X86ISelLowering.cpp revision 2753ae314f656eab6d42c918469ce4ebf422cee5
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/PseudoSourceValue.h"
39#include "llvm/MC/MCAsmInfo.h"
40#include "llvm/MC/MCContext.h"
41#include "llvm/MC/MCExpr.h"
42#include "llvm/MC/MCSymbol.h"
43#include "llvm/ADT/BitVector.h"
44#include "llvm/ADT/SmallSet.h"
45#include "llvm/ADT/Statistic.h"
46#include "llvm/ADT/StringExtras.h"
47#include "llvm/ADT/VectorExtras.h"
48#include "llvm/Support/CallSite.h"
49#include "llvm/Support/Debug.h"
50#include "llvm/Support/Dwarf.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/raw_ostream.h"
54using namespace llvm;
55using namespace dwarf;
56
57STATISTIC(NumTailCalls, "Number of tail calls");
58
59// Forward declarations.
60static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
61                       SDValue V2);
62
63static SDValue Insert128BitVector(SDValue Result,
64                                  SDValue Vec,
65                                  SDValue Idx,
66                                  SelectionDAG &DAG,
67                                  DebugLoc dl);
68
69static SDValue Extract128BitVector(SDValue Vec,
70                                   SDValue Idx,
71                                   SelectionDAG &DAG,
72                                   DebugLoc dl);
73
74/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
75/// sets things up to match to an AVX VEXTRACTF128 instruction or a
76/// simple subregister reference.  Idx is an index in the 128 bits we
77/// want.  It need not be aligned to a 128-bit bounday.  That makes
78/// lowering EXTRACT_VECTOR_ELT operations easier.
79static SDValue Extract128BitVector(SDValue Vec,
80                                   SDValue Idx,
81                                   SelectionDAG &DAG,
82                                   DebugLoc dl) {
83  EVT VT = Vec.getValueType();
84  assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
85  EVT ElVT = VT.getVectorElementType();
86  int Factor = VT.getSizeInBits()/128;
87  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
88                                  VT.getVectorNumElements()/Factor);
89
90  // Extract from UNDEF is UNDEF.
91  if (Vec.getOpcode() == ISD::UNDEF)
92    return DAG.getNode(ISD::UNDEF, dl, ResultVT);
93
94  if (isa<ConstantSDNode>(Idx)) {
95    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
96
97    // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
98    // we can match to VEXTRACTF128.
99    unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
100
101    // This is the index of the first element of the 128-bit chunk
102    // we want.
103    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
104                                 * ElemsPerChunk);
105
106    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
107    SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
108                                 VecIdx);
109
110    return Result;
111  }
112
113  return SDValue();
114}
115
116/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
117/// sets things up to match to an AVX VINSERTF128 instruction or a
118/// simple superregister reference.  Idx is an index in the 128 bits
119/// we want.  It need not be aligned to a 128-bit bounday.  That makes
120/// lowering INSERT_VECTOR_ELT operations easier.
121static SDValue Insert128BitVector(SDValue Result,
122                                  SDValue Vec,
123                                  SDValue Idx,
124                                  SelectionDAG &DAG,
125                                  DebugLoc dl) {
126  if (isa<ConstantSDNode>(Idx)) {
127    EVT VT = Vec.getValueType();
128    assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
129
130    EVT ElVT = VT.getVectorElementType();
131    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
132    EVT ResultVT = Result.getValueType();
133
134    // Insert the relevant 128 bits.
135    unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
136
137    // This is the index of the first element of the 128-bit chunk
138    // we want.
139    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
140                                 * ElemsPerChunk);
141
142    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
143    Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
144                         VecIdx);
145    return Result;
146  }
147
148  return SDValue();
149}
150
151static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
152  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
153  bool is64Bit = Subtarget->is64Bit();
154
155  if (Subtarget->isTargetEnvMacho()) {
156    if (is64Bit)
157      return new X8664_MachoTargetObjectFile();
158    return new TargetLoweringObjectFileMachO();
159  }
160
161  if (Subtarget->isTargetELF())
162    return new TargetLoweringObjectFileELF();
163  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
164    return new TargetLoweringObjectFileCOFF();
165  llvm_unreachable("unknown subtarget type");
166}
167
168X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
169  : TargetLowering(TM, createTLOF(TM)) {
170  Subtarget = &TM.getSubtarget<X86Subtarget>();
171  X86ScalarSSEf64 = Subtarget->hasXMMInt() || Subtarget->hasAVX();
172  X86ScalarSSEf32 = Subtarget->hasXMM() || Subtarget->hasAVX();
173  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
174
175  RegInfo = TM.getRegisterInfo();
176  TD = getTargetData();
177
178  // Set up the TargetLowering object.
179  static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
180
181  // X86 is weird, it always uses i8 for shift amounts and setcc results.
182  setBooleanContents(ZeroOrOneBooleanContent);
183
184  // For 64-bit since we have so many registers use the ILP scheduler, for
185  // 32-bit code use the register pressure specific scheduling.
186  if (Subtarget->is64Bit())
187    setSchedulingPreference(Sched::ILP);
188  else
189    setSchedulingPreference(Sched::RegPressure);
190  setStackPointerRegisterToSaveRestore(X86StackPtr);
191
192  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
193    // Setup Windows compiler runtime calls.
194    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
195    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
196    setLibcallName(RTLIB::SREM_I64, "_allrem");
197    setLibcallName(RTLIB::UREM_I64, "_aullrem");
198    setLibcallName(RTLIB::MUL_I64, "_allmul");
199    setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2");
200    setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2");
201    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
202    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
203    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
204    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
205    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
206    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C);
207    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C);
208  }
209
210  if (Subtarget->isTargetDarwin()) {
211    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
212    setUseUnderscoreSetJmp(false);
213    setUseUnderscoreLongJmp(false);
214  } else if (Subtarget->isTargetMingw()) {
215    // MS runtime is weird: it exports _setjmp, but longjmp!
216    setUseUnderscoreSetJmp(true);
217    setUseUnderscoreLongJmp(false);
218  } else {
219    setUseUnderscoreSetJmp(true);
220    setUseUnderscoreLongJmp(true);
221  }
222
223  // Set up the register classes.
224  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
225  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
226  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
227  if (Subtarget->is64Bit())
228    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
229
230  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
231
232  // We don't accept any truncstore of integer registers.
233  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
234  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
235  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
236  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
237  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
238  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
239
240  // SETOEQ and SETUNE require checking two conditions.
241  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
242  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
243  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
244  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
245  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
246  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
247
248  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
249  // operation.
250  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
251  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
252  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
253
254  if (Subtarget->is64Bit()) {
255    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
256    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
257  } else if (!UseSoftFloat) {
258    // We have an algorithm for SSE2->double, and we turn this into a
259    // 64-bit FILD followed by conditional FADD for other targets.
260    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
261    // We have an algorithm for SSE2, and we turn this into a 64-bit
262    // FILD for other targets.
263    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
264  }
265
266  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
267  // this operation.
268  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
269  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
270
271  if (!UseSoftFloat) {
272    // SSE has no i16 to fp conversion, only i32
273    if (X86ScalarSSEf32) {
274      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
275      // f32 and f64 cases are Legal, f80 case is not
276      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
277    } else {
278      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
279      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
280    }
281  } else {
282    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
283    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
284  }
285
286  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
287  // are Legal, f80 is custom lowered.
288  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
289  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
290
291  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
292  // this operation.
293  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
294  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
295
296  if (X86ScalarSSEf32) {
297    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
298    // f32 and f64 cases are Legal, f80 case is not
299    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
300  } else {
301    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
302    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
303  }
304
305  // Handle FP_TO_UINT by promoting the destination to a larger signed
306  // conversion.
307  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
308  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
309  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
310
311  if (Subtarget->is64Bit()) {
312    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
313    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
314  } else if (!UseSoftFloat) {
315    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
316      // Expand FP_TO_UINT into a select.
317      // FIXME: We would like to use a Custom expander here eventually to do
318      // the optimal thing for SSE vs. the default expansion in the legalizer.
319      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
320    else
321      // With SSE3 we can use fisttpll to convert to a signed i64; without
322      // SSE, we're stuck with a fistpll.
323      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
324  }
325
326  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
327  if (!X86ScalarSSEf64) {
328    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
329    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
330    if (Subtarget->is64Bit()) {
331      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
332      // Without SSE, i64->f64 goes through memory.
333      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
334    }
335  }
336
337  // Scalar integer divide and remainder are lowered to use operations that
338  // produce two results, to match the available instructions. This exposes
339  // the two-result form to trivial CSE, which is able to combine x/y and x%y
340  // into a single instruction.
341  //
342  // Scalar integer multiply-high is also lowered to use two-result
343  // operations, to match the available instructions. However, plain multiply
344  // (low) operations are left as Legal, as there are single-result
345  // instructions for this in x86. Using the two-result multiply instructions
346  // when both high and low results are needed must be arranged by dagcombine.
347  for (unsigned i = 0, e = 4; i != e; ++i) {
348    MVT VT = IntVTs[i];
349    setOperationAction(ISD::MULHS, VT, Expand);
350    setOperationAction(ISD::MULHU, VT, Expand);
351    setOperationAction(ISD::SDIV, VT, Expand);
352    setOperationAction(ISD::UDIV, VT, Expand);
353    setOperationAction(ISD::SREM, VT, Expand);
354    setOperationAction(ISD::UREM, VT, Expand);
355
356    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
357    setOperationAction(ISD::ADDC, VT, Custom);
358    setOperationAction(ISD::ADDE, VT, Custom);
359    setOperationAction(ISD::SUBC, VT, Custom);
360    setOperationAction(ISD::SUBE, VT, Custom);
361  }
362
363  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
364  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
365  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
366  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
367  if (Subtarget->is64Bit())
368    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
369  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
370  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
371  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
372  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
373  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
374  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
375  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
376  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
377
378  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
379  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
380  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
381  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
382  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
383  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
384  if (Subtarget->is64Bit()) {
385    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
386    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
387  }
388
389  if (Subtarget->hasPOPCNT()) {
390    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
391  } else {
392    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
393    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
394    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
395    if (Subtarget->is64Bit())
396      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
397  }
398
399  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
400  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
401
402  // These should be promoted to a larger select which is supported.
403  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
404  // X86 wants to expand cmov itself.
405  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
406  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
407  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
408  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
409  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
410  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
411  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
412  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
413  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
414  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
415  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
416  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
417  if (Subtarget->is64Bit()) {
418    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
419    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
420  }
421  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
422
423  // Darwin ABI issue.
424  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
425  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
426  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
427  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
428  if (Subtarget->is64Bit())
429    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
430  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
431  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
432  if (Subtarget->is64Bit()) {
433    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
434    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
435    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
436    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
437    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
438  }
439  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
440  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
441  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
442  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
443  if (Subtarget->is64Bit()) {
444    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
445    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
446    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
447  }
448
449  if (Subtarget->hasXMM())
450    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
451
452  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
453  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
454
455  // On X86 and X86-64, atomic operations are lowered to locked instructions.
456  // Locked instructions, in turn, have implicit fence semantics (all memory
457  // operations are flushed before issuing the locked instruction, and they
458  // are not buffered), so we can fold away the common pattern of
459  // fence-atomic-fence.
460  setShouldFoldAtomicFences(true);
461
462  // Expand certain atomics
463  for (unsigned i = 0, e = 4; i != e; ++i) {
464    MVT VT = IntVTs[i];
465    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
466    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
467    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
468  }
469
470  if (!Subtarget->is64Bit()) {
471    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
472    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
473    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
474    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
475    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
476    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
477    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
478    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
479  }
480
481  if (Subtarget->hasCmpxchg16b()) {
482    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
483  }
484
485  // FIXME - use subtarget debug flags
486  if (!Subtarget->isTargetDarwin() &&
487      !Subtarget->isTargetELF() &&
488      !Subtarget->isTargetCygMing()) {
489    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
490  }
491
492  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
493  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
494  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
495  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
496  if (Subtarget->is64Bit()) {
497    setExceptionPointerRegister(X86::RAX);
498    setExceptionSelectorRegister(X86::RDX);
499  } else {
500    setExceptionPointerRegister(X86::EAX);
501    setExceptionSelectorRegister(X86::EDX);
502  }
503  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
504  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
505
506  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
507
508  setOperationAction(ISD::TRAP, MVT::Other, Legal);
509
510  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
511  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
512  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
513  if (Subtarget->is64Bit()) {
514    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
515    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
516  } else {
517    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
518    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
519  }
520
521  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
522  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
523  setOperationAction(ISD::DYNAMIC_STACKALLOC,
524                     (Subtarget->is64Bit() ? MVT::i64 : MVT::i32),
525                     (Subtarget->isTargetCOFF()
526                      && !Subtarget->isTargetEnvMacho()
527                      ? Custom : Expand));
528
529  if (!UseSoftFloat && X86ScalarSSEf64) {
530    // f32 and f64 use SSE.
531    // Set up the FP register classes.
532    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
533    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
534
535    // Use ANDPD to simulate FABS.
536    setOperationAction(ISD::FABS , MVT::f64, Custom);
537    setOperationAction(ISD::FABS , MVT::f32, Custom);
538
539    // Use XORP to simulate FNEG.
540    setOperationAction(ISD::FNEG , MVT::f64, Custom);
541    setOperationAction(ISD::FNEG , MVT::f32, Custom);
542
543    // Use ANDPD and ORPD to simulate FCOPYSIGN.
544    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
545    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
546
547    // Lower this to FGETSIGNx86 plus an AND.
548    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
549    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
550
551    // We don't support sin/cos/fmod
552    setOperationAction(ISD::FSIN , MVT::f64, Expand);
553    setOperationAction(ISD::FCOS , MVT::f64, Expand);
554    setOperationAction(ISD::FSIN , MVT::f32, Expand);
555    setOperationAction(ISD::FCOS , MVT::f32, Expand);
556
557    // Expand FP immediates into loads from the stack, except for the special
558    // cases we handle.
559    addLegalFPImmediate(APFloat(+0.0)); // xorpd
560    addLegalFPImmediate(APFloat(+0.0f)); // xorps
561  } else if (!UseSoftFloat && X86ScalarSSEf32) {
562    // Use SSE for f32, x87 for f64.
563    // Set up the FP register classes.
564    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
565    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
566
567    // Use ANDPS to simulate FABS.
568    setOperationAction(ISD::FABS , MVT::f32, Custom);
569
570    // Use XORP to simulate FNEG.
571    setOperationAction(ISD::FNEG , MVT::f32, Custom);
572
573    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
574
575    // Use ANDPS and ORPS to simulate FCOPYSIGN.
576    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
577    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
578
579    // We don't support sin/cos/fmod
580    setOperationAction(ISD::FSIN , MVT::f32, Expand);
581    setOperationAction(ISD::FCOS , MVT::f32, Expand);
582
583    // Special cases we handle for FP constants.
584    addLegalFPImmediate(APFloat(+0.0f)); // xorps
585    addLegalFPImmediate(APFloat(+0.0)); // FLD0
586    addLegalFPImmediate(APFloat(+1.0)); // FLD1
587    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
588    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
589
590    if (!UnsafeFPMath) {
591      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
592      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
593    }
594  } else if (!UseSoftFloat) {
595    // f32 and f64 in x87.
596    // Set up the FP register classes.
597    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
598    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
599
600    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
601    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
602    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
603    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
604
605    if (!UnsafeFPMath) {
606      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
607      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
608    }
609    addLegalFPImmediate(APFloat(+0.0)); // FLD0
610    addLegalFPImmediate(APFloat(+1.0)); // FLD1
611    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
612    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
613    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
614    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
615    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
616    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
617  }
618
619  // We don't support FMA.
620  setOperationAction(ISD::FMA, MVT::f64, Expand);
621  setOperationAction(ISD::FMA, MVT::f32, Expand);
622
623  // Long double always uses X87.
624  if (!UseSoftFloat) {
625    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
626    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
627    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
628    {
629      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
630      addLegalFPImmediate(TmpFlt);  // FLD0
631      TmpFlt.changeSign();
632      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
633
634      bool ignored;
635      APFloat TmpFlt2(+1.0);
636      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
637                      &ignored);
638      addLegalFPImmediate(TmpFlt2);  // FLD1
639      TmpFlt2.changeSign();
640      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
641    }
642
643    if (!UnsafeFPMath) {
644      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
645      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
646    }
647
648    setOperationAction(ISD::FMA, MVT::f80, Expand);
649  }
650
651  // Always use a library call for pow.
652  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
653  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
654  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
655
656  setOperationAction(ISD::FLOG, MVT::f80, Expand);
657  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
658  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
659  setOperationAction(ISD::FEXP, MVT::f80, Expand);
660  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
661
662  // First set operation action for all vector types to either promote
663  // (for widening) or expand (for scalarization). Then we will selectively
664  // turn on ones that can be effectively codegen'd.
665  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
666       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
667    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
668    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
669    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
670    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
671    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
672    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
673    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
674    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
675    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
676    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
677    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
678    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
679    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
680    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
681    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
682    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
683    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
684    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
685    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
686    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
687    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
688    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
689    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
690    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
691    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
692    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
693    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
694    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
695    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
696    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
697    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
698    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
699    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
700    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
701    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
702    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
703    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
704    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
705    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
706    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
707    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
708    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
709    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
710    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
711    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
712    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
713    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
714    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
715    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
716    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
717    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
718    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
719    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
720    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
721    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
722         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
723      setTruncStoreAction((MVT::SimpleValueType)VT,
724                          (MVT::SimpleValueType)InnerVT, Expand);
725    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
726    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
727    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
728  }
729
730  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
731  // with -msoft-float, disable use of MMX as well.
732  if (!UseSoftFloat && Subtarget->hasMMX()) {
733    addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
734    // No operations on x86mmx supported, everything uses intrinsics.
735  }
736
737  // MMX-sized vectors (other than x86mmx) are expected to be expanded
738  // into smaller operations.
739  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
740  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
741  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
742  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
743  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
744  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
745  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
746  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
747  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
748  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
749  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
750  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
751  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
752  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
753  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
754  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
755  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
756  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
757  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
758  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
759  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
760  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
761  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
762  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
763  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
764  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
765  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
766  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
767  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
768
769  if (!UseSoftFloat && Subtarget->hasXMM()) {
770    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
771
772    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
773    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
774    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
775    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
776    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
777    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
778    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
779    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
780    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
781    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
782    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
783    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
784  }
785
786  if (!UseSoftFloat && Subtarget->hasXMMInt()) {
787    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
788
789    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
790    // registers cannot be used even for integer operations.
791    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
792    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
793    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
794    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
795
796    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
797    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
798    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
799    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
800    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
801    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
802    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
803    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
804    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
805    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
806    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
807    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
808    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
809    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
810    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
811    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
812
813    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
814    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
815    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
816    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
817
818    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
819    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
820    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
821    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
822    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
823
824    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
825    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
826    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
827    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
828    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
829
830    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
831    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
832      EVT VT = (MVT::SimpleValueType)i;
833      // Do not attempt to custom lower non-power-of-2 vectors
834      if (!isPowerOf2_32(VT.getVectorNumElements()))
835        continue;
836      // Do not attempt to custom lower non-128-bit vectors
837      if (!VT.is128BitVector())
838        continue;
839      setOperationAction(ISD::BUILD_VECTOR,
840                         VT.getSimpleVT().SimpleTy, Custom);
841      setOperationAction(ISD::VECTOR_SHUFFLE,
842                         VT.getSimpleVT().SimpleTy, Custom);
843      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
844                         VT.getSimpleVT().SimpleTy, Custom);
845    }
846
847    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
848    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
849    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
850    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
851    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
852    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
853
854    if (Subtarget->is64Bit()) {
855      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
856      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
857    }
858
859    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
860    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
861      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
862      EVT VT = SVT;
863
864      // Do not attempt to promote non-128-bit vectors
865      if (!VT.is128BitVector())
866        continue;
867
868      setOperationAction(ISD::AND,    SVT, Promote);
869      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
870      setOperationAction(ISD::OR,     SVT, Promote);
871      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
872      setOperationAction(ISD::XOR,    SVT, Promote);
873      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
874      setOperationAction(ISD::LOAD,   SVT, Promote);
875      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
876      setOperationAction(ISD::SELECT, SVT, Promote);
877      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
878    }
879
880    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
881
882    // Custom lower v2i64 and v2f64 selects.
883    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
884    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
885    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
886    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
887
888    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
889    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
890  }
891
892  if (Subtarget->hasSSE41() || Subtarget->hasAVX()) {
893    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
894    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
895    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
896    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
897    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
898    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
899    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
900    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
901    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
902    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
903
904    // FIXME: Do we need to handle scalar-to-vector here?
905    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
906
907    // Can turn SHL into an integer multiply.
908    setOperationAction(ISD::SHL,                MVT::v4i32, Custom);
909    setOperationAction(ISD::SHL,                MVT::v16i8, Custom);
910
911    // i8 and i16 vectors are custom , because the source register and source
912    // source memory operand types are not the same width.  f32 vectors are
913    // custom since the immediate controlling the insert encodes additional
914    // information.
915    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
916    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
917    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
918    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
919
920    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
921    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
922    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
923    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
924
925    if (Subtarget->is64Bit()) {
926      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
927      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
928    }
929  }
930
931  if (Subtarget->hasSSE2() || Subtarget->hasAVX()) {
932    setOperationAction(ISD::SRL,               MVT::v2i64, Custom);
933    setOperationAction(ISD::SRL,               MVT::v4i32, Custom);
934    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
935    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
936
937    setOperationAction(ISD::SHL,               MVT::v2i64, Custom);
938    setOperationAction(ISD::SHL,               MVT::v4i32, Custom);
939    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
940
941    setOperationAction(ISD::SRA,               MVT::v4i32, Custom);
942    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
943  }
944
945  if (Subtarget->hasSSE42() || Subtarget->hasAVX())
946    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
947
948  if (!UseSoftFloat && Subtarget->hasAVX()) {
949    addRegisterClass(MVT::v32i8,  X86::VR256RegisterClass);
950    addRegisterClass(MVT::v16i16, X86::VR256RegisterClass);
951    addRegisterClass(MVT::v8i32,  X86::VR256RegisterClass);
952    addRegisterClass(MVT::v8f32,  X86::VR256RegisterClass);
953    addRegisterClass(MVT::v4i64,  X86::VR256RegisterClass);
954    addRegisterClass(MVT::v4f64,  X86::VR256RegisterClass);
955
956    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
957    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
958    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
959
960    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
961    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
962    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
963    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
964    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
965    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
966
967    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
968    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
969    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
970    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
971    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
972    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
973
974    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
975    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
976    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
977
978    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4f64,  Custom);
979    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i64,  Custom);
980    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f32,  Custom);
981    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i32,  Custom);
982    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v32i8,  Custom);
983    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i16, Custom);
984
985    setOperationAction(ISD::SRL,               MVT::v4i64, Custom);
986    setOperationAction(ISD::SRL,               MVT::v8i32, Custom);
987    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
988    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
989
990    setOperationAction(ISD::SHL,               MVT::v4i64, Custom);
991    setOperationAction(ISD::SHL,               MVT::v8i32, Custom);
992    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
993    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
994
995    setOperationAction(ISD::SRA,               MVT::v8i32, Custom);
996    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
997
998    setOperationAction(ISD::VSETCC,            MVT::v32i8, Custom);
999    setOperationAction(ISD::VSETCC,            MVT::v16i16, Custom);
1000    setOperationAction(ISD::VSETCC,            MVT::v8i32, Custom);
1001    setOperationAction(ISD::VSETCC,            MVT::v4i64, Custom);
1002
1003    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1004    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1005    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1006
1007    setOperationAction(ISD::ADD,               MVT::v4i64, Custom);
1008    setOperationAction(ISD::ADD,               MVT::v8i32, Custom);
1009    setOperationAction(ISD::ADD,               MVT::v16i16, Custom);
1010    setOperationAction(ISD::ADD,               MVT::v32i8, Custom);
1011
1012    setOperationAction(ISD::SUB,               MVT::v4i64, Custom);
1013    setOperationAction(ISD::SUB,               MVT::v8i32, Custom);
1014    setOperationAction(ISD::SUB,               MVT::v16i16, Custom);
1015    setOperationAction(ISD::SUB,               MVT::v32i8, Custom);
1016
1017    setOperationAction(ISD::MUL,               MVT::v4i64, Custom);
1018    setOperationAction(ISD::MUL,               MVT::v8i32, Custom);
1019    setOperationAction(ISD::MUL,               MVT::v16i16, Custom);
1020    // Don't lower v32i8 because there is no 128-bit byte mul
1021
1022    // Custom lower several nodes for 256-bit types.
1023    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1024                  i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1025      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1026      EVT VT = SVT;
1027
1028      // Extract subvector is special because the value type
1029      // (result) is 128-bit but the source is 256-bit wide.
1030      if (VT.is128BitVector())
1031        setOperationAction(ISD::EXTRACT_SUBVECTOR, SVT, Custom);
1032
1033      // Do not attempt to custom lower other non-256-bit vectors
1034      if (!VT.is256BitVector())
1035        continue;
1036
1037      setOperationAction(ISD::BUILD_VECTOR,       SVT, Custom);
1038      setOperationAction(ISD::VECTOR_SHUFFLE,     SVT, Custom);
1039      setOperationAction(ISD::INSERT_VECTOR_ELT,  SVT, Custom);
1040      setOperationAction(ISD::EXTRACT_VECTOR_ELT, SVT, Custom);
1041      setOperationAction(ISD::SCALAR_TO_VECTOR,   SVT, Custom);
1042      setOperationAction(ISD::INSERT_SUBVECTOR,   SVT, Custom);
1043    }
1044
1045    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1046    for (unsigned i = (unsigned)MVT::v32i8; i != (unsigned)MVT::v4i64; ++i) {
1047      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1048      EVT VT = SVT;
1049
1050      // Do not attempt to promote non-256-bit vectors
1051      if (!VT.is256BitVector())
1052        continue;
1053
1054      setOperationAction(ISD::AND,    SVT, Promote);
1055      AddPromotedToType (ISD::AND,    SVT, MVT::v4i64);
1056      setOperationAction(ISD::OR,     SVT, Promote);
1057      AddPromotedToType (ISD::OR,     SVT, MVT::v4i64);
1058      setOperationAction(ISD::XOR,    SVT, Promote);
1059      AddPromotedToType (ISD::XOR,    SVT, MVT::v4i64);
1060      setOperationAction(ISD::LOAD,   SVT, Promote);
1061      AddPromotedToType (ISD::LOAD,   SVT, MVT::v4i64);
1062      setOperationAction(ISD::SELECT, SVT, Promote);
1063      AddPromotedToType (ISD::SELECT, SVT, MVT::v4i64);
1064    }
1065  }
1066
1067  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1068  // of this type with custom code.
1069  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1070         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; VT++) {
1071    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT, Custom);
1072  }
1073
1074  // We want to custom lower some of our intrinsics.
1075  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1076
1077
1078  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1079  // handle type legalization for these operations here.
1080  //
1081  // FIXME: We really should do custom legalization for addition and
1082  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1083  // than generic legalization for 64-bit multiplication-with-overflow, though.
1084  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1085    // Add/Sub/Mul with overflow operations are custom lowered.
1086    MVT VT = IntVTs[i];
1087    setOperationAction(ISD::SADDO, VT, Custom);
1088    setOperationAction(ISD::UADDO, VT, Custom);
1089    setOperationAction(ISD::SSUBO, VT, Custom);
1090    setOperationAction(ISD::USUBO, VT, Custom);
1091    setOperationAction(ISD::SMULO, VT, Custom);
1092    setOperationAction(ISD::UMULO, VT, Custom);
1093  }
1094
1095  // There are no 8-bit 3-address imul/mul instructions
1096  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1097  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1098
1099  if (!Subtarget->is64Bit()) {
1100    // These libcalls are not available in 32-bit.
1101    setLibcallName(RTLIB::SHL_I128, 0);
1102    setLibcallName(RTLIB::SRL_I128, 0);
1103    setLibcallName(RTLIB::SRA_I128, 0);
1104  }
1105
1106  // We have target-specific dag combine patterns for the following nodes:
1107  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1108  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1109  setTargetDAGCombine(ISD::BUILD_VECTOR);
1110  setTargetDAGCombine(ISD::SELECT);
1111  setTargetDAGCombine(ISD::SHL);
1112  setTargetDAGCombine(ISD::SRA);
1113  setTargetDAGCombine(ISD::SRL);
1114  setTargetDAGCombine(ISD::OR);
1115  setTargetDAGCombine(ISD::AND);
1116  setTargetDAGCombine(ISD::ADD);
1117  setTargetDAGCombine(ISD::SUB);
1118  setTargetDAGCombine(ISD::STORE);
1119  setTargetDAGCombine(ISD::ZERO_EXTEND);
1120  setTargetDAGCombine(ISD::SINT_TO_FP);
1121  if (Subtarget->is64Bit())
1122    setTargetDAGCombine(ISD::MUL);
1123
1124  computeRegisterProperties();
1125
1126  // On Darwin, -Os means optimize for size without hurting performance,
1127  // do not reduce the limit.
1128  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1129  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1130  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1131  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1132  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1133  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1134  setPrefLoopAlignment(16);
1135  benefitFromCodePlacementOpt = true;
1136
1137  setPrefFunctionAlignment(4);
1138}
1139
1140
1141MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
1142  return MVT::i8;
1143}
1144
1145
1146/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1147/// the desired ByVal argument alignment.
1148static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1149  if (MaxAlign == 16)
1150    return;
1151  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1152    if (VTy->getBitWidth() == 128)
1153      MaxAlign = 16;
1154  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1155    unsigned EltAlign = 0;
1156    getMaxByValAlign(ATy->getElementType(), EltAlign);
1157    if (EltAlign > MaxAlign)
1158      MaxAlign = EltAlign;
1159  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1160    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1161      unsigned EltAlign = 0;
1162      getMaxByValAlign(STy->getElementType(i), EltAlign);
1163      if (EltAlign > MaxAlign)
1164        MaxAlign = EltAlign;
1165      if (MaxAlign == 16)
1166        break;
1167    }
1168  }
1169  return;
1170}
1171
1172/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1173/// function arguments in the caller parameter area. For X86, aggregates
1174/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1175/// are at 4-byte boundaries.
1176unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1177  if (Subtarget->is64Bit()) {
1178    // Max of 8 and alignment of type.
1179    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1180    if (TyAlign > 8)
1181      return TyAlign;
1182    return 8;
1183  }
1184
1185  unsigned Align = 4;
1186  if (Subtarget->hasXMM())
1187    getMaxByValAlign(Ty, Align);
1188  return Align;
1189}
1190
1191/// getOptimalMemOpType - Returns the target specific optimal type for load
1192/// and store operations as a result of memset, memcpy, and memmove
1193/// lowering. If DstAlign is zero that means it's safe to destination
1194/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1195/// means there isn't a need to check it against alignment requirement,
1196/// probably because the source does not need to be loaded. If
1197/// 'NonScalarIntSafe' is true, that means it's safe to return a
1198/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1199/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1200/// constant so it does not need to be loaded.
1201/// It returns EVT::Other if the type should be determined using generic
1202/// target-independent logic.
1203EVT
1204X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1205                                       unsigned DstAlign, unsigned SrcAlign,
1206                                       bool NonScalarIntSafe,
1207                                       bool MemcpyStrSrc,
1208                                       MachineFunction &MF) const {
1209  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1210  // linux.  This is because the stack realignment code can't handle certain
1211  // cases like PR2962.  This should be removed when PR2962 is fixed.
1212  const Function *F = MF.getFunction();
1213  if (NonScalarIntSafe &&
1214      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1215    if (Size >= 16 &&
1216        (Subtarget->isUnalignedMemAccessFast() ||
1217         ((DstAlign == 0 || DstAlign >= 16) &&
1218          (SrcAlign == 0 || SrcAlign >= 16))) &&
1219        Subtarget->getStackAlignment() >= 16) {
1220      if (Subtarget->hasSSE2())
1221        return MVT::v4i32;
1222      if (Subtarget->hasSSE1())
1223        return MVT::v4f32;
1224    } else if (!MemcpyStrSrc && Size >= 8 &&
1225               !Subtarget->is64Bit() &&
1226               Subtarget->getStackAlignment() >= 8 &&
1227               Subtarget->hasXMMInt()) {
1228      // Do not use f64 to lower memcpy if source is string constant. It's
1229      // better to use i32 to avoid the loads.
1230      return MVT::f64;
1231    }
1232  }
1233  if (Subtarget->is64Bit() && Size >= 8)
1234    return MVT::i64;
1235  return MVT::i32;
1236}
1237
1238/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1239/// current function.  The returned value is a member of the
1240/// MachineJumpTableInfo::JTEntryKind enum.
1241unsigned X86TargetLowering::getJumpTableEncoding() const {
1242  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1243  // symbol.
1244  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1245      Subtarget->isPICStyleGOT())
1246    return MachineJumpTableInfo::EK_Custom32;
1247
1248  // Otherwise, use the normal jump table encoding heuristics.
1249  return TargetLowering::getJumpTableEncoding();
1250}
1251
1252const MCExpr *
1253X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1254                                             const MachineBasicBlock *MBB,
1255                                             unsigned uid,MCContext &Ctx) const{
1256  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1257         Subtarget->isPICStyleGOT());
1258  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1259  // entries.
1260  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1261                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1262}
1263
1264/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1265/// jumptable.
1266SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1267                                                    SelectionDAG &DAG) const {
1268  if (!Subtarget->is64Bit())
1269    // This doesn't have DebugLoc associated with it, but is not really the
1270    // same as a Register.
1271    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1272  return Table;
1273}
1274
1275/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1276/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1277/// MCExpr.
1278const MCExpr *X86TargetLowering::
1279getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1280                             MCContext &Ctx) const {
1281  // X86-64 uses RIP relative addressing based on the jump table label.
1282  if (Subtarget->isPICStyleRIPRel())
1283    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1284
1285  // Otherwise, the reference is relative to the PIC base.
1286  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1287}
1288
1289// FIXME: Why this routine is here? Move to RegInfo!
1290std::pair<const TargetRegisterClass*, uint8_t>
1291X86TargetLowering::findRepresentativeClass(EVT VT) const{
1292  const TargetRegisterClass *RRC = 0;
1293  uint8_t Cost = 1;
1294  switch (VT.getSimpleVT().SimpleTy) {
1295  default:
1296    return TargetLowering::findRepresentativeClass(VT);
1297  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1298    RRC = (Subtarget->is64Bit()
1299           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1300    break;
1301  case MVT::x86mmx:
1302    RRC = X86::VR64RegisterClass;
1303    break;
1304  case MVT::f32: case MVT::f64:
1305  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1306  case MVT::v4f32: case MVT::v2f64:
1307  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1308  case MVT::v4f64:
1309    RRC = X86::VR128RegisterClass;
1310    break;
1311  }
1312  return std::make_pair(RRC, Cost);
1313}
1314
1315bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1316                                               unsigned &Offset) const {
1317  if (!Subtarget->isTargetLinux())
1318    return false;
1319
1320  if (Subtarget->is64Bit()) {
1321    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1322    Offset = 0x28;
1323    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1324      AddressSpace = 256;
1325    else
1326      AddressSpace = 257;
1327  } else {
1328    // %gs:0x14 on i386
1329    Offset = 0x14;
1330    AddressSpace = 256;
1331  }
1332  return true;
1333}
1334
1335
1336//===----------------------------------------------------------------------===//
1337//               Return Value Calling Convention Implementation
1338//===----------------------------------------------------------------------===//
1339
1340#include "X86GenCallingConv.inc"
1341
1342bool
1343X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1344				  MachineFunction &MF, bool isVarArg,
1345                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1346                        LLVMContext &Context) const {
1347  SmallVector<CCValAssign, 16> RVLocs;
1348  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1349                 RVLocs, Context);
1350  return CCInfo.CheckReturn(Outs, RetCC_X86);
1351}
1352
1353SDValue
1354X86TargetLowering::LowerReturn(SDValue Chain,
1355                               CallingConv::ID CallConv, bool isVarArg,
1356                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1357                               const SmallVectorImpl<SDValue> &OutVals,
1358                               DebugLoc dl, SelectionDAG &DAG) const {
1359  MachineFunction &MF = DAG.getMachineFunction();
1360  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1361
1362  SmallVector<CCValAssign, 16> RVLocs;
1363  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1364                 RVLocs, *DAG.getContext());
1365  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1366
1367  // Add the regs to the liveout set for the function.
1368  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1369  for (unsigned i = 0; i != RVLocs.size(); ++i)
1370    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1371      MRI.addLiveOut(RVLocs[i].getLocReg());
1372
1373  SDValue Flag;
1374
1375  SmallVector<SDValue, 6> RetOps;
1376  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1377  // Operand #1 = Bytes To Pop
1378  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1379                   MVT::i16));
1380
1381  // Copy the result values into the output registers.
1382  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1383    CCValAssign &VA = RVLocs[i];
1384    assert(VA.isRegLoc() && "Can only return in registers!");
1385    SDValue ValToCopy = OutVals[i];
1386    EVT ValVT = ValToCopy.getValueType();
1387
1388    // If this is x86-64, and we disabled SSE, we can't return FP values,
1389    // or SSE or MMX vectors.
1390    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1391         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1392          (Subtarget->is64Bit() && !Subtarget->hasXMM())) {
1393      report_fatal_error("SSE register return with SSE disabled");
1394    }
1395    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1396    // llvm-gcc has never done it right and no one has noticed, so this
1397    // should be OK for now.
1398    if (ValVT == MVT::f64 &&
1399        (Subtarget->is64Bit() && !Subtarget->hasXMMInt()))
1400      report_fatal_error("SSE2 register return with SSE2 disabled");
1401
1402    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1403    // the RET instruction and handled by the FP Stackifier.
1404    if (VA.getLocReg() == X86::ST0 ||
1405        VA.getLocReg() == X86::ST1) {
1406      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1407      // change the value to the FP stack register class.
1408      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1409        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1410      RetOps.push_back(ValToCopy);
1411      // Don't emit a copytoreg.
1412      continue;
1413    }
1414
1415    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1416    // which is returned in RAX / RDX.
1417    if (Subtarget->is64Bit()) {
1418      if (ValVT == MVT::x86mmx) {
1419        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1420          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1421          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1422                                  ValToCopy);
1423          // If we don't have SSE2 available, convert to v4f32 so the generated
1424          // register is legal.
1425          if (!Subtarget->hasSSE2())
1426            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1427        }
1428      }
1429    }
1430
1431    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1432    Flag = Chain.getValue(1);
1433  }
1434
1435  // The x86-64 ABI for returning structs by value requires that we copy
1436  // the sret argument into %rax for the return. We saved the argument into
1437  // a virtual register in the entry block, so now we copy the value out
1438  // and into %rax.
1439  if (Subtarget->is64Bit() &&
1440      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1441    MachineFunction &MF = DAG.getMachineFunction();
1442    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1443    unsigned Reg = FuncInfo->getSRetReturnReg();
1444    assert(Reg &&
1445           "SRetReturnReg should have been set in LowerFormalArguments().");
1446    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1447
1448    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1449    Flag = Chain.getValue(1);
1450
1451    // RAX now acts like a return value.
1452    MRI.addLiveOut(X86::RAX);
1453  }
1454
1455  RetOps[0] = Chain;  // Update chain.
1456
1457  // Add the flag if we have it.
1458  if (Flag.getNode())
1459    RetOps.push_back(Flag);
1460
1461  return DAG.getNode(X86ISD::RET_FLAG, dl,
1462                     MVT::Other, &RetOps[0], RetOps.size());
1463}
1464
1465bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const {
1466  if (N->getNumValues() != 1)
1467    return false;
1468  if (!N->hasNUsesOfValue(1, 0))
1469    return false;
1470
1471  SDNode *Copy = *N->use_begin();
1472  if (Copy->getOpcode() != ISD::CopyToReg &&
1473      Copy->getOpcode() != ISD::FP_EXTEND)
1474    return false;
1475
1476  bool HasRet = false;
1477  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1478       UI != UE; ++UI) {
1479    if (UI->getOpcode() != X86ISD::RET_FLAG)
1480      return false;
1481    HasRet = true;
1482  }
1483
1484  return HasRet;
1485}
1486
1487EVT
1488X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1489                                            ISD::NodeType ExtendKind) const {
1490  MVT ReturnMVT;
1491  // TODO: Is this also valid on 32-bit?
1492  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1493    ReturnMVT = MVT::i8;
1494  else
1495    ReturnMVT = MVT::i32;
1496
1497  EVT MinVT = getRegisterType(Context, ReturnMVT);
1498  return VT.bitsLT(MinVT) ? MinVT : VT;
1499}
1500
1501/// LowerCallResult - Lower the result values of a call into the
1502/// appropriate copies out of appropriate physical registers.
1503///
1504SDValue
1505X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1506                                   CallingConv::ID CallConv, bool isVarArg,
1507                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1508                                   DebugLoc dl, SelectionDAG &DAG,
1509                                   SmallVectorImpl<SDValue> &InVals) const {
1510
1511  // Assign locations to each value returned by this call.
1512  SmallVector<CCValAssign, 16> RVLocs;
1513  bool Is64Bit = Subtarget->is64Bit();
1514  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1515		 getTargetMachine(), RVLocs, *DAG.getContext());
1516  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1517
1518  // Copy all of the result registers out of their specified physreg.
1519  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1520    CCValAssign &VA = RVLocs[i];
1521    EVT CopyVT = VA.getValVT();
1522
1523    // If this is x86-64, and we disabled SSE, we can't return FP values
1524    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1525        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasXMM())) {
1526      report_fatal_error("SSE register return with SSE disabled");
1527    }
1528
1529    SDValue Val;
1530
1531    // If this is a call to a function that returns an fp value on the floating
1532    // point stack, we must guarantee the the value is popped from the stack, so
1533    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1534    // if the return value is not used. We use the FpPOP_RETVAL instruction
1535    // instead.
1536    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1537      // If we prefer to use the value in xmm registers, copy it out as f80 and
1538      // use a truncate to move it from fp stack reg to xmm reg.
1539      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1540      SDValue Ops[] = { Chain, InFlag };
1541      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1542                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1543      Val = Chain.getValue(0);
1544
1545      // Round the f80 to the right size, which also moves it to the appropriate
1546      // xmm register.
1547      if (CopyVT != VA.getValVT())
1548        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1549                          // This truncation won't change the value.
1550                          DAG.getIntPtrConstant(1));
1551    } else {
1552      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1553                                 CopyVT, InFlag).getValue(1);
1554      Val = Chain.getValue(0);
1555    }
1556    InFlag = Chain.getValue(2);
1557    InVals.push_back(Val);
1558  }
1559
1560  return Chain;
1561}
1562
1563
1564//===----------------------------------------------------------------------===//
1565//                C & StdCall & Fast Calling Convention implementation
1566//===----------------------------------------------------------------------===//
1567//  StdCall calling convention seems to be standard for many Windows' API
1568//  routines and around. It differs from C calling convention just a little:
1569//  callee should clean up the stack, not caller. Symbols should be also
1570//  decorated in some fancy way :) It doesn't support any vector arguments.
1571//  For info on fast calling convention see Fast Calling Convention (tail call)
1572//  implementation LowerX86_32FastCCCallTo.
1573
1574/// CallIsStructReturn - Determines whether a call uses struct return
1575/// semantics.
1576static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1577  if (Outs.empty())
1578    return false;
1579
1580  return Outs[0].Flags.isSRet();
1581}
1582
1583/// ArgsAreStructReturn - Determines whether a function uses struct
1584/// return semantics.
1585static bool
1586ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1587  if (Ins.empty())
1588    return false;
1589
1590  return Ins[0].Flags.isSRet();
1591}
1592
1593/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1594/// by "Src" to address "Dst" with size and alignment information specified by
1595/// the specific parameter attribute. The copy will be passed as a byval
1596/// function parameter.
1597static SDValue
1598CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1599                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1600                          DebugLoc dl) {
1601  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1602
1603  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1604                       /*isVolatile*/false, /*AlwaysInline=*/true,
1605                       MachinePointerInfo(), MachinePointerInfo());
1606}
1607
1608/// IsTailCallConvention - Return true if the calling convention is one that
1609/// supports tail call optimization.
1610static bool IsTailCallConvention(CallingConv::ID CC) {
1611  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1612}
1613
1614bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1615  if (!CI->isTailCall())
1616    return false;
1617
1618  CallSite CS(CI);
1619  CallingConv::ID CalleeCC = CS.getCallingConv();
1620  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1621    return false;
1622
1623  return true;
1624}
1625
1626/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1627/// a tailcall target by changing its ABI.
1628static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1629  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1630}
1631
1632SDValue
1633X86TargetLowering::LowerMemArgument(SDValue Chain,
1634                                    CallingConv::ID CallConv,
1635                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1636                                    DebugLoc dl, SelectionDAG &DAG,
1637                                    const CCValAssign &VA,
1638                                    MachineFrameInfo *MFI,
1639                                    unsigned i) const {
1640  // Create the nodes corresponding to a load from this parameter slot.
1641  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1642  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1643  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1644  EVT ValVT;
1645
1646  // If value is passed by pointer we have address passed instead of the value
1647  // itself.
1648  if (VA.getLocInfo() == CCValAssign::Indirect)
1649    ValVT = VA.getLocVT();
1650  else
1651    ValVT = VA.getValVT();
1652
1653  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1654  // changed with more analysis.
1655  // In case of tail call optimization mark all arguments mutable. Since they
1656  // could be overwritten by lowering of arguments in case of a tail call.
1657  if (Flags.isByVal()) {
1658    unsigned Bytes = Flags.getByValSize();
1659    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1660    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1661    return DAG.getFrameIndex(FI, getPointerTy());
1662  } else {
1663    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1664                                    VA.getLocMemOffset(), isImmutable);
1665    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1666    return DAG.getLoad(ValVT, dl, Chain, FIN,
1667                       MachinePointerInfo::getFixedStack(FI),
1668                       false, false, 0);
1669  }
1670}
1671
1672SDValue
1673X86TargetLowering::LowerFormalArguments(SDValue Chain,
1674                                        CallingConv::ID CallConv,
1675                                        bool isVarArg,
1676                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1677                                        DebugLoc dl,
1678                                        SelectionDAG &DAG,
1679                                        SmallVectorImpl<SDValue> &InVals)
1680                                          const {
1681  MachineFunction &MF = DAG.getMachineFunction();
1682  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1683
1684  const Function* Fn = MF.getFunction();
1685  if (Fn->hasExternalLinkage() &&
1686      Subtarget->isTargetCygMing() &&
1687      Fn->getName() == "main")
1688    FuncInfo->setForceFramePointer(true);
1689
1690  MachineFrameInfo *MFI = MF.getFrameInfo();
1691  bool Is64Bit = Subtarget->is64Bit();
1692  bool IsWin64 = Subtarget->isTargetWin64();
1693
1694  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1695         "Var args not supported with calling convention fastcc or ghc");
1696
1697  // Assign locations to all of the incoming arguments.
1698  SmallVector<CCValAssign, 16> ArgLocs;
1699  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1700                 ArgLocs, *DAG.getContext());
1701
1702  // Allocate shadow area for Win64
1703  if (IsWin64) {
1704    CCInfo.AllocateStack(32, 8);
1705  }
1706
1707  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1708
1709  unsigned LastVal = ~0U;
1710  SDValue ArgValue;
1711  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1712    CCValAssign &VA = ArgLocs[i];
1713    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1714    // places.
1715    assert(VA.getValNo() != LastVal &&
1716           "Don't support value assigned to multiple locs yet");
1717    LastVal = VA.getValNo();
1718
1719    if (VA.isRegLoc()) {
1720      EVT RegVT = VA.getLocVT();
1721      TargetRegisterClass *RC = NULL;
1722      if (RegVT == MVT::i32)
1723        RC = X86::GR32RegisterClass;
1724      else if (Is64Bit && RegVT == MVT::i64)
1725        RC = X86::GR64RegisterClass;
1726      else if (RegVT == MVT::f32)
1727        RC = X86::FR32RegisterClass;
1728      else if (RegVT == MVT::f64)
1729        RC = X86::FR64RegisterClass;
1730      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1731        RC = X86::VR256RegisterClass;
1732      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1733        RC = X86::VR128RegisterClass;
1734      else if (RegVT == MVT::x86mmx)
1735        RC = X86::VR64RegisterClass;
1736      else
1737        llvm_unreachable("Unknown argument type!");
1738
1739      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1740      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1741
1742      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1743      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1744      // right size.
1745      if (VA.getLocInfo() == CCValAssign::SExt)
1746        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1747                               DAG.getValueType(VA.getValVT()));
1748      else if (VA.getLocInfo() == CCValAssign::ZExt)
1749        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1750                               DAG.getValueType(VA.getValVT()));
1751      else if (VA.getLocInfo() == CCValAssign::BCvt)
1752        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1753
1754      if (VA.isExtInLoc()) {
1755        // Handle MMX values passed in XMM regs.
1756        if (RegVT.isVector()) {
1757          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1758                                 ArgValue);
1759        } else
1760          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1761      }
1762    } else {
1763      assert(VA.isMemLoc());
1764      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1765    }
1766
1767    // If value is passed via pointer - do a load.
1768    if (VA.getLocInfo() == CCValAssign::Indirect)
1769      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1770                             MachinePointerInfo(), false, false, 0);
1771
1772    InVals.push_back(ArgValue);
1773  }
1774
1775  // The x86-64 ABI for returning structs by value requires that we copy
1776  // the sret argument into %rax for the return. Save the argument into
1777  // a virtual register so that we can access it from the return points.
1778  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1779    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1780    unsigned Reg = FuncInfo->getSRetReturnReg();
1781    if (!Reg) {
1782      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1783      FuncInfo->setSRetReturnReg(Reg);
1784    }
1785    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1786    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1787  }
1788
1789  unsigned StackSize = CCInfo.getNextStackOffset();
1790  // Align stack specially for tail calls.
1791  if (FuncIsMadeTailCallSafe(CallConv))
1792    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1793
1794  // If the function takes variable number of arguments, make a frame index for
1795  // the start of the first vararg value... for expansion of llvm.va_start.
1796  if (isVarArg) {
1797    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1798                    CallConv != CallingConv::X86_ThisCall)) {
1799      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1800    }
1801    if (Is64Bit) {
1802      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1803
1804      // FIXME: We should really autogenerate these arrays
1805      static const unsigned GPR64ArgRegsWin64[] = {
1806        X86::RCX, X86::RDX, X86::R8,  X86::R9
1807      };
1808      static const unsigned GPR64ArgRegs64Bit[] = {
1809        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1810      };
1811      static const unsigned XMMArgRegs64Bit[] = {
1812        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1813        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1814      };
1815      const unsigned *GPR64ArgRegs;
1816      unsigned NumXMMRegs = 0;
1817
1818      if (IsWin64) {
1819        // The XMM registers which might contain var arg parameters are shadowed
1820        // in their paired GPR.  So we only need to save the GPR to their home
1821        // slots.
1822        TotalNumIntRegs = 4;
1823        GPR64ArgRegs = GPR64ArgRegsWin64;
1824      } else {
1825        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1826        GPR64ArgRegs = GPR64ArgRegs64Bit;
1827
1828        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit, TotalNumXMMRegs);
1829      }
1830      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1831                                                       TotalNumIntRegs);
1832
1833      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1834      assert(!(NumXMMRegs && !Subtarget->hasXMM()) &&
1835             "SSE register cannot be used when SSE is disabled!");
1836      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1837             "SSE register cannot be used when SSE is disabled!");
1838      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasXMM())
1839        // Kernel mode asks for SSE to be disabled, so don't push them
1840        // on the stack.
1841        TotalNumXMMRegs = 0;
1842
1843      if (IsWin64) {
1844        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1845        // Get to the caller-allocated home save location.  Add 8 to account
1846        // for the return address.
1847        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1848        FuncInfo->setRegSaveFrameIndex(
1849          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1850        // Fixup to set vararg frame on shadow area (4 x i64).
1851        if (NumIntRegs < 4)
1852          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1853      } else {
1854        // For X86-64, if there are vararg parameters that are passed via
1855        // registers, then we must store them to their spots on the stack so they
1856        // may be loaded by deferencing the result of va_next.
1857        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1858        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1859        FuncInfo->setRegSaveFrameIndex(
1860          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1861                               false));
1862      }
1863
1864      // Store the integer parameter registers.
1865      SmallVector<SDValue, 8> MemOps;
1866      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1867                                        getPointerTy());
1868      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1869      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1870        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1871                                  DAG.getIntPtrConstant(Offset));
1872        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1873                                     X86::GR64RegisterClass);
1874        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1875        SDValue Store =
1876          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1877                       MachinePointerInfo::getFixedStack(
1878                         FuncInfo->getRegSaveFrameIndex(), Offset),
1879                       false, false, 0);
1880        MemOps.push_back(Store);
1881        Offset += 8;
1882      }
1883
1884      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1885        // Now store the XMM (fp + vector) parameter registers.
1886        SmallVector<SDValue, 11> SaveXMMOps;
1887        SaveXMMOps.push_back(Chain);
1888
1889        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1890        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1891        SaveXMMOps.push_back(ALVal);
1892
1893        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1894                               FuncInfo->getRegSaveFrameIndex()));
1895        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1896                               FuncInfo->getVarArgsFPOffset()));
1897
1898        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1899          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
1900                                       X86::VR128RegisterClass);
1901          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1902          SaveXMMOps.push_back(Val);
1903        }
1904        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1905                                     MVT::Other,
1906                                     &SaveXMMOps[0], SaveXMMOps.size()));
1907      }
1908
1909      if (!MemOps.empty())
1910        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1911                            &MemOps[0], MemOps.size());
1912    }
1913  }
1914
1915  // Some CCs need callee pop.
1916  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, GuaranteedTailCallOpt)) {
1917    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
1918  } else {
1919    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
1920    // If this is an sret function, the return should pop the hidden pointer.
1921    if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
1922      FuncInfo->setBytesToPopOnReturn(4);
1923  }
1924
1925  if (!Is64Bit) {
1926    // RegSaveFrameIndex is X86-64 only.
1927    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
1928    if (CallConv == CallingConv::X86_FastCall ||
1929        CallConv == CallingConv::X86_ThisCall)
1930      // fastcc functions can't have varargs.
1931      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
1932  }
1933
1934  return Chain;
1935}
1936
1937SDValue
1938X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1939                                    SDValue StackPtr, SDValue Arg,
1940                                    DebugLoc dl, SelectionDAG &DAG,
1941                                    const CCValAssign &VA,
1942                                    ISD::ArgFlagsTy Flags) const {
1943  unsigned LocMemOffset = VA.getLocMemOffset();
1944  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1945  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1946  if (Flags.isByVal())
1947    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1948
1949  return DAG.getStore(Chain, dl, Arg, PtrOff,
1950                      MachinePointerInfo::getStack(LocMemOffset),
1951                      false, false, 0);
1952}
1953
1954/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1955/// optimization is performed and it is required.
1956SDValue
1957X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1958                                           SDValue &OutRetAddr, SDValue Chain,
1959                                           bool IsTailCall, bool Is64Bit,
1960                                           int FPDiff, DebugLoc dl) const {
1961  // Adjust the Return address stack slot.
1962  EVT VT = getPointerTy();
1963  OutRetAddr = getReturnAddressFrameIndex(DAG);
1964
1965  // Load the "old" Return address.
1966  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
1967                           false, false, 0);
1968  return SDValue(OutRetAddr.getNode(), 1);
1969}
1970
1971/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
1972/// optimization is performed and it is required (FPDiff!=0).
1973static SDValue
1974EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1975                         SDValue Chain, SDValue RetAddrFrIdx,
1976                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1977  // Store the return address to the appropriate stack slot.
1978  if (!FPDiff) return Chain;
1979  // Calculate the new stack slot for the return address.
1980  int SlotSize = Is64Bit ? 8 : 4;
1981  int NewReturnAddrFI =
1982    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
1983  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1984  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1985  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1986                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
1987                       false, false, 0);
1988  return Chain;
1989}
1990
1991SDValue
1992X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1993                             CallingConv::ID CallConv, bool isVarArg,
1994                             bool &isTailCall,
1995                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1996                             const SmallVectorImpl<SDValue> &OutVals,
1997                             const SmallVectorImpl<ISD::InputArg> &Ins,
1998                             DebugLoc dl, SelectionDAG &DAG,
1999                             SmallVectorImpl<SDValue> &InVals) const {
2000  MachineFunction &MF = DAG.getMachineFunction();
2001  bool Is64Bit        = Subtarget->is64Bit();
2002  bool IsWin64        = Subtarget->isTargetWin64();
2003  bool IsStructRet    = CallIsStructReturn(Outs);
2004  bool IsSibcall      = false;
2005
2006  if (isTailCall) {
2007    // Check if it's really possible to do a tail call.
2008    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2009                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
2010                                                   Outs, OutVals, Ins, DAG);
2011
2012    // Sibcalls are automatically detected tailcalls which do not require
2013    // ABI changes.
2014    if (!GuaranteedTailCallOpt && isTailCall)
2015      IsSibcall = true;
2016
2017    if (isTailCall)
2018      ++NumTailCalls;
2019  }
2020
2021  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2022         "Var args not supported with calling convention fastcc or ghc");
2023
2024  // Analyze operands of the call, assigning locations to each operand.
2025  SmallVector<CCValAssign, 16> ArgLocs;
2026  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2027                 ArgLocs, *DAG.getContext());
2028
2029  // Allocate shadow area for Win64
2030  if (IsWin64) {
2031    CCInfo.AllocateStack(32, 8);
2032  }
2033
2034  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2035
2036  // Get a count of how many bytes are to be pushed on the stack.
2037  unsigned NumBytes = CCInfo.getNextStackOffset();
2038  if (IsSibcall)
2039    // This is a sibcall. The memory operands are available in caller's
2040    // own caller's stack.
2041    NumBytes = 0;
2042  else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
2043    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2044
2045  int FPDiff = 0;
2046  if (isTailCall && !IsSibcall) {
2047    // Lower arguments at fp - stackoffset + fpdiff.
2048    unsigned NumBytesCallerPushed =
2049      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2050    FPDiff = NumBytesCallerPushed - NumBytes;
2051
2052    // Set the delta of movement of the returnaddr stackslot.
2053    // But only set if delta is greater than previous delta.
2054    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2055      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2056  }
2057
2058  if (!IsSibcall)
2059    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2060
2061  SDValue RetAddrFrIdx;
2062  // Load return address for tail calls.
2063  if (isTailCall && FPDiff)
2064    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2065                                    Is64Bit, FPDiff, dl);
2066
2067  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2068  SmallVector<SDValue, 8> MemOpChains;
2069  SDValue StackPtr;
2070
2071  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2072  // of tail call optimization arguments are handle later.
2073  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2074    CCValAssign &VA = ArgLocs[i];
2075    EVT RegVT = VA.getLocVT();
2076    SDValue Arg = OutVals[i];
2077    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2078    bool isByVal = Flags.isByVal();
2079
2080    // Promote the value if needed.
2081    switch (VA.getLocInfo()) {
2082    default: llvm_unreachable("Unknown loc info!");
2083    case CCValAssign::Full: break;
2084    case CCValAssign::SExt:
2085      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2086      break;
2087    case CCValAssign::ZExt:
2088      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2089      break;
2090    case CCValAssign::AExt:
2091      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2092        // Special case: passing MMX values in XMM registers.
2093        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2094        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2095        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2096      } else
2097        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2098      break;
2099    case CCValAssign::BCvt:
2100      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2101      break;
2102    case CCValAssign::Indirect: {
2103      // Store the argument.
2104      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2105      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2106      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2107                           MachinePointerInfo::getFixedStack(FI),
2108                           false, false, 0);
2109      Arg = SpillSlot;
2110      break;
2111    }
2112    }
2113
2114    if (VA.isRegLoc()) {
2115      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2116      if (isVarArg && IsWin64) {
2117        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2118        // shadow reg if callee is a varargs function.
2119        unsigned ShadowReg = 0;
2120        switch (VA.getLocReg()) {
2121        case X86::XMM0: ShadowReg = X86::RCX; break;
2122        case X86::XMM1: ShadowReg = X86::RDX; break;
2123        case X86::XMM2: ShadowReg = X86::R8; break;
2124        case X86::XMM3: ShadowReg = X86::R9; break;
2125        }
2126        if (ShadowReg)
2127          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2128      }
2129    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2130      assert(VA.isMemLoc());
2131      if (StackPtr.getNode() == 0)
2132        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2133      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2134                                             dl, DAG, VA, Flags));
2135    }
2136  }
2137
2138  if (!MemOpChains.empty())
2139    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2140                        &MemOpChains[0], MemOpChains.size());
2141
2142  // Build a sequence of copy-to-reg nodes chained together with token chain
2143  // and flag operands which copy the outgoing args into registers.
2144  SDValue InFlag;
2145  // Tail call byval lowering might overwrite argument registers so in case of
2146  // tail call optimization the copies to registers are lowered later.
2147  if (!isTailCall)
2148    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2149      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2150                               RegsToPass[i].second, InFlag);
2151      InFlag = Chain.getValue(1);
2152    }
2153
2154  if (Subtarget->isPICStyleGOT()) {
2155    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2156    // GOT pointer.
2157    if (!isTailCall) {
2158      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2159                               DAG.getNode(X86ISD::GlobalBaseReg,
2160                                           DebugLoc(), getPointerTy()),
2161                               InFlag);
2162      InFlag = Chain.getValue(1);
2163    } else {
2164      // If we are tail calling and generating PIC/GOT style code load the
2165      // address of the callee into ECX. The value in ecx is used as target of
2166      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2167      // for tail calls on PIC/GOT architectures. Normally we would just put the
2168      // address of GOT into ebx and then call target@PLT. But for tail calls
2169      // ebx would be restored (since ebx is callee saved) before jumping to the
2170      // target@PLT.
2171
2172      // Note: The actual moving to ECX is done further down.
2173      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2174      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2175          !G->getGlobal()->hasProtectedVisibility())
2176        Callee = LowerGlobalAddress(Callee, DAG);
2177      else if (isa<ExternalSymbolSDNode>(Callee))
2178        Callee = LowerExternalSymbol(Callee, DAG);
2179    }
2180  }
2181
2182  if (Is64Bit && isVarArg && !IsWin64) {
2183    // From AMD64 ABI document:
2184    // For calls that may call functions that use varargs or stdargs
2185    // (prototype-less calls or calls to functions containing ellipsis (...) in
2186    // the declaration) %al is used as hidden argument to specify the number
2187    // of SSE registers used. The contents of %al do not need to match exactly
2188    // the number of registers, but must be an ubound on the number of SSE
2189    // registers used and is in the range 0 - 8 inclusive.
2190
2191    // Count the number of XMM registers allocated.
2192    static const unsigned XMMArgRegs[] = {
2193      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2194      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2195    };
2196    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2197    assert((Subtarget->hasXMM() || !NumXMMRegs)
2198           && "SSE registers cannot be used when SSE is disabled");
2199
2200    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2201                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2202    InFlag = Chain.getValue(1);
2203  }
2204
2205
2206  // For tail calls lower the arguments to the 'real' stack slot.
2207  if (isTailCall) {
2208    // Force all the incoming stack arguments to be loaded from the stack
2209    // before any new outgoing arguments are stored to the stack, because the
2210    // outgoing stack slots may alias the incoming argument stack slots, and
2211    // the alias isn't otherwise explicit. This is slightly more conservative
2212    // than necessary, because it means that each store effectively depends
2213    // on every argument instead of just those arguments it would clobber.
2214    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2215
2216    SmallVector<SDValue, 8> MemOpChains2;
2217    SDValue FIN;
2218    int FI = 0;
2219    // Do not flag preceding copytoreg stuff together with the following stuff.
2220    InFlag = SDValue();
2221    if (GuaranteedTailCallOpt) {
2222      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2223        CCValAssign &VA = ArgLocs[i];
2224        if (VA.isRegLoc())
2225          continue;
2226        assert(VA.isMemLoc());
2227        SDValue Arg = OutVals[i];
2228        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2229        // Create frame index.
2230        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2231        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2232        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2233        FIN = DAG.getFrameIndex(FI, getPointerTy());
2234
2235        if (Flags.isByVal()) {
2236          // Copy relative to framepointer.
2237          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2238          if (StackPtr.getNode() == 0)
2239            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2240                                          getPointerTy());
2241          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2242
2243          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2244                                                           ArgChain,
2245                                                           Flags, DAG, dl));
2246        } else {
2247          // Store relative to framepointer.
2248          MemOpChains2.push_back(
2249            DAG.getStore(ArgChain, dl, Arg, FIN,
2250                         MachinePointerInfo::getFixedStack(FI),
2251                         false, false, 0));
2252        }
2253      }
2254    }
2255
2256    if (!MemOpChains2.empty())
2257      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2258                          &MemOpChains2[0], MemOpChains2.size());
2259
2260    // Copy arguments to their registers.
2261    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2262      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2263                               RegsToPass[i].second, InFlag);
2264      InFlag = Chain.getValue(1);
2265    }
2266    InFlag =SDValue();
2267
2268    // Store the return address to the appropriate stack slot.
2269    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2270                                     FPDiff, dl);
2271  }
2272
2273  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2274    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2275    // In the 64-bit large code model, we have to make all calls
2276    // through a register, since the call instruction's 32-bit
2277    // pc-relative offset may not be large enough to hold the whole
2278    // address.
2279  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2280    // If the callee is a GlobalAddress node (quite common, every direct call
2281    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2282    // it.
2283
2284    // We should use extra load for direct calls to dllimported functions in
2285    // non-JIT mode.
2286    const GlobalValue *GV = G->getGlobal();
2287    if (!GV->hasDLLImportLinkage()) {
2288      unsigned char OpFlags = 0;
2289      bool ExtraLoad = false;
2290      unsigned WrapperKind = ISD::DELETED_NODE;
2291
2292      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2293      // external symbols most go through the PLT in PIC mode.  If the symbol
2294      // has hidden or protected visibility, or if it is static or local, then
2295      // we don't need to use the PLT - we can directly call it.
2296      if (Subtarget->isTargetELF() &&
2297          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2298          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2299        OpFlags = X86II::MO_PLT;
2300      } else if (Subtarget->isPICStyleStubAny() &&
2301                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2302                 (!Subtarget->getTargetTriple().isMacOSX() ||
2303                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2304        // PC-relative references to external symbols should go through $stub,
2305        // unless we're building with the leopard linker or later, which
2306        // automatically synthesizes these stubs.
2307        OpFlags = X86II::MO_DARWIN_STUB;
2308      } else if (Subtarget->isPICStyleRIPRel() &&
2309                 isa<Function>(GV) &&
2310                 cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
2311        // If the function is marked as non-lazy, generate an indirect call
2312        // which loads from the GOT directly. This avoids runtime overhead
2313        // at the cost of eager binding (and one extra byte of encoding).
2314        OpFlags = X86II::MO_GOTPCREL;
2315        WrapperKind = X86ISD::WrapperRIP;
2316        ExtraLoad = true;
2317      }
2318
2319      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2320                                          G->getOffset(), OpFlags);
2321
2322      // Add a wrapper if needed.
2323      if (WrapperKind != ISD::DELETED_NODE)
2324        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2325      // Add extra indirection if needed.
2326      if (ExtraLoad)
2327        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2328                             MachinePointerInfo::getGOT(),
2329                             false, false, 0);
2330    }
2331  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2332    unsigned char OpFlags = 0;
2333
2334    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2335    // external symbols should go through the PLT.
2336    if (Subtarget->isTargetELF() &&
2337        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2338      OpFlags = X86II::MO_PLT;
2339    } else if (Subtarget->isPICStyleStubAny() &&
2340               (!Subtarget->getTargetTriple().isMacOSX() ||
2341                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2342      // PC-relative references to external symbols should go through $stub,
2343      // unless we're building with the leopard linker or later, which
2344      // automatically synthesizes these stubs.
2345      OpFlags = X86II::MO_DARWIN_STUB;
2346    }
2347
2348    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2349                                         OpFlags);
2350  }
2351
2352  // Returns a chain & a flag for retval copy to use.
2353  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2354  SmallVector<SDValue, 8> Ops;
2355
2356  if (!IsSibcall && isTailCall) {
2357    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2358                           DAG.getIntPtrConstant(0, true), InFlag);
2359    InFlag = Chain.getValue(1);
2360  }
2361
2362  Ops.push_back(Chain);
2363  Ops.push_back(Callee);
2364
2365  if (isTailCall)
2366    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2367
2368  // Add argument registers to the end of the list so that they are known live
2369  // into the call.
2370  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2371    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2372                                  RegsToPass[i].second.getValueType()));
2373
2374  // Add an implicit use GOT pointer in EBX.
2375  if (!isTailCall && Subtarget->isPICStyleGOT())
2376    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2377
2378  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2379  if (Is64Bit && isVarArg && !IsWin64)
2380    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2381
2382  if (InFlag.getNode())
2383    Ops.push_back(InFlag);
2384
2385  if (isTailCall) {
2386    // We used to do:
2387    //// If this is the first return lowered for this function, add the regs
2388    //// to the liveout set for the function.
2389    // This isn't right, although it's probably harmless on x86; liveouts
2390    // should be computed from returns not tail calls.  Consider a void
2391    // function making a tail call to a function returning int.
2392    return DAG.getNode(X86ISD::TC_RETURN, dl,
2393                       NodeTys, &Ops[0], Ops.size());
2394  }
2395
2396  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2397  InFlag = Chain.getValue(1);
2398
2399  // Create the CALLSEQ_END node.
2400  unsigned NumBytesForCalleeToPush;
2401  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, GuaranteedTailCallOpt))
2402    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2403  else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2404    // If this is a call to a struct-return function, the callee
2405    // pops the hidden struct pointer, so we have to push it back.
2406    // This is common for Darwin/X86, Linux & Mingw32 targets.
2407    NumBytesForCalleeToPush = 4;
2408  else
2409    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2410
2411  // Returns a flag for retval copy to use.
2412  if (!IsSibcall) {
2413    Chain = DAG.getCALLSEQ_END(Chain,
2414                               DAG.getIntPtrConstant(NumBytes, true),
2415                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2416                                                     true),
2417                               InFlag);
2418    InFlag = Chain.getValue(1);
2419  }
2420
2421  // Handle result values, copying them out of physregs into vregs that we
2422  // return.
2423  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2424                         Ins, dl, DAG, InVals);
2425}
2426
2427
2428//===----------------------------------------------------------------------===//
2429//                Fast Calling Convention (tail call) implementation
2430//===----------------------------------------------------------------------===//
2431
2432//  Like std call, callee cleans arguments, convention except that ECX is
2433//  reserved for storing the tail called function address. Only 2 registers are
2434//  free for argument passing (inreg). Tail call optimization is performed
2435//  provided:
2436//                * tailcallopt is enabled
2437//                * caller/callee are fastcc
2438//  On X86_64 architecture with GOT-style position independent code only local
2439//  (within module) calls are supported at the moment.
2440//  To keep the stack aligned according to platform abi the function
2441//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2442//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2443//  If a tail called function callee has more arguments than the caller the
2444//  caller needs to make sure that there is room to move the RETADDR to. This is
2445//  achieved by reserving an area the size of the argument delta right after the
2446//  original REtADDR, but before the saved framepointer or the spilled registers
2447//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2448//  stack layout:
2449//    arg1
2450//    arg2
2451//    RETADDR
2452//    [ new RETADDR
2453//      move area ]
2454//    (possible EBP)
2455//    ESI
2456//    EDI
2457//    local1 ..
2458
2459/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2460/// for a 16 byte align requirement.
2461unsigned
2462X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2463                                               SelectionDAG& DAG) const {
2464  MachineFunction &MF = DAG.getMachineFunction();
2465  const TargetMachine &TM = MF.getTarget();
2466  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2467  unsigned StackAlignment = TFI.getStackAlignment();
2468  uint64_t AlignMask = StackAlignment - 1;
2469  int64_t Offset = StackSize;
2470  uint64_t SlotSize = TD->getPointerSize();
2471  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2472    // Number smaller than 12 so just add the difference.
2473    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2474  } else {
2475    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2476    Offset = ((~AlignMask) & Offset) + StackAlignment +
2477      (StackAlignment-SlotSize);
2478  }
2479  return Offset;
2480}
2481
2482/// MatchingStackOffset - Return true if the given stack call argument is
2483/// already available in the same position (relatively) of the caller's
2484/// incoming argument stack.
2485static
2486bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2487                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2488                         const X86InstrInfo *TII) {
2489  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2490  int FI = INT_MAX;
2491  if (Arg.getOpcode() == ISD::CopyFromReg) {
2492    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2493    if (!TargetRegisterInfo::isVirtualRegister(VR))
2494      return false;
2495    MachineInstr *Def = MRI->getVRegDef(VR);
2496    if (!Def)
2497      return false;
2498    if (!Flags.isByVal()) {
2499      if (!TII->isLoadFromStackSlot(Def, FI))
2500        return false;
2501    } else {
2502      unsigned Opcode = Def->getOpcode();
2503      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2504          Def->getOperand(1).isFI()) {
2505        FI = Def->getOperand(1).getIndex();
2506        Bytes = Flags.getByValSize();
2507      } else
2508        return false;
2509    }
2510  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2511    if (Flags.isByVal())
2512      // ByVal argument is passed in as a pointer but it's now being
2513      // dereferenced. e.g.
2514      // define @foo(%struct.X* %A) {
2515      //   tail call @bar(%struct.X* byval %A)
2516      // }
2517      return false;
2518    SDValue Ptr = Ld->getBasePtr();
2519    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2520    if (!FINode)
2521      return false;
2522    FI = FINode->getIndex();
2523  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2524    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2525    FI = FINode->getIndex();
2526    Bytes = Flags.getByValSize();
2527  } else
2528    return false;
2529
2530  assert(FI != INT_MAX);
2531  if (!MFI->isFixedObjectIndex(FI))
2532    return false;
2533  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2534}
2535
2536/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2537/// for tail call optimization. Targets which want to do tail call
2538/// optimization should implement this function.
2539bool
2540X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2541                                                     CallingConv::ID CalleeCC,
2542                                                     bool isVarArg,
2543                                                     bool isCalleeStructRet,
2544                                                     bool isCallerStructRet,
2545                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2546                                    const SmallVectorImpl<SDValue> &OutVals,
2547                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2548                                                     SelectionDAG& DAG) const {
2549  if (!IsTailCallConvention(CalleeCC) &&
2550      CalleeCC != CallingConv::C)
2551    return false;
2552
2553  // If -tailcallopt is specified, make fastcc functions tail-callable.
2554  const MachineFunction &MF = DAG.getMachineFunction();
2555  const Function *CallerF = DAG.getMachineFunction().getFunction();
2556  CallingConv::ID CallerCC = CallerF->getCallingConv();
2557  bool CCMatch = CallerCC == CalleeCC;
2558
2559  if (GuaranteedTailCallOpt) {
2560    if (IsTailCallConvention(CalleeCC) && CCMatch)
2561      return true;
2562    return false;
2563  }
2564
2565  // Look for obvious safe cases to perform tail call optimization that do not
2566  // require ABI changes. This is what gcc calls sibcall.
2567
2568  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2569  // emit a special epilogue.
2570  if (RegInfo->needsStackRealignment(MF))
2571    return false;
2572
2573  // Also avoid sibcall optimization if either caller or callee uses struct
2574  // return semantics.
2575  if (isCalleeStructRet || isCallerStructRet)
2576    return false;
2577
2578  // An stdcall caller is expected to clean up its arguments; the callee
2579  // isn't going to do that.
2580  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2581    return false;
2582
2583  // Do not sibcall optimize vararg calls unless all arguments are passed via
2584  // registers.
2585  if (isVarArg && !Outs.empty()) {
2586
2587    // Optimizing for varargs on Win64 is unlikely to be safe without
2588    // additional testing.
2589    if (Subtarget->isTargetWin64())
2590      return false;
2591
2592    SmallVector<CCValAssign, 16> ArgLocs;
2593    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2594		   getTargetMachine(), ArgLocs, *DAG.getContext());
2595
2596    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2597    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2598      if (!ArgLocs[i].isRegLoc())
2599        return false;
2600  }
2601
2602  // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2603  // Therefore if it's not used by the call it is not safe to optimize this into
2604  // a sibcall.
2605  bool Unused = false;
2606  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2607    if (!Ins[i].Used) {
2608      Unused = true;
2609      break;
2610    }
2611  }
2612  if (Unused) {
2613    SmallVector<CCValAssign, 16> RVLocs;
2614    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2615		   getTargetMachine(), RVLocs, *DAG.getContext());
2616    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2617    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2618      CCValAssign &VA = RVLocs[i];
2619      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2620        return false;
2621    }
2622  }
2623
2624  // If the calling conventions do not match, then we'd better make sure the
2625  // results are returned in the same way as what the caller expects.
2626  if (!CCMatch) {
2627    SmallVector<CCValAssign, 16> RVLocs1;
2628    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2629		    getTargetMachine(), RVLocs1, *DAG.getContext());
2630    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2631
2632    SmallVector<CCValAssign, 16> RVLocs2;
2633    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2634		    getTargetMachine(), RVLocs2, *DAG.getContext());
2635    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2636
2637    if (RVLocs1.size() != RVLocs2.size())
2638      return false;
2639    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2640      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2641        return false;
2642      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2643        return false;
2644      if (RVLocs1[i].isRegLoc()) {
2645        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2646          return false;
2647      } else {
2648        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2649          return false;
2650      }
2651    }
2652  }
2653
2654  // If the callee takes no arguments then go on to check the results of the
2655  // call.
2656  if (!Outs.empty()) {
2657    // Check if stack adjustment is needed. For now, do not do this if any
2658    // argument is passed on the stack.
2659    SmallVector<CCValAssign, 16> ArgLocs;
2660    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2661		   getTargetMachine(), ArgLocs, *DAG.getContext());
2662
2663    // Allocate shadow area for Win64
2664    if (Subtarget->isTargetWin64()) {
2665      CCInfo.AllocateStack(32, 8);
2666    }
2667
2668    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2669    if (CCInfo.getNextStackOffset()) {
2670      MachineFunction &MF = DAG.getMachineFunction();
2671      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2672        return false;
2673
2674      // Check if the arguments are already laid out in the right way as
2675      // the caller's fixed stack objects.
2676      MachineFrameInfo *MFI = MF.getFrameInfo();
2677      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2678      const X86InstrInfo *TII =
2679        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2680      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2681        CCValAssign &VA = ArgLocs[i];
2682        SDValue Arg = OutVals[i];
2683        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2684        if (VA.getLocInfo() == CCValAssign::Indirect)
2685          return false;
2686        if (!VA.isRegLoc()) {
2687          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2688                                   MFI, MRI, TII))
2689            return false;
2690        }
2691      }
2692    }
2693
2694    // If the tailcall address may be in a register, then make sure it's
2695    // possible to register allocate for it. In 32-bit, the call address can
2696    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2697    // callee-saved registers are restored. These happen to be the same
2698    // registers used to pass 'inreg' arguments so watch out for those.
2699    if (!Subtarget->is64Bit() &&
2700        !isa<GlobalAddressSDNode>(Callee) &&
2701        !isa<ExternalSymbolSDNode>(Callee)) {
2702      unsigned NumInRegs = 0;
2703      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2704        CCValAssign &VA = ArgLocs[i];
2705        if (!VA.isRegLoc())
2706          continue;
2707        unsigned Reg = VA.getLocReg();
2708        switch (Reg) {
2709        default: break;
2710        case X86::EAX: case X86::EDX: case X86::ECX:
2711          if (++NumInRegs == 3)
2712            return false;
2713          break;
2714        }
2715      }
2716    }
2717  }
2718
2719  return true;
2720}
2721
2722FastISel *
2723X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2724  return X86::createFastISel(funcInfo);
2725}
2726
2727
2728//===----------------------------------------------------------------------===//
2729//                           Other Lowering Hooks
2730//===----------------------------------------------------------------------===//
2731
2732static bool MayFoldLoad(SDValue Op) {
2733  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2734}
2735
2736static bool MayFoldIntoStore(SDValue Op) {
2737  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2738}
2739
2740static bool isTargetShuffle(unsigned Opcode) {
2741  switch(Opcode) {
2742  default: return false;
2743  case X86ISD::PSHUFD:
2744  case X86ISD::PSHUFHW:
2745  case X86ISD::PSHUFLW:
2746  case X86ISD::SHUFPD:
2747  case X86ISD::PALIGN:
2748  case X86ISD::SHUFPS:
2749  case X86ISD::MOVLHPS:
2750  case X86ISD::MOVLHPD:
2751  case X86ISD::MOVHLPS:
2752  case X86ISD::MOVLPS:
2753  case X86ISD::MOVLPD:
2754  case X86ISD::MOVSHDUP:
2755  case X86ISD::MOVSLDUP:
2756  case X86ISD::MOVDDUP:
2757  case X86ISD::MOVSS:
2758  case X86ISD::MOVSD:
2759  case X86ISD::UNPCKLPS:
2760  case X86ISD::UNPCKLPD:
2761  case X86ISD::VUNPCKLPSY:
2762  case X86ISD::VUNPCKLPDY:
2763  case X86ISD::PUNPCKLWD:
2764  case X86ISD::PUNPCKLBW:
2765  case X86ISD::PUNPCKLDQ:
2766  case X86ISD::PUNPCKLQDQ:
2767  case X86ISD::UNPCKHPS:
2768  case X86ISD::UNPCKHPD:
2769  case X86ISD::VUNPCKHPSY:
2770  case X86ISD::VUNPCKHPDY:
2771  case X86ISD::PUNPCKHWD:
2772  case X86ISD::PUNPCKHBW:
2773  case X86ISD::PUNPCKHDQ:
2774  case X86ISD::PUNPCKHQDQ:
2775  case X86ISD::VPERMILPS:
2776  case X86ISD::VPERMILPSY:
2777  case X86ISD::VPERMILPD:
2778  case X86ISD::VPERMILPDY:
2779  case X86ISD::VPERM2F128:
2780    return true;
2781  }
2782  return false;
2783}
2784
2785static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2786                                               SDValue V1, SelectionDAG &DAG) {
2787  switch(Opc) {
2788  default: llvm_unreachable("Unknown x86 shuffle node");
2789  case X86ISD::MOVSHDUP:
2790  case X86ISD::MOVSLDUP:
2791  case X86ISD::MOVDDUP:
2792    return DAG.getNode(Opc, dl, VT, V1);
2793  }
2794
2795  return SDValue();
2796}
2797
2798static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2799                          SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2800  switch(Opc) {
2801  default: llvm_unreachable("Unknown x86 shuffle node");
2802  case X86ISD::PSHUFD:
2803  case X86ISD::PSHUFHW:
2804  case X86ISD::PSHUFLW:
2805  case X86ISD::VPERMILPS:
2806  case X86ISD::VPERMILPSY:
2807  case X86ISD::VPERMILPD:
2808  case X86ISD::VPERMILPDY:
2809    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2810  }
2811
2812  return SDValue();
2813}
2814
2815static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2816               SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2817  switch(Opc) {
2818  default: llvm_unreachable("Unknown x86 shuffle node");
2819  case X86ISD::PALIGN:
2820  case X86ISD::SHUFPD:
2821  case X86ISD::SHUFPS:
2822  case X86ISD::VPERM2F128:
2823    return DAG.getNode(Opc, dl, VT, V1, V2,
2824                       DAG.getConstant(TargetMask, MVT::i8));
2825  }
2826  return SDValue();
2827}
2828
2829static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2830                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2831  switch(Opc) {
2832  default: llvm_unreachable("Unknown x86 shuffle node");
2833  case X86ISD::MOVLHPS:
2834  case X86ISD::MOVLHPD:
2835  case X86ISD::MOVHLPS:
2836  case X86ISD::MOVLPS:
2837  case X86ISD::MOVLPD:
2838  case X86ISD::MOVSS:
2839  case X86ISD::MOVSD:
2840  case X86ISD::UNPCKLPS:
2841  case X86ISD::UNPCKLPD:
2842  case X86ISD::VUNPCKLPSY:
2843  case X86ISD::VUNPCKLPDY:
2844  case X86ISD::PUNPCKLWD:
2845  case X86ISD::PUNPCKLBW:
2846  case X86ISD::PUNPCKLDQ:
2847  case X86ISD::PUNPCKLQDQ:
2848  case X86ISD::UNPCKHPS:
2849  case X86ISD::UNPCKHPD:
2850  case X86ISD::VUNPCKHPSY:
2851  case X86ISD::VUNPCKHPDY:
2852  case X86ISD::PUNPCKHWD:
2853  case X86ISD::PUNPCKHBW:
2854  case X86ISD::PUNPCKHDQ:
2855  case X86ISD::PUNPCKHQDQ:
2856    return DAG.getNode(Opc, dl, VT, V1, V2);
2857  }
2858  return SDValue();
2859}
2860
2861SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2862  MachineFunction &MF = DAG.getMachineFunction();
2863  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2864  int ReturnAddrIndex = FuncInfo->getRAIndex();
2865
2866  if (ReturnAddrIndex == 0) {
2867    // Set up a frame object for the return address.
2868    uint64_t SlotSize = TD->getPointerSize();
2869    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2870                                                           false);
2871    FuncInfo->setRAIndex(ReturnAddrIndex);
2872  }
2873
2874  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2875}
2876
2877
2878bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2879                                       bool hasSymbolicDisplacement) {
2880  // Offset should fit into 32 bit immediate field.
2881  if (!isInt<32>(Offset))
2882    return false;
2883
2884  // If we don't have a symbolic displacement - we don't have any extra
2885  // restrictions.
2886  if (!hasSymbolicDisplacement)
2887    return true;
2888
2889  // FIXME: Some tweaks might be needed for medium code model.
2890  if (M != CodeModel::Small && M != CodeModel::Kernel)
2891    return false;
2892
2893  // For small code model we assume that latest object is 16MB before end of 31
2894  // bits boundary. We may also accept pretty large negative constants knowing
2895  // that all objects are in the positive half of address space.
2896  if (M == CodeModel::Small && Offset < 16*1024*1024)
2897    return true;
2898
2899  // For kernel code model we know that all object resist in the negative half
2900  // of 32bits address space. We may not accept negative offsets, since they may
2901  // be just off and we may accept pretty large positive ones.
2902  if (M == CodeModel::Kernel && Offset > 0)
2903    return true;
2904
2905  return false;
2906}
2907
2908/// isCalleePop - Determines whether the callee is required to pop its
2909/// own arguments. Callee pop is necessary to support tail calls.
2910bool X86::isCalleePop(CallingConv::ID CallingConv,
2911                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
2912  if (IsVarArg)
2913    return false;
2914
2915  switch (CallingConv) {
2916  default:
2917    return false;
2918  case CallingConv::X86_StdCall:
2919    return !is64Bit;
2920  case CallingConv::X86_FastCall:
2921    return !is64Bit;
2922  case CallingConv::X86_ThisCall:
2923    return !is64Bit;
2924  case CallingConv::Fast:
2925    return TailCallOpt;
2926  case CallingConv::GHC:
2927    return TailCallOpt;
2928  }
2929}
2930
2931/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2932/// specific condition code, returning the condition code and the LHS/RHS of the
2933/// comparison to make.
2934static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2935                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2936  if (!isFP) {
2937    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2938      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2939        // X > -1   -> X == 0, jump !sign.
2940        RHS = DAG.getConstant(0, RHS.getValueType());
2941        return X86::COND_NS;
2942      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2943        // X < 0   -> X == 0, jump on sign.
2944        return X86::COND_S;
2945      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2946        // X < 1   -> X <= 0
2947        RHS = DAG.getConstant(0, RHS.getValueType());
2948        return X86::COND_LE;
2949      }
2950    }
2951
2952    switch (SetCCOpcode) {
2953    default: llvm_unreachable("Invalid integer condition!");
2954    case ISD::SETEQ:  return X86::COND_E;
2955    case ISD::SETGT:  return X86::COND_G;
2956    case ISD::SETGE:  return X86::COND_GE;
2957    case ISD::SETLT:  return X86::COND_L;
2958    case ISD::SETLE:  return X86::COND_LE;
2959    case ISD::SETNE:  return X86::COND_NE;
2960    case ISD::SETULT: return X86::COND_B;
2961    case ISD::SETUGT: return X86::COND_A;
2962    case ISD::SETULE: return X86::COND_BE;
2963    case ISD::SETUGE: return X86::COND_AE;
2964    }
2965  }
2966
2967  // First determine if it is required or is profitable to flip the operands.
2968
2969  // If LHS is a foldable load, but RHS is not, flip the condition.
2970  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
2971      !ISD::isNON_EXTLoad(RHS.getNode())) {
2972    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2973    std::swap(LHS, RHS);
2974  }
2975
2976  switch (SetCCOpcode) {
2977  default: break;
2978  case ISD::SETOLT:
2979  case ISD::SETOLE:
2980  case ISD::SETUGT:
2981  case ISD::SETUGE:
2982    std::swap(LHS, RHS);
2983    break;
2984  }
2985
2986  // On a floating point condition, the flags are set as follows:
2987  // ZF  PF  CF   op
2988  //  0 | 0 | 0 | X > Y
2989  //  0 | 0 | 1 | X < Y
2990  //  1 | 0 | 0 | X == Y
2991  //  1 | 1 | 1 | unordered
2992  switch (SetCCOpcode) {
2993  default: llvm_unreachable("Condcode should be pre-legalized away");
2994  case ISD::SETUEQ:
2995  case ISD::SETEQ:   return X86::COND_E;
2996  case ISD::SETOLT:              // flipped
2997  case ISD::SETOGT:
2998  case ISD::SETGT:   return X86::COND_A;
2999  case ISD::SETOLE:              // flipped
3000  case ISD::SETOGE:
3001  case ISD::SETGE:   return X86::COND_AE;
3002  case ISD::SETUGT:              // flipped
3003  case ISD::SETULT:
3004  case ISD::SETLT:   return X86::COND_B;
3005  case ISD::SETUGE:              // flipped
3006  case ISD::SETULE:
3007  case ISD::SETLE:   return X86::COND_BE;
3008  case ISD::SETONE:
3009  case ISD::SETNE:   return X86::COND_NE;
3010  case ISD::SETUO:   return X86::COND_P;
3011  case ISD::SETO:    return X86::COND_NP;
3012  case ISD::SETOEQ:
3013  case ISD::SETUNE:  return X86::COND_INVALID;
3014  }
3015}
3016
3017/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3018/// code. Current x86 isa includes the following FP cmov instructions:
3019/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3020static bool hasFPCMov(unsigned X86CC) {
3021  switch (X86CC) {
3022  default:
3023    return false;
3024  case X86::COND_B:
3025  case X86::COND_BE:
3026  case X86::COND_E:
3027  case X86::COND_P:
3028  case X86::COND_A:
3029  case X86::COND_AE:
3030  case X86::COND_NE:
3031  case X86::COND_NP:
3032    return true;
3033  }
3034}
3035
3036/// isFPImmLegal - Returns true if the target can instruction select the
3037/// specified FP immediate natively. If false, the legalizer will
3038/// materialize the FP immediate as a load from a constant pool.
3039bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3040  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3041    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3042      return true;
3043  }
3044  return false;
3045}
3046
3047/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3048/// the specified range (L, H].
3049static bool isUndefOrInRange(int Val, int Low, int Hi) {
3050  return (Val < 0) || (Val >= Low && Val < Hi);
3051}
3052
3053/// isUndefOrInRange - Return true if every element in Mask, begining
3054/// from position Pos and ending in Pos+Size, falls within the specified
3055/// range (L, L+Pos]. or is undef.
3056static bool isUndefOrInRange(const SmallVectorImpl<int> &Mask,
3057                             int Pos, int Size, int Low, int Hi) {
3058  for (int i = Pos, e = Pos+Size; i != e; ++i)
3059    if (!isUndefOrInRange(Mask[i], Low, Hi))
3060      return false;
3061  return true;
3062}
3063
3064/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3065/// specified value.
3066static bool isUndefOrEqual(int Val, int CmpVal) {
3067  if (Val < 0 || Val == CmpVal)
3068    return true;
3069  return false;
3070}
3071
3072/// isSequentialOrUndefInRange - Return true if every element in Mask, begining
3073/// from position Pos and ending in Pos+Size, falls within the specified
3074/// sequential range (L, L+Pos]. or is undef.
3075static bool isSequentialOrUndefInRange(const SmallVectorImpl<int> &Mask,
3076                                       int Pos, int Size, int Low) {
3077  for (int i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3078    if (!isUndefOrEqual(Mask[i], Low))
3079      return false;
3080  return true;
3081}
3082
3083/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3084/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3085/// the second operand.
3086static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3087  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3088    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3089  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3090    return (Mask[0] < 2 && Mask[1] < 2);
3091  return false;
3092}
3093
3094bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
3095  SmallVector<int, 8> M;
3096  N->getMask(M);
3097  return ::isPSHUFDMask(M, N->getValueType(0));
3098}
3099
3100/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3101/// is suitable for input to PSHUFHW.
3102static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3103  if (VT != MVT::v8i16)
3104    return false;
3105
3106  // Lower quadword copied in order or undef.
3107  for (int i = 0; i != 4; ++i)
3108    if (Mask[i] >= 0 && Mask[i] != i)
3109      return false;
3110
3111  // Upper quadword shuffled.
3112  for (int i = 4; i != 8; ++i)
3113    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
3114      return false;
3115
3116  return true;
3117}
3118
3119bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
3120  SmallVector<int, 8> M;
3121  N->getMask(M);
3122  return ::isPSHUFHWMask(M, N->getValueType(0));
3123}
3124
3125/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3126/// is suitable for input to PSHUFLW.
3127static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3128  if (VT != MVT::v8i16)
3129    return false;
3130
3131  // Upper quadword copied in order.
3132  for (int i = 4; i != 8; ++i)
3133    if (Mask[i] >= 0 && Mask[i] != i)
3134      return false;
3135
3136  // Lower quadword shuffled.
3137  for (int i = 0; i != 4; ++i)
3138    if (Mask[i] >= 4)
3139      return false;
3140
3141  return true;
3142}
3143
3144bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
3145  SmallVector<int, 8> M;
3146  N->getMask(M);
3147  return ::isPSHUFLWMask(M, N->getValueType(0));
3148}
3149
3150/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3151/// is suitable for input to PALIGNR.
3152static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
3153                          bool hasSSSE3) {
3154  int i, e = VT.getVectorNumElements();
3155  if (VT.getSizeInBits() != 128 && VT.getSizeInBits() != 64)
3156    return false;
3157
3158  // Do not handle v2i64 / v2f64 shuffles with palignr.
3159  if (e < 4 || !hasSSSE3)
3160    return false;
3161
3162  for (i = 0; i != e; ++i)
3163    if (Mask[i] >= 0)
3164      break;
3165
3166  // All undef, not a palignr.
3167  if (i == e)
3168    return false;
3169
3170  // Make sure we're shifting in the right direction.
3171  if (Mask[i] <= i)
3172    return false;
3173
3174  int s = Mask[i] - i;
3175
3176  // Check the rest of the elements to see if they are consecutive.
3177  for (++i; i != e; ++i) {
3178    int m = Mask[i];
3179    if (m >= 0 && m != s+i)
3180      return false;
3181  }
3182  return true;
3183}
3184
3185/// isVSHUFPSYMask - Return true if the specified VECTOR_SHUFFLE operand
3186/// specifies a shuffle of elements that is suitable for input to 256-bit
3187/// VSHUFPSY.
3188static bool isVSHUFPSYMask(const SmallVectorImpl<int> &Mask, EVT VT,
3189                          const X86Subtarget *Subtarget) {
3190  int NumElems = VT.getVectorNumElements();
3191
3192  if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256)
3193    return false;
3194
3195  if (NumElems != 8)
3196    return false;
3197
3198  // VSHUFPSY divides the resulting vector into 4 chunks.
3199  // The sources are also splitted into 4 chunks, and each destination
3200  // chunk must come from a different source chunk.
3201  //
3202  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3203  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3204  //
3205  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3206  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3207  //
3208  int QuarterSize = NumElems/4;
3209  int HalfSize = QuarterSize*2;
3210  for (int i = 0; i < QuarterSize; ++i)
3211    if (!isUndefOrInRange(Mask[i], 0, HalfSize))
3212      return false;
3213  for (int i = QuarterSize; i < QuarterSize*2; ++i)
3214    if (!isUndefOrInRange(Mask[i], NumElems, NumElems+HalfSize))
3215      return false;
3216
3217  // The mask of the second half must be the same as the first but with
3218  // the appropriate offsets. This works in the same way as VPERMILPS
3219  // works with masks.
3220  for (int i = QuarterSize*2; i < QuarterSize*3; ++i) {
3221    if (!isUndefOrInRange(Mask[i], HalfSize, NumElems))
3222      return false;
3223    int FstHalfIdx = i-HalfSize;
3224    if (Mask[FstHalfIdx] < 0)
3225      continue;
3226    if (!isUndefOrEqual(Mask[i], Mask[FstHalfIdx]+HalfSize))
3227      return false;
3228  }
3229  for (int i = QuarterSize*3; i < NumElems; ++i) {
3230    if (!isUndefOrInRange(Mask[i], NumElems+HalfSize, NumElems*2))
3231      return false;
3232    int FstHalfIdx = i-HalfSize;
3233    if (Mask[FstHalfIdx] < 0)
3234      continue;
3235    if (!isUndefOrEqual(Mask[i], Mask[FstHalfIdx]+HalfSize))
3236      return false;
3237
3238  }
3239
3240  return true;
3241}
3242
3243/// getShuffleVSHUFPSYImmediate - Return the appropriate immediate to shuffle
3244/// the specified VECTOR_MASK mask with VSHUFPSY instruction.
3245static unsigned getShuffleVSHUFPSYImmediate(SDNode *N) {
3246  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3247  EVT VT = SVOp->getValueType(0);
3248  int NumElems = VT.getVectorNumElements();
3249
3250  assert(NumElems == 8 && VT.getSizeInBits() == 256 &&
3251         "Only supports v8i32 and v8f32 types");
3252
3253  int HalfSize = NumElems/2;
3254  unsigned Mask = 0;
3255  for (int i = 0; i != NumElems ; ++i) {
3256    if (SVOp->getMaskElt(i) < 0)
3257      continue;
3258    // The mask of the first half must be equal to the second one.
3259    unsigned Shamt = (i%HalfSize)*2;
3260    unsigned Elt = SVOp->getMaskElt(i) % HalfSize;
3261    Mask |= Elt << Shamt;
3262  }
3263
3264  return Mask;
3265}
3266
3267/// isVSHUFPDYMask - Return true if the specified VECTOR_SHUFFLE operand
3268/// specifies a shuffle of elements that is suitable for input to 256-bit
3269/// VSHUFPDY. This shuffle doesn't have the same restriction as the PS
3270/// version and the mask of the second half isn't binded with the first
3271/// one.
3272static bool isVSHUFPDYMask(const SmallVectorImpl<int> &Mask, EVT VT,
3273                           const X86Subtarget *Subtarget) {
3274  int NumElems = VT.getVectorNumElements();
3275
3276  if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256)
3277    return false;
3278
3279  if (NumElems != 4)
3280    return false;
3281
3282  // VSHUFPSY divides the resulting vector into 4 chunks.
3283  // The sources are also splitted into 4 chunks, and each destination
3284  // chunk must come from a different source chunk.
3285  //
3286  //  SRC1 =>      X3       X2       X1       X0
3287  //  SRC2 =>      Y3       Y2       Y1       Y0
3288  //
3289  //  DST  =>  Y2..Y3,  X2..X3,  Y1..Y0,  X1..X0
3290  //
3291  int QuarterSize = NumElems/4;
3292  int HalfSize = QuarterSize*2;
3293  for (int i = 0; i < QuarterSize; ++i)
3294    if (!isUndefOrInRange(Mask[i], 0, HalfSize))
3295      return false;
3296  for (int i = QuarterSize; i < QuarterSize*2; ++i)
3297    if (!isUndefOrInRange(Mask[i], NumElems, NumElems+HalfSize))
3298      return false;
3299  for (int i = QuarterSize*2; i < QuarterSize*3; ++i)
3300    if (!isUndefOrInRange(Mask[i], HalfSize, NumElems))
3301      return false;
3302  for (int i = QuarterSize*3; i < NumElems; ++i)
3303    if (!isUndefOrInRange(Mask[i], NumElems+HalfSize, NumElems*2))
3304      return false;
3305
3306  return true;
3307}
3308
3309/// getShuffleVSHUFPDYImmediate - Return the appropriate immediate to shuffle
3310/// the specified VECTOR_MASK mask with VSHUFPDY instruction.
3311static unsigned getShuffleVSHUFPDYImmediate(SDNode *N) {
3312  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3313  EVT VT = SVOp->getValueType(0);
3314  int NumElems = VT.getVectorNumElements();
3315
3316  assert(NumElems == 4 && VT.getSizeInBits() == 256 &&
3317         "Only supports v4i64 and v4f64 types");
3318
3319  int HalfSize = NumElems/2;
3320  unsigned Mask = 0;
3321  for (int i = 0; i != NumElems ; ++i) {
3322    if (SVOp->getMaskElt(i) < 0)
3323      continue;
3324    int Elt = SVOp->getMaskElt(i) % HalfSize;
3325    Mask |= Elt << i;
3326  }
3327
3328  return Mask;
3329}
3330
3331/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3332/// specifies a shuffle of elements that is suitable for input to 128-bit
3333/// SHUFPS and SHUFPD.
3334static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3335  int NumElems = VT.getVectorNumElements();
3336
3337  if (VT.getSizeInBits() != 128)
3338    return false;
3339
3340  if (NumElems != 2 && NumElems != 4)
3341    return false;
3342
3343  int Half = NumElems / 2;
3344  for (int i = 0; i < Half; ++i)
3345    if (!isUndefOrInRange(Mask[i], 0, NumElems))
3346      return false;
3347  for (int i = Half; i < NumElems; ++i)
3348    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3349      return false;
3350
3351  return true;
3352}
3353
3354bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
3355  SmallVector<int, 8> M;
3356  N->getMask(M);
3357  return ::isSHUFPMask(M, N->getValueType(0));
3358}
3359
3360/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
3361/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
3362/// half elements to come from vector 1 (which would equal the dest.) and
3363/// the upper half to come from vector 2.
3364static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3365  int NumElems = VT.getVectorNumElements();
3366
3367  if (NumElems != 2 && NumElems != 4)
3368    return false;
3369
3370  int Half = NumElems / 2;
3371  for (int i = 0; i < Half; ++i)
3372    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3373      return false;
3374  for (int i = Half; i < NumElems; ++i)
3375    if (!isUndefOrInRange(Mask[i], 0, NumElems))
3376      return false;
3377  return true;
3378}
3379
3380static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
3381  SmallVector<int, 8> M;
3382  N->getMask(M);
3383  return isCommutedSHUFPMask(M, N->getValueType(0));
3384}
3385
3386/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3387/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3388bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
3389  EVT VT = N->getValueType(0);
3390  unsigned NumElems = VT.getVectorNumElements();
3391
3392  if (VT.getSizeInBits() != 128)
3393    return false;
3394
3395  if (NumElems != 4)
3396    return false;
3397
3398  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3399  return isUndefOrEqual(N->getMaskElt(0), 6) &&
3400         isUndefOrEqual(N->getMaskElt(1), 7) &&
3401         isUndefOrEqual(N->getMaskElt(2), 2) &&
3402         isUndefOrEqual(N->getMaskElt(3), 3);
3403}
3404
3405/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3406/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3407/// <2, 3, 2, 3>
3408bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
3409  EVT VT = N->getValueType(0);
3410  unsigned NumElems = VT.getVectorNumElements();
3411
3412  if (VT.getSizeInBits() != 128)
3413    return false;
3414
3415  if (NumElems != 4)
3416    return false;
3417
3418  return isUndefOrEqual(N->getMaskElt(0), 2) &&
3419         isUndefOrEqual(N->getMaskElt(1), 3) &&
3420         isUndefOrEqual(N->getMaskElt(2), 2) &&
3421         isUndefOrEqual(N->getMaskElt(3), 3);
3422}
3423
3424/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3425/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3426bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
3427  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3428
3429  if (NumElems != 2 && NumElems != 4)
3430    return false;
3431
3432  for (unsigned i = 0; i < NumElems/2; ++i)
3433    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
3434      return false;
3435
3436  for (unsigned i = NumElems/2; i < NumElems; ++i)
3437    if (!isUndefOrEqual(N->getMaskElt(i), i))
3438      return false;
3439
3440  return true;
3441}
3442
3443/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3444/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3445bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
3446  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3447
3448  if ((NumElems != 2 && NumElems != 4)
3449      || N->getValueType(0).getSizeInBits() > 128)
3450    return false;
3451
3452  for (unsigned i = 0; i < NumElems/2; ++i)
3453    if (!isUndefOrEqual(N->getMaskElt(i), i))
3454      return false;
3455
3456  for (unsigned i = 0; i < NumElems/2; ++i)
3457    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3458      return false;
3459
3460  return true;
3461}
3462
3463/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3464/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3465static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3466                         bool V2IsSplat = false) {
3467  int NumElts = VT.getVectorNumElements();
3468
3469  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3470         "Unsupported vector type for unpckh");
3471
3472  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8)
3473    return false;
3474
3475  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3476  // independently on 128-bit lanes.
3477  unsigned NumLanes = VT.getSizeInBits()/128;
3478  unsigned NumLaneElts = NumElts/NumLanes;
3479
3480  unsigned Start = 0;
3481  unsigned End = NumLaneElts;
3482  for (unsigned s = 0; s < NumLanes; ++s) {
3483    for (unsigned i = Start, j = s * NumLaneElts;
3484         i != End;
3485         i += 2, ++j) {
3486      int BitI  = Mask[i];
3487      int BitI1 = Mask[i+1];
3488      if (!isUndefOrEqual(BitI, j))
3489        return false;
3490      if (V2IsSplat) {
3491        if (!isUndefOrEqual(BitI1, NumElts))
3492          return false;
3493      } else {
3494        if (!isUndefOrEqual(BitI1, j + NumElts))
3495          return false;
3496      }
3497    }
3498    // Process the next 128 bits.
3499    Start += NumLaneElts;
3500    End += NumLaneElts;
3501  }
3502
3503  return true;
3504}
3505
3506bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3507  SmallVector<int, 8> M;
3508  N->getMask(M);
3509  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
3510}
3511
3512/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3513/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3514static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
3515                         bool V2IsSplat = false) {
3516  int NumElts = VT.getVectorNumElements();
3517
3518  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3519         "Unsupported vector type for unpckh");
3520
3521  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8)
3522    return false;
3523
3524  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3525  // independently on 128-bit lanes.
3526  unsigned NumLanes = VT.getSizeInBits()/128;
3527  unsigned NumLaneElts = NumElts/NumLanes;
3528
3529  unsigned Start = 0;
3530  unsigned End = NumLaneElts;
3531  for (unsigned l = 0; l != NumLanes; ++l) {
3532    for (unsigned i = Start, j = (l*NumLaneElts)+NumLaneElts/2;
3533                             i != End; i += 2, ++j) {
3534      int BitI  = Mask[i];
3535      int BitI1 = Mask[i+1];
3536      if (!isUndefOrEqual(BitI, j))
3537        return false;
3538      if (V2IsSplat) {
3539        if (isUndefOrEqual(BitI1, NumElts))
3540          return false;
3541      } else {
3542        if (!isUndefOrEqual(BitI1, j+NumElts))
3543          return false;
3544      }
3545    }
3546    // Process the next 128 bits.
3547    Start += NumLaneElts;
3548    End += NumLaneElts;
3549  }
3550  return true;
3551}
3552
3553bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3554  SmallVector<int, 8> M;
3555  N->getMask(M);
3556  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
3557}
3558
3559/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3560/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3561/// <0, 0, 1, 1>
3562static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3563  int NumElems = VT.getVectorNumElements();
3564  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3565    return false;
3566
3567  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3568  // FIXME: Need a better way to get rid of this, there's no latency difference
3569  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3570  // the former later. We should also remove the "_undef" special mask.
3571  if (NumElems == 4 && VT.getSizeInBits() == 256)
3572    return false;
3573
3574  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3575  // independently on 128-bit lanes.
3576  unsigned NumLanes = VT.getSizeInBits() / 128;
3577  unsigned NumLaneElts = NumElems / NumLanes;
3578
3579  for (unsigned s = 0; s < NumLanes; ++s) {
3580    for (unsigned i = s * NumLaneElts, j = s * NumLaneElts;
3581         i != NumLaneElts * (s + 1);
3582         i += 2, ++j) {
3583      int BitI  = Mask[i];
3584      int BitI1 = Mask[i+1];
3585
3586      if (!isUndefOrEqual(BitI, j))
3587        return false;
3588      if (!isUndefOrEqual(BitI1, j))
3589        return false;
3590    }
3591  }
3592
3593  return true;
3594}
3595
3596bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
3597  SmallVector<int, 8> M;
3598  N->getMask(M);
3599  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
3600}
3601
3602/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3603/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3604/// <2, 2, 3, 3>
3605static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3606  int NumElems = VT.getVectorNumElements();
3607  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3608    return false;
3609
3610  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
3611    int BitI  = Mask[i];
3612    int BitI1 = Mask[i+1];
3613    if (!isUndefOrEqual(BitI, j))
3614      return false;
3615    if (!isUndefOrEqual(BitI1, j))
3616      return false;
3617  }
3618  return true;
3619}
3620
3621bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
3622  SmallVector<int, 8> M;
3623  N->getMask(M);
3624  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
3625}
3626
3627/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3628/// specifies a shuffle of elements that is suitable for input to MOVSS,
3629/// MOVSD, and MOVD, i.e. setting the lowest element.
3630static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3631  if (VT.getVectorElementType().getSizeInBits() < 32)
3632    return false;
3633
3634  int NumElts = VT.getVectorNumElements();
3635
3636  if (!isUndefOrEqual(Mask[0], NumElts))
3637    return false;
3638
3639  for (int i = 1; i < NumElts; ++i)
3640    if (!isUndefOrEqual(Mask[i], i))
3641      return false;
3642
3643  return true;
3644}
3645
3646bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3647  SmallVector<int, 8> M;
3648  N->getMask(M);
3649  return ::isMOVLMask(M, N->getValueType(0));
3650}
3651
3652/// isVPERM2F128Mask - Match 256-bit shuffles where the elements are considered
3653/// as permutations between 128-bit chunks or halves. As an example: this
3654/// shuffle bellow:
3655///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3656/// The first half comes from the second half of V1 and the second half from the
3657/// the second half of V2.
3658static bool isVPERM2F128Mask(const SmallVectorImpl<int> &Mask, EVT VT,
3659                             const X86Subtarget *Subtarget) {
3660  if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256)
3661    return false;
3662
3663  // The shuffle result is divided into half A and half B. In total the two
3664  // sources have 4 halves, namely: C, D, E, F. The final values of A and
3665  // B must come from C, D, E or F.
3666  int HalfSize = VT.getVectorNumElements()/2;
3667  bool MatchA = false, MatchB = false;
3668
3669  // Check if A comes from one of C, D, E, F.
3670  for (int Half = 0; Half < 4; ++Half) {
3671    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3672      MatchA = true;
3673      break;
3674    }
3675  }
3676
3677  // Check if B comes from one of C, D, E, F.
3678  for (int Half = 0; Half < 4; ++Half) {
3679    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3680      MatchB = true;
3681      break;
3682    }
3683  }
3684
3685  return MatchA && MatchB;
3686}
3687
3688/// getShuffleVPERM2F128Immediate - Return the appropriate immediate to shuffle
3689/// the specified VECTOR_MASK mask with VPERM2F128 instructions.
3690static unsigned getShuffleVPERM2F128Immediate(SDNode *N) {
3691  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3692  EVT VT = SVOp->getValueType(0);
3693
3694  int HalfSize = VT.getVectorNumElements()/2;
3695
3696  int FstHalf = 0, SndHalf = 0;
3697  for (int i = 0; i < HalfSize; ++i) {
3698    if (SVOp->getMaskElt(i) > 0) {
3699      FstHalf = SVOp->getMaskElt(i)/HalfSize;
3700      break;
3701    }
3702  }
3703  for (int i = HalfSize; i < HalfSize*2; ++i) {
3704    if (SVOp->getMaskElt(i) > 0) {
3705      SndHalf = SVOp->getMaskElt(i)/HalfSize;
3706      break;
3707    }
3708  }
3709
3710  return (FstHalf | (SndHalf << 4));
3711}
3712
3713/// isVPERMILPDMask - Return true if the specified VECTOR_SHUFFLE operand
3714/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3715/// Note that VPERMIL mask matching is different depending whether theunderlying
3716/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3717/// to the same elements of the low, but to the higher half of the source.
3718/// In VPERMILPD the two lanes could be shuffled independently of each other
3719/// with the same restriction that lanes can't be crossed.
3720static bool isVPERMILPDMask(const SmallVectorImpl<int> &Mask, EVT VT,
3721                            const X86Subtarget *Subtarget) {
3722  int NumElts = VT.getVectorNumElements();
3723  int NumLanes = VT.getSizeInBits()/128;
3724
3725  if (!Subtarget->hasAVX())
3726    return false;
3727
3728  // Match any permutation of 128-bit vector with 64-bit types
3729  if (NumLanes == 1 && NumElts != 2)
3730    return false;
3731
3732  // Only match 256-bit with 32 types
3733  if (VT.getSizeInBits() == 256 && NumElts != 4)
3734    return false;
3735
3736  // The mask on the high lane is independent of the low. Both can match
3737  // any element in inside its own lane, but can't cross.
3738  int LaneSize = NumElts/NumLanes;
3739  for (int l = 0; l < NumLanes; ++l)
3740    for (int i = l*LaneSize; i < LaneSize*(l+1); ++i) {
3741      int LaneStart = l*LaneSize;
3742      if (!isUndefOrInRange(Mask[i], LaneStart, LaneStart+LaneSize))
3743        return false;
3744    }
3745
3746  return true;
3747}
3748
3749/// isVPERMILPSMask - Return true if the specified VECTOR_SHUFFLE operand
3750/// specifies a shuffle of elements that is suitable for input to VPERMILPS*.
3751/// Note that VPERMIL mask matching is different depending whether theunderlying
3752/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3753/// to the same elements of the low, but to the higher half of the source.
3754/// In VPERMILPD the two lanes could be shuffled independently of each other
3755/// with the same restriction that lanes can't be crossed.
3756static bool isVPERMILPSMask(const SmallVectorImpl<int> &Mask, EVT VT,
3757                            const X86Subtarget *Subtarget) {
3758  unsigned NumElts = VT.getVectorNumElements();
3759  unsigned NumLanes = VT.getSizeInBits()/128;
3760
3761  if (!Subtarget->hasAVX())
3762    return false;
3763
3764  // Match any permutation of 128-bit vector with 32-bit types
3765  if (NumLanes == 1 && NumElts != 4)
3766    return false;
3767
3768  // Only match 256-bit with 32 types
3769  if (VT.getSizeInBits() == 256 && NumElts != 8)
3770    return false;
3771
3772  // The mask on the high lane should be the same as the low. Actually,
3773  // they can differ if any of the corresponding index in a lane is undef
3774  // and the other stays in range.
3775  int LaneSize = NumElts/NumLanes;
3776  for (int i = 0; i < LaneSize; ++i) {
3777    int HighElt = i+LaneSize;
3778    bool HighValid = isUndefOrInRange(Mask[HighElt], LaneSize, NumElts);
3779    bool LowValid = isUndefOrInRange(Mask[i], 0, LaneSize);
3780
3781    if (!HighValid || !LowValid)
3782      return false;
3783    if (Mask[i] < 0 || Mask[HighElt] < 0)
3784      continue;
3785    if (Mask[HighElt]-Mask[i] != LaneSize)
3786      return false;
3787  }
3788
3789  return true;
3790}
3791
3792/// getShuffleVPERMILPSImmediate - Return the appropriate immediate to shuffle
3793/// the specified VECTOR_MASK mask with VPERMILPS* instructions.
3794static unsigned getShuffleVPERMILPSImmediate(SDNode *N) {
3795  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3796  EVT VT = SVOp->getValueType(0);
3797
3798  int NumElts = VT.getVectorNumElements();
3799  int NumLanes = VT.getSizeInBits()/128;
3800  int LaneSize = NumElts/NumLanes;
3801
3802  // Although the mask is equal for both lanes do it twice to get the cases
3803  // where a mask will match because the same mask element is undef on the
3804  // first half but valid on the second. This would get pathological cases
3805  // such as: shuffle <u, 0, 1, 2, 4, 4, 5, 6>, which is completely valid.
3806  unsigned Mask = 0;
3807  for (int l = 0; l < NumLanes; ++l) {
3808    for (int i = 0; i < LaneSize; ++i) {
3809      int MaskElt = SVOp->getMaskElt(i+(l*LaneSize));
3810      if (MaskElt < 0)
3811        continue;
3812      if (MaskElt >= LaneSize)
3813        MaskElt -= LaneSize;
3814      Mask |= MaskElt << (i*2);
3815    }
3816  }
3817
3818  return Mask;
3819}
3820
3821/// getShuffleVPERMILPDImmediate - Return the appropriate immediate to shuffle
3822/// the specified VECTOR_MASK mask with VPERMILPD* instructions.
3823static unsigned getShuffleVPERMILPDImmediate(SDNode *N) {
3824  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3825  EVT VT = SVOp->getValueType(0);
3826
3827  int NumElts = VT.getVectorNumElements();
3828  int NumLanes = VT.getSizeInBits()/128;
3829
3830  unsigned Mask = 0;
3831  int LaneSize = NumElts/NumLanes;
3832  for (int l = 0; l < NumLanes; ++l)
3833    for (int i = l*LaneSize; i < LaneSize*(l+1); ++i) {
3834      int MaskElt = SVOp->getMaskElt(i);
3835      if (MaskElt < 0)
3836        continue;
3837      Mask |= (MaskElt-l*LaneSize) << i;
3838    }
3839
3840  return Mask;
3841}
3842
3843/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3844/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3845/// element of vector 2 and the other elements to come from vector 1 in order.
3846static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3847                               bool V2IsSplat = false, bool V2IsUndef = false) {
3848  int NumOps = VT.getVectorNumElements();
3849  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3850    return false;
3851
3852  if (!isUndefOrEqual(Mask[0], 0))
3853    return false;
3854
3855  for (int i = 1; i < NumOps; ++i)
3856    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3857          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3858          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3859      return false;
3860
3861  return true;
3862}
3863
3864static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3865                           bool V2IsUndef = false) {
3866  SmallVector<int, 8> M;
3867  N->getMask(M);
3868  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
3869}
3870
3871/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3872/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3873/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3874bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N,
3875                         const X86Subtarget *Subtarget) {
3876  if (!Subtarget->hasSSE3() && !Subtarget->hasAVX())
3877    return false;
3878
3879  // The second vector must be undef
3880  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3881    return false;
3882
3883  EVT VT = N->getValueType(0);
3884  unsigned NumElems = VT.getVectorNumElements();
3885
3886  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3887      (VT.getSizeInBits() == 256 && NumElems != 8))
3888    return false;
3889
3890  // "i+1" is the value the indexed mask element must have
3891  for (unsigned i = 0; i < NumElems; i += 2)
3892    if (!isUndefOrEqual(N->getMaskElt(i), i+1) ||
3893        !isUndefOrEqual(N->getMaskElt(i+1), i+1))
3894      return false;
3895
3896  return true;
3897}
3898
3899/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3900/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3901/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3902bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N,
3903                         const X86Subtarget *Subtarget) {
3904  if (!Subtarget->hasSSE3() && !Subtarget->hasAVX())
3905    return false;
3906
3907  // The second vector must be undef
3908  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3909    return false;
3910
3911  EVT VT = N->getValueType(0);
3912  unsigned NumElems = VT.getVectorNumElements();
3913
3914  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3915      (VT.getSizeInBits() == 256 && NumElems != 8))
3916    return false;
3917
3918  // "i" is the value the indexed mask element must have
3919  for (unsigned i = 0; i < NumElems; i += 2)
3920    if (!isUndefOrEqual(N->getMaskElt(i), i) ||
3921        !isUndefOrEqual(N->getMaskElt(i+1), i))
3922      return false;
3923
3924  return true;
3925}
3926
3927/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
3928/// specifies a shuffle of elements that is suitable for input to 256-bit
3929/// version of MOVDDUP.
3930static bool isMOVDDUPYMask(ShuffleVectorSDNode *N,
3931                           const X86Subtarget *Subtarget) {
3932  EVT VT = N->getValueType(0);
3933  int NumElts = VT.getVectorNumElements();
3934  bool V2IsUndef = N->getOperand(1).getOpcode() == ISD::UNDEF;
3935
3936  if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256 ||
3937      !V2IsUndef || NumElts != 4)
3938    return false;
3939
3940  for (int i = 0; i != NumElts/2; ++i)
3941    if (!isUndefOrEqual(N->getMaskElt(i), 0))
3942      return false;
3943  for (int i = NumElts/2; i != NumElts; ++i)
3944    if (!isUndefOrEqual(N->getMaskElt(i), NumElts/2))
3945      return false;
3946  return true;
3947}
3948
3949/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3950/// specifies a shuffle of elements that is suitable for input to 128-bit
3951/// version of MOVDDUP.
3952bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3953  EVT VT = N->getValueType(0);
3954
3955  if (VT.getSizeInBits() != 128)
3956    return false;
3957
3958  int e = VT.getVectorNumElements() / 2;
3959  for (int i = 0; i < e; ++i)
3960    if (!isUndefOrEqual(N->getMaskElt(i), i))
3961      return false;
3962  for (int i = 0; i < e; ++i)
3963    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3964      return false;
3965  return true;
3966}
3967
3968/// isVEXTRACTF128Index - Return true if the specified
3969/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3970/// suitable for input to VEXTRACTF128.
3971bool X86::isVEXTRACTF128Index(SDNode *N) {
3972  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3973    return false;
3974
3975  // The index should be aligned on a 128-bit boundary.
3976  uint64_t Index =
3977    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3978
3979  unsigned VL = N->getValueType(0).getVectorNumElements();
3980  unsigned VBits = N->getValueType(0).getSizeInBits();
3981  unsigned ElSize = VBits / VL;
3982  bool Result = (Index * ElSize) % 128 == 0;
3983
3984  return Result;
3985}
3986
3987/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
3988/// operand specifies a subvector insert that is suitable for input to
3989/// VINSERTF128.
3990bool X86::isVINSERTF128Index(SDNode *N) {
3991  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3992    return false;
3993
3994  // The index should be aligned on a 128-bit boundary.
3995  uint64_t Index =
3996    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3997
3998  unsigned VL = N->getValueType(0).getVectorNumElements();
3999  unsigned VBits = N->getValueType(0).getSizeInBits();
4000  unsigned ElSize = VBits / VL;
4001  bool Result = (Index * ElSize) % 128 == 0;
4002
4003  return Result;
4004}
4005
4006/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
4007/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
4008unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
4009  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4010  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
4011
4012  unsigned Shift = (NumOperands == 4) ? 2 : 1;
4013  unsigned Mask = 0;
4014  for (int i = 0; i < NumOperands; ++i) {
4015    int Val = SVOp->getMaskElt(NumOperands-i-1);
4016    if (Val < 0) Val = 0;
4017    if (Val >= NumOperands) Val -= NumOperands;
4018    Mask |= Val;
4019    if (i != NumOperands - 1)
4020      Mask <<= Shift;
4021  }
4022  return Mask;
4023}
4024
4025/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
4026/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
4027unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
4028  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4029  unsigned Mask = 0;
4030  // 8 nodes, but we only care about the last 4.
4031  for (unsigned i = 7; i >= 4; --i) {
4032    int Val = SVOp->getMaskElt(i);
4033    if (Val >= 0)
4034      Mask |= (Val - 4);
4035    if (i != 4)
4036      Mask <<= 2;
4037  }
4038  return Mask;
4039}
4040
4041/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
4042/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
4043unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
4044  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4045  unsigned Mask = 0;
4046  // 8 nodes, but we only care about the first 4.
4047  for (int i = 3; i >= 0; --i) {
4048    int Val = SVOp->getMaskElt(i);
4049    if (Val >= 0)
4050      Mask |= Val;
4051    if (i != 0)
4052      Mask <<= 2;
4053  }
4054  return Mask;
4055}
4056
4057/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
4058/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
4059unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
4060  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4061  EVT VVT = N->getValueType(0);
4062  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
4063  int Val = 0;
4064
4065  unsigned i, e;
4066  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
4067    Val = SVOp->getMaskElt(i);
4068    if (Val >= 0)
4069      break;
4070  }
4071  assert(Val - i > 0 && "PALIGNR imm should be positive");
4072  return (Val - i) * EltSize;
4073}
4074
4075/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
4076/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
4077/// instructions.
4078unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
4079  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4080    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
4081
4082  uint64_t Index =
4083    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4084
4085  EVT VecVT = N->getOperand(0).getValueType();
4086  EVT ElVT = VecVT.getVectorElementType();
4087
4088  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4089  return Index / NumElemsPerChunk;
4090}
4091
4092/// getInsertVINSERTF128Immediate - Return the appropriate immediate
4093/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4094/// instructions.
4095unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
4096  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4097    llvm_unreachable("Illegal insert subvector for VINSERTF128");
4098
4099  uint64_t Index =
4100    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4101
4102  EVT VecVT = N->getValueType(0);
4103  EVT ElVT = VecVT.getVectorElementType();
4104
4105  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4106  return Index / NumElemsPerChunk;
4107}
4108
4109/// isZeroNode - Returns true if Elt is a constant zero or a floating point
4110/// constant +0.0.
4111bool X86::isZeroNode(SDValue Elt) {
4112  return ((isa<ConstantSDNode>(Elt) &&
4113           cast<ConstantSDNode>(Elt)->isNullValue()) ||
4114          (isa<ConstantFPSDNode>(Elt) &&
4115           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
4116}
4117
4118/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4119/// their permute mask.
4120static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4121                                    SelectionDAG &DAG) {
4122  EVT VT = SVOp->getValueType(0);
4123  unsigned NumElems = VT.getVectorNumElements();
4124  SmallVector<int, 8> MaskVec;
4125
4126  for (unsigned i = 0; i != NumElems; ++i) {
4127    int idx = SVOp->getMaskElt(i);
4128    if (idx < 0)
4129      MaskVec.push_back(idx);
4130    else if (idx < (int)NumElems)
4131      MaskVec.push_back(idx + NumElems);
4132    else
4133      MaskVec.push_back(idx - NumElems);
4134  }
4135  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4136                              SVOp->getOperand(0), &MaskVec[0]);
4137}
4138
4139/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
4140/// the two vector operands have swapped position.
4141static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
4142  unsigned NumElems = VT.getVectorNumElements();
4143  for (unsigned i = 0; i != NumElems; ++i) {
4144    int idx = Mask[i];
4145    if (idx < 0)
4146      continue;
4147    else if (idx < (int)NumElems)
4148      Mask[i] = idx + NumElems;
4149    else
4150      Mask[i] = idx - NumElems;
4151  }
4152}
4153
4154/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4155/// match movhlps. The lower half elements should come from upper half of
4156/// V1 (and in order), and the upper half elements should come from the upper
4157/// half of V2 (and in order).
4158static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
4159  EVT VT = Op->getValueType(0);
4160  if (VT.getSizeInBits() != 128)
4161    return false;
4162  if (VT.getVectorNumElements() != 4)
4163    return false;
4164  for (unsigned i = 0, e = 2; i != e; ++i)
4165    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
4166      return false;
4167  for (unsigned i = 2; i != 4; ++i)
4168    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
4169      return false;
4170  return true;
4171}
4172
4173/// isScalarLoadToVector - Returns true if the node is a scalar load that
4174/// is promoted to a vector. It also returns the LoadSDNode by reference if
4175/// required.
4176static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4177  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4178    return false;
4179  N = N->getOperand(0).getNode();
4180  if (!ISD::isNON_EXTLoad(N))
4181    return false;
4182  if (LD)
4183    *LD = cast<LoadSDNode>(N);
4184  return true;
4185}
4186
4187/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4188/// match movlp{s|d}. The lower half elements should come from lower half of
4189/// V1 (and in order), and the upper half elements should come from the upper
4190/// half of V2 (and in order). And since V1 will become the source of the
4191/// MOVLP, it must be either a vector load or a scalar load to vector.
4192static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4193                               ShuffleVectorSDNode *Op) {
4194  EVT VT = Op->getValueType(0);
4195  if (VT.getSizeInBits() != 128)
4196    return false;
4197
4198  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4199    return false;
4200  // Is V2 is a vector load, don't do this transformation. We will try to use
4201  // load folding shufps op.
4202  if (ISD::isNON_EXTLoad(V2))
4203    return false;
4204
4205  unsigned NumElems = VT.getVectorNumElements();
4206
4207  if (NumElems != 2 && NumElems != 4)
4208    return false;
4209  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4210    if (!isUndefOrEqual(Op->getMaskElt(i), i))
4211      return false;
4212  for (unsigned i = NumElems/2; i != NumElems; ++i)
4213    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
4214      return false;
4215  return true;
4216}
4217
4218/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4219/// all the same.
4220static bool isSplatVector(SDNode *N) {
4221  if (N->getOpcode() != ISD::BUILD_VECTOR)
4222    return false;
4223
4224  SDValue SplatValue = N->getOperand(0);
4225  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4226    if (N->getOperand(i) != SplatValue)
4227      return false;
4228  return true;
4229}
4230
4231/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4232/// to an zero vector.
4233/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4234static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4235  SDValue V1 = N->getOperand(0);
4236  SDValue V2 = N->getOperand(1);
4237  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4238  for (unsigned i = 0; i != NumElems; ++i) {
4239    int Idx = N->getMaskElt(i);
4240    if (Idx >= (int)NumElems) {
4241      unsigned Opc = V2.getOpcode();
4242      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4243        continue;
4244      if (Opc != ISD::BUILD_VECTOR ||
4245          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4246        return false;
4247    } else if (Idx >= 0) {
4248      unsigned Opc = V1.getOpcode();
4249      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4250        continue;
4251      if (Opc != ISD::BUILD_VECTOR ||
4252          !X86::isZeroNode(V1.getOperand(Idx)))
4253        return false;
4254    }
4255  }
4256  return true;
4257}
4258
4259/// getZeroVector - Returns a vector of specified type with all zero elements.
4260///
4261static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
4262                             DebugLoc dl) {
4263  assert(VT.isVector() && "Expected a vector type");
4264
4265  // Always build SSE zero vectors as <4 x i32> bitcasted
4266  // to their dest type. This ensures they get CSE'd.
4267  SDValue Vec;
4268  if (VT.getSizeInBits() == 128) {  // SSE
4269    if (HasSSE2) {  // SSE2
4270      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4271      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4272    } else { // SSE1
4273      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4274      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4275    }
4276  } else if (VT.getSizeInBits() == 256) { // AVX
4277    // 256-bit logic and arithmetic instructions in AVX are
4278    // all floating-point, no support for integer ops. Default
4279    // to emitting fp zeroed vectors then.
4280    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4281    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4282    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4283  }
4284  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4285}
4286
4287/// getOnesVector - Returns a vector of specified type with all bits set.
4288/// Always build ones vectors as <4 x i32>. For 256-bit types, use two
4289/// <4 x i32> inserted in a <8 x i32> appropriately. Then bitcast to their
4290/// original type, ensuring they get CSE'd.
4291static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
4292  assert(VT.isVector() && "Expected a vector type");
4293  assert((VT.is128BitVector() || VT.is256BitVector())
4294         && "Expected a 128-bit or 256-bit vector type");
4295
4296  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4297  SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
4298                            Cst, Cst, Cst, Cst);
4299
4300  if (VT.is256BitVector()) {
4301    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, MVT::v8i32),
4302                              Vec, DAG.getConstant(0, MVT::i32), DAG, dl);
4303    Vec = Insert128BitVector(InsV, Vec,
4304                  DAG.getConstant(4 /* NumElems/2 */, MVT::i32), DAG, dl);
4305  }
4306
4307  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4308}
4309
4310/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4311/// that point to V2 points to its first element.
4312static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4313  EVT VT = SVOp->getValueType(0);
4314  unsigned NumElems = VT.getVectorNumElements();
4315
4316  bool Changed = false;
4317  SmallVector<int, 8> MaskVec;
4318  SVOp->getMask(MaskVec);
4319
4320  for (unsigned i = 0; i != NumElems; ++i) {
4321    if (MaskVec[i] > (int)NumElems) {
4322      MaskVec[i] = NumElems;
4323      Changed = true;
4324    }
4325  }
4326  if (Changed)
4327    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
4328                                SVOp->getOperand(1), &MaskVec[0]);
4329  return SDValue(SVOp, 0);
4330}
4331
4332/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4333/// operation of specified width.
4334static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4335                       SDValue V2) {
4336  unsigned NumElems = VT.getVectorNumElements();
4337  SmallVector<int, 8> Mask;
4338  Mask.push_back(NumElems);
4339  for (unsigned i = 1; i != NumElems; ++i)
4340    Mask.push_back(i);
4341  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4342}
4343
4344/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4345static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4346                          SDValue V2) {
4347  unsigned NumElems = VT.getVectorNumElements();
4348  SmallVector<int, 8> Mask;
4349  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4350    Mask.push_back(i);
4351    Mask.push_back(i + NumElems);
4352  }
4353  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4354}
4355
4356/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4357static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4358                          SDValue V2) {
4359  unsigned NumElems = VT.getVectorNumElements();
4360  unsigned Half = NumElems/2;
4361  SmallVector<int, 8> Mask;
4362  for (unsigned i = 0; i != Half; ++i) {
4363    Mask.push_back(i + Half);
4364    Mask.push_back(i + NumElems + Half);
4365  }
4366  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4367}
4368
4369// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4370// a generic shuffle instruction because the target has no such instructions.
4371// Generate shuffles which repeat i16 and i8 several times until they can be
4372// represented by v4f32 and then be manipulated by target suported shuffles.
4373static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4374  EVT VT = V.getValueType();
4375  int NumElems = VT.getVectorNumElements();
4376  DebugLoc dl = V.getDebugLoc();
4377
4378  while (NumElems > 4) {
4379    if (EltNo < NumElems/2) {
4380      V = getUnpackl(DAG, dl, VT, V, V);
4381    } else {
4382      V = getUnpackh(DAG, dl, VT, V, V);
4383      EltNo -= NumElems/2;
4384    }
4385    NumElems >>= 1;
4386  }
4387  return V;
4388}
4389
4390/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4391static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4392  EVT VT = V.getValueType();
4393  DebugLoc dl = V.getDebugLoc();
4394  assert((VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256)
4395         && "Vector size not supported");
4396
4397  if (VT.getSizeInBits() == 128) {
4398    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4399    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4400    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4401                             &SplatMask[0]);
4402  } else {
4403    // To use VPERMILPS to splat scalars, the second half of indicies must
4404    // refer to the higher part, which is a duplication of the lower one,
4405    // because VPERMILPS can only handle in-lane permutations.
4406    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4407                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4408
4409    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4410    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4411                             &SplatMask[0]);
4412  }
4413
4414  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4415}
4416
4417/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4418static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4419  EVT SrcVT = SV->getValueType(0);
4420  SDValue V1 = SV->getOperand(0);
4421  DebugLoc dl = SV->getDebugLoc();
4422
4423  int EltNo = SV->getSplatIndex();
4424  int NumElems = SrcVT.getVectorNumElements();
4425  unsigned Size = SrcVT.getSizeInBits();
4426
4427  assert(((Size == 128 && NumElems > 4) || Size == 256) &&
4428          "Unknown how to promote splat for type");
4429
4430  // Extract the 128-bit part containing the splat element and update
4431  // the splat element index when it refers to the higher register.
4432  if (Size == 256) {
4433    unsigned Idx = (EltNo > NumElems/2) ? NumElems/2 : 0;
4434    V1 = Extract128BitVector(V1, DAG.getConstant(Idx, MVT::i32), DAG, dl);
4435    if (Idx > 0)
4436      EltNo -= NumElems/2;
4437  }
4438
4439  // All i16 and i8 vector types can't be used directly by a generic shuffle
4440  // instruction because the target has no such instruction. Generate shuffles
4441  // which repeat i16 and i8 several times until they fit in i32, and then can
4442  // be manipulated by target suported shuffles.
4443  EVT EltVT = SrcVT.getVectorElementType();
4444  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4445    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4446
4447  // Recreate the 256-bit vector and place the same 128-bit vector
4448  // into the low and high part. This is necessary because we want
4449  // to use VPERM* to shuffle the vectors
4450  if (Size == 256) {
4451    SDValue InsV = Insert128BitVector(DAG.getUNDEF(SrcVT), V1,
4452                         DAG.getConstant(0, MVT::i32), DAG, dl);
4453    V1 = Insert128BitVector(InsV, V1,
4454               DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
4455  }
4456
4457  return getLegalSplat(DAG, V1, EltNo);
4458}
4459
4460/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4461/// vector of zero or undef vector.  This produces a shuffle where the low
4462/// element of V2 is swizzled into the zero/undef vector, landing at element
4463/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4464static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4465                                             bool isZero, bool HasSSE2,
4466                                             SelectionDAG &DAG) {
4467  EVT VT = V2.getValueType();
4468  SDValue V1 = isZero
4469    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4470  unsigned NumElems = VT.getVectorNumElements();
4471  SmallVector<int, 16> MaskVec;
4472  for (unsigned i = 0; i != NumElems; ++i)
4473    // If this is the insertion idx, put the low elt of V2 here.
4474    MaskVec.push_back(i == Idx ? NumElems : i);
4475  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4476}
4477
4478/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4479/// element of the result of the vector shuffle.
4480static SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
4481                                   unsigned Depth) {
4482  if (Depth == 6)
4483    return SDValue();  // Limit search depth.
4484
4485  SDValue V = SDValue(N, 0);
4486  EVT VT = V.getValueType();
4487  unsigned Opcode = V.getOpcode();
4488
4489  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4490  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4491    Index = SV->getMaskElt(Index);
4492
4493    if (Index < 0)
4494      return DAG.getUNDEF(VT.getVectorElementType());
4495
4496    int NumElems = VT.getVectorNumElements();
4497    SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
4498    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
4499  }
4500
4501  // Recurse into target specific vector shuffles to find scalars.
4502  if (isTargetShuffle(Opcode)) {
4503    int NumElems = VT.getVectorNumElements();
4504    SmallVector<unsigned, 16> ShuffleMask;
4505    SDValue ImmN;
4506
4507    switch(Opcode) {
4508    case X86ISD::SHUFPS:
4509    case X86ISD::SHUFPD:
4510      ImmN = N->getOperand(N->getNumOperands()-1);
4511      DecodeSHUFPSMask(NumElems,
4512                       cast<ConstantSDNode>(ImmN)->getZExtValue(),
4513                       ShuffleMask);
4514      break;
4515    case X86ISD::PUNPCKHBW:
4516    case X86ISD::PUNPCKHWD:
4517    case X86ISD::PUNPCKHDQ:
4518    case X86ISD::PUNPCKHQDQ:
4519      DecodePUNPCKHMask(NumElems, ShuffleMask);
4520      break;
4521    case X86ISD::UNPCKHPS:
4522    case X86ISD::UNPCKHPD:
4523    case X86ISD::VUNPCKHPSY:
4524    case X86ISD::VUNPCKHPDY:
4525      DecodeUNPCKHPMask(NumElems, ShuffleMask);
4526      break;
4527    case X86ISD::PUNPCKLBW:
4528    case X86ISD::PUNPCKLWD:
4529    case X86ISD::PUNPCKLDQ:
4530    case X86ISD::PUNPCKLQDQ:
4531      DecodePUNPCKLMask(VT, ShuffleMask);
4532      break;
4533    case X86ISD::UNPCKLPS:
4534    case X86ISD::UNPCKLPD:
4535    case X86ISD::VUNPCKLPSY:
4536    case X86ISD::VUNPCKLPDY:
4537      DecodeUNPCKLPMask(VT, ShuffleMask);
4538      break;
4539    case X86ISD::MOVHLPS:
4540      DecodeMOVHLPSMask(NumElems, ShuffleMask);
4541      break;
4542    case X86ISD::MOVLHPS:
4543      DecodeMOVLHPSMask(NumElems, ShuffleMask);
4544      break;
4545    case X86ISD::PSHUFD:
4546      ImmN = N->getOperand(N->getNumOperands()-1);
4547      DecodePSHUFMask(NumElems,
4548                      cast<ConstantSDNode>(ImmN)->getZExtValue(),
4549                      ShuffleMask);
4550      break;
4551    case X86ISD::PSHUFHW:
4552      ImmN = N->getOperand(N->getNumOperands()-1);
4553      DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4554                        ShuffleMask);
4555      break;
4556    case X86ISD::PSHUFLW:
4557      ImmN = N->getOperand(N->getNumOperands()-1);
4558      DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4559                        ShuffleMask);
4560      break;
4561    case X86ISD::MOVSS:
4562    case X86ISD::MOVSD: {
4563      // The index 0 always comes from the first element of the second source,
4564      // this is why MOVSS and MOVSD are used in the first place. The other
4565      // elements come from the other positions of the first source vector.
4566      unsigned OpNum = (Index == 0) ? 1 : 0;
4567      return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
4568                                 Depth+1);
4569    }
4570    case X86ISD::VPERMILPS:
4571      ImmN = N->getOperand(N->getNumOperands()-1);
4572      DecodeVPERMILPSMask(4, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4573                        ShuffleMask);
4574      break;
4575    case X86ISD::VPERMILPSY:
4576      ImmN = N->getOperand(N->getNumOperands()-1);
4577      DecodeVPERMILPSMask(8, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4578                        ShuffleMask);
4579      break;
4580    case X86ISD::VPERMILPD:
4581      ImmN = N->getOperand(N->getNumOperands()-1);
4582      DecodeVPERMILPDMask(2, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4583                        ShuffleMask);
4584      break;
4585    case X86ISD::VPERMILPDY:
4586      ImmN = N->getOperand(N->getNumOperands()-1);
4587      DecodeVPERMILPDMask(4, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4588                        ShuffleMask);
4589      break;
4590    case X86ISD::VPERM2F128:
4591      ImmN = N->getOperand(N->getNumOperands()-1);
4592      DecodeVPERM2F128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4593                           ShuffleMask);
4594      break;
4595    default:
4596      assert("not implemented for target shuffle node");
4597      return SDValue();
4598    }
4599
4600    Index = ShuffleMask[Index];
4601    if (Index < 0)
4602      return DAG.getUNDEF(VT.getVectorElementType());
4603
4604    SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
4605    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
4606                               Depth+1);
4607  }
4608
4609  // Actual nodes that may contain scalar elements
4610  if (Opcode == ISD::BITCAST) {
4611    V = V.getOperand(0);
4612    EVT SrcVT = V.getValueType();
4613    unsigned NumElems = VT.getVectorNumElements();
4614
4615    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4616      return SDValue();
4617  }
4618
4619  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4620    return (Index == 0) ? V.getOperand(0)
4621                          : DAG.getUNDEF(VT.getVectorElementType());
4622
4623  if (V.getOpcode() == ISD::BUILD_VECTOR)
4624    return V.getOperand(Index);
4625
4626  return SDValue();
4627}
4628
4629/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4630/// shuffle operation which come from a consecutively from a zero. The
4631/// search can start in two different directions, from left or right.
4632static
4633unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
4634                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4635  int i = 0;
4636
4637  while (i < NumElems) {
4638    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4639    SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
4640    if (!(Elt.getNode() &&
4641         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4642      break;
4643    ++i;
4644  }
4645
4646  return i;
4647}
4648
4649/// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
4650/// MaskE correspond consecutively to elements from one of the vector operands,
4651/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4652static
4653bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
4654                              int OpIdx, int NumElems, unsigned &OpNum) {
4655  bool SeenV1 = false;
4656  bool SeenV2 = false;
4657
4658  for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
4659    int Idx = SVOp->getMaskElt(i);
4660    // Ignore undef indicies
4661    if (Idx < 0)
4662      continue;
4663
4664    if (Idx < NumElems)
4665      SeenV1 = true;
4666    else
4667      SeenV2 = true;
4668
4669    // Only accept consecutive elements from the same vector
4670    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4671      return false;
4672  }
4673
4674  OpNum = SeenV1 ? 0 : 1;
4675  return true;
4676}
4677
4678/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4679/// logical left shift of a vector.
4680static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4681                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4682  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4683  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4684              false /* check zeros from right */, DAG);
4685  unsigned OpSrc;
4686
4687  if (!NumZeros)
4688    return false;
4689
4690  // Considering the elements in the mask that are not consecutive zeros,
4691  // check if they consecutively come from only one of the source vectors.
4692  //
4693  //               V1 = {X, A, B, C}     0
4694  //                         \  \  \    /
4695  //   vector_shuffle V1, V2 <1, 2, 3, X>
4696  //
4697  if (!isShuffleMaskConsecutive(SVOp,
4698            0,                   // Mask Start Index
4699            NumElems-NumZeros-1, // Mask End Index
4700            NumZeros,            // Where to start looking in the src vector
4701            NumElems,            // Number of elements in vector
4702            OpSrc))              // Which source operand ?
4703    return false;
4704
4705  isLeft = false;
4706  ShAmt = NumZeros;
4707  ShVal = SVOp->getOperand(OpSrc);
4708  return true;
4709}
4710
4711/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4712/// logical left shift of a vector.
4713static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4714                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4715  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4716  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4717              true /* check zeros from left */, DAG);
4718  unsigned OpSrc;
4719
4720  if (!NumZeros)
4721    return false;
4722
4723  // Considering the elements in the mask that are not consecutive zeros,
4724  // check if they consecutively come from only one of the source vectors.
4725  //
4726  //                           0    { A, B, X, X } = V2
4727  //                          / \    /  /
4728  //   vector_shuffle V1, V2 <X, X, 4, 5>
4729  //
4730  if (!isShuffleMaskConsecutive(SVOp,
4731            NumZeros,     // Mask Start Index
4732            NumElems-1,   // Mask End Index
4733            0,            // Where to start looking in the src vector
4734            NumElems,     // Number of elements in vector
4735            OpSrc))       // Which source operand ?
4736    return false;
4737
4738  isLeft = true;
4739  ShAmt = NumZeros;
4740  ShVal = SVOp->getOperand(OpSrc);
4741  return true;
4742}
4743
4744/// isVectorShift - Returns true if the shuffle can be implemented as a
4745/// logical left or right shift of a vector.
4746static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4747                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4748  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4749      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4750    return true;
4751
4752  return false;
4753}
4754
4755/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4756///
4757static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4758                                       unsigned NumNonZero, unsigned NumZero,
4759                                       SelectionDAG &DAG,
4760                                       const TargetLowering &TLI) {
4761  if (NumNonZero > 8)
4762    return SDValue();
4763
4764  DebugLoc dl = Op.getDebugLoc();
4765  SDValue V(0, 0);
4766  bool First = true;
4767  for (unsigned i = 0; i < 16; ++i) {
4768    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4769    if (ThisIsNonZero && First) {
4770      if (NumZero)
4771        V = getZeroVector(MVT::v8i16, true, DAG, dl);
4772      else
4773        V = DAG.getUNDEF(MVT::v8i16);
4774      First = false;
4775    }
4776
4777    if ((i & 1) != 0) {
4778      SDValue ThisElt(0, 0), LastElt(0, 0);
4779      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4780      if (LastIsNonZero) {
4781        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4782                              MVT::i16, Op.getOperand(i-1));
4783      }
4784      if (ThisIsNonZero) {
4785        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4786        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4787                              ThisElt, DAG.getConstant(8, MVT::i8));
4788        if (LastIsNonZero)
4789          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4790      } else
4791        ThisElt = LastElt;
4792
4793      if (ThisElt.getNode())
4794        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4795                        DAG.getIntPtrConstant(i/2));
4796    }
4797  }
4798
4799  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4800}
4801
4802/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4803///
4804static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4805                                     unsigned NumNonZero, unsigned NumZero,
4806                                     SelectionDAG &DAG,
4807                                     const TargetLowering &TLI) {
4808  if (NumNonZero > 4)
4809    return SDValue();
4810
4811  DebugLoc dl = Op.getDebugLoc();
4812  SDValue V(0, 0);
4813  bool First = true;
4814  for (unsigned i = 0; i < 8; ++i) {
4815    bool isNonZero = (NonZeros & (1 << i)) != 0;
4816    if (isNonZero) {
4817      if (First) {
4818        if (NumZero)
4819          V = getZeroVector(MVT::v8i16, true, DAG, dl);
4820        else
4821          V = DAG.getUNDEF(MVT::v8i16);
4822        First = false;
4823      }
4824      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4825                      MVT::v8i16, V, Op.getOperand(i),
4826                      DAG.getIntPtrConstant(i));
4827    }
4828  }
4829
4830  return V;
4831}
4832
4833/// getVShift - Return a vector logical shift node.
4834///
4835static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4836                         unsigned NumBits, SelectionDAG &DAG,
4837                         const TargetLowering &TLI, DebugLoc dl) {
4838  EVT ShVT = MVT::v2i64;
4839  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
4840  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4841  return DAG.getNode(ISD::BITCAST, dl, VT,
4842                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4843                             DAG.getConstant(NumBits,
4844                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4845}
4846
4847SDValue
4848X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4849                                          SelectionDAG &DAG) const {
4850
4851  // Check if the scalar load can be widened into a vector load. And if
4852  // the address is "base + cst" see if the cst can be "absorbed" into
4853  // the shuffle mask.
4854  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4855    SDValue Ptr = LD->getBasePtr();
4856    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4857      return SDValue();
4858    EVT PVT = LD->getValueType(0);
4859    if (PVT != MVT::i32 && PVT != MVT::f32)
4860      return SDValue();
4861
4862    int FI = -1;
4863    int64_t Offset = 0;
4864    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4865      FI = FINode->getIndex();
4866      Offset = 0;
4867    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4868               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4869      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4870      Offset = Ptr.getConstantOperandVal(1);
4871      Ptr = Ptr.getOperand(0);
4872    } else {
4873      return SDValue();
4874    }
4875
4876    // FIXME: 256-bit vector instructions don't require a strict alignment,
4877    // improve this code to support it better.
4878    unsigned RequiredAlign = VT.getSizeInBits()/8;
4879    SDValue Chain = LD->getChain();
4880    // Make sure the stack object alignment is at least 16 or 32.
4881    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4882    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4883      if (MFI->isFixedObjectIndex(FI)) {
4884        // Can't change the alignment. FIXME: It's possible to compute
4885        // the exact stack offset and reference FI + adjust offset instead.
4886        // If someone *really* cares about this. That's the way to implement it.
4887        return SDValue();
4888      } else {
4889        MFI->setObjectAlignment(FI, RequiredAlign);
4890      }
4891    }
4892
4893    // (Offset % 16 or 32) must be multiple of 4. Then address is then
4894    // Ptr + (Offset & ~15).
4895    if (Offset < 0)
4896      return SDValue();
4897    if ((Offset % RequiredAlign) & 3)
4898      return SDValue();
4899    int64_t StartOffset = Offset & ~(RequiredAlign-1);
4900    if (StartOffset)
4901      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4902                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4903
4904    int EltNo = (Offset - StartOffset) >> 2;
4905    int NumElems = VT.getVectorNumElements();
4906
4907    EVT CanonVT = VT.getSizeInBits() == 128 ? MVT::v4i32 : MVT::v8i32;
4908    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4909    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4910                             LD->getPointerInfo().getWithOffset(StartOffset),
4911                             false, false, 0);
4912
4913    // Canonicalize it to a v4i32 or v8i32 shuffle.
4914    SmallVector<int, 8> Mask;
4915    for (int i = 0; i < NumElems; ++i)
4916      Mask.push_back(EltNo);
4917
4918    V1 = DAG.getNode(ISD::BITCAST, dl, CanonVT, V1);
4919    return DAG.getNode(ISD::BITCAST, dl, NVT,
4920                       DAG.getVectorShuffle(CanonVT, dl, V1,
4921                                            DAG.getUNDEF(CanonVT),&Mask[0]));
4922  }
4923
4924  return SDValue();
4925}
4926
4927/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4928/// vector of type 'VT', see if the elements can be replaced by a single large
4929/// load which has the same value as a build_vector whose operands are 'elts'.
4930///
4931/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4932///
4933/// FIXME: we'd also like to handle the case where the last elements are zero
4934/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4935/// There's even a handy isZeroNode for that purpose.
4936static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4937                                        DebugLoc &DL, SelectionDAG &DAG) {
4938  EVT EltVT = VT.getVectorElementType();
4939  unsigned NumElems = Elts.size();
4940
4941  LoadSDNode *LDBase = NULL;
4942  unsigned LastLoadedElt = -1U;
4943
4944  // For each element in the initializer, see if we've found a load or an undef.
4945  // If we don't find an initial load element, or later load elements are
4946  // non-consecutive, bail out.
4947  for (unsigned i = 0; i < NumElems; ++i) {
4948    SDValue Elt = Elts[i];
4949
4950    if (!Elt.getNode() ||
4951        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4952      return SDValue();
4953    if (!LDBase) {
4954      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4955        return SDValue();
4956      LDBase = cast<LoadSDNode>(Elt.getNode());
4957      LastLoadedElt = i;
4958      continue;
4959    }
4960    if (Elt.getOpcode() == ISD::UNDEF)
4961      continue;
4962
4963    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4964    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4965      return SDValue();
4966    LastLoadedElt = i;
4967  }
4968
4969  // If we have found an entire vector of loads and undefs, then return a large
4970  // load of the entire vector width starting at the base pointer.  If we found
4971  // consecutive loads for the low half, generate a vzext_load node.
4972  if (LastLoadedElt == NumElems - 1) {
4973    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4974      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4975                         LDBase->getPointerInfo(),
4976                         LDBase->isVolatile(), LDBase->isNonTemporal(), 0);
4977    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4978                       LDBase->getPointerInfo(),
4979                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4980                       LDBase->getAlignment());
4981  } else if (NumElems == 4 && LastLoadedElt == 1 &&
4982             DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
4983    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4984    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4985    SDValue ResNode = DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys,
4986                                              Ops, 2, MVT::i32,
4987                                              LDBase->getMemOperand());
4988    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
4989  }
4990  return SDValue();
4991}
4992
4993SDValue
4994X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
4995  DebugLoc dl = Op.getDebugLoc();
4996
4997  EVT VT = Op.getValueType();
4998  EVT ExtVT = VT.getVectorElementType();
4999  unsigned NumElems = Op.getNumOperands();
5000
5001  // Vectors containing all zeros can be matched by pxor and xorps later
5002  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5003    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5004    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5005    if (Op.getValueType() == MVT::v4i32 ||
5006        Op.getValueType() == MVT::v8i32)
5007      return Op;
5008
5009    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
5010  }
5011
5012  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5013  // vectors or broken into v4i32 operations on 256-bit vectors.
5014  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5015    if (Op.getValueType() == MVT::v4i32)
5016      return Op;
5017
5018    return getOnesVector(Op.getValueType(), DAG, dl);
5019  }
5020
5021  unsigned EVTBits = ExtVT.getSizeInBits();
5022
5023  unsigned NumZero  = 0;
5024  unsigned NumNonZero = 0;
5025  unsigned NonZeros = 0;
5026  bool IsAllConstants = true;
5027  SmallSet<SDValue, 8> Values;
5028  for (unsigned i = 0; i < NumElems; ++i) {
5029    SDValue Elt = Op.getOperand(i);
5030    if (Elt.getOpcode() == ISD::UNDEF)
5031      continue;
5032    Values.insert(Elt);
5033    if (Elt.getOpcode() != ISD::Constant &&
5034        Elt.getOpcode() != ISD::ConstantFP)
5035      IsAllConstants = false;
5036    if (X86::isZeroNode(Elt))
5037      NumZero++;
5038    else {
5039      NonZeros |= (1 << i);
5040      NumNonZero++;
5041    }
5042  }
5043
5044  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5045  if (NumNonZero == 0)
5046    return DAG.getUNDEF(VT);
5047
5048  // Special case for single non-zero, non-undef, element.
5049  if (NumNonZero == 1) {
5050    unsigned Idx = CountTrailingZeros_32(NonZeros);
5051    SDValue Item = Op.getOperand(Idx);
5052
5053    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5054    // the value are obviously zero, truncate the value to i32 and do the
5055    // insertion that way.  Only do this if the value is non-constant or if the
5056    // value is a constant being inserted into element 0.  It is cheaper to do
5057    // a constant pool load than it is to do a movd + shuffle.
5058    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5059        (!IsAllConstants || Idx == 0)) {
5060      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5061        // Handle SSE only.
5062        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5063        EVT VecVT = MVT::v4i32;
5064        unsigned VecElts = 4;
5065
5066        // Truncate the value (which may itself be a constant) to i32, and
5067        // convert it to a vector with movd (S2V+shuffle to zero extend).
5068        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5069        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5070        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
5071                                           Subtarget->hasSSE2(), DAG);
5072
5073        // Now we have our 32-bit value zero extended in the low element of
5074        // a vector.  If Idx != 0, swizzle it into place.
5075        if (Idx != 0) {
5076          SmallVector<int, 4> Mask;
5077          Mask.push_back(Idx);
5078          for (unsigned i = 1; i != VecElts; ++i)
5079            Mask.push_back(i);
5080          Item = DAG.getVectorShuffle(VecVT, dl, Item,
5081                                      DAG.getUNDEF(Item.getValueType()),
5082                                      &Mask[0]);
5083        }
5084        return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Item);
5085      }
5086    }
5087
5088    // If we have a constant or non-constant insertion into the low element of
5089    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5090    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5091    // depending on what the source datatype is.
5092    if (Idx == 0) {
5093      if (NumZero == 0) {
5094        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5095      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5096          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5097        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5098        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5099        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
5100                                           DAG);
5101      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5102        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5103        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5104        EVT MiddleVT = MVT::v4i32;
5105        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
5106        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
5107                                           Subtarget->hasSSE2(), DAG);
5108        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5109      }
5110    }
5111
5112    // Is it a vector logical left shift?
5113    if (NumElems == 2 && Idx == 1 &&
5114        X86::isZeroNode(Op.getOperand(0)) &&
5115        !X86::isZeroNode(Op.getOperand(1))) {
5116      unsigned NumBits = VT.getSizeInBits();
5117      return getVShift(true, VT,
5118                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5119                                   VT, Op.getOperand(1)),
5120                       NumBits/2, DAG, *this, dl);
5121    }
5122
5123    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5124      return SDValue();
5125
5126    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5127    // is a non-constant being inserted into an element other than the low one,
5128    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5129    // movd/movss) to move this into the low element, then shuffle it into
5130    // place.
5131    if (EVTBits == 32) {
5132      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5133
5134      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5135      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
5136                                         Subtarget->hasSSE2(), DAG);
5137      SmallVector<int, 8> MaskVec;
5138      for (unsigned i = 0; i < NumElems; i++)
5139        MaskVec.push_back(i == Idx ? 0 : 1);
5140      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5141    }
5142  }
5143
5144  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5145  if (Values.size() == 1) {
5146    if (EVTBits == 32) {
5147      // Instead of a shuffle like this:
5148      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5149      // Check if it's possible to issue this instead.
5150      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5151      unsigned Idx = CountTrailingZeros_32(NonZeros);
5152      SDValue Item = Op.getOperand(Idx);
5153      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5154        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5155    }
5156    return SDValue();
5157  }
5158
5159  // A vector full of immediates; various special cases are already
5160  // handled, so this is best done with a single constant-pool load.
5161  if (IsAllConstants)
5162    return SDValue();
5163
5164  // For AVX-length vectors, build the individual 128-bit pieces and use
5165  // shuffles to put them in place.
5166  if (VT.getSizeInBits() == 256 && !ISD::isBuildVectorAllZeros(Op.getNode())) {
5167    SmallVector<SDValue, 32> V;
5168    for (unsigned i = 0; i < NumElems; ++i)
5169      V.push_back(Op.getOperand(i));
5170
5171    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5172
5173    // Build both the lower and upper subvector.
5174    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5175    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5176                                NumElems/2);
5177
5178    // Recreate the wider vector with the lower and upper part.
5179    SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Lower,
5180                                DAG.getConstant(0, MVT::i32), DAG, dl);
5181    return Insert128BitVector(Vec, Upper, DAG.getConstant(NumElems/2, MVT::i32),
5182                              DAG, dl);
5183  }
5184
5185  // Let legalizer expand 2-wide build_vectors.
5186  if (EVTBits == 64) {
5187    if (NumNonZero == 1) {
5188      // One half is zero or undef.
5189      unsigned Idx = CountTrailingZeros_32(NonZeros);
5190      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5191                                 Op.getOperand(Idx));
5192      return getShuffleVectorZeroOrUndef(V2, Idx, true,
5193                                         Subtarget->hasSSE2(), DAG);
5194    }
5195    return SDValue();
5196  }
5197
5198  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5199  if (EVTBits == 8 && NumElems == 16) {
5200    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5201                                        *this);
5202    if (V.getNode()) return V;
5203  }
5204
5205  if (EVTBits == 16 && NumElems == 8) {
5206    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5207                                      *this);
5208    if (V.getNode()) return V;
5209  }
5210
5211  // If element VT is == 32 bits, turn it into a number of shuffles.
5212  SmallVector<SDValue, 8> V;
5213  V.resize(NumElems);
5214  if (NumElems == 4 && NumZero > 0) {
5215    for (unsigned i = 0; i < 4; ++i) {
5216      bool isZero = !(NonZeros & (1 << i));
5217      if (isZero)
5218        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
5219      else
5220        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5221    }
5222
5223    for (unsigned i = 0; i < 2; ++i) {
5224      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5225        default: break;
5226        case 0:
5227          V[i] = V[i*2];  // Must be a zero vector.
5228          break;
5229        case 1:
5230          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5231          break;
5232        case 2:
5233          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5234          break;
5235        case 3:
5236          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5237          break;
5238      }
5239    }
5240
5241    SmallVector<int, 8> MaskVec;
5242    bool Reverse = (NonZeros & 0x3) == 2;
5243    for (unsigned i = 0; i < 2; ++i)
5244      MaskVec.push_back(Reverse ? 1-i : i);
5245    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5246    for (unsigned i = 0; i < 2; ++i)
5247      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
5248    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5249  }
5250
5251  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
5252    // Check for a build vector of consecutive loads.
5253    for (unsigned i = 0; i < NumElems; ++i)
5254      V[i] = Op.getOperand(i);
5255
5256    // Check for elements which are consecutive loads.
5257    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5258    if (LD.getNode())
5259      return LD;
5260
5261    // For SSE 4.1, use insertps to put the high elements into the low element.
5262    if (getSubtarget()->hasSSE41()) {
5263      SDValue Result;
5264      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5265        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5266      else
5267        Result = DAG.getUNDEF(VT);
5268
5269      for (unsigned i = 1; i < NumElems; ++i) {
5270        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5271        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5272                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5273      }
5274      return Result;
5275    }
5276
5277    // Otherwise, expand into a number of unpckl*, start by extending each of
5278    // our (non-undef) elements to the full vector width with the element in the
5279    // bottom slot of the vector (which generates no code for SSE).
5280    for (unsigned i = 0; i < NumElems; ++i) {
5281      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5282        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5283      else
5284        V[i] = DAG.getUNDEF(VT);
5285    }
5286
5287    // Next, we iteratively mix elements, e.g. for v4f32:
5288    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5289    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5290    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5291    unsigned EltStride = NumElems >> 1;
5292    while (EltStride != 0) {
5293      for (unsigned i = 0; i < EltStride; ++i) {
5294        // If V[i+EltStride] is undef and this is the first round of mixing,
5295        // then it is safe to just drop this shuffle: V[i] is already in the
5296        // right place, the one element (since it's the first round) being
5297        // inserted as undef can be dropped.  This isn't safe for successive
5298        // rounds because they will permute elements within both vectors.
5299        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5300            EltStride == NumElems/2)
5301          continue;
5302
5303        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5304      }
5305      EltStride >>= 1;
5306    }
5307    return V[0];
5308  }
5309  return SDValue();
5310}
5311
5312// LowerMMXCONCAT_VECTORS - We support concatenate two MMX registers and place
5313// them in a MMX register.  This is better than doing a stack convert.
5314static SDValue LowerMMXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5315  DebugLoc dl = Op.getDebugLoc();
5316  EVT ResVT = Op.getValueType();
5317
5318  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
5319         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
5320  int Mask[2];
5321  SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
5322  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5323  InVec = Op.getOperand(1);
5324  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5325    unsigned NumElts = ResVT.getVectorNumElements();
5326    VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5327    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
5328                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
5329  } else {
5330    InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
5331    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5332    Mask[0] = 0; Mask[1] = 2;
5333    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
5334  }
5335  return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5336}
5337
5338// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5339// to create 256-bit vectors from two other 128-bit ones.
5340static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5341  DebugLoc dl = Op.getDebugLoc();
5342  EVT ResVT = Op.getValueType();
5343
5344  assert(ResVT.getSizeInBits() == 256 && "Value type must be 256-bit wide");
5345
5346  SDValue V1 = Op.getOperand(0);
5347  SDValue V2 = Op.getOperand(1);
5348  unsigned NumElems = ResVT.getVectorNumElements();
5349
5350  SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, ResVT), V1,
5351                                 DAG.getConstant(0, MVT::i32), DAG, dl);
5352  return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
5353                            DAG, dl);
5354}
5355
5356SDValue
5357X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
5358  EVT ResVT = Op.getValueType();
5359
5360  assert(Op.getNumOperands() == 2);
5361  assert((ResVT.getSizeInBits() == 128 || ResVT.getSizeInBits() == 256) &&
5362         "Unsupported CONCAT_VECTORS for value type");
5363
5364  // We support concatenate two MMX registers and place them in a MMX register.
5365  // This is better than doing a stack convert.
5366  if (ResVT.is128BitVector())
5367    return LowerMMXCONCAT_VECTORS(Op, DAG);
5368
5369  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5370  // from two other 128-bit ones.
5371  return LowerAVXCONCAT_VECTORS(Op, DAG);
5372}
5373
5374// v8i16 shuffles - Prefer shuffles in the following order:
5375// 1. [all]   pshuflw, pshufhw, optional move
5376// 2. [ssse3] 1 x pshufb
5377// 3. [ssse3] 2 x pshufb + 1 x por
5378// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5379SDValue
5380X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
5381                                            SelectionDAG &DAG) const {
5382  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5383  SDValue V1 = SVOp->getOperand(0);
5384  SDValue V2 = SVOp->getOperand(1);
5385  DebugLoc dl = SVOp->getDebugLoc();
5386  SmallVector<int, 8> MaskVals;
5387
5388  // Determine if more than 1 of the words in each of the low and high quadwords
5389  // of the result come from the same quadword of one of the two inputs.  Undef
5390  // mask values count as coming from any quadword, for better codegen.
5391  SmallVector<unsigned, 4> LoQuad(4);
5392  SmallVector<unsigned, 4> HiQuad(4);
5393  BitVector InputQuads(4);
5394  for (unsigned i = 0; i < 8; ++i) {
5395    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
5396    int EltIdx = SVOp->getMaskElt(i);
5397    MaskVals.push_back(EltIdx);
5398    if (EltIdx < 0) {
5399      ++Quad[0];
5400      ++Quad[1];
5401      ++Quad[2];
5402      ++Quad[3];
5403      continue;
5404    }
5405    ++Quad[EltIdx / 4];
5406    InputQuads.set(EltIdx / 4);
5407  }
5408
5409  int BestLoQuad = -1;
5410  unsigned MaxQuad = 1;
5411  for (unsigned i = 0; i < 4; ++i) {
5412    if (LoQuad[i] > MaxQuad) {
5413      BestLoQuad = i;
5414      MaxQuad = LoQuad[i];
5415    }
5416  }
5417
5418  int BestHiQuad = -1;
5419  MaxQuad = 1;
5420  for (unsigned i = 0; i < 4; ++i) {
5421    if (HiQuad[i] > MaxQuad) {
5422      BestHiQuad = i;
5423      MaxQuad = HiQuad[i];
5424    }
5425  }
5426
5427  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5428  // of the two input vectors, shuffle them into one input vector so only a
5429  // single pshufb instruction is necessary. If There are more than 2 input
5430  // quads, disable the next transformation since it does not help SSSE3.
5431  bool V1Used = InputQuads[0] || InputQuads[1];
5432  bool V2Used = InputQuads[2] || InputQuads[3];
5433  if (Subtarget->hasSSSE3()) {
5434    if (InputQuads.count() == 2 && V1Used && V2Used) {
5435      BestLoQuad = InputQuads.find_first();
5436      BestHiQuad = InputQuads.find_next(BestLoQuad);
5437    }
5438    if (InputQuads.count() > 2) {
5439      BestLoQuad = -1;
5440      BestHiQuad = -1;
5441    }
5442  }
5443
5444  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5445  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5446  // words from all 4 input quadwords.
5447  SDValue NewV;
5448  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5449    SmallVector<int, 8> MaskV;
5450    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
5451    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
5452    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5453                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5454                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5455    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5456
5457    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5458    // source words for the shuffle, to aid later transformations.
5459    bool AllWordsInNewV = true;
5460    bool InOrder[2] = { true, true };
5461    for (unsigned i = 0; i != 8; ++i) {
5462      int idx = MaskVals[i];
5463      if (idx != (int)i)
5464        InOrder[i/4] = false;
5465      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5466        continue;
5467      AllWordsInNewV = false;
5468      break;
5469    }
5470
5471    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5472    if (AllWordsInNewV) {
5473      for (int i = 0; i != 8; ++i) {
5474        int idx = MaskVals[i];
5475        if (idx < 0)
5476          continue;
5477        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5478        if ((idx != i) && idx < 4)
5479          pshufhw = false;
5480        if ((idx != i) && idx > 3)
5481          pshuflw = false;
5482      }
5483      V1 = NewV;
5484      V2Used = false;
5485      BestLoQuad = 0;
5486      BestHiQuad = 1;
5487    }
5488
5489    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5490    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5491    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5492      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5493      unsigned TargetMask = 0;
5494      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5495                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5496      TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
5497                             X86::getShufflePSHUFLWImmediate(NewV.getNode());
5498      V1 = NewV.getOperand(0);
5499      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5500    }
5501  }
5502
5503  // If we have SSSE3, and all words of the result are from 1 input vector,
5504  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5505  // is present, fall back to case 4.
5506  if (Subtarget->hasSSSE3()) {
5507    SmallVector<SDValue,16> pshufbMask;
5508
5509    // If we have elements from both input vectors, set the high bit of the
5510    // shuffle mask element to zero out elements that come from V2 in the V1
5511    // mask, and elements that come from V1 in the V2 mask, so that the two
5512    // results can be OR'd together.
5513    bool TwoInputs = V1Used && V2Used;
5514    for (unsigned i = 0; i != 8; ++i) {
5515      int EltIdx = MaskVals[i] * 2;
5516      if (TwoInputs && (EltIdx >= 16)) {
5517        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5518        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5519        continue;
5520      }
5521      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
5522      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
5523    }
5524    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5525    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5526                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5527                                 MVT::v16i8, &pshufbMask[0], 16));
5528    if (!TwoInputs)
5529      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5530
5531    // Calculate the shuffle mask for the second input, shuffle it, and
5532    // OR it with the first shuffled input.
5533    pshufbMask.clear();
5534    for (unsigned i = 0; i != 8; ++i) {
5535      int EltIdx = MaskVals[i] * 2;
5536      if (EltIdx < 16) {
5537        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5538        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5539        continue;
5540      }
5541      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5542      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
5543    }
5544    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5545    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5546                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5547                                 MVT::v16i8, &pshufbMask[0], 16));
5548    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5549    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5550  }
5551
5552  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5553  // and update MaskVals with new element order.
5554  BitVector InOrder(8);
5555  if (BestLoQuad >= 0) {
5556    SmallVector<int, 8> MaskV;
5557    for (int i = 0; i != 4; ++i) {
5558      int idx = MaskVals[i];
5559      if (idx < 0) {
5560        MaskV.push_back(-1);
5561        InOrder.set(i);
5562      } else if ((idx / 4) == BestLoQuad) {
5563        MaskV.push_back(idx & 3);
5564        InOrder.set(i);
5565      } else {
5566        MaskV.push_back(-1);
5567      }
5568    }
5569    for (unsigned i = 4; i != 8; ++i)
5570      MaskV.push_back(i);
5571    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5572                                &MaskV[0]);
5573
5574    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
5575      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5576                               NewV.getOperand(0),
5577                               X86::getShufflePSHUFLWImmediate(NewV.getNode()),
5578                               DAG);
5579  }
5580
5581  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5582  // and update MaskVals with the new element order.
5583  if (BestHiQuad >= 0) {
5584    SmallVector<int, 8> MaskV;
5585    for (unsigned i = 0; i != 4; ++i)
5586      MaskV.push_back(i);
5587    for (unsigned i = 4; i != 8; ++i) {
5588      int idx = MaskVals[i];
5589      if (idx < 0) {
5590        MaskV.push_back(-1);
5591        InOrder.set(i);
5592      } else if ((idx / 4) == BestHiQuad) {
5593        MaskV.push_back((idx & 3) + 4);
5594        InOrder.set(i);
5595      } else {
5596        MaskV.push_back(-1);
5597      }
5598    }
5599    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5600                                &MaskV[0]);
5601
5602    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
5603      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5604                              NewV.getOperand(0),
5605                              X86::getShufflePSHUFHWImmediate(NewV.getNode()),
5606                              DAG);
5607  }
5608
5609  // In case BestHi & BestLo were both -1, which means each quadword has a word
5610  // from each of the four input quadwords, calculate the InOrder bitvector now
5611  // before falling through to the insert/extract cleanup.
5612  if (BestLoQuad == -1 && BestHiQuad == -1) {
5613    NewV = V1;
5614    for (int i = 0; i != 8; ++i)
5615      if (MaskVals[i] < 0 || MaskVals[i] == i)
5616        InOrder.set(i);
5617  }
5618
5619  // The other elements are put in the right place using pextrw and pinsrw.
5620  for (unsigned i = 0; i != 8; ++i) {
5621    if (InOrder[i])
5622      continue;
5623    int EltIdx = MaskVals[i];
5624    if (EltIdx < 0)
5625      continue;
5626    SDValue ExtOp = (EltIdx < 8)
5627    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5628                  DAG.getIntPtrConstant(EltIdx))
5629    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5630                  DAG.getIntPtrConstant(EltIdx - 8));
5631    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5632                       DAG.getIntPtrConstant(i));
5633  }
5634  return NewV;
5635}
5636
5637// v16i8 shuffles - Prefer shuffles in the following order:
5638// 1. [ssse3] 1 x pshufb
5639// 2. [ssse3] 2 x pshufb + 1 x por
5640// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5641static
5642SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5643                                 SelectionDAG &DAG,
5644                                 const X86TargetLowering &TLI) {
5645  SDValue V1 = SVOp->getOperand(0);
5646  SDValue V2 = SVOp->getOperand(1);
5647  DebugLoc dl = SVOp->getDebugLoc();
5648  SmallVector<int, 16> MaskVals;
5649  SVOp->getMask(MaskVals);
5650
5651  // If we have SSSE3, case 1 is generated when all result bytes come from
5652  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5653  // present, fall back to case 3.
5654  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
5655  bool V1Only = true;
5656  bool V2Only = true;
5657  for (unsigned i = 0; i < 16; ++i) {
5658    int EltIdx = MaskVals[i];
5659    if (EltIdx < 0)
5660      continue;
5661    if (EltIdx < 16)
5662      V2Only = false;
5663    else
5664      V1Only = false;
5665  }
5666
5667  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5668  if (TLI.getSubtarget()->hasSSSE3()) {
5669    SmallVector<SDValue,16> pshufbMask;
5670
5671    // If all result elements are from one input vector, then only translate
5672    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5673    //
5674    // Otherwise, we have elements from both input vectors, and must zero out
5675    // elements that come from V2 in the first mask, and V1 in the second mask
5676    // so that we can OR them together.
5677    bool TwoInputs = !(V1Only || V2Only);
5678    for (unsigned i = 0; i != 16; ++i) {
5679      int EltIdx = MaskVals[i];
5680      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
5681        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5682        continue;
5683      }
5684      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5685    }
5686    // If all the elements are from V2, assign it to V1 and return after
5687    // building the first pshufb.
5688    if (V2Only)
5689      V1 = V2;
5690    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5691                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5692                                 MVT::v16i8, &pshufbMask[0], 16));
5693    if (!TwoInputs)
5694      return V1;
5695
5696    // Calculate the shuffle mask for the second input, shuffle it, and
5697    // OR it with the first shuffled input.
5698    pshufbMask.clear();
5699    for (unsigned i = 0; i != 16; ++i) {
5700      int EltIdx = MaskVals[i];
5701      if (EltIdx < 16) {
5702        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5703        continue;
5704      }
5705      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5706    }
5707    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5708                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5709                                 MVT::v16i8, &pshufbMask[0], 16));
5710    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5711  }
5712
5713  // No SSSE3 - Calculate in place words and then fix all out of place words
5714  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5715  // the 16 different words that comprise the two doublequadword input vectors.
5716  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5717  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5718  SDValue NewV = V2Only ? V2 : V1;
5719  for (int i = 0; i != 8; ++i) {
5720    int Elt0 = MaskVals[i*2];
5721    int Elt1 = MaskVals[i*2+1];
5722
5723    // This word of the result is all undef, skip it.
5724    if (Elt0 < 0 && Elt1 < 0)
5725      continue;
5726
5727    // This word of the result is already in the correct place, skip it.
5728    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
5729      continue;
5730    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
5731      continue;
5732
5733    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5734    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5735    SDValue InsElt;
5736
5737    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5738    // using a single extract together, load it and store it.
5739    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5740      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5741                           DAG.getIntPtrConstant(Elt1 / 2));
5742      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5743                        DAG.getIntPtrConstant(i));
5744      continue;
5745    }
5746
5747    // If Elt1 is defined, extract it from the appropriate source.  If the
5748    // source byte is not also odd, shift the extracted word left 8 bits
5749    // otherwise clear the bottom 8 bits if we need to do an or.
5750    if (Elt1 >= 0) {
5751      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5752                           DAG.getIntPtrConstant(Elt1 / 2));
5753      if ((Elt1 & 1) == 0)
5754        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5755                             DAG.getConstant(8,
5756                                  TLI.getShiftAmountTy(InsElt.getValueType())));
5757      else if (Elt0 >= 0)
5758        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5759                             DAG.getConstant(0xFF00, MVT::i16));
5760    }
5761    // If Elt0 is defined, extract it from the appropriate source.  If the
5762    // source byte is not also even, shift the extracted word right 8 bits. If
5763    // Elt1 was also defined, OR the extracted values together before
5764    // inserting them in the result.
5765    if (Elt0 >= 0) {
5766      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5767                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5768      if ((Elt0 & 1) != 0)
5769        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5770                              DAG.getConstant(8,
5771                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
5772      else if (Elt1 >= 0)
5773        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5774                             DAG.getConstant(0x00FF, MVT::i16));
5775      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5776                         : InsElt0;
5777    }
5778    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5779                       DAG.getIntPtrConstant(i));
5780  }
5781  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5782}
5783
5784/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5785/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5786/// done when every pair / quad of shuffle mask elements point to elements in
5787/// the right sequence. e.g.
5788/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5789static
5790SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5791                                 SelectionDAG &DAG, DebugLoc dl) {
5792  EVT VT = SVOp->getValueType(0);
5793  SDValue V1 = SVOp->getOperand(0);
5794  SDValue V2 = SVOp->getOperand(1);
5795  unsigned NumElems = VT.getVectorNumElements();
5796  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
5797  EVT NewVT;
5798  switch (VT.getSimpleVT().SimpleTy) {
5799  default: assert(false && "Unexpected!");
5800  case MVT::v4f32: NewVT = MVT::v2f64; break;
5801  case MVT::v4i32: NewVT = MVT::v2i64; break;
5802  case MVT::v8i16: NewVT = MVT::v4i32; break;
5803  case MVT::v16i8: NewVT = MVT::v4i32; break;
5804  }
5805
5806  int Scale = NumElems / NewWidth;
5807  SmallVector<int, 8> MaskVec;
5808  for (unsigned i = 0; i < NumElems; i += Scale) {
5809    int StartIdx = -1;
5810    for (int j = 0; j < Scale; ++j) {
5811      int EltIdx = SVOp->getMaskElt(i+j);
5812      if (EltIdx < 0)
5813        continue;
5814      if (StartIdx == -1)
5815        StartIdx = EltIdx - (EltIdx % Scale);
5816      if (EltIdx != StartIdx + j)
5817        return SDValue();
5818    }
5819    if (StartIdx == -1)
5820      MaskVec.push_back(-1);
5821    else
5822      MaskVec.push_back(StartIdx / Scale);
5823  }
5824
5825  V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
5826  V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
5827  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
5828}
5829
5830/// getVZextMovL - Return a zero-extending vector move low node.
5831///
5832static SDValue getVZextMovL(EVT VT, EVT OpVT,
5833                            SDValue SrcOp, SelectionDAG &DAG,
5834                            const X86Subtarget *Subtarget, DebugLoc dl) {
5835  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
5836    LoadSDNode *LD = NULL;
5837    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
5838      LD = dyn_cast<LoadSDNode>(SrcOp);
5839    if (!LD) {
5840      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
5841      // instead.
5842      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
5843      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
5844          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5845          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
5846          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
5847        // PR2108
5848        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
5849        return DAG.getNode(ISD::BITCAST, dl, VT,
5850                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5851                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5852                                                   OpVT,
5853                                                   SrcOp.getOperand(0)
5854                                                          .getOperand(0))));
5855      }
5856    }
5857  }
5858
5859  return DAG.getNode(ISD::BITCAST, dl, VT,
5860                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5861                                 DAG.getNode(ISD::BITCAST, dl,
5862                                             OpVT, SrcOp)));
5863}
5864
5865/// areShuffleHalvesWithinDisjointLanes - Check whether each half of a vector
5866/// shuffle node referes to only one lane in the sources.
5867static bool areShuffleHalvesWithinDisjointLanes(ShuffleVectorSDNode *SVOp) {
5868  EVT VT = SVOp->getValueType(0);
5869  int NumElems = VT.getVectorNumElements();
5870  int HalfSize = NumElems/2;
5871  SmallVector<int, 16> M;
5872  SVOp->getMask(M);
5873  bool MatchA = false, MatchB = false;
5874
5875  for (int l = 0; l < NumElems*2; l += HalfSize) {
5876    if (isUndefOrInRange(M, 0, HalfSize, l, l+HalfSize)) {
5877      MatchA = true;
5878      break;
5879    }
5880  }
5881
5882  for (int l = 0; l < NumElems*2; l += HalfSize) {
5883    if (isUndefOrInRange(M, HalfSize, HalfSize, l, l+HalfSize)) {
5884      MatchB = true;
5885      break;
5886    }
5887  }
5888
5889  return MatchA && MatchB;
5890}
5891
5892/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
5893/// which could not be matched by any known target speficic shuffle
5894static SDValue
5895LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5896  if (areShuffleHalvesWithinDisjointLanes(SVOp)) {
5897    // If each half of a vector shuffle node referes to only one lane in the
5898    // source vectors, extract each used 128-bit lane and shuffle them using
5899    // 128-bit shuffles. Then, concatenate the results. Otherwise leave
5900    // the work to the legalizer.
5901    DebugLoc dl = SVOp->getDebugLoc();
5902    EVT VT = SVOp->getValueType(0);
5903    int NumElems = VT.getVectorNumElements();
5904    int HalfSize = NumElems/2;
5905
5906    // Extract the reference for each half
5907    int FstVecExtractIdx = 0, SndVecExtractIdx = 0;
5908    int FstVecOpNum = 0, SndVecOpNum = 0;
5909    for (int i = 0; i < HalfSize; ++i) {
5910      int Elt = SVOp->getMaskElt(i);
5911      if (SVOp->getMaskElt(i) < 0)
5912        continue;
5913      FstVecOpNum = Elt/NumElems;
5914      FstVecExtractIdx = Elt % NumElems < HalfSize ? 0 : HalfSize;
5915      break;
5916    }
5917    for (int i = HalfSize; i < NumElems; ++i) {
5918      int Elt = SVOp->getMaskElt(i);
5919      if (SVOp->getMaskElt(i) < 0)
5920        continue;
5921      SndVecOpNum = Elt/NumElems;
5922      SndVecExtractIdx = Elt % NumElems < HalfSize ? 0 : HalfSize;
5923      break;
5924    }
5925
5926    // Extract the subvectors
5927    SDValue V1 = Extract128BitVector(SVOp->getOperand(FstVecOpNum),
5928                      DAG.getConstant(FstVecExtractIdx, MVT::i32), DAG, dl);
5929    SDValue V2 = Extract128BitVector(SVOp->getOperand(SndVecOpNum),
5930                      DAG.getConstant(SndVecExtractIdx, MVT::i32), DAG, dl);
5931
5932    // Generate 128-bit shuffles
5933    SmallVector<int, 16> MaskV1, MaskV2;
5934    for (int i = 0; i < HalfSize; ++i) {
5935      int Elt = SVOp->getMaskElt(i);
5936      MaskV1.push_back(Elt < 0 ? Elt : Elt % HalfSize);
5937    }
5938    for (int i = HalfSize; i < NumElems; ++i) {
5939      int Elt = SVOp->getMaskElt(i);
5940      MaskV2.push_back(Elt < 0 ? Elt : Elt % HalfSize);
5941    }
5942
5943    EVT NVT = V1.getValueType();
5944    V1 = DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &MaskV1[0]);
5945    V2 = DAG.getVectorShuffle(NVT, dl, V2, DAG.getUNDEF(NVT), &MaskV2[0]);
5946
5947    // Concatenate the result back
5948    SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), V1,
5949                                   DAG.getConstant(0, MVT::i32), DAG, dl);
5950    return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
5951                              DAG, dl);
5952  }
5953
5954  return SDValue();
5955}
5956
5957/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
5958/// 4 elements, and match them with several different shuffle types.
5959static SDValue
5960LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5961  SDValue V1 = SVOp->getOperand(0);
5962  SDValue V2 = SVOp->getOperand(1);
5963  DebugLoc dl = SVOp->getDebugLoc();
5964  EVT VT = SVOp->getValueType(0);
5965
5966  assert(VT.getSizeInBits() == 128 && "Unsupported vector size");
5967
5968  SmallVector<std::pair<int, int>, 8> Locs;
5969  Locs.resize(4);
5970  SmallVector<int, 8> Mask1(4U, -1);
5971  SmallVector<int, 8> PermMask;
5972  SVOp->getMask(PermMask);
5973
5974  unsigned NumHi = 0;
5975  unsigned NumLo = 0;
5976  for (unsigned i = 0; i != 4; ++i) {
5977    int Idx = PermMask[i];
5978    if (Idx < 0) {
5979      Locs[i] = std::make_pair(-1, -1);
5980    } else {
5981      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
5982      if (Idx < 4) {
5983        Locs[i] = std::make_pair(0, NumLo);
5984        Mask1[NumLo] = Idx;
5985        NumLo++;
5986      } else {
5987        Locs[i] = std::make_pair(1, NumHi);
5988        if (2+NumHi < 4)
5989          Mask1[2+NumHi] = Idx;
5990        NumHi++;
5991      }
5992    }
5993  }
5994
5995  if (NumLo <= 2 && NumHi <= 2) {
5996    // If no more than two elements come from either vector. This can be
5997    // implemented with two shuffles. First shuffle gather the elements.
5998    // The second shuffle, which takes the first shuffle as both of its
5999    // vector operands, put the elements into the right order.
6000    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6001
6002    SmallVector<int, 8> Mask2(4U, -1);
6003
6004    for (unsigned i = 0; i != 4; ++i) {
6005      if (Locs[i].first == -1)
6006        continue;
6007      else {
6008        unsigned Idx = (i < 2) ? 0 : 4;
6009        Idx += Locs[i].first * 2 + Locs[i].second;
6010        Mask2[i] = Idx;
6011      }
6012    }
6013
6014    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6015  } else if (NumLo == 3 || NumHi == 3) {
6016    // Otherwise, we must have three elements from one vector, call it X, and
6017    // one element from the other, call it Y.  First, use a shufps to build an
6018    // intermediate vector with the one element from Y and the element from X
6019    // that will be in the same half in the final destination (the indexes don't
6020    // matter). Then, use a shufps to build the final vector, taking the half
6021    // containing the element from Y from the intermediate, and the other half
6022    // from X.
6023    if (NumHi == 3) {
6024      // Normalize it so the 3 elements come from V1.
6025      CommuteVectorShuffleMask(PermMask, VT);
6026      std::swap(V1, V2);
6027    }
6028
6029    // Find the element from V2.
6030    unsigned HiIndex;
6031    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6032      int Val = PermMask[HiIndex];
6033      if (Val < 0)
6034        continue;
6035      if (Val >= 4)
6036        break;
6037    }
6038
6039    Mask1[0] = PermMask[HiIndex];
6040    Mask1[1] = -1;
6041    Mask1[2] = PermMask[HiIndex^1];
6042    Mask1[3] = -1;
6043    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6044
6045    if (HiIndex >= 2) {
6046      Mask1[0] = PermMask[0];
6047      Mask1[1] = PermMask[1];
6048      Mask1[2] = HiIndex & 1 ? 6 : 4;
6049      Mask1[3] = HiIndex & 1 ? 4 : 6;
6050      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6051    } else {
6052      Mask1[0] = HiIndex & 1 ? 2 : 0;
6053      Mask1[1] = HiIndex & 1 ? 0 : 2;
6054      Mask1[2] = PermMask[2];
6055      Mask1[3] = PermMask[3];
6056      if (Mask1[2] >= 0)
6057        Mask1[2] += 4;
6058      if (Mask1[3] >= 0)
6059        Mask1[3] += 4;
6060      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6061    }
6062  }
6063
6064  // Break it into (shuffle shuffle_hi, shuffle_lo).
6065  Locs.clear();
6066  Locs.resize(4);
6067  SmallVector<int,8> LoMask(4U, -1);
6068  SmallVector<int,8> HiMask(4U, -1);
6069
6070  SmallVector<int,8> *MaskPtr = &LoMask;
6071  unsigned MaskIdx = 0;
6072  unsigned LoIdx = 0;
6073  unsigned HiIdx = 2;
6074  for (unsigned i = 0; i != 4; ++i) {
6075    if (i == 2) {
6076      MaskPtr = &HiMask;
6077      MaskIdx = 1;
6078      LoIdx = 0;
6079      HiIdx = 2;
6080    }
6081    int Idx = PermMask[i];
6082    if (Idx < 0) {
6083      Locs[i] = std::make_pair(-1, -1);
6084    } else if (Idx < 4) {
6085      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6086      (*MaskPtr)[LoIdx] = Idx;
6087      LoIdx++;
6088    } else {
6089      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6090      (*MaskPtr)[HiIdx] = Idx;
6091      HiIdx++;
6092    }
6093  }
6094
6095  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6096  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6097  SmallVector<int, 8> MaskOps;
6098  for (unsigned i = 0; i != 4; ++i) {
6099    if (Locs[i].first == -1) {
6100      MaskOps.push_back(-1);
6101    } else {
6102      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
6103      MaskOps.push_back(Idx);
6104    }
6105  }
6106  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6107}
6108
6109static bool MayFoldVectorLoad(SDValue V) {
6110  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6111    V = V.getOperand(0);
6112  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6113    V = V.getOperand(0);
6114  if (MayFoldLoad(V))
6115    return true;
6116  return false;
6117}
6118
6119// FIXME: the version above should always be used. Since there's
6120// a bug where several vector shuffles can't be folded because the
6121// DAG is not updated during lowering and a node claims to have two
6122// uses while it only has one, use this version, and let isel match
6123// another instruction if the load really happens to have more than
6124// one use. Remove this version after this bug get fixed.
6125// rdar://8434668, PR8156
6126static bool RelaxedMayFoldVectorLoad(SDValue V) {
6127  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6128    V = V.getOperand(0);
6129  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6130    V = V.getOperand(0);
6131  if (ISD::isNormalLoad(V.getNode()))
6132    return true;
6133  return false;
6134}
6135
6136/// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
6137/// a vector extract, and if both can be later optimized into a single load.
6138/// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
6139/// here because otherwise a target specific shuffle node is going to be
6140/// emitted for this shuffle, and the optimization not done.
6141/// FIXME: This is probably not the best approach, but fix the problem
6142/// until the right path is decided.
6143static
6144bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
6145                                         const TargetLowering &TLI) {
6146  EVT VT = V.getValueType();
6147  ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
6148
6149  // Be sure that the vector shuffle is present in a pattern like this:
6150  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
6151  if (!V.hasOneUse())
6152    return false;
6153
6154  SDNode *N = *V.getNode()->use_begin();
6155  if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
6156    return false;
6157
6158  SDValue EltNo = N->getOperand(1);
6159  if (!isa<ConstantSDNode>(EltNo))
6160    return false;
6161
6162  // If the bit convert changed the number of elements, it is unsafe
6163  // to examine the mask.
6164  bool HasShuffleIntoBitcast = false;
6165  if (V.getOpcode() == ISD::BITCAST) {
6166    EVT SrcVT = V.getOperand(0).getValueType();
6167    if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
6168      return false;
6169    V = V.getOperand(0);
6170    HasShuffleIntoBitcast = true;
6171  }
6172
6173  // Select the input vector, guarding against out of range extract vector.
6174  unsigned NumElems = VT.getVectorNumElements();
6175  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
6176  int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
6177  V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
6178
6179  // Skip one more bit_convert if necessary
6180  if (V.getOpcode() == ISD::BITCAST)
6181    V = V.getOperand(0);
6182
6183  if (ISD::isNormalLoad(V.getNode())) {
6184    // Is the original load suitable?
6185    LoadSDNode *LN0 = cast<LoadSDNode>(V);
6186
6187    // FIXME: avoid the multi-use bug that is preventing lots of
6188    // of foldings to be detected, this is still wrong of course, but
6189    // give the temporary desired behavior, and if it happens that
6190    // the load has real more uses, during isel it will not fold, and
6191    // will generate poor code.
6192    if (!LN0 || LN0->isVolatile()) // || !LN0->hasOneUse()
6193      return false;
6194
6195    if (!HasShuffleIntoBitcast)
6196      return true;
6197
6198    // If there's a bitcast before the shuffle, check if the load type and
6199    // alignment is valid.
6200    unsigned Align = LN0->getAlignment();
6201    unsigned NewAlign =
6202      TLI.getTargetData()->getABITypeAlignment(
6203                                    VT.getTypeForEVT(*DAG.getContext()));
6204
6205    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
6206      return false;
6207  }
6208
6209  return true;
6210}
6211
6212static
6213SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6214  EVT VT = Op.getValueType();
6215
6216  // Canonizalize to v2f64.
6217  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6218  return DAG.getNode(ISD::BITCAST, dl, VT,
6219                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6220                                          V1, DAG));
6221}
6222
6223static
6224SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6225                        bool HasSSE2) {
6226  SDValue V1 = Op.getOperand(0);
6227  SDValue V2 = Op.getOperand(1);
6228  EVT VT = Op.getValueType();
6229
6230  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6231
6232  if (HasSSE2 && VT == MVT::v2f64)
6233    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6234
6235  // v4f32 or v4i32
6236  return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V2, DAG);
6237}
6238
6239static
6240SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6241  SDValue V1 = Op.getOperand(0);
6242  SDValue V2 = Op.getOperand(1);
6243  EVT VT = Op.getValueType();
6244
6245  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6246         "unsupported shuffle type");
6247
6248  if (V2.getOpcode() == ISD::UNDEF)
6249    V2 = V1;
6250
6251  // v4i32 or v4f32
6252  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6253}
6254
6255static inline unsigned getSHUFPOpcode(EVT VT) {
6256  switch(VT.getSimpleVT().SimpleTy) {
6257  case MVT::v8i32: // Use fp unit for int unpack.
6258  case MVT::v8f32:
6259  case MVT::v4i32: // Use fp unit for int unpack.
6260  case MVT::v4f32: return X86ISD::SHUFPS;
6261  case MVT::v4i64: // Use fp unit for int unpack.
6262  case MVT::v4f64:
6263  case MVT::v2i64: // Use fp unit for int unpack.
6264  case MVT::v2f64: return X86ISD::SHUFPD;
6265  default:
6266    llvm_unreachable("Unknown type for shufp*");
6267  }
6268  return 0;
6269}
6270
6271static
6272SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
6273  SDValue V1 = Op.getOperand(0);
6274  SDValue V2 = Op.getOperand(1);
6275  EVT VT = Op.getValueType();
6276  unsigned NumElems = VT.getVectorNumElements();
6277
6278  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6279  // operand of these instructions is only memory, so check if there's a
6280  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6281  // same masks.
6282  bool CanFoldLoad = false;
6283
6284  // Trivial case, when V2 comes from a load.
6285  if (MayFoldVectorLoad(V2))
6286    CanFoldLoad = true;
6287
6288  // When V1 is a load, it can be folded later into a store in isel, example:
6289  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6290  //    turns into:
6291  //  (MOVLPSmr addr:$src1, VR128:$src2)
6292  // So, recognize this potential and also use MOVLPS or MOVLPD
6293  if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6294    CanFoldLoad = true;
6295
6296  // Both of them can't be memory operations though.
6297  if (MayFoldVectorLoad(V1) && MayFoldVectorLoad(V2))
6298    CanFoldLoad = false;
6299
6300  if (CanFoldLoad) {
6301    if (HasSSE2 && NumElems == 2)
6302      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6303
6304    if (NumElems == 4)
6305      return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6306  }
6307
6308  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6309  // movl and movlp will both match v2i64, but v2i64 is never matched by
6310  // movl earlier because we make it strict to avoid messing with the movlp load
6311  // folding logic (see the code above getMOVLP call). Match it here then,
6312  // this is horrible, but will stay like this until we move all shuffle
6313  // matching to x86 specific nodes. Note that for the 1st condition all
6314  // types are matched with movsd.
6315  if ((HasSSE2 && NumElems == 2) || !X86::isMOVLMask(SVOp))
6316    return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6317  else if (HasSSE2)
6318    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6319
6320
6321  assert(VT != MVT::v4i32 && "unsupported shuffle type");
6322
6323  // Invert the operand order and use SHUFPS to match it.
6324  return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V2, V1,
6325                              X86::getShuffleSHUFImmediate(SVOp), DAG);
6326}
6327
6328static inline unsigned getUNPCKLOpcode(EVT VT) {
6329  switch(VT.getSimpleVT().SimpleTy) {
6330  case MVT::v4i32: return X86ISD::PUNPCKLDQ;
6331  case MVT::v2i64: return X86ISD::PUNPCKLQDQ;
6332  case MVT::v4f32: return X86ISD::UNPCKLPS;
6333  case MVT::v2f64: return X86ISD::UNPCKLPD;
6334  case MVT::v8i32: // Use fp unit for int unpack.
6335  case MVT::v8f32: return X86ISD::VUNPCKLPSY;
6336  case MVT::v4i64: // Use fp unit for int unpack.
6337  case MVT::v4f64: return X86ISD::VUNPCKLPDY;
6338  case MVT::v16i8: return X86ISD::PUNPCKLBW;
6339  case MVT::v8i16: return X86ISD::PUNPCKLWD;
6340  default:
6341    llvm_unreachable("Unknown type for unpckl");
6342  }
6343  return 0;
6344}
6345
6346static inline unsigned getUNPCKHOpcode(EVT VT) {
6347  switch(VT.getSimpleVT().SimpleTy) {
6348  case MVT::v4i32: return X86ISD::PUNPCKHDQ;
6349  case MVT::v2i64: return X86ISD::PUNPCKHQDQ;
6350  case MVT::v4f32: return X86ISD::UNPCKHPS;
6351  case MVT::v2f64: return X86ISD::UNPCKHPD;
6352  case MVT::v8i32: // Use fp unit for int unpack.
6353  case MVT::v8f32: return X86ISD::VUNPCKHPSY;
6354  case MVT::v4i64: // Use fp unit for int unpack.
6355  case MVT::v4f64: return X86ISD::VUNPCKHPDY;
6356  case MVT::v16i8: return X86ISD::PUNPCKHBW;
6357  case MVT::v8i16: return X86ISD::PUNPCKHWD;
6358  default:
6359    llvm_unreachable("Unknown type for unpckh");
6360  }
6361  return 0;
6362}
6363
6364static inline unsigned getVPERMILOpcode(EVT VT) {
6365  switch(VT.getSimpleVT().SimpleTy) {
6366  case MVT::v4i32:
6367  case MVT::v4f32: return X86ISD::VPERMILPS;
6368  case MVT::v2i64:
6369  case MVT::v2f64: return X86ISD::VPERMILPD;
6370  case MVT::v8i32:
6371  case MVT::v8f32: return X86ISD::VPERMILPSY;
6372  case MVT::v4i64:
6373  case MVT::v4f64: return X86ISD::VPERMILPDY;
6374  default:
6375    llvm_unreachable("Unknown type for vpermil");
6376  }
6377  return 0;
6378}
6379
6380/// isVectorBroadcast - Check if the node chain is suitable to be xformed to
6381/// a vbroadcast node. The nodes are suitable whenever we can fold a load coming
6382/// from a 32 or 64 bit scalar. Update Op to the desired load to be folded.
6383static bool isVectorBroadcast(SDValue &Op) {
6384  EVT VT = Op.getValueType();
6385  bool Is256 = VT.getSizeInBits() == 256;
6386
6387  assert((VT.getSizeInBits() == 128 || Is256) &&
6388         "Unsupported type for vbroadcast node");
6389
6390  SDValue V = Op;
6391  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6392    V = V.getOperand(0);
6393
6394  if (Is256 && !(V.hasOneUse() &&
6395                 V.getOpcode() == ISD::INSERT_SUBVECTOR &&
6396                 V.getOperand(0).getOpcode() == ISD::UNDEF))
6397    return false;
6398
6399  if (Is256)
6400    V = V.getOperand(1);
6401  if (V.hasOneUse() && V.getOpcode() != ISD::SCALAR_TO_VECTOR)
6402    return false;
6403
6404  // Check the source scalar_to_vector type. 256-bit broadcasts are
6405  // supported for 32/64-bit sizes, while 128-bit ones are only supported
6406  // for 32-bit scalars.
6407  unsigned ScalarSize = V.getOperand(0).getValueType().getSizeInBits();
6408  if (ScalarSize != 32 && ScalarSize != 64)
6409    return false;
6410  if (!Is256 && ScalarSize == 64)
6411    return false;
6412
6413  V = V.getOperand(0);
6414  if (!MayFoldLoad(V))
6415    return false;
6416
6417  // Return the load node
6418  Op = V;
6419  return true;
6420}
6421
6422static
6423SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
6424                               const TargetLowering &TLI,
6425                               const X86Subtarget *Subtarget) {
6426  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6427  EVT VT = Op.getValueType();
6428  DebugLoc dl = Op.getDebugLoc();
6429  SDValue V1 = Op.getOperand(0);
6430  SDValue V2 = Op.getOperand(1);
6431
6432  if (isZeroShuffle(SVOp))
6433    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
6434
6435  // Handle splat operations
6436  if (SVOp->isSplat()) {
6437    unsigned NumElem = VT.getVectorNumElements();
6438    int Size = VT.getSizeInBits();
6439    // Special case, this is the only place now where it's allowed to return
6440    // a vector_shuffle operation without using a target specific node, because
6441    // *hopefully* it will be optimized away by the dag combiner. FIXME: should
6442    // this be moved to DAGCombine instead?
6443    if (NumElem <= 4 && CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
6444      return Op;
6445
6446    // Use vbroadcast whenever the splat comes from a foldable load
6447    if (Subtarget->hasAVX() && isVectorBroadcast(V1))
6448      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, V1);
6449
6450    // Handle splats by matching through known shuffle masks
6451    if ((Size == 128 && NumElem <= 4) ||
6452        (Size == 256 && NumElem < 8))
6453      return SDValue();
6454
6455    // All remaning splats are promoted to target supported vector shuffles.
6456    return PromoteSplat(SVOp, DAG);
6457  }
6458
6459  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6460  // do it!
6461  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
6462    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6463    if (NewOp.getNode())
6464      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6465  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
6466    // FIXME: Figure out a cleaner way to do this.
6467    // Try to make use of movq to zero out the top part.
6468    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6469      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6470      if (NewOp.getNode()) {
6471        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
6472          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
6473                              DAG, Subtarget, dl);
6474      }
6475    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6476      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6477      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
6478        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
6479                            DAG, Subtarget, dl);
6480    }
6481  }
6482  return SDValue();
6483}
6484
6485SDValue
6486X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6487  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6488  SDValue V1 = Op.getOperand(0);
6489  SDValue V2 = Op.getOperand(1);
6490  EVT VT = Op.getValueType();
6491  DebugLoc dl = Op.getDebugLoc();
6492  unsigned NumElems = VT.getVectorNumElements();
6493  bool isMMX = VT.getSizeInBits() == 64;
6494  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6495  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6496  bool V1IsSplat = false;
6497  bool V2IsSplat = false;
6498  bool HasSSE2 = Subtarget->hasSSE2() || Subtarget->hasAVX();
6499  bool HasSSE3 = Subtarget->hasSSE3() || Subtarget->hasAVX();
6500  bool HasSSSE3 = Subtarget->hasSSSE3() || Subtarget->hasAVX();
6501  MachineFunction &MF = DAG.getMachineFunction();
6502  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
6503
6504  // Shuffle operations on MMX not supported.
6505  if (isMMX)
6506    return Op;
6507
6508  // Vector shuffle lowering takes 3 steps:
6509  //
6510  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6511  //    narrowing and commutation of operands should be handled.
6512  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6513  //    shuffle nodes.
6514  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6515  //    so the shuffle can be broken into other shuffles and the legalizer can
6516  //    try the lowering again.
6517  //
6518  // The general ideia is that no vector_shuffle operation should be left to
6519  // be matched during isel, all of them must be converted to a target specific
6520  // node here.
6521
6522  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6523  // narrowing and commutation of operands should be handled. The actual code
6524  // doesn't include all of those, work in progress...
6525  SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
6526  if (NewOp.getNode())
6527    return NewOp;
6528
6529  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6530  // unpckh_undef). Only use pshufd if speed is more important than size.
6531  if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp))
6532    return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
6533  if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp))
6534    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
6535
6536  if (X86::isMOVDDUPMask(SVOp) && HasSSE3 && V2IsUndef &&
6537      RelaxedMayFoldVectorLoad(V1))
6538    return getMOVDDup(Op, dl, V1, DAG);
6539
6540  if (X86::isMOVHLPS_v_undef_Mask(SVOp))
6541    return getMOVHighToLow(Op, dl, DAG);
6542
6543  // Use to match splats
6544  if (HasSSE2 && X86::isUNPCKHMask(SVOp) && V2IsUndef &&
6545      (VT == MVT::v2f64 || VT == MVT::v2i64))
6546    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
6547
6548  if (X86::isPSHUFDMask(SVOp)) {
6549    // The actual implementation will match the mask in the if above and then
6550    // during isel it can match several different instructions, not only pshufd
6551    // as its name says, sad but true, emulate the behavior for now...
6552    if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6553        return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6554
6555    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
6556
6557    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
6558      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6559
6560    return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V1,
6561                                TargetMask, DAG);
6562  }
6563
6564  // Check if this can be converted into a logical shift.
6565  bool isLeft = false;
6566  unsigned ShAmt = 0;
6567  SDValue ShVal;
6568  bool isShift = getSubtarget()->hasSSE2() &&
6569    isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6570  if (isShift && ShVal.hasOneUse()) {
6571    // If the shifted value has multiple uses, it may be cheaper to use
6572    // v_set0 + movlhps or movhlps, etc.
6573    EVT EltVT = VT.getVectorElementType();
6574    ShAmt *= EltVT.getSizeInBits();
6575    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6576  }
6577
6578  if (X86::isMOVLMask(SVOp)) {
6579    if (V1IsUndef)
6580      return V2;
6581    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6582      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6583    if (!X86::isMOVLPMask(SVOp)) {
6584      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6585        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6586
6587      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6588        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6589    }
6590  }
6591
6592  // FIXME: fold these into legal mask.
6593  if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp))
6594    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
6595
6596  if (X86::isMOVHLPSMask(SVOp))
6597    return getMOVHighToLow(Op, dl, DAG);
6598
6599  if (X86::isMOVSHDUPMask(SVOp, Subtarget))
6600    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6601
6602  if (X86::isMOVSLDUPMask(SVOp, Subtarget))
6603    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6604
6605  if (X86::isMOVLPMask(SVOp))
6606    return getMOVLP(Op, dl, DAG, HasSSE2);
6607
6608  if (ShouldXformToMOVHLPS(SVOp) ||
6609      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
6610    return CommuteVectorShuffle(SVOp, DAG);
6611
6612  if (isShift) {
6613    // No better options. Use a vshl / vsrl.
6614    EVT EltVT = VT.getVectorElementType();
6615    ShAmt *= EltVT.getSizeInBits();
6616    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6617  }
6618
6619  bool Commuted = false;
6620  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6621  // 1,1,1,1 -> v8i16 though.
6622  V1IsSplat = isSplatVector(V1.getNode());
6623  V2IsSplat = isSplatVector(V2.getNode());
6624
6625  // Canonicalize the splat or undef, if present, to be on the RHS.
6626  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
6627    Op = CommuteVectorShuffle(SVOp, DAG);
6628    SVOp = cast<ShuffleVectorSDNode>(Op);
6629    V1 = SVOp->getOperand(0);
6630    V2 = SVOp->getOperand(1);
6631    std::swap(V1IsSplat, V2IsSplat);
6632    std::swap(V1IsUndef, V2IsUndef);
6633    Commuted = true;
6634  }
6635
6636  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
6637    // Shuffling low element of v1 into undef, just return v1.
6638    if (V2IsUndef)
6639      return V1;
6640    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6641    // the instruction selector will not match, so get a canonical MOVL with
6642    // swapped operands to undo the commute.
6643    return getMOVL(DAG, dl, VT, V2, V1);
6644  }
6645
6646  if (X86::isUNPCKLMask(SVOp))
6647    return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V2, DAG);
6648
6649  if (X86::isUNPCKHMask(SVOp))
6650    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V2, DAG);
6651
6652  if (V2IsSplat) {
6653    // Normalize mask so all entries that point to V2 points to its first
6654    // element then try to match unpck{h|l} again. If match, return a
6655    // new vector_shuffle with the corrected mask.
6656    SDValue NewMask = NormalizeMask(SVOp, DAG);
6657    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
6658    if (NSVOp != SVOp) {
6659      if (X86::isUNPCKLMask(NSVOp, true)) {
6660        return NewMask;
6661      } else if (X86::isUNPCKHMask(NSVOp, true)) {
6662        return NewMask;
6663      }
6664    }
6665  }
6666
6667  if (Commuted) {
6668    // Commute is back and try unpck* again.
6669    // FIXME: this seems wrong.
6670    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
6671    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
6672
6673    if (X86::isUNPCKLMask(NewSVOp))
6674      return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V2, V1, DAG);
6675
6676    if (X86::isUNPCKHMask(NewSVOp))
6677      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V2, V1, DAG);
6678  }
6679
6680  // Normalize the node to match x86 shuffle ops if needed
6681  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
6682    return CommuteVectorShuffle(SVOp, DAG);
6683
6684  // The checks below are all present in isShuffleMaskLegal, but they are
6685  // inlined here right now to enable us to directly emit target specific
6686  // nodes, and remove one by one until they don't return Op anymore.
6687  SmallVector<int, 16> M;
6688  SVOp->getMask(M);
6689
6690  if (isPALIGNRMask(M, VT, HasSSSE3))
6691    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6692                                X86::getShufflePALIGNRImmediate(SVOp),
6693                                DAG);
6694
6695  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6696      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6697    if (VT == MVT::v2f64)
6698      return getTargetShuffleNode(X86ISD::UNPCKLPD, dl, VT, V1, V1, DAG);
6699    if (VT == MVT::v2i64)
6700      return getTargetShuffleNode(X86ISD::PUNPCKLQDQ, dl, VT, V1, V1, DAG);
6701  }
6702
6703  if (isPSHUFHWMask(M, VT))
6704    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6705                                X86::getShufflePSHUFHWImmediate(SVOp),
6706                                DAG);
6707
6708  if (isPSHUFLWMask(M, VT))
6709    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6710                                X86::getShufflePSHUFLWImmediate(SVOp),
6711                                DAG);
6712
6713  if (isSHUFPMask(M, VT))
6714    return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
6715                                X86::getShuffleSHUFImmediate(SVOp), DAG);
6716
6717  if (X86::isUNPCKL_v_undef_Mask(SVOp))
6718    return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
6719  if (X86::isUNPCKH_v_undef_Mask(SVOp))
6720    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
6721
6722  //===--------------------------------------------------------------------===//
6723  // Generate target specific nodes for 128 or 256-bit shuffles only
6724  // supported in the AVX instruction set.
6725  //
6726
6727  // Handle VMOVDDUPY permutations
6728  if (isMOVDDUPYMask(SVOp, Subtarget))
6729    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
6730
6731  // Handle VPERMILPS* permutations
6732  if (isVPERMILPSMask(M, VT, Subtarget))
6733    return getTargetShuffleNode(getVPERMILOpcode(VT), dl, VT, V1,
6734                                getShuffleVPERMILPSImmediate(SVOp), DAG);
6735
6736  // Handle VPERMILPD* permutations
6737  if (isVPERMILPDMask(M, VT, Subtarget))
6738    return getTargetShuffleNode(getVPERMILOpcode(VT), dl, VT, V1,
6739                                getShuffleVPERMILPDImmediate(SVOp), DAG);
6740
6741  // Handle VPERM2F128 permutations
6742  if (isVPERM2F128Mask(M, VT, Subtarget))
6743    return getTargetShuffleNode(X86ISD::VPERM2F128, dl, VT, V1, V2,
6744                                getShuffleVPERM2F128Immediate(SVOp), DAG);
6745
6746  // Handle VSHUFPSY permutations
6747  if (isVSHUFPSYMask(M, VT, Subtarget))
6748    return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
6749                                getShuffleVSHUFPSYImmediate(SVOp), DAG);
6750
6751  // Handle VSHUFPDY permutations
6752  if (isVSHUFPDYMask(M, VT, Subtarget))
6753    return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
6754                                getShuffleVSHUFPDYImmediate(SVOp), DAG);
6755
6756  //===--------------------------------------------------------------------===//
6757  // Since no target specific shuffle was selected for this generic one,
6758  // lower it into other known shuffles. FIXME: this isn't true yet, but
6759  // this is the plan.
6760  //
6761
6762  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6763  if (VT == MVT::v8i16) {
6764    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
6765    if (NewOp.getNode())
6766      return NewOp;
6767  }
6768
6769  if (VT == MVT::v16i8) {
6770    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6771    if (NewOp.getNode())
6772      return NewOp;
6773  }
6774
6775  // Handle all 128-bit wide vectors with 4 elements, and match them with
6776  // several different shuffle types.
6777  if (NumElems == 4 && VT.getSizeInBits() == 128)
6778    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6779
6780  // Handle general 256-bit shuffles
6781  if (VT.is256BitVector())
6782    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6783
6784  return SDValue();
6785}
6786
6787SDValue
6788X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6789                                                SelectionDAG &DAG) const {
6790  EVT VT = Op.getValueType();
6791  DebugLoc dl = Op.getDebugLoc();
6792
6793  if (Op.getOperand(0).getValueType().getSizeInBits() != 128)
6794    return SDValue();
6795
6796  if (VT.getSizeInBits() == 8) {
6797    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6798                                    Op.getOperand(0), Op.getOperand(1));
6799    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6800                                    DAG.getValueType(VT));
6801    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6802  } else if (VT.getSizeInBits() == 16) {
6803    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6804    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6805    if (Idx == 0)
6806      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6807                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6808                                     DAG.getNode(ISD::BITCAST, dl,
6809                                                 MVT::v4i32,
6810                                                 Op.getOperand(0)),
6811                                     Op.getOperand(1)));
6812    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6813                                    Op.getOperand(0), Op.getOperand(1));
6814    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6815                                    DAG.getValueType(VT));
6816    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6817  } else if (VT == MVT::f32) {
6818    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6819    // the result back to FR32 register. It's only worth matching if the
6820    // result has a single use which is a store or a bitcast to i32.  And in
6821    // the case of a store, it's not worth it if the index is a constant 0,
6822    // because a MOVSSmr can be used instead, which is smaller and faster.
6823    if (!Op.hasOneUse())
6824      return SDValue();
6825    SDNode *User = *Op.getNode()->use_begin();
6826    if ((User->getOpcode() != ISD::STORE ||
6827         (isa<ConstantSDNode>(Op.getOperand(1)) &&
6828          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6829        (User->getOpcode() != ISD::BITCAST ||
6830         User->getValueType(0) != MVT::i32))
6831      return SDValue();
6832    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6833                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
6834                                              Op.getOperand(0)),
6835                                              Op.getOperand(1));
6836    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
6837  } else if (VT == MVT::i32) {
6838    // ExtractPS works with constant index.
6839    if (isa<ConstantSDNode>(Op.getOperand(1)))
6840      return Op;
6841  }
6842  return SDValue();
6843}
6844
6845
6846SDValue
6847X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6848                                           SelectionDAG &DAG) const {
6849  if (!isa<ConstantSDNode>(Op.getOperand(1)))
6850    return SDValue();
6851
6852  SDValue Vec = Op.getOperand(0);
6853  EVT VecVT = Vec.getValueType();
6854
6855  // If this is a 256-bit vector result, first extract the 128-bit vector and
6856  // then extract the element from the 128-bit vector.
6857  if (VecVT.getSizeInBits() == 256) {
6858    DebugLoc dl = Op.getNode()->getDebugLoc();
6859    unsigned NumElems = VecVT.getVectorNumElements();
6860    SDValue Idx = Op.getOperand(1);
6861    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6862
6863    // Get the 128-bit vector.
6864    bool Upper = IdxVal >= NumElems/2;
6865    Vec = Extract128BitVector(Vec,
6866                    DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32), DAG, dl);
6867
6868    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6869                    Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : Idx);
6870  }
6871
6872  assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
6873
6874  if (Subtarget->hasSSE41() || Subtarget->hasAVX()) {
6875    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6876    if (Res.getNode())
6877      return Res;
6878  }
6879
6880  EVT VT = Op.getValueType();
6881  DebugLoc dl = Op.getDebugLoc();
6882  // TODO: handle v16i8.
6883  if (VT.getSizeInBits() == 16) {
6884    SDValue Vec = Op.getOperand(0);
6885    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6886    if (Idx == 0)
6887      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6888                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6889                                     DAG.getNode(ISD::BITCAST, dl,
6890                                                 MVT::v4i32, Vec),
6891                                     Op.getOperand(1)));
6892    // Transform it so it match pextrw which produces a 32-bit result.
6893    EVT EltVT = MVT::i32;
6894    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6895                                    Op.getOperand(0), Op.getOperand(1));
6896    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6897                                    DAG.getValueType(VT));
6898    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6899  } else if (VT.getSizeInBits() == 32) {
6900    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6901    if (Idx == 0)
6902      return Op;
6903
6904    // SHUFPS the element to the lowest double word, then movss.
6905    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
6906    EVT VVT = Op.getOperand(0).getValueType();
6907    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6908                                       DAG.getUNDEF(VVT), Mask);
6909    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6910                       DAG.getIntPtrConstant(0));
6911  } else if (VT.getSizeInBits() == 64) {
6912    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6913    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6914    //        to match extract_elt for f64.
6915    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6916    if (Idx == 0)
6917      return Op;
6918
6919    // UNPCKHPD the element to the lowest double word, then movsd.
6920    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6921    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6922    int Mask[2] = { 1, -1 };
6923    EVT VVT = Op.getOperand(0).getValueType();
6924    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6925                                       DAG.getUNDEF(VVT), Mask);
6926    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6927                       DAG.getIntPtrConstant(0));
6928  }
6929
6930  return SDValue();
6931}
6932
6933SDValue
6934X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
6935                                               SelectionDAG &DAG) const {
6936  EVT VT = Op.getValueType();
6937  EVT EltVT = VT.getVectorElementType();
6938  DebugLoc dl = Op.getDebugLoc();
6939
6940  SDValue N0 = Op.getOperand(0);
6941  SDValue N1 = Op.getOperand(1);
6942  SDValue N2 = Op.getOperand(2);
6943
6944  if (VT.getSizeInBits() == 256)
6945    return SDValue();
6946
6947  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
6948      isa<ConstantSDNode>(N2)) {
6949    unsigned Opc;
6950    if (VT == MVT::v8i16)
6951      Opc = X86ISD::PINSRW;
6952    else if (VT == MVT::v16i8)
6953      Opc = X86ISD::PINSRB;
6954    else
6955      Opc = X86ISD::PINSRB;
6956
6957    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
6958    // argument.
6959    if (N1.getValueType() != MVT::i32)
6960      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6961    if (N2.getValueType() != MVT::i32)
6962      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6963    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
6964  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
6965    // Bits [7:6] of the constant are the source select.  This will always be
6966    //  zero here.  The DAG Combiner may combine an extract_elt index into these
6967    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
6968    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
6969    // Bits [5:4] of the constant are the destination select.  This is the
6970    //  value of the incoming immediate.
6971    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
6972    //   combine either bitwise AND or insert of float 0.0 to set these bits.
6973    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
6974    // Create this as a scalar to vector..
6975    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
6976    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
6977  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
6978    // PINSR* works with constant index.
6979    return Op;
6980  }
6981  return SDValue();
6982}
6983
6984SDValue
6985X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
6986  EVT VT = Op.getValueType();
6987  EVT EltVT = VT.getVectorElementType();
6988
6989  DebugLoc dl = Op.getDebugLoc();
6990  SDValue N0 = Op.getOperand(0);
6991  SDValue N1 = Op.getOperand(1);
6992  SDValue N2 = Op.getOperand(2);
6993
6994  // If this is a 256-bit vector result, first extract the 128-bit vector,
6995  // insert the element into the extracted half and then place it back.
6996  if (VT.getSizeInBits() == 256) {
6997    if (!isa<ConstantSDNode>(N2))
6998      return SDValue();
6999
7000    // Get the desired 128-bit vector half.
7001    unsigned NumElems = VT.getVectorNumElements();
7002    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
7003    bool Upper = IdxVal >= NumElems/2;
7004    SDValue Ins128Idx = DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32);
7005    SDValue V = Extract128BitVector(N0, Ins128Idx, DAG, dl);
7006
7007    // Insert the element into the desired half.
7008    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V,
7009                 N1, Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : N2);
7010
7011    // Insert the changed part back to the 256-bit vector
7012    return Insert128BitVector(N0, V, Ins128Idx, DAG, dl);
7013  }
7014
7015  if (Subtarget->hasSSE41() || Subtarget->hasAVX())
7016    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
7017
7018  if (EltVT == MVT::i8)
7019    return SDValue();
7020
7021  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
7022    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
7023    // as its second argument.
7024    if (N1.getValueType() != MVT::i32)
7025      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7026    if (N2.getValueType() != MVT::i32)
7027      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7028    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
7029  }
7030  return SDValue();
7031}
7032
7033SDValue
7034X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
7035  LLVMContext *Context = DAG.getContext();
7036  DebugLoc dl = Op.getDebugLoc();
7037  EVT OpVT = Op.getValueType();
7038
7039  // If this is a 256-bit vector result, first insert into a 128-bit
7040  // vector and then insert into the 256-bit vector.
7041  if (OpVT.getSizeInBits() > 128) {
7042    // Insert into a 128-bit vector.
7043    EVT VT128 = EVT::getVectorVT(*Context,
7044                                 OpVT.getVectorElementType(),
7045                                 OpVT.getVectorNumElements() / 2);
7046
7047    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
7048
7049    // Insert the 128-bit vector.
7050    return Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, OpVT), Op,
7051                              DAG.getConstant(0, MVT::i32),
7052                              DAG, dl);
7053  }
7054
7055  if (Op.getValueType() == MVT::v1i64 &&
7056      Op.getOperand(0).getValueType() == MVT::i64)
7057    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
7058
7059  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
7060  assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
7061         "Expected an SSE type!");
7062  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
7063                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
7064}
7065
7066// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
7067// a simple subregister reference or explicit instructions to grab
7068// upper bits of a vector.
7069SDValue
7070X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7071  if (Subtarget->hasAVX()) {
7072    DebugLoc dl = Op.getNode()->getDebugLoc();
7073    SDValue Vec = Op.getNode()->getOperand(0);
7074    SDValue Idx = Op.getNode()->getOperand(1);
7075
7076    if (Op.getNode()->getValueType(0).getSizeInBits() == 128
7077        && Vec.getNode()->getValueType(0).getSizeInBits() == 256) {
7078        return Extract128BitVector(Vec, Idx, DAG, dl);
7079    }
7080  }
7081  return SDValue();
7082}
7083
7084// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
7085// simple superregister reference or explicit instructions to insert
7086// the upper bits of a vector.
7087SDValue
7088X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7089  if (Subtarget->hasAVX()) {
7090    DebugLoc dl = Op.getNode()->getDebugLoc();
7091    SDValue Vec = Op.getNode()->getOperand(0);
7092    SDValue SubVec = Op.getNode()->getOperand(1);
7093    SDValue Idx = Op.getNode()->getOperand(2);
7094
7095    if (Op.getNode()->getValueType(0).getSizeInBits() == 256
7096        && SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
7097      return Insert128BitVector(Vec, SubVec, Idx, DAG, dl);
7098    }
7099  }
7100  return SDValue();
7101}
7102
7103// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7104// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7105// one of the above mentioned nodes. It has to be wrapped because otherwise
7106// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7107// be used to form addressing mode. These wrapped nodes will be selected
7108// into MOV32ri.
7109SDValue
7110X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7111  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7112
7113  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7114  // global base reg.
7115  unsigned char OpFlag = 0;
7116  unsigned WrapperKind = X86ISD::Wrapper;
7117  CodeModel::Model M = getTargetMachine().getCodeModel();
7118
7119  if (Subtarget->isPICStyleRIPRel() &&
7120      (M == CodeModel::Small || M == CodeModel::Kernel))
7121    WrapperKind = X86ISD::WrapperRIP;
7122  else if (Subtarget->isPICStyleGOT())
7123    OpFlag = X86II::MO_GOTOFF;
7124  else if (Subtarget->isPICStyleStubPIC())
7125    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7126
7127  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7128                                             CP->getAlignment(),
7129                                             CP->getOffset(), OpFlag);
7130  DebugLoc DL = CP->getDebugLoc();
7131  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7132  // With PIC, the address is actually $g + Offset.
7133  if (OpFlag) {
7134    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7135                         DAG.getNode(X86ISD::GlobalBaseReg,
7136                                     DebugLoc(), getPointerTy()),
7137                         Result);
7138  }
7139
7140  return Result;
7141}
7142
7143SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7144  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7145
7146  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7147  // global base reg.
7148  unsigned char OpFlag = 0;
7149  unsigned WrapperKind = X86ISD::Wrapper;
7150  CodeModel::Model M = getTargetMachine().getCodeModel();
7151
7152  if (Subtarget->isPICStyleRIPRel() &&
7153      (M == CodeModel::Small || M == CodeModel::Kernel))
7154    WrapperKind = X86ISD::WrapperRIP;
7155  else if (Subtarget->isPICStyleGOT())
7156    OpFlag = X86II::MO_GOTOFF;
7157  else if (Subtarget->isPICStyleStubPIC())
7158    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7159
7160  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7161                                          OpFlag);
7162  DebugLoc DL = JT->getDebugLoc();
7163  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7164
7165  // With PIC, the address is actually $g + Offset.
7166  if (OpFlag)
7167    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7168                         DAG.getNode(X86ISD::GlobalBaseReg,
7169                                     DebugLoc(), getPointerTy()),
7170                         Result);
7171
7172  return Result;
7173}
7174
7175SDValue
7176X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7177  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7178
7179  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7180  // global base reg.
7181  unsigned char OpFlag = 0;
7182  unsigned WrapperKind = X86ISD::Wrapper;
7183  CodeModel::Model M = getTargetMachine().getCodeModel();
7184
7185  if (Subtarget->isPICStyleRIPRel() &&
7186      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7187    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7188      OpFlag = X86II::MO_GOTPCREL;
7189    WrapperKind = X86ISD::WrapperRIP;
7190  } else if (Subtarget->isPICStyleGOT()) {
7191    OpFlag = X86II::MO_GOT;
7192  } else if (Subtarget->isPICStyleStubPIC()) {
7193    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7194  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7195    OpFlag = X86II::MO_DARWIN_NONLAZY;
7196  }
7197
7198  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7199
7200  DebugLoc DL = Op.getDebugLoc();
7201  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7202
7203
7204  // With PIC, the address is actually $g + Offset.
7205  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7206      !Subtarget->is64Bit()) {
7207    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7208                         DAG.getNode(X86ISD::GlobalBaseReg,
7209                                     DebugLoc(), getPointerTy()),
7210                         Result);
7211  }
7212
7213  // For symbols that require a load from a stub to get the address, emit the
7214  // load.
7215  if (isGlobalStubReference(OpFlag))
7216    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7217                         MachinePointerInfo::getGOT(), false, false, 0);
7218
7219  return Result;
7220}
7221
7222SDValue
7223X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7224  // Create the TargetBlockAddressAddress node.
7225  unsigned char OpFlags =
7226    Subtarget->ClassifyBlockAddressReference();
7227  CodeModel::Model M = getTargetMachine().getCodeModel();
7228  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7229  DebugLoc dl = Op.getDebugLoc();
7230  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
7231                                       /*isTarget=*/true, OpFlags);
7232
7233  if (Subtarget->isPICStyleRIPRel() &&
7234      (M == CodeModel::Small || M == CodeModel::Kernel))
7235    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7236  else
7237    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7238
7239  // With PIC, the address is actually $g + Offset.
7240  if (isGlobalRelativeToPICBase(OpFlags)) {
7241    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7242                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7243                         Result);
7244  }
7245
7246  return Result;
7247}
7248
7249SDValue
7250X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7251                                      int64_t Offset,
7252                                      SelectionDAG &DAG) const {
7253  // Create the TargetGlobalAddress node, folding in the constant
7254  // offset if it is legal.
7255  unsigned char OpFlags =
7256    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7257  CodeModel::Model M = getTargetMachine().getCodeModel();
7258  SDValue Result;
7259  if (OpFlags == X86II::MO_NO_FLAG &&
7260      X86::isOffsetSuitableForCodeModel(Offset, M)) {
7261    // A direct static reference to a global.
7262    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7263    Offset = 0;
7264  } else {
7265    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7266  }
7267
7268  if (Subtarget->isPICStyleRIPRel() &&
7269      (M == CodeModel::Small || M == CodeModel::Kernel))
7270    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7271  else
7272    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7273
7274  // With PIC, the address is actually $g + Offset.
7275  if (isGlobalRelativeToPICBase(OpFlags)) {
7276    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7277                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7278                         Result);
7279  }
7280
7281  // For globals that require a load from a stub to get the address, emit the
7282  // load.
7283  if (isGlobalStubReference(OpFlags))
7284    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7285                         MachinePointerInfo::getGOT(), false, false, 0);
7286
7287  // If there was a non-zero offset that we didn't fold, create an explicit
7288  // addition for it.
7289  if (Offset != 0)
7290    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7291                         DAG.getConstant(Offset, getPointerTy()));
7292
7293  return Result;
7294}
7295
7296SDValue
7297X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7298  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7299  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7300  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7301}
7302
7303static SDValue
7304GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7305           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7306           unsigned char OperandFlags) {
7307  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7308  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7309  DebugLoc dl = GA->getDebugLoc();
7310  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7311                                           GA->getValueType(0),
7312                                           GA->getOffset(),
7313                                           OperandFlags);
7314  if (InFlag) {
7315    SDValue Ops[] = { Chain,  TGA, *InFlag };
7316    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
7317  } else {
7318    SDValue Ops[]  = { Chain, TGA };
7319    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
7320  }
7321
7322  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7323  MFI->setAdjustsStack(true);
7324
7325  SDValue Flag = Chain.getValue(1);
7326  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7327}
7328
7329// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7330static SDValue
7331LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7332                                const EVT PtrVT) {
7333  SDValue InFlag;
7334  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
7335  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7336                                     DAG.getNode(X86ISD::GlobalBaseReg,
7337                                                 DebugLoc(), PtrVT), InFlag);
7338  InFlag = Chain.getValue(1);
7339
7340  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7341}
7342
7343// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7344static SDValue
7345LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7346                                const EVT PtrVT) {
7347  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7348                    X86::RAX, X86II::MO_TLSGD);
7349}
7350
7351// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
7352// "local exec" model.
7353static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7354                                   const EVT PtrVT, TLSModel::Model model,
7355                                   bool is64Bit) {
7356  DebugLoc dl = GA->getDebugLoc();
7357
7358  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7359  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7360                                                         is64Bit ? 257 : 256));
7361
7362  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7363                                      DAG.getIntPtrConstant(0),
7364                                      MachinePointerInfo(Ptr), false, false, 0);
7365
7366  unsigned char OperandFlags = 0;
7367  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7368  // initialexec.
7369  unsigned WrapperKind = X86ISD::Wrapper;
7370  if (model == TLSModel::LocalExec) {
7371    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7372  } else if (is64Bit) {
7373    assert(model == TLSModel::InitialExec);
7374    OperandFlags = X86II::MO_GOTTPOFF;
7375    WrapperKind = X86ISD::WrapperRIP;
7376  } else {
7377    assert(model == TLSModel::InitialExec);
7378    OperandFlags = X86II::MO_INDNTPOFF;
7379  }
7380
7381  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
7382  // exec)
7383  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7384                                           GA->getValueType(0),
7385                                           GA->getOffset(), OperandFlags);
7386  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7387
7388  if (model == TLSModel::InitialExec)
7389    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7390                         MachinePointerInfo::getGOT(), false, false, 0);
7391
7392  // The address of the thread local variable is the add of the thread
7393  // pointer with the offset of the variable.
7394  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7395}
7396
7397SDValue
7398X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7399
7400  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7401  const GlobalValue *GV = GA->getGlobal();
7402
7403  if (Subtarget->isTargetELF()) {
7404    // TODO: implement the "local dynamic" model
7405    // TODO: implement the "initial exec"model for pic executables
7406
7407    // If GV is an alias then use the aliasee for determining
7408    // thread-localness.
7409    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7410      GV = GA->resolveAliasedGlobal(false);
7411
7412    TLSModel::Model model
7413      = getTLSModel(GV, getTargetMachine().getRelocationModel());
7414
7415    switch (model) {
7416      case TLSModel::GeneralDynamic:
7417      case TLSModel::LocalDynamic: // not implemented
7418        if (Subtarget->is64Bit())
7419          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7420        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7421
7422      case TLSModel::InitialExec:
7423      case TLSModel::LocalExec:
7424        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7425                                   Subtarget->is64Bit());
7426    }
7427  } else if (Subtarget->isTargetDarwin()) {
7428    // Darwin only has one model of TLS.  Lower to that.
7429    unsigned char OpFlag = 0;
7430    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7431                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7432
7433    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7434    // global base reg.
7435    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7436                  !Subtarget->is64Bit();
7437    if (PIC32)
7438      OpFlag = X86II::MO_TLVP_PIC_BASE;
7439    else
7440      OpFlag = X86II::MO_TLVP;
7441    DebugLoc DL = Op.getDebugLoc();
7442    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7443                                                GA->getValueType(0),
7444                                                GA->getOffset(), OpFlag);
7445    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7446
7447    // With PIC32, the address is actually $g + Offset.
7448    if (PIC32)
7449      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7450                           DAG.getNode(X86ISD::GlobalBaseReg,
7451                                       DebugLoc(), getPointerTy()),
7452                           Offset);
7453
7454    // Lowering the machine isd will make sure everything is in the right
7455    // location.
7456    SDValue Chain = DAG.getEntryNode();
7457    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7458    SDValue Args[] = { Chain, Offset };
7459    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7460
7461    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7462    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7463    MFI->setAdjustsStack(true);
7464
7465    // And our return value (tls address) is in the standard call return value
7466    // location.
7467    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7468    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
7469  }
7470
7471  assert(false &&
7472         "TLS not implemented for this target.");
7473
7474  llvm_unreachable("Unreachable");
7475  return SDValue();
7476}
7477
7478
7479/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values and
7480/// take a 2 x i32 value to shift plus a shift amount.
7481SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const {
7482  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7483  EVT VT = Op.getValueType();
7484  unsigned VTBits = VT.getSizeInBits();
7485  DebugLoc dl = Op.getDebugLoc();
7486  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7487  SDValue ShOpLo = Op.getOperand(0);
7488  SDValue ShOpHi = Op.getOperand(1);
7489  SDValue ShAmt  = Op.getOperand(2);
7490  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7491                                     DAG.getConstant(VTBits - 1, MVT::i8))
7492                       : DAG.getConstant(0, VT);
7493
7494  SDValue Tmp2, Tmp3;
7495  if (Op.getOpcode() == ISD::SHL_PARTS) {
7496    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7497    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7498  } else {
7499    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7500    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7501  }
7502
7503  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7504                                DAG.getConstant(VTBits, MVT::i8));
7505  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7506                             AndNode, DAG.getConstant(0, MVT::i8));
7507
7508  SDValue Hi, Lo;
7509  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7510  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7511  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7512
7513  if (Op.getOpcode() == ISD::SHL_PARTS) {
7514    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7515    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7516  } else {
7517    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7518    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7519  }
7520
7521  SDValue Ops[2] = { Lo, Hi };
7522  return DAG.getMergeValues(Ops, 2, dl);
7523}
7524
7525SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7526                                           SelectionDAG &DAG) const {
7527  EVT SrcVT = Op.getOperand(0).getValueType();
7528
7529  if (SrcVT.isVector())
7530    return SDValue();
7531
7532  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7533         "Unknown SINT_TO_FP to lower!");
7534
7535  // These are really Legal; return the operand so the caller accepts it as
7536  // Legal.
7537  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7538    return Op;
7539  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7540      Subtarget->is64Bit()) {
7541    return Op;
7542  }
7543
7544  DebugLoc dl = Op.getDebugLoc();
7545  unsigned Size = SrcVT.getSizeInBits()/8;
7546  MachineFunction &MF = DAG.getMachineFunction();
7547  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7548  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7549  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7550                               StackSlot,
7551                               MachinePointerInfo::getFixedStack(SSFI),
7552                               false, false, 0);
7553  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7554}
7555
7556SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7557                                     SDValue StackSlot,
7558                                     SelectionDAG &DAG) const {
7559  // Build the FILD
7560  DebugLoc DL = Op.getDebugLoc();
7561  SDVTList Tys;
7562  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7563  if (useSSE)
7564    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7565  else
7566    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7567
7568  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7569
7570  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7571  MachineMemOperand *MMO;
7572  if (FI) {
7573    int SSFI = FI->getIndex();
7574    MMO =
7575      DAG.getMachineFunction()
7576      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7577                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7578  } else {
7579    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7580    StackSlot = StackSlot.getOperand(1);
7581  }
7582  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7583  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7584                                           X86ISD::FILD, DL,
7585                                           Tys, Ops, array_lengthof(Ops),
7586                                           SrcVT, MMO);
7587
7588  if (useSSE) {
7589    Chain = Result.getValue(1);
7590    SDValue InFlag = Result.getValue(2);
7591
7592    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7593    // shouldn't be necessary except that RFP cannot be live across
7594    // multiple blocks. When stackifier is fixed, they can be uncoupled.
7595    MachineFunction &MF = DAG.getMachineFunction();
7596    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7597    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7598    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7599    Tys = DAG.getVTList(MVT::Other);
7600    SDValue Ops[] = {
7601      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7602    };
7603    MachineMemOperand *MMO =
7604      DAG.getMachineFunction()
7605      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7606                            MachineMemOperand::MOStore, SSFISize, SSFISize);
7607
7608    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7609                                    Ops, array_lengthof(Ops),
7610                                    Op.getValueType(), MMO);
7611    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7612                         MachinePointerInfo::getFixedStack(SSFI),
7613                         false, false, 0);
7614  }
7615
7616  return Result;
7617}
7618
7619// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7620SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7621                                               SelectionDAG &DAG) const {
7622  // This algorithm is not obvious. Here it is in C code, more or less:
7623  /*
7624    double uint64_to_double( uint32_t hi, uint32_t lo ) {
7625      static const __m128i exp = { 0x4330000045300000ULL, 0 };
7626      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
7627
7628      // Copy ints to xmm registers.
7629      __m128i xh = _mm_cvtsi32_si128( hi );
7630      __m128i xl = _mm_cvtsi32_si128( lo );
7631
7632      // Combine into low half of a single xmm register.
7633      __m128i x = _mm_unpacklo_epi32( xh, xl );
7634      __m128d d;
7635      double sd;
7636
7637      // Merge in appropriate exponents to give the integer bits the right
7638      // magnitude.
7639      x = _mm_unpacklo_epi32( x, exp );
7640
7641      // Subtract away the biases to deal with the IEEE-754 double precision
7642      // implicit 1.
7643      d = _mm_sub_pd( (__m128d) x, bias );
7644
7645      // All conversions up to here are exact. The correctly rounded result is
7646      // calculated using the current rounding mode using the following
7647      // horizontal add.
7648      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
7649      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
7650                                // store doesn't really need to be here (except
7651                                // maybe to zero the other double)
7652      return sd;
7653    }
7654  */
7655
7656  DebugLoc dl = Op.getDebugLoc();
7657  LLVMContext *Context = DAG.getContext();
7658
7659  // Build some magic constants.
7660  std::vector<Constant*> CV0;
7661  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
7662  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
7663  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7664  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7665  Constant *C0 = ConstantVector::get(CV0);
7666  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7667
7668  std::vector<Constant*> CV1;
7669  CV1.push_back(
7670    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7671  CV1.push_back(
7672    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7673  Constant *C1 = ConstantVector::get(CV1);
7674  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7675
7676  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7677                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7678                                        Op.getOperand(0),
7679                                        DAG.getIntPtrConstant(1)));
7680  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7681                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7682                                        Op.getOperand(0),
7683                                        DAG.getIntPtrConstant(0)));
7684  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
7685  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7686                              MachinePointerInfo::getConstantPool(),
7687                              false, false, 16);
7688  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
7689  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck2);
7690  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7691                              MachinePointerInfo::getConstantPool(),
7692                              false, false, 16);
7693  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7694
7695  // Add the halves; easiest way is to swap them into another reg first.
7696  int ShufMask[2] = { 1, -1 };
7697  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
7698                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
7699  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
7700  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
7701                     DAG.getIntPtrConstant(0));
7702}
7703
7704// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
7705SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7706                                               SelectionDAG &DAG) const {
7707  DebugLoc dl = Op.getDebugLoc();
7708  // FP constant to bias correct the final result.
7709  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7710                                   MVT::f64);
7711
7712  // Load the 32-bit value into an XMM register.
7713  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7714                             Op.getOperand(0));
7715
7716  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7717                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7718                     DAG.getIntPtrConstant(0));
7719
7720  // Or the load with the bias.
7721  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7722                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7723                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7724                                                   MVT::v2f64, Load)),
7725                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7726                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7727                                                   MVT::v2f64, Bias)));
7728  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7729                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7730                   DAG.getIntPtrConstant(0));
7731
7732  // Subtract the bias.
7733  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7734
7735  // Handle final rounding.
7736  EVT DestVT = Op.getValueType();
7737
7738  if (DestVT.bitsLT(MVT::f64)) {
7739    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7740                       DAG.getIntPtrConstant(0));
7741  } else if (DestVT.bitsGT(MVT::f64)) {
7742    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7743  }
7744
7745  // Handle final rounding.
7746  return Sub;
7747}
7748
7749SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
7750                                           SelectionDAG &DAG) const {
7751  SDValue N0 = Op.getOperand(0);
7752  DebugLoc dl = Op.getDebugLoc();
7753
7754  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
7755  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
7756  // the optimization here.
7757  if (DAG.SignBitIsZero(N0))
7758    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
7759
7760  EVT SrcVT = N0.getValueType();
7761  EVT DstVT = Op.getValueType();
7762  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
7763    return LowerUINT_TO_FP_i64(Op, DAG);
7764  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
7765    return LowerUINT_TO_FP_i32(Op, DAG);
7766
7767  // Make a 64-bit buffer, and use it to build an FILD.
7768  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
7769  if (SrcVT == MVT::i32) {
7770    SDValue WordOff = DAG.getConstant(4, getPointerTy());
7771    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
7772                                     getPointerTy(), StackSlot, WordOff);
7773    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7774                                  StackSlot, MachinePointerInfo(),
7775                                  false, false, 0);
7776    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
7777                                  OffsetSlot, MachinePointerInfo(),
7778                                  false, false, 0);
7779    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
7780    return Fild;
7781  }
7782
7783  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
7784  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7785                                StackSlot, MachinePointerInfo(),
7786                               false, false, 0);
7787  // For i64 source, we need to add the appropriate power of 2 if the input
7788  // was negative.  This is the same as the optimization in
7789  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
7790  // we must be careful to do the computation in x87 extended precision, not
7791  // in SSE. (The generic code can't know it's OK to do this, or how to.)
7792  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
7793  MachineMemOperand *MMO =
7794    DAG.getMachineFunction()
7795    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7796                          MachineMemOperand::MOLoad, 8, 8);
7797
7798  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
7799  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
7800  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
7801                                         MVT::i64, MMO);
7802
7803  APInt FF(32, 0x5F800000ULL);
7804
7805  // Check whether the sign bit is set.
7806  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
7807                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
7808                                 ISD::SETLT);
7809
7810  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
7811  SDValue FudgePtr = DAG.getConstantPool(
7812                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
7813                                         getPointerTy());
7814
7815  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
7816  SDValue Zero = DAG.getIntPtrConstant(0);
7817  SDValue Four = DAG.getIntPtrConstant(4);
7818  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
7819                               Zero, Four);
7820  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
7821
7822  // Load the value out, extending it from f32 to f80.
7823  // FIXME: Avoid the extend by constructing the right constant pool?
7824  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
7825                                 FudgePtr, MachinePointerInfo::getConstantPool(),
7826                                 MVT::f32, false, false, 4);
7827  // Extend everything to 80 bits to force it to be done on x87.
7828  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
7829  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
7830}
7831
7832std::pair<SDValue,SDValue> X86TargetLowering::
7833FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
7834  DebugLoc DL = Op.getDebugLoc();
7835
7836  EVT DstTy = Op.getValueType();
7837
7838  if (!IsSigned) {
7839    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
7840    DstTy = MVT::i64;
7841  }
7842
7843  assert(DstTy.getSimpleVT() <= MVT::i64 &&
7844         DstTy.getSimpleVT() >= MVT::i16 &&
7845         "Unknown FP_TO_SINT to lower!");
7846
7847  // These are really Legal.
7848  if (DstTy == MVT::i32 &&
7849      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7850    return std::make_pair(SDValue(), SDValue());
7851  if (Subtarget->is64Bit() &&
7852      DstTy == MVT::i64 &&
7853      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7854    return std::make_pair(SDValue(), SDValue());
7855
7856  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
7857  // stack slot.
7858  MachineFunction &MF = DAG.getMachineFunction();
7859  unsigned MemSize = DstTy.getSizeInBits()/8;
7860  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7861  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7862
7863
7864
7865  unsigned Opc;
7866  switch (DstTy.getSimpleVT().SimpleTy) {
7867  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
7868  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
7869  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
7870  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
7871  }
7872
7873  SDValue Chain = DAG.getEntryNode();
7874  SDValue Value = Op.getOperand(0);
7875  EVT TheVT = Op.getOperand(0).getValueType();
7876  if (isScalarFPTypeInSSEReg(TheVT)) {
7877    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
7878    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
7879                         MachinePointerInfo::getFixedStack(SSFI),
7880                         false, false, 0);
7881    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
7882    SDValue Ops[] = {
7883      Chain, StackSlot, DAG.getValueType(TheVT)
7884    };
7885
7886    MachineMemOperand *MMO =
7887      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7888                              MachineMemOperand::MOLoad, MemSize, MemSize);
7889    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
7890                                    DstTy, MMO);
7891    Chain = Value.getValue(1);
7892    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7893    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7894  }
7895
7896  MachineMemOperand *MMO =
7897    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7898                            MachineMemOperand::MOStore, MemSize, MemSize);
7899
7900  // Build the FP_TO_INT*_IN_MEM
7901  SDValue Ops[] = { Chain, Value, StackSlot };
7902  SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
7903                                         Ops, 3, DstTy, MMO);
7904
7905  return std::make_pair(FIST, StackSlot);
7906}
7907
7908SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
7909                                           SelectionDAG &DAG) const {
7910  if (Op.getValueType().isVector())
7911    return SDValue();
7912
7913  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
7914  SDValue FIST = Vals.first, StackSlot = Vals.second;
7915  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
7916  if (FIST.getNode() == 0) return Op;
7917
7918  // Load the result.
7919  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7920                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
7921}
7922
7923SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
7924                                           SelectionDAG &DAG) const {
7925  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
7926  SDValue FIST = Vals.first, StackSlot = Vals.second;
7927  assert(FIST.getNode() && "Unexpected failure");
7928
7929  // Load the result.
7930  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7931                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
7932}
7933
7934SDValue X86TargetLowering::LowerFABS(SDValue Op,
7935                                     SelectionDAG &DAG) const {
7936  LLVMContext *Context = DAG.getContext();
7937  DebugLoc dl = Op.getDebugLoc();
7938  EVT VT = Op.getValueType();
7939  EVT EltVT = VT;
7940  if (VT.isVector())
7941    EltVT = VT.getVectorElementType();
7942  std::vector<Constant*> CV;
7943  if (EltVT == MVT::f64) {
7944    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
7945    CV.push_back(C);
7946    CV.push_back(C);
7947  } else {
7948    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
7949    CV.push_back(C);
7950    CV.push_back(C);
7951    CV.push_back(C);
7952    CV.push_back(C);
7953  }
7954  Constant *C = ConstantVector::get(CV);
7955  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7956  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7957                             MachinePointerInfo::getConstantPool(),
7958                             false, false, 16);
7959  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
7960}
7961
7962SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
7963  LLVMContext *Context = DAG.getContext();
7964  DebugLoc dl = Op.getDebugLoc();
7965  EVT VT = Op.getValueType();
7966  EVT EltVT = VT;
7967  if (VT.isVector())
7968    EltVT = VT.getVectorElementType();
7969  std::vector<Constant*> CV;
7970  if (EltVT == MVT::f64) {
7971    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
7972    CV.push_back(C);
7973    CV.push_back(C);
7974  } else {
7975    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
7976    CV.push_back(C);
7977    CV.push_back(C);
7978    CV.push_back(C);
7979    CV.push_back(C);
7980  }
7981  Constant *C = ConstantVector::get(CV);
7982  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7983  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7984                             MachinePointerInfo::getConstantPool(),
7985                             false, false, 16);
7986  if (VT.isVector()) {
7987    return DAG.getNode(ISD::BITCAST, dl, VT,
7988                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
7989                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7990                                Op.getOperand(0)),
7991                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Mask)));
7992  } else {
7993    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
7994  }
7995}
7996
7997SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
7998  LLVMContext *Context = DAG.getContext();
7999  SDValue Op0 = Op.getOperand(0);
8000  SDValue Op1 = Op.getOperand(1);
8001  DebugLoc dl = Op.getDebugLoc();
8002  EVT VT = Op.getValueType();
8003  EVT SrcVT = Op1.getValueType();
8004
8005  // If second operand is smaller, extend it first.
8006  if (SrcVT.bitsLT(VT)) {
8007    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
8008    SrcVT = VT;
8009  }
8010  // And if it is bigger, shrink it first.
8011  if (SrcVT.bitsGT(VT)) {
8012    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
8013    SrcVT = VT;
8014  }
8015
8016  // At this point the operands and the result should have the same
8017  // type, and that won't be f80 since that is not custom lowered.
8018
8019  // First get the sign bit of second operand.
8020  std::vector<Constant*> CV;
8021  if (SrcVT == MVT::f64) {
8022    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
8023    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8024  } else {
8025    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
8026    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8027    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8028    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8029  }
8030  Constant *C = ConstantVector::get(CV);
8031  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8032  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
8033                              MachinePointerInfo::getConstantPool(),
8034                              false, false, 16);
8035  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
8036
8037  // Shift sign bit right or left if the two operands have different types.
8038  if (SrcVT.bitsGT(VT)) {
8039    // Op0 is MVT::f32, Op1 is MVT::f64.
8040    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
8041    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
8042                          DAG.getConstant(32, MVT::i32));
8043    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
8044    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
8045                          DAG.getIntPtrConstant(0));
8046  }
8047
8048  // Clear first operand sign bit.
8049  CV.clear();
8050  if (VT == MVT::f64) {
8051    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
8052    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8053  } else {
8054    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
8055    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8056    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8057    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8058  }
8059  C = ConstantVector::get(CV);
8060  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8061  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8062                              MachinePointerInfo::getConstantPool(),
8063                              false, false, 16);
8064  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
8065
8066  // Or the value with the sign bit.
8067  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
8068}
8069
8070SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
8071  SDValue N0 = Op.getOperand(0);
8072  DebugLoc dl = Op.getDebugLoc();
8073  EVT VT = Op.getValueType();
8074
8075  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
8076  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
8077                                  DAG.getConstant(1, VT));
8078  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
8079}
8080
8081/// Emit nodes that will be selected as "test Op0,Op0", or something
8082/// equivalent.
8083SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
8084                                    SelectionDAG &DAG) const {
8085  DebugLoc dl = Op.getDebugLoc();
8086
8087  // CF and OF aren't always set the way we want. Determine which
8088  // of these we need.
8089  bool NeedCF = false;
8090  bool NeedOF = false;
8091  switch (X86CC) {
8092  default: break;
8093  case X86::COND_A: case X86::COND_AE:
8094  case X86::COND_B: case X86::COND_BE:
8095    NeedCF = true;
8096    break;
8097  case X86::COND_G: case X86::COND_GE:
8098  case X86::COND_L: case X86::COND_LE:
8099  case X86::COND_O: case X86::COND_NO:
8100    NeedOF = true;
8101    break;
8102  }
8103
8104  // See if we can use the EFLAGS value from the operand instead of
8105  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8106  // we prove that the arithmetic won't overflow, we can't use OF or CF.
8107  if (Op.getResNo() != 0 || NeedOF || NeedCF)
8108    // Emit a CMP with 0, which is the TEST pattern.
8109    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8110                       DAG.getConstant(0, Op.getValueType()));
8111
8112  unsigned Opcode = 0;
8113  unsigned NumOperands = 0;
8114  switch (Op.getNode()->getOpcode()) {
8115  case ISD::ADD:
8116    // Due to an isel shortcoming, be conservative if this add is likely to be
8117    // selected as part of a load-modify-store instruction. When the root node
8118    // in a match is a store, isel doesn't know how to remap non-chain non-flag
8119    // uses of other nodes in the match, such as the ADD in this case. This
8120    // leads to the ADD being left around and reselected, with the result being
8121    // two adds in the output.  Alas, even if none our users are stores, that
8122    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
8123    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
8124    // climbing the DAG back to the root, and it doesn't seem to be worth the
8125    // effort.
8126    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8127           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8128      if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC)
8129        goto default_case;
8130
8131    if (ConstantSDNode *C =
8132        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
8133      // An add of one will be selected as an INC.
8134      if (C->getAPIntValue() == 1) {
8135        Opcode = X86ISD::INC;
8136        NumOperands = 1;
8137        break;
8138      }
8139
8140      // An add of negative one (subtract of one) will be selected as a DEC.
8141      if (C->getAPIntValue().isAllOnesValue()) {
8142        Opcode = X86ISD::DEC;
8143        NumOperands = 1;
8144        break;
8145      }
8146    }
8147
8148    // Otherwise use a regular EFLAGS-setting add.
8149    Opcode = X86ISD::ADD;
8150    NumOperands = 2;
8151    break;
8152  case ISD::AND: {
8153    // If the primary and result isn't used, don't bother using X86ISD::AND,
8154    // because a TEST instruction will be better.
8155    bool NonFlagUse = false;
8156    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8157           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8158      SDNode *User = *UI;
8159      unsigned UOpNo = UI.getOperandNo();
8160      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8161        // Look pass truncate.
8162        UOpNo = User->use_begin().getOperandNo();
8163        User = *User->use_begin();
8164      }
8165
8166      if (User->getOpcode() != ISD::BRCOND &&
8167          User->getOpcode() != ISD::SETCC &&
8168          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
8169        NonFlagUse = true;
8170        break;
8171      }
8172    }
8173
8174    if (!NonFlagUse)
8175      break;
8176  }
8177    // FALL THROUGH
8178  case ISD::SUB:
8179  case ISD::OR:
8180  case ISD::XOR:
8181    // Due to the ISEL shortcoming noted above, be conservative if this op is
8182    // likely to be selected as part of a load-modify-store instruction.
8183    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8184           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8185      if (UI->getOpcode() == ISD::STORE)
8186        goto default_case;
8187
8188    // Otherwise use a regular EFLAGS-setting instruction.
8189    switch (Op.getNode()->getOpcode()) {
8190    default: llvm_unreachable("unexpected operator!");
8191    case ISD::SUB: Opcode = X86ISD::SUB; break;
8192    case ISD::OR:  Opcode = X86ISD::OR;  break;
8193    case ISD::XOR: Opcode = X86ISD::XOR; break;
8194    case ISD::AND: Opcode = X86ISD::AND; break;
8195    }
8196
8197    NumOperands = 2;
8198    break;
8199  case X86ISD::ADD:
8200  case X86ISD::SUB:
8201  case X86ISD::INC:
8202  case X86ISD::DEC:
8203  case X86ISD::OR:
8204  case X86ISD::XOR:
8205  case X86ISD::AND:
8206    return SDValue(Op.getNode(), 1);
8207  default:
8208  default_case:
8209    break;
8210  }
8211
8212  if (Opcode == 0)
8213    // Emit a CMP with 0, which is the TEST pattern.
8214    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8215                       DAG.getConstant(0, Op.getValueType()));
8216
8217  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
8218  SmallVector<SDValue, 4> Ops;
8219  for (unsigned i = 0; i != NumOperands; ++i)
8220    Ops.push_back(Op.getOperand(i));
8221
8222  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
8223  DAG.ReplaceAllUsesWith(Op, New);
8224  return SDValue(New.getNode(), 1);
8225}
8226
8227/// Emit nodes that will be selected as "cmp Op0,Op1", or something
8228/// equivalent.
8229SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
8230                                   SelectionDAG &DAG) const {
8231  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
8232    if (C->getAPIntValue() == 0)
8233      return EmitTest(Op0, X86CC, DAG);
8234
8235  DebugLoc dl = Op0.getDebugLoc();
8236  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
8237}
8238
8239/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
8240/// if it's possible.
8241SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
8242                                     DebugLoc dl, SelectionDAG &DAG) const {
8243  SDValue Op0 = And.getOperand(0);
8244  SDValue Op1 = And.getOperand(1);
8245  if (Op0.getOpcode() == ISD::TRUNCATE)
8246    Op0 = Op0.getOperand(0);
8247  if (Op1.getOpcode() == ISD::TRUNCATE)
8248    Op1 = Op1.getOperand(0);
8249
8250  SDValue LHS, RHS;
8251  if (Op1.getOpcode() == ISD::SHL)
8252    std::swap(Op0, Op1);
8253  if (Op0.getOpcode() == ISD::SHL) {
8254    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
8255      if (And00C->getZExtValue() == 1) {
8256        // If we looked past a truncate, check that it's only truncating away
8257        // known zeros.
8258        unsigned BitWidth = Op0.getValueSizeInBits();
8259        unsigned AndBitWidth = And.getValueSizeInBits();
8260        if (BitWidth > AndBitWidth) {
8261          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
8262          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
8263          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
8264            return SDValue();
8265        }
8266        LHS = Op1;
8267        RHS = Op0.getOperand(1);
8268      }
8269  } else if (Op1.getOpcode() == ISD::Constant) {
8270    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
8271    SDValue AndLHS = Op0;
8272    if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
8273      LHS = AndLHS.getOperand(0);
8274      RHS = AndLHS.getOperand(1);
8275    }
8276  }
8277
8278  if (LHS.getNode()) {
8279    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
8280    // instruction.  Since the shift amount is in-range-or-undefined, we know
8281    // that doing a bittest on the i32 value is ok.  We extend to i32 because
8282    // the encoding for the i16 version is larger than the i32 version.
8283    // Also promote i16 to i32 for performance / code size reason.
8284    if (LHS.getValueType() == MVT::i8 ||
8285        LHS.getValueType() == MVT::i16)
8286      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
8287
8288    // If the operand types disagree, extend the shift amount to match.  Since
8289    // BT ignores high bits (like shifts) we can use anyextend.
8290    if (LHS.getValueType() != RHS.getValueType())
8291      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
8292
8293    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
8294    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
8295    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8296                       DAG.getConstant(Cond, MVT::i8), BT);
8297  }
8298
8299  return SDValue();
8300}
8301
8302SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
8303  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
8304  SDValue Op0 = Op.getOperand(0);
8305  SDValue Op1 = Op.getOperand(1);
8306  DebugLoc dl = Op.getDebugLoc();
8307  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8308
8309  // Optimize to BT if possible.
8310  // Lower (X & (1 << N)) == 0 to BT(X, N).
8311  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
8312  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
8313  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
8314      Op1.getOpcode() == ISD::Constant &&
8315      cast<ConstantSDNode>(Op1)->isNullValue() &&
8316      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8317    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
8318    if (NewSetCC.getNode())
8319      return NewSetCC;
8320  }
8321
8322  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
8323  // these.
8324  if (Op1.getOpcode() == ISD::Constant &&
8325      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
8326       cast<ConstantSDNode>(Op1)->isNullValue()) &&
8327      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8328
8329    // If the input is a setcc, then reuse the input setcc or use a new one with
8330    // the inverted condition.
8331    if (Op0.getOpcode() == X86ISD::SETCC) {
8332      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
8333      bool Invert = (CC == ISD::SETNE) ^
8334        cast<ConstantSDNode>(Op1)->isNullValue();
8335      if (!Invert) return Op0;
8336
8337      CCode = X86::GetOppositeBranchCondition(CCode);
8338      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8339                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
8340    }
8341  }
8342
8343  bool isFP = Op1.getValueType().isFloatingPoint();
8344  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
8345  if (X86CC == X86::COND_INVALID)
8346    return SDValue();
8347
8348  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
8349  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8350                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
8351}
8352
8353// Lower256IntVETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
8354// ones, and then concatenate the result back.
8355static SDValue Lower256IntVETCC(SDValue Op, SelectionDAG &DAG) {
8356  EVT VT = Op.getValueType();
8357
8358  assert(VT.getSizeInBits() == 256 && Op.getOpcode() == ISD::VSETCC &&
8359         "Unsupported value type for operation");
8360
8361  int NumElems = VT.getVectorNumElements();
8362  DebugLoc dl = Op.getDebugLoc();
8363  SDValue CC = Op.getOperand(2);
8364  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
8365  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
8366
8367  // Extract the LHS vectors
8368  SDValue LHS = Op.getOperand(0);
8369  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
8370  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
8371
8372  // Extract the RHS vectors
8373  SDValue RHS = Op.getOperand(1);
8374  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
8375  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
8376
8377  // Issue the operation on the smaller types and concatenate the result back
8378  MVT EltVT = VT.getVectorElementType().getSimpleVT();
8379  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
8380  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8381                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
8382                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
8383}
8384
8385
8386SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
8387  SDValue Cond;
8388  SDValue Op0 = Op.getOperand(0);
8389  SDValue Op1 = Op.getOperand(1);
8390  SDValue CC = Op.getOperand(2);
8391  EVT VT = Op.getValueType();
8392  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
8393  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
8394  DebugLoc dl = Op.getDebugLoc();
8395
8396  if (isFP) {
8397    unsigned SSECC = 8;
8398    EVT EltVT = Op0.getValueType().getVectorElementType();
8399    assert(EltVT == MVT::f32 || EltVT == MVT::f64);
8400
8401    unsigned Opc = EltVT == MVT::f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
8402    bool Swap = false;
8403
8404    switch (SetCCOpcode) {
8405    default: break;
8406    case ISD::SETOEQ:
8407    case ISD::SETEQ:  SSECC = 0; break;
8408    case ISD::SETOGT:
8409    case ISD::SETGT: Swap = true; // Fallthrough
8410    case ISD::SETLT:
8411    case ISD::SETOLT: SSECC = 1; break;
8412    case ISD::SETOGE:
8413    case ISD::SETGE: Swap = true; // Fallthrough
8414    case ISD::SETLE:
8415    case ISD::SETOLE: SSECC = 2; break;
8416    case ISD::SETUO:  SSECC = 3; break;
8417    case ISD::SETUNE:
8418    case ISD::SETNE:  SSECC = 4; break;
8419    case ISD::SETULE: Swap = true;
8420    case ISD::SETUGE: SSECC = 5; break;
8421    case ISD::SETULT: Swap = true;
8422    case ISD::SETUGT: SSECC = 6; break;
8423    case ISD::SETO:   SSECC = 7; break;
8424    }
8425    if (Swap)
8426      std::swap(Op0, Op1);
8427
8428    // In the two special cases we can't handle, emit two comparisons.
8429    if (SSECC == 8) {
8430      if (SetCCOpcode == ISD::SETUEQ) {
8431        SDValue UNORD, EQ;
8432        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
8433        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
8434        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
8435      }
8436      else if (SetCCOpcode == ISD::SETONE) {
8437        SDValue ORD, NEQ;
8438        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
8439        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
8440        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
8441      }
8442      llvm_unreachable("Illegal FP comparison");
8443    }
8444    // Handle all other FP comparisons here.
8445    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
8446  }
8447
8448  // Break 256-bit integer vector compare into smaller ones.
8449  if (!isFP && VT.getSizeInBits() == 256)
8450    return Lower256IntVETCC(Op, DAG);
8451
8452  // We are handling one of the integer comparisons here.  Since SSE only has
8453  // GT and EQ comparisons for integer, swapping operands and multiple
8454  // operations may be required for some comparisons.
8455  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
8456  bool Swap = false, Invert = false, FlipSigns = false;
8457
8458  switch (VT.getSimpleVT().SimpleTy) {
8459  default: break;
8460  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
8461  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
8462  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
8463  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
8464  }
8465
8466  switch (SetCCOpcode) {
8467  default: break;
8468  case ISD::SETNE:  Invert = true;
8469  case ISD::SETEQ:  Opc = EQOpc; break;
8470  case ISD::SETLT:  Swap = true;
8471  case ISD::SETGT:  Opc = GTOpc; break;
8472  case ISD::SETGE:  Swap = true;
8473  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
8474  case ISD::SETULT: Swap = true;
8475  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
8476  case ISD::SETUGE: Swap = true;
8477  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
8478  }
8479  if (Swap)
8480    std::swap(Op0, Op1);
8481
8482  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
8483  // bits of the inputs before performing those operations.
8484  if (FlipSigns) {
8485    EVT EltVT = VT.getVectorElementType();
8486    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
8487                                      EltVT);
8488    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
8489    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
8490                                    SignBits.size());
8491    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
8492    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
8493  }
8494
8495  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
8496
8497  // If the logical-not of the result is required, perform that now.
8498  if (Invert)
8499    Result = DAG.getNOT(dl, Result, VT);
8500
8501  return Result;
8502}
8503
8504// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
8505static bool isX86LogicalCmp(SDValue Op) {
8506  unsigned Opc = Op.getNode()->getOpcode();
8507  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
8508    return true;
8509  if (Op.getResNo() == 1 &&
8510      (Opc == X86ISD::ADD ||
8511       Opc == X86ISD::SUB ||
8512       Opc == X86ISD::ADC ||
8513       Opc == X86ISD::SBB ||
8514       Opc == X86ISD::SMUL ||
8515       Opc == X86ISD::UMUL ||
8516       Opc == X86ISD::INC ||
8517       Opc == X86ISD::DEC ||
8518       Opc == X86ISD::OR ||
8519       Opc == X86ISD::XOR ||
8520       Opc == X86ISD::AND))
8521    return true;
8522
8523  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
8524    return true;
8525
8526  return false;
8527}
8528
8529static bool isZero(SDValue V) {
8530  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8531  return C && C->isNullValue();
8532}
8533
8534static bool isAllOnes(SDValue V) {
8535  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8536  return C && C->isAllOnesValue();
8537}
8538
8539SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8540  bool addTest = true;
8541  SDValue Cond  = Op.getOperand(0);
8542  SDValue Op1 = Op.getOperand(1);
8543  SDValue Op2 = Op.getOperand(2);
8544  DebugLoc DL = Op.getDebugLoc();
8545  SDValue CC;
8546
8547  if (Cond.getOpcode() == ISD::SETCC) {
8548    SDValue NewCond = LowerSETCC(Cond, DAG);
8549    if (NewCond.getNode())
8550      Cond = NewCond;
8551  }
8552
8553  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
8554  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
8555  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
8556  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
8557  if (Cond.getOpcode() == X86ISD::SETCC &&
8558      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
8559      isZero(Cond.getOperand(1).getOperand(1))) {
8560    SDValue Cmp = Cond.getOperand(1);
8561
8562    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
8563
8564    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
8565        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
8566      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
8567
8568      SDValue CmpOp0 = Cmp.getOperand(0);
8569      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
8570                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
8571
8572      SDValue Res =   // Res = 0 or -1.
8573        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8574                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
8575
8576      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
8577        Res = DAG.getNOT(DL, Res, Res.getValueType());
8578
8579      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
8580      if (N2C == 0 || !N2C->isNullValue())
8581        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
8582      return Res;
8583    }
8584  }
8585
8586  // Look past (and (setcc_carry (cmp ...)), 1).
8587  if (Cond.getOpcode() == ISD::AND &&
8588      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8589    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8590    if (C && C->getAPIntValue() == 1)
8591      Cond = Cond.getOperand(0);
8592  }
8593
8594  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8595  // setting operand in place of the X86ISD::SETCC.
8596  if (Cond.getOpcode() == X86ISD::SETCC ||
8597      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
8598    CC = Cond.getOperand(0);
8599
8600    SDValue Cmp = Cond.getOperand(1);
8601    unsigned Opc = Cmp.getOpcode();
8602    EVT VT = Op.getValueType();
8603
8604    bool IllegalFPCMov = false;
8605    if (VT.isFloatingPoint() && !VT.isVector() &&
8606        !isScalarFPTypeInSSEReg(VT))  // FPStack?
8607      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
8608
8609    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
8610        Opc == X86ISD::BT) { // FIXME
8611      Cond = Cmp;
8612      addTest = false;
8613    }
8614  }
8615
8616  if (addTest) {
8617    // Look pass the truncate.
8618    if (Cond.getOpcode() == ISD::TRUNCATE)
8619      Cond = Cond.getOperand(0);
8620
8621    // We know the result of AND is compared against zero. Try to match
8622    // it to BT.
8623    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8624      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
8625      if (NewSetCC.getNode()) {
8626        CC = NewSetCC.getOperand(0);
8627        Cond = NewSetCC.getOperand(1);
8628        addTest = false;
8629      }
8630    }
8631  }
8632
8633  if (addTest) {
8634    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8635    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8636  }
8637
8638  // a <  b ? -1 :  0 -> RES = ~setcc_carry
8639  // a <  b ?  0 : -1 -> RES = setcc_carry
8640  // a >= b ? -1 :  0 -> RES = setcc_carry
8641  // a >= b ?  0 : -1 -> RES = ~setcc_carry
8642  if (Cond.getOpcode() == X86ISD::CMP) {
8643    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
8644
8645    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
8646        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
8647      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8648                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
8649      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
8650        return DAG.getNOT(DL, Res, Res.getValueType());
8651      return Res;
8652    }
8653  }
8654
8655  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
8656  // condition is true.
8657  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
8658  SDValue Ops[] = { Op2, Op1, CC, Cond };
8659  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
8660}
8661
8662// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
8663// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
8664// from the AND / OR.
8665static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
8666  Opc = Op.getOpcode();
8667  if (Opc != ISD::OR && Opc != ISD::AND)
8668    return false;
8669  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8670          Op.getOperand(0).hasOneUse() &&
8671          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
8672          Op.getOperand(1).hasOneUse());
8673}
8674
8675// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
8676// 1 and that the SETCC node has a single use.
8677static bool isXor1OfSetCC(SDValue Op) {
8678  if (Op.getOpcode() != ISD::XOR)
8679    return false;
8680  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8681  if (N1C && N1C->getAPIntValue() == 1) {
8682    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8683      Op.getOperand(0).hasOneUse();
8684  }
8685  return false;
8686}
8687
8688SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
8689  bool addTest = true;
8690  SDValue Chain = Op.getOperand(0);
8691  SDValue Cond  = Op.getOperand(1);
8692  SDValue Dest  = Op.getOperand(2);
8693  DebugLoc dl = Op.getDebugLoc();
8694  SDValue CC;
8695
8696  if (Cond.getOpcode() == ISD::SETCC) {
8697    SDValue NewCond = LowerSETCC(Cond, DAG);
8698    if (NewCond.getNode())
8699      Cond = NewCond;
8700  }
8701#if 0
8702  // FIXME: LowerXALUO doesn't handle these!!
8703  else if (Cond.getOpcode() == X86ISD::ADD  ||
8704           Cond.getOpcode() == X86ISD::SUB  ||
8705           Cond.getOpcode() == X86ISD::SMUL ||
8706           Cond.getOpcode() == X86ISD::UMUL)
8707    Cond = LowerXALUO(Cond, DAG);
8708#endif
8709
8710  // Look pass (and (setcc_carry (cmp ...)), 1).
8711  if (Cond.getOpcode() == ISD::AND &&
8712      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8713    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8714    if (C && C->getAPIntValue() == 1)
8715      Cond = Cond.getOperand(0);
8716  }
8717
8718  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8719  // setting operand in place of the X86ISD::SETCC.
8720  if (Cond.getOpcode() == X86ISD::SETCC ||
8721      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
8722    CC = Cond.getOperand(0);
8723
8724    SDValue Cmp = Cond.getOperand(1);
8725    unsigned Opc = Cmp.getOpcode();
8726    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
8727    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
8728      Cond = Cmp;
8729      addTest = false;
8730    } else {
8731      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
8732      default: break;
8733      case X86::COND_O:
8734      case X86::COND_B:
8735        // These can only come from an arithmetic instruction with overflow,
8736        // e.g. SADDO, UADDO.
8737        Cond = Cond.getNode()->getOperand(1);
8738        addTest = false;
8739        break;
8740      }
8741    }
8742  } else {
8743    unsigned CondOpc;
8744    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
8745      SDValue Cmp = Cond.getOperand(0).getOperand(1);
8746      if (CondOpc == ISD::OR) {
8747        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
8748        // two branches instead of an explicit OR instruction with a
8749        // separate test.
8750        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8751            isX86LogicalCmp(Cmp)) {
8752          CC = Cond.getOperand(0).getOperand(0);
8753          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8754                              Chain, Dest, CC, Cmp);
8755          CC = Cond.getOperand(1).getOperand(0);
8756          Cond = Cmp;
8757          addTest = false;
8758        }
8759      } else { // ISD::AND
8760        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
8761        // two branches instead of an explicit AND instruction with a
8762        // separate test. However, we only do this if this block doesn't
8763        // have a fall-through edge, because this requires an explicit
8764        // jmp when the condition is false.
8765        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8766            isX86LogicalCmp(Cmp) &&
8767            Op.getNode()->hasOneUse()) {
8768          X86::CondCode CCode =
8769            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8770          CCode = X86::GetOppositeBranchCondition(CCode);
8771          CC = DAG.getConstant(CCode, MVT::i8);
8772          SDNode *User = *Op.getNode()->use_begin();
8773          // Look for an unconditional branch following this conditional branch.
8774          // We need this because we need to reverse the successors in order
8775          // to implement FCMP_OEQ.
8776          if (User->getOpcode() == ISD::BR) {
8777            SDValue FalseBB = User->getOperand(1);
8778            SDNode *NewBR =
8779              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8780            assert(NewBR == User);
8781            (void)NewBR;
8782            Dest = FalseBB;
8783
8784            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8785                                Chain, Dest, CC, Cmp);
8786            X86::CondCode CCode =
8787              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
8788            CCode = X86::GetOppositeBranchCondition(CCode);
8789            CC = DAG.getConstant(CCode, MVT::i8);
8790            Cond = Cmp;
8791            addTest = false;
8792          }
8793        }
8794      }
8795    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
8796      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
8797      // It should be transformed during dag combiner except when the condition
8798      // is set by a arithmetics with overflow node.
8799      X86::CondCode CCode =
8800        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8801      CCode = X86::GetOppositeBranchCondition(CCode);
8802      CC = DAG.getConstant(CCode, MVT::i8);
8803      Cond = Cond.getOperand(0).getOperand(1);
8804      addTest = false;
8805    }
8806  }
8807
8808  if (addTest) {
8809    // Look pass the truncate.
8810    if (Cond.getOpcode() == ISD::TRUNCATE)
8811      Cond = Cond.getOperand(0);
8812
8813    // We know the result of AND is compared against zero. Try to match
8814    // it to BT.
8815    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8816      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
8817      if (NewSetCC.getNode()) {
8818        CC = NewSetCC.getOperand(0);
8819        Cond = NewSetCC.getOperand(1);
8820        addTest = false;
8821      }
8822    }
8823  }
8824
8825  if (addTest) {
8826    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8827    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8828  }
8829  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8830                     Chain, Dest, CC, Cond);
8831}
8832
8833
8834// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
8835// Calls to _alloca is needed to probe the stack when allocating more than 4k
8836// bytes in one go. Touching the stack at 4K increments is necessary to ensure
8837// that the guard pages used by the OS virtual memory manager are allocated in
8838// correct sequence.
8839SDValue
8840X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
8841                                           SelectionDAG &DAG) const {
8842  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows()) &&
8843         "This should be used only on Windows targets");
8844  assert(!Subtarget->isTargetEnvMacho());
8845  DebugLoc dl = Op.getDebugLoc();
8846
8847  // Get the inputs.
8848  SDValue Chain = Op.getOperand(0);
8849  SDValue Size  = Op.getOperand(1);
8850  // FIXME: Ensure alignment here
8851
8852  SDValue Flag;
8853
8854  EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
8855  unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
8856
8857  Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
8858  Flag = Chain.getValue(1);
8859
8860  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8861
8862  Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
8863  Flag = Chain.getValue(1);
8864
8865  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
8866
8867  SDValue Ops1[2] = { Chain.getValue(0), Chain };
8868  return DAG.getMergeValues(Ops1, 2, dl);
8869}
8870
8871SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
8872  MachineFunction &MF = DAG.getMachineFunction();
8873  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
8874
8875  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
8876  DebugLoc DL = Op.getDebugLoc();
8877
8878  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
8879    // vastart just stores the address of the VarArgsFrameIndex slot into the
8880    // memory location argument.
8881    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
8882                                   getPointerTy());
8883    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
8884                        MachinePointerInfo(SV), false, false, 0);
8885  }
8886
8887  // __va_list_tag:
8888  //   gp_offset         (0 - 6 * 8)
8889  //   fp_offset         (48 - 48 + 8 * 16)
8890  //   overflow_arg_area (point to parameters coming in memory).
8891  //   reg_save_area
8892  SmallVector<SDValue, 8> MemOps;
8893  SDValue FIN = Op.getOperand(1);
8894  // Store gp_offset
8895  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
8896                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
8897                                               MVT::i32),
8898                               FIN, MachinePointerInfo(SV), false, false, 0);
8899  MemOps.push_back(Store);
8900
8901  // Store fp_offset
8902  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8903                    FIN, DAG.getIntPtrConstant(4));
8904  Store = DAG.getStore(Op.getOperand(0), DL,
8905                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
8906                                       MVT::i32),
8907                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
8908  MemOps.push_back(Store);
8909
8910  // Store ptr to overflow_arg_area
8911  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8912                    FIN, DAG.getIntPtrConstant(4));
8913  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
8914                                    getPointerTy());
8915  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
8916                       MachinePointerInfo(SV, 8),
8917                       false, false, 0);
8918  MemOps.push_back(Store);
8919
8920  // Store ptr to reg_save_area.
8921  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8922                    FIN, DAG.getIntPtrConstant(8));
8923  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
8924                                    getPointerTy());
8925  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
8926                       MachinePointerInfo(SV, 16), false, false, 0);
8927  MemOps.push_back(Store);
8928  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
8929                     &MemOps[0], MemOps.size());
8930}
8931
8932SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
8933  assert(Subtarget->is64Bit() &&
8934         "LowerVAARG only handles 64-bit va_arg!");
8935  assert((Subtarget->isTargetLinux() ||
8936          Subtarget->isTargetDarwin()) &&
8937          "Unhandled target in LowerVAARG");
8938  assert(Op.getNode()->getNumOperands() == 4);
8939  SDValue Chain = Op.getOperand(0);
8940  SDValue SrcPtr = Op.getOperand(1);
8941  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
8942  unsigned Align = Op.getConstantOperandVal(3);
8943  DebugLoc dl = Op.getDebugLoc();
8944
8945  EVT ArgVT = Op.getNode()->getValueType(0);
8946  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
8947  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
8948  uint8_t ArgMode;
8949
8950  // Decide which area this value should be read from.
8951  // TODO: Implement the AMD64 ABI in its entirety. This simple
8952  // selection mechanism works only for the basic types.
8953  if (ArgVT == MVT::f80) {
8954    llvm_unreachable("va_arg for f80 not yet implemented");
8955  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
8956    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
8957  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
8958    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
8959  } else {
8960    llvm_unreachable("Unhandled argument type in LowerVAARG");
8961  }
8962
8963  if (ArgMode == 2) {
8964    // Sanity Check: Make sure using fp_offset makes sense.
8965    assert(!UseSoftFloat &&
8966           !(DAG.getMachineFunction()
8967                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
8968           Subtarget->hasXMM());
8969  }
8970
8971  // Insert VAARG_64 node into the DAG
8972  // VAARG_64 returns two values: Variable Argument Address, Chain
8973  SmallVector<SDValue, 11> InstOps;
8974  InstOps.push_back(Chain);
8975  InstOps.push_back(SrcPtr);
8976  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
8977  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
8978  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
8979  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
8980  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
8981                                          VTs, &InstOps[0], InstOps.size(),
8982                                          MVT::i64,
8983                                          MachinePointerInfo(SV),
8984                                          /*Align=*/0,
8985                                          /*Volatile=*/false,
8986                                          /*ReadMem=*/true,
8987                                          /*WriteMem=*/true);
8988  Chain = VAARG.getValue(1);
8989
8990  // Load the next argument and return it
8991  return DAG.getLoad(ArgVT, dl,
8992                     Chain,
8993                     VAARG,
8994                     MachinePointerInfo(),
8995                     false, false, 0);
8996}
8997
8998SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
8999  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
9000  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
9001  SDValue Chain = Op.getOperand(0);
9002  SDValue DstPtr = Op.getOperand(1);
9003  SDValue SrcPtr = Op.getOperand(2);
9004  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
9005  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9006  DebugLoc DL = Op.getDebugLoc();
9007
9008  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
9009                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
9010                       false,
9011                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
9012}
9013
9014SDValue
9015X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
9016  DebugLoc dl = Op.getDebugLoc();
9017  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9018  switch (IntNo) {
9019  default: return SDValue();    // Don't custom lower most intrinsics.
9020  // Comparison intrinsics.
9021  case Intrinsic::x86_sse_comieq_ss:
9022  case Intrinsic::x86_sse_comilt_ss:
9023  case Intrinsic::x86_sse_comile_ss:
9024  case Intrinsic::x86_sse_comigt_ss:
9025  case Intrinsic::x86_sse_comige_ss:
9026  case Intrinsic::x86_sse_comineq_ss:
9027  case Intrinsic::x86_sse_ucomieq_ss:
9028  case Intrinsic::x86_sse_ucomilt_ss:
9029  case Intrinsic::x86_sse_ucomile_ss:
9030  case Intrinsic::x86_sse_ucomigt_ss:
9031  case Intrinsic::x86_sse_ucomige_ss:
9032  case Intrinsic::x86_sse_ucomineq_ss:
9033  case Intrinsic::x86_sse2_comieq_sd:
9034  case Intrinsic::x86_sse2_comilt_sd:
9035  case Intrinsic::x86_sse2_comile_sd:
9036  case Intrinsic::x86_sse2_comigt_sd:
9037  case Intrinsic::x86_sse2_comige_sd:
9038  case Intrinsic::x86_sse2_comineq_sd:
9039  case Intrinsic::x86_sse2_ucomieq_sd:
9040  case Intrinsic::x86_sse2_ucomilt_sd:
9041  case Intrinsic::x86_sse2_ucomile_sd:
9042  case Intrinsic::x86_sse2_ucomigt_sd:
9043  case Intrinsic::x86_sse2_ucomige_sd:
9044  case Intrinsic::x86_sse2_ucomineq_sd: {
9045    unsigned Opc = 0;
9046    ISD::CondCode CC = ISD::SETCC_INVALID;
9047    switch (IntNo) {
9048    default: break;
9049    case Intrinsic::x86_sse_comieq_ss:
9050    case Intrinsic::x86_sse2_comieq_sd:
9051      Opc = X86ISD::COMI;
9052      CC = ISD::SETEQ;
9053      break;
9054    case Intrinsic::x86_sse_comilt_ss:
9055    case Intrinsic::x86_sse2_comilt_sd:
9056      Opc = X86ISD::COMI;
9057      CC = ISD::SETLT;
9058      break;
9059    case Intrinsic::x86_sse_comile_ss:
9060    case Intrinsic::x86_sse2_comile_sd:
9061      Opc = X86ISD::COMI;
9062      CC = ISD::SETLE;
9063      break;
9064    case Intrinsic::x86_sse_comigt_ss:
9065    case Intrinsic::x86_sse2_comigt_sd:
9066      Opc = X86ISD::COMI;
9067      CC = ISD::SETGT;
9068      break;
9069    case Intrinsic::x86_sse_comige_ss:
9070    case Intrinsic::x86_sse2_comige_sd:
9071      Opc = X86ISD::COMI;
9072      CC = ISD::SETGE;
9073      break;
9074    case Intrinsic::x86_sse_comineq_ss:
9075    case Intrinsic::x86_sse2_comineq_sd:
9076      Opc = X86ISD::COMI;
9077      CC = ISD::SETNE;
9078      break;
9079    case Intrinsic::x86_sse_ucomieq_ss:
9080    case Intrinsic::x86_sse2_ucomieq_sd:
9081      Opc = X86ISD::UCOMI;
9082      CC = ISD::SETEQ;
9083      break;
9084    case Intrinsic::x86_sse_ucomilt_ss:
9085    case Intrinsic::x86_sse2_ucomilt_sd:
9086      Opc = X86ISD::UCOMI;
9087      CC = ISD::SETLT;
9088      break;
9089    case Intrinsic::x86_sse_ucomile_ss:
9090    case Intrinsic::x86_sse2_ucomile_sd:
9091      Opc = X86ISD::UCOMI;
9092      CC = ISD::SETLE;
9093      break;
9094    case Intrinsic::x86_sse_ucomigt_ss:
9095    case Intrinsic::x86_sse2_ucomigt_sd:
9096      Opc = X86ISD::UCOMI;
9097      CC = ISD::SETGT;
9098      break;
9099    case Intrinsic::x86_sse_ucomige_ss:
9100    case Intrinsic::x86_sse2_ucomige_sd:
9101      Opc = X86ISD::UCOMI;
9102      CC = ISD::SETGE;
9103      break;
9104    case Intrinsic::x86_sse_ucomineq_ss:
9105    case Intrinsic::x86_sse2_ucomineq_sd:
9106      Opc = X86ISD::UCOMI;
9107      CC = ISD::SETNE;
9108      break;
9109    }
9110
9111    SDValue LHS = Op.getOperand(1);
9112    SDValue RHS = Op.getOperand(2);
9113    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
9114    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
9115    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
9116    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9117                                DAG.getConstant(X86CC, MVT::i8), Cond);
9118    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9119  }
9120  // ptest and testp intrinsics. The intrinsic these come from are designed to
9121  // return an integer value, not just an instruction so lower it to the ptest
9122  // or testp pattern and a setcc for the result.
9123  case Intrinsic::x86_sse41_ptestz:
9124  case Intrinsic::x86_sse41_ptestc:
9125  case Intrinsic::x86_sse41_ptestnzc:
9126  case Intrinsic::x86_avx_ptestz_256:
9127  case Intrinsic::x86_avx_ptestc_256:
9128  case Intrinsic::x86_avx_ptestnzc_256:
9129  case Intrinsic::x86_avx_vtestz_ps:
9130  case Intrinsic::x86_avx_vtestc_ps:
9131  case Intrinsic::x86_avx_vtestnzc_ps:
9132  case Intrinsic::x86_avx_vtestz_pd:
9133  case Intrinsic::x86_avx_vtestc_pd:
9134  case Intrinsic::x86_avx_vtestnzc_pd:
9135  case Intrinsic::x86_avx_vtestz_ps_256:
9136  case Intrinsic::x86_avx_vtestc_ps_256:
9137  case Intrinsic::x86_avx_vtestnzc_ps_256:
9138  case Intrinsic::x86_avx_vtestz_pd_256:
9139  case Intrinsic::x86_avx_vtestc_pd_256:
9140  case Intrinsic::x86_avx_vtestnzc_pd_256: {
9141    bool IsTestPacked = false;
9142    unsigned X86CC = 0;
9143    switch (IntNo) {
9144    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
9145    case Intrinsic::x86_avx_vtestz_ps:
9146    case Intrinsic::x86_avx_vtestz_pd:
9147    case Intrinsic::x86_avx_vtestz_ps_256:
9148    case Intrinsic::x86_avx_vtestz_pd_256:
9149      IsTestPacked = true; // Fallthrough
9150    case Intrinsic::x86_sse41_ptestz:
9151    case Intrinsic::x86_avx_ptestz_256:
9152      // ZF = 1
9153      X86CC = X86::COND_E;
9154      break;
9155    case Intrinsic::x86_avx_vtestc_ps:
9156    case Intrinsic::x86_avx_vtestc_pd:
9157    case Intrinsic::x86_avx_vtestc_ps_256:
9158    case Intrinsic::x86_avx_vtestc_pd_256:
9159      IsTestPacked = true; // Fallthrough
9160    case Intrinsic::x86_sse41_ptestc:
9161    case Intrinsic::x86_avx_ptestc_256:
9162      // CF = 1
9163      X86CC = X86::COND_B;
9164      break;
9165    case Intrinsic::x86_avx_vtestnzc_ps:
9166    case Intrinsic::x86_avx_vtestnzc_pd:
9167    case Intrinsic::x86_avx_vtestnzc_ps_256:
9168    case Intrinsic::x86_avx_vtestnzc_pd_256:
9169      IsTestPacked = true; // Fallthrough
9170    case Intrinsic::x86_sse41_ptestnzc:
9171    case Intrinsic::x86_avx_ptestnzc_256:
9172      // ZF and CF = 0
9173      X86CC = X86::COND_A;
9174      break;
9175    }
9176
9177    SDValue LHS = Op.getOperand(1);
9178    SDValue RHS = Op.getOperand(2);
9179    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
9180    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
9181    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
9182    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
9183    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9184  }
9185
9186  // Fix vector shift instructions where the last operand is a non-immediate
9187  // i32 value.
9188  case Intrinsic::x86_sse2_pslli_w:
9189  case Intrinsic::x86_sse2_pslli_d:
9190  case Intrinsic::x86_sse2_pslli_q:
9191  case Intrinsic::x86_sse2_psrli_w:
9192  case Intrinsic::x86_sse2_psrli_d:
9193  case Intrinsic::x86_sse2_psrli_q:
9194  case Intrinsic::x86_sse2_psrai_w:
9195  case Intrinsic::x86_sse2_psrai_d:
9196  case Intrinsic::x86_mmx_pslli_w:
9197  case Intrinsic::x86_mmx_pslli_d:
9198  case Intrinsic::x86_mmx_pslli_q:
9199  case Intrinsic::x86_mmx_psrli_w:
9200  case Intrinsic::x86_mmx_psrli_d:
9201  case Intrinsic::x86_mmx_psrli_q:
9202  case Intrinsic::x86_mmx_psrai_w:
9203  case Intrinsic::x86_mmx_psrai_d: {
9204    SDValue ShAmt = Op.getOperand(2);
9205    if (isa<ConstantSDNode>(ShAmt))
9206      return SDValue();
9207
9208    unsigned NewIntNo = 0;
9209    EVT ShAmtVT = MVT::v4i32;
9210    switch (IntNo) {
9211    case Intrinsic::x86_sse2_pslli_w:
9212      NewIntNo = Intrinsic::x86_sse2_psll_w;
9213      break;
9214    case Intrinsic::x86_sse2_pslli_d:
9215      NewIntNo = Intrinsic::x86_sse2_psll_d;
9216      break;
9217    case Intrinsic::x86_sse2_pslli_q:
9218      NewIntNo = Intrinsic::x86_sse2_psll_q;
9219      break;
9220    case Intrinsic::x86_sse2_psrli_w:
9221      NewIntNo = Intrinsic::x86_sse2_psrl_w;
9222      break;
9223    case Intrinsic::x86_sse2_psrli_d:
9224      NewIntNo = Intrinsic::x86_sse2_psrl_d;
9225      break;
9226    case Intrinsic::x86_sse2_psrli_q:
9227      NewIntNo = Intrinsic::x86_sse2_psrl_q;
9228      break;
9229    case Intrinsic::x86_sse2_psrai_w:
9230      NewIntNo = Intrinsic::x86_sse2_psra_w;
9231      break;
9232    case Intrinsic::x86_sse2_psrai_d:
9233      NewIntNo = Intrinsic::x86_sse2_psra_d;
9234      break;
9235    default: {
9236      ShAmtVT = MVT::v2i32;
9237      switch (IntNo) {
9238      case Intrinsic::x86_mmx_pslli_w:
9239        NewIntNo = Intrinsic::x86_mmx_psll_w;
9240        break;
9241      case Intrinsic::x86_mmx_pslli_d:
9242        NewIntNo = Intrinsic::x86_mmx_psll_d;
9243        break;
9244      case Intrinsic::x86_mmx_pslli_q:
9245        NewIntNo = Intrinsic::x86_mmx_psll_q;
9246        break;
9247      case Intrinsic::x86_mmx_psrli_w:
9248        NewIntNo = Intrinsic::x86_mmx_psrl_w;
9249        break;
9250      case Intrinsic::x86_mmx_psrli_d:
9251        NewIntNo = Intrinsic::x86_mmx_psrl_d;
9252        break;
9253      case Intrinsic::x86_mmx_psrli_q:
9254        NewIntNo = Intrinsic::x86_mmx_psrl_q;
9255        break;
9256      case Intrinsic::x86_mmx_psrai_w:
9257        NewIntNo = Intrinsic::x86_mmx_psra_w;
9258        break;
9259      case Intrinsic::x86_mmx_psrai_d:
9260        NewIntNo = Intrinsic::x86_mmx_psra_d;
9261        break;
9262      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9263      }
9264      break;
9265    }
9266    }
9267
9268    // The vector shift intrinsics with scalars uses 32b shift amounts but
9269    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
9270    // to be zero.
9271    SDValue ShOps[4];
9272    ShOps[0] = ShAmt;
9273    ShOps[1] = DAG.getConstant(0, MVT::i32);
9274    if (ShAmtVT == MVT::v4i32) {
9275      ShOps[2] = DAG.getUNDEF(MVT::i32);
9276      ShOps[3] = DAG.getUNDEF(MVT::i32);
9277      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
9278    } else {
9279      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
9280// FIXME this must be lowered to get rid of the invalid type.
9281    }
9282
9283    EVT VT = Op.getValueType();
9284    ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9285    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9286                       DAG.getConstant(NewIntNo, MVT::i32),
9287                       Op.getOperand(1), ShAmt);
9288  }
9289  }
9290}
9291
9292SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
9293                                           SelectionDAG &DAG) const {
9294  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9295  MFI->setReturnAddressIsTaken(true);
9296
9297  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9298  DebugLoc dl = Op.getDebugLoc();
9299
9300  if (Depth > 0) {
9301    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
9302    SDValue Offset =
9303      DAG.getConstant(TD->getPointerSize(),
9304                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
9305    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9306                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
9307                                   FrameAddr, Offset),
9308                       MachinePointerInfo(), false, false, 0);
9309  }
9310
9311  // Just load the return address.
9312  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
9313  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9314                     RetAddrFI, MachinePointerInfo(), false, false, 0);
9315}
9316
9317SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
9318  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9319  MFI->setFrameAddressIsTaken(true);
9320
9321  EVT VT = Op.getValueType();
9322  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
9323  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9324  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
9325  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
9326  while (Depth--)
9327    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
9328                            MachinePointerInfo(),
9329                            false, false, 0);
9330  return FrameAddr;
9331}
9332
9333SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
9334                                                     SelectionDAG &DAG) const {
9335  return DAG.getIntPtrConstant(2*TD->getPointerSize());
9336}
9337
9338SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
9339  MachineFunction &MF = DAG.getMachineFunction();
9340  SDValue Chain     = Op.getOperand(0);
9341  SDValue Offset    = Op.getOperand(1);
9342  SDValue Handler   = Op.getOperand(2);
9343  DebugLoc dl       = Op.getDebugLoc();
9344
9345  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
9346                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
9347                                     getPointerTy());
9348  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
9349
9350  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
9351                                  DAG.getIntPtrConstant(TD->getPointerSize()));
9352  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
9353  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
9354                       false, false, 0);
9355  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
9356  MF.getRegInfo().addLiveOut(StoreAddrReg);
9357
9358  return DAG.getNode(X86ISD::EH_RETURN, dl,
9359                     MVT::Other,
9360                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
9361}
9362
9363SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
9364                                             SelectionDAG &DAG) const {
9365  SDValue Root = Op.getOperand(0);
9366  SDValue Trmp = Op.getOperand(1); // trampoline
9367  SDValue FPtr = Op.getOperand(2); // nested function
9368  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
9369  DebugLoc dl  = Op.getDebugLoc();
9370
9371  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9372
9373  if (Subtarget->is64Bit()) {
9374    SDValue OutChains[6];
9375
9376    // Large code-model.
9377    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
9378    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
9379
9380    const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
9381    const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
9382
9383    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
9384
9385    // Load the pointer to the nested function into R11.
9386    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
9387    SDValue Addr = Trmp;
9388    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9389                                Addr, MachinePointerInfo(TrmpAddr),
9390                                false, false, 0);
9391
9392    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9393                       DAG.getConstant(2, MVT::i64));
9394    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
9395                                MachinePointerInfo(TrmpAddr, 2),
9396                                false, false, 2);
9397
9398    // Load the 'nest' parameter value into R10.
9399    // R10 is specified in X86CallingConv.td
9400    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
9401    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9402                       DAG.getConstant(10, MVT::i64));
9403    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9404                                Addr, MachinePointerInfo(TrmpAddr, 10),
9405                                false, false, 0);
9406
9407    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9408                       DAG.getConstant(12, MVT::i64));
9409    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
9410                                MachinePointerInfo(TrmpAddr, 12),
9411                                false, false, 2);
9412
9413    // Jump to the nested function.
9414    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
9415    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9416                       DAG.getConstant(20, MVT::i64));
9417    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9418                                Addr, MachinePointerInfo(TrmpAddr, 20),
9419                                false, false, 0);
9420
9421    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
9422    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9423                       DAG.getConstant(22, MVT::i64));
9424    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
9425                                MachinePointerInfo(TrmpAddr, 22),
9426                                false, false, 0);
9427
9428    SDValue Ops[] =
9429      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
9430    return DAG.getMergeValues(Ops, 2, dl);
9431  } else {
9432    const Function *Func =
9433      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
9434    CallingConv::ID CC = Func->getCallingConv();
9435    unsigned NestReg;
9436
9437    switch (CC) {
9438    default:
9439      llvm_unreachable("Unsupported calling convention");
9440    case CallingConv::C:
9441    case CallingConv::X86_StdCall: {
9442      // Pass 'nest' parameter in ECX.
9443      // Must be kept in sync with X86CallingConv.td
9444      NestReg = X86::ECX;
9445
9446      // Check that ECX wasn't needed by an 'inreg' parameter.
9447      FunctionType *FTy = Func->getFunctionType();
9448      const AttrListPtr &Attrs = Func->getAttributes();
9449
9450      if (!Attrs.isEmpty() && !Func->isVarArg()) {
9451        unsigned InRegCount = 0;
9452        unsigned Idx = 1;
9453
9454        for (FunctionType::param_iterator I = FTy->param_begin(),
9455             E = FTy->param_end(); I != E; ++I, ++Idx)
9456          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
9457            // FIXME: should only count parameters that are lowered to integers.
9458            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
9459
9460        if (InRegCount > 2) {
9461          report_fatal_error("Nest register in use - reduce number of inreg"
9462                             " parameters!");
9463        }
9464      }
9465      break;
9466    }
9467    case CallingConv::X86_FastCall:
9468    case CallingConv::X86_ThisCall:
9469    case CallingConv::Fast:
9470      // Pass 'nest' parameter in EAX.
9471      // Must be kept in sync with X86CallingConv.td
9472      NestReg = X86::EAX;
9473      break;
9474    }
9475
9476    SDValue OutChains[4];
9477    SDValue Addr, Disp;
9478
9479    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9480                       DAG.getConstant(10, MVT::i32));
9481    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
9482
9483    // This is storing the opcode for MOV32ri.
9484    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
9485    const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
9486    OutChains[0] = DAG.getStore(Root, dl,
9487                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
9488                                Trmp, MachinePointerInfo(TrmpAddr),
9489                                false, false, 0);
9490
9491    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9492                       DAG.getConstant(1, MVT::i32));
9493    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
9494                                MachinePointerInfo(TrmpAddr, 1),
9495                                false, false, 1);
9496
9497    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
9498    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9499                       DAG.getConstant(5, MVT::i32));
9500    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
9501                                MachinePointerInfo(TrmpAddr, 5),
9502                                false, false, 1);
9503
9504    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9505                       DAG.getConstant(6, MVT::i32));
9506    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
9507                                MachinePointerInfo(TrmpAddr, 6),
9508                                false, false, 1);
9509
9510    SDValue Ops[] =
9511      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
9512    return DAG.getMergeValues(Ops, 2, dl);
9513  }
9514}
9515
9516SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
9517                                            SelectionDAG &DAG) const {
9518  /*
9519   The rounding mode is in bits 11:10 of FPSR, and has the following
9520   settings:
9521     00 Round to nearest
9522     01 Round to -inf
9523     10 Round to +inf
9524     11 Round to 0
9525
9526  FLT_ROUNDS, on the other hand, expects the following:
9527    -1 Undefined
9528     0 Round to 0
9529     1 Round to nearest
9530     2 Round to +inf
9531     3 Round to -inf
9532
9533  To perform the conversion, we do:
9534    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
9535  */
9536
9537  MachineFunction &MF = DAG.getMachineFunction();
9538  const TargetMachine &TM = MF.getTarget();
9539  const TargetFrameLowering &TFI = *TM.getFrameLowering();
9540  unsigned StackAlignment = TFI.getStackAlignment();
9541  EVT VT = Op.getValueType();
9542  DebugLoc DL = Op.getDebugLoc();
9543
9544  // Save FP Control Word to stack slot
9545  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
9546  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
9547
9548
9549  MachineMemOperand *MMO =
9550   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
9551                           MachineMemOperand::MOStore, 2, 2);
9552
9553  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
9554  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
9555                                          DAG.getVTList(MVT::Other),
9556                                          Ops, 2, MVT::i16, MMO);
9557
9558  // Load FP Control Word from stack slot
9559  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
9560                            MachinePointerInfo(), false, false, 0);
9561
9562  // Transform as necessary
9563  SDValue CWD1 =
9564    DAG.getNode(ISD::SRL, DL, MVT::i16,
9565                DAG.getNode(ISD::AND, DL, MVT::i16,
9566                            CWD, DAG.getConstant(0x800, MVT::i16)),
9567                DAG.getConstant(11, MVT::i8));
9568  SDValue CWD2 =
9569    DAG.getNode(ISD::SRL, DL, MVT::i16,
9570                DAG.getNode(ISD::AND, DL, MVT::i16,
9571                            CWD, DAG.getConstant(0x400, MVT::i16)),
9572                DAG.getConstant(9, MVT::i8));
9573
9574  SDValue RetVal =
9575    DAG.getNode(ISD::AND, DL, MVT::i16,
9576                DAG.getNode(ISD::ADD, DL, MVT::i16,
9577                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
9578                            DAG.getConstant(1, MVT::i16)),
9579                DAG.getConstant(3, MVT::i16));
9580
9581
9582  return DAG.getNode((VT.getSizeInBits() < 16 ?
9583                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
9584}
9585
9586SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
9587  EVT VT = Op.getValueType();
9588  EVT OpVT = VT;
9589  unsigned NumBits = VT.getSizeInBits();
9590  DebugLoc dl = Op.getDebugLoc();
9591
9592  Op = Op.getOperand(0);
9593  if (VT == MVT::i8) {
9594    // Zero extend to i32 since there is not an i8 bsr.
9595    OpVT = MVT::i32;
9596    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9597  }
9598
9599  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
9600  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9601  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
9602
9603  // If src is zero (i.e. bsr sets ZF), returns NumBits.
9604  SDValue Ops[] = {
9605    Op,
9606    DAG.getConstant(NumBits+NumBits-1, OpVT),
9607    DAG.getConstant(X86::COND_E, MVT::i8),
9608    Op.getValue(1)
9609  };
9610  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
9611
9612  // Finally xor with NumBits-1.
9613  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
9614
9615  if (VT == MVT::i8)
9616    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9617  return Op;
9618}
9619
9620SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
9621  EVT VT = Op.getValueType();
9622  EVT OpVT = VT;
9623  unsigned NumBits = VT.getSizeInBits();
9624  DebugLoc dl = Op.getDebugLoc();
9625
9626  Op = Op.getOperand(0);
9627  if (VT == MVT::i8) {
9628    OpVT = MVT::i32;
9629    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9630  }
9631
9632  // Issue a bsf (scan bits forward) which also sets EFLAGS.
9633  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9634  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
9635
9636  // If src is zero (i.e. bsf sets ZF), returns NumBits.
9637  SDValue Ops[] = {
9638    Op,
9639    DAG.getConstant(NumBits, OpVT),
9640    DAG.getConstant(X86::COND_E, MVT::i8),
9641    Op.getValue(1)
9642  };
9643  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
9644
9645  if (VT == MVT::i8)
9646    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9647  return Op;
9648}
9649
9650// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
9651// ones, and then concatenate the result back.
9652static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
9653  EVT VT = Op.getValueType();
9654
9655  assert(VT.getSizeInBits() == 256 && VT.isInteger() &&
9656         "Unsupported value type for operation");
9657
9658  int NumElems = VT.getVectorNumElements();
9659  DebugLoc dl = Op.getDebugLoc();
9660  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
9661  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
9662
9663  // Extract the LHS vectors
9664  SDValue LHS = Op.getOperand(0);
9665  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
9666  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
9667
9668  // Extract the RHS vectors
9669  SDValue RHS = Op.getOperand(1);
9670  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
9671  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
9672
9673  MVT EltVT = VT.getVectorElementType().getSimpleVT();
9674  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
9675
9676  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
9677                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
9678                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
9679}
9680
9681SDValue X86TargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
9682  assert(Op.getValueType().getSizeInBits() == 256 &&
9683         Op.getValueType().isInteger() &&
9684         "Only handle AVX 256-bit vector integer operation");
9685  return Lower256IntArith(Op, DAG);
9686}
9687
9688SDValue X86TargetLowering::LowerSUB(SDValue Op, SelectionDAG &DAG) const {
9689  assert(Op.getValueType().getSizeInBits() == 256 &&
9690         Op.getValueType().isInteger() &&
9691         "Only handle AVX 256-bit vector integer operation");
9692  return Lower256IntArith(Op, DAG);
9693}
9694
9695SDValue X86TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
9696  EVT VT = Op.getValueType();
9697
9698  // Decompose 256-bit ops into smaller 128-bit ops.
9699  if (VT.getSizeInBits() == 256)
9700    return Lower256IntArith(Op, DAG);
9701
9702  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
9703  DebugLoc dl = Op.getDebugLoc();
9704
9705  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
9706  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
9707  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
9708  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
9709  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
9710  //
9711  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
9712  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
9713  //  return AloBlo + AloBhi + AhiBlo;
9714
9715  SDValue A = Op.getOperand(0);
9716  SDValue B = Op.getOperand(1);
9717
9718  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9719                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9720                       A, DAG.getConstant(32, MVT::i32));
9721  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9722                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9723                       B, DAG.getConstant(32, MVT::i32));
9724  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9725                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9726                       A, B);
9727  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9728                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9729                       A, Bhi);
9730  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9731                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9732                       Ahi, B);
9733  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9734                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9735                       AloBhi, DAG.getConstant(32, MVT::i32));
9736  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9737                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9738                       AhiBlo, DAG.getConstant(32, MVT::i32));
9739  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
9740  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
9741  return Res;
9742}
9743
9744SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
9745
9746  EVT VT = Op.getValueType();
9747  DebugLoc dl = Op.getDebugLoc();
9748  SDValue R = Op.getOperand(0);
9749  SDValue Amt = Op.getOperand(1);
9750  LLVMContext *Context = DAG.getContext();
9751
9752  if (!(Subtarget->hasSSE2() || Subtarget->hasAVX()))
9753    return SDValue();
9754
9755  // Decompose 256-bit shifts into smaller 128-bit shifts.
9756  if (VT.getSizeInBits() == 256) {
9757    int NumElems = VT.getVectorNumElements();
9758    MVT EltVT = VT.getVectorElementType().getSimpleVT();
9759    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
9760
9761    // Extract the two vectors
9762    SDValue V1 = Extract128BitVector(R, DAG.getConstant(0, MVT::i32), DAG, dl);
9763    SDValue V2 = Extract128BitVector(R, DAG.getConstant(NumElems/2, MVT::i32),
9764                                     DAG, dl);
9765
9766    // Recreate the shift amount vectors
9767    SDValue Amt1, Amt2;
9768    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
9769      // Constant shift amount
9770      SmallVector<SDValue, 4> Amt1Csts;
9771      SmallVector<SDValue, 4> Amt2Csts;
9772      for (int i = 0; i < NumElems/2; ++i)
9773        Amt1Csts.push_back(Amt->getOperand(i));
9774      for (int i = NumElems/2; i < NumElems; ++i)
9775        Amt2Csts.push_back(Amt->getOperand(i));
9776
9777      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
9778                                 &Amt1Csts[0], NumElems/2);
9779      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
9780                                 &Amt2Csts[0], NumElems/2);
9781    } else {
9782      // Variable shift amount
9783      Amt1 = Extract128BitVector(Amt, DAG.getConstant(0, MVT::i32), DAG, dl);
9784      Amt2 = Extract128BitVector(Amt, DAG.getConstant(NumElems/2, MVT::i32),
9785                                 DAG, dl);
9786    }
9787
9788    // Issue new vector shifts for the smaller types
9789    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
9790    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
9791
9792    // Concatenate the result back
9793    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
9794  }
9795
9796  // Optimize shl/srl/sra with constant shift amount.
9797  if (isSplatVector(Amt.getNode())) {
9798    SDValue SclrAmt = Amt->getOperand(0);
9799    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
9800      uint64_t ShiftAmt = C->getZExtValue();
9801
9802      if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SHL)
9803       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9804                     DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9805                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9806
9807      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SHL)
9808       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9809                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
9810                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9811
9812      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SHL)
9813       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9814                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
9815                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9816
9817      if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SRL)
9818       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9819                     DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9820                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9821
9822      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRL)
9823       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9824                     DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
9825                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9826
9827      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRL)
9828       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9829                     DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
9830                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9831
9832      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRA)
9833       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9834                     DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
9835                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9836
9837      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRA)
9838       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9839                     DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
9840                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9841    }
9842  }
9843
9844  // Lower SHL with variable shift amount.
9845  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
9846    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9847                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
9848                     Op.getOperand(1), DAG.getConstant(23, MVT::i32));
9849
9850    ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
9851
9852    std::vector<Constant*> CV(4, CI);
9853    Constant *C = ConstantVector::get(CV);
9854    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
9855    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9856                                 MachinePointerInfo::getConstantPool(),
9857                                 false, false, 16);
9858
9859    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
9860    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
9861    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
9862    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
9863  }
9864  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
9865    // a = a << 5;
9866    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9867                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
9868                     Op.getOperand(1), DAG.getConstant(5, MVT::i32));
9869
9870    ConstantInt *CM1 = ConstantInt::get(*Context, APInt(8, 15));
9871    ConstantInt *CM2 = ConstantInt::get(*Context, APInt(8, 63));
9872
9873    std::vector<Constant*> CVM1(16, CM1);
9874    std::vector<Constant*> CVM2(16, CM2);
9875    Constant *C = ConstantVector::get(CVM1);
9876    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
9877    SDValue M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9878                            MachinePointerInfo::getConstantPool(),
9879                            false, false, 16);
9880
9881    // r = pblendv(r, psllw(r & (char16)15, 4), a);
9882    M = DAG.getNode(ISD::AND, dl, VT, R, M);
9883    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9884                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
9885                    DAG.getConstant(4, MVT::i32));
9886    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT, R, M, Op);
9887    // a += a
9888    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
9889
9890    C = ConstantVector::get(CVM2);
9891    CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
9892    M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9893                    MachinePointerInfo::getConstantPool(),
9894                    false, false, 16);
9895
9896    // r = pblendv(r, psllw(r & (char16)63, 2), a);
9897    M = DAG.getNode(ISD::AND, dl, VT, R, M);
9898    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9899                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
9900                    DAG.getConstant(2, MVT::i32));
9901    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT, R, M, Op);
9902    // a += a
9903    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
9904
9905    // return pblendv(r, r+r, a);
9906    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT,
9907                    R, DAG.getNode(ISD::ADD, dl, VT, R, R), Op);
9908    return R;
9909  }
9910  return SDValue();
9911}
9912
9913SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
9914  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
9915  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
9916  // looks for this combo and may remove the "setcc" instruction if the "setcc"
9917  // has only one use.
9918  SDNode *N = Op.getNode();
9919  SDValue LHS = N->getOperand(0);
9920  SDValue RHS = N->getOperand(1);
9921  unsigned BaseOp = 0;
9922  unsigned Cond = 0;
9923  DebugLoc DL = Op.getDebugLoc();
9924  switch (Op.getOpcode()) {
9925  default: llvm_unreachable("Unknown ovf instruction!");
9926  case ISD::SADDO:
9927    // A subtract of one will be selected as a INC. Note that INC doesn't
9928    // set CF, so we can't do this for UADDO.
9929    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
9930      if (C->isOne()) {
9931        BaseOp = X86ISD::INC;
9932        Cond = X86::COND_O;
9933        break;
9934      }
9935    BaseOp = X86ISD::ADD;
9936    Cond = X86::COND_O;
9937    break;
9938  case ISD::UADDO:
9939    BaseOp = X86ISD::ADD;
9940    Cond = X86::COND_B;
9941    break;
9942  case ISD::SSUBO:
9943    // A subtract of one will be selected as a DEC. Note that DEC doesn't
9944    // set CF, so we can't do this for USUBO.
9945    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
9946      if (C->isOne()) {
9947        BaseOp = X86ISD::DEC;
9948        Cond = X86::COND_O;
9949        break;
9950      }
9951    BaseOp = X86ISD::SUB;
9952    Cond = X86::COND_O;
9953    break;
9954  case ISD::USUBO:
9955    BaseOp = X86ISD::SUB;
9956    Cond = X86::COND_B;
9957    break;
9958  case ISD::SMULO:
9959    BaseOp = X86ISD::SMUL;
9960    Cond = X86::COND_O;
9961    break;
9962  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
9963    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
9964                                 MVT::i32);
9965    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
9966
9967    SDValue SetCC =
9968      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9969                  DAG.getConstant(X86::COND_O, MVT::i32),
9970                  SDValue(Sum.getNode(), 2));
9971
9972    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
9973  }
9974  }
9975
9976  // Also sets EFLAGS.
9977  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
9978  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
9979
9980  SDValue SetCC =
9981    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
9982                DAG.getConstant(Cond, MVT::i32),
9983                SDValue(Sum.getNode(), 1));
9984
9985  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
9986}
9987
9988SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const{
9989  DebugLoc dl = Op.getDebugLoc();
9990  SDNode* Node = Op.getNode();
9991  EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
9992  EVT VT = Node->getValueType(0);
9993
9994  if (Subtarget->hasSSE2() && VT.isVector()) {
9995    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
9996                        ExtraVT.getScalarType().getSizeInBits();
9997    SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
9998
9999    unsigned SHLIntrinsicsID = 0;
10000    unsigned SRAIntrinsicsID = 0;
10001    switch (VT.getSimpleVT().SimpleTy) {
10002      default:
10003        return SDValue();
10004      case MVT::v2i64: {
10005        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_q;
10006        SRAIntrinsicsID = 0;
10007        break;
10008      }
10009      case MVT::v4i32: {
10010        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_d;
10011        SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_d;
10012        break;
10013      }
10014      case MVT::v8i16: {
10015        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_w;
10016        SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_w;
10017        break;
10018      }
10019    }
10020
10021    SDValue Tmp1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10022                         DAG.getConstant(SHLIntrinsicsID, MVT::i32),
10023                         Node->getOperand(0), ShAmt);
10024
10025    // In case of 1 bit sext, no need to shr
10026    if (ExtraVT.getScalarType().getSizeInBits() == 1) return Tmp1;
10027
10028    if (SRAIntrinsicsID) {
10029      Tmp1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10030                         DAG.getConstant(SRAIntrinsicsID, MVT::i32),
10031                         Tmp1, ShAmt);
10032    }
10033    return Tmp1;
10034  }
10035
10036  return SDValue();
10037}
10038
10039
10040SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
10041  DebugLoc dl = Op.getDebugLoc();
10042
10043  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
10044  // There isn't any reason to disable it if the target processor supports it.
10045  if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) {
10046    SDValue Chain = Op.getOperand(0);
10047    SDValue Zero = DAG.getConstant(0, MVT::i32);
10048    SDValue Ops[] = {
10049      DAG.getRegister(X86::ESP, MVT::i32), // Base
10050      DAG.getTargetConstant(1, MVT::i8),   // Scale
10051      DAG.getRegister(0, MVT::i32),        // Index
10052      DAG.getTargetConstant(0, MVT::i32),  // Disp
10053      DAG.getRegister(0, MVT::i32),        // Segment.
10054      Zero,
10055      Chain
10056    };
10057    SDNode *Res =
10058      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10059                          array_lengthof(Ops));
10060    return SDValue(Res, 0);
10061  }
10062
10063  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
10064  if (!isDev)
10065    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10066
10067  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10068  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
10069  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
10070  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
10071
10072  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
10073  if (!Op1 && !Op2 && !Op3 && Op4)
10074    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
10075
10076  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
10077  if (Op1 && !Op2 && !Op3 && !Op4)
10078    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
10079
10080  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
10081  //           (MFENCE)>;
10082  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10083}
10084
10085SDValue X86TargetLowering::LowerATOMIC_FENCE(SDValue Op,
10086                                             SelectionDAG &DAG) const {
10087  DebugLoc dl = Op.getDebugLoc();
10088  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
10089    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
10090  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
10091    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
10092
10093  // The only fence that needs an instruction is a sequentially-consistent
10094  // cross-thread fence.
10095  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
10096    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
10097    // no-sse2). There isn't any reason to disable it if the target processor
10098    // supports it.
10099    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
10100      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10101
10102    SDValue Chain = Op.getOperand(0);
10103    SDValue Zero = DAG.getConstant(0, MVT::i32);
10104    SDValue Ops[] = {
10105      DAG.getRegister(X86::ESP, MVT::i32), // Base
10106      DAG.getTargetConstant(1, MVT::i8),   // Scale
10107      DAG.getRegister(0, MVT::i32),        // Index
10108      DAG.getTargetConstant(0, MVT::i32),  // Disp
10109      DAG.getRegister(0, MVT::i32),        // Segment.
10110      Zero,
10111      Chain
10112    };
10113    SDNode *Res =
10114      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10115                         array_lengthof(Ops));
10116    return SDValue(Res, 0);
10117  }
10118
10119  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
10120  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10121}
10122
10123
10124SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
10125  EVT T = Op.getValueType();
10126  DebugLoc DL = Op.getDebugLoc();
10127  unsigned Reg = 0;
10128  unsigned size = 0;
10129  switch(T.getSimpleVT().SimpleTy) {
10130  default:
10131    assert(false && "Invalid value type!");
10132  case MVT::i8:  Reg = X86::AL;  size = 1; break;
10133  case MVT::i16: Reg = X86::AX;  size = 2; break;
10134  case MVT::i32: Reg = X86::EAX; size = 4; break;
10135  case MVT::i64:
10136    assert(Subtarget->is64Bit() && "Node not type legal!");
10137    Reg = X86::RAX; size = 8;
10138    break;
10139  }
10140  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
10141                                    Op.getOperand(2), SDValue());
10142  SDValue Ops[] = { cpIn.getValue(0),
10143                    Op.getOperand(1),
10144                    Op.getOperand(3),
10145                    DAG.getTargetConstant(size, MVT::i8),
10146                    cpIn.getValue(1) };
10147  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10148  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
10149  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
10150                                           Ops, 5, T, MMO);
10151  SDValue cpOut =
10152    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
10153  return cpOut;
10154}
10155
10156SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
10157                                                 SelectionDAG &DAG) const {
10158  assert(Subtarget->is64Bit() && "Result not type legalized?");
10159  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10160  SDValue TheChain = Op.getOperand(0);
10161  DebugLoc dl = Op.getDebugLoc();
10162  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10163  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
10164  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
10165                                   rax.getValue(2));
10166  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
10167                            DAG.getConstant(32, MVT::i8));
10168  SDValue Ops[] = {
10169    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
10170    rdx.getValue(1)
10171  };
10172  return DAG.getMergeValues(Ops, 2, dl);
10173}
10174
10175SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
10176                                            SelectionDAG &DAG) const {
10177  EVT SrcVT = Op.getOperand(0).getValueType();
10178  EVT DstVT = Op.getValueType();
10179  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
10180         Subtarget->hasMMX() && "Unexpected custom BITCAST");
10181  assert((DstVT == MVT::i64 ||
10182          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
10183         "Unexpected custom BITCAST");
10184  // i64 <=> MMX conversions are Legal.
10185  if (SrcVT==MVT::i64 && DstVT.isVector())
10186    return Op;
10187  if (DstVT==MVT::i64 && SrcVT.isVector())
10188    return Op;
10189  // MMX <=> MMX conversions are Legal.
10190  if (SrcVT.isVector() && DstVT.isVector())
10191    return Op;
10192  // All other conversions need to be expanded.
10193  return SDValue();
10194}
10195
10196SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
10197  SDNode *Node = Op.getNode();
10198  DebugLoc dl = Node->getDebugLoc();
10199  EVT T = Node->getValueType(0);
10200  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
10201                              DAG.getConstant(0, T), Node->getOperand(2));
10202  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
10203                       cast<AtomicSDNode>(Node)->getMemoryVT(),
10204                       Node->getOperand(0),
10205                       Node->getOperand(1), negOp,
10206                       cast<AtomicSDNode>(Node)->getSrcValue(),
10207                       cast<AtomicSDNode>(Node)->getAlignment(),
10208                       cast<AtomicSDNode>(Node)->getOrdering(),
10209                       cast<AtomicSDNode>(Node)->getSynchScope());
10210}
10211
10212static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
10213  SDNode *Node = Op.getNode();
10214  DebugLoc dl = Node->getDebugLoc();
10215  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10216
10217  // Convert seq_cst store -> xchg
10218  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
10219  // FIXME: On 32-bit, store -> fist or movq would be more efficient
10220  //        (The only way to get a 16-byte store is cmpxchg16b)
10221  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
10222  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
10223      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
10224    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
10225                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
10226                                 Node->getOperand(0),
10227                                 Node->getOperand(1), Node->getOperand(2),
10228                                 cast<AtomicSDNode>(Node)->getMemOperand(),
10229                                 cast<AtomicSDNode>(Node)->getOrdering(),
10230                                 cast<AtomicSDNode>(Node)->getSynchScope());
10231    return Swap.getValue(1);
10232  }
10233  // Other atomic stores have a simple pattern.
10234  return Op;
10235}
10236
10237static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
10238  EVT VT = Op.getNode()->getValueType(0);
10239
10240  // Let legalize expand this if it isn't a legal type yet.
10241  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
10242    return SDValue();
10243
10244  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10245
10246  unsigned Opc;
10247  bool ExtraOp = false;
10248  switch (Op.getOpcode()) {
10249  default: assert(0 && "Invalid code");
10250  case ISD::ADDC: Opc = X86ISD::ADD; break;
10251  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
10252  case ISD::SUBC: Opc = X86ISD::SUB; break;
10253  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
10254  }
10255
10256  if (!ExtraOp)
10257    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10258                       Op.getOperand(1));
10259  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10260                     Op.getOperand(1), Op.getOperand(2));
10261}
10262
10263/// LowerOperation - Provide custom lowering hooks for some operations.
10264///
10265SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10266  switch (Op.getOpcode()) {
10267  default: llvm_unreachable("Should not custom lower this!");
10268  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
10269  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
10270  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op,DAG);
10271  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
10272  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
10273  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
10274  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10275  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
10276  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10277  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
10278  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10279  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
10280  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
10281  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10282  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10283  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10284  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10285  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
10286  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10287  case ISD::SHL_PARTS:
10288  case ISD::SRA_PARTS:
10289  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
10290  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
10291  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
10292  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
10293  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
10294  case ISD::FABS:               return LowerFABS(Op, DAG);
10295  case ISD::FNEG:               return LowerFNEG(Op, DAG);
10296  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
10297  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
10298  case ISD::SETCC:              return LowerSETCC(Op, DAG);
10299  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
10300  case ISD::SELECT:             return LowerSELECT(Op, DAG);
10301  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
10302  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10303  case ISD::VASTART:            return LowerVASTART(Op, DAG);
10304  case ISD::VAARG:              return LowerVAARG(Op, DAG);
10305  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10306  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10307  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10308  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10309  case ISD::FRAME_TO_ARGS_OFFSET:
10310                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
10311  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10312  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
10313  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
10314  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10315  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
10316  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
10317  case ISD::MUL:                return LowerMUL(Op, DAG);
10318  case ISD::SRA:
10319  case ISD::SRL:
10320  case ISD::SHL:                return LowerShift(Op, DAG);
10321  case ISD::SADDO:
10322  case ISD::UADDO:
10323  case ISD::SSUBO:
10324  case ISD::USUBO:
10325  case ISD::SMULO:
10326  case ISD::UMULO:              return LowerXALUO(Op, DAG);
10327  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
10328  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10329  case ISD::ADDC:
10330  case ISD::ADDE:
10331  case ISD::SUBC:
10332  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
10333  case ISD::ADD:                return LowerADD(Op, DAG);
10334  case ISD::SUB:                return LowerSUB(Op, DAG);
10335  }
10336}
10337
10338static void ReplaceATOMIC_LOAD(SDNode *Node,
10339                                  SmallVectorImpl<SDValue> &Results,
10340                                  SelectionDAG &DAG) {
10341  DebugLoc dl = Node->getDebugLoc();
10342  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10343
10344  // Convert wide load -> cmpxchg8b/cmpxchg16b
10345  // FIXME: On 32-bit, load -> fild or movq would be more efficient
10346  //        (The only way to get a 16-byte load is cmpxchg16b)
10347  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
10348  SDValue Zero = DAG.getConstant(0, VT);
10349  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
10350                               Node->getOperand(0),
10351                               Node->getOperand(1), Zero, Zero,
10352                               cast<AtomicSDNode>(Node)->getMemOperand(),
10353                               cast<AtomicSDNode>(Node)->getOrdering(),
10354                               cast<AtomicSDNode>(Node)->getSynchScope());
10355  Results.push_back(Swap.getValue(0));
10356  Results.push_back(Swap.getValue(1));
10357}
10358
10359void X86TargetLowering::
10360ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
10361                        SelectionDAG &DAG, unsigned NewOp) const {
10362  EVT T = Node->getValueType(0);
10363  DebugLoc dl = Node->getDebugLoc();
10364  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
10365
10366  SDValue Chain = Node->getOperand(0);
10367  SDValue In1 = Node->getOperand(1);
10368  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10369                             Node->getOperand(2), DAG.getIntPtrConstant(0));
10370  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10371                             Node->getOperand(2), DAG.getIntPtrConstant(1));
10372  SDValue Ops[] = { Chain, In1, In2L, In2H };
10373  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10374  SDValue Result =
10375    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
10376                            cast<MemSDNode>(Node)->getMemOperand());
10377  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
10378  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
10379  Results.push_back(Result.getValue(2));
10380}
10381
10382/// ReplaceNodeResults - Replace a node with an illegal result type
10383/// with a new node built out of custom code.
10384void X86TargetLowering::ReplaceNodeResults(SDNode *N,
10385                                           SmallVectorImpl<SDValue>&Results,
10386                                           SelectionDAG &DAG) const {
10387  DebugLoc dl = N->getDebugLoc();
10388  switch (N->getOpcode()) {
10389  default:
10390    assert(false && "Do not know how to custom type legalize this operation!");
10391    return;
10392  case ISD::SIGN_EXTEND_INREG:
10393  case ISD::ADDC:
10394  case ISD::ADDE:
10395  case ISD::SUBC:
10396  case ISD::SUBE:
10397    // We don't want to expand or promote these.
10398    return;
10399  case ISD::FP_TO_SINT: {
10400    std::pair<SDValue,SDValue> Vals =
10401        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
10402    SDValue FIST = Vals.first, StackSlot = Vals.second;
10403    if (FIST.getNode() != 0) {
10404      EVT VT = N->getValueType(0);
10405      // Return a load from the stack slot.
10406      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
10407                                    MachinePointerInfo(), false, false, 0));
10408    }
10409    return;
10410  }
10411  case ISD::READCYCLECOUNTER: {
10412    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10413    SDValue TheChain = N->getOperand(0);
10414    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10415    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
10416                                     rd.getValue(1));
10417    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
10418                                     eax.getValue(2));
10419    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
10420    SDValue Ops[] = { eax, edx };
10421    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
10422    Results.push_back(edx.getValue(1));
10423    return;
10424  }
10425  case ISD::ATOMIC_CMP_SWAP: {
10426    EVT T = N->getValueType(0);
10427    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
10428    bool Regs64bit = T == MVT::i128;
10429    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
10430    SDValue cpInL, cpInH;
10431    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10432                        DAG.getConstant(0, HalfT));
10433    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10434                        DAG.getConstant(1, HalfT));
10435    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
10436                             Regs64bit ? X86::RAX : X86::EAX,
10437                             cpInL, SDValue());
10438    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
10439                             Regs64bit ? X86::RDX : X86::EDX,
10440                             cpInH, cpInL.getValue(1));
10441    SDValue swapInL, swapInH;
10442    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10443                          DAG.getConstant(0, HalfT));
10444    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10445                          DAG.getConstant(1, HalfT));
10446    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
10447                               Regs64bit ? X86::RBX : X86::EBX,
10448                               swapInL, cpInH.getValue(1));
10449    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
10450                               Regs64bit ? X86::RCX : X86::ECX,
10451                               swapInH, swapInL.getValue(1));
10452    SDValue Ops[] = { swapInH.getValue(0),
10453                      N->getOperand(1),
10454                      swapInH.getValue(1) };
10455    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10456    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
10457    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
10458                                  X86ISD::LCMPXCHG8_DAG;
10459    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
10460                                             Ops, 3, T, MMO);
10461    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
10462                                        Regs64bit ? X86::RAX : X86::EAX,
10463                                        HalfT, Result.getValue(1));
10464    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
10465                                        Regs64bit ? X86::RDX : X86::EDX,
10466                                        HalfT, cpOutL.getValue(2));
10467    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
10468    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
10469    Results.push_back(cpOutH.getValue(1));
10470    return;
10471  }
10472  case ISD::ATOMIC_LOAD_ADD:
10473    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
10474    return;
10475  case ISD::ATOMIC_LOAD_AND:
10476    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
10477    return;
10478  case ISD::ATOMIC_LOAD_NAND:
10479    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
10480    return;
10481  case ISD::ATOMIC_LOAD_OR:
10482    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
10483    return;
10484  case ISD::ATOMIC_LOAD_SUB:
10485    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
10486    return;
10487  case ISD::ATOMIC_LOAD_XOR:
10488    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
10489    return;
10490  case ISD::ATOMIC_SWAP:
10491    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
10492    return;
10493  case ISD::ATOMIC_LOAD:
10494    ReplaceATOMIC_LOAD(N, Results, DAG);
10495  }
10496}
10497
10498const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
10499  switch (Opcode) {
10500  default: return NULL;
10501  case X86ISD::BSF:                return "X86ISD::BSF";
10502  case X86ISD::BSR:                return "X86ISD::BSR";
10503  case X86ISD::SHLD:               return "X86ISD::SHLD";
10504  case X86ISD::SHRD:               return "X86ISD::SHRD";
10505  case X86ISD::FAND:               return "X86ISD::FAND";
10506  case X86ISD::FOR:                return "X86ISD::FOR";
10507  case X86ISD::FXOR:               return "X86ISD::FXOR";
10508  case X86ISD::FSRL:               return "X86ISD::FSRL";
10509  case X86ISD::FILD:               return "X86ISD::FILD";
10510  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
10511  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
10512  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
10513  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
10514  case X86ISD::FLD:                return "X86ISD::FLD";
10515  case X86ISD::FST:                return "X86ISD::FST";
10516  case X86ISD::CALL:               return "X86ISD::CALL";
10517  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
10518  case X86ISD::BT:                 return "X86ISD::BT";
10519  case X86ISD::CMP:                return "X86ISD::CMP";
10520  case X86ISD::COMI:               return "X86ISD::COMI";
10521  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
10522  case X86ISD::SETCC:              return "X86ISD::SETCC";
10523  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
10524  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
10525  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
10526  case X86ISD::CMOV:               return "X86ISD::CMOV";
10527  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
10528  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
10529  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
10530  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
10531  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
10532  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
10533  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
10534  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
10535  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
10536  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
10537  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
10538  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
10539  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
10540  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
10541  case X86ISD::PSIGNB:             return "X86ISD::PSIGNB";
10542  case X86ISD::PSIGNW:             return "X86ISD::PSIGNW";
10543  case X86ISD::PSIGND:             return "X86ISD::PSIGND";
10544  case X86ISD::PBLENDVB:           return "X86ISD::PBLENDVB";
10545  case X86ISD::FMAX:               return "X86ISD::FMAX";
10546  case X86ISD::FMIN:               return "X86ISD::FMIN";
10547  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
10548  case X86ISD::FRCP:               return "X86ISD::FRCP";
10549  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
10550  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
10551  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
10552  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
10553  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
10554  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
10555  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
10556  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
10557  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
10558  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
10559  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
10560  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
10561  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
10562  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
10563  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
10564  case X86ISD::VSHL:               return "X86ISD::VSHL";
10565  case X86ISD::VSRL:               return "X86ISD::VSRL";
10566  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
10567  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
10568  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
10569  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
10570  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
10571  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
10572  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
10573  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
10574  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
10575  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
10576  case X86ISD::ADD:                return "X86ISD::ADD";
10577  case X86ISD::SUB:                return "X86ISD::SUB";
10578  case X86ISD::ADC:                return "X86ISD::ADC";
10579  case X86ISD::SBB:                return "X86ISD::SBB";
10580  case X86ISD::SMUL:               return "X86ISD::SMUL";
10581  case X86ISD::UMUL:               return "X86ISD::UMUL";
10582  case X86ISD::INC:                return "X86ISD::INC";
10583  case X86ISD::DEC:                return "X86ISD::DEC";
10584  case X86ISD::OR:                 return "X86ISD::OR";
10585  case X86ISD::XOR:                return "X86ISD::XOR";
10586  case X86ISD::AND:                return "X86ISD::AND";
10587  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
10588  case X86ISD::PTEST:              return "X86ISD::PTEST";
10589  case X86ISD::TESTP:              return "X86ISD::TESTP";
10590  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
10591  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
10592  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
10593  case X86ISD::PSHUFHW_LD:         return "X86ISD::PSHUFHW_LD";
10594  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
10595  case X86ISD::PSHUFLW_LD:         return "X86ISD::PSHUFLW_LD";
10596  case X86ISD::SHUFPS:             return "X86ISD::SHUFPS";
10597  case X86ISD::SHUFPD:             return "X86ISD::SHUFPD";
10598  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
10599  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
10600  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
10601  case X86ISD::MOVHLPD:            return "X86ISD::MOVHLPD";
10602  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
10603  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
10604  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
10605  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
10606  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
10607  case X86ISD::MOVSHDUP_LD:        return "X86ISD::MOVSHDUP_LD";
10608  case X86ISD::MOVSLDUP_LD:        return "X86ISD::MOVSLDUP_LD";
10609  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
10610  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
10611  case X86ISD::UNPCKLPS:           return "X86ISD::UNPCKLPS";
10612  case X86ISD::UNPCKLPD:           return "X86ISD::UNPCKLPD";
10613  case X86ISD::VUNPCKLPDY:         return "X86ISD::VUNPCKLPDY";
10614  case X86ISD::UNPCKHPS:           return "X86ISD::UNPCKHPS";
10615  case X86ISD::UNPCKHPD:           return "X86ISD::UNPCKHPD";
10616  case X86ISD::PUNPCKLBW:          return "X86ISD::PUNPCKLBW";
10617  case X86ISD::PUNPCKLWD:          return "X86ISD::PUNPCKLWD";
10618  case X86ISD::PUNPCKLDQ:          return "X86ISD::PUNPCKLDQ";
10619  case X86ISD::PUNPCKLQDQ:         return "X86ISD::PUNPCKLQDQ";
10620  case X86ISD::PUNPCKHBW:          return "X86ISD::PUNPCKHBW";
10621  case X86ISD::PUNPCKHWD:          return "X86ISD::PUNPCKHWD";
10622  case X86ISD::PUNPCKHDQ:          return "X86ISD::PUNPCKHDQ";
10623  case X86ISD::PUNPCKHQDQ:         return "X86ISD::PUNPCKHQDQ";
10624  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
10625  case X86ISD::VPERMILPS:          return "X86ISD::VPERMILPS";
10626  case X86ISD::VPERMILPSY:         return "X86ISD::VPERMILPSY";
10627  case X86ISD::VPERMILPD:          return "X86ISD::VPERMILPD";
10628  case X86ISD::VPERMILPDY:         return "X86ISD::VPERMILPDY";
10629  case X86ISD::VPERM2F128:         return "X86ISD::VPERM2F128";
10630  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
10631  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
10632  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
10633  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
10634  }
10635}
10636
10637// isLegalAddressingMode - Return true if the addressing mode represented
10638// by AM is legal for this target, for a load/store of the specified type.
10639bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
10640                                              Type *Ty) const {
10641  // X86 supports extremely general addressing modes.
10642  CodeModel::Model M = getTargetMachine().getCodeModel();
10643  Reloc::Model R = getTargetMachine().getRelocationModel();
10644
10645  // X86 allows a sign-extended 32-bit immediate field as a displacement.
10646  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
10647    return false;
10648
10649  if (AM.BaseGV) {
10650    unsigned GVFlags =
10651      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
10652
10653    // If a reference to this global requires an extra load, we can't fold it.
10654    if (isGlobalStubReference(GVFlags))
10655      return false;
10656
10657    // If BaseGV requires a register for the PIC base, we cannot also have a
10658    // BaseReg specified.
10659    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
10660      return false;
10661
10662    // If lower 4G is not available, then we must use rip-relative addressing.
10663    if ((M != CodeModel::Small || R != Reloc::Static) &&
10664        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
10665      return false;
10666  }
10667
10668  switch (AM.Scale) {
10669  case 0:
10670  case 1:
10671  case 2:
10672  case 4:
10673  case 8:
10674    // These scales always work.
10675    break;
10676  case 3:
10677  case 5:
10678  case 9:
10679    // These scales are formed with basereg+scalereg.  Only accept if there is
10680    // no basereg yet.
10681    if (AM.HasBaseReg)
10682      return false;
10683    break;
10684  default:  // Other stuff never works.
10685    return false;
10686  }
10687
10688  return true;
10689}
10690
10691
10692bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
10693  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
10694    return false;
10695  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
10696  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
10697  if (NumBits1 <= NumBits2)
10698    return false;
10699  return true;
10700}
10701
10702bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
10703  if (!VT1.isInteger() || !VT2.isInteger())
10704    return false;
10705  unsigned NumBits1 = VT1.getSizeInBits();
10706  unsigned NumBits2 = VT2.getSizeInBits();
10707  if (NumBits1 <= NumBits2)
10708    return false;
10709  return true;
10710}
10711
10712bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
10713  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
10714  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
10715}
10716
10717bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
10718  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
10719  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
10720}
10721
10722bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
10723  // i16 instructions are longer (0x66 prefix) and potentially slower.
10724  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
10725}
10726
10727/// isShuffleMaskLegal - Targets can use this to indicate that they only
10728/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
10729/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
10730/// are assumed to be legal.
10731bool
10732X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
10733                                      EVT VT) const {
10734  // Very little shuffling can be done for 64-bit vectors right now.
10735  if (VT.getSizeInBits() == 64)
10736    return isPALIGNRMask(M, VT, Subtarget->hasSSSE3());
10737
10738  // FIXME: pshufb, blends, shifts.
10739  return (VT.getVectorNumElements() == 2 ||
10740          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
10741          isMOVLMask(M, VT) ||
10742          isSHUFPMask(M, VT) ||
10743          isPSHUFDMask(M, VT) ||
10744          isPSHUFHWMask(M, VT) ||
10745          isPSHUFLWMask(M, VT) ||
10746          isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
10747          isUNPCKLMask(M, VT) ||
10748          isUNPCKHMask(M, VT) ||
10749          isUNPCKL_v_undef_Mask(M, VT) ||
10750          isUNPCKH_v_undef_Mask(M, VT));
10751}
10752
10753bool
10754X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
10755                                          EVT VT) const {
10756  unsigned NumElts = VT.getVectorNumElements();
10757  // FIXME: This collection of masks seems suspect.
10758  if (NumElts == 2)
10759    return true;
10760  if (NumElts == 4 && VT.getSizeInBits() == 128) {
10761    return (isMOVLMask(Mask, VT)  ||
10762            isCommutedMOVLMask(Mask, VT, true) ||
10763            isSHUFPMask(Mask, VT) ||
10764            isCommutedSHUFPMask(Mask, VT));
10765  }
10766  return false;
10767}
10768
10769//===----------------------------------------------------------------------===//
10770//                           X86 Scheduler Hooks
10771//===----------------------------------------------------------------------===//
10772
10773// private utility function
10774MachineBasicBlock *
10775X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
10776                                                       MachineBasicBlock *MBB,
10777                                                       unsigned regOpc,
10778                                                       unsigned immOpc,
10779                                                       unsigned LoadOpc,
10780                                                       unsigned CXchgOpc,
10781                                                       unsigned notOpc,
10782                                                       unsigned EAXreg,
10783                                                       TargetRegisterClass *RC,
10784                                                       bool invSrc) const {
10785  // For the atomic bitwise operator, we generate
10786  //   thisMBB:
10787  //   newMBB:
10788  //     ld  t1 = [bitinstr.addr]
10789  //     op  t2 = t1, [bitinstr.val]
10790  //     mov EAX = t1
10791  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
10792  //     bz  newMBB
10793  //     fallthrough -->nextMBB
10794  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10795  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10796  MachineFunction::iterator MBBIter = MBB;
10797  ++MBBIter;
10798
10799  /// First build the CFG
10800  MachineFunction *F = MBB->getParent();
10801  MachineBasicBlock *thisMBB = MBB;
10802  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
10803  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
10804  F->insert(MBBIter, newMBB);
10805  F->insert(MBBIter, nextMBB);
10806
10807  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
10808  nextMBB->splice(nextMBB->begin(), thisMBB,
10809                  llvm::next(MachineBasicBlock::iterator(bInstr)),
10810                  thisMBB->end());
10811  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
10812
10813  // Update thisMBB to fall through to newMBB
10814  thisMBB->addSuccessor(newMBB);
10815
10816  // newMBB jumps to itself and fall through to nextMBB
10817  newMBB->addSuccessor(nextMBB);
10818  newMBB->addSuccessor(newMBB);
10819
10820  // Insert instructions into newMBB based on incoming instruction
10821  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
10822         "unexpected number of operands");
10823  DebugLoc dl = bInstr->getDebugLoc();
10824  MachineOperand& destOper = bInstr->getOperand(0);
10825  MachineOperand* argOpers[2 + X86::AddrNumOperands];
10826  int numArgs = bInstr->getNumOperands() - 1;
10827  for (int i=0; i < numArgs; ++i)
10828    argOpers[i] = &bInstr->getOperand(i+1);
10829
10830  // x86 address has 4 operands: base, index, scale, and displacement
10831  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
10832  int valArgIndx = lastAddrIndx + 1;
10833
10834  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
10835  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
10836  for (int i=0; i <= lastAddrIndx; ++i)
10837    (*MIB).addOperand(*argOpers[i]);
10838
10839  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
10840  if (invSrc) {
10841    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
10842  }
10843  else
10844    tt = t1;
10845
10846  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
10847  assert((argOpers[valArgIndx]->isReg() ||
10848          argOpers[valArgIndx]->isImm()) &&
10849         "invalid operand");
10850  if (argOpers[valArgIndx]->isReg())
10851    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
10852  else
10853    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
10854  MIB.addReg(tt);
10855  (*MIB).addOperand(*argOpers[valArgIndx]);
10856
10857  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
10858  MIB.addReg(t1);
10859
10860  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
10861  for (int i=0; i <= lastAddrIndx; ++i)
10862    (*MIB).addOperand(*argOpers[i]);
10863  MIB.addReg(t2);
10864  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
10865  (*MIB).setMemRefs(bInstr->memoperands_begin(),
10866                    bInstr->memoperands_end());
10867
10868  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
10869  MIB.addReg(EAXreg);
10870
10871  // insert branch
10872  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
10873
10874  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
10875  return nextMBB;
10876}
10877
10878// private utility function:  64 bit atomics on 32 bit host.
10879MachineBasicBlock *
10880X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
10881                                                       MachineBasicBlock *MBB,
10882                                                       unsigned regOpcL,
10883                                                       unsigned regOpcH,
10884                                                       unsigned immOpcL,
10885                                                       unsigned immOpcH,
10886                                                       bool invSrc) const {
10887  // For the atomic bitwise operator, we generate
10888  //   thisMBB (instructions are in pairs, except cmpxchg8b)
10889  //     ld t1,t2 = [bitinstr.addr]
10890  //   newMBB:
10891  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
10892  //     op  t5, t6 <- out1, out2, [bitinstr.val]
10893  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
10894  //     mov ECX, EBX <- t5, t6
10895  //     mov EAX, EDX <- t1, t2
10896  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
10897  //     mov t3, t4 <- EAX, EDX
10898  //     bz  newMBB
10899  //     result in out1, out2
10900  //     fallthrough -->nextMBB
10901
10902  const TargetRegisterClass *RC = X86::GR32RegisterClass;
10903  const unsigned LoadOpc = X86::MOV32rm;
10904  const unsigned NotOpc = X86::NOT32r;
10905  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10906  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10907  MachineFunction::iterator MBBIter = MBB;
10908  ++MBBIter;
10909
10910  /// First build the CFG
10911  MachineFunction *F = MBB->getParent();
10912  MachineBasicBlock *thisMBB = MBB;
10913  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
10914  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
10915  F->insert(MBBIter, newMBB);
10916  F->insert(MBBIter, nextMBB);
10917
10918  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
10919  nextMBB->splice(nextMBB->begin(), thisMBB,
10920                  llvm::next(MachineBasicBlock::iterator(bInstr)),
10921                  thisMBB->end());
10922  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
10923
10924  // Update thisMBB to fall through to newMBB
10925  thisMBB->addSuccessor(newMBB);
10926
10927  // newMBB jumps to itself and fall through to nextMBB
10928  newMBB->addSuccessor(nextMBB);
10929  newMBB->addSuccessor(newMBB);
10930
10931  DebugLoc dl = bInstr->getDebugLoc();
10932  // Insert instructions into newMBB based on incoming instruction
10933  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
10934  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
10935         "unexpected number of operands");
10936  MachineOperand& dest1Oper = bInstr->getOperand(0);
10937  MachineOperand& dest2Oper = bInstr->getOperand(1);
10938  MachineOperand* argOpers[2 + X86::AddrNumOperands];
10939  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
10940    argOpers[i] = &bInstr->getOperand(i+2);
10941
10942    // We use some of the operands multiple times, so conservatively just
10943    // clear any kill flags that might be present.
10944    if (argOpers[i]->isReg() && argOpers[i]->isUse())
10945      argOpers[i]->setIsKill(false);
10946  }
10947
10948  // x86 address has 5 operands: base, index, scale, displacement, and segment.
10949  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
10950
10951  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
10952  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
10953  for (int i=0; i <= lastAddrIndx; ++i)
10954    (*MIB).addOperand(*argOpers[i]);
10955  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
10956  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
10957  // add 4 to displacement.
10958  for (int i=0; i <= lastAddrIndx-2; ++i)
10959    (*MIB).addOperand(*argOpers[i]);
10960  MachineOperand newOp3 = *(argOpers[3]);
10961  if (newOp3.isImm())
10962    newOp3.setImm(newOp3.getImm()+4);
10963  else
10964    newOp3.setOffset(newOp3.getOffset()+4);
10965  (*MIB).addOperand(newOp3);
10966  (*MIB).addOperand(*argOpers[lastAddrIndx]);
10967
10968  // t3/4 are defined later, at the bottom of the loop
10969  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
10970  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
10971  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
10972    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
10973  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
10974    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
10975
10976  // The subsequent operations should be using the destination registers of
10977  //the PHI instructions.
10978  if (invSrc) {
10979    t1 = F->getRegInfo().createVirtualRegister(RC);
10980    t2 = F->getRegInfo().createVirtualRegister(RC);
10981    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
10982    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
10983  } else {
10984    t1 = dest1Oper.getReg();
10985    t2 = dest2Oper.getReg();
10986  }
10987
10988  int valArgIndx = lastAddrIndx + 1;
10989  assert((argOpers[valArgIndx]->isReg() ||
10990          argOpers[valArgIndx]->isImm()) &&
10991         "invalid operand");
10992  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
10993  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
10994  if (argOpers[valArgIndx]->isReg())
10995    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
10996  else
10997    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
10998  if (regOpcL != X86::MOV32rr)
10999    MIB.addReg(t1);
11000  (*MIB).addOperand(*argOpers[valArgIndx]);
11001  assert(argOpers[valArgIndx + 1]->isReg() ==
11002         argOpers[valArgIndx]->isReg());
11003  assert(argOpers[valArgIndx + 1]->isImm() ==
11004         argOpers[valArgIndx]->isImm());
11005  if (argOpers[valArgIndx + 1]->isReg())
11006    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
11007  else
11008    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
11009  if (regOpcH != X86::MOV32rr)
11010    MIB.addReg(t2);
11011  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
11012
11013  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11014  MIB.addReg(t1);
11015  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
11016  MIB.addReg(t2);
11017
11018  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
11019  MIB.addReg(t5);
11020  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
11021  MIB.addReg(t6);
11022
11023  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
11024  for (int i=0; i <= lastAddrIndx; ++i)
11025    (*MIB).addOperand(*argOpers[i]);
11026
11027  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11028  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11029                    bInstr->memoperands_end());
11030
11031  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
11032  MIB.addReg(X86::EAX);
11033  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
11034  MIB.addReg(X86::EDX);
11035
11036  // insert branch
11037  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11038
11039  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11040  return nextMBB;
11041}
11042
11043// private utility function
11044MachineBasicBlock *
11045X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
11046                                                      MachineBasicBlock *MBB,
11047                                                      unsigned cmovOpc) const {
11048  // For the atomic min/max operator, we generate
11049  //   thisMBB:
11050  //   newMBB:
11051  //     ld t1 = [min/max.addr]
11052  //     mov t2 = [min/max.val]
11053  //     cmp  t1, t2
11054  //     cmov[cond] t2 = t1
11055  //     mov EAX = t1
11056  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11057  //     bz   newMBB
11058  //     fallthrough -->nextMBB
11059  //
11060  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11061  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11062  MachineFunction::iterator MBBIter = MBB;
11063  ++MBBIter;
11064
11065  /// First build the CFG
11066  MachineFunction *F = MBB->getParent();
11067  MachineBasicBlock *thisMBB = MBB;
11068  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11069  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11070  F->insert(MBBIter, newMBB);
11071  F->insert(MBBIter, nextMBB);
11072
11073  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11074  nextMBB->splice(nextMBB->begin(), thisMBB,
11075                  llvm::next(MachineBasicBlock::iterator(mInstr)),
11076                  thisMBB->end());
11077  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11078
11079  // Update thisMBB to fall through to newMBB
11080  thisMBB->addSuccessor(newMBB);
11081
11082  // newMBB jumps to newMBB and fall through to nextMBB
11083  newMBB->addSuccessor(nextMBB);
11084  newMBB->addSuccessor(newMBB);
11085
11086  DebugLoc dl = mInstr->getDebugLoc();
11087  // Insert instructions into newMBB based on incoming instruction
11088  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11089         "unexpected number of operands");
11090  MachineOperand& destOper = mInstr->getOperand(0);
11091  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11092  int numArgs = mInstr->getNumOperands() - 1;
11093  for (int i=0; i < numArgs; ++i)
11094    argOpers[i] = &mInstr->getOperand(i+1);
11095
11096  // x86 address has 4 operands: base, index, scale, and displacement
11097  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11098  int valArgIndx = lastAddrIndx + 1;
11099
11100  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11101  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
11102  for (int i=0; i <= lastAddrIndx; ++i)
11103    (*MIB).addOperand(*argOpers[i]);
11104
11105  // We only support register and immediate values
11106  assert((argOpers[valArgIndx]->isReg() ||
11107          argOpers[valArgIndx]->isImm()) &&
11108         "invalid operand");
11109
11110  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11111  if (argOpers[valArgIndx]->isReg())
11112    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
11113  else
11114    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
11115  (*MIB).addOperand(*argOpers[valArgIndx]);
11116
11117  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11118  MIB.addReg(t1);
11119
11120  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
11121  MIB.addReg(t1);
11122  MIB.addReg(t2);
11123
11124  // Generate movc
11125  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11126  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
11127  MIB.addReg(t2);
11128  MIB.addReg(t1);
11129
11130  // Cmp and exchange if none has modified the memory location
11131  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
11132  for (int i=0; i <= lastAddrIndx; ++i)
11133    (*MIB).addOperand(*argOpers[i]);
11134  MIB.addReg(t3);
11135  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11136  (*MIB).setMemRefs(mInstr->memoperands_begin(),
11137                    mInstr->memoperands_end());
11138
11139  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11140  MIB.addReg(X86::EAX);
11141
11142  // insert branch
11143  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11144
11145  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
11146  return nextMBB;
11147}
11148
11149// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
11150// or XMM0_V32I8 in AVX all of this code can be replaced with that
11151// in the .td file.
11152MachineBasicBlock *
11153X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
11154                            unsigned numArgs, bool memArg) const {
11155  assert((Subtarget->hasSSE42() || Subtarget->hasAVX()) &&
11156         "Target must have SSE4.2 or AVX features enabled");
11157
11158  DebugLoc dl = MI->getDebugLoc();
11159  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11160  unsigned Opc;
11161  if (!Subtarget->hasAVX()) {
11162    if (memArg)
11163      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
11164    else
11165      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
11166  } else {
11167    if (memArg)
11168      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
11169    else
11170      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
11171  }
11172
11173  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
11174  for (unsigned i = 0; i < numArgs; ++i) {
11175    MachineOperand &Op = MI->getOperand(i+1);
11176    if (!(Op.isReg() && Op.isImplicit()))
11177      MIB.addOperand(Op);
11178  }
11179  BuildMI(*BB, MI, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
11180    .addReg(X86::XMM0);
11181
11182  MI->eraseFromParent();
11183  return BB;
11184}
11185
11186MachineBasicBlock *
11187X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
11188  DebugLoc dl = MI->getDebugLoc();
11189  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11190
11191  // Address into RAX/EAX, other two args into ECX, EDX.
11192  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
11193  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
11194  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
11195  for (int i = 0; i < X86::AddrNumOperands; ++i)
11196    MIB.addOperand(MI->getOperand(i));
11197
11198  unsigned ValOps = X86::AddrNumOperands;
11199  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11200    .addReg(MI->getOperand(ValOps).getReg());
11201  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
11202    .addReg(MI->getOperand(ValOps+1).getReg());
11203
11204  // The instruction doesn't actually take any operands though.
11205  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
11206
11207  MI->eraseFromParent(); // The pseudo is gone now.
11208  return BB;
11209}
11210
11211MachineBasicBlock *
11212X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
11213  DebugLoc dl = MI->getDebugLoc();
11214  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11215
11216  // First arg in ECX, the second in EAX.
11217  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11218    .addReg(MI->getOperand(0).getReg());
11219  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
11220    .addReg(MI->getOperand(1).getReg());
11221
11222  // The instruction doesn't actually take any operands though.
11223  BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
11224
11225  MI->eraseFromParent(); // The pseudo is gone now.
11226  return BB;
11227}
11228
11229MachineBasicBlock *
11230X86TargetLowering::EmitVAARG64WithCustomInserter(
11231                   MachineInstr *MI,
11232                   MachineBasicBlock *MBB) const {
11233  // Emit va_arg instruction on X86-64.
11234
11235  // Operands to this pseudo-instruction:
11236  // 0  ) Output        : destination address (reg)
11237  // 1-5) Input         : va_list address (addr, i64mem)
11238  // 6  ) ArgSize       : Size (in bytes) of vararg type
11239  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
11240  // 8  ) Align         : Alignment of type
11241  // 9  ) EFLAGS (implicit-def)
11242
11243  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
11244  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
11245
11246  unsigned DestReg = MI->getOperand(0).getReg();
11247  MachineOperand &Base = MI->getOperand(1);
11248  MachineOperand &Scale = MI->getOperand(2);
11249  MachineOperand &Index = MI->getOperand(3);
11250  MachineOperand &Disp = MI->getOperand(4);
11251  MachineOperand &Segment = MI->getOperand(5);
11252  unsigned ArgSize = MI->getOperand(6).getImm();
11253  unsigned ArgMode = MI->getOperand(7).getImm();
11254  unsigned Align = MI->getOperand(8).getImm();
11255
11256  // Memory Reference
11257  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
11258  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
11259  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
11260
11261  // Machine Information
11262  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11263  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
11264  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
11265  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
11266  DebugLoc DL = MI->getDebugLoc();
11267
11268  // struct va_list {
11269  //   i32   gp_offset
11270  //   i32   fp_offset
11271  //   i64   overflow_area (address)
11272  //   i64   reg_save_area (address)
11273  // }
11274  // sizeof(va_list) = 24
11275  // alignment(va_list) = 8
11276
11277  unsigned TotalNumIntRegs = 6;
11278  unsigned TotalNumXMMRegs = 8;
11279  bool UseGPOffset = (ArgMode == 1);
11280  bool UseFPOffset = (ArgMode == 2);
11281  unsigned MaxOffset = TotalNumIntRegs * 8 +
11282                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
11283
11284  /* Align ArgSize to a multiple of 8 */
11285  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
11286  bool NeedsAlign = (Align > 8);
11287
11288  MachineBasicBlock *thisMBB = MBB;
11289  MachineBasicBlock *overflowMBB;
11290  MachineBasicBlock *offsetMBB;
11291  MachineBasicBlock *endMBB;
11292
11293  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
11294  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
11295  unsigned OffsetReg = 0;
11296
11297  if (!UseGPOffset && !UseFPOffset) {
11298    // If we only pull from the overflow region, we don't create a branch.
11299    // We don't need to alter control flow.
11300    OffsetDestReg = 0; // unused
11301    OverflowDestReg = DestReg;
11302
11303    offsetMBB = NULL;
11304    overflowMBB = thisMBB;
11305    endMBB = thisMBB;
11306  } else {
11307    // First emit code to check if gp_offset (or fp_offset) is below the bound.
11308    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
11309    // If not, pull from overflow_area. (branch to overflowMBB)
11310    //
11311    //       thisMBB
11312    //         |     .
11313    //         |        .
11314    //     offsetMBB   overflowMBB
11315    //         |        .
11316    //         |     .
11317    //        endMBB
11318
11319    // Registers for the PHI in endMBB
11320    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
11321    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
11322
11323    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11324    MachineFunction *MF = MBB->getParent();
11325    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11326    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11327    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11328
11329    MachineFunction::iterator MBBIter = MBB;
11330    ++MBBIter;
11331
11332    // Insert the new basic blocks
11333    MF->insert(MBBIter, offsetMBB);
11334    MF->insert(MBBIter, overflowMBB);
11335    MF->insert(MBBIter, endMBB);
11336
11337    // Transfer the remainder of MBB and its successor edges to endMBB.
11338    endMBB->splice(endMBB->begin(), thisMBB,
11339                    llvm::next(MachineBasicBlock::iterator(MI)),
11340                    thisMBB->end());
11341    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11342
11343    // Make offsetMBB and overflowMBB successors of thisMBB
11344    thisMBB->addSuccessor(offsetMBB);
11345    thisMBB->addSuccessor(overflowMBB);
11346
11347    // endMBB is a successor of both offsetMBB and overflowMBB
11348    offsetMBB->addSuccessor(endMBB);
11349    overflowMBB->addSuccessor(endMBB);
11350
11351    // Load the offset value into a register
11352    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11353    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
11354      .addOperand(Base)
11355      .addOperand(Scale)
11356      .addOperand(Index)
11357      .addDisp(Disp, UseFPOffset ? 4 : 0)
11358      .addOperand(Segment)
11359      .setMemRefs(MMOBegin, MMOEnd);
11360
11361    // Check if there is enough room left to pull this argument.
11362    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
11363      .addReg(OffsetReg)
11364      .addImm(MaxOffset + 8 - ArgSizeA8);
11365
11366    // Branch to "overflowMBB" if offset >= max
11367    // Fall through to "offsetMBB" otherwise
11368    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
11369      .addMBB(overflowMBB);
11370  }
11371
11372  // In offsetMBB, emit code to use the reg_save_area.
11373  if (offsetMBB) {
11374    assert(OffsetReg != 0);
11375
11376    // Read the reg_save_area address.
11377    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
11378    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
11379      .addOperand(Base)
11380      .addOperand(Scale)
11381      .addOperand(Index)
11382      .addDisp(Disp, 16)
11383      .addOperand(Segment)
11384      .setMemRefs(MMOBegin, MMOEnd);
11385
11386    // Zero-extend the offset
11387    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
11388      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
11389        .addImm(0)
11390        .addReg(OffsetReg)
11391        .addImm(X86::sub_32bit);
11392
11393    // Add the offset to the reg_save_area to get the final address.
11394    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
11395      .addReg(OffsetReg64)
11396      .addReg(RegSaveReg);
11397
11398    // Compute the offset for the next argument
11399    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11400    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
11401      .addReg(OffsetReg)
11402      .addImm(UseFPOffset ? 16 : 8);
11403
11404    // Store it back into the va_list.
11405    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
11406      .addOperand(Base)
11407      .addOperand(Scale)
11408      .addOperand(Index)
11409      .addDisp(Disp, UseFPOffset ? 4 : 0)
11410      .addOperand(Segment)
11411      .addReg(NextOffsetReg)
11412      .setMemRefs(MMOBegin, MMOEnd);
11413
11414    // Jump to endMBB
11415    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
11416      .addMBB(endMBB);
11417  }
11418
11419  //
11420  // Emit code to use overflow area
11421  //
11422
11423  // Load the overflow_area address into a register.
11424  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
11425  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
11426    .addOperand(Base)
11427    .addOperand(Scale)
11428    .addOperand(Index)
11429    .addDisp(Disp, 8)
11430    .addOperand(Segment)
11431    .setMemRefs(MMOBegin, MMOEnd);
11432
11433  // If we need to align it, do so. Otherwise, just copy the address
11434  // to OverflowDestReg.
11435  if (NeedsAlign) {
11436    // Align the overflow address
11437    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
11438    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
11439
11440    // aligned_addr = (addr + (align-1)) & ~(align-1)
11441    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
11442      .addReg(OverflowAddrReg)
11443      .addImm(Align-1);
11444
11445    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
11446      .addReg(TmpReg)
11447      .addImm(~(uint64_t)(Align-1));
11448  } else {
11449    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
11450      .addReg(OverflowAddrReg);
11451  }
11452
11453  // Compute the next overflow address after this argument.
11454  // (the overflow address should be kept 8-byte aligned)
11455  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
11456  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
11457    .addReg(OverflowDestReg)
11458    .addImm(ArgSizeA8);
11459
11460  // Store the new overflow address.
11461  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
11462    .addOperand(Base)
11463    .addOperand(Scale)
11464    .addOperand(Index)
11465    .addDisp(Disp, 8)
11466    .addOperand(Segment)
11467    .addReg(NextAddrReg)
11468    .setMemRefs(MMOBegin, MMOEnd);
11469
11470  // If we branched, emit the PHI to the front of endMBB.
11471  if (offsetMBB) {
11472    BuildMI(*endMBB, endMBB->begin(), DL,
11473            TII->get(X86::PHI), DestReg)
11474      .addReg(OffsetDestReg).addMBB(offsetMBB)
11475      .addReg(OverflowDestReg).addMBB(overflowMBB);
11476  }
11477
11478  // Erase the pseudo instruction
11479  MI->eraseFromParent();
11480
11481  return endMBB;
11482}
11483
11484MachineBasicBlock *
11485X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
11486                                                 MachineInstr *MI,
11487                                                 MachineBasicBlock *MBB) const {
11488  // Emit code to save XMM registers to the stack. The ABI says that the
11489  // number of registers to save is given in %al, so it's theoretically
11490  // possible to do an indirect jump trick to avoid saving all of them,
11491  // however this code takes a simpler approach and just executes all
11492  // of the stores if %al is non-zero. It's less code, and it's probably
11493  // easier on the hardware branch predictor, and stores aren't all that
11494  // expensive anyway.
11495
11496  // Create the new basic blocks. One block contains all the XMM stores,
11497  // and one block is the final destination regardless of whether any
11498  // stores were performed.
11499  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11500  MachineFunction *F = MBB->getParent();
11501  MachineFunction::iterator MBBIter = MBB;
11502  ++MBBIter;
11503  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
11504  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
11505  F->insert(MBBIter, XMMSaveMBB);
11506  F->insert(MBBIter, EndMBB);
11507
11508  // Transfer the remainder of MBB and its successor edges to EndMBB.
11509  EndMBB->splice(EndMBB->begin(), MBB,
11510                 llvm::next(MachineBasicBlock::iterator(MI)),
11511                 MBB->end());
11512  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
11513
11514  // The original block will now fall through to the XMM save block.
11515  MBB->addSuccessor(XMMSaveMBB);
11516  // The XMMSaveMBB will fall through to the end block.
11517  XMMSaveMBB->addSuccessor(EndMBB);
11518
11519  // Now add the instructions.
11520  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11521  DebugLoc DL = MI->getDebugLoc();
11522
11523  unsigned CountReg = MI->getOperand(0).getReg();
11524  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
11525  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
11526
11527  if (!Subtarget->isTargetWin64()) {
11528    // If %al is 0, branch around the XMM save block.
11529    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
11530    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
11531    MBB->addSuccessor(EndMBB);
11532  }
11533
11534  // In the XMM save block, save all the XMM argument registers.
11535  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
11536    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
11537    MachineMemOperand *MMO =
11538      F->getMachineMemOperand(
11539          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
11540        MachineMemOperand::MOStore,
11541        /*Size=*/16, /*Align=*/16);
11542    BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
11543      .addFrameIndex(RegSaveFrameIndex)
11544      .addImm(/*Scale=*/1)
11545      .addReg(/*IndexReg=*/0)
11546      .addImm(/*Disp=*/Offset)
11547      .addReg(/*Segment=*/0)
11548      .addReg(MI->getOperand(i).getReg())
11549      .addMemOperand(MMO);
11550  }
11551
11552  MI->eraseFromParent();   // The pseudo instruction is gone now.
11553
11554  return EndMBB;
11555}
11556
11557MachineBasicBlock *
11558X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
11559                                     MachineBasicBlock *BB) const {
11560  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11561  DebugLoc DL = MI->getDebugLoc();
11562
11563  // To "insert" a SELECT_CC instruction, we actually have to insert the
11564  // diamond control-flow pattern.  The incoming instruction knows the
11565  // destination vreg to set, the condition code register to branch on, the
11566  // true/false values to select between, and a branch opcode to use.
11567  const BasicBlock *LLVM_BB = BB->getBasicBlock();
11568  MachineFunction::iterator It = BB;
11569  ++It;
11570
11571  //  thisMBB:
11572  //  ...
11573  //   TrueVal = ...
11574  //   cmpTY ccX, r1, r2
11575  //   bCC copy1MBB
11576  //   fallthrough --> copy0MBB
11577  MachineBasicBlock *thisMBB = BB;
11578  MachineFunction *F = BB->getParent();
11579  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
11580  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11581  F->insert(It, copy0MBB);
11582  F->insert(It, sinkMBB);
11583
11584  // If the EFLAGS register isn't dead in the terminator, then claim that it's
11585  // live into the sink and copy blocks.
11586  const MachineFunction *MF = BB->getParent();
11587  const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
11588  BitVector ReservedRegs = TRI->getReservedRegs(*MF);
11589
11590  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
11591    const MachineOperand &MO = MI->getOperand(I);
11592    if (!MO.isReg() || !MO.isUse() || MO.isKill()) continue;
11593    unsigned Reg = MO.getReg();
11594    if (Reg != X86::EFLAGS) continue;
11595    copy0MBB->addLiveIn(Reg);
11596    sinkMBB->addLiveIn(Reg);
11597  }
11598
11599  // Transfer the remainder of BB and its successor edges to sinkMBB.
11600  sinkMBB->splice(sinkMBB->begin(), BB,
11601                  llvm::next(MachineBasicBlock::iterator(MI)),
11602                  BB->end());
11603  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11604
11605  // Add the true and fallthrough blocks as its successors.
11606  BB->addSuccessor(copy0MBB);
11607  BB->addSuccessor(sinkMBB);
11608
11609  // Create the conditional branch instruction.
11610  unsigned Opc =
11611    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
11612  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
11613
11614  //  copy0MBB:
11615  //   %FalseValue = ...
11616  //   # fallthrough to sinkMBB
11617  copy0MBB->addSuccessor(sinkMBB);
11618
11619  //  sinkMBB:
11620  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
11621  //  ...
11622  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
11623          TII->get(X86::PHI), MI->getOperand(0).getReg())
11624    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
11625    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
11626
11627  MI->eraseFromParent();   // The pseudo instruction is gone now.
11628  return sinkMBB;
11629}
11630
11631MachineBasicBlock *
11632X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
11633                                          MachineBasicBlock *BB) const {
11634  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11635  DebugLoc DL = MI->getDebugLoc();
11636
11637  assert(!Subtarget->isTargetEnvMacho());
11638
11639  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
11640  // non-trivial part is impdef of ESP.
11641
11642  if (Subtarget->isTargetWin64()) {
11643    if (Subtarget->isTargetCygMing()) {
11644      // ___chkstk(Mingw64):
11645      // Clobbers R10, R11, RAX and EFLAGS.
11646      // Updates RSP.
11647      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
11648        .addExternalSymbol("___chkstk")
11649        .addReg(X86::RAX, RegState::Implicit)
11650        .addReg(X86::RSP, RegState::Implicit)
11651        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
11652        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
11653        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
11654    } else {
11655      // __chkstk(MSVCRT): does not update stack pointer.
11656      // Clobbers R10, R11 and EFLAGS.
11657      // FIXME: RAX(allocated size) might be reused and not killed.
11658      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
11659        .addExternalSymbol("__chkstk")
11660        .addReg(X86::RAX, RegState::Implicit)
11661        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
11662      // RAX has the offset to subtracted from RSP.
11663      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
11664        .addReg(X86::RSP)
11665        .addReg(X86::RAX);
11666    }
11667  } else {
11668    const char *StackProbeSymbol =
11669      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
11670
11671    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
11672      .addExternalSymbol(StackProbeSymbol)
11673      .addReg(X86::EAX, RegState::Implicit)
11674      .addReg(X86::ESP, RegState::Implicit)
11675      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
11676      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
11677      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
11678  }
11679
11680  MI->eraseFromParent();   // The pseudo instruction is gone now.
11681  return BB;
11682}
11683
11684MachineBasicBlock *
11685X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
11686                                      MachineBasicBlock *BB) const {
11687  // This is pretty easy.  We're taking the value that we received from
11688  // our load from the relocation, sticking it in either RDI (x86-64)
11689  // or EAX and doing an indirect call.  The return value will then
11690  // be in the normal return register.
11691  const X86InstrInfo *TII
11692    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
11693  DebugLoc DL = MI->getDebugLoc();
11694  MachineFunction *F = BB->getParent();
11695
11696  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
11697  assert(MI->getOperand(3).isGlobal() && "This should be a global");
11698
11699  if (Subtarget->is64Bit()) {
11700    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
11701                                      TII->get(X86::MOV64rm), X86::RDI)
11702    .addReg(X86::RIP)
11703    .addImm(0).addReg(0)
11704    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
11705                      MI->getOperand(3).getTargetFlags())
11706    .addReg(0);
11707    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
11708    addDirectMem(MIB, X86::RDI);
11709  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
11710    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
11711                                      TII->get(X86::MOV32rm), X86::EAX)
11712    .addReg(0)
11713    .addImm(0).addReg(0)
11714    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
11715                      MI->getOperand(3).getTargetFlags())
11716    .addReg(0);
11717    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
11718    addDirectMem(MIB, X86::EAX);
11719  } else {
11720    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
11721                                      TII->get(X86::MOV32rm), X86::EAX)
11722    .addReg(TII->getGlobalBaseReg(F))
11723    .addImm(0).addReg(0)
11724    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
11725                      MI->getOperand(3).getTargetFlags())
11726    .addReg(0);
11727    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
11728    addDirectMem(MIB, X86::EAX);
11729  }
11730
11731  MI->eraseFromParent(); // The pseudo instruction is gone now.
11732  return BB;
11733}
11734
11735MachineBasicBlock *
11736X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
11737                                               MachineBasicBlock *BB) const {
11738  switch (MI->getOpcode()) {
11739  default: assert(false && "Unexpected instr type to insert");
11740  case X86::TAILJMPd64:
11741  case X86::TAILJMPr64:
11742  case X86::TAILJMPm64:
11743    assert(!"TAILJMP64 would not be touched here.");
11744  case X86::TCRETURNdi64:
11745  case X86::TCRETURNri64:
11746  case X86::TCRETURNmi64:
11747    // Defs of TCRETURNxx64 has Win64's callee-saved registers, as subset.
11748    // On AMD64, additional defs should be added before register allocation.
11749    if (!Subtarget->isTargetWin64()) {
11750      MI->addRegisterDefined(X86::RSI);
11751      MI->addRegisterDefined(X86::RDI);
11752      MI->addRegisterDefined(X86::XMM6);
11753      MI->addRegisterDefined(X86::XMM7);
11754      MI->addRegisterDefined(X86::XMM8);
11755      MI->addRegisterDefined(X86::XMM9);
11756      MI->addRegisterDefined(X86::XMM10);
11757      MI->addRegisterDefined(X86::XMM11);
11758      MI->addRegisterDefined(X86::XMM12);
11759      MI->addRegisterDefined(X86::XMM13);
11760      MI->addRegisterDefined(X86::XMM14);
11761      MI->addRegisterDefined(X86::XMM15);
11762    }
11763    return BB;
11764  case X86::WIN_ALLOCA:
11765    return EmitLoweredWinAlloca(MI, BB);
11766  case X86::TLSCall_32:
11767  case X86::TLSCall_64:
11768    return EmitLoweredTLSCall(MI, BB);
11769  case X86::CMOV_GR8:
11770  case X86::CMOV_FR32:
11771  case X86::CMOV_FR64:
11772  case X86::CMOV_V4F32:
11773  case X86::CMOV_V2F64:
11774  case X86::CMOV_V2I64:
11775  case X86::CMOV_V8F32:
11776  case X86::CMOV_V4F64:
11777  case X86::CMOV_V4I64:
11778  case X86::CMOV_GR16:
11779  case X86::CMOV_GR32:
11780  case X86::CMOV_RFP32:
11781  case X86::CMOV_RFP64:
11782  case X86::CMOV_RFP80:
11783    return EmitLoweredSelect(MI, BB);
11784
11785  case X86::FP32_TO_INT16_IN_MEM:
11786  case X86::FP32_TO_INT32_IN_MEM:
11787  case X86::FP32_TO_INT64_IN_MEM:
11788  case X86::FP64_TO_INT16_IN_MEM:
11789  case X86::FP64_TO_INT32_IN_MEM:
11790  case X86::FP64_TO_INT64_IN_MEM:
11791  case X86::FP80_TO_INT16_IN_MEM:
11792  case X86::FP80_TO_INT32_IN_MEM:
11793  case X86::FP80_TO_INT64_IN_MEM: {
11794    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11795    DebugLoc DL = MI->getDebugLoc();
11796
11797    // Change the floating point control register to use "round towards zero"
11798    // mode when truncating to an integer value.
11799    MachineFunction *F = BB->getParent();
11800    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
11801    addFrameReference(BuildMI(*BB, MI, DL,
11802                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
11803
11804    // Load the old value of the high byte of the control word...
11805    unsigned OldCW =
11806      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
11807    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
11808                      CWFrameIdx);
11809
11810    // Set the high part to be round to zero...
11811    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
11812      .addImm(0xC7F);
11813
11814    // Reload the modified control word now...
11815    addFrameReference(BuildMI(*BB, MI, DL,
11816                              TII->get(X86::FLDCW16m)), CWFrameIdx);
11817
11818    // Restore the memory image of control word to original value
11819    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
11820      .addReg(OldCW);
11821
11822    // Get the X86 opcode to use.
11823    unsigned Opc;
11824    switch (MI->getOpcode()) {
11825    default: llvm_unreachable("illegal opcode!");
11826    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
11827    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
11828    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
11829    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
11830    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
11831    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
11832    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
11833    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
11834    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
11835    }
11836
11837    X86AddressMode AM;
11838    MachineOperand &Op = MI->getOperand(0);
11839    if (Op.isReg()) {
11840      AM.BaseType = X86AddressMode::RegBase;
11841      AM.Base.Reg = Op.getReg();
11842    } else {
11843      AM.BaseType = X86AddressMode::FrameIndexBase;
11844      AM.Base.FrameIndex = Op.getIndex();
11845    }
11846    Op = MI->getOperand(1);
11847    if (Op.isImm())
11848      AM.Scale = Op.getImm();
11849    Op = MI->getOperand(2);
11850    if (Op.isImm())
11851      AM.IndexReg = Op.getImm();
11852    Op = MI->getOperand(3);
11853    if (Op.isGlobal()) {
11854      AM.GV = Op.getGlobal();
11855    } else {
11856      AM.Disp = Op.getImm();
11857    }
11858    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
11859                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
11860
11861    // Reload the original control word now.
11862    addFrameReference(BuildMI(*BB, MI, DL,
11863                              TII->get(X86::FLDCW16m)), CWFrameIdx);
11864
11865    MI->eraseFromParent();   // The pseudo instruction is gone now.
11866    return BB;
11867  }
11868    // String/text processing lowering.
11869  case X86::PCMPISTRM128REG:
11870  case X86::VPCMPISTRM128REG:
11871    return EmitPCMP(MI, BB, 3, false /* in-mem */);
11872  case X86::PCMPISTRM128MEM:
11873  case X86::VPCMPISTRM128MEM:
11874    return EmitPCMP(MI, BB, 3, true /* in-mem */);
11875  case X86::PCMPESTRM128REG:
11876  case X86::VPCMPESTRM128REG:
11877    return EmitPCMP(MI, BB, 5, false /* in mem */);
11878  case X86::PCMPESTRM128MEM:
11879  case X86::VPCMPESTRM128MEM:
11880    return EmitPCMP(MI, BB, 5, true /* in mem */);
11881
11882    // Thread synchronization.
11883  case X86::MONITOR:
11884    return EmitMonitor(MI, BB);
11885  case X86::MWAIT:
11886    return EmitMwait(MI, BB);
11887
11888    // Atomic Lowering.
11889  case X86::ATOMAND32:
11890    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
11891                                               X86::AND32ri, X86::MOV32rm,
11892                                               X86::LCMPXCHG32,
11893                                               X86::NOT32r, X86::EAX,
11894                                               X86::GR32RegisterClass);
11895  case X86::ATOMOR32:
11896    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
11897                                               X86::OR32ri, X86::MOV32rm,
11898                                               X86::LCMPXCHG32,
11899                                               X86::NOT32r, X86::EAX,
11900                                               X86::GR32RegisterClass);
11901  case X86::ATOMXOR32:
11902    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
11903                                               X86::XOR32ri, X86::MOV32rm,
11904                                               X86::LCMPXCHG32,
11905                                               X86::NOT32r, X86::EAX,
11906                                               X86::GR32RegisterClass);
11907  case X86::ATOMNAND32:
11908    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
11909                                               X86::AND32ri, X86::MOV32rm,
11910                                               X86::LCMPXCHG32,
11911                                               X86::NOT32r, X86::EAX,
11912                                               X86::GR32RegisterClass, true);
11913  case X86::ATOMMIN32:
11914    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
11915  case X86::ATOMMAX32:
11916    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
11917  case X86::ATOMUMIN32:
11918    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
11919  case X86::ATOMUMAX32:
11920    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
11921
11922  case X86::ATOMAND16:
11923    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
11924                                               X86::AND16ri, X86::MOV16rm,
11925                                               X86::LCMPXCHG16,
11926                                               X86::NOT16r, X86::AX,
11927                                               X86::GR16RegisterClass);
11928  case X86::ATOMOR16:
11929    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
11930                                               X86::OR16ri, X86::MOV16rm,
11931                                               X86::LCMPXCHG16,
11932                                               X86::NOT16r, X86::AX,
11933                                               X86::GR16RegisterClass);
11934  case X86::ATOMXOR16:
11935    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
11936                                               X86::XOR16ri, X86::MOV16rm,
11937                                               X86::LCMPXCHG16,
11938                                               X86::NOT16r, X86::AX,
11939                                               X86::GR16RegisterClass);
11940  case X86::ATOMNAND16:
11941    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
11942                                               X86::AND16ri, X86::MOV16rm,
11943                                               X86::LCMPXCHG16,
11944                                               X86::NOT16r, X86::AX,
11945                                               X86::GR16RegisterClass, true);
11946  case X86::ATOMMIN16:
11947    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
11948  case X86::ATOMMAX16:
11949    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
11950  case X86::ATOMUMIN16:
11951    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
11952  case X86::ATOMUMAX16:
11953    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
11954
11955  case X86::ATOMAND8:
11956    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
11957                                               X86::AND8ri, X86::MOV8rm,
11958                                               X86::LCMPXCHG8,
11959                                               X86::NOT8r, X86::AL,
11960                                               X86::GR8RegisterClass);
11961  case X86::ATOMOR8:
11962    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
11963                                               X86::OR8ri, X86::MOV8rm,
11964                                               X86::LCMPXCHG8,
11965                                               X86::NOT8r, X86::AL,
11966                                               X86::GR8RegisterClass);
11967  case X86::ATOMXOR8:
11968    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
11969                                               X86::XOR8ri, X86::MOV8rm,
11970                                               X86::LCMPXCHG8,
11971                                               X86::NOT8r, X86::AL,
11972                                               X86::GR8RegisterClass);
11973  case X86::ATOMNAND8:
11974    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
11975                                               X86::AND8ri, X86::MOV8rm,
11976                                               X86::LCMPXCHG8,
11977                                               X86::NOT8r, X86::AL,
11978                                               X86::GR8RegisterClass, true);
11979  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
11980  // This group is for 64-bit host.
11981  case X86::ATOMAND64:
11982    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
11983                                               X86::AND64ri32, X86::MOV64rm,
11984                                               X86::LCMPXCHG64,
11985                                               X86::NOT64r, X86::RAX,
11986                                               X86::GR64RegisterClass);
11987  case X86::ATOMOR64:
11988    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
11989                                               X86::OR64ri32, X86::MOV64rm,
11990                                               X86::LCMPXCHG64,
11991                                               X86::NOT64r, X86::RAX,
11992                                               X86::GR64RegisterClass);
11993  case X86::ATOMXOR64:
11994    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
11995                                               X86::XOR64ri32, X86::MOV64rm,
11996                                               X86::LCMPXCHG64,
11997                                               X86::NOT64r, X86::RAX,
11998                                               X86::GR64RegisterClass);
11999  case X86::ATOMNAND64:
12000    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12001                                               X86::AND64ri32, X86::MOV64rm,
12002                                               X86::LCMPXCHG64,
12003                                               X86::NOT64r, X86::RAX,
12004                                               X86::GR64RegisterClass, true);
12005  case X86::ATOMMIN64:
12006    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
12007  case X86::ATOMMAX64:
12008    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
12009  case X86::ATOMUMIN64:
12010    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
12011  case X86::ATOMUMAX64:
12012    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
12013
12014  // This group does 64-bit operations on a 32-bit host.
12015  case X86::ATOMAND6432:
12016    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12017                                               X86::AND32rr, X86::AND32rr,
12018                                               X86::AND32ri, X86::AND32ri,
12019                                               false);
12020  case X86::ATOMOR6432:
12021    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12022                                               X86::OR32rr, X86::OR32rr,
12023                                               X86::OR32ri, X86::OR32ri,
12024                                               false);
12025  case X86::ATOMXOR6432:
12026    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12027                                               X86::XOR32rr, X86::XOR32rr,
12028                                               X86::XOR32ri, X86::XOR32ri,
12029                                               false);
12030  case X86::ATOMNAND6432:
12031    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12032                                               X86::AND32rr, X86::AND32rr,
12033                                               X86::AND32ri, X86::AND32ri,
12034                                               true);
12035  case X86::ATOMADD6432:
12036    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12037                                               X86::ADD32rr, X86::ADC32rr,
12038                                               X86::ADD32ri, X86::ADC32ri,
12039                                               false);
12040  case X86::ATOMSUB6432:
12041    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12042                                               X86::SUB32rr, X86::SBB32rr,
12043                                               X86::SUB32ri, X86::SBB32ri,
12044                                               false);
12045  case X86::ATOMSWAP6432:
12046    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12047                                               X86::MOV32rr, X86::MOV32rr,
12048                                               X86::MOV32ri, X86::MOV32ri,
12049                                               false);
12050  case X86::VASTART_SAVE_XMM_REGS:
12051    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
12052
12053  case X86::VAARG_64:
12054    return EmitVAARG64WithCustomInserter(MI, BB);
12055  }
12056}
12057
12058//===----------------------------------------------------------------------===//
12059//                           X86 Optimization Hooks
12060//===----------------------------------------------------------------------===//
12061
12062void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
12063                                                       const APInt &Mask,
12064                                                       APInt &KnownZero,
12065                                                       APInt &KnownOne,
12066                                                       const SelectionDAG &DAG,
12067                                                       unsigned Depth) const {
12068  unsigned Opc = Op.getOpcode();
12069  assert((Opc >= ISD::BUILTIN_OP_END ||
12070          Opc == ISD::INTRINSIC_WO_CHAIN ||
12071          Opc == ISD::INTRINSIC_W_CHAIN ||
12072          Opc == ISD::INTRINSIC_VOID) &&
12073         "Should use MaskedValueIsZero if you don't know whether Op"
12074         " is a target node!");
12075
12076  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
12077  switch (Opc) {
12078  default: break;
12079  case X86ISD::ADD:
12080  case X86ISD::SUB:
12081  case X86ISD::ADC:
12082  case X86ISD::SBB:
12083  case X86ISD::SMUL:
12084  case X86ISD::UMUL:
12085  case X86ISD::INC:
12086  case X86ISD::DEC:
12087  case X86ISD::OR:
12088  case X86ISD::XOR:
12089  case X86ISD::AND:
12090    // These nodes' second result is a boolean.
12091    if (Op.getResNo() == 0)
12092      break;
12093    // Fallthrough
12094  case X86ISD::SETCC:
12095    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
12096                                       Mask.getBitWidth() - 1);
12097    break;
12098  }
12099}
12100
12101unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
12102                                                         unsigned Depth) const {
12103  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
12104  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
12105    return Op.getValueType().getScalarType().getSizeInBits();
12106
12107  // Fallback case.
12108  return 1;
12109}
12110
12111/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
12112/// node is a GlobalAddress + offset.
12113bool X86TargetLowering::isGAPlusOffset(SDNode *N,
12114                                       const GlobalValue* &GA,
12115                                       int64_t &Offset) const {
12116  if (N->getOpcode() == X86ISD::Wrapper) {
12117    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
12118      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
12119      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
12120      return true;
12121    }
12122  }
12123  return TargetLowering::isGAPlusOffset(N, GA, Offset);
12124}
12125
12126/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
12127/// same as extracting the high 128-bit part of 256-bit vector and then
12128/// inserting the result into the low part of a new 256-bit vector
12129static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
12130  EVT VT = SVOp->getValueType(0);
12131  int NumElems = VT.getVectorNumElements();
12132
12133  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12134  for (int i = 0, j = NumElems/2; i < NumElems/2; ++i, ++j)
12135    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12136        SVOp->getMaskElt(j) >= 0)
12137      return false;
12138
12139  return true;
12140}
12141
12142/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
12143/// same as extracting the low 128-bit part of 256-bit vector and then
12144/// inserting the result into the high part of a new 256-bit vector
12145static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
12146  EVT VT = SVOp->getValueType(0);
12147  int NumElems = VT.getVectorNumElements();
12148
12149  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12150  for (int i = NumElems/2, j = 0; i < NumElems; ++i, ++j)
12151    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12152        SVOp->getMaskElt(j) >= 0)
12153      return false;
12154
12155  return true;
12156}
12157
12158/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
12159static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
12160                                        TargetLowering::DAGCombinerInfo &DCI) {
12161  DebugLoc dl = N->getDebugLoc();
12162  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
12163  SDValue V1 = SVOp->getOperand(0);
12164  SDValue V2 = SVOp->getOperand(1);
12165  EVT VT = SVOp->getValueType(0);
12166  int NumElems = VT.getVectorNumElements();
12167
12168  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
12169      V2.getOpcode() == ISD::CONCAT_VECTORS) {
12170    //
12171    //                   0,0,0,...
12172    //                      |
12173    //    V      UNDEF    BUILD_VECTOR    UNDEF
12174    //     \      /           \           /
12175    //  CONCAT_VECTOR         CONCAT_VECTOR
12176    //         \                  /
12177    //          \                /
12178    //          RESULT: V + zero extended
12179    //
12180    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
12181        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
12182        V1.getOperand(1).getOpcode() != ISD::UNDEF)
12183      return SDValue();
12184
12185    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
12186      return SDValue();
12187
12188    // To match the shuffle mask, the first half of the mask should
12189    // be exactly the first vector, and all the rest a splat with the
12190    // first element of the second one.
12191    for (int i = 0; i < NumElems/2; ++i)
12192      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
12193          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
12194        return SDValue();
12195
12196    // Emit a zeroed vector and insert the desired subvector on its
12197    // first half.
12198    SDValue Zeros = getZeroVector(VT, true /* HasSSE2 */, DAG, dl);
12199    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0),
12200                         DAG.getConstant(0, MVT::i32), DAG, dl);
12201    return DCI.CombineTo(N, InsV);
12202  }
12203
12204  //===--------------------------------------------------------------------===//
12205  // Combine some shuffles into subvector extracts and inserts:
12206  //
12207
12208  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12209  if (isShuffleHigh128VectorInsertLow(SVOp)) {
12210    SDValue V = Extract128BitVector(V1, DAG.getConstant(NumElems/2, MVT::i32),
12211                                    DAG, dl);
12212    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12213                                      V, DAG.getConstant(0, MVT::i32), DAG, dl);
12214    return DCI.CombineTo(N, InsV);
12215  }
12216
12217  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12218  if (isShuffleLow128VectorInsertHigh(SVOp)) {
12219    SDValue V = Extract128BitVector(V1, DAG.getConstant(0, MVT::i32), DAG, dl);
12220    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12221                             V, DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
12222    return DCI.CombineTo(N, InsV);
12223  }
12224
12225  return SDValue();
12226}
12227
12228/// PerformShuffleCombine - Performs several different shuffle combines.
12229static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
12230                                     TargetLowering::DAGCombinerInfo &DCI,
12231                                     const X86Subtarget *Subtarget) {
12232  DebugLoc dl = N->getDebugLoc();
12233  EVT VT = N->getValueType(0);
12234
12235  // Don't create instructions with illegal types after legalize types has run.
12236  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12237  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
12238    return SDValue();
12239
12240  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
12241  if (Subtarget->hasAVX() && VT.getSizeInBits() == 256 &&
12242      N->getOpcode() == ISD::VECTOR_SHUFFLE)
12243    return PerformShuffleCombine256(N, DAG, DCI);
12244
12245  // Only handle 128 wide vector from here on.
12246  if (VT.getSizeInBits() != 128)
12247    return SDValue();
12248
12249  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
12250  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
12251  // consecutive, non-overlapping, and in the right order.
12252  SmallVector<SDValue, 16> Elts;
12253  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
12254    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
12255
12256  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
12257}
12258
12259/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
12260/// generation and convert it from being a bunch of shuffles and extracts
12261/// to a simple store and scalar loads to extract the elements.
12262static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
12263                                                const TargetLowering &TLI) {
12264  SDValue InputVector = N->getOperand(0);
12265
12266  // Only operate on vectors of 4 elements, where the alternative shuffling
12267  // gets to be more expensive.
12268  if (InputVector.getValueType() != MVT::v4i32)
12269    return SDValue();
12270
12271  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
12272  // single use which is a sign-extend or zero-extend, and all elements are
12273  // used.
12274  SmallVector<SDNode *, 4> Uses;
12275  unsigned ExtractedElements = 0;
12276  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
12277       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
12278    if (UI.getUse().getResNo() != InputVector.getResNo())
12279      return SDValue();
12280
12281    SDNode *Extract = *UI;
12282    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12283      return SDValue();
12284
12285    if (Extract->getValueType(0) != MVT::i32)
12286      return SDValue();
12287    if (!Extract->hasOneUse())
12288      return SDValue();
12289    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
12290        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
12291      return SDValue();
12292    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
12293      return SDValue();
12294
12295    // Record which element was extracted.
12296    ExtractedElements |=
12297      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
12298
12299    Uses.push_back(Extract);
12300  }
12301
12302  // If not all the elements were used, this may not be worthwhile.
12303  if (ExtractedElements != 15)
12304    return SDValue();
12305
12306  // Ok, we've now decided to do the transformation.
12307  DebugLoc dl = InputVector.getDebugLoc();
12308
12309  // Store the value to a temporary stack slot.
12310  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
12311  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
12312                            MachinePointerInfo(), false, false, 0);
12313
12314  // Replace each use (extract) with a load of the appropriate element.
12315  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
12316       UE = Uses.end(); UI != UE; ++UI) {
12317    SDNode *Extract = *UI;
12318
12319    // cOMpute the element's address.
12320    SDValue Idx = Extract->getOperand(1);
12321    unsigned EltSize =
12322        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
12323    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
12324    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
12325
12326    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
12327                                     StackPtr, OffsetVal);
12328
12329    // Load the scalar.
12330    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
12331                                     ScalarAddr, MachinePointerInfo(),
12332                                     false, false, 0);
12333
12334    // Replace the exact with the load.
12335    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
12336  }
12337
12338  // The replacement was made in place; don't return anything.
12339  return SDValue();
12340}
12341
12342/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
12343static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
12344                                    const X86Subtarget *Subtarget) {
12345  DebugLoc DL = N->getDebugLoc();
12346  SDValue Cond = N->getOperand(0);
12347  // Get the LHS/RHS of the select.
12348  SDValue LHS = N->getOperand(1);
12349  SDValue RHS = N->getOperand(2);
12350
12351  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
12352  // instructions match the semantics of the common C idiom x<y?x:y but not
12353  // x<=y?x:y, because of how they handle negative zero (which can be
12354  // ignored in unsafe-math mode).
12355  if (Subtarget->hasSSE2() &&
12356      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
12357      Cond.getOpcode() == ISD::SETCC) {
12358    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
12359
12360    unsigned Opcode = 0;
12361    // Check for x CC y ? x : y.
12362    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
12363        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
12364      switch (CC) {
12365      default: break;
12366      case ISD::SETULT:
12367        // Converting this to a min would handle NaNs incorrectly, and swapping
12368        // the operands would cause it to handle comparisons between positive
12369        // and negative zero incorrectly.
12370        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
12371          if (!UnsafeFPMath &&
12372              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
12373            break;
12374          std::swap(LHS, RHS);
12375        }
12376        Opcode = X86ISD::FMIN;
12377        break;
12378      case ISD::SETOLE:
12379        // Converting this to a min would handle comparisons between positive
12380        // and negative zero incorrectly.
12381        if (!UnsafeFPMath &&
12382            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
12383          break;
12384        Opcode = X86ISD::FMIN;
12385        break;
12386      case ISD::SETULE:
12387        // Converting this to a min would handle both negative zeros and NaNs
12388        // incorrectly, but we can swap the operands to fix both.
12389        std::swap(LHS, RHS);
12390      case ISD::SETOLT:
12391      case ISD::SETLT:
12392      case ISD::SETLE:
12393        Opcode = X86ISD::FMIN;
12394        break;
12395
12396      case ISD::SETOGE:
12397        // Converting this to a max would handle comparisons between positive
12398        // and negative zero incorrectly.
12399        if (!UnsafeFPMath &&
12400            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
12401          break;
12402        Opcode = X86ISD::FMAX;
12403        break;
12404      case ISD::SETUGT:
12405        // Converting this to a max would handle NaNs incorrectly, and swapping
12406        // the operands would cause it to handle comparisons between positive
12407        // and negative zero incorrectly.
12408        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
12409          if (!UnsafeFPMath &&
12410              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
12411            break;
12412          std::swap(LHS, RHS);
12413        }
12414        Opcode = X86ISD::FMAX;
12415        break;
12416      case ISD::SETUGE:
12417        // Converting this to a max would handle both negative zeros and NaNs
12418        // incorrectly, but we can swap the operands to fix both.
12419        std::swap(LHS, RHS);
12420      case ISD::SETOGT:
12421      case ISD::SETGT:
12422      case ISD::SETGE:
12423        Opcode = X86ISD::FMAX;
12424        break;
12425      }
12426    // Check for x CC y ? y : x -- a min/max with reversed arms.
12427    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
12428               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
12429      switch (CC) {
12430      default: break;
12431      case ISD::SETOGE:
12432        // Converting this to a min would handle comparisons between positive
12433        // and negative zero incorrectly, and swapping the operands would
12434        // cause it to handle NaNs incorrectly.
12435        if (!UnsafeFPMath &&
12436            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
12437          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
12438            break;
12439          std::swap(LHS, RHS);
12440        }
12441        Opcode = X86ISD::FMIN;
12442        break;
12443      case ISD::SETUGT:
12444        // Converting this to a min would handle NaNs incorrectly.
12445        if (!UnsafeFPMath &&
12446            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
12447          break;
12448        Opcode = X86ISD::FMIN;
12449        break;
12450      case ISD::SETUGE:
12451        // Converting this to a min would handle both negative zeros and NaNs
12452        // incorrectly, but we can swap the operands to fix both.
12453        std::swap(LHS, RHS);
12454      case ISD::SETOGT:
12455      case ISD::SETGT:
12456      case ISD::SETGE:
12457        Opcode = X86ISD::FMIN;
12458        break;
12459
12460      case ISD::SETULT:
12461        // Converting this to a max would handle NaNs incorrectly.
12462        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
12463          break;
12464        Opcode = X86ISD::FMAX;
12465        break;
12466      case ISD::SETOLE:
12467        // Converting this to a max would handle comparisons between positive
12468        // and negative zero incorrectly, and swapping the operands would
12469        // cause it to handle NaNs incorrectly.
12470        if (!UnsafeFPMath &&
12471            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
12472          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
12473            break;
12474          std::swap(LHS, RHS);
12475        }
12476        Opcode = X86ISD::FMAX;
12477        break;
12478      case ISD::SETULE:
12479        // Converting this to a max would handle both negative zeros and NaNs
12480        // incorrectly, but we can swap the operands to fix both.
12481        std::swap(LHS, RHS);
12482      case ISD::SETOLT:
12483      case ISD::SETLT:
12484      case ISD::SETLE:
12485        Opcode = X86ISD::FMAX;
12486        break;
12487      }
12488    }
12489
12490    if (Opcode)
12491      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
12492  }
12493
12494  // If this is a select between two integer constants, try to do some
12495  // optimizations.
12496  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
12497    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
12498      // Don't do this for crazy integer types.
12499      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
12500        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
12501        // so that TrueC (the true value) is larger than FalseC.
12502        bool NeedsCondInvert = false;
12503
12504        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
12505            // Efficiently invertible.
12506            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
12507             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
12508              isa<ConstantSDNode>(Cond.getOperand(1))))) {
12509          NeedsCondInvert = true;
12510          std::swap(TrueC, FalseC);
12511        }
12512
12513        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
12514        if (FalseC->getAPIntValue() == 0 &&
12515            TrueC->getAPIntValue().isPowerOf2()) {
12516          if (NeedsCondInvert) // Invert the condition if needed.
12517            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
12518                               DAG.getConstant(1, Cond.getValueType()));
12519
12520          // Zero extend the condition if needed.
12521          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
12522
12523          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
12524          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
12525                             DAG.getConstant(ShAmt, MVT::i8));
12526        }
12527
12528        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
12529        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
12530          if (NeedsCondInvert) // Invert the condition if needed.
12531            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
12532                               DAG.getConstant(1, Cond.getValueType()));
12533
12534          // Zero extend the condition if needed.
12535          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
12536                             FalseC->getValueType(0), Cond);
12537          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
12538                             SDValue(FalseC, 0));
12539        }
12540
12541        // Optimize cases that will turn into an LEA instruction.  This requires
12542        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
12543        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
12544          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
12545          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
12546
12547          bool isFastMultiplier = false;
12548          if (Diff < 10) {
12549            switch ((unsigned char)Diff) {
12550              default: break;
12551              case 1:  // result = add base, cond
12552              case 2:  // result = lea base(    , cond*2)
12553              case 3:  // result = lea base(cond, cond*2)
12554              case 4:  // result = lea base(    , cond*4)
12555              case 5:  // result = lea base(cond, cond*4)
12556              case 8:  // result = lea base(    , cond*8)
12557              case 9:  // result = lea base(cond, cond*8)
12558                isFastMultiplier = true;
12559                break;
12560            }
12561          }
12562
12563          if (isFastMultiplier) {
12564            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
12565            if (NeedsCondInvert) // Invert the condition if needed.
12566              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
12567                                 DAG.getConstant(1, Cond.getValueType()));
12568
12569            // Zero extend the condition if needed.
12570            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
12571                               Cond);
12572            // Scale the condition by the difference.
12573            if (Diff != 1)
12574              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
12575                                 DAG.getConstant(Diff, Cond.getValueType()));
12576
12577            // Add the base if non-zero.
12578            if (FalseC->getAPIntValue() != 0)
12579              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
12580                                 SDValue(FalseC, 0));
12581            return Cond;
12582          }
12583        }
12584      }
12585  }
12586
12587  return SDValue();
12588}
12589
12590/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
12591static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
12592                                  TargetLowering::DAGCombinerInfo &DCI) {
12593  DebugLoc DL = N->getDebugLoc();
12594
12595  // If the flag operand isn't dead, don't touch this CMOV.
12596  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
12597    return SDValue();
12598
12599  SDValue FalseOp = N->getOperand(0);
12600  SDValue TrueOp = N->getOperand(1);
12601  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
12602  SDValue Cond = N->getOperand(3);
12603  if (CC == X86::COND_E || CC == X86::COND_NE) {
12604    switch (Cond.getOpcode()) {
12605    default: break;
12606    case X86ISD::BSR:
12607    case X86ISD::BSF:
12608      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
12609      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
12610        return (CC == X86::COND_E) ? FalseOp : TrueOp;
12611    }
12612  }
12613
12614  // If this is a select between two integer constants, try to do some
12615  // optimizations.  Note that the operands are ordered the opposite of SELECT
12616  // operands.
12617  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
12618    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
12619      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
12620      // larger than FalseC (the false value).
12621      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
12622        CC = X86::GetOppositeBranchCondition(CC);
12623        std::swap(TrueC, FalseC);
12624      }
12625
12626      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
12627      // This is efficient for any integer data type (including i8/i16) and
12628      // shift amount.
12629      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
12630        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
12631                           DAG.getConstant(CC, MVT::i8), Cond);
12632
12633        // Zero extend the condition if needed.
12634        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
12635
12636        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
12637        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
12638                           DAG.getConstant(ShAmt, MVT::i8));
12639        if (N->getNumValues() == 2)  // Dead flag value?
12640          return DCI.CombineTo(N, Cond, SDValue());
12641        return Cond;
12642      }
12643
12644      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
12645      // for any integer data type, including i8/i16.
12646      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
12647        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
12648                           DAG.getConstant(CC, MVT::i8), Cond);
12649
12650        // Zero extend the condition if needed.
12651        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
12652                           FalseC->getValueType(0), Cond);
12653        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
12654                           SDValue(FalseC, 0));
12655
12656        if (N->getNumValues() == 2)  // Dead flag value?
12657          return DCI.CombineTo(N, Cond, SDValue());
12658        return Cond;
12659      }
12660
12661      // Optimize cases that will turn into an LEA instruction.  This requires
12662      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
12663      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
12664        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
12665        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
12666
12667        bool isFastMultiplier = false;
12668        if (Diff < 10) {
12669          switch ((unsigned char)Diff) {
12670          default: break;
12671          case 1:  // result = add base, cond
12672          case 2:  // result = lea base(    , cond*2)
12673          case 3:  // result = lea base(cond, cond*2)
12674          case 4:  // result = lea base(    , cond*4)
12675          case 5:  // result = lea base(cond, cond*4)
12676          case 8:  // result = lea base(    , cond*8)
12677          case 9:  // result = lea base(cond, cond*8)
12678            isFastMultiplier = true;
12679            break;
12680          }
12681        }
12682
12683        if (isFastMultiplier) {
12684          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
12685          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
12686                             DAG.getConstant(CC, MVT::i8), Cond);
12687          // Zero extend the condition if needed.
12688          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
12689                             Cond);
12690          // Scale the condition by the difference.
12691          if (Diff != 1)
12692            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
12693                               DAG.getConstant(Diff, Cond.getValueType()));
12694
12695          // Add the base if non-zero.
12696          if (FalseC->getAPIntValue() != 0)
12697            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
12698                               SDValue(FalseC, 0));
12699          if (N->getNumValues() == 2)  // Dead flag value?
12700            return DCI.CombineTo(N, Cond, SDValue());
12701          return Cond;
12702        }
12703      }
12704    }
12705  }
12706  return SDValue();
12707}
12708
12709
12710/// PerformMulCombine - Optimize a single multiply with constant into two
12711/// in order to implement it with two cheaper instructions, e.g.
12712/// LEA + SHL, LEA + LEA.
12713static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
12714                                 TargetLowering::DAGCombinerInfo &DCI) {
12715  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
12716    return SDValue();
12717
12718  EVT VT = N->getValueType(0);
12719  if (VT != MVT::i64)
12720    return SDValue();
12721
12722  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
12723  if (!C)
12724    return SDValue();
12725  uint64_t MulAmt = C->getZExtValue();
12726  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
12727    return SDValue();
12728
12729  uint64_t MulAmt1 = 0;
12730  uint64_t MulAmt2 = 0;
12731  if ((MulAmt % 9) == 0) {
12732    MulAmt1 = 9;
12733    MulAmt2 = MulAmt / 9;
12734  } else if ((MulAmt % 5) == 0) {
12735    MulAmt1 = 5;
12736    MulAmt2 = MulAmt / 5;
12737  } else if ((MulAmt % 3) == 0) {
12738    MulAmt1 = 3;
12739    MulAmt2 = MulAmt / 3;
12740  }
12741  if (MulAmt2 &&
12742      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
12743    DebugLoc DL = N->getDebugLoc();
12744
12745    if (isPowerOf2_64(MulAmt2) &&
12746        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
12747      // If second multiplifer is pow2, issue it first. We want the multiply by
12748      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
12749      // is an add.
12750      std::swap(MulAmt1, MulAmt2);
12751
12752    SDValue NewMul;
12753    if (isPowerOf2_64(MulAmt1))
12754      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
12755                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
12756    else
12757      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
12758                           DAG.getConstant(MulAmt1, VT));
12759
12760    if (isPowerOf2_64(MulAmt2))
12761      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
12762                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
12763    else
12764      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
12765                           DAG.getConstant(MulAmt2, VT));
12766
12767    // Do not add new nodes to DAG combiner worklist.
12768    DCI.CombineTo(N, NewMul, false);
12769  }
12770  return SDValue();
12771}
12772
12773static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
12774  SDValue N0 = N->getOperand(0);
12775  SDValue N1 = N->getOperand(1);
12776  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
12777  EVT VT = N0.getValueType();
12778
12779  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
12780  // since the result of setcc_c is all zero's or all ones.
12781  if (N1C && N0.getOpcode() == ISD::AND &&
12782      N0.getOperand(1).getOpcode() == ISD::Constant) {
12783    SDValue N00 = N0.getOperand(0);
12784    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
12785        ((N00.getOpcode() == ISD::ANY_EXTEND ||
12786          N00.getOpcode() == ISD::ZERO_EXTEND) &&
12787         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
12788      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
12789      APInt ShAmt = N1C->getAPIntValue();
12790      Mask = Mask.shl(ShAmt);
12791      if (Mask != 0)
12792        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
12793                           N00, DAG.getConstant(Mask, VT));
12794    }
12795  }
12796
12797  return SDValue();
12798}
12799
12800/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
12801///                       when possible.
12802static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
12803                                   const X86Subtarget *Subtarget) {
12804  EVT VT = N->getValueType(0);
12805  if (!VT.isVector() && VT.isInteger() &&
12806      N->getOpcode() == ISD::SHL)
12807    return PerformSHLCombine(N, DAG);
12808
12809  // On X86 with SSE2 support, we can transform this to a vector shift if
12810  // all elements are shifted by the same amount.  We can't do this in legalize
12811  // because the a constant vector is typically transformed to a constant pool
12812  // so we have no knowledge of the shift amount.
12813  if (!(Subtarget->hasSSE2() || Subtarget->hasAVX()))
12814    return SDValue();
12815
12816  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
12817    return SDValue();
12818
12819  SDValue ShAmtOp = N->getOperand(1);
12820  EVT EltVT = VT.getVectorElementType();
12821  DebugLoc DL = N->getDebugLoc();
12822  SDValue BaseShAmt = SDValue();
12823  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
12824    unsigned NumElts = VT.getVectorNumElements();
12825    unsigned i = 0;
12826    for (; i != NumElts; ++i) {
12827      SDValue Arg = ShAmtOp.getOperand(i);
12828      if (Arg.getOpcode() == ISD::UNDEF) continue;
12829      BaseShAmt = Arg;
12830      break;
12831    }
12832    for (; i != NumElts; ++i) {
12833      SDValue Arg = ShAmtOp.getOperand(i);
12834      if (Arg.getOpcode() == ISD::UNDEF) continue;
12835      if (Arg != BaseShAmt) {
12836        return SDValue();
12837      }
12838    }
12839  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
12840             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
12841    SDValue InVec = ShAmtOp.getOperand(0);
12842    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
12843      unsigned NumElts = InVec.getValueType().getVectorNumElements();
12844      unsigned i = 0;
12845      for (; i != NumElts; ++i) {
12846        SDValue Arg = InVec.getOperand(i);
12847        if (Arg.getOpcode() == ISD::UNDEF) continue;
12848        BaseShAmt = Arg;
12849        break;
12850      }
12851    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
12852       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
12853         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
12854         if (C->getZExtValue() == SplatIdx)
12855           BaseShAmt = InVec.getOperand(1);
12856       }
12857    }
12858    if (BaseShAmt.getNode() == 0)
12859      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
12860                              DAG.getIntPtrConstant(0));
12861  } else
12862    return SDValue();
12863
12864  // The shift amount is an i32.
12865  if (EltVT.bitsGT(MVT::i32))
12866    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
12867  else if (EltVT.bitsLT(MVT::i32))
12868    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
12869
12870  // The shift amount is identical so we can do a vector shift.
12871  SDValue  ValOp = N->getOperand(0);
12872  switch (N->getOpcode()) {
12873  default:
12874    llvm_unreachable("Unknown shift opcode!");
12875    break;
12876  case ISD::SHL:
12877    if (VT == MVT::v2i64)
12878      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
12879                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
12880                         ValOp, BaseShAmt);
12881    if (VT == MVT::v4i32)
12882      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
12883                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
12884                         ValOp, BaseShAmt);
12885    if (VT == MVT::v8i16)
12886      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
12887                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
12888                         ValOp, BaseShAmt);
12889    break;
12890  case ISD::SRA:
12891    if (VT == MVT::v4i32)
12892      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
12893                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
12894                         ValOp, BaseShAmt);
12895    if (VT == MVT::v8i16)
12896      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
12897                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
12898                         ValOp, BaseShAmt);
12899    break;
12900  case ISD::SRL:
12901    if (VT == MVT::v2i64)
12902      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
12903                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
12904                         ValOp, BaseShAmt);
12905    if (VT == MVT::v4i32)
12906      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
12907                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
12908                         ValOp, BaseShAmt);
12909    if (VT ==  MVT::v8i16)
12910      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
12911                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
12912                         ValOp, BaseShAmt);
12913    break;
12914  }
12915  return SDValue();
12916}
12917
12918
12919// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
12920// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
12921// and friends.  Likewise for OR -> CMPNEQSS.
12922static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
12923                            TargetLowering::DAGCombinerInfo &DCI,
12924                            const X86Subtarget *Subtarget) {
12925  unsigned opcode;
12926
12927  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
12928  // we're requiring SSE2 for both.
12929  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
12930    SDValue N0 = N->getOperand(0);
12931    SDValue N1 = N->getOperand(1);
12932    SDValue CMP0 = N0->getOperand(1);
12933    SDValue CMP1 = N1->getOperand(1);
12934    DebugLoc DL = N->getDebugLoc();
12935
12936    // The SETCCs should both refer to the same CMP.
12937    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
12938      return SDValue();
12939
12940    SDValue CMP00 = CMP0->getOperand(0);
12941    SDValue CMP01 = CMP0->getOperand(1);
12942    EVT     VT    = CMP00.getValueType();
12943
12944    if (VT == MVT::f32 || VT == MVT::f64) {
12945      bool ExpectingFlags = false;
12946      // Check for any users that want flags:
12947      for (SDNode::use_iterator UI = N->use_begin(),
12948             UE = N->use_end();
12949           !ExpectingFlags && UI != UE; ++UI)
12950        switch (UI->getOpcode()) {
12951        default:
12952        case ISD::BR_CC:
12953        case ISD::BRCOND:
12954        case ISD::SELECT:
12955          ExpectingFlags = true;
12956          break;
12957        case ISD::CopyToReg:
12958        case ISD::SIGN_EXTEND:
12959        case ISD::ZERO_EXTEND:
12960        case ISD::ANY_EXTEND:
12961          break;
12962        }
12963
12964      if (!ExpectingFlags) {
12965        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
12966        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
12967
12968        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
12969          X86::CondCode tmp = cc0;
12970          cc0 = cc1;
12971          cc1 = tmp;
12972        }
12973
12974        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
12975            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
12976          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
12977          X86ISD::NodeType NTOperator = is64BitFP ?
12978            X86ISD::FSETCCsd : X86ISD::FSETCCss;
12979          // FIXME: need symbolic constants for these magic numbers.
12980          // See X86ATTInstPrinter.cpp:printSSECC().
12981          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
12982          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
12983                                              DAG.getConstant(x86cc, MVT::i8));
12984          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
12985                                              OnesOrZeroesF);
12986          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
12987                                      DAG.getConstant(1, MVT::i32));
12988          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
12989          return OneBitOfTruth;
12990        }
12991      }
12992    }
12993  }
12994  return SDValue();
12995}
12996
12997/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
12998/// so it can be folded inside ANDNP.
12999static bool CanFoldXORWithAllOnes(const SDNode *N) {
13000  EVT VT = N->getValueType(0);
13001
13002  // Match direct AllOnes for 128 and 256-bit vectors
13003  if (ISD::isBuildVectorAllOnes(N))
13004    return true;
13005
13006  // Look through a bit convert.
13007  if (N->getOpcode() == ISD::BITCAST)
13008    N = N->getOperand(0).getNode();
13009
13010  // Sometimes the operand may come from a insert_subvector building a 256-bit
13011  // allones vector
13012  if (VT.getSizeInBits() == 256 &&
13013      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
13014    SDValue V1 = N->getOperand(0);
13015    SDValue V2 = N->getOperand(1);
13016
13017    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
13018        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
13019        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
13020        ISD::isBuildVectorAllOnes(V2.getNode()))
13021      return true;
13022  }
13023
13024  return false;
13025}
13026
13027static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
13028                                 TargetLowering::DAGCombinerInfo &DCI,
13029                                 const X86Subtarget *Subtarget) {
13030  if (DCI.isBeforeLegalizeOps())
13031    return SDValue();
13032
13033  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13034  if (R.getNode())
13035    return R;
13036
13037  // Want to form ANDNP nodes:
13038  // 1) In the hopes of then easily combining them with OR and AND nodes
13039  //    to form PBLEND/PSIGN.
13040  // 2) To match ANDN packed intrinsics
13041  EVT VT = N->getValueType(0);
13042  if (VT != MVT::v2i64 && VT != MVT::v4i64)
13043    return SDValue();
13044
13045  SDValue N0 = N->getOperand(0);
13046  SDValue N1 = N->getOperand(1);
13047  DebugLoc DL = N->getDebugLoc();
13048
13049  // Check LHS for vnot
13050  if (N0.getOpcode() == ISD::XOR &&
13051      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
13052      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
13053    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
13054
13055  // Check RHS for vnot
13056  if (N1.getOpcode() == ISD::XOR &&
13057      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
13058      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
13059    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
13060
13061  return SDValue();
13062}
13063
13064static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
13065                                TargetLowering::DAGCombinerInfo &DCI,
13066                                const X86Subtarget *Subtarget) {
13067  if (DCI.isBeforeLegalizeOps())
13068    return SDValue();
13069
13070  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13071  if (R.getNode())
13072    return R;
13073
13074  EVT VT = N->getValueType(0);
13075  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64 && VT != MVT::v2i64)
13076    return SDValue();
13077
13078  SDValue N0 = N->getOperand(0);
13079  SDValue N1 = N->getOperand(1);
13080
13081  // look for psign/blend
13082  if (Subtarget->hasSSSE3()) {
13083    if (VT == MVT::v2i64) {
13084      // Canonicalize pandn to RHS
13085      if (N0.getOpcode() == X86ISD::ANDNP)
13086        std::swap(N0, N1);
13087      // or (and (m, x), (pandn m, y))
13088      if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
13089        SDValue Mask = N1.getOperand(0);
13090        SDValue X    = N1.getOperand(1);
13091        SDValue Y;
13092        if (N0.getOperand(0) == Mask)
13093          Y = N0.getOperand(1);
13094        if (N0.getOperand(1) == Mask)
13095          Y = N0.getOperand(0);
13096
13097        // Check to see if the mask appeared in both the AND and ANDNP and
13098        if (!Y.getNode())
13099          return SDValue();
13100
13101        // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
13102        if (Mask.getOpcode() != ISD::BITCAST ||
13103            X.getOpcode() != ISD::BITCAST ||
13104            Y.getOpcode() != ISD::BITCAST)
13105          return SDValue();
13106
13107        // Look through mask bitcast.
13108        Mask = Mask.getOperand(0);
13109        EVT MaskVT = Mask.getValueType();
13110
13111        // Validate that the Mask operand is a vector sra node.  The sra node
13112        // will be an intrinsic.
13113        if (Mask.getOpcode() != ISD::INTRINSIC_WO_CHAIN)
13114          return SDValue();
13115
13116        // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
13117        // there is no psrai.b
13118        switch (cast<ConstantSDNode>(Mask.getOperand(0))->getZExtValue()) {
13119        case Intrinsic::x86_sse2_psrai_w:
13120        case Intrinsic::x86_sse2_psrai_d:
13121          break;
13122        default: return SDValue();
13123        }
13124
13125        // Check that the SRA is all signbits.
13126        SDValue SraC = Mask.getOperand(2);
13127        unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
13128        unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
13129        if ((SraAmt + 1) != EltBits)
13130          return SDValue();
13131
13132        DebugLoc DL = N->getDebugLoc();
13133
13134        // Now we know we at least have a plendvb with the mask val.  See if
13135        // we can form a psignb/w/d.
13136        // psign = x.type == y.type == mask.type && y = sub(0, x);
13137        X = X.getOperand(0);
13138        Y = Y.getOperand(0);
13139        if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
13140            ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
13141            X.getValueType() == MaskVT && X.getValueType() == Y.getValueType()){
13142          unsigned Opc = 0;
13143          switch (EltBits) {
13144          case 8: Opc = X86ISD::PSIGNB; break;
13145          case 16: Opc = X86ISD::PSIGNW; break;
13146          case 32: Opc = X86ISD::PSIGND; break;
13147          default: break;
13148          }
13149          if (Opc) {
13150            SDValue Sign = DAG.getNode(Opc, DL, MaskVT, X, Mask.getOperand(1));
13151            return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Sign);
13152          }
13153        }
13154        // PBLENDVB only available on SSE 4.1
13155        if (!Subtarget->hasSSE41())
13156          return SDValue();
13157
13158        X = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, X);
13159        Y = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Y);
13160        Mask = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Mask);
13161        Mask = DAG.getNode(X86ISD::PBLENDVB, DL, MVT::v16i8, X, Y, Mask);
13162        return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Mask);
13163      }
13164    }
13165  }
13166
13167  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
13168  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
13169    std::swap(N0, N1);
13170  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
13171    return SDValue();
13172  if (!N0.hasOneUse() || !N1.hasOneUse())
13173    return SDValue();
13174
13175  SDValue ShAmt0 = N0.getOperand(1);
13176  if (ShAmt0.getValueType() != MVT::i8)
13177    return SDValue();
13178  SDValue ShAmt1 = N1.getOperand(1);
13179  if (ShAmt1.getValueType() != MVT::i8)
13180    return SDValue();
13181  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
13182    ShAmt0 = ShAmt0.getOperand(0);
13183  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
13184    ShAmt1 = ShAmt1.getOperand(0);
13185
13186  DebugLoc DL = N->getDebugLoc();
13187  unsigned Opc = X86ISD::SHLD;
13188  SDValue Op0 = N0.getOperand(0);
13189  SDValue Op1 = N1.getOperand(0);
13190  if (ShAmt0.getOpcode() == ISD::SUB) {
13191    Opc = X86ISD::SHRD;
13192    std::swap(Op0, Op1);
13193    std::swap(ShAmt0, ShAmt1);
13194  }
13195
13196  unsigned Bits = VT.getSizeInBits();
13197  if (ShAmt1.getOpcode() == ISD::SUB) {
13198    SDValue Sum = ShAmt1.getOperand(0);
13199    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
13200      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
13201      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
13202        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
13203      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
13204        return DAG.getNode(Opc, DL, VT,
13205                           Op0, Op1,
13206                           DAG.getNode(ISD::TRUNCATE, DL,
13207                                       MVT::i8, ShAmt0));
13208    }
13209  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
13210    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
13211    if (ShAmt0C &&
13212        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
13213      return DAG.getNode(Opc, DL, VT,
13214                         N0.getOperand(0), N1.getOperand(0),
13215                         DAG.getNode(ISD::TRUNCATE, DL,
13216                                       MVT::i8, ShAmt0));
13217  }
13218
13219  return SDValue();
13220}
13221
13222/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
13223static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
13224                                   const X86Subtarget *Subtarget) {
13225  StoreSDNode *St = cast<StoreSDNode>(N);
13226  EVT VT = St->getValue().getValueType();
13227  EVT StVT = St->getMemoryVT();
13228  DebugLoc dl = St->getDebugLoc();
13229  SDValue StoredVal = St->getOperand(1);
13230  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13231
13232  // If we are saving a concatination of two XMM registers, perform two stores.
13233  // This is better in Sandy Bridge cause one 256-bit mem op is done via two
13234  // 128-bit ones. If in the future the cost becomes only one memory access the
13235  // first version would be better.
13236  if (VT.getSizeInBits() == 256 &&
13237    StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
13238    StoredVal.getNumOperands() == 2) {
13239
13240    SDValue Value0 = StoredVal.getOperand(0);
13241    SDValue Value1 = StoredVal.getOperand(1);
13242
13243    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
13244    SDValue Ptr0 = St->getBasePtr();
13245    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
13246
13247    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
13248                                St->getPointerInfo(), St->isVolatile(),
13249                                St->isNonTemporal(), St->getAlignment());
13250    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
13251                                St->getPointerInfo(), St->isVolatile(),
13252                                St->isNonTemporal(), St->getAlignment());
13253    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
13254  }
13255
13256  // Optimize trunc store (of multiple scalars) to shuffle and store.
13257  // First, pack all of the elements in one place. Next, store to memory
13258  // in fewer chunks.
13259  if (St->isTruncatingStore() && VT.isVector()) {
13260    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13261    unsigned NumElems = VT.getVectorNumElements();
13262    assert(StVT != VT && "Cannot truncate to the same type");
13263    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
13264    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
13265
13266    // From, To sizes and ElemCount must be pow of two
13267    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
13268    // We are going to use the original vector elt for storing.
13269    // accumulated smaller vector elements must be a multiple of bigger size.
13270    if (0 != (NumElems * ToSz) % FromSz) return SDValue();
13271    unsigned SizeRatio  = FromSz / ToSz;
13272
13273    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
13274
13275    // Create a type on which we perform the shuffle
13276    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
13277            StVT.getScalarType(), NumElems*SizeRatio);
13278
13279    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
13280
13281    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
13282    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
13283    for (unsigned i = 0; i < NumElems; i++ ) ShuffleVec[i] = i * SizeRatio;
13284
13285    // Can't shuffle using an illegal type
13286    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
13287
13288    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
13289                                DAG.getUNDEF(WideVec.getValueType()),
13290                                ShuffleVec.data());
13291    // At this point all of the data is stored at the bottom of the
13292    // register. We now need to save it to mem.
13293
13294    // Find the largest store unit
13295    MVT StoreType = MVT::i8;
13296    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
13297         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
13298      MVT Tp = (MVT::SimpleValueType)tp;
13299      if (TLI.isTypeLegal(Tp) && StoreType.getSizeInBits() < NumElems * ToSz)
13300        StoreType = Tp;
13301    }
13302
13303    // Bitcast the original vector into a vector of store-size units
13304    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
13305            StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
13306    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
13307    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
13308    SmallVector<SDValue, 8> Chains;
13309    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
13310                                        TLI.getPointerTy());
13311    SDValue Ptr = St->getBasePtr();
13312
13313    // Perform one or more big stores into memory.
13314    for (unsigned i = 0; i < (ToSz*NumElems)/StoreType.getSizeInBits() ; i++) {
13315      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
13316                                   StoreType, ShuffWide,
13317                                   DAG.getIntPtrConstant(i));
13318      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
13319                                St->getPointerInfo(), St->isVolatile(),
13320                                St->isNonTemporal(), St->getAlignment());
13321      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
13322      Chains.push_back(Ch);
13323    }
13324
13325    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
13326                               Chains.size());
13327  }
13328
13329
13330  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
13331  // the FP state in cases where an emms may be missing.
13332  // A preferable solution to the general problem is to figure out the right
13333  // places to insert EMMS.  This qualifies as a quick hack.
13334
13335  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
13336  if (VT.getSizeInBits() != 64)
13337    return SDValue();
13338
13339  const Function *F = DAG.getMachineFunction().getFunction();
13340  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
13341  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
13342    && Subtarget->hasSSE2();
13343  if ((VT.isVector() ||
13344       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
13345      isa<LoadSDNode>(St->getValue()) &&
13346      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
13347      St->getChain().hasOneUse() && !St->isVolatile()) {
13348    SDNode* LdVal = St->getValue().getNode();
13349    LoadSDNode *Ld = 0;
13350    int TokenFactorIndex = -1;
13351    SmallVector<SDValue, 8> Ops;
13352    SDNode* ChainVal = St->getChain().getNode();
13353    // Must be a store of a load.  We currently handle two cases:  the load
13354    // is a direct child, and it's under an intervening TokenFactor.  It is
13355    // possible to dig deeper under nested TokenFactors.
13356    if (ChainVal == LdVal)
13357      Ld = cast<LoadSDNode>(St->getChain());
13358    else if (St->getValue().hasOneUse() &&
13359             ChainVal->getOpcode() == ISD::TokenFactor) {
13360      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
13361        if (ChainVal->getOperand(i).getNode() == LdVal) {
13362          TokenFactorIndex = i;
13363          Ld = cast<LoadSDNode>(St->getValue());
13364        } else
13365          Ops.push_back(ChainVal->getOperand(i));
13366      }
13367    }
13368
13369    if (!Ld || !ISD::isNormalLoad(Ld))
13370      return SDValue();
13371
13372    // If this is not the MMX case, i.e. we are just turning i64 load/store
13373    // into f64 load/store, avoid the transformation if there are multiple
13374    // uses of the loaded value.
13375    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
13376      return SDValue();
13377
13378    DebugLoc LdDL = Ld->getDebugLoc();
13379    DebugLoc StDL = N->getDebugLoc();
13380    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
13381    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
13382    // pair instead.
13383    if (Subtarget->is64Bit() || F64IsLegal) {
13384      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
13385      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
13386                                  Ld->getPointerInfo(), Ld->isVolatile(),
13387                                  Ld->isNonTemporal(), Ld->getAlignment());
13388      SDValue NewChain = NewLd.getValue(1);
13389      if (TokenFactorIndex != -1) {
13390        Ops.push_back(NewChain);
13391        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
13392                               Ops.size());
13393      }
13394      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
13395                          St->getPointerInfo(),
13396                          St->isVolatile(), St->isNonTemporal(),
13397                          St->getAlignment());
13398    }
13399
13400    // Otherwise, lower to two pairs of 32-bit loads / stores.
13401    SDValue LoAddr = Ld->getBasePtr();
13402    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
13403                                 DAG.getConstant(4, MVT::i32));
13404
13405    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
13406                               Ld->getPointerInfo(),
13407                               Ld->isVolatile(), Ld->isNonTemporal(),
13408                               Ld->getAlignment());
13409    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
13410                               Ld->getPointerInfo().getWithOffset(4),
13411                               Ld->isVolatile(), Ld->isNonTemporal(),
13412                               MinAlign(Ld->getAlignment(), 4));
13413
13414    SDValue NewChain = LoLd.getValue(1);
13415    if (TokenFactorIndex != -1) {
13416      Ops.push_back(LoLd);
13417      Ops.push_back(HiLd);
13418      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
13419                             Ops.size());
13420    }
13421
13422    LoAddr = St->getBasePtr();
13423    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
13424                         DAG.getConstant(4, MVT::i32));
13425
13426    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
13427                                St->getPointerInfo(),
13428                                St->isVolatile(), St->isNonTemporal(),
13429                                St->getAlignment());
13430    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
13431                                St->getPointerInfo().getWithOffset(4),
13432                                St->isVolatile(),
13433                                St->isNonTemporal(),
13434                                MinAlign(St->getAlignment(), 4));
13435    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
13436  }
13437  return SDValue();
13438}
13439
13440/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
13441/// X86ISD::FXOR nodes.
13442static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
13443  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
13444  // F[X]OR(0.0, x) -> x
13445  // F[X]OR(x, 0.0) -> x
13446  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
13447    if (C->getValueAPF().isPosZero())
13448      return N->getOperand(1);
13449  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
13450    if (C->getValueAPF().isPosZero())
13451      return N->getOperand(0);
13452  return SDValue();
13453}
13454
13455/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
13456static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
13457  // FAND(0.0, x) -> 0.0
13458  // FAND(x, 0.0) -> 0.0
13459  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
13460    if (C->getValueAPF().isPosZero())
13461      return N->getOperand(0);
13462  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
13463    if (C->getValueAPF().isPosZero())
13464      return N->getOperand(1);
13465  return SDValue();
13466}
13467
13468static SDValue PerformBTCombine(SDNode *N,
13469                                SelectionDAG &DAG,
13470                                TargetLowering::DAGCombinerInfo &DCI) {
13471  // BT ignores high bits in the bit index operand.
13472  SDValue Op1 = N->getOperand(1);
13473  if (Op1.hasOneUse()) {
13474    unsigned BitWidth = Op1.getValueSizeInBits();
13475    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
13476    APInt KnownZero, KnownOne;
13477    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
13478                                          !DCI.isBeforeLegalizeOps());
13479    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13480    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
13481        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
13482      DCI.CommitTargetLoweringOpt(TLO);
13483  }
13484  return SDValue();
13485}
13486
13487static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
13488  SDValue Op = N->getOperand(0);
13489  if (Op.getOpcode() == ISD::BITCAST)
13490    Op = Op.getOperand(0);
13491  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
13492  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
13493      VT.getVectorElementType().getSizeInBits() ==
13494      OpVT.getVectorElementType().getSizeInBits()) {
13495    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
13496  }
13497  return SDValue();
13498}
13499
13500static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
13501  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
13502  //           (and (i32 x86isd::setcc_carry), 1)
13503  // This eliminates the zext. This transformation is necessary because
13504  // ISD::SETCC is always legalized to i8.
13505  DebugLoc dl = N->getDebugLoc();
13506  SDValue N0 = N->getOperand(0);
13507  EVT VT = N->getValueType(0);
13508  if (N0.getOpcode() == ISD::AND &&
13509      N0.hasOneUse() &&
13510      N0.getOperand(0).hasOneUse()) {
13511    SDValue N00 = N0.getOperand(0);
13512    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
13513      return SDValue();
13514    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
13515    if (!C || C->getZExtValue() != 1)
13516      return SDValue();
13517    return DAG.getNode(ISD::AND, dl, VT,
13518                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
13519                                   N00.getOperand(0), N00.getOperand(1)),
13520                       DAG.getConstant(1, VT));
13521  }
13522
13523  return SDValue();
13524}
13525
13526// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
13527static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
13528  unsigned X86CC = N->getConstantOperandVal(0);
13529  SDValue EFLAG = N->getOperand(1);
13530  DebugLoc DL = N->getDebugLoc();
13531
13532  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
13533  // a zext and produces an all-ones bit which is more useful than 0/1 in some
13534  // cases.
13535  if (X86CC == X86::COND_B)
13536    return DAG.getNode(ISD::AND, DL, MVT::i8,
13537                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
13538                                   DAG.getConstant(X86CC, MVT::i8), EFLAG),
13539                       DAG.getConstant(1, MVT::i8));
13540
13541  return SDValue();
13542}
13543
13544static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
13545                                        const X86TargetLowering *XTLI) {
13546  SDValue Op0 = N->getOperand(0);
13547  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
13548  // a 32-bit target where SSE doesn't support i64->FP operations.
13549  if (Op0.getOpcode() == ISD::LOAD) {
13550    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
13551    EVT VT = Ld->getValueType(0);
13552    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
13553        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
13554        !XTLI->getSubtarget()->is64Bit() &&
13555        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
13556      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
13557                                          Ld->getChain(), Op0, DAG);
13558      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
13559      return FILDChain;
13560    }
13561  }
13562  return SDValue();
13563}
13564
13565// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
13566static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
13567                                 X86TargetLowering::DAGCombinerInfo &DCI) {
13568  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
13569  // the result is either zero or one (depending on the input carry bit).
13570  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
13571  if (X86::isZeroNode(N->getOperand(0)) &&
13572      X86::isZeroNode(N->getOperand(1)) &&
13573      // We don't have a good way to replace an EFLAGS use, so only do this when
13574      // dead right now.
13575      SDValue(N, 1).use_empty()) {
13576    DebugLoc DL = N->getDebugLoc();
13577    EVT VT = N->getValueType(0);
13578    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
13579    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
13580                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
13581                                           DAG.getConstant(X86::COND_B,MVT::i8),
13582                                           N->getOperand(2)),
13583                               DAG.getConstant(1, VT));
13584    return DCI.CombineTo(N, Res1, CarryOut);
13585  }
13586
13587  return SDValue();
13588}
13589
13590// fold (add Y, (sete  X, 0)) -> adc  0, Y
13591//      (add Y, (setne X, 0)) -> sbb -1, Y
13592//      (sub (sete  X, 0), Y) -> sbb  0, Y
13593//      (sub (setne X, 0), Y) -> adc -1, Y
13594static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
13595  DebugLoc DL = N->getDebugLoc();
13596
13597  // Look through ZExts.
13598  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
13599  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
13600    return SDValue();
13601
13602  SDValue SetCC = Ext.getOperand(0);
13603  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
13604    return SDValue();
13605
13606  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
13607  if (CC != X86::COND_E && CC != X86::COND_NE)
13608    return SDValue();
13609
13610  SDValue Cmp = SetCC.getOperand(1);
13611  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
13612      !X86::isZeroNode(Cmp.getOperand(1)) ||
13613      !Cmp.getOperand(0).getValueType().isInteger())
13614    return SDValue();
13615
13616  SDValue CmpOp0 = Cmp.getOperand(0);
13617  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
13618                               DAG.getConstant(1, CmpOp0.getValueType()));
13619
13620  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
13621  if (CC == X86::COND_NE)
13622    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
13623                       DL, OtherVal.getValueType(), OtherVal,
13624                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
13625  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
13626                     DL, OtherVal.getValueType(), OtherVal,
13627                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
13628}
13629
13630static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG) {
13631  SDValue Op0 = N->getOperand(0);
13632  SDValue Op1 = N->getOperand(1);
13633
13634  // X86 can't encode an immediate LHS of a sub. See if we can push the
13635  // negation into a preceding instruction.
13636  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
13637    // If the RHS of the sub is a XOR with one use and a constant, invert the
13638    // immediate. Then add one to the LHS of the sub so we can turn
13639    // X-Y -> X+~Y+1, saving one register.
13640    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
13641        isa<ConstantSDNode>(Op1.getOperand(1))) {
13642      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
13643      EVT VT = Op0.getValueType();
13644      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
13645                                   Op1.getOperand(0),
13646                                   DAG.getConstant(~XorC, VT));
13647      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
13648                         DAG.getConstant(C->getAPIntValue()+1, VT));
13649    }
13650  }
13651
13652  return OptimizeConditionalInDecrement(N, DAG);
13653}
13654
13655SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
13656                                             DAGCombinerInfo &DCI) const {
13657  SelectionDAG &DAG = DCI.DAG;
13658  switch (N->getOpcode()) {
13659  default: break;
13660  case ISD::EXTRACT_VECTOR_ELT:
13661    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
13662  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
13663  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
13664  case ISD::ADD:            return OptimizeConditionalInDecrement(N, DAG);
13665  case ISD::SUB:            return PerformSubCombine(N, DAG);
13666  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
13667  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
13668  case ISD::SHL:
13669  case ISD::SRA:
13670  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
13671  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
13672  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
13673  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
13674  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
13675  case X86ISD::FXOR:
13676  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
13677  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
13678  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
13679  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
13680  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
13681  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
13682  case X86ISD::SHUFPS:      // Handle all target specific shuffles
13683  case X86ISD::SHUFPD:
13684  case X86ISD::PALIGN:
13685  case X86ISD::PUNPCKHBW:
13686  case X86ISD::PUNPCKHWD:
13687  case X86ISD::PUNPCKHDQ:
13688  case X86ISD::PUNPCKHQDQ:
13689  case X86ISD::UNPCKHPS:
13690  case X86ISD::UNPCKHPD:
13691  case X86ISD::VUNPCKHPSY:
13692  case X86ISD::VUNPCKHPDY:
13693  case X86ISD::PUNPCKLBW:
13694  case X86ISD::PUNPCKLWD:
13695  case X86ISD::PUNPCKLDQ:
13696  case X86ISD::PUNPCKLQDQ:
13697  case X86ISD::UNPCKLPS:
13698  case X86ISD::UNPCKLPD:
13699  case X86ISD::VUNPCKLPSY:
13700  case X86ISD::VUNPCKLPDY:
13701  case X86ISD::MOVHLPS:
13702  case X86ISD::MOVLHPS:
13703  case X86ISD::PSHUFD:
13704  case X86ISD::PSHUFHW:
13705  case X86ISD::PSHUFLW:
13706  case X86ISD::MOVSS:
13707  case X86ISD::MOVSD:
13708  case X86ISD::VPERMILPS:
13709  case X86ISD::VPERMILPSY:
13710  case X86ISD::VPERMILPD:
13711  case X86ISD::VPERMILPDY:
13712  case X86ISD::VPERM2F128:
13713  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
13714  }
13715
13716  return SDValue();
13717}
13718
13719/// isTypeDesirableForOp - Return true if the target has native support for
13720/// the specified value type and it is 'desirable' to use the type for the
13721/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
13722/// instruction encodings are longer and some i16 instructions are slow.
13723bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
13724  if (!isTypeLegal(VT))
13725    return false;
13726  if (VT != MVT::i16)
13727    return true;
13728
13729  switch (Opc) {
13730  default:
13731    return true;
13732  case ISD::LOAD:
13733  case ISD::SIGN_EXTEND:
13734  case ISD::ZERO_EXTEND:
13735  case ISD::ANY_EXTEND:
13736  case ISD::SHL:
13737  case ISD::SRL:
13738  case ISD::SUB:
13739  case ISD::ADD:
13740  case ISD::MUL:
13741  case ISD::AND:
13742  case ISD::OR:
13743  case ISD::XOR:
13744    return false;
13745  }
13746}
13747
13748/// IsDesirableToPromoteOp - This method query the target whether it is
13749/// beneficial for dag combiner to promote the specified node. If true, it
13750/// should return the desired promotion type by reference.
13751bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
13752  EVT VT = Op.getValueType();
13753  if (VT != MVT::i16)
13754    return false;
13755
13756  bool Promote = false;
13757  bool Commute = false;
13758  switch (Op.getOpcode()) {
13759  default: break;
13760  case ISD::LOAD: {
13761    LoadSDNode *LD = cast<LoadSDNode>(Op);
13762    // If the non-extending load has a single use and it's not live out, then it
13763    // might be folded.
13764    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
13765                                                     Op.hasOneUse()*/) {
13766      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
13767             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
13768        // The only case where we'd want to promote LOAD (rather then it being
13769        // promoted as an operand is when it's only use is liveout.
13770        if (UI->getOpcode() != ISD::CopyToReg)
13771          return false;
13772      }
13773    }
13774    Promote = true;
13775    break;
13776  }
13777  case ISD::SIGN_EXTEND:
13778  case ISD::ZERO_EXTEND:
13779  case ISD::ANY_EXTEND:
13780    Promote = true;
13781    break;
13782  case ISD::SHL:
13783  case ISD::SRL: {
13784    SDValue N0 = Op.getOperand(0);
13785    // Look out for (store (shl (load), x)).
13786    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
13787      return false;
13788    Promote = true;
13789    break;
13790  }
13791  case ISD::ADD:
13792  case ISD::MUL:
13793  case ISD::AND:
13794  case ISD::OR:
13795  case ISD::XOR:
13796    Commute = true;
13797    // fallthrough
13798  case ISD::SUB: {
13799    SDValue N0 = Op.getOperand(0);
13800    SDValue N1 = Op.getOperand(1);
13801    if (!Commute && MayFoldLoad(N1))
13802      return false;
13803    // Avoid disabling potential load folding opportunities.
13804    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
13805      return false;
13806    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
13807      return false;
13808    Promote = true;
13809  }
13810  }
13811
13812  PVT = MVT::i32;
13813  return Promote;
13814}
13815
13816//===----------------------------------------------------------------------===//
13817//                           X86 Inline Assembly Support
13818//===----------------------------------------------------------------------===//
13819
13820bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
13821  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
13822
13823  std::string AsmStr = IA->getAsmString();
13824
13825  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
13826  SmallVector<StringRef, 4> AsmPieces;
13827  SplitString(AsmStr, AsmPieces, ";\n");
13828
13829  switch (AsmPieces.size()) {
13830  default: return false;
13831  case 1:
13832    AsmStr = AsmPieces[0];
13833    AsmPieces.clear();
13834    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
13835
13836    // FIXME: this should verify that we are targeting a 486 or better.  If not,
13837    // we will turn this bswap into something that will be lowered to logical ops
13838    // instead of emitting the bswap asm.  For now, we don't support 486 or lower
13839    // so don't worry about this.
13840    // bswap $0
13841    if (AsmPieces.size() == 2 &&
13842        (AsmPieces[0] == "bswap" ||
13843         AsmPieces[0] == "bswapq" ||
13844         AsmPieces[0] == "bswapl") &&
13845        (AsmPieces[1] == "$0" ||
13846         AsmPieces[1] == "${0:q}")) {
13847      // No need to check constraints, nothing other than the equivalent of
13848      // "=r,0" would be valid here.
13849      IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
13850      if (!Ty || Ty->getBitWidth() % 16 != 0)
13851        return false;
13852      return IntrinsicLowering::LowerToByteSwap(CI);
13853    }
13854    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
13855    if (CI->getType()->isIntegerTy(16) &&
13856        AsmPieces.size() == 3 &&
13857        (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
13858        AsmPieces[1] == "$$8," &&
13859        AsmPieces[2] == "${0:w}" &&
13860        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
13861      AsmPieces.clear();
13862      const std::string &ConstraintsStr = IA->getConstraintString();
13863      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
13864      std::sort(AsmPieces.begin(), AsmPieces.end());
13865      if (AsmPieces.size() == 4 &&
13866          AsmPieces[0] == "~{cc}" &&
13867          AsmPieces[1] == "~{dirflag}" &&
13868          AsmPieces[2] == "~{flags}" &&
13869          AsmPieces[3] == "~{fpsr}") {
13870        IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
13871        if (!Ty || Ty->getBitWidth() % 16 != 0)
13872          return false;
13873        return IntrinsicLowering::LowerToByteSwap(CI);
13874      }
13875    }
13876    break;
13877  case 3:
13878    if (CI->getType()->isIntegerTy(32) &&
13879        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
13880      SmallVector<StringRef, 4> Words;
13881      SplitString(AsmPieces[0], Words, " \t,");
13882      if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
13883          Words[2] == "${0:w}") {
13884        Words.clear();
13885        SplitString(AsmPieces[1], Words, " \t,");
13886        if (Words.size() == 3 && Words[0] == "rorl" && Words[1] == "$$16" &&
13887            Words[2] == "$0") {
13888          Words.clear();
13889          SplitString(AsmPieces[2], Words, " \t,");
13890          if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
13891              Words[2] == "${0:w}") {
13892            AsmPieces.clear();
13893            const std::string &ConstraintsStr = IA->getConstraintString();
13894            SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
13895            std::sort(AsmPieces.begin(), AsmPieces.end());
13896            if (AsmPieces.size() == 4 &&
13897                AsmPieces[0] == "~{cc}" &&
13898                AsmPieces[1] == "~{dirflag}" &&
13899                AsmPieces[2] == "~{flags}" &&
13900                AsmPieces[3] == "~{fpsr}") {
13901              IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
13902              if (!Ty || Ty->getBitWidth() % 16 != 0)
13903                return false;
13904              return IntrinsicLowering::LowerToByteSwap(CI);
13905            }
13906          }
13907        }
13908      }
13909    }
13910
13911    if (CI->getType()->isIntegerTy(64)) {
13912      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
13913      if (Constraints.size() >= 2 &&
13914          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
13915          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
13916        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
13917        SmallVector<StringRef, 4> Words;
13918        SplitString(AsmPieces[0], Words, " \t");
13919        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
13920          Words.clear();
13921          SplitString(AsmPieces[1], Words, " \t");
13922          if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
13923            Words.clear();
13924            SplitString(AsmPieces[2], Words, " \t,");
13925            if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
13926                Words[2] == "%edx") {
13927              IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
13928              if (!Ty || Ty->getBitWidth() % 16 != 0)
13929                return false;
13930              return IntrinsicLowering::LowerToByteSwap(CI);
13931            }
13932          }
13933        }
13934      }
13935    }
13936    break;
13937  }
13938  return false;
13939}
13940
13941
13942
13943/// getConstraintType - Given a constraint letter, return the type of
13944/// constraint it is for this target.
13945X86TargetLowering::ConstraintType
13946X86TargetLowering::getConstraintType(const std::string &Constraint) const {
13947  if (Constraint.size() == 1) {
13948    switch (Constraint[0]) {
13949    case 'R':
13950    case 'q':
13951    case 'Q':
13952    case 'f':
13953    case 't':
13954    case 'u':
13955    case 'y':
13956    case 'x':
13957    case 'Y':
13958    case 'l':
13959      return C_RegisterClass;
13960    case 'a':
13961    case 'b':
13962    case 'c':
13963    case 'd':
13964    case 'S':
13965    case 'D':
13966    case 'A':
13967      return C_Register;
13968    case 'I':
13969    case 'J':
13970    case 'K':
13971    case 'L':
13972    case 'M':
13973    case 'N':
13974    case 'G':
13975    case 'C':
13976    case 'e':
13977    case 'Z':
13978      return C_Other;
13979    default:
13980      break;
13981    }
13982  }
13983  return TargetLowering::getConstraintType(Constraint);
13984}
13985
13986/// Examine constraint type and operand type and determine a weight value.
13987/// This object must already have been set up with the operand type
13988/// and the current alternative constraint selected.
13989TargetLowering::ConstraintWeight
13990  X86TargetLowering::getSingleConstraintMatchWeight(
13991    AsmOperandInfo &info, const char *constraint) const {
13992  ConstraintWeight weight = CW_Invalid;
13993  Value *CallOperandVal = info.CallOperandVal;
13994    // If we don't have a value, we can't do a match,
13995    // but allow it at the lowest weight.
13996  if (CallOperandVal == NULL)
13997    return CW_Default;
13998  Type *type = CallOperandVal->getType();
13999  // Look at the constraint type.
14000  switch (*constraint) {
14001  default:
14002    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
14003  case 'R':
14004  case 'q':
14005  case 'Q':
14006  case 'a':
14007  case 'b':
14008  case 'c':
14009  case 'd':
14010  case 'S':
14011  case 'D':
14012  case 'A':
14013    if (CallOperandVal->getType()->isIntegerTy())
14014      weight = CW_SpecificReg;
14015    break;
14016  case 'f':
14017  case 't':
14018  case 'u':
14019      if (type->isFloatingPointTy())
14020        weight = CW_SpecificReg;
14021      break;
14022  case 'y':
14023      if (type->isX86_MMXTy() && Subtarget->hasMMX())
14024        weight = CW_SpecificReg;
14025      break;
14026  case 'x':
14027  case 'Y':
14028    if ((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasXMM())
14029      weight = CW_Register;
14030    break;
14031  case 'I':
14032    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
14033      if (C->getZExtValue() <= 31)
14034        weight = CW_Constant;
14035    }
14036    break;
14037  case 'J':
14038    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14039      if (C->getZExtValue() <= 63)
14040        weight = CW_Constant;
14041    }
14042    break;
14043  case 'K':
14044    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14045      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
14046        weight = CW_Constant;
14047    }
14048    break;
14049  case 'L':
14050    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14051      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
14052        weight = CW_Constant;
14053    }
14054    break;
14055  case 'M':
14056    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14057      if (C->getZExtValue() <= 3)
14058        weight = CW_Constant;
14059    }
14060    break;
14061  case 'N':
14062    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14063      if (C->getZExtValue() <= 0xff)
14064        weight = CW_Constant;
14065    }
14066    break;
14067  case 'G':
14068  case 'C':
14069    if (dyn_cast<ConstantFP>(CallOperandVal)) {
14070      weight = CW_Constant;
14071    }
14072    break;
14073  case 'e':
14074    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14075      if ((C->getSExtValue() >= -0x80000000LL) &&
14076          (C->getSExtValue() <= 0x7fffffffLL))
14077        weight = CW_Constant;
14078    }
14079    break;
14080  case 'Z':
14081    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14082      if (C->getZExtValue() <= 0xffffffff)
14083        weight = CW_Constant;
14084    }
14085    break;
14086  }
14087  return weight;
14088}
14089
14090/// LowerXConstraint - try to replace an X constraint, which matches anything,
14091/// with another that has more specific requirements based on the type of the
14092/// corresponding operand.
14093const char *X86TargetLowering::
14094LowerXConstraint(EVT ConstraintVT) const {
14095  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
14096  // 'f' like normal targets.
14097  if (ConstraintVT.isFloatingPoint()) {
14098    if (Subtarget->hasXMMInt())
14099      return "Y";
14100    if (Subtarget->hasXMM())
14101      return "x";
14102  }
14103
14104  return TargetLowering::LowerXConstraint(ConstraintVT);
14105}
14106
14107/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
14108/// vector.  If it is invalid, don't add anything to Ops.
14109void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
14110                                                     std::string &Constraint,
14111                                                     std::vector<SDValue>&Ops,
14112                                                     SelectionDAG &DAG) const {
14113  SDValue Result(0, 0);
14114
14115  // Only support length 1 constraints for now.
14116  if (Constraint.length() > 1) return;
14117
14118  char ConstraintLetter = Constraint[0];
14119  switch (ConstraintLetter) {
14120  default: break;
14121  case 'I':
14122    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14123      if (C->getZExtValue() <= 31) {
14124        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
14125        break;
14126      }
14127    }
14128    return;
14129  case 'J':
14130    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14131      if (C->getZExtValue() <= 63) {
14132        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
14133        break;
14134      }
14135    }
14136    return;
14137  case 'K':
14138    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14139      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
14140        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
14141        break;
14142      }
14143    }
14144    return;
14145  case 'N':
14146    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14147      if (C->getZExtValue() <= 255) {
14148        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
14149        break;
14150      }
14151    }
14152    return;
14153  case 'e': {
14154    // 32-bit signed value
14155    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14156      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
14157                                           C->getSExtValue())) {
14158        // Widen to 64 bits here to get it sign extended.
14159        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
14160        break;
14161      }
14162    // FIXME gcc accepts some relocatable values here too, but only in certain
14163    // memory models; it's complicated.
14164    }
14165    return;
14166  }
14167  case 'Z': {
14168    // 32-bit unsigned value
14169    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14170      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
14171                                           C->getZExtValue())) {
14172        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
14173        break;
14174      }
14175    }
14176    // FIXME gcc accepts some relocatable values here too, but only in certain
14177    // memory models; it's complicated.
14178    return;
14179  }
14180  case 'i': {
14181    // Literal immediates are always ok.
14182    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
14183      // Widen to 64 bits here to get it sign extended.
14184      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
14185      break;
14186    }
14187
14188    // In any sort of PIC mode addresses need to be computed at runtime by
14189    // adding in a register or some sort of table lookup.  These can't
14190    // be used as immediates.
14191    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
14192      return;
14193
14194    // If we are in non-pic codegen mode, we allow the address of a global (with
14195    // an optional displacement) to be used with 'i'.
14196    GlobalAddressSDNode *GA = 0;
14197    int64_t Offset = 0;
14198
14199    // Match either (GA), (GA+C), (GA+C1+C2), etc.
14200    while (1) {
14201      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
14202        Offset += GA->getOffset();
14203        break;
14204      } else if (Op.getOpcode() == ISD::ADD) {
14205        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
14206          Offset += C->getZExtValue();
14207          Op = Op.getOperand(0);
14208          continue;
14209        }
14210      } else if (Op.getOpcode() == ISD::SUB) {
14211        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
14212          Offset += -C->getZExtValue();
14213          Op = Op.getOperand(0);
14214          continue;
14215        }
14216      }
14217
14218      // Otherwise, this isn't something we can handle, reject it.
14219      return;
14220    }
14221
14222    const GlobalValue *GV = GA->getGlobal();
14223    // If we require an extra load to get this address, as in PIC mode, we
14224    // can't accept it.
14225    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
14226                                                        getTargetMachine())))
14227      return;
14228
14229    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
14230                                        GA->getValueType(0), Offset);
14231    break;
14232  }
14233  }
14234
14235  if (Result.getNode()) {
14236    Ops.push_back(Result);
14237    return;
14238  }
14239  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
14240}
14241
14242std::pair<unsigned, const TargetRegisterClass*>
14243X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
14244                                                EVT VT) const {
14245  // First, see if this is a constraint that directly corresponds to an LLVM
14246  // register class.
14247  if (Constraint.size() == 1) {
14248    // GCC Constraint Letters
14249    switch (Constraint[0]) {
14250    default: break;
14251      // TODO: Slight differences here in allocation order and leaving
14252      // RIP in the class. Do they matter any more here than they do
14253      // in the normal allocation?
14254    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
14255      if (Subtarget->is64Bit()) {
14256	if (VT == MVT::i32 || VT == MVT::f32)
14257	  return std::make_pair(0U, X86::GR32RegisterClass);
14258	else if (VT == MVT::i16)
14259	  return std::make_pair(0U, X86::GR16RegisterClass);
14260	else if (VT == MVT::i8 || VT == MVT::i1)
14261	  return std::make_pair(0U, X86::GR8RegisterClass);
14262	else if (VT == MVT::i64 || VT == MVT::f64)
14263	  return std::make_pair(0U, X86::GR64RegisterClass);
14264	break;
14265      }
14266      // 32-bit fallthrough
14267    case 'Q':   // Q_REGS
14268      if (VT == MVT::i32 || VT == MVT::f32)
14269	return std::make_pair(0U, X86::GR32_ABCDRegisterClass);
14270      else if (VT == MVT::i16)
14271	return std::make_pair(0U, X86::GR16_ABCDRegisterClass);
14272      else if (VT == MVT::i8 || VT == MVT::i1)
14273	return std::make_pair(0U, X86::GR8_ABCD_LRegisterClass);
14274      else if (VT == MVT::i64)
14275	return std::make_pair(0U, X86::GR64_ABCDRegisterClass);
14276      break;
14277    case 'r':   // GENERAL_REGS
14278    case 'l':   // INDEX_REGS
14279      if (VT == MVT::i8 || VT == MVT::i1)
14280        return std::make_pair(0U, X86::GR8RegisterClass);
14281      if (VT == MVT::i16)
14282        return std::make_pair(0U, X86::GR16RegisterClass);
14283      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
14284        return std::make_pair(0U, X86::GR32RegisterClass);
14285      return std::make_pair(0U, X86::GR64RegisterClass);
14286    case 'R':   // LEGACY_REGS
14287      if (VT == MVT::i8 || VT == MVT::i1)
14288        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
14289      if (VT == MVT::i16)
14290        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
14291      if (VT == MVT::i32 || !Subtarget->is64Bit())
14292        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
14293      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
14294    case 'f':  // FP Stack registers.
14295      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
14296      // value to the correct fpstack register class.
14297      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
14298        return std::make_pair(0U, X86::RFP32RegisterClass);
14299      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
14300        return std::make_pair(0U, X86::RFP64RegisterClass);
14301      return std::make_pair(0U, X86::RFP80RegisterClass);
14302    case 'y':   // MMX_REGS if MMX allowed.
14303      if (!Subtarget->hasMMX()) break;
14304      return std::make_pair(0U, X86::VR64RegisterClass);
14305    case 'Y':   // SSE_REGS if SSE2 allowed
14306      if (!Subtarget->hasXMMInt()) break;
14307      // FALL THROUGH.
14308    case 'x':   // SSE_REGS if SSE1 allowed
14309      if (!Subtarget->hasXMM()) break;
14310
14311      switch (VT.getSimpleVT().SimpleTy) {
14312      default: break;
14313      // Scalar SSE types.
14314      case MVT::f32:
14315      case MVT::i32:
14316        return std::make_pair(0U, X86::FR32RegisterClass);
14317      case MVT::f64:
14318      case MVT::i64:
14319        return std::make_pair(0U, X86::FR64RegisterClass);
14320      // Vector types.
14321      case MVT::v16i8:
14322      case MVT::v8i16:
14323      case MVT::v4i32:
14324      case MVT::v2i64:
14325      case MVT::v4f32:
14326      case MVT::v2f64:
14327        return std::make_pair(0U, X86::VR128RegisterClass);
14328      }
14329      break;
14330    }
14331  }
14332
14333  // Use the default implementation in TargetLowering to convert the register
14334  // constraint into a member of a register class.
14335  std::pair<unsigned, const TargetRegisterClass*> Res;
14336  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
14337
14338  // Not found as a standard register?
14339  if (Res.second == 0) {
14340    // Map st(0) -> st(7) -> ST0
14341    if (Constraint.size() == 7 && Constraint[0] == '{' &&
14342        tolower(Constraint[1]) == 's' &&
14343        tolower(Constraint[2]) == 't' &&
14344        Constraint[3] == '(' &&
14345        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
14346        Constraint[5] == ')' &&
14347        Constraint[6] == '}') {
14348
14349      Res.first = X86::ST0+Constraint[4]-'0';
14350      Res.second = X86::RFP80RegisterClass;
14351      return Res;
14352    }
14353
14354    // GCC allows "st(0)" to be called just plain "st".
14355    if (StringRef("{st}").equals_lower(Constraint)) {
14356      Res.first = X86::ST0;
14357      Res.second = X86::RFP80RegisterClass;
14358      return Res;
14359    }
14360
14361    // flags -> EFLAGS
14362    if (StringRef("{flags}").equals_lower(Constraint)) {
14363      Res.first = X86::EFLAGS;
14364      Res.second = X86::CCRRegisterClass;
14365      return Res;
14366    }
14367
14368    // 'A' means EAX + EDX.
14369    if (Constraint == "A") {
14370      Res.first = X86::EAX;
14371      Res.second = X86::GR32_ADRegisterClass;
14372      return Res;
14373    }
14374    return Res;
14375  }
14376
14377  // Otherwise, check to see if this is a register class of the wrong value
14378  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
14379  // turn into {ax},{dx}.
14380  if (Res.second->hasType(VT))
14381    return Res;   // Correct type already, nothing to do.
14382
14383  // All of the single-register GCC register classes map their values onto
14384  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
14385  // really want an 8-bit or 32-bit register, map to the appropriate register
14386  // class and return the appropriate register.
14387  if (Res.second == X86::GR16RegisterClass) {
14388    if (VT == MVT::i8) {
14389      unsigned DestReg = 0;
14390      switch (Res.first) {
14391      default: break;
14392      case X86::AX: DestReg = X86::AL; break;
14393      case X86::DX: DestReg = X86::DL; break;
14394      case X86::CX: DestReg = X86::CL; break;
14395      case X86::BX: DestReg = X86::BL; break;
14396      }
14397      if (DestReg) {
14398        Res.first = DestReg;
14399        Res.second = X86::GR8RegisterClass;
14400      }
14401    } else if (VT == MVT::i32) {
14402      unsigned DestReg = 0;
14403      switch (Res.first) {
14404      default: break;
14405      case X86::AX: DestReg = X86::EAX; break;
14406      case X86::DX: DestReg = X86::EDX; break;
14407      case X86::CX: DestReg = X86::ECX; break;
14408      case X86::BX: DestReg = X86::EBX; break;
14409      case X86::SI: DestReg = X86::ESI; break;
14410      case X86::DI: DestReg = X86::EDI; break;
14411      case X86::BP: DestReg = X86::EBP; break;
14412      case X86::SP: DestReg = X86::ESP; break;
14413      }
14414      if (DestReg) {
14415        Res.first = DestReg;
14416        Res.second = X86::GR32RegisterClass;
14417      }
14418    } else if (VT == MVT::i64) {
14419      unsigned DestReg = 0;
14420      switch (Res.first) {
14421      default: break;
14422      case X86::AX: DestReg = X86::RAX; break;
14423      case X86::DX: DestReg = X86::RDX; break;
14424      case X86::CX: DestReg = X86::RCX; break;
14425      case X86::BX: DestReg = X86::RBX; break;
14426      case X86::SI: DestReg = X86::RSI; break;
14427      case X86::DI: DestReg = X86::RDI; break;
14428      case X86::BP: DestReg = X86::RBP; break;
14429      case X86::SP: DestReg = X86::RSP; break;
14430      }
14431      if (DestReg) {
14432        Res.first = DestReg;
14433        Res.second = X86::GR64RegisterClass;
14434      }
14435    }
14436  } else if (Res.second == X86::FR32RegisterClass ||
14437             Res.second == X86::FR64RegisterClass ||
14438             Res.second == X86::VR128RegisterClass) {
14439    // Handle references to XMM physical registers that got mapped into the
14440    // wrong class.  This can happen with constraints like {xmm0} where the
14441    // target independent register mapper will just pick the first match it can
14442    // find, ignoring the required type.
14443    if (VT == MVT::f32)
14444      Res.second = X86::FR32RegisterClass;
14445    else if (VT == MVT::f64)
14446      Res.second = X86::FR64RegisterClass;
14447    else if (X86::VR128RegisterClass->hasType(VT))
14448      Res.second = X86::VR128RegisterClass;
14449  }
14450
14451  return Res;
14452}
14453