13706                               Ld->getPointerInfo().getWithOffset(4),
13707                               Ld->isVolatile(), Ld->isNonTemporal(),
13708                               MinAlign(Ld->getAlignment(), 4));
13709
13710    SDValue NewChain = LoLd.getValue(1);
13711    if (TokenFactorIndex != -1) {
13712      Ops.push_back(LoLd);
13713      Ops.push_back(HiLd);
13714      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
13715                             Ops.size());
13716    }
13717
13718    LoAddr = St->getBasePtr();
13719    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
13720                         DAG.getConstant(4, MVT::i32));
13721
13722    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
13723                                St->getPointerInfo(),
13724                                St->isVolatile(), St->isNonTemporal(),
13725                                St->getAlignment());
13726    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
13727                                St->getPointerInfo().getWithOffset(4),
13728                                St->isVolatile(),
13729                                St->isNonTemporal(),
13730                                MinAlign(St->getAlignment(), 4));
13731    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
13732  }
13733  return SDValue();
13734}
13735
13736/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
13737/// X86ISD::FXOR nodes.
13738static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
13739  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
13740  // F[X]OR(0.0, x) -> x
13741  // F[X]OR(x, 0.0) -> x
13742  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
13743    if (C->getValueAPF().isPosZero())
13744      return N->getOperand(1);
13745  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
13746    if (C->getValueAPF().isPosZero())
13747      return N->getOperand(0);
13748  return SDValue();
13749}
13750
13751/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
13752static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
13753  // FAND(0.0, x) -> 0.0
13754  // FAND(x, 0.0) -> 0.0
13755  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
13756    if (C->getValueAPF().isPosZero())
13757      return N->getOperand(0);
13758  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
13759    if (C->getValueAPF().isPosZero())
13760      return N->getOperand(1);
13761  return SDValue();
13762}
13763
13764static SDValue PerformBTCombine(SDNode *N,
13765                                SelectionDAG &DAG,
13766                                TargetLowering::DAGCombinerInfo &DCI) {
13767  // BT ignores high bits in the bit index operand.
13768  SDValue Op1 = N->getOperand(1);
13769  if (Op1.hasOneUse()) {
13770    unsigned BitWidth = Op1.getValueSizeInBits();
13771    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
13772    APInt KnownZero, KnownOne;
13773    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
13774                                          !DCI.isBeforeLegalizeOps());
13775    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13776    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
13777        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
13778      DCI.CommitTargetLoweringOpt(TLO);
13779  }
13780  return SDValue();
13781}
13782
13783static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
13784  SDValue Op = N->getOperand(0);
13785  if (Op.getOpcode() == ISD::BITCAST)
13786    Op = Op.getOperand(0);
13787  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
13788  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
13789      VT.getVectorElementType().getSizeInBits() ==
13790      OpVT.getVectorElementType().getSizeInBits()) {
13791    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
13792  }
13793  return SDValue();
13794}
13795
13796static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
13797  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
13798  //           (and (i32 x86isd::setcc_carry), 1)
13799  // This eliminates the zext. This transformation is necessary because
13800  // ISD::SETCC is always legalized to i8.
13801  DebugLoc dl = N->getDebugLoc();
13802  SDValue N0 = N->getOperand(0);
13803  EVT VT = N->getValueType(0);
13804  if (N0.getOpcode() == ISD::AND &&
13805      N0.hasOneUse() &&
13806      N0.getOperand(0).hasOneUse()) {
13807    SDValue N00 = N0.getOperand(0);
13808    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
13809      return SDValue();
13810    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
13811    if (!C || C->getZExtValue() != 1)
13812      return SDValue();
13813    return DAG.getNode(ISD::AND, dl, VT,
13814                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
13815                                   N00.getOperand(0), N00.getOperand(1)),
13816                       DAG.getConstant(1, VT));
13817  }
13818
13819  return SDValue();
13820}
13821
13822// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
13823static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
13824  unsigned X86CC = N->getConstantOperandVal(0);
13825  SDValue EFLAG = N->getOperand(1);
13826  DebugLoc DL = N->getDebugLoc();
13827
13828  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
13829  // a zext and produces an all-ones bit which is more useful than 0/1 in some
13830  // cases.
13831  if (X86CC == X86::COND_B)
13832    return DAG.getNode(ISD::AND, DL, MVT::i8,
13833                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
13834                                   DAG.getConstant(X86CC, MVT::i8), EFLAG),
13835                       DAG.getConstant(1, MVT::i8));
13836
13837  return SDValue();
13838}
13839
13840static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
13841                                        const X86TargetLowering *XTLI) {
13842  SDValue Op0 = N->getOperand(0);
13843  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
13844  // a 32-bit target where SSE doesn't support i64->FP operations.
13845  if (Op0.getOpcode() == ISD::LOAD) {
13846    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
13847    EVT VT = Ld->getValueType(0);
13848    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
13849        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
13850        !XTLI->getSubtarget()->is64Bit() &&
13851        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
13852      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
13853                                          Ld->getChain(), Op0, DAG);
13854      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
13855      return FILDChain;
13856    }
13857  }
13858  return SDValue();
13859}
13860
13861// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
13862static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
13863                                 X86TargetLowering::DAGCombinerInfo &DCI) {
13864  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
13865  // the result is either zero or one (depending on the input carry bit).
13866  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
13867  if (X86::isZeroNode(N->getOperand(0)) &&
13868      X86::isZeroNode(N->getOperand(1)) &&
13869      // We don't have a good way to replace an EFLAGS use, so only do this when
13870      // dead right now.
13871      SDValue(N, 1).use_empty()) {
13872    DebugLoc DL = N->getDebugLoc();
13873    EVT VT = N->getValueType(0);
13874    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
13875    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
13876                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
13877                                           DAG.getConstant(X86::COND_B,MVT::i8),
13878                                           N->getOperand(2)),
13879                               DAG.getConstant(1, VT));
13880    return DCI.CombineTo(N, Res1, CarryOut);
13881  }
13882
13883  return SDValue();
13884}
13885
13886// fold (add Y, (sete  X, 0)) -> adc  0, Y
13887//      (add Y, (setne X, 0)) -> sbb -1, Y
13888//      (sub (sete  X, 0), Y) -> sbb  0, Y
13889//      (sub (setne X, 0), Y) -> adc -1, Y
13890static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
13891  DebugLoc DL = N->getDebugLoc();
13892
13893  // Look through ZExts.
13894  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
13895  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
13896    return SDValue();
13897
13898  SDValue SetCC = Ext.getOperand(0);
13899  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
13900    return SDValue();
13901
13902  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
13903  if (CC != X86::COND_E && CC != X86::COND_NE)
13904    return SDValue();
13905
13906  SDValue Cmp = SetCC.getOperand(1);
13907  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
13908      !X86::isZeroNode(Cmp.getOperand(1)) ||
13909      !Cmp.getOperand(0).getValueType().isInteger())
13910    return SDValue();
13911
13912  SDValue CmpOp0 = Cmp.getOperand(0);
13913  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
13914                               DAG.getConstant(1, CmpOp0.getValueType()));
13915
13916  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
13917  if (CC == X86::COND_NE)
13918    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
13919                       DL, OtherVal.getValueType(), OtherVal,
13920                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
13921  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
13922                     DL, OtherVal.getValueType(), OtherVal,
13923                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
13924}
13925
13926static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG) {
13927  SDValue Op0 = N->getOperand(0);
13928  SDValue Op1 = N->getOperand(1);
13929
13930  // X86 can't encode an immediate LHS of a sub. See if we can push the
13931  // negation into a preceding instruction.
13932  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
13933    // If the RHS of the sub is a XOR with one use and a constant, invert the
13934    // immediate. Then add one to the LHS of the sub so we can turn
13935    // X-Y -> X+~Y+1, saving one register.
13936    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
13937        isa<ConstantSDNode>(Op1.getOperand(1))) {
13938      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
13939      EVT VT = Op0.getValueType();
13940      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
13941                                   Op1.getOperand(0),
13942                                   DAG.getConstant(~XorC, VT));
13943      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
13944                         DAG.getConstant(C->getAPIntValue()+1, VT));
13945    }
13946  }
13947
13948  return OptimizeConditionalInDecrement(N, DAG);
13949}
13950
13951SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
13952                                             DAGCombinerInfo &DCI) const {
13953  SelectionDAG &DAG = DCI.DAG;
13954  switch (N->getOpcode()) {
13955  default: break;
13956  case ISD::EXTRACT_VECTOR_ELT:
13957    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
13958  case ISD::VSELECT:
13959  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
13960  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
13961  case ISD::ADD:            return OptimizeConditionalInDecrement(N, DAG);
13962  case ISD::SUB:            return PerformSubCombine(N, DAG);
13963  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
13964  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
13965  case ISD::SHL:
13966  case ISD::SRA:
13967  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
13968  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
13969  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
13970  case ISD::LOAD:           return PerformLOADCombine(N, DAG, Subtarget);
13971  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
13972  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
13973  case X86ISD::FXOR:
13974  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
13975  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
13976  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
13977  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
13978  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
13979  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
13980  case X86ISD::SHUFPS:      // Handle all target specific shuffles
13981  case X86ISD::SHUFPD:
13982  case X86ISD::PALIGN:
13983  case X86ISD::PUNPCKHBW:
13984  case X86ISD::PUNPCKHWD:
13985  case X86ISD::PUNPCKHDQ:
13986  case X86ISD::PUNPCKHQDQ:
13987  case X86ISD::UNPCKHPS:
13988  case X86ISD::UNPCKHPD:
13989  case X86ISD::VUNPCKHPSY:
13990  case X86ISD::VUNPCKHPDY:
13991  case X86ISD::PUNPCKLBW:
13992  case X86ISD::PUNPCKLWD:
13993  case X86ISD::PUNPCKLDQ:
13994  case X86ISD::PUNPCKLQDQ:
13995  case X86ISD::UNPCKLPS:
13996  case X86ISD::UNPCKLPD:
13997  case X86ISD::VUNPCKLPSY:
13998  case X86ISD::VUNPCKLPDY:
13999  case X86ISD::MOVHLPS:
14000  case X86ISD::MOVLHPS:
14001  case X86ISD::PSHUFD:
14002  case X86ISD::PSHUFHW:
14003  case X86ISD::PSHUFLW:
14004  case X86ISD::MOVSS:
14005  case X86ISD::MOVSD:
14006  case X86ISD::VPERMILPS:
14007  case X86ISD::VPERMILPSY:
14008  case X86ISD::VPERMILPD:
14009  case X86ISD::VPERMILPDY:
14010  case X86ISD::VPERM2F128:
14011  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
14012  }
14013
14014  return SDValue();
14015}
14016
14017/// isTypeDesirableForOp - Return true if the target has native support for
14018/// the specified value type and it is 'desirable' to use the type for the
14019/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
14020/// instruction encodings are longer and some i16 instructions are slow.
14021bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
14022  if (!isTypeLegal(VT))
14023    return false;
14024  if (VT != MVT::i16)
14025    return true;
14026
14027  switch (Opc) {
14028  default:
14029    return true;
14030  case ISD::LOAD:
14031  case ISD::SIGN_EXTEND:
14032  case ISD::ZERO_EXTEND:
14033  case ISD::ANY_EXTEND:
14034  case ISD::SHL:
14035  case ISD::SRL:
14036  case ISD::SUB:
14037  case ISD::ADD:
14038  case ISD::MUL:
14039  case ISD::AND:
14040  case ISD::OR:
14041  case ISD::XOR:
14042    return false;
14043  }
14044}
14045
14046/// IsDesirableToPromoteOp - This method query the target whether it is
14047/// beneficial for dag combiner to promote the specified node. If true, it
14048/// should return the desired promotion type by reference.
14049bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
14050  EVT VT = Op.getValueType();
14051  if (VT != MVT::i16)
14052    return false;
14053
14054  bool Promote = false;
14055  bool Commute = false;
14056  switch (Op.getOpcode()) {
14057  default: break;
14058  case ISD::LOAD: {
14059    LoadSDNode *LD = cast<LoadSDNode>(Op);
14060    // If the non-extending load has a single use and it's not live out, then it
14061    // might be folded.
14062    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
14063                                                     Op.hasOneUse()*/) {
14064      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
14065             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
14066        // The only case where we'd want to promote LOAD (rather then it being
14067        // promoted as an operand is when it's only use is liveout.
14068        if (UI->getOpcode() != ISD::CopyToReg)
14069          return false;
14070      }
14071    }
14072    Promote = true;
14073    break;
14074  }
14075  case ISD::SIGN_EXTEND:
14076  case ISD::ZERO_EXTEND:
14077  case ISD::ANY_EXTEND:
14078    Promote = true;
14079    break;
14080  case ISD::SHL:
14081  case ISD::SRL: {
14082    SDValue N0 = Op.getOperand(0);
14083    // Look out for (store (shl (load), x)).
14084    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
14085      return false;
14086    Promote = true;
14087    break;
14088  }
14089  case ISD::ADD:
14090  case ISD::MUL:
14091  case ISD::AND:
14092  case ISD::OR:
14093  case ISD::XOR:
14094    Commute = true;
14095    // fallthrough
14096  case ISD::SUB: {
14097    SDValue N0 = Op.getOperand(0);
14098    SDValue N1 = Op.getOperand(1);
14099    if (!Commute && MayFoldLoad(N1))
14100      return false;
14101    // Avoid disabling potential load folding opportunities.
14102    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
14103      return false;
14104    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
14105      return false;
14106    Promote = true;
14107  }
14108  }
14109
14110  PVT = MVT::i32;
14111  return Promote;
14112}
14113
14114//===----------------------------------------------------------------------===//
14115//                           X86 Inline Assembly Support
14116//===----------------------------------------------------------------------===//
14117
14118bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
14119  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
14120
14121  std::string AsmStr = IA->getAsmString();
14122
14123  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
14124  SmallVector<StringRef, 4> AsmPieces;
14125  SplitString(AsmStr, AsmPieces, ";\n");
14126
14127  switch (AsmPieces.size()) {
14128  default: return false;
14129  case 1:
14130    AsmStr = AsmPieces[0];
14131    AsmPieces.clear();
14132    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
14133
14134    // FIXME: this should verify that we are targeting a 486 or better.  If not,
14135    // we will turn this bswap into something that will be lowered to logical ops
14136    // instead of emitting the bswap asm.  For now, we don't support 486 or lower
14137    // so don't worry about this.
14138    // bswap $0
14139    if (AsmPieces.size() == 2 &&
14140        (AsmPieces[0] == "bswap" ||
14141         AsmPieces[0] == "bswapq" ||
14142         AsmPieces[0] == "bswapl") &&
14143        (AsmPieces[1] == "$0" ||
14144         AsmPieces[1] == "${0:q}")) {
14145      // No need to check constraints, nothing other than the equivalent of
14146      // "=r,0" would be valid here.
14147      IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14148      if (!Ty || Ty->getBitWidth() % 16 != 0)
14149        return false;
14150      return IntrinsicLowering::LowerToByteSwap(CI);
14151    }
14152    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
14153    if (CI->getType()->isIntegerTy(16) &&
14154        AsmPieces.size() == 3 &&
14155        (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
14156        AsmPieces[1] == "$$8," &&
14157        AsmPieces[2] == "${0:w}" &&
14158        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
14159      AsmPieces.clear();
14160      const std::string &ConstraintsStr = IA->getConstraintString();
14161      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
14162      std::sort(AsmPieces.begin(), AsmPieces.end());
14163      if (AsmPieces.size() == 4 &&
14164          AsmPieces[0] == "~{cc}" &&
14165          AsmPieces[1] == "~{dirflag}" &&
14166          AsmPieces[2] == "~{flags}" &&
14167          AsmPieces[3] == "~{fpsr}") {
14168        IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14169        if (!Ty || Ty->getBitWidth() % 16 != 0)
14170          return false;
14171        return IntrinsicLowering::LowerToByteSwap(CI);
14172      }
14173    }
14174    break;
14175  case 3:
14176    if (CI->getType()->isIntegerTy(32) &&
14177        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
14178      SmallVector<StringRef, 4> Words;
14179      SplitString(AsmPieces[0], Words, " \t,");
14180      if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
14181          Words[2] == "${0:w}") {
14182        Words.clear();
14183        SplitString(AsmPieces[1], Words, " \t,");
14184        if (Words.size() == 3 && Words[0] == "rorl" && Words[1] == "$$16" &&
14185            Words[2] == "$0") {
14186          Words.clear();
14187          SplitString(AsmPieces[2], Words, " \t,");
14188          if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
14189              Words[2] == "${0:w}") {
14190            AsmPieces.clear();
14191            const std::string &ConstraintsStr = IA->getConstraintString();
14192            SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
14193            std::sort(AsmPieces.begin(), AsmPieces.end());
14194            if (AsmPieces.size() == 4 &&
14195                AsmPieces[0] == "~{cc}" &&
14196                AsmPieces[1] == "~{dirflag}" &&
14197                AsmPieces[2] == "~{flags}" &&
14198                AsmPieces[3] == "~{fpsr}") {
14199              IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14200              if (!Ty || Ty->getBitWidth() % 16 != 0)
14201                return false;
14202              return IntrinsicLowering::LowerToByteSwap(CI);
14203            }
14204          }
14205        }
14206      }
14207    }
14208
14209    if (CI->getType()->isIntegerTy(64)) {
14210      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
14211      if (Constraints.size() >= 2 &&
14212          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
14213          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
14214        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
14215        SmallVector<StringRef, 4> Words;
14216        SplitString(AsmPieces[0], Words, " \t");
14217        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
14218          Words.clear();
14219          SplitString(AsmPieces[1], Words, " \t");
14220          if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
14221            Words.clear();
14222            SplitString(AsmPieces[2], Words, " \t,");
14223            if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
14224                Words[2] == "%edx") {
14225              IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14226              if (!Ty || Ty->getBitWidth() % 16 != 0)
14227                return false;
14228              return IntrinsicLowering::LowerToByteSwap(CI);
14229            }
14230          }
14231        }
14232      }
14233    }
14234    break;
14235  }
14236  return false;
14237}
14238
14239
14240
14241/// getConstraintType - Given a constraint letter, return the type of
14242/// constraint it is for this target.
14243X86TargetLowering::ConstraintType
14244X86TargetLowering::getConstraintType(const std::string &Constraint) const {
14245  if (Constraint.size() == 1) {
14246    switch (Constraint[0]) {
14247    case 'R':
14248    case 'q':
14249    case 'Q':
14250    case 'f':
14251    case 't':
14252    case 'u':
14253    case 'y':
14254    case 'x':
14255    case 'Y':
14256    case 'l':
14257      return C_RegisterClass;
14258    case 'a':
14259    case 'b':
14260    case 'c':
14261    case 'd':
14262    case 'S':
14263    case 'D':
14264    case 'A':
14265      return C_Register;
14266    case 'I':
14267    case 'J':
14268    case 'K':
14269    case 'L':
14270    case 'M':
14271    case 'N':
14272    case 'G':
14273    case 'C':
14274    case 'e':
14275    case 'Z':
14276      return C_Other;
14277    default:
14278      break;
14279    }
14280  }
14281  return TargetLowering::getConstraintType(Constraint);
14282}
14283
14284/// Examine constraint type and operand type and determine a weight value.
14285/// This object must already have been set up with the operand type
14286/// and the current alternative constraint selected.
14287TargetLowering::ConstraintWeight
14288  X86TargetLowering::getSingleConstraintMatchWeight(
14289    AsmOperandInfo &info, const char *constraint) const {
14290  ConstraintWeight weight = CW_Invalid;
14291  Value *CallOperandVal = info.CallOperandVal;
14292    // If we don't have a value, we can't do a match,
14293    // but allow it at the lowest weight.
14294  if (CallOperandVal == NULL)
14295    return CW_Default;
14296  Type *type = CallOperandVal->getType();
14297  // Look at the constraint type.
14298  switch (*constraint) {
14299  default:
14300    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
14301  case 'R':
14302  case 'q':
14303  case 'Q':
14304  case 'a':
14305  case 'b':
14306  case 'c':
14307  case 'd':
14308  case 'S':
14309  case 'D':
14310  case 'A':
14311    if (CallOperandVal->getType()->isIntegerTy())
14312      weight = CW_SpecificReg;
14313    break;
14314  case 'f':
14315  case 't':
14316  case 'u':
14317      if (type->isFloatingPointTy())
14318        weight = CW_SpecificReg;
14319      break;
14320  case 'y':
14321      if (type->isX86_MMXTy() && Subtarget->hasMMX())
14322        weight = CW_SpecificReg;
14323      break;
14324  case 'x':
14325  case 'Y':
14326    if ((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasXMM())
14327      weight = CW_Register;
14328    break;
14329  case 'I':
14330    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
14331      if (C->getZExtValue() <= 31)
14332        weight = CW_Constant;
14333    }
14334    break;
14335  case 'J':
14336    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14337      if (C->getZExtValue() <= 63)
14338        weight = CW_Constant;
14339    }
14340    break;
14341  case 'K':
14342    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14343      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
14344        weight = CW_Constant;
14345    }
14346    break;
14347  case 'L':
14348    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14349      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
14350        weight = CW_Constant;
14351    }
14352    break;
14353  case 'M':
14354    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14355      if (C->getZExtValue() <= 3)
14356        weight = CW_Constant;
14357    }
14358    break;
14359  case 'N':
14360    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14361      if (C->getZExtValue() <= 0xff)
14362        weight = CW_Constant;
14363    }
14364    break;
14365  case 'G':
14366  case 'C':
14367    if (dyn_cast<ConstantFP>(CallOperandVal)) {
14368      weight = CW_Constant;
14369    }
14370    break;
14371  case 'e':
14372    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14373      if ((C->getSExtValue() >= -0x80000000LL) &&
14374          (C->getSExtValue() <= 0x7fffffffLL))
14375        weight = CW_Constant;
14376    }
14377    break;
14378  case 'Z':
14379    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14380      if (C->getZExtValue() <= 0xffffffff)
14381        weight = CW_Constant;
14382    }
14383    break;
14384  }
14385  return weight;
14386}
14387
14388/// LowerXConstraint - try to replace an X constraint, which matches anything,
14389/// with another that has more specific requirements based on the type of the
14390/// corresponding operand.
14391const char *X86TargetLowering::
14392LowerXConstraint(EVT ConstraintVT) const {
14393  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
14394  // 'f' like normal targets.
14395  if (ConstraintVT.isFloatingPoint()) {
14396    if (Subtarget->hasXMMInt())
14397      return "Y";
14398    if (Subtarget->hasXMM())
14399      return "x";
14400  }
14401
14402  return TargetLowering::LowerXConstraint(ConstraintVT);
14403}
14404
14405/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
14406/// vector.  If it is invalid, don't add anything to Ops.
14407void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
14408                                                     std::string &Constraint,
14409                                                     std::vector<SDValue>&Ops,
14410                                                     SelectionDAG &DAG) const {
14411  SDValue Result(0, 0);
14412
14413  // Only support length 1 constraints for now.
14414  if (Constraint.length() > 1) return;
14415
14416  char ConstraintLetter = Constraint[0];
14417  switch (ConstraintLetter) {
14418  default: break;
14419  case 'I':
14420    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14421      if (C->getZExtValue() <= 31) {
14422        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
14423        break;
14424      }
14425    }
14426    return;
14427  case 'J':
14428    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14429      if (C->getZExtValue() <= 63) {
14430        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
14431        break;
14432      }
14433    }
14434    return;
14435  case 'K':
14436    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14437      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
14438        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
14439        break;
14440      }
14441    }
14442    return;
14443  case 'N':
14444    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14445      if (C->getZExtValue() <= 255) {
14446        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
14447        break;
14448      }
14449    }
14450    return;
14451  case 'e': {
14452    // 32-bit signed value
14453    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14454      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
14455                                           C->getSExtValue())) {
14456        // Widen to 64 bits here to get it sign extended.
14457        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
14458        break;
14459      }
14460    // FIXME gcc accepts some relocatable values here too, but only in certain
14461    // memory models; it's complicated.
14462    }
14463    return;
14464  }
14465  case 'Z': {
14466    // 32-bit unsigned value
14467    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14468      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
14469                                           C->getZExtValue())) {
14470        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
14471        break;
14472      }
14473    }
14474    // FIXME gcc accepts some relocatable values here too, but only in certain
14475    // memory models; it's complicated.
14476    return;
14477  }
14478  case 'i': {
14479    // Literal immediates are always ok.
14480    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
14481      // Widen to 64 bits here to get it sign extended.
14482      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
14483      break;
14484    }
14485
14486    // In any sort of PIC mode addresses need to be computed at runtime by
14487    // adding in a register or some sort of table lookup.  These can't
14488    // be used as immediates.
14489    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
14490      return;
14491
14492    // If we are in non-pic codegen mode, we allow the address of a global (with
14493    // an optional displacement) to be used with 'i'.
14494    GlobalAddressSDNode *GA = 0;
14495    int64_t Offset = 0;
14496
14497    // Match either (GA), (GA+C), (GA+C1+C2), etc.
14498    while (1) {
14499      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
14500        Offset += GA->getOffset();
14501        break;
14502      } else if (Op.getOpcode() == ISD::ADD) {
14503        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
14504          Offset += C->getZExtValue();
14505          Op = Op.getOperand(0);
14506          continue;
14507        }
14508      } else if (Op.getOpcode() == ISD::SUB) {
14509        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
14510          Offset += -C->getZExtValue();
14511          Op = Op.getOperand(0);
14512          continue;
14513        }
14514      }
14515
14516      // Otherwise, this isn't something we can handle, reject it.
14517      return;
14518    }
14519
14520    const GlobalValue *GV = GA->getGlobal();
14521    // If we require an extra load to get this address, as in PIC mode, we
14522    // can't accept it.
14523    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
14524                                                        getTargetMachine())))
14525      return;
14526
14527    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
14528                                        GA->getValueType(0), Offset);
14529    break;
14530  }
14531  }
14532
14533  if (Result.getNode()) {
14534    Ops.push_back(Result);
14535    return;
14536  }
14537  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
14538}
14539
14540std::pair<unsigned, const TargetRegisterClass*>
14541X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
14542                                                EVT VT) const {
14543  // First, see if this is a constraint that directly corresponds to an LLVM
14544  // register class.
14545  if (Constraint.size() == 1) {
14546    // GCC Constraint Letters
14547    switch (Constraint[0]) {
14548    default: break;
14549      // TODO: Slight differences here in allocation order and leaving
14550      // RIP in the class. Do they matter any more here than they do
14551      // in the normal allocation?
14552    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
14553      if (Subtarget->is64Bit()) {
14554	if (VT == MVT::i32 || VT == MVT::f32)
14555	  return std::make_pair(0U, X86::GR32RegisterClass);
14556	else if (VT == MVT::i16)
14557	  return std::make_pair(0U, X86::GR16RegisterClass);
14558	else if (VT == MVT::i8 || VT == MVT::i1)
14559	  return std::make_pair(0U, X86::GR8RegisterClass);
14560	else if (VT == MVT::i64 || VT == MVT::f64)
14561	  return std::make_pair(0U, X86::GR64RegisterClass);
14562	break;
14563      }
14564      // 32-bit fallthrough
14565    case 'Q':   // Q_REGS
14566      if (VT == MVT::i32 || VT == MVT::f32)
14567	return std::make_pair(0U, X86::GR32_ABCDRegisterClass);
14568      else if (VT == MVT::i16)
14569	return std::make_pair(0U, X86::GR16_ABCDRegisterClass);
14570      else if (VT == MVT::i8 || VT == MVT::i1)
14571	return std::make_pair(0U, X86::GR8_ABCD_LRegisterClass);
14572      else if (VT == MVT::i64)
14573	return std::make_pair(0U, X86::GR64_ABCDRegisterClass);
14574      break;
14575    case 'r':   // GENERAL_REGS
14576    case 'l':   // INDEX_REGS
14577      if (VT == MVT::i8 || VT == MVT::i1)
14578        return std::make_pair(0U, X86::GR8RegisterClass);
14579      if (VT == MVT::i16)
14580        return std::make_pair(0U, X86::GR16RegisterClass);
14581      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
14582        return std::make_pair(0U, X86::GR32RegisterClass);
14583      return std::make_pair(0U, X86::GR64RegisterClass);
14584    case 'R':   // LEGACY_REGS
14585      if (VT == MVT::i8 || VT == MVT::i1)
14586        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
14587      if (VT == MVT::i16)
14588        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
14589      if (VT == MVT::i32 || !Subtarget->is64Bit())
14590        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
14591      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
14592    case 'f':  // FP Stack registers.
14593      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
14594      // value to the correct fpstack register class.
14595      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
14596        return std::make_pair(0U, X86::RFP32RegisterClass);
14597      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
14598        return std::make_pair(0U, X86::RFP64RegisterClass);
14599      return std::make_pair(0U, X86::RFP80RegisterClass);
14600    case 'y':   // MMX_REGS if MMX allowed.
14601      if (!Subtarget->hasMMX()) break;
14602      return std::make_pair(0U, X86::VR64RegisterClass);
14603    case 'Y':   // SSE_REGS if SSE2 allowed
14604      if (!Subtarget->hasXMMInt()) break;
14605      // FALL THROUGH.
14606    case 'x':   // SSE_REGS if SSE1 allowed
14607      if (!Subtarget->hasXMM()) break;
14608
14609      switch (VT.getSimpleVT().SimpleTy) {
14610      default: break;
14611      // Scalar SSE types.
14612      case MVT::f32:
14613      case MVT::i32:
14614        return std::make_pair(0U, X86::FR32RegisterClass);
14615      case MVT::f64:
14616      case MVT::i64:
14617        return std::make_pair(0U, X86::FR64RegisterClass);
14618      // Vector types.
14619      case MVT::v16i8:
14620      case MVT::v8i16:
14621      case MVT::v4i32:
14622      case MVT::v2i64:
14623      case MVT::v4f32:
14624      case MVT::v2f64:
14625        return std::make_pair(0U, X86::VR128RegisterClass);
14626      }
14627      break;
14628    }
14629  }
14630
14631  // Use the default implementation in TargetLowering to convert the register
14632  // constraint into a member of a register class.
14633  std::pair<unsigned, const TargetRegisterClass*> Res;
14634  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
14635
14636  // Not found as a standard register?
14637  if (Res.second == 0) {
14638    // Map st(0) -> st(7) -> ST0
14639    if (Constraint.size() == 7 && Constraint[0] == '{' &&
14640        tolower(Constraint[1]) == 's' &&
14641        tolower(Constraint[2]) == 't' &&
14642        Constraint[3] == '(' &&
14643        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
14644        Constraint[5] == ')' &&
14645        Constraint[6] == '}') {
14646
14647      Res.first = X86::ST0+Constraint[4]-'0';
14648      Res.second = X86::RFP80RegisterClass;
14649      return Res;
14650    }
14651
14652    // GCC allows "st(0)" to be called just plain "st".
14653    if (StringRef("{st}").equals_lower(Constraint)) {
14654      Res.first = X86::ST0;
14655      Res.second = X86::RFP80RegisterClass;
14656      return Res;
14657    }
14658
14659    // flags -> EFLAGS
14660    if (StringRef("{flags}").equals_lower(Constraint)) {
14661      Res.first = X86::EFLAGS;
14662      Res.second = X86::CCRRegisterClass;
14663      return Res;
14664    }
14665
14666    // 'A' means EAX + EDX.
14667    if (Constraint == "A") {
14668      Res.first = X86::EAX;
14669      Res.second = X86::GR32_ADRegisterClass;
14670      return Res;
14671    }
14672    return Res;
14673  }
14674
14675  // Otherwise, check to see if this is a register class of the wrong value
14676  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
14677  // turn into {ax},{dx}.
14678  if (Res.second->hasType(VT))
14679    return Res;   // Correct type already, nothing to do.
14680
14681  // All of the single-register GCC register classes map their values onto
14682  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
14683  // really want an 8-bit or 32-bit register, map to the appropriate register
14684  // class and return the appropriate register.
14685  if (Res.second == X86::GR16RegisterClass) {
14686    if (VT == MVT::i8) {
14687      unsigned DestReg = 0;
14688      switch (Res.first) {
14689      default: break;
14690      case X86::AX: DestReg = X86::AL; break;
14691      case X86::DX: DestReg = X86::DL; break;
14692      case X86::CX: DestReg = X86::CL; break;
14693      case X86::BX: DestReg = X86::BL; break;
14694      }
14695      if (DestReg) {
14696        Res.first = DestReg;
14697        Res.second = X86::GR8RegisterClass;
14698      }
14699    } else if (VT == MVT::i32) {
14700      unsigned DestReg = 0;
14701      switch (Res.first) {
14702      default: break;
14703      case X86::AX: DestReg = X86::EAX; break;
14704      case X86::DX: DestReg = X86::EDX; break;
14705      case X86::CX: DestReg = X86::ECX; break;
14706      case X86::BX: DestReg = X86::EBX; break;
14707      case X86::SI: DestReg = X86::ESI; break;
14708      case X86::DI: DestReg = X86::EDI; break;
14709      case X86::BP: DestReg = X86::EBP; break;
14710      case X86::SP: DestReg = X86::ESP; break;
14711      }
14712      if (DestReg) {
14713        Res.first = DestReg;
14714        Res.second = X86::GR32RegisterClass;
14715      }
14716    } else if (VT == MVT::i64) {
14717      unsigned DestReg = 0;
14718      switch (Res.first) {
14719      default: break;
14720      case X86::AX: DestReg = X86::RAX; break;
14721      case X86::DX: DestReg = X86::RDX; break;
14722      case X86::CX: DestReg = X86::RCX; break;
14723      case X86::BX: DestReg = X86::RBX; break;
14724      case X86::SI: DestReg = X86::RSI; break;
14725      case X86::DI: DestReg = X86::RDI; break;
14726      case X86::BP: DestReg = X86::RBP; break;
14727      case X86::SP: DestReg = X86::RSP; break;
14728      }
14729      if (DestReg) {
14730        Res.first = DestReg;
14731        Res.second = X86::GR64RegisterClass;
14732      }
14733    }
14734  } else if (Res.second == X86::FR32RegisterClass ||
14735             Res.second == X86::FR64RegisterClass ||
14736             Res.second == X86::VR128RegisterClass) {
14737    // Handle references to XMM physical registers that got mapped into the
14738    // wrong class.  This can happen with constraints like {xmm0} where the
14739    // target independent register mapper will just pick the first match it can
14740    // find, ignoring the required type.
14741    if (VT == MVT::f32)
14742      Res.second = X86::FR32RegisterClass;
14743    else if (VT == MVT::f64)
14744      Res.second = X86::FR64RegisterClass;
14745    else if (X86::VR128RegisterClass->hasType(VT))
14746      Res.second = X86::VR128RegisterClass;
14747  }
14748
14749  return Res;
14750}
14751