X86ISelLowering.cpp revision 2763538609fd455d63c192b320c73fb5d48c3e47
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86ShuffleDecode.h"
20#include "X86TargetMachine.h"
21#include "X86TargetObjectFile.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/PseudoSourceValue.h"
39#include "llvm/MC/MCAsmInfo.h"
40#include "llvm/MC/MCContext.h"
41#include "llvm/MC/MCExpr.h"
42#include "llvm/MC/MCSymbol.h"
43#include "llvm/ADT/BitVector.h"
44#include "llvm/ADT/SmallSet.h"
45#include "llvm/ADT/Statistic.h"
46#include "llvm/ADT/StringExtras.h"
47#include "llvm/ADT/VectorExtras.h"
48#include "llvm/Support/CommandLine.h"
49#include "llvm/Support/Debug.h"
50#include "llvm/Support/Dwarf.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/raw_ostream.h"
54using namespace llvm;
55using namespace dwarf;
56
57STATISTIC(NumTailCalls, "Number of tail calls");
58
59// Forward declarations.
60static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
61                       SDValue V2);
62
63static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
64  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
65  bool is64Bit = Subtarget->is64Bit();
66
67  if (Subtarget->isTargetEnvMacho()) {
68    if (is64Bit)
69      return new X8664_MachoTargetObjectFile();
70    return new TargetLoweringObjectFileMachO();
71  }
72
73  if (Subtarget->isTargetELF()) {
74    if (is64Bit)
75      return new X8664_ELFTargetObjectFile(TM);
76    return new X8632_ELFTargetObjectFile(TM);
77  }
78  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
79    return new TargetLoweringObjectFileCOFF();
80  llvm_unreachable("unknown subtarget type");
81}
82
83X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
84  : TargetLowering(TM, createTLOF(TM)) {
85  Subtarget = &TM.getSubtarget<X86Subtarget>();
86  X86ScalarSSEf64 = Subtarget->hasXMMInt();
87  X86ScalarSSEf32 = Subtarget->hasXMM();
88  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
89
90  RegInfo = TM.getRegisterInfo();
91  TD = getTargetData();
92
93  // Set up the TargetLowering object.
94  static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
95
96  // X86 is weird, it always uses i8 for shift amounts and setcc results.
97  setShiftAmountType(MVT::i8);
98  setBooleanContents(ZeroOrOneBooleanContent);
99  setSchedulingPreference(Sched::RegPressure);
100  setStackPointerRegisterToSaveRestore(X86StackPtr);
101
102  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
103    // Setup Windows compiler runtime calls.
104    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
105    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
106    setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2");
107    setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2");
108    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
109    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
110    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C);
111    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C);
112  }
113
114  if (Subtarget->isTargetDarwin()) {
115    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
116    setUseUnderscoreSetJmp(false);
117    setUseUnderscoreLongJmp(false);
118  } else if (Subtarget->isTargetMingw()) {
119    // MS runtime is weird: it exports _setjmp, but longjmp!
120    setUseUnderscoreSetJmp(true);
121    setUseUnderscoreLongJmp(false);
122  } else {
123    setUseUnderscoreSetJmp(true);
124    setUseUnderscoreLongJmp(true);
125  }
126
127  // Set up the register classes.
128  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
129  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
130  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
131  if (Subtarget->is64Bit())
132    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
133
134  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
135
136  // We don't accept any truncstore of integer registers.
137  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
138  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
139  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
140  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
141  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
142  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
143
144  // SETOEQ and SETUNE require checking two conditions.
145  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
146  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
147  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
148  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
149  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
150  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
151
152  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
153  // operation.
154  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
155  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
156  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
157
158  if (Subtarget->is64Bit()) {
159    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
160    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
161  } else if (!UseSoftFloat) {
162    // We have an algorithm for SSE2->double, and we turn this into a
163    // 64-bit FILD followed by conditional FADD for other targets.
164    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
165    // We have an algorithm for SSE2, and we turn this into a 64-bit
166    // FILD for other targets.
167    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
168  }
169
170  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
171  // this operation.
172  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
173  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
174
175  if (!UseSoftFloat) {
176    // SSE has no i16 to fp conversion, only i32
177    if (X86ScalarSSEf32) {
178      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
179      // f32 and f64 cases are Legal, f80 case is not
180      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
181    } else {
182      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
183      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
184    }
185  } else {
186    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
187    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
188  }
189
190  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
191  // are Legal, f80 is custom lowered.
192  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
193  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
194
195  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
196  // this operation.
197  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
198  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
199
200  if (X86ScalarSSEf32) {
201    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
202    // f32 and f64 cases are Legal, f80 case is not
203    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
204  } else {
205    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
206    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
207  }
208
209  // Handle FP_TO_UINT by promoting the destination to a larger signed
210  // conversion.
211  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
212  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
213  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
214
215  if (Subtarget->is64Bit()) {
216    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
217    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
218  } else if (!UseSoftFloat) {
219    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
220      // Expand FP_TO_UINT into a select.
221      // FIXME: We would like to use a Custom expander here eventually to do
222      // the optimal thing for SSE vs. the default expansion in the legalizer.
223      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
224    else
225      // With SSE3 we can use fisttpll to convert to a signed i64; without
226      // SSE, we're stuck with a fistpll.
227      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
228  }
229
230  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
231  if (!X86ScalarSSEf64) {
232    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
233    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
234    if (Subtarget->is64Bit()) {
235      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
236      // Without SSE, i64->f64 goes through memory.
237      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
238    }
239  }
240
241  // Scalar integer divide and remainder are lowered to use operations that
242  // produce two results, to match the available instructions. This exposes
243  // the two-result form to trivial CSE, which is able to combine x/y and x%y
244  // into a single instruction.
245  //
246  // Scalar integer multiply-high is also lowered to use two-result
247  // operations, to match the available instructions. However, plain multiply
248  // (low) operations are left as Legal, as there are single-result
249  // instructions for this in x86. Using the two-result multiply instructions
250  // when both high and low results are needed must be arranged by dagcombine.
251  for (unsigned i = 0, e = 4; i != e; ++i) {
252    MVT VT = IntVTs[i];
253    setOperationAction(ISD::MULHS, VT, Expand);
254    setOperationAction(ISD::MULHU, VT, Expand);
255    setOperationAction(ISD::SDIV, VT, Expand);
256    setOperationAction(ISD::UDIV, VT, Expand);
257    setOperationAction(ISD::SREM, VT, Expand);
258    setOperationAction(ISD::UREM, VT, Expand);
259
260    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
261    setOperationAction(ISD::ADDC, VT, Custom);
262    setOperationAction(ISD::ADDE, VT, Custom);
263    setOperationAction(ISD::SUBC, VT, Custom);
264    setOperationAction(ISD::SUBE, VT, Custom);
265  }
266
267  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
268  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
269  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
270  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
271  if (Subtarget->is64Bit())
272    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
273  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
274  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
275  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
276  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
277  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
278  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
279  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
280  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
281
282  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
283  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
284  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
285  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
286  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
287  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
288  if (Subtarget->is64Bit()) {
289    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
290    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
291  }
292
293  if (Subtarget->hasPOPCNT()) {
294    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
295  } else {
296    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
297    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
298    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
299    if (Subtarget->is64Bit())
300      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
301  }
302
303  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
304  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
305
306  // These should be promoted to a larger select which is supported.
307  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
308  // X86 wants to expand cmov itself.
309  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
310  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
311  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
312  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
313  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
314  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
315  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
316  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
317  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
318  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
319  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
320  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
321  if (Subtarget->is64Bit()) {
322    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
323    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
324  }
325  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
326
327  // Darwin ABI issue.
328  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
329  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
330  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
331  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
332  if (Subtarget->is64Bit())
333    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
334  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
335  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
336  if (Subtarget->is64Bit()) {
337    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
338    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
339    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
340    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
341    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
342  }
343  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
344  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
345  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
346  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
347  if (Subtarget->is64Bit()) {
348    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
349    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
350    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
351  }
352
353  if (Subtarget->hasXMM())
354    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
355
356  // We may not have a libcall for MEMBARRIER so we should lower this.
357  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
358
359  // On X86 and X86-64, atomic operations are lowered to locked instructions.
360  // Locked instructions, in turn, have implicit fence semantics (all memory
361  // operations are flushed before issuing the locked instruction, and they
362  // are not buffered), so we can fold away the common pattern of
363  // fence-atomic-fence.
364  setShouldFoldAtomicFences(true);
365
366  // Expand certain atomics
367  for (unsigned i = 0, e = 4; i != e; ++i) {
368    MVT VT = IntVTs[i];
369    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
370    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
371  }
372
373  if (!Subtarget->is64Bit()) {
374    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
375    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
376    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
377    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
378    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
379    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
380    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
381  }
382
383  // FIXME - use subtarget debug flags
384  if (!Subtarget->isTargetDarwin() &&
385      !Subtarget->isTargetELF() &&
386      !Subtarget->isTargetCygMing()) {
387    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
388  }
389
390  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
391  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
392  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
393  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
394  if (Subtarget->is64Bit()) {
395    setExceptionPointerRegister(X86::RAX);
396    setExceptionSelectorRegister(X86::RDX);
397  } else {
398    setExceptionPointerRegister(X86::EAX);
399    setExceptionSelectorRegister(X86::EDX);
400  }
401  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
402  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
403
404  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
405
406  setOperationAction(ISD::TRAP, MVT::Other, Legal);
407
408  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
409  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
410  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
411  if (Subtarget->is64Bit()) {
412    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
413    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
414  } else {
415    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
416    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
417  }
418
419  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
420  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
421  if (Subtarget->is64Bit())
422    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
423  if (Subtarget->isTargetCygMing() || Subtarget->isTargetWindows())
424    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
425  else
426    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
427
428  if (!UseSoftFloat && X86ScalarSSEf64) {
429    // f32 and f64 use SSE.
430    // Set up the FP register classes.
431    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
432    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
433
434    // Use ANDPD to simulate FABS.
435    setOperationAction(ISD::FABS , MVT::f64, Custom);
436    setOperationAction(ISD::FABS , MVT::f32, Custom);
437
438    // Use XORP to simulate FNEG.
439    setOperationAction(ISD::FNEG , MVT::f64, Custom);
440    setOperationAction(ISD::FNEG , MVT::f32, Custom);
441
442    // Use ANDPD and ORPD to simulate FCOPYSIGN.
443    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
444    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
445
446    // We don't support sin/cos/fmod
447    setOperationAction(ISD::FSIN , MVT::f64, Expand);
448    setOperationAction(ISD::FCOS , MVT::f64, Expand);
449    setOperationAction(ISD::FSIN , MVT::f32, Expand);
450    setOperationAction(ISD::FCOS , MVT::f32, Expand);
451
452    // Expand FP immediates into loads from the stack, except for the special
453    // cases we handle.
454    addLegalFPImmediate(APFloat(+0.0)); // xorpd
455    addLegalFPImmediate(APFloat(+0.0f)); // xorps
456  } else if (!UseSoftFloat && X86ScalarSSEf32) {
457    // Use SSE for f32, x87 for f64.
458    // Set up the FP register classes.
459    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
460    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
461
462    // Use ANDPS to simulate FABS.
463    setOperationAction(ISD::FABS , MVT::f32, Custom);
464
465    // Use XORP to simulate FNEG.
466    setOperationAction(ISD::FNEG , MVT::f32, Custom);
467
468    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
469
470    // Use ANDPS and ORPS to simulate FCOPYSIGN.
471    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
472    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
473
474    // We don't support sin/cos/fmod
475    setOperationAction(ISD::FSIN , MVT::f32, Expand);
476    setOperationAction(ISD::FCOS , MVT::f32, Expand);
477
478    // Special cases we handle for FP constants.
479    addLegalFPImmediate(APFloat(+0.0f)); // xorps
480    addLegalFPImmediate(APFloat(+0.0)); // FLD0
481    addLegalFPImmediate(APFloat(+1.0)); // FLD1
482    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
483    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
484
485    if (!UnsafeFPMath) {
486      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
487      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
488    }
489  } else if (!UseSoftFloat) {
490    // f32 and f64 in x87.
491    // Set up the FP register classes.
492    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
493    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
494
495    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
496    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
497    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
498    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
499
500    if (!UnsafeFPMath) {
501      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
502      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
503    }
504    addLegalFPImmediate(APFloat(+0.0)); // FLD0
505    addLegalFPImmediate(APFloat(+1.0)); // FLD1
506    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
507    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
508    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
509    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
510    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
511    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
512  }
513
514  // Long double always uses X87.
515  if (!UseSoftFloat) {
516    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
517    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
518    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
519    {
520      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
521      addLegalFPImmediate(TmpFlt);  // FLD0
522      TmpFlt.changeSign();
523      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
524
525      bool ignored;
526      APFloat TmpFlt2(+1.0);
527      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
528                      &ignored);
529      addLegalFPImmediate(TmpFlt2);  // FLD1
530      TmpFlt2.changeSign();
531      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
532    }
533
534    if (!UnsafeFPMath) {
535      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
536      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
537    }
538  }
539
540  // Always use a library call for pow.
541  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
542  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
543  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
544
545  setOperationAction(ISD::FLOG, MVT::f80, Expand);
546  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
547  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
548  setOperationAction(ISD::FEXP, MVT::f80, Expand);
549  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
550
551  // First set operation action for all vector types to either promote
552  // (for widening) or expand (for scalarization). Then we will selectively
553  // turn on ones that can be effectively codegen'd.
554  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
555       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
556    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
557    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
558    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
559    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
560    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
561    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
562    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
563    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
564    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
565    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
566    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
567    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
568    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
569    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
570    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
571    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
572    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
573    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
574    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
575    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
576    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
577    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
578    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
579    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
580    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
581    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
582    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
583    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
584    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
585    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
586    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
587    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
588    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
589    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
590    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
591    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
592    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
593    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
594    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
595    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
596    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
597    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
598    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
599    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
600    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
601    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
602    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
603    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
604    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
605    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
606    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
607    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
608    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
609    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
610    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
611         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
612      setTruncStoreAction((MVT::SimpleValueType)VT,
613                          (MVT::SimpleValueType)InnerVT, Expand);
614    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
615    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
616    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
617  }
618
619  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
620  // with -msoft-float, disable use of MMX as well.
621  if (!UseSoftFloat && Subtarget->hasMMX()) {
622    addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
623    // No operations on x86mmx supported, everything uses intrinsics.
624  }
625
626  // MMX-sized vectors (other than x86mmx) are expected to be expanded
627  // into smaller operations.
628  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
629  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
630  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
631  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
632  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
633  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
634  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
635  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
636  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
637  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
638  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
639  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
640  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
641  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
642  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
643  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
644  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
645  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
646  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
647  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
648  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
649  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
650  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
651  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
652  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
653  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
654  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
655  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
656  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
657
658  if (!UseSoftFloat && Subtarget->hasXMM()) {
659    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
660
661    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
662    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
663    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
664    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
665    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
666    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
667    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
668    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
669    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
670    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
671    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
672    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
673  }
674
675  if (!UseSoftFloat && Subtarget->hasXMMInt()) {
676    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
677
678    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
679    // registers cannot be used even for integer operations.
680    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
681    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
682    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
683    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
684
685    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
686    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
687    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
688    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
689    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
690    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
691    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
692    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
693    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
694    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
695    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
696    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
697    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
698    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
699    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
700    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
701
702    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
703    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
704    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
705    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
706
707    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
708    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
709    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
710    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
711    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
712
713    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
714    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
715    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
716    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
717    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
718
719    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
720    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
721      EVT VT = (MVT::SimpleValueType)i;
722      // Do not attempt to custom lower non-power-of-2 vectors
723      if (!isPowerOf2_32(VT.getVectorNumElements()))
724        continue;
725      // Do not attempt to custom lower non-128-bit vectors
726      if (!VT.is128BitVector())
727        continue;
728      setOperationAction(ISD::BUILD_VECTOR,
729                         VT.getSimpleVT().SimpleTy, Custom);
730      setOperationAction(ISD::VECTOR_SHUFFLE,
731                         VT.getSimpleVT().SimpleTy, Custom);
732      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
733                         VT.getSimpleVT().SimpleTy, Custom);
734    }
735
736    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
737    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
738    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
739    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
740    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
741    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
742
743    if (Subtarget->is64Bit()) {
744      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
745      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
746    }
747
748    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
749    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
750      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
751      EVT VT = SVT;
752
753      // Do not attempt to promote non-128-bit vectors
754      if (!VT.is128BitVector())
755        continue;
756
757      setOperationAction(ISD::AND,    SVT, Promote);
758      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
759      setOperationAction(ISD::OR,     SVT, Promote);
760      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
761      setOperationAction(ISD::XOR,    SVT, Promote);
762      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
763      setOperationAction(ISD::LOAD,   SVT, Promote);
764      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
765      setOperationAction(ISD::SELECT, SVT, Promote);
766      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
767    }
768
769    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
770
771    // Custom lower v2i64 and v2f64 selects.
772    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
773    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
774    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
775    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
776
777    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
778    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
779  }
780
781  if (Subtarget->hasSSE41()) {
782    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
783    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
784    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
785    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
786    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
787    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
788    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
789    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
790    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
791    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
792
793    // FIXME: Do we need to handle scalar-to-vector here?
794    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
795
796    // Can turn SHL into an integer multiply.
797    setOperationAction(ISD::SHL,                MVT::v4i32, Custom);
798    setOperationAction(ISD::SHL,                MVT::v16i8, Custom);
799
800    // i8 and i16 vectors are custom , because the source register and source
801    // source memory operand types are not the same width.  f32 vectors are
802    // custom since the immediate controlling the insert encodes additional
803    // information.
804    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
805    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
806    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
807    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
808
809    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
810    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
811    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
812    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
813
814    if (Subtarget->is64Bit()) {
815      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
816      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
817    }
818  }
819
820  if (Subtarget->hasSSE42())
821    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
822
823  if (!UseSoftFloat && Subtarget->hasAVX()) {
824    addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
825    addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
826    addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
827    addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
828    addRegisterClass(MVT::v32i8, X86::VR256RegisterClass);
829
830    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
831    setOperationAction(ISD::LOAD,               MVT::v8i32, Legal);
832    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
833    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
834
835    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
836    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
837    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
838    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
839    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
840    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
841
842    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
843    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
844    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
845    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
846    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
847    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
848
849    // Custom lower build_vector, vector_shuffle, scalar_to_vector,
850    // insert_vector_elt extract_subvector and extract_vector_elt for
851    // 256-bit types.
852    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
853         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE;
854         ++i) {
855      MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
856      // Do not attempt to custom lower non-256-bit vectors
857      if (!isPowerOf2_32(MVT(VT).getVectorNumElements())
858          || (MVT(VT).getSizeInBits() < 256))
859        continue;
860      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
861      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
862      setOperationAction(ISD::INSERT_VECTOR_ELT,  VT, Custom);
863      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
864      setOperationAction(ISD::SCALAR_TO_VECTOR,   VT, Custom);
865    }
866    // Custom-lower insert_subvector and extract_subvector based on
867    // the result type.
868    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
869         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE;
870         ++i) {
871      MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
872      // Do not attempt to custom lower non-256-bit vectors
873      if (!isPowerOf2_32(MVT(VT).getVectorNumElements()))
874        continue;
875
876      if (MVT(VT).getSizeInBits() == 128) {
877        setOperationAction(ISD::EXTRACT_SUBVECTOR,  VT, Custom);
878      }
879      else if (MVT(VT).getSizeInBits() == 256) {
880        setOperationAction(ISD::INSERT_SUBVECTOR,  VT, Custom);
881      }
882    }
883
884    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
885    // Don't promote loads because we need them for VPERM vector index versions.
886
887    for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
888         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE;
889         VT++) {
890      if (!isPowerOf2_32(MVT((MVT::SimpleValueType)VT).getVectorNumElements())
891          || (MVT((MVT::SimpleValueType)VT).getSizeInBits() < 256))
892        continue;
893      setOperationAction(ISD::AND,    (MVT::SimpleValueType)VT, Promote);
894      AddPromotedToType (ISD::AND,    (MVT::SimpleValueType)VT, MVT::v4i64);
895      setOperationAction(ISD::OR,     (MVT::SimpleValueType)VT, Promote);
896      AddPromotedToType (ISD::OR,     (MVT::SimpleValueType)VT, MVT::v4i64);
897      setOperationAction(ISD::XOR,    (MVT::SimpleValueType)VT, Promote);
898      AddPromotedToType (ISD::XOR,    (MVT::SimpleValueType)VT, MVT::v4i64);
899      //setOperationAction(ISD::LOAD,   (MVT::SimpleValueType)VT, Promote);
900      //AddPromotedToType (ISD::LOAD,   (MVT::SimpleValueType)VT, MVT::v4i64);
901      setOperationAction(ISD::SELECT, (MVT::SimpleValueType)VT, Promote);
902      AddPromotedToType (ISD::SELECT, (MVT::SimpleValueType)VT, MVT::v4i64);
903    }
904  }
905
906  // We want to custom lower some of our intrinsics.
907  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
908
909
910  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
911  // handle type legalization for these operations here.
912  //
913  // FIXME: We really should do custom legalization for addition and
914  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
915  // than generic legalization for 64-bit multiplication-with-overflow, though.
916  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
917    // Add/Sub/Mul with overflow operations are custom lowered.
918    MVT VT = IntVTs[i];
919    setOperationAction(ISD::SADDO, VT, Custom);
920    setOperationAction(ISD::UADDO, VT, Custom);
921    setOperationAction(ISD::SSUBO, VT, Custom);
922    setOperationAction(ISD::USUBO, VT, Custom);
923    setOperationAction(ISD::SMULO, VT, Custom);
924    setOperationAction(ISD::UMULO, VT, Custom);
925  }
926
927  // There are no 8-bit 3-address imul/mul instructions
928  setOperationAction(ISD::SMULO, MVT::i8, Expand);
929  setOperationAction(ISD::UMULO, MVT::i8, Expand);
930
931  if (!Subtarget->is64Bit()) {
932    // These libcalls are not available in 32-bit.
933    setLibcallName(RTLIB::SHL_I128, 0);
934    setLibcallName(RTLIB::SRL_I128, 0);
935    setLibcallName(RTLIB::SRA_I128, 0);
936  }
937
938  // We have target-specific dag combine patterns for the following nodes:
939  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
940  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
941  setTargetDAGCombine(ISD::BUILD_VECTOR);
942  setTargetDAGCombine(ISD::SELECT);
943  setTargetDAGCombine(ISD::SHL);
944  setTargetDAGCombine(ISD::SRA);
945  setTargetDAGCombine(ISD::SRL);
946  setTargetDAGCombine(ISD::OR);
947  setTargetDAGCombine(ISD::AND);
948  setTargetDAGCombine(ISD::ADD);
949  setTargetDAGCombine(ISD::SUB);
950  setTargetDAGCombine(ISD::STORE);
951  setTargetDAGCombine(ISD::ZERO_EXTEND);
952  if (Subtarget->is64Bit())
953    setTargetDAGCombine(ISD::MUL);
954
955  computeRegisterProperties();
956
957  // On Darwin, -Os means optimize for size without hurting performance,
958  // do not reduce the limit.
959  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
960  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
961  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
962  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
963  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
964  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
965  setPrefLoopAlignment(16);
966  benefitFromCodePlacementOpt = true;
967}
968
969
970MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
971  return MVT::i8;
972}
973
974
975/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
976/// the desired ByVal argument alignment.
977static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
978  if (MaxAlign == 16)
979    return;
980  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
981    if (VTy->getBitWidth() == 128)
982      MaxAlign = 16;
983  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
984    unsigned EltAlign = 0;
985    getMaxByValAlign(ATy->getElementType(), EltAlign);
986    if (EltAlign > MaxAlign)
987      MaxAlign = EltAlign;
988  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
989    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
990      unsigned EltAlign = 0;
991      getMaxByValAlign(STy->getElementType(i), EltAlign);
992      if (EltAlign > MaxAlign)
993        MaxAlign = EltAlign;
994      if (MaxAlign == 16)
995        break;
996    }
997  }
998  return;
999}
1000
1001/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1002/// function arguments in the caller parameter area. For X86, aggregates
1003/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1004/// are at 4-byte boundaries.
1005unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1006  if (Subtarget->is64Bit()) {
1007    // Max of 8 and alignment of type.
1008    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1009    if (TyAlign > 8)
1010      return TyAlign;
1011    return 8;
1012  }
1013
1014  unsigned Align = 4;
1015  if (Subtarget->hasXMM())
1016    getMaxByValAlign(Ty, Align);
1017  return Align;
1018}
1019
1020/// getOptimalMemOpType - Returns the target specific optimal type for load
1021/// and store operations as a result of memset, memcpy, and memmove
1022/// lowering. If DstAlign is zero that means it's safe to destination
1023/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1024/// means there isn't a need to check it against alignment requirement,
1025/// probably because the source does not need to be loaded. If
1026/// 'NonScalarIntSafe' is true, that means it's safe to return a
1027/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1028/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1029/// constant so it does not need to be loaded.
1030/// It returns EVT::Other if the type should be determined using generic
1031/// target-independent logic.
1032EVT
1033X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1034                                       unsigned DstAlign, unsigned SrcAlign,
1035                                       bool NonScalarIntSafe,
1036                                       bool MemcpyStrSrc,
1037                                       MachineFunction &MF) const {
1038  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1039  // linux.  This is because the stack realignment code can't handle certain
1040  // cases like PR2962.  This should be removed when PR2962 is fixed.
1041  const Function *F = MF.getFunction();
1042  if (NonScalarIntSafe &&
1043      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1044    if (Size >= 16 &&
1045        (Subtarget->isUnalignedMemAccessFast() ||
1046         ((DstAlign == 0 || DstAlign >= 16) &&
1047          (SrcAlign == 0 || SrcAlign >= 16))) &&
1048        Subtarget->getStackAlignment() >= 16) {
1049      if (Subtarget->hasSSE2())
1050        return MVT::v4i32;
1051      if (Subtarget->hasSSE1())
1052        return MVT::v4f32;
1053    } else if (!MemcpyStrSrc && Size >= 8 &&
1054               !Subtarget->is64Bit() &&
1055               Subtarget->getStackAlignment() >= 8 &&
1056               Subtarget->hasXMMInt()) {
1057      // Do not use f64 to lower memcpy if source is string constant. It's
1058      // better to use i32 to avoid the loads.
1059      return MVT::f64;
1060    }
1061  }
1062  if (Subtarget->is64Bit() && Size >= 8)
1063    return MVT::i64;
1064  return MVT::i32;
1065}
1066
1067/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1068/// current function.  The returned value is a member of the
1069/// MachineJumpTableInfo::JTEntryKind enum.
1070unsigned X86TargetLowering::getJumpTableEncoding() const {
1071  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1072  // symbol.
1073  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1074      Subtarget->isPICStyleGOT())
1075    return MachineJumpTableInfo::EK_Custom32;
1076
1077  // Otherwise, use the normal jump table encoding heuristics.
1078  return TargetLowering::getJumpTableEncoding();
1079}
1080
1081const MCExpr *
1082X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1083                                             const MachineBasicBlock *MBB,
1084                                             unsigned uid,MCContext &Ctx) const{
1085  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1086         Subtarget->isPICStyleGOT());
1087  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1088  // entries.
1089  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1090                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1091}
1092
1093/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1094/// jumptable.
1095SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1096                                                    SelectionDAG &DAG) const {
1097  if (!Subtarget->is64Bit())
1098    // This doesn't have DebugLoc associated with it, but is not really the
1099    // same as a Register.
1100    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1101  return Table;
1102}
1103
1104/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1105/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1106/// MCExpr.
1107const MCExpr *X86TargetLowering::
1108getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1109                             MCContext &Ctx) const {
1110  // X86-64 uses RIP relative addressing based on the jump table label.
1111  if (Subtarget->isPICStyleRIPRel())
1112    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1113
1114  // Otherwise, the reference is relative to the PIC base.
1115  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1116}
1117
1118/// getFunctionAlignment - Return the Log2 alignment of this function.
1119unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const {
1120  return F->hasFnAttr(Attribute::OptimizeForSize) ? 0 : 4;
1121}
1122
1123// FIXME: Why this routine is here? Move to RegInfo!
1124std::pair<const TargetRegisterClass*, uint8_t>
1125X86TargetLowering::findRepresentativeClass(EVT VT) const{
1126  const TargetRegisterClass *RRC = 0;
1127  uint8_t Cost = 1;
1128  switch (VT.getSimpleVT().SimpleTy) {
1129  default:
1130    return TargetLowering::findRepresentativeClass(VT);
1131  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1132    RRC = (Subtarget->is64Bit()
1133           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1134    break;
1135  case MVT::x86mmx:
1136    RRC = X86::VR64RegisterClass;
1137    break;
1138  case MVT::f32: case MVT::f64:
1139  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1140  case MVT::v4f32: case MVT::v2f64:
1141  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1142  case MVT::v4f64:
1143    RRC = X86::VR128RegisterClass;
1144    break;
1145  }
1146  return std::make_pair(RRC, Cost);
1147}
1148
1149// FIXME: Why this routine is here? Move to RegInfo!
1150unsigned
1151X86TargetLowering::getRegPressureLimit(const TargetRegisterClass *RC,
1152                                       MachineFunction &MF) const {
1153  const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
1154
1155  unsigned FPDiff = TFI->hasFP(MF) ? 1 : 0;
1156  switch (RC->getID()) {
1157  default:
1158    return 0;
1159  case X86::GR32RegClassID:
1160    return 4 - FPDiff;
1161  case X86::GR64RegClassID:
1162    return 8 - FPDiff;
1163  case X86::VR128RegClassID:
1164    return Subtarget->is64Bit() ? 10 : 4;
1165  case X86::VR64RegClassID:
1166    return 4;
1167  }
1168}
1169
1170bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1171                                               unsigned &Offset) const {
1172  if (!Subtarget->isTargetLinux())
1173    return false;
1174
1175  if (Subtarget->is64Bit()) {
1176    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1177    Offset = 0x28;
1178    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1179      AddressSpace = 256;
1180    else
1181      AddressSpace = 257;
1182  } else {
1183    // %gs:0x14 on i386
1184    Offset = 0x14;
1185    AddressSpace = 256;
1186  }
1187  return true;
1188}
1189
1190
1191//===----------------------------------------------------------------------===//
1192//               Return Value Calling Convention Implementation
1193//===----------------------------------------------------------------------===//
1194
1195#include "X86GenCallingConv.inc"
1196
1197bool
1198X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1199                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1200                        LLVMContext &Context) const {
1201  SmallVector<CCValAssign, 16> RVLocs;
1202  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1203                 RVLocs, Context);
1204  return CCInfo.CheckReturn(Outs, RetCC_X86);
1205}
1206
1207SDValue
1208X86TargetLowering::LowerReturn(SDValue Chain,
1209                               CallingConv::ID CallConv, bool isVarArg,
1210                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1211                               const SmallVectorImpl<SDValue> &OutVals,
1212                               DebugLoc dl, SelectionDAG &DAG) const {
1213  MachineFunction &MF = DAG.getMachineFunction();
1214  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1215
1216  SmallVector<CCValAssign, 16> RVLocs;
1217  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1218                 RVLocs, *DAG.getContext());
1219  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1220
1221  // Add the regs to the liveout set for the function.
1222  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1223  for (unsigned i = 0; i != RVLocs.size(); ++i)
1224    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1225      MRI.addLiveOut(RVLocs[i].getLocReg());
1226
1227  SDValue Flag;
1228
1229  SmallVector<SDValue, 6> RetOps;
1230  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1231  // Operand #1 = Bytes To Pop
1232  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1233                   MVT::i16));
1234
1235  // Copy the result values into the output registers.
1236  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1237    CCValAssign &VA = RVLocs[i];
1238    assert(VA.isRegLoc() && "Can only return in registers!");
1239    SDValue ValToCopy = OutVals[i];
1240    EVT ValVT = ValToCopy.getValueType();
1241
1242    // If this is x86-64, and we disabled SSE, we can't return FP values,
1243    // or SSE or MMX vectors.
1244    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1245         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1246          (Subtarget->is64Bit() && !Subtarget->hasXMM())) {
1247      report_fatal_error("SSE register return with SSE disabled");
1248    }
1249    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1250    // llvm-gcc has never done it right and no one has noticed, so this
1251    // should be OK for now.
1252    if (ValVT == MVT::f64 &&
1253        (Subtarget->is64Bit() && !Subtarget->hasXMMInt()))
1254      report_fatal_error("SSE2 register return with SSE2 disabled");
1255
1256    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1257    // the RET instruction and handled by the FP Stackifier.
1258    if (VA.getLocReg() == X86::ST0 ||
1259        VA.getLocReg() == X86::ST1) {
1260      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1261      // change the value to the FP stack register class.
1262      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1263        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1264      RetOps.push_back(ValToCopy);
1265      // Don't emit a copytoreg.
1266      continue;
1267    }
1268
1269    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1270    // which is returned in RAX / RDX.
1271    if (Subtarget->is64Bit()) {
1272      if (ValVT == MVT::x86mmx) {
1273        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1274          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1275          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1276                                  ValToCopy);
1277          // If we don't have SSE2 available, convert to v4f32 so the generated
1278          // register is legal.
1279          if (!Subtarget->hasSSE2())
1280            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1281        }
1282      }
1283    }
1284
1285    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1286    Flag = Chain.getValue(1);
1287  }
1288
1289  // The x86-64 ABI for returning structs by value requires that we copy
1290  // the sret argument into %rax for the return. We saved the argument into
1291  // a virtual register in the entry block, so now we copy the value out
1292  // and into %rax.
1293  if (Subtarget->is64Bit() &&
1294      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1295    MachineFunction &MF = DAG.getMachineFunction();
1296    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1297    unsigned Reg = FuncInfo->getSRetReturnReg();
1298    assert(Reg &&
1299           "SRetReturnReg should have been set in LowerFormalArguments().");
1300    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1301
1302    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1303    Flag = Chain.getValue(1);
1304
1305    // RAX now acts like a return value.
1306    MRI.addLiveOut(X86::RAX);
1307  }
1308
1309  RetOps[0] = Chain;  // Update chain.
1310
1311  // Add the flag if we have it.
1312  if (Flag.getNode())
1313    RetOps.push_back(Flag);
1314
1315  return DAG.getNode(X86ISD::RET_FLAG, dl,
1316                     MVT::Other, &RetOps[0], RetOps.size());
1317}
1318
1319bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const {
1320  if (N->getNumValues() != 1)
1321    return false;
1322  if (!N->hasNUsesOfValue(1, 0))
1323    return false;
1324
1325  SDNode *Copy = *N->use_begin();
1326  if (Copy->getOpcode() != ISD::CopyToReg &&
1327      Copy->getOpcode() != ISD::FP_EXTEND)
1328    return false;
1329
1330  bool HasRet = false;
1331  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1332       UI != UE; ++UI) {
1333    if (UI->getOpcode() != X86ISD::RET_FLAG)
1334      return false;
1335    HasRet = true;
1336  }
1337
1338  return HasRet;
1339}
1340
1341/// LowerCallResult - Lower the result values of a call into the
1342/// appropriate copies out of appropriate physical registers.
1343///
1344SDValue
1345X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1346                                   CallingConv::ID CallConv, bool isVarArg,
1347                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1348                                   DebugLoc dl, SelectionDAG &DAG,
1349                                   SmallVectorImpl<SDValue> &InVals) const {
1350
1351  // Assign locations to each value returned by this call.
1352  SmallVector<CCValAssign, 16> RVLocs;
1353  bool Is64Bit = Subtarget->is64Bit();
1354  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1355                 RVLocs, *DAG.getContext());
1356  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1357
1358  // Copy all of the result registers out of their specified physreg.
1359  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1360    CCValAssign &VA = RVLocs[i];
1361    EVT CopyVT = VA.getValVT();
1362
1363    // If this is x86-64, and we disabled SSE, we can't return FP values
1364    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1365        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasXMM())) {
1366      report_fatal_error("SSE register return with SSE disabled");
1367    }
1368
1369    SDValue Val;
1370
1371    // If this is a call to a function that returns an fp value on the floating
1372    // point stack, we must guarantee the the value is popped from the stack, so
1373    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1374    // if the return value is not used. We use the FpGET_ST0 instructions
1375    // instead.
1376    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1377      // If we prefer to use the value in xmm registers, copy it out as f80 and
1378      // use a truncate to move it from fp stack reg to xmm reg.
1379      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1380      bool isST0 = VA.getLocReg() == X86::ST0;
1381      unsigned Opc = 0;
1382      if (CopyVT == MVT::f32) Opc = isST0 ? X86::FpGET_ST0_32:X86::FpGET_ST1_32;
1383      if (CopyVT == MVT::f64) Opc = isST0 ? X86::FpGET_ST0_64:X86::FpGET_ST1_64;
1384      if (CopyVT == MVT::f80) Opc = isST0 ? X86::FpGET_ST0_80:X86::FpGET_ST1_80;
1385      SDValue Ops[] = { Chain, InFlag };
1386      Chain = SDValue(DAG.getMachineNode(Opc, dl, CopyVT, MVT::Other, MVT::Glue,
1387                                         Ops, 2), 1);
1388      Val = Chain.getValue(0);
1389
1390      // Round the f80 to the right size, which also moves it to the appropriate
1391      // xmm register.
1392      if (CopyVT != VA.getValVT())
1393        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1394                          // This truncation won't change the value.
1395                          DAG.getIntPtrConstant(1));
1396    } else if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
1397      // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1398      if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1399        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1400                                   MVT::v2i64, InFlag).getValue(1);
1401        Val = Chain.getValue(0);
1402        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1403                          Val, DAG.getConstant(0, MVT::i64));
1404      } else {
1405        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1406                                   MVT::i64, InFlag).getValue(1);
1407        Val = Chain.getValue(0);
1408      }
1409      Val = DAG.getNode(ISD::BITCAST, dl, CopyVT, Val);
1410    } else {
1411      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1412                                 CopyVT, InFlag).getValue(1);
1413      Val = Chain.getValue(0);
1414    }
1415    InFlag = Chain.getValue(2);
1416    InVals.push_back(Val);
1417  }
1418
1419  return Chain;
1420}
1421
1422
1423//===----------------------------------------------------------------------===//
1424//                C & StdCall & Fast Calling Convention implementation
1425//===----------------------------------------------------------------------===//
1426//  StdCall calling convention seems to be standard for many Windows' API
1427//  routines and around. It differs from C calling convention just a little:
1428//  callee should clean up the stack, not caller. Symbols should be also
1429//  decorated in some fancy way :) It doesn't support any vector arguments.
1430//  For info on fast calling convention see Fast Calling Convention (tail call)
1431//  implementation LowerX86_32FastCCCallTo.
1432
1433/// CallIsStructReturn - Determines whether a call uses struct return
1434/// semantics.
1435static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1436  if (Outs.empty())
1437    return false;
1438
1439  return Outs[0].Flags.isSRet();
1440}
1441
1442/// ArgsAreStructReturn - Determines whether a function uses struct
1443/// return semantics.
1444static bool
1445ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1446  if (Ins.empty())
1447    return false;
1448
1449  return Ins[0].Flags.isSRet();
1450}
1451
1452/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1453/// by "Src" to address "Dst" with size and alignment information specified by
1454/// the specific parameter attribute. The copy will be passed as a byval
1455/// function parameter.
1456static SDValue
1457CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1458                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1459                          DebugLoc dl) {
1460  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1461
1462  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1463                       /*isVolatile*/false, /*AlwaysInline=*/true,
1464                       MachinePointerInfo(), MachinePointerInfo());
1465}
1466
1467/// IsTailCallConvention - Return true if the calling convention is one that
1468/// supports tail call optimization.
1469static bool IsTailCallConvention(CallingConv::ID CC) {
1470  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1471}
1472
1473/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1474/// a tailcall target by changing its ABI.
1475static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1476  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1477}
1478
1479SDValue
1480X86TargetLowering::LowerMemArgument(SDValue Chain,
1481                                    CallingConv::ID CallConv,
1482                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1483                                    DebugLoc dl, SelectionDAG &DAG,
1484                                    const CCValAssign &VA,
1485                                    MachineFrameInfo *MFI,
1486                                    unsigned i) const {
1487  // Create the nodes corresponding to a load from this parameter slot.
1488  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1489  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1490  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1491  EVT ValVT;
1492
1493  // If value is passed by pointer we have address passed instead of the value
1494  // itself.
1495  if (VA.getLocInfo() == CCValAssign::Indirect)
1496    ValVT = VA.getLocVT();
1497  else
1498    ValVT = VA.getValVT();
1499
1500  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1501  // changed with more analysis.
1502  // In case of tail call optimization mark all arguments mutable. Since they
1503  // could be overwritten by lowering of arguments in case of a tail call.
1504  if (Flags.isByVal()) {
1505    int FI = MFI->CreateFixedObject(Flags.getByValSize(),
1506                                    VA.getLocMemOffset(), isImmutable);
1507    return DAG.getFrameIndex(FI, getPointerTy());
1508  } else {
1509    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1510                                    VA.getLocMemOffset(), isImmutable);
1511    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1512    return DAG.getLoad(ValVT, dl, Chain, FIN,
1513                       MachinePointerInfo::getFixedStack(FI),
1514                       false, false, 0);
1515  }
1516}
1517
1518SDValue
1519X86TargetLowering::LowerFormalArguments(SDValue Chain,
1520                                        CallingConv::ID CallConv,
1521                                        bool isVarArg,
1522                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1523                                        DebugLoc dl,
1524                                        SelectionDAG &DAG,
1525                                        SmallVectorImpl<SDValue> &InVals)
1526                                          const {
1527  MachineFunction &MF = DAG.getMachineFunction();
1528  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1529
1530  const Function* Fn = MF.getFunction();
1531  if (Fn->hasExternalLinkage() &&
1532      Subtarget->isTargetCygMing() &&
1533      Fn->getName() == "main")
1534    FuncInfo->setForceFramePointer(true);
1535
1536  MachineFrameInfo *MFI = MF.getFrameInfo();
1537  bool Is64Bit = Subtarget->is64Bit();
1538  bool IsWin64 = Subtarget->isTargetWin64();
1539
1540  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1541         "Var args not supported with calling convention fastcc or ghc");
1542
1543  // Assign locations to all of the incoming arguments.
1544  SmallVector<CCValAssign, 16> ArgLocs;
1545  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1546                 ArgLocs, *DAG.getContext());
1547  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1548
1549  unsigned LastVal = ~0U;
1550  SDValue ArgValue;
1551  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1552    CCValAssign &VA = ArgLocs[i];
1553    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1554    // places.
1555    assert(VA.getValNo() != LastVal &&
1556           "Don't support value assigned to multiple locs yet");
1557    LastVal = VA.getValNo();
1558
1559    if (VA.isRegLoc()) {
1560      EVT RegVT = VA.getLocVT();
1561      TargetRegisterClass *RC = NULL;
1562      if (RegVT == MVT::i32)
1563        RC = X86::GR32RegisterClass;
1564      else if (Is64Bit && RegVT == MVT::i64)
1565        RC = X86::GR64RegisterClass;
1566      else if (RegVT == MVT::f32)
1567        RC = X86::FR32RegisterClass;
1568      else if (RegVT == MVT::f64)
1569        RC = X86::FR64RegisterClass;
1570      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1571        RC = X86::VR256RegisterClass;
1572      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1573        RC = X86::VR128RegisterClass;
1574      else if (RegVT == MVT::x86mmx)
1575        RC = X86::VR64RegisterClass;
1576      else
1577        llvm_unreachable("Unknown argument type!");
1578
1579      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC, dl);
1580      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1581
1582      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1583      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1584      // right size.
1585      if (VA.getLocInfo() == CCValAssign::SExt)
1586        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1587                               DAG.getValueType(VA.getValVT()));
1588      else if (VA.getLocInfo() == CCValAssign::ZExt)
1589        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1590                               DAG.getValueType(VA.getValVT()));
1591      else if (VA.getLocInfo() == CCValAssign::BCvt)
1592        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1593
1594      if (VA.isExtInLoc()) {
1595        // Handle MMX values passed in XMM regs.
1596        if (RegVT.isVector()) {
1597          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1598                                 ArgValue);
1599        } else
1600          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1601      }
1602    } else {
1603      assert(VA.isMemLoc());
1604      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1605    }
1606
1607    // If value is passed via pointer - do a load.
1608    if (VA.getLocInfo() == CCValAssign::Indirect)
1609      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1610                             MachinePointerInfo(), false, false, 0);
1611
1612    InVals.push_back(ArgValue);
1613  }
1614
1615  // The x86-64 ABI for returning structs by value requires that we copy
1616  // the sret argument into %rax for the return. Save the argument into
1617  // a virtual register so that we can access it from the return points.
1618  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1619    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1620    unsigned Reg = FuncInfo->getSRetReturnReg();
1621    if (!Reg) {
1622      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1623      FuncInfo->setSRetReturnReg(Reg);
1624    }
1625    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1626    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1627  }
1628
1629  unsigned StackSize = CCInfo.getNextStackOffset();
1630  // Align stack specially for tail calls.
1631  if (FuncIsMadeTailCallSafe(CallConv))
1632    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1633
1634  // If the function takes variable number of arguments, make a frame index for
1635  // the start of the first vararg value... for expansion of llvm.va_start.
1636  if (isVarArg) {
1637    if (!IsWin64 && (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1638                    CallConv != CallingConv::X86_ThisCall))) {
1639      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1640    }
1641    if (Is64Bit) {
1642      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1643
1644      // FIXME: We should really autogenerate these arrays
1645      static const unsigned GPR64ArgRegsWin64[] = {
1646        X86::RCX, X86::RDX, X86::R8,  X86::R9
1647      };
1648      static const unsigned GPR64ArgRegs64Bit[] = {
1649        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1650      };
1651      static const unsigned XMMArgRegs64Bit[] = {
1652        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1653        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1654      };
1655      const unsigned *GPR64ArgRegs;
1656      unsigned NumXMMRegs = 0;
1657
1658      if (IsWin64) {
1659        // The XMM registers which might contain var arg parameters are shadowed
1660        // in their paired GPR.  So we only need to save the GPR to their home
1661        // slots.
1662        TotalNumIntRegs = 4;
1663        GPR64ArgRegs = GPR64ArgRegsWin64;
1664      } else {
1665        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1666        GPR64ArgRegs = GPR64ArgRegs64Bit;
1667
1668        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit, TotalNumXMMRegs);
1669      }
1670      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1671                                                       TotalNumIntRegs);
1672
1673      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1674      assert(!(NumXMMRegs && !Subtarget->hasXMM()) &&
1675             "SSE register cannot be used when SSE is disabled!");
1676      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1677             "SSE register cannot be used when SSE is disabled!");
1678      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasXMM())
1679        // Kernel mode asks for SSE to be disabled, so don't push them
1680        // on the stack.
1681        TotalNumXMMRegs = 0;
1682
1683      if (IsWin64) {
1684        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1685        // Get to the caller-allocated home save location.  Add 8 to account
1686        // for the return address.
1687        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1688        FuncInfo->setRegSaveFrameIndex(
1689          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1690        FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1691      } else {
1692        // For X86-64, if there are vararg parameters that are passed via
1693        // registers, then we must store them to their spots on the stack so they
1694        // may be loaded by deferencing the result of va_next.
1695        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1696        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1697        FuncInfo->setRegSaveFrameIndex(
1698          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1699                               false));
1700      }
1701
1702      // Store the integer parameter registers.
1703      SmallVector<SDValue, 8> MemOps;
1704      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1705                                        getPointerTy());
1706      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1707      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1708        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1709                                  DAG.getIntPtrConstant(Offset));
1710        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1711                                     X86::GR64RegisterClass, dl);
1712        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1713        SDValue Store =
1714          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1715                       MachinePointerInfo::getFixedStack(
1716                         FuncInfo->getRegSaveFrameIndex(), Offset),
1717                       false, false, 0);
1718        MemOps.push_back(Store);
1719        Offset += 8;
1720      }
1721
1722      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1723        // Now store the XMM (fp + vector) parameter registers.
1724        SmallVector<SDValue, 11> SaveXMMOps;
1725        SaveXMMOps.push_back(Chain);
1726
1727        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass, dl);
1728        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1729        SaveXMMOps.push_back(ALVal);
1730
1731        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1732                               FuncInfo->getRegSaveFrameIndex()));
1733        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1734                               FuncInfo->getVarArgsFPOffset()));
1735
1736        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1737          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
1738                                       X86::VR128RegisterClass, dl);
1739          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1740          SaveXMMOps.push_back(Val);
1741        }
1742        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1743                                     MVT::Other,
1744                                     &SaveXMMOps[0], SaveXMMOps.size()));
1745      }
1746
1747      if (!MemOps.empty())
1748        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1749                            &MemOps[0], MemOps.size());
1750    }
1751  }
1752
1753  // Some CCs need callee pop.
1754  if (Subtarget->IsCalleePop(isVarArg, CallConv)) {
1755    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
1756  } else {
1757    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
1758    // If this is an sret function, the return should pop the hidden pointer.
1759    if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
1760      FuncInfo->setBytesToPopOnReturn(4);
1761  }
1762
1763  if (!Is64Bit) {
1764    // RegSaveFrameIndex is X86-64 only.
1765    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
1766    if (CallConv == CallingConv::X86_FastCall ||
1767        CallConv == CallingConv::X86_ThisCall)
1768      // fastcc functions can't have varargs.
1769      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
1770  }
1771
1772  return Chain;
1773}
1774
1775SDValue
1776X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1777                                    SDValue StackPtr, SDValue Arg,
1778                                    DebugLoc dl, SelectionDAG &DAG,
1779                                    const CCValAssign &VA,
1780                                    ISD::ArgFlagsTy Flags) const {
1781  const unsigned FirstStackArgOffset = (Subtarget->isTargetWin64() ? 32 : 0);
1782  unsigned LocMemOffset = FirstStackArgOffset + VA.getLocMemOffset();
1783  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1784  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1785  if (Flags.isByVal())
1786    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1787
1788  return DAG.getStore(Chain, dl, Arg, PtrOff,
1789                      MachinePointerInfo::getStack(LocMemOffset),
1790                      false, false, 0);
1791}
1792
1793/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1794/// optimization is performed and it is required.
1795SDValue
1796X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1797                                           SDValue &OutRetAddr, SDValue Chain,
1798                                           bool IsTailCall, bool Is64Bit,
1799                                           int FPDiff, DebugLoc dl) const {
1800  // Adjust the Return address stack slot.
1801  EVT VT = getPointerTy();
1802  OutRetAddr = getReturnAddressFrameIndex(DAG);
1803
1804  // Load the "old" Return address.
1805  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
1806                           false, false, 0);
1807  return SDValue(OutRetAddr.getNode(), 1);
1808}
1809
1810/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1811/// optimization is performed and it is required (FPDiff!=0).
1812static SDValue
1813EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1814                         SDValue Chain, SDValue RetAddrFrIdx,
1815                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1816  // Store the return address to the appropriate stack slot.
1817  if (!FPDiff) return Chain;
1818  // Calculate the new stack slot for the return address.
1819  int SlotSize = Is64Bit ? 8 : 4;
1820  int NewReturnAddrFI =
1821    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
1822  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1823  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1824  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1825                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
1826                       false, false, 0);
1827  return Chain;
1828}
1829
1830SDValue
1831X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1832                             CallingConv::ID CallConv, bool isVarArg,
1833                             bool &isTailCall,
1834                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1835                             const SmallVectorImpl<SDValue> &OutVals,
1836                             const SmallVectorImpl<ISD::InputArg> &Ins,
1837                             DebugLoc dl, SelectionDAG &DAG,
1838                             SmallVectorImpl<SDValue> &InVals) const {
1839  MachineFunction &MF = DAG.getMachineFunction();
1840  bool Is64Bit        = Subtarget->is64Bit();
1841  bool IsStructRet    = CallIsStructReturn(Outs);
1842  bool IsSibcall      = false;
1843
1844  if (isTailCall) {
1845    // Check if it's really possible to do a tail call.
1846    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1847                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1848                                                   Outs, OutVals, Ins, DAG);
1849
1850    // Sibcalls are automatically detected tailcalls which do not require
1851    // ABI changes.
1852    if (!GuaranteedTailCallOpt && isTailCall)
1853      IsSibcall = true;
1854
1855    if (isTailCall)
1856      ++NumTailCalls;
1857  }
1858
1859  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1860         "Var args not supported with calling convention fastcc or ghc");
1861
1862  // Analyze operands of the call, assigning locations to each operand.
1863  SmallVector<CCValAssign, 16> ArgLocs;
1864  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1865                 ArgLocs, *DAG.getContext());
1866  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
1867
1868  // Get a count of how many bytes are to be pushed on the stack.
1869  unsigned NumBytes = CCInfo.getNextStackOffset();
1870  if (IsSibcall)
1871    // This is a sibcall. The memory operands are available in caller's
1872    // own caller's stack.
1873    NumBytes = 0;
1874  else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
1875    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1876
1877  int FPDiff = 0;
1878  if (isTailCall && !IsSibcall) {
1879    // Lower arguments at fp - stackoffset + fpdiff.
1880    unsigned NumBytesCallerPushed =
1881      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1882    FPDiff = NumBytesCallerPushed - NumBytes;
1883
1884    // Set the delta of movement of the returnaddr stackslot.
1885    // But only set if delta is greater than previous delta.
1886    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1887      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1888  }
1889
1890  if (!IsSibcall)
1891    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1892
1893  SDValue RetAddrFrIdx;
1894  // Load return adress for tail calls.
1895  if (isTailCall && FPDiff)
1896    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
1897                                    Is64Bit, FPDiff, dl);
1898
1899  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1900  SmallVector<SDValue, 8> MemOpChains;
1901  SDValue StackPtr;
1902
1903  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1904  // of tail call optimization arguments are handle later.
1905  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1906    CCValAssign &VA = ArgLocs[i];
1907    EVT RegVT = VA.getLocVT();
1908    SDValue Arg = OutVals[i];
1909    ISD::ArgFlagsTy Flags = Outs[i].Flags;
1910    bool isByVal = Flags.isByVal();
1911
1912    // Promote the value if needed.
1913    switch (VA.getLocInfo()) {
1914    default: llvm_unreachable("Unknown loc info!");
1915    case CCValAssign::Full: break;
1916    case CCValAssign::SExt:
1917      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
1918      break;
1919    case CCValAssign::ZExt:
1920      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
1921      break;
1922    case CCValAssign::AExt:
1923      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
1924        // Special case: passing MMX values in XMM registers.
1925        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
1926        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
1927        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
1928      } else
1929        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
1930      break;
1931    case CCValAssign::BCvt:
1932      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
1933      break;
1934    case CCValAssign::Indirect: {
1935      // Store the argument.
1936      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
1937      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1938      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
1939                           MachinePointerInfo::getFixedStack(FI),
1940                           false, false, 0);
1941      Arg = SpillSlot;
1942      break;
1943    }
1944    }
1945
1946    if (VA.isRegLoc()) {
1947      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1948      if (isVarArg && Subtarget->isTargetWin64()) {
1949        // Win64 ABI requires argument XMM reg to be copied to the corresponding
1950        // shadow reg if callee is a varargs function.
1951        unsigned ShadowReg = 0;
1952        switch (VA.getLocReg()) {
1953        case X86::XMM0: ShadowReg = X86::RCX; break;
1954        case X86::XMM1: ShadowReg = X86::RDX; break;
1955        case X86::XMM2: ShadowReg = X86::R8; break;
1956        case X86::XMM3: ShadowReg = X86::R9; break;
1957        }
1958        if (ShadowReg)
1959          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
1960      }
1961    } else if (!IsSibcall && (!isTailCall || isByVal)) {
1962      assert(VA.isMemLoc());
1963      if (StackPtr.getNode() == 0)
1964        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
1965      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1966                                             dl, DAG, VA, Flags));
1967    }
1968  }
1969
1970  if (!MemOpChains.empty())
1971    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1972                        &MemOpChains[0], MemOpChains.size());
1973
1974  // Build a sequence of copy-to-reg nodes chained together with token chain
1975  // and flag operands which copy the outgoing args into registers.
1976  SDValue InFlag;
1977  // Tail call byval lowering might overwrite argument registers so in case of
1978  // tail call optimization the copies to registers are lowered later.
1979  if (!isTailCall)
1980    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1981      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1982                               RegsToPass[i].second, InFlag);
1983      InFlag = Chain.getValue(1);
1984    }
1985
1986  if (Subtarget->isPICStyleGOT()) {
1987    // ELF / PIC requires GOT in the EBX register before function calls via PLT
1988    // GOT pointer.
1989    if (!isTailCall) {
1990      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
1991                               DAG.getNode(X86ISD::GlobalBaseReg,
1992                                           DebugLoc(), getPointerTy()),
1993                               InFlag);
1994      InFlag = Chain.getValue(1);
1995    } else {
1996      // If we are tail calling and generating PIC/GOT style code load the
1997      // address of the callee into ECX. The value in ecx is used as target of
1998      // the tail jump. This is done to circumvent the ebx/callee-saved problem
1999      // for tail calls on PIC/GOT architectures. Normally we would just put the
2000      // address of GOT into ebx and then call target@PLT. But for tail calls
2001      // ebx would be restored (since ebx is callee saved) before jumping to the
2002      // target@PLT.
2003
2004      // Note: The actual moving to ECX is done further down.
2005      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2006      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2007          !G->getGlobal()->hasProtectedVisibility())
2008        Callee = LowerGlobalAddress(Callee, DAG);
2009      else if (isa<ExternalSymbolSDNode>(Callee))
2010        Callee = LowerExternalSymbol(Callee, DAG);
2011    }
2012  }
2013
2014  if (Is64Bit && isVarArg && !Subtarget->isTargetWin64()) {
2015    // From AMD64 ABI document:
2016    // For calls that may call functions that use varargs or stdargs
2017    // (prototype-less calls or calls to functions containing ellipsis (...) in
2018    // the declaration) %al is used as hidden argument to specify the number
2019    // of SSE registers used. The contents of %al do not need to match exactly
2020    // the number of registers, but must be an ubound on the number of SSE
2021    // registers used and is in the range 0 - 8 inclusive.
2022
2023    // Count the number of XMM registers allocated.
2024    static const unsigned XMMArgRegs[] = {
2025      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2026      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2027    };
2028    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2029    assert((Subtarget->hasXMM() || !NumXMMRegs)
2030           && "SSE registers cannot be used when SSE is disabled");
2031
2032    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2033                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2034    InFlag = Chain.getValue(1);
2035  }
2036
2037
2038  // For tail calls lower the arguments to the 'real' stack slot.
2039  if (isTailCall) {
2040    // Force all the incoming stack arguments to be loaded from the stack
2041    // before any new outgoing arguments are stored to the stack, because the
2042    // outgoing stack slots may alias the incoming argument stack slots, and
2043    // the alias isn't otherwise explicit. This is slightly more conservative
2044    // than necessary, because it means that each store effectively depends
2045    // on every argument instead of just those arguments it would clobber.
2046    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2047
2048    SmallVector<SDValue, 8> MemOpChains2;
2049    SDValue FIN;
2050    int FI = 0;
2051    // Do not flag preceeding copytoreg stuff together with the following stuff.
2052    InFlag = SDValue();
2053    if (GuaranteedTailCallOpt) {
2054      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2055        CCValAssign &VA = ArgLocs[i];
2056        if (VA.isRegLoc())
2057          continue;
2058        assert(VA.isMemLoc());
2059        SDValue Arg = OutVals[i];
2060        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2061        // Create frame index.
2062        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2063        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2064        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2065        FIN = DAG.getFrameIndex(FI, getPointerTy());
2066
2067        if (Flags.isByVal()) {
2068          // Copy relative to framepointer.
2069          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2070          if (StackPtr.getNode() == 0)
2071            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2072                                          getPointerTy());
2073          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2074
2075          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2076                                                           ArgChain,
2077                                                           Flags, DAG, dl));
2078        } else {
2079          // Store relative to framepointer.
2080          MemOpChains2.push_back(
2081            DAG.getStore(ArgChain, dl, Arg, FIN,
2082                         MachinePointerInfo::getFixedStack(FI),
2083                         false, false, 0));
2084        }
2085      }
2086    }
2087
2088    if (!MemOpChains2.empty())
2089      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2090                          &MemOpChains2[0], MemOpChains2.size());
2091
2092    // Copy arguments to their registers.
2093    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2094      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2095                               RegsToPass[i].second, InFlag);
2096      InFlag = Chain.getValue(1);
2097    }
2098    InFlag =SDValue();
2099
2100    // Store the return address to the appropriate stack slot.
2101    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2102                                     FPDiff, dl);
2103  }
2104
2105  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2106    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2107    // In the 64-bit large code model, we have to make all calls
2108    // through a register, since the call instruction's 32-bit
2109    // pc-relative offset may not be large enough to hold the whole
2110    // address.
2111  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2112    // If the callee is a GlobalAddress node (quite common, every direct call
2113    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2114    // it.
2115
2116    // We should use extra load for direct calls to dllimported functions in
2117    // non-JIT mode.
2118    const GlobalValue *GV = G->getGlobal();
2119    if (!GV->hasDLLImportLinkage()) {
2120      unsigned char OpFlags = 0;
2121
2122      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2123      // external symbols most go through the PLT in PIC mode.  If the symbol
2124      // has hidden or protected visibility, or if it is static or local, then
2125      // we don't need to use the PLT - we can directly call it.
2126      if (Subtarget->isTargetELF() &&
2127          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2128          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2129        OpFlags = X86II::MO_PLT;
2130      } else if (Subtarget->isPICStyleStubAny() &&
2131                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2132                 Subtarget->getDarwinVers() < 9) {
2133        // PC-relative references to external symbols should go through $stub,
2134        // unless we're building with the leopard linker or later, which
2135        // automatically synthesizes these stubs.
2136        OpFlags = X86II::MO_DARWIN_STUB;
2137      }
2138
2139      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2140                                          G->getOffset(), OpFlags);
2141    }
2142  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2143    unsigned char OpFlags = 0;
2144
2145    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2146    // external symbols should go through the PLT.
2147    if (Subtarget->isTargetELF() &&
2148        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2149      OpFlags = X86II::MO_PLT;
2150    } else if (Subtarget->isPICStyleStubAny() &&
2151               Subtarget->getDarwinVers() < 9) {
2152      // PC-relative references to external symbols should go through $stub,
2153      // unless we're building with the leopard linker or later, which
2154      // automatically synthesizes these stubs.
2155      OpFlags = X86II::MO_DARWIN_STUB;
2156    }
2157
2158    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2159                                         OpFlags);
2160  }
2161
2162  // Returns a chain & a flag for retval copy to use.
2163  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2164  SmallVector<SDValue, 8> Ops;
2165
2166  if (!IsSibcall && isTailCall) {
2167    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2168                           DAG.getIntPtrConstant(0, true), InFlag);
2169    InFlag = Chain.getValue(1);
2170  }
2171
2172  Ops.push_back(Chain);
2173  Ops.push_back(Callee);
2174
2175  if (isTailCall)
2176    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2177
2178  // Add argument registers to the end of the list so that they are known live
2179  // into the call.
2180  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2181    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2182                                  RegsToPass[i].second.getValueType()));
2183
2184  // Add an implicit use GOT pointer in EBX.
2185  if (!isTailCall && Subtarget->isPICStyleGOT())
2186    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2187
2188  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2189  if (Is64Bit && isVarArg && !Subtarget->isTargetWin64())
2190    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2191
2192  if (InFlag.getNode())
2193    Ops.push_back(InFlag);
2194
2195  if (isTailCall) {
2196    // We used to do:
2197    //// If this is the first return lowered for this function, add the regs
2198    //// to the liveout set for the function.
2199    // This isn't right, although it's probably harmless on x86; liveouts
2200    // should be computed from returns not tail calls.  Consider a void
2201    // function making a tail call to a function returning int.
2202    return DAG.getNode(X86ISD::TC_RETURN, dl,
2203                       NodeTys, &Ops[0], Ops.size());
2204  }
2205
2206  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2207  InFlag = Chain.getValue(1);
2208
2209  // Create the CALLSEQ_END node.
2210  unsigned NumBytesForCalleeToPush;
2211  if (Subtarget->IsCalleePop(isVarArg, CallConv))
2212    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2213  else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2214    // If this is a call to a struct-return function, the callee
2215    // pops the hidden struct pointer, so we have to push it back.
2216    // This is common for Darwin/X86, Linux & Mingw32 targets.
2217    NumBytesForCalleeToPush = 4;
2218  else
2219    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2220
2221  // Returns a flag for retval copy to use.
2222  if (!IsSibcall) {
2223    Chain = DAG.getCALLSEQ_END(Chain,
2224                               DAG.getIntPtrConstant(NumBytes, true),
2225                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2226                                                     true),
2227                               InFlag);
2228    InFlag = Chain.getValue(1);
2229  }
2230
2231  // Handle result values, copying them out of physregs into vregs that we
2232  // return.
2233  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2234                         Ins, dl, DAG, InVals);
2235}
2236
2237
2238//===----------------------------------------------------------------------===//
2239//                Fast Calling Convention (tail call) implementation
2240//===----------------------------------------------------------------------===//
2241
2242//  Like std call, callee cleans arguments, convention except that ECX is
2243//  reserved for storing the tail called function address. Only 2 registers are
2244//  free for argument passing (inreg). Tail call optimization is performed
2245//  provided:
2246//                * tailcallopt is enabled
2247//                * caller/callee are fastcc
2248//  On X86_64 architecture with GOT-style position independent code only local
2249//  (within module) calls are supported at the moment.
2250//  To keep the stack aligned according to platform abi the function
2251//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2252//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2253//  If a tail called function callee has more arguments than the caller the
2254//  caller needs to make sure that there is room to move the RETADDR to. This is
2255//  achieved by reserving an area the size of the argument delta right after the
2256//  original REtADDR, but before the saved framepointer or the spilled registers
2257//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2258//  stack layout:
2259//    arg1
2260//    arg2
2261//    RETADDR
2262//    [ new RETADDR
2263//      move area ]
2264//    (possible EBP)
2265//    ESI
2266//    EDI
2267//    local1 ..
2268
2269/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2270/// for a 16 byte align requirement.
2271unsigned
2272X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2273                                               SelectionDAG& DAG) const {
2274  MachineFunction &MF = DAG.getMachineFunction();
2275  const TargetMachine &TM = MF.getTarget();
2276  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2277  unsigned StackAlignment = TFI.getStackAlignment();
2278  uint64_t AlignMask = StackAlignment - 1;
2279  int64_t Offset = StackSize;
2280  uint64_t SlotSize = TD->getPointerSize();
2281  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2282    // Number smaller than 12 so just add the difference.
2283    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2284  } else {
2285    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2286    Offset = ((~AlignMask) & Offset) + StackAlignment +
2287      (StackAlignment-SlotSize);
2288  }
2289  return Offset;
2290}
2291
2292/// MatchingStackOffset - Return true if the given stack call argument is
2293/// already available in the same position (relatively) of the caller's
2294/// incoming argument stack.
2295static
2296bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2297                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2298                         const X86InstrInfo *TII) {
2299  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2300  int FI = INT_MAX;
2301  if (Arg.getOpcode() == ISD::CopyFromReg) {
2302    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2303    if (!TargetRegisterInfo::isVirtualRegister(VR))
2304      return false;
2305    MachineInstr *Def = MRI->getVRegDef(VR);
2306    if (!Def)
2307      return false;
2308    if (!Flags.isByVal()) {
2309      if (!TII->isLoadFromStackSlot(Def, FI))
2310        return false;
2311    } else {
2312      unsigned Opcode = Def->getOpcode();
2313      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2314          Def->getOperand(1).isFI()) {
2315        FI = Def->getOperand(1).getIndex();
2316        Bytes = Flags.getByValSize();
2317      } else
2318        return false;
2319    }
2320  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2321    if (Flags.isByVal())
2322      // ByVal argument is passed in as a pointer but it's now being
2323      // dereferenced. e.g.
2324      // define @foo(%struct.X* %A) {
2325      //   tail call @bar(%struct.X* byval %A)
2326      // }
2327      return false;
2328    SDValue Ptr = Ld->getBasePtr();
2329    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2330    if (!FINode)
2331      return false;
2332    FI = FINode->getIndex();
2333  } else
2334    return false;
2335
2336  assert(FI != INT_MAX);
2337  if (!MFI->isFixedObjectIndex(FI))
2338    return false;
2339  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2340}
2341
2342/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2343/// for tail call optimization. Targets which want to do tail call
2344/// optimization should implement this function.
2345bool
2346X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2347                                                     CallingConv::ID CalleeCC,
2348                                                     bool isVarArg,
2349                                                     bool isCalleeStructRet,
2350                                                     bool isCallerStructRet,
2351                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2352                                    const SmallVectorImpl<SDValue> &OutVals,
2353                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2354                                                     SelectionDAG& DAG) const {
2355  if (!IsTailCallConvention(CalleeCC) &&
2356      CalleeCC != CallingConv::C)
2357    return false;
2358
2359  // If -tailcallopt is specified, make fastcc functions tail-callable.
2360  const MachineFunction &MF = DAG.getMachineFunction();
2361  const Function *CallerF = DAG.getMachineFunction().getFunction();
2362  CallingConv::ID CallerCC = CallerF->getCallingConv();
2363  bool CCMatch = CallerCC == CalleeCC;
2364
2365  if (GuaranteedTailCallOpt) {
2366    if (IsTailCallConvention(CalleeCC) && CCMatch)
2367      return true;
2368    return false;
2369  }
2370
2371  // Look for obvious safe cases to perform tail call optimization that do not
2372  // require ABI changes. This is what gcc calls sibcall.
2373
2374  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2375  // emit a special epilogue.
2376  if (RegInfo->needsStackRealignment(MF))
2377    return false;
2378
2379  // Do not sibcall optimize vararg calls unless the call site is not passing
2380  // any arguments.
2381  if (isVarArg && !Outs.empty())
2382    return false;
2383
2384  // Also avoid sibcall optimization if either caller or callee uses struct
2385  // return semantics.
2386  if (isCalleeStructRet || isCallerStructRet)
2387    return false;
2388
2389  // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2390  // Therefore if it's not used by the call it is not safe to optimize this into
2391  // a sibcall.
2392  bool Unused = false;
2393  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2394    if (!Ins[i].Used) {
2395      Unused = true;
2396      break;
2397    }
2398  }
2399  if (Unused) {
2400    SmallVector<CCValAssign, 16> RVLocs;
2401    CCState CCInfo(CalleeCC, false, getTargetMachine(),
2402                   RVLocs, *DAG.getContext());
2403    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2404    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2405      CCValAssign &VA = RVLocs[i];
2406      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2407        return false;
2408    }
2409  }
2410
2411  // If the calling conventions do not match, then we'd better make sure the
2412  // results are returned in the same way as what the caller expects.
2413  if (!CCMatch) {
2414    SmallVector<CCValAssign, 16> RVLocs1;
2415    CCState CCInfo1(CalleeCC, false, getTargetMachine(),
2416                    RVLocs1, *DAG.getContext());
2417    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2418
2419    SmallVector<CCValAssign, 16> RVLocs2;
2420    CCState CCInfo2(CallerCC, false, getTargetMachine(),
2421                    RVLocs2, *DAG.getContext());
2422    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2423
2424    if (RVLocs1.size() != RVLocs2.size())
2425      return false;
2426    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2427      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2428        return false;
2429      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2430        return false;
2431      if (RVLocs1[i].isRegLoc()) {
2432        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2433          return false;
2434      } else {
2435        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2436          return false;
2437      }
2438    }
2439  }
2440
2441  // If the callee takes no arguments then go on to check the results of the
2442  // call.
2443  if (!Outs.empty()) {
2444    // Check if stack adjustment is needed. For now, do not do this if any
2445    // argument is passed on the stack.
2446    SmallVector<CCValAssign, 16> ArgLocs;
2447    CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
2448                   ArgLocs, *DAG.getContext());
2449    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2450    if (CCInfo.getNextStackOffset()) {
2451      MachineFunction &MF = DAG.getMachineFunction();
2452      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2453        return false;
2454
2455      // Check if the arguments are already laid out in the right way as
2456      // the caller's fixed stack objects.
2457      MachineFrameInfo *MFI = MF.getFrameInfo();
2458      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2459      const X86InstrInfo *TII =
2460        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2461      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2462        CCValAssign &VA = ArgLocs[i];
2463        SDValue Arg = OutVals[i];
2464        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2465        if (VA.getLocInfo() == CCValAssign::Indirect)
2466          return false;
2467        if (!VA.isRegLoc()) {
2468          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2469                                   MFI, MRI, TII))
2470            return false;
2471        }
2472      }
2473    }
2474
2475    // If the tailcall address may be in a register, then make sure it's
2476    // possible to register allocate for it. In 32-bit, the call address can
2477    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2478    // callee-saved registers are restored. These happen to be the same
2479    // registers used to pass 'inreg' arguments so watch out for those.
2480    if (!Subtarget->is64Bit() &&
2481        !isa<GlobalAddressSDNode>(Callee) &&
2482        !isa<ExternalSymbolSDNode>(Callee)) {
2483      unsigned NumInRegs = 0;
2484      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2485        CCValAssign &VA = ArgLocs[i];
2486        if (!VA.isRegLoc())
2487          continue;
2488        unsigned Reg = VA.getLocReg();
2489        switch (Reg) {
2490        default: break;
2491        case X86::EAX: case X86::EDX: case X86::ECX:
2492          if (++NumInRegs == 3)
2493            return false;
2494          break;
2495        }
2496      }
2497    }
2498  }
2499
2500  // An stdcall caller is expected to clean up its arguments; the callee
2501  // isn't going to do that.
2502  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2503    return false;
2504
2505  return true;
2506}
2507
2508FastISel *
2509X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2510  return X86::createFastISel(funcInfo);
2511}
2512
2513
2514//===----------------------------------------------------------------------===//
2515//                           Other Lowering Hooks
2516//===----------------------------------------------------------------------===//
2517
2518static bool MayFoldLoad(SDValue Op) {
2519  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2520}
2521
2522static bool MayFoldIntoStore(SDValue Op) {
2523  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2524}
2525
2526static bool isTargetShuffle(unsigned Opcode) {
2527  switch(Opcode) {
2528  default: return false;
2529  case X86ISD::PSHUFD:
2530  case X86ISD::PSHUFHW:
2531  case X86ISD::PSHUFLW:
2532  case X86ISD::SHUFPD:
2533  case X86ISD::PALIGN:
2534  case X86ISD::SHUFPS:
2535  case X86ISD::MOVLHPS:
2536  case X86ISD::MOVLHPD:
2537  case X86ISD::MOVHLPS:
2538  case X86ISD::MOVLPS:
2539  case X86ISD::MOVLPD:
2540  case X86ISD::MOVSHDUP:
2541  case X86ISD::MOVSLDUP:
2542  case X86ISD::MOVDDUP:
2543  case X86ISD::MOVSS:
2544  case X86ISD::MOVSD:
2545  case X86ISD::UNPCKLPS:
2546  case X86ISD::UNPCKLPD:
2547  case X86ISD::PUNPCKLWD:
2548  case X86ISD::PUNPCKLBW:
2549  case X86ISD::PUNPCKLDQ:
2550  case X86ISD::PUNPCKLQDQ:
2551  case X86ISD::UNPCKHPS:
2552  case X86ISD::UNPCKHPD:
2553  case X86ISD::PUNPCKHWD:
2554  case X86ISD::PUNPCKHBW:
2555  case X86ISD::PUNPCKHDQ:
2556  case X86ISD::PUNPCKHQDQ:
2557    return true;
2558  }
2559  return false;
2560}
2561
2562static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2563                                               SDValue V1, SelectionDAG &DAG) {
2564  switch(Opc) {
2565  default: llvm_unreachable("Unknown x86 shuffle node");
2566  case X86ISD::MOVSHDUP:
2567  case X86ISD::MOVSLDUP:
2568  case X86ISD::MOVDDUP:
2569    return DAG.getNode(Opc, dl, VT, V1);
2570  }
2571
2572  return SDValue();
2573}
2574
2575static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2576                          SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2577  switch(Opc) {
2578  default: llvm_unreachable("Unknown x86 shuffle node");
2579  case X86ISD::PSHUFD:
2580  case X86ISD::PSHUFHW:
2581  case X86ISD::PSHUFLW:
2582    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2583  }
2584
2585  return SDValue();
2586}
2587
2588static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2589               SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2590  switch(Opc) {
2591  default: llvm_unreachable("Unknown x86 shuffle node");
2592  case X86ISD::PALIGN:
2593  case X86ISD::SHUFPD:
2594  case X86ISD::SHUFPS:
2595    return DAG.getNode(Opc, dl, VT, V1, V2,
2596                       DAG.getConstant(TargetMask, MVT::i8));
2597  }
2598  return SDValue();
2599}
2600
2601static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2602                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2603  switch(Opc) {
2604  default: llvm_unreachable("Unknown x86 shuffle node");
2605  case X86ISD::MOVLHPS:
2606  case X86ISD::MOVLHPD:
2607  case X86ISD::MOVHLPS:
2608  case X86ISD::MOVLPS:
2609  case X86ISD::MOVLPD:
2610  case X86ISD::MOVSS:
2611  case X86ISD::MOVSD:
2612  case X86ISD::UNPCKLPS:
2613  case X86ISD::UNPCKLPD:
2614  case X86ISD::PUNPCKLWD:
2615  case X86ISD::PUNPCKLBW:
2616  case X86ISD::PUNPCKLDQ:
2617  case X86ISD::PUNPCKLQDQ:
2618  case X86ISD::UNPCKHPS:
2619  case X86ISD::UNPCKHPD:
2620  case X86ISD::PUNPCKHWD:
2621  case X86ISD::PUNPCKHBW:
2622  case X86ISD::PUNPCKHDQ:
2623  case X86ISD::PUNPCKHQDQ:
2624    return DAG.getNode(Opc, dl, VT, V1, V2);
2625  }
2626  return SDValue();
2627}
2628
2629SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2630  MachineFunction &MF = DAG.getMachineFunction();
2631  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2632  int ReturnAddrIndex = FuncInfo->getRAIndex();
2633
2634  if (ReturnAddrIndex == 0) {
2635    // Set up a frame object for the return address.
2636    uint64_t SlotSize = TD->getPointerSize();
2637    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2638                                                           false);
2639    FuncInfo->setRAIndex(ReturnAddrIndex);
2640  }
2641
2642  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2643}
2644
2645
2646bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2647                                       bool hasSymbolicDisplacement) {
2648  // Offset should fit into 32 bit immediate field.
2649  if (!isInt<32>(Offset))
2650    return false;
2651
2652  // If we don't have a symbolic displacement - we don't have any extra
2653  // restrictions.
2654  if (!hasSymbolicDisplacement)
2655    return true;
2656
2657  // FIXME: Some tweaks might be needed for medium code model.
2658  if (M != CodeModel::Small && M != CodeModel::Kernel)
2659    return false;
2660
2661  // For small code model we assume that latest object is 16MB before end of 31
2662  // bits boundary. We may also accept pretty large negative constants knowing
2663  // that all objects are in the positive half of address space.
2664  if (M == CodeModel::Small && Offset < 16*1024*1024)
2665    return true;
2666
2667  // For kernel code model we know that all object resist in the negative half
2668  // of 32bits address space. We may not accept negative offsets, since they may
2669  // be just off and we may accept pretty large positive ones.
2670  if (M == CodeModel::Kernel && Offset > 0)
2671    return true;
2672
2673  return false;
2674}
2675
2676/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2677/// specific condition code, returning the condition code and the LHS/RHS of the
2678/// comparison to make.
2679static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2680                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2681  if (!isFP) {
2682    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2683      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2684        // X > -1   -> X == 0, jump !sign.
2685        RHS = DAG.getConstant(0, RHS.getValueType());
2686        return X86::COND_NS;
2687      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2688        // X < 0   -> X == 0, jump on sign.
2689        return X86::COND_S;
2690      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2691        // X < 1   -> X <= 0
2692        RHS = DAG.getConstant(0, RHS.getValueType());
2693        return X86::COND_LE;
2694      }
2695    }
2696
2697    switch (SetCCOpcode) {
2698    default: llvm_unreachable("Invalid integer condition!");
2699    case ISD::SETEQ:  return X86::COND_E;
2700    case ISD::SETGT:  return X86::COND_G;
2701    case ISD::SETGE:  return X86::COND_GE;
2702    case ISD::SETLT:  return X86::COND_L;
2703    case ISD::SETLE:  return X86::COND_LE;
2704    case ISD::SETNE:  return X86::COND_NE;
2705    case ISD::SETULT: return X86::COND_B;
2706    case ISD::SETUGT: return X86::COND_A;
2707    case ISD::SETULE: return X86::COND_BE;
2708    case ISD::SETUGE: return X86::COND_AE;
2709    }
2710  }
2711
2712  // First determine if it is required or is profitable to flip the operands.
2713
2714  // If LHS is a foldable load, but RHS is not, flip the condition.
2715  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
2716      !ISD::isNON_EXTLoad(RHS.getNode())) {
2717    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2718    std::swap(LHS, RHS);
2719  }
2720
2721  switch (SetCCOpcode) {
2722  default: break;
2723  case ISD::SETOLT:
2724  case ISD::SETOLE:
2725  case ISD::SETUGT:
2726  case ISD::SETUGE:
2727    std::swap(LHS, RHS);
2728    break;
2729  }
2730
2731  // On a floating point condition, the flags are set as follows:
2732  // ZF  PF  CF   op
2733  //  0 | 0 | 0 | X > Y
2734  //  0 | 0 | 1 | X < Y
2735  //  1 | 0 | 0 | X == Y
2736  //  1 | 1 | 1 | unordered
2737  switch (SetCCOpcode) {
2738  default: llvm_unreachable("Condcode should be pre-legalized away");
2739  case ISD::SETUEQ:
2740  case ISD::SETEQ:   return X86::COND_E;
2741  case ISD::SETOLT:              // flipped
2742  case ISD::SETOGT:
2743  case ISD::SETGT:   return X86::COND_A;
2744  case ISD::SETOLE:              // flipped
2745  case ISD::SETOGE:
2746  case ISD::SETGE:   return X86::COND_AE;
2747  case ISD::SETUGT:              // flipped
2748  case ISD::SETULT:
2749  case ISD::SETLT:   return X86::COND_B;
2750  case ISD::SETUGE:              // flipped
2751  case ISD::SETULE:
2752  case ISD::SETLE:   return X86::COND_BE;
2753  case ISD::SETONE:
2754  case ISD::SETNE:   return X86::COND_NE;
2755  case ISD::SETUO:   return X86::COND_P;
2756  case ISD::SETO:    return X86::COND_NP;
2757  case ISD::SETOEQ:
2758  case ISD::SETUNE:  return X86::COND_INVALID;
2759  }
2760}
2761
2762/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2763/// code. Current x86 isa includes the following FP cmov instructions:
2764/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2765static bool hasFPCMov(unsigned X86CC) {
2766  switch (X86CC) {
2767  default:
2768    return false;
2769  case X86::COND_B:
2770  case X86::COND_BE:
2771  case X86::COND_E:
2772  case X86::COND_P:
2773  case X86::COND_A:
2774  case X86::COND_AE:
2775  case X86::COND_NE:
2776  case X86::COND_NP:
2777    return true;
2778  }
2779}
2780
2781/// isFPImmLegal - Returns true if the target can instruction select the
2782/// specified FP immediate natively. If false, the legalizer will
2783/// materialize the FP immediate as a load from a constant pool.
2784bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
2785  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
2786    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
2787      return true;
2788  }
2789  return false;
2790}
2791
2792/// isUndefOrInRange - Return true if Val is undef or if its value falls within
2793/// the specified range (L, H].
2794static bool isUndefOrInRange(int Val, int Low, int Hi) {
2795  return (Val < 0) || (Val >= Low && Val < Hi);
2796}
2797
2798/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2799/// specified value.
2800static bool isUndefOrEqual(int Val, int CmpVal) {
2801  if (Val < 0 || Val == CmpVal)
2802    return true;
2803  return false;
2804}
2805
2806/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2807/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
2808/// the second operand.
2809static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2810  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
2811    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
2812  if (VT == MVT::v2f64 || VT == MVT::v2i64)
2813    return (Mask[0] < 2 && Mask[1] < 2);
2814  return false;
2815}
2816
2817bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
2818  SmallVector<int, 8> M;
2819  N->getMask(M);
2820  return ::isPSHUFDMask(M, N->getValueType(0));
2821}
2822
2823/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2824/// is suitable for input to PSHUFHW.
2825static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2826  if (VT != MVT::v8i16)
2827    return false;
2828
2829  // Lower quadword copied in order or undef.
2830  for (int i = 0; i != 4; ++i)
2831    if (Mask[i] >= 0 && Mask[i] != i)
2832      return false;
2833
2834  // Upper quadword shuffled.
2835  for (int i = 4; i != 8; ++i)
2836    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
2837      return false;
2838
2839  return true;
2840}
2841
2842bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
2843  SmallVector<int, 8> M;
2844  N->getMask(M);
2845  return ::isPSHUFHWMask(M, N->getValueType(0));
2846}
2847
2848/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
2849/// is suitable for input to PSHUFLW.
2850static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2851  if (VT != MVT::v8i16)
2852    return false;
2853
2854  // Upper quadword copied in order.
2855  for (int i = 4; i != 8; ++i)
2856    if (Mask[i] >= 0 && Mask[i] != i)
2857      return false;
2858
2859  // Lower quadword shuffled.
2860  for (int i = 0; i != 4; ++i)
2861    if (Mask[i] >= 4)
2862      return false;
2863
2864  return true;
2865}
2866
2867bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
2868  SmallVector<int, 8> M;
2869  N->getMask(M);
2870  return ::isPSHUFLWMask(M, N->getValueType(0));
2871}
2872
2873/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
2874/// is suitable for input to PALIGNR.
2875static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
2876                          bool hasSSSE3) {
2877  int i, e = VT.getVectorNumElements();
2878
2879  // Do not handle v2i64 / v2f64 shuffles with palignr.
2880  if (e < 4 || !hasSSSE3)
2881    return false;
2882
2883  for (i = 0; i != e; ++i)
2884    if (Mask[i] >= 0)
2885      break;
2886
2887  // All undef, not a palignr.
2888  if (i == e)
2889    return false;
2890
2891  // Determine if it's ok to perform a palignr with only the LHS, since we
2892  // don't have access to the actual shuffle elements to see if RHS is undef.
2893  bool Unary = Mask[i] < (int)e;
2894  bool NeedsUnary = false;
2895
2896  int s = Mask[i] - i;
2897
2898  // Check the rest of the elements to see if they are consecutive.
2899  for (++i; i != e; ++i) {
2900    int m = Mask[i];
2901    if (m < 0)
2902      continue;
2903
2904    Unary = Unary && (m < (int)e);
2905    NeedsUnary = NeedsUnary || (m < s);
2906
2907    if (NeedsUnary && !Unary)
2908      return false;
2909    if (Unary && m != ((s+i) & (e-1)))
2910      return false;
2911    if (!Unary && m != (s+i))
2912      return false;
2913  }
2914  return true;
2915}
2916
2917bool X86::isPALIGNRMask(ShuffleVectorSDNode *N) {
2918  SmallVector<int, 8> M;
2919  N->getMask(M);
2920  return ::isPALIGNRMask(M, N->getValueType(0), true);
2921}
2922
2923/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2924/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2925static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2926  int NumElems = VT.getVectorNumElements();
2927  if (NumElems != 2 && NumElems != 4)
2928    return false;
2929
2930  int Half = NumElems / 2;
2931  for (int i = 0; i < Half; ++i)
2932    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2933      return false;
2934  for (int i = Half; i < NumElems; ++i)
2935    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2936      return false;
2937
2938  return true;
2939}
2940
2941bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
2942  SmallVector<int, 8> M;
2943  N->getMask(M);
2944  return ::isSHUFPMask(M, N->getValueType(0));
2945}
2946
2947/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2948/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2949/// half elements to come from vector 1 (which would equal the dest.) and
2950/// the upper half to come from vector 2.
2951static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2952  int NumElems = VT.getVectorNumElements();
2953
2954  if (NumElems != 2 && NumElems != 4)
2955    return false;
2956
2957  int Half = NumElems / 2;
2958  for (int i = 0; i < Half; ++i)
2959    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2960      return false;
2961  for (int i = Half; i < NumElems; ++i)
2962    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2963      return false;
2964  return true;
2965}
2966
2967static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
2968  SmallVector<int, 8> M;
2969  N->getMask(M);
2970  return isCommutedSHUFPMask(M, N->getValueType(0));
2971}
2972
2973/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2974/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2975bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
2976  if (N->getValueType(0).getVectorNumElements() != 4)
2977    return false;
2978
2979  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2980  return isUndefOrEqual(N->getMaskElt(0), 6) &&
2981         isUndefOrEqual(N->getMaskElt(1), 7) &&
2982         isUndefOrEqual(N->getMaskElt(2), 2) &&
2983         isUndefOrEqual(N->getMaskElt(3), 3);
2984}
2985
2986/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2987/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2988/// <2, 3, 2, 3>
2989bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
2990  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2991
2992  if (NumElems != 4)
2993    return false;
2994
2995  return isUndefOrEqual(N->getMaskElt(0), 2) &&
2996  isUndefOrEqual(N->getMaskElt(1), 3) &&
2997  isUndefOrEqual(N->getMaskElt(2), 2) &&
2998  isUndefOrEqual(N->getMaskElt(3), 3);
2999}
3000
3001/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3002/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3003bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
3004  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3005
3006  if (NumElems != 2 && NumElems != 4)
3007    return false;
3008
3009  for (unsigned i = 0; i < NumElems/2; ++i)
3010    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
3011      return false;
3012
3013  for (unsigned i = NumElems/2; i < NumElems; ++i)
3014    if (!isUndefOrEqual(N->getMaskElt(i), i))
3015      return false;
3016
3017  return true;
3018}
3019
3020/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3021/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3022bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
3023  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3024
3025  if (NumElems != 2 && NumElems != 4)
3026    return false;
3027
3028  for (unsigned i = 0; i < NumElems/2; ++i)
3029    if (!isUndefOrEqual(N->getMaskElt(i), i))
3030      return false;
3031
3032  for (unsigned i = 0; i < NumElems/2; ++i)
3033    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3034      return false;
3035
3036  return true;
3037}
3038
3039/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3040/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3041static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3042                         bool V2IsSplat = false) {
3043  int NumElts = VT.getVectorNumElements();
3044  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
3045    return false;
3046
3047  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
3048    int BitI  = Mask[i];
3049    int BitI1 = Mask[i+1];
3050    if (!isUndefOrEqual(BitI, j))
3051      return false;
3052    if (V2IsSplat) {
3053      if (!isUndefOrEqual(BitI1, NumElts))
3054        return false;
3055    } else {
3056      if (!isUndefOrEqual(BitI1, j + NumElts))
3057        return false;
3058    }
3059  }
3060  return true;
3061}
3062
3063bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3064  SmallVector<int, 8> M;
3065  N->getMask(M);
3066  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
3067}
3068
3069/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3070/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3071static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
3072                         bool V2IsSplat = false) {
3073  int NumElts = VT.getVectorNumElements();
3074  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
3075    return false;
3076
3077  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
3078    int BitI  = Mask[i];
3079    int BitI1 = Mask[i+1];
3080    if (!isUndefOrEqual(BitI, j + NumElts/2))
3081      return false;
3082    if (V2IsSplat) {
3083      if (isUndefOrEqual(BitI1, NumElts))
3084        return false;
3085    } else {
3086      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
3087        return false;
3088    }
3089  }
3090  return true;
3091}
3092
3093bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3094  SmallVector<int, 8> M;
3095  N->getMask(M);
3096  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
3097}
3098
3099/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3100/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3101/// <0, 0, 1, 1>
3102static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3103  int NumElems = VT.getVectorNumElements();
3104  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3105    return false;
3106
3107  for (int i = 0, j = 0; i != NumElems; i += 2, ++j) {
3108    int BitI  = Mask[i];
3109    int BitI1 = Mask[i+1];
3110    if (!isUndefOrEqual(BitI, j))
3111      return false;
3112    if (!isUndefOrEqual(BitI1, j))
3113      return false;
3114  }
3115  return true;
3116}
3117
3118bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
3119  SmallVector<int, 8> M;
3120  N->getMask(M);
3121  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
3122}
3123
3124/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3125/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3126/// <2, 2, 3, 3>
3127static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3128  int NumElems = VT.getVectorNumElements();
3129  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3130    return false;
3131
3132  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
3133    int BitI  = Mask[i];
3134    int BitI1 = Mask[i+1];
3135    if (!isUndefOrEqual(BitI, j))
3136      return false;
3137    if (!isUndefOrEqual(BitI1, j))
3138      return false;
3139  }
3140  return true;
3141}
3142
3143bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
3144  SmallVector<int, 8> M;
3145  N->getMask(M);
3146  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
3147}
3148
3149/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3150/// specifies a shuffle of elements that is suitable for input to MOVSS,
3151/// MOVSD, and MOVD, i.e. setting the lowest element.
3152static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3153  if (VT.getVectorElementType().getSizeInBits() < 32)
3154    return false;
3155
3156  int NumElts = VT.getVectorNumElements();
3157
3158  if (!isUndefOrEqual(Mask[0], NumElts))
3159    return false;
3160
3161  for (int i = 1; i < NumElts; ++i)
3162    if (!isUndefOrEqual(Mask[i], i))
3163      return false;
3164
3165  return true;
3166}
3167
3168bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3169  SmallVector<int, 8> M;
3170  N->getMask(M);
3171  return ::isMOVLMask(M, N->getValueType(0));
3172}
3173
3174/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3175/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3176/// element of vector 2 and the other elements to come from vector 1 in order.
3177static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3178                               bool V2IsSplat = false, bool V2IsUndef = false) {
3179  int NumOps = VT.getVectorNumElements();
3180  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3181    return false;
3182
3183  if (!isUndefOrEqual(Mask[0], 0))
3184    return false;
3185
3186  for (int i = 1; i < NumOps; ++i)
3187    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3188          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3189          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3190      return false;
3191
3192  return true;
3193}
3194
3195static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3196                           bool V2IsUndef = false) {
3197  SmallVector<int, 8> M;
3198  N->getMask(M);
3199  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
3200}
3201
3202/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3203/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3204bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
3205  if (N->getValueType(0).getVectorNumElements() != 4)
3206    return false;
3207
3208  // Expect 1, 1, 3, 3
3209  for (unsigned i = 0; i < 2; ++i) {
3210    int Elt = N->getMaskElt(i);
3211    if (Elt >= 0 && Elt != 1)
3212      return false;
3213  }
3214
3215  bool HasHi = false;
3216  for (unsigned i = 2; i < 4; ++i) {
3217    int Elt = N->getMaskElt(i);
3218    if (Elt >= 0 && Elt != 3)
3219      return false;
3220    if (Elt == 3)
3221      HasHi = true;
3222  }
3223  // Don't use movshdup if it can be done with a shufps.
3224  // FIXME: verify that matching u, u, 3, 3 is what we want.
3225  return HasHi;
3226}
3227
3228/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3229/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3230bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
3231  if (N->getValueType(0).getVectorNumElements() != 4)
3232    return false;
3233
3234  // Expect 0, 0, 2, 2
3235  for (unsigned i = 0; i < 2; ++i)
3236    if (N->getMaskElt(i) > 0)
3237      return false;
3238
3239  bool HasHi = false;
3240  for (unsigned i = 2; i < 4; ++i) {
3241    int Elt = N->getMaskElt(i);
3242    if (Elt >= 0 && Elt != 2)
3243      return false;
3244    if (Elt == 2)
3245      HasHi = true;
3246  }
3247  // Don't use movsldup if it can be done with a shufps.
3248  return HasHi;
3249}
3250
3251/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3252/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
3253bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3254  int e = N->getValueType(0).getVectorNumElements() / 2;
3255
3256  for (int i = 0; i < e; ++i)
3257    if (!isUndefOrEqual(N->getMaskElt(i), i))
3258      return false;
3259  for (int i = 0; i < e; ++i)
3260    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3261      return false;
3262  return true;
3263}
3264
3265/// isVEXTRACTF128Index - Return true if the specified
3266/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3267/// suitable for input to VEXTRACTF128.
3268bool X86::isVEXTRACTF128Index(SDNode *N) {
3269  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3270    return false;
3271
3272  // The index should be aligned on a 128-bit boundary.
3273  uint64_t Index =
3274    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3275
3276  unsigned VL = N->getValueType(0).getVectorNumElements();
3277  unsigned VBits = N->getValueType(0).getSizeInBits();
3278  unsigned ElSize = VBits / VL;
3279  bool Result = (Index * ElSize) % 128 == 0;
3280
3281  return Result;
3282}
3283
3284/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
3285/// operand specifies a subvector insert that is suitable for input to
3286/// VINSERTF128.
3287bool X86::isVINSERTF128Index(SDNode *N) {
3288  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3289    return false;
3290
3291  // The index should be aligned on a 128-bit boundary.
3292  uint64_t Index =
3293    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3294
3295  unsigned VL = N->getValueType(0).getVectorNumElements();
3296  unsigned VBits = N->getValueType(0).getSizeInBits();
3297  unsigned ElSize = VBits / VL;
3298  bool Result = (Index * ElSize) % 128 == 0;
3299
3300  return Result;
3301}
3302
3303/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3304/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3305unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
3306  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3307  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
3308
3309  unsigned Shift = (NumOperands == 4) ? 2 : 1;
3310  unsigned Mask = 0;
3311  for (int i = 0; i < NumOperands; ++i) {
3312    int Val = SVOp->getMaskElt(NumOperands-i-1);
3313    if (Val < 0) Val = 0;
3314    if (Val >= NumOperands) Val -= NumOperands;
3315    Mask |= Val;
3316    if (i != NumOperands - 1)
3317      Mask <<= Shift;
3318  }
3319  return Mask;
3320}
3321
3322/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3323/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3324unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3325  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3326  unsigned Mask = 0;
3327  // 8 nodes, but we only care about the last 4.
3328  for (unsigned i = 7; i >= 4; --i) {
3329    int Val = SVOp->getMaskElt(i);
3330    if (Val >= 0)
3331      Mask |= (Val - 4);
3332    if (i != 4)
3333      Mask <<= 2;
3334  }
3335  return Mask;
3336}
3337
3338/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3339/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3340unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
3341  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3342  unsigned Mask = 0;
3343  // 8 nodes, but we only care about the first 4.
3344  for (int i = 3; i >= 0; --i) {
3345    int Val = SVOp->getMaskElt(i);
3346    if (Val >= 0)
3347      Mask |= Val;
3348    if (i != 0)
3349      Mask <<= 2;
3350  }
3351  return Mask;
3352}
3353
3354/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3355/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3356unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
3357  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3358  EVT VVT = N->getValueType(0);
3359  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
3360  int Val = 0;
3361
3362  unsigned i, e;
3363  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
3364    Val = SVOp->getMaskElt(i);
3365    if (Val >= 0)
3366      break;
3367  }
3368  return (Val - i) * EltSize;
3369}
3370
3371/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
3372/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
3373/// instructions.
3374unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
3375  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3376    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
3377
3378  uint64_t Index =
3379    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3380
3381  EVT VecVT = N->getOperand(0).getValueType();
3382  EVT ElVT = VecVT.getVectorElementType();
3383
3384  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
3385
3386  return Index / NumElemsPerChunk;
3387}
3388
3389/// getInsertVINSERTF128Immediate - Return the appropriate immediate
3390/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
3391/// instructions.
3392unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
3393  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3394    llvm_unreachable("Illegal insert subvector for VINSERTF128");
3395
3396  uint64_t Index =
3397    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3398
3399  EVT VecVT = N->getValueType(0);
3400  EVT ElVT = VecVT.getVectorElementType();
3401
3402  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
3403
3404  return Index / NumElemsPerChunk;
3405}
3406
3407/// isZeroNode - Returns true if Elt is a constant zero or a floating point
3408/// constant +0.0.
3409bool X86::isZeroNode(SDValue Elt) {
3410  return ((isa<ConstantSDNode>(Elt) &&
3411           cast<ConstantSDNode>(Elt)->isNullValue()) ||
3412          (isa<ConstantFPSDNode>(Elt) &&
3413           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
3414}
3415
3416/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
3417/// their permute mask.
3418static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
3419                                    SelectionDAG &DAG) {
3420  EVT VT = SVOp->getValueType(0);
3421  unsigned NumElems = VT.getVectorNumElements();
3422  SmallVector<int, 8> MaskVec;
3423
3424  for (unsigned i = 0; i != NumElems; ++i) {
3425    int idx = SVOp->getMaskElt(i);
3426    if (idx < 0)
3427      MaskVec.push_back(idx);
3428    else if (idx < (int)NumElems)
3429      MaskVec.push_back(idx + NumElems);
3430    else
3431      MaskVec.push_back(idx - NumElems);
3432  }
3433  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
3434                              SVOp->getOperand(0), &MaskVec[0]);
3435}
3436
3437/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3438/// the two vector operands have swapped position.
3439static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
3440  unsigned NumElems = VT.getVectorNumElements();
3441  for (unsigned i = 0; i != NumElems; ++i) {
3442    int idx = Mask[i];
3443    if (idx < 0)
3444      continue;
3445    else if (idx < (int)NumElems)
3446      Mask[i] = idx + NumElems;
3447    else
3448      Mask[i] = idx - NumElems;
3449  }
3450}
3451
3452/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
3453/// match movhlps. The lower half elements should come from upper half of
3454/// V1 (and in order), and the upper half elements should come from the upper
3455/// half of V2 (and in order).
3456static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
3457  if (Op->getValueType(0).getVectorNumElements() != 4)
3458    return false;
3459  for (unsigned i = 0, e = 2; i != e; ++i)
3460    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
3461      return false;
3462  for (unsigned i = 2; i != 4; ++i)
3463    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
3464      return false;
3465  return true;
3466}
3467
3468/// isScalarLoadToVector - Returns true if the node is a scalar load that
3469/// is promoted to a vector. It also returns the LoadSDNode by reference if
3470/// required.
3471static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
3472  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
3473    return false;
3474  N = N->getOperand(0).getNode();
3475  if (!ISD::isNON_EXTLoad(N))
3476    return false;
3477  if (LD)
3478    *LD = cast<LoadSDNode>(N);
3479  return true;
3480}
3481
3482/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
3483/// match movlp{s|d}. The lower half elements should come from lower half of
3484/// V1 (and in order), and the upper half elements should come from the upper
3485/// half of V2 (and in order). And since V1 will become the source of the
3486/// MOVLP, it must be either a vector load or a scalar load to vector.
3487static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
3488                               ShuffleVectorSDNode *Op) {
3489  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
3490    return false;
3491  // Is V2 is a vector load, don't do this transformation. We will try to use
3492  // load folding shufps op.
3493  if (ISD::isNON_EXTLoad(V2))
3494    return false;
3495
3496  unsigned NumElems = Op->getValueType(0).getVectorNumElements();
3497
3498  if (NumElems != 2 && NumElems != 4)
3499    return false;
3500  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3501    if (!isUndefOrEqual(Op->getMaskElt(i), i))
3502      return false;
3503  for (unsigned i = NumElems/2; i != NumElems; ++i)
3504    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
3505      return false;
3506  return true;
3507}
3508
3509/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
3510/// all the same.
3511static bool isSplatVector(SDNode *N) {
3512  if (N->getOpcode() != ISD::BUILD_VECTOR)
3513    return false;
3514
3515  SDValue SplatValue = N->getOperand(0);
3516  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
3517    if (N->getOperand(i) != SplatValue)
3518      return false;
3519  return true;
3520}
3521
3522/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
3523/// to an zero vector.
3524/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
3525static bool isZeroShuffle(ShuffleVectorSDNode *N) {
3526  SDValue V1 = N->getOperand(0);
3527  SDValue V2 = N->getOperand(1);
3528  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3529  for (unsigned i = 0; i != NumElems; ++i) {
3530    int Idx = N->getMaskElt(i);
3531    if (Idx >= (int)NumElems) {
3532      unsigned Opc = V2.getOpcode();
3533      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
3534        continue;
3535      if (Opc != ISD::BUILD_VECTOR ||
3536          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
3537        return false;
3538    } else if (Idx >= 0) {
3539      unsigned Opc = V1.getOpcode();
3540      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
3541        continue;
3542      if (Opc != ISD::BUILD_VECTOR ||
3543          !X86::isZeroNode(V1.getOperand(Idx)))
3544        return false;
3545    }
3546  }
3547  return true;
3548}
3549
3550/// getZeroVector - Returns a vector of specified type with all zero elements.
3551///
3552static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
3553                             DebugLoc dl) {
3554  assert(VT.isVector() && "Expected a vector type");
3555
3556  // Always build SSE zero vectors as <4 x i32> bitcasted
3557  // to their dest type. This ensures they get CSE'd.
3558  SDValue Vec;
3559  if (VT.getSizeInBits() == 128) {  // SSE
3560    if (HasSSE2) {  // SSE2
3561      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3562      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3563    } else { // SSE1
3564      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3565      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
3566    }
3567  } else if (VT.getSizeInBits() == 256) { // AVX
3568    // 256-bit logic and arithmetic instructions in AVX are
3569    // all floating-point, no support for integer ops. Default
3570    // to emitting fp zeroed vectors then.
3571    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3572    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
3573    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
3574  }
3575  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
3576}
3577
3578/// getOnesVector - Returns a vector of specified type with all bits set.
3579///
3580static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3581  assert(VT.isVector() && "Expected a vector type");
3582
3583  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3584  // type.  This ensures they get CSE'd.
3585  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
3586  SDValue Vec;
3587  Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3588  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
3589}
3590
3591
3592/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
3593/// that point to V2 points to its first element.
3594static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3595  EVT VT = SVOp->getValueType(0);
3596  unsigned NumElems = VT.getVectorNumElements();
3597
3598  bool Changed = false;
3599  SmallVector<int, 8> MaskVec;
3600  SVOp->getMask(MaskVec);
3601
3602  for (unsigned i = 0; i != NumElems; ++i) {
3603    if (MaskVec[i] > (int)NumElems) {
3604      MaskVec[i] = NumElems;
3605      Changed = true;
3606    }
3607  }
3608  if (Changed)
3609    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
3610                                SVOp->getOperand(1), &MaskVec[0]);
3611  return SDValue(SVOp, 0);
3612}
3613
3614/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
3615/// operation of specified width.
3616static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3617                       SDValue V2) {
3618  unsigned NumElems = VT.getVectorNumElements();
3619  SmallVector<int, 8> Mask;
3620  Mask.push_back(NumElems);
3621  for (unsigned i = 1; i != NumElems; ++i)
3622    Mask.push_back(i);
3623  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3624}
3625
3626/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
3627static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3628                          SDValue V2) {
3629  unsigned NumElems = VT.getVectorNumElements();
3630  SmallVector<int, 8> Mask;
3631  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3632    Mask.push_back(i);
3633    Mask.push_back(i + NumElems);
3634  }
3635  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3636}
3637
3638/// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
3639static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3640                          SDValue V2) {
3641  unsigned NumElems = VT.getVectorNumElements();
3642  unsigned Half = NumElems/2;
3643  SmallVector<int, 8> Mask;
3644  for (unsigned i = 0; i != Half; ++i) {
3645    Mask.push_back(i + Half);
3646    Mask.push_back(i + NumElems + Half);
3647  }
3648  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3649}
3650
3651/// PromoteSplat - Promote a splat of v4i32, v8i16 or v16i8 to v4f32.
3652static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
3653  EVT PVT = MVT::v4f32;
3654  EVT VT = SV->getValueType(0);
3655  DebugLoc dl = SV->getDebugLoc();
3656  SDValue V1 = SV->getOperand(0);
3657  int NumElems = VT.getVectorNumElements();
3658  int EltNo = SV->getSplatIndex();
3659
3660  // unpack elements to the correct location
3661  while (NumElems > 4) {
3662    if (EltNo < NumElems/2) {
3663      V1 = getUnpackl(DAG, dl, VT, V1, V1);
3664    } else {
3665      V1 = getUnpackh(DAG, dl, VT, V1, V1);
3666      EltNo -= NumElems/2;
3667    }
3668    NumElems >>= 1;
3669  }
3670
3671  // Perform the splat.
3672  int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
3673  V1 = DAG.getNode(ISD::BITCAST, dl, PVT, V1);
3674  V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
3675  return DAG.getNode(ISD::BITCAST, dl, VT, V1);
3676}
3677
3678/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3679/// vector of zero or undef vector.  This produces a shuffle where the low
3680/// element of V2 is swizzled into the zero/undef vector, landing at element
3681/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
3682static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3683                                             bool isZero, bool HasSSE2,
3684                                             SelectionDAG &DAG) {
3685  EVT VT = V2.getValueType();
3686  SDValue V1 = isZero
3687    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
3688  unsigned NumElems = VT.getVectorNumElements();
3689  SmallVector<int, 16> MaskVec;
3690  for (unsigned i = 0; i != NumElems; ++i)
3691    // If this is the insertion idx, put the low elt of V2 here.
3692    MaskVec.push_back(i == Idx ? NumElems : i);
3693  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
3694}
3695
3696/// getShuffleScalarElt - Returns the scalar element that will make up the ith
3697/// element of the result of the vector shuffle.
3698SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
3699                            unsigned Depth) {
3700  if (Depth == 6)
3701    return SDValue();  // Limit search depth.
3702
3703  SDValue V = SDValue(N, 0);
3704  EVT VT = V.getValueType();
3705  unsigned Opcode = V.getOpcode();
3706
3707  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
3708  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
3709    Index = SV->getMaskElt(Index);
3710
3711    if (Index < 0)
3712      return DAG.getUNDEF(VT.getVectorElementType());
3713
3714    int NumElems = VT.getVectorNumElements();
3715    SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
3716    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
3717  }
3718
3719  // Recurse into target specific vector shuffles to find scalars.
3720  if (isTargetShuffle(Opcode)) {
3721    int NumElems = VT.getVectorNumElements();
3722    SmallVector<unsigned, 16> ShuffleMask;
3723    SDValue ImmN;
3724
3725    switch(Opcode) {
3726    case X86ISD::SHUFPS:
3727    case X86ISD::SHUFPD:
3728      ImmN = N->getOperand(N->getNumOperands()-1);
3729      DecodeSHUFPSMask(NumElems,
3730                       cast<ConstantSDNode>(ImmN)->getZExtValue(),
3731                       ShuffleMask);
3732      break;
3733    case X86ISD::PUNPCKHBW:
3734    case X86ISD::PUNPCKHWD:
3735    case X86ISD::PUNPCKHDQ:
3736    case X86ISD::PUNPCKHQDQ:
3737      DecodePUNPCKHMask(NumElems, ShuffleMask);
3738      break;
3739    case X86ISD::UNPCKHPS:
3740    case X86ISD::UNPCKHPD:
3741      DecodeUNPCKHPMask(NumElems, ShuffleMask);
3742      break;
3743    case X86ISD::PUNPCKLBW:
3744    case X86ISD::PUNPCKLWD:
3745    case X86ISD::PUNPCKLDQ:
3746    case X86ISD::PUNPCKLQDQ:
3747      DecodePUNPCKLMask(NumElems, ShuffleMask);
3748      break;
3749    case X86ISD::UNPCKLPS:
3750    case X86ISD::UNPCKLPD:
3751      DecodeUNPCKLPMask(NumElems, ShuffleMask);
3752      break;
3753    case X86ISD::MOVHLPS:
3754      DecodeMOVHLPSMask(NumElems, ShuffleMask);
3755      break;
3756    case X86ISD::MOVLHPS:
3757      DecodeMOVLHPSMask(NumElems, ShuffleMask);
3758      break;
3759    case X86ISD::PSHUFD:
3760      ImmN = N->getOperand(N->getNumOperands()-1);
3761      DecodePSHUFMask(NumElems,
3762                      cast<ConstantSDNode>(ImmN)->getZExtValue(),
3763                      ShuffleMask);
3764      break;
3765    case X86ISD::PSHUFHW:
3766      ImmN = N->getOperand(N->getNumOperands()-1);
3767      DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
3768                        ShuffleMask);
3769      break;
3770    case X86ISD::PSHUFLW:
3771      ImmN = N->getOperand(N->getNumOperands()-1);
3772      DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
3773                        ShuffleMask);
3774      break;
3775    case X86ISD::MOVSS:
3776    case X86ISD::MOVSD: {
3777      // The index 0 always comes from the first element of the second source,
3778      // this is why MOVSS and MOVSD are used in the first place. The other
3779      // elements come from the other positions of the first source vector.
3780      unsigned OpNum = (Index == 0) ? 1 : 0;
3781      return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
3782                                 Depth+1);
3783    }
3784    default:
3785      assert("not implemented for target shuffle node");
3786      return SDValue();
3787    }
3788
3789    Index = ShuffleMask[Index];
3790    if (Index < 0)
3791      return DAG.getUNDEF(VT.getVectorElementType());
3792
3793    SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
3794    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
3795                               Depth+1);
3796  }
3797
3798  // Actual nodes that may contain scalar elements
3799  if (Opcode == ISD::BITCAST) {
3800    V = V.getOperand(0);
3801    EVT SrcVT = V.getValueType();
3802    unsigned NumElems = VT.getVectorNumElements();
3803
3804    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
3805      return SDValue();
3806  }
3807
3808  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
3809    return (Index == 0) ? V.getOperand(0)
3810                          : DAG.getUNDEF(VT.getVectorElementType());
3811
3812  if (V.getOpcode() == ISD::BUILD_VECTOR)
3813    return V.getOperand(Index);
3814
3815  return SDValue();
3816}
3817
3818/// getNumOfConsecutiveZeros - Return the number of elements of a vector
3819/// shuffle operation which come from a consecutively from a zero. The
3820/// search can start in two diferent directions, from left or right.
3821static
3822unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
3823                                  bool ZerosFromLeft, SelectionDAG &DAG) {
3824  int i = 0;
3825
3826  while (i < NumElems) {
3827    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
3828    SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
3829    if (!(Elt.getNode() &&
3830         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
3831      break;
3832    ++i;
3833  }
3834
3835  return i;
3836}
3837
3838/// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
3839/// MaskE correspond consecutively to elements from one of the vector operands,
3840/// starting from its index OpIdx. Also tell OpNum which source vector operand.
3841static
3842bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
3843                              int OpIdx, int NumElems, unsigned &OpNum) {
3844  bool SeenV1 = false;
3845  bool SeenV2 = false;
3846
3847  for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
3848    int Idx = SVOp->getMaskElt(i);
3849    // Ignore undef indicies
3850    if (Idx < 0)
3851      continue;
3852
3853    if (Idx < NumElems)
3854      SeenV1 = true;
3855    else
3856      SeenV2 = true;
3857
3858    // Only accept consecutive elements from the same vector
3859    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
3860      return false;
3861  }
3862
3863  OpNum = SeenV1 ? 0 : 1;
3864  return true;
3865}
3866
3867/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
3868/// logical left shift of a vector.
3869static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3870                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3871  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
3872  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
3873              false /* check zeros from right */, DAG);
3874  unsigned OpSrc;
3875
3876  if (!NumZeros)
3877    return false;
3878
3879  // Considering the elements in the mask that are not consecutive zeros,
3880  // check if they consecutively come from only one of the source vectors.
3881  //
3882  //               V1 = {X, A, B, C}     0
3883  //                         \  \  \    /
3884  //   vector_shuffle V1, V2 <1, 2, 3, X>
3885  //
3886  if (!isShuffleMaskConsecutive(SVOp,
3887            0,                   // Mask Start Index
3888            NumElems-NumZeros-1, // Mask End Index
3889            NumZeros,            // Where to start looking in the src vector
3890            NumElems,            // Number of elements in vector
3891            OpSrc))              // Which source operand ?
3892    return false;
3893
3894  isLeft = false;
3895  ShAmt = NumZeros;
3896  ShVal = SVOp->getOperand(OpSrc);
3897  return true;
3898}
3899
3900/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
3901/// logical left shift of a vector.
3902static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3903                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3904  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
3905  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
3906              true /* check zeros from left */, DAG);
3907  unsigned OpSrc;
3908
3909  if (!NumZeros)
3910    return false;
3911
3912  // Considering the elements in the mask that are not consecutive zeros,
3913  // check if they consecutively come from only one of the source vectors.
3914  //
3915  //                           0    { A, B, X, X } = V2
3916  //                          / \    /  /
3917  //   vector_shuffle V1, V2 <X, X, 4, 5>
3918  //
3919  if (!isShuffleMaskConsecutive(SVOp,
3920            NumZeros,     // Mask Start Index
3921            NumElems-1,   // Mask End Index
3922            0,            // Where to start looking in the src vector
3923            NumElems,     // Number of elements in vector
3924            OpSrc))       // Which source operand ?
3925    return false;
3926
3927  isLeft = true;
3928  ShAmt = NumZeros;
3929  ShVal = SVOp->getOperand(OpSrc);
3930  return true;
3931}
3932
3933/// isVectorShift - Returns true if the shuffle can be implemented as a
3934/// logical left or right shift of a vector.
3935static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3936                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3937  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
3938      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
3939    return true;
3940
3941  return false;
3942}
3943
3944/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3945///
3946static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
3947                                       unsigned NumNonZero, unsigned NumZero,
3948                                       SelectionDAG &DAG,
3949                                       const TargetLowering &TLI) {
3950  if (NumNonZero > 8)
3951    return SDValue();
3952
3953  DebugLoc dl = Op.getDebugLoc();
3954  SDValue V(0, 0);
3955  bool First = true;
3956  for (unsigned i = 0; i < 16; ++i) {
3957    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3958    if (ThisIsNonZero && First) {
3959      if (NumZero)
3960        V = getZeroVector(MVT::v8i16, true, DAG, dl);
3961      else
3962        V = DAG.getUNDEF(MVT::v8i16);
3963      First = false;
3964    }
3965
3966    if ((i & 1) != 0) {
3967      SDValue ThisElt(0, 0), LastElt(0, 0);
3968      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3969      if (LastIsNonZero) {
3970        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
3971                              MVT::i16, Op.getOperand(i-1));
3972      }
3973      if (ThisIsNonZero) {
3974        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
3975        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
3976                              ThisElt, DAG.getConstant(8, MVT::i8));
3977        if (LastIsNonZero)
3978          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
3979      } else
3980        ThisElt = LastElt;
3981
3982      if (ThisElt.getNode())
3983        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
3984                        DAG.getIntPtrConstant(i/2));
3985    }
3986  }
3987
3988  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
3989}
3990
3991/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3992///
3993static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
3994                                     unsigned NumNonZero, unsigned NumZero,
3995                                     SelectionDAG &DAG,
3996                                     const TargetLowering &TLI) {
3997  if (NumNonZero > 4)
3998    return SDValue();
3999
4000  DebugLoc dl = Op.getDebugLoc();
4001  SDValue V(0, 0);
4002  bool First = true;
4003  for (unsigned i = 0; i < 8; ++i) {
4004    bool isNonZero = (NonZeros & (1 << i)) != 0;
4005    if (isNonZero) {
4006      if (First) {
4007        if (NumZero)
4008          V = getZeroVector(MVT::v8i16, true, DAG, dl);
4009        else
4010          V = DAG.getUNDEF(MVT::v8i16);
4011        First = false;
4012      }
4013      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4014                      MVT::v8i16, V, Op.getOperand(i),
4015                      DAG.getIntPtrConstant(i));
4016    }
4017  }
4018
4019  return V;
4020}
4021
4022/// getVShift - Return a vector logical shift node.
4023///
4024static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4025                         unsigned NumBits, SelectionDAG &DAG,
4026                         const TargetLowering &TLI, DebugLoc dl) {
4027  EVT ShVT = MVT::v2i64;
4028  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
4029  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4030  return DAG.getNode(ISD::BITCAST, dl, VT,
4031                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4032                             DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
4033}
4034
4035SDValue
4036X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4037                                          SelectionDAG &DAG) const {
4038
4039  // Check if the scalar load can be widened into a vector load. And if
4040  // the address is "base + cst" see if the cst can be "absorbed" into
4041  // the shuffle mask.
4042  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4043    SDValue Ptr = LD->getBasePtr();
4044    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4045      return SDValue();
4046    EVT PVT = LD->getValueType(0);
4047    if (PVT != MVT::i32 && PVT != MVT::f32)
4048      return SDValue();
4049
4050    int FI = -1;
4051    int64_t Offset = 0;
4052    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4053      FI = FINode->getIndex();
4054      Offset = 0;
4055    } else if (Ptr.getOpcode() == ISD::ADD &&
4056               isa<ConstantSDNode>(Ptr.getOperand(1)) &&
4057               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4058      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4059      Offset = Ptr.getConstantOperandVal(1);
4060      Ptr = Ptr.getOperand(0);
4061    } else {
4062      return SDValue();
4063    }
4064
4065    SDValue Chain = LD->getChain();
4066    // Make sure the stack object alignment is at least 16.
4067    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4068    if (DAG.InferPtrAlignment(Ptr) < 16) {
4069      if (MFI->isFixedObjectIndex(FI)) {
4070        // Can't change the alignment. FIXME: It's possible to compute
4071        // the exact stack offset and reference FI + adjust offset instead.
4072        // If someone *really* cares about this. That's the way to implement it.
4073        return SDValue();
4074      } else {
4075        MFI->setObjectAlignment(FI, 16);
4076      }
4077    }
4078
4079    // (Offset % 16) must be multiple of 4. Then address is then
4080    // Ptr + (Offset & ~15).
4081    if (Offset < 0)
4082      return SDValue();
4083    if ((Offset % 16) & 3)
4084      return SDValue();
4085    int64_t StartOffset = Offset & ~15;
4086    if (StartOffset)
4087      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4088                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4089
4090    int EltNo = (Offset - StartOffset) >> 2;
4091    int Mask[4] = { EltNo, EltNo, EltNo, EltNo };
4092    EVT VT = (PVT == MVT::i32) ? MVT::v4i32 : MVT::v4f32;
4093    SDValue V1 = DAG.getLoad(VT, dl, Chain, Ptr,
4094                             LD->getPointerInfo().getWithOffset(StartOffset),
4095                             false, false, 0);
4096    // Canonicalize it to a v4i32 shuffle.
4097    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
4098    return DAG.getNode(ISD::BITCAST, dl, VT,
4099                       DAG.getVectorShuffle(MVT::v4i32, dl, V1,
4100                                            DAG.getUNDEF(MVT::v4i32),&Mask[0]));
4101  }
4102
4103  return SDValue();
4104}
4105
4106/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4107/// vector of type 'VT', see if the elements can be replaced by a single large
4108/// load which has the same value as a build_vector whose operands are 'elts'.
4109///
4110/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4111///
4112/// FIXME: we'd also like to handle the case where the last elements are zero
4113/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4114/// There's even a handy isZeroNode for that purpose.
4115static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4116                                        DebugLoc &DL, SelectionDAG &DAG) {
4117  EVT EltVT = VT.getVectorElementType();
4118  unsigned NumElems = Elts.size();
4119
4120  LoadSDNode *LDBase = NULL;
4121  unsigned LastLoadedElt = -1U;
4122
4123  // For each element in the initializer, see if we've found a load or an undef.
4124  // If we don't find an initial load element, or later load elements are
4125  // non-consecutive, bail out.
4126  for (unsigned i = 0; i < NumElems; ++i) {
4127    SDValue Elt = Elts[i];
4128
4129    if (!Elt.getNode() ||
4130        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4131      return SDValue();
4132    if (!LDBase) {
4133      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4134        return SDValue();
4135      LDBase = cast<LoadSDNode>(Elt.getNode());
4136      LastLoadedElt = i;
4137      continue;
4138    }
4139    if (Elt.getOpcode() == ISD::UNDEF)
4140      continue;
4141
4142    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4143    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4144      return SDValue();
4145    LastLoadedElt = i;
4146  }
4147
4148  // If we have found an entire vector of loads and undefs, then return a large
4149  // load of the entire vector width starting at the base pointer.  If we found
4150  // consecutive loads for the low half, generate a vzext_load node.
4151  if (LastLoadedElt == NumElems - 1) {
4152    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4153      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4154                         LDBase->getPointerInfo(),
4155                         LDBase->isVolatile(), LDBase->isNonTemporal(), 0);
4156    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4157                       LDBase->getPointerInfo(),
4158                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4159                       LDBase->getAlignment());
4160  } else if (NumElems == 4 && LastLoadedElt == 1) {
4161    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4162    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4163    SDValue ResNode = DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys,
4164                                              Ops, 2, MVT::i32,
4165                                              LDBase->getMemOperand());
4166    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
4167  }
4168  return SDValue();
4169}
4170
4171SDValue
4172X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
4173  DebugLoc dl = Op.getDebugLoc();
4174  // All zero's are handled with pxor in SSE2 and above, xorps in SSE1.
4175  // All one's are handled with pcmpeqd. In AVX, zero's are handled with
4176  // vpxor in 128-bit and xor{pd,ps} in 256-bit, but no 256 version of pcmpeqd
4177  // is present, so AllOnes is ignored.
4178  if (ISD::isBuildVectorAllZeros(Op.getNode()) ||
4179      (Op.getValueType().getSizeInBits() != 256 &&
4180       ISD::isBuildVectorAllOnes(Op.getNode()))) {
4181    // Canonicalize this to <4 x i32> (SSE) to
4182    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
4183    // eliminated on x86-32 hosts.
4184    if (Op.getValueType() == MVT::v4i32)
4185      return Op;
4186
4187    if (ISD::isBuildVectorAllOnes(Op.getNode()))
4188      return getOnesVector(Op.getValueType(), DAG, dl);
4189    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
4190  }
4191
4192  EVT VT = Op.getValueType();
4193  EVT ExtVT = VT.getVectorElementType();
4194  unsigned EVTBits = ExtVT.getSizeInBits();
4195
4196  unsigned NumElems = Op.getNumOperands();
4197  unsigned NumZero  = 0;
4198  unsigned NumNonZero = 0;
4199  unsigned NonZeros = 0;
4200  bool IsAllConstants = true;
4201  SmallSet<SDValue, 8> Values;
4202  for (unsigned i = 0; i < NumElems; ++i) {
4203    SDValue Elt = Op.getOperand(i);
4204    if (Elt.getOpcode() == ISD::UNDEF)
4205      continue;
4206    Values.insert(Elt);
4207    if (Elt.getOpcode() != ISD::Constant &&
4208        Elt.getOpcode() != ISD::ConstantFP)
4209      IsAllConstants = false;
4210    if (X86::isZeroNode(Elt))
4211      NumZero++;
4212    else {
4213      NonZeros |= (1 << i);
4214      NumNonZero++;
4215    }
4216  }
4217
4218  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
4219  if (NumNonZero == 0)
4220    return DAG.getUNDEF(VT);
4221
4222  // Special case for single non-zero, non-undef, element.
4223  if (NumNonZero == 1) {
4224    unsigned Idx = CountTrailingZeros_32(NonZeros);
4225    SDValue Item = Op.getOperand(Idx);
4226
4227    // If this is an insertion of an i64 value on x86-32, and if the top bits of
4228    // the value are obviously zero, truncate the value to i32 and do the
4229    // insertion that way.  Only do this if the value is non-constant or if the
4230    // value is a constant being inserted into element 0.  It is cheaper to do
4231    // a constant pool load than it is to do a movd + shuffle.
4232    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
4233        (!IsAllConstants || Idx == 0)) {
4234      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
4235        // Handle SSE only.
4236        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
4237        EVT VecVT = MVT::v4i32;
4238        unsigned VecElts = 4;
4239
4240        // Truncate the value (which may itself be a constant) to i32, and
4241        // convert it to a vector with movd (S2V+shuffle to zero extend).
4242        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
4243        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
4244        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
4245                                           Subtarget->hasSSE2(), DAG);
4246
4247        // Now we have our 32-bit value zero extended in the low element of
4248        // a vector.  If Idx != 0, swizzle it into place.
4249        if (Idx != 0) {
4250          SmallVector<int, 4> Mask;
4251          Mask.push_back(Idx);
4252          for (unsigned i = 1; i != VecElts; ++i)
4253            Mask.push_back(i);
4254          Item = DAG.getVectorShuffle(VecVT, dl, Item,
4255                                      DAG.getUNDEF(Item.getValueType()),
4256                                      &Mask[0]);
4257        }
4258        return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Item);
4259      }
4260    }
4261
4262    // If we have a constant or non-constant insertion into the low element of
4263    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
4264    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
4265    // depending on what the source datatype is.
4266    if (Idx == 0) {
4267      if (NumZero == 0) {
4268        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4269      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
4270          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
4271        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4272        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
4273        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
4274                                           DAG);
4275      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
4276        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
4277        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
4278        EVT MiddleVT = MVT::v4i32;
4279        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
4280        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
4281                                           Subtarget->hasSSE2(), DAG);
4282        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
4283      }
4284    }
4285
4286    // Is it a vector logical left shift?
4287    if (NumElems == 2 && Idx == 1 &&
4288        X86::isZeroNode(Op.getOperand(0)) &&
4289        !X86::isZeroNode(Op.getOperand(1))) {
4290      unsigned NumBits = VT.getSizeInBits();
4291      return getVShift(true, VT,
4292                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4293                                   VT, Op.getOperand(1)),
4294                       NumBits/2, DAG, *this, dl);
4295    }
4296
4297    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
4298      return SDValue();
4299
4300    // Otherwise, if this is a vector with i32 or f32 elements, and the element
4301    // is a non-constant being inserted into an element other than the low one,
4302    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
4303    // movd/movss) to move this into the low element, then shuffle it into
4304    // place.
4305    if (EVTBits == 32) {
4306      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4307
4308      // Turn it into a shuffle of zero and zero-extended scalar to vector.
4309      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
4310                                         Subtarget->hasSSE2(), DAG);
4311      SmallVector<int, 8> MaskVec;
4312      for (unsigned i = 0; i < NumElems; i++)
4313        MaskVec.push_back(i == Idx ? 0 : 1);
4314      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
4315    }
4316  }
4317
4318  // Splat is obviously ok. Let legalizer expand it to a shuffle.
4319  if (Values.size() == 1) {
4320    if (EVTBits == 32) {
4321      // Instead of a shuffle like this:
4322      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
4323      // Check if it's possible to issue this instead.
4324      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
4325      unsigned Idx = CountTrailingZeros_32(NonZeros);
4326      SDValue Item = Op.getOperand(Idx);
4327      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
4328        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
4329    }
4330    return SDValue();
4331  }
4332
4333  // A vector full of immediates; various special cases are already
4334  // handled, so this is best done with a single constant-pool load.
4335  if (IsAllConstants)
4336    return SDValue();
4337
4338  // Let legalizer expand 2-wide build_vectors.
4339  if (EVTBits == 64) {
4340    if (NumNonZero == 1) {
4341      // One half is zero or undef.
4342      unsigned Idx = CountTrailingZeros_32(NonZeros);
4343      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
4344                                 Op.getOperand(Idx));
4345      return getShuffleVectorZeroOrUndef(V2, Idx, true,
4346                                         Subtarget->hasSSE2(), DAG);
4347    }
4348    return SDValue();
4349  }
4350
4351  // If element VT is < 32 bits, convert it to inserts into a zero vector.
4352  if (EVTBits == 8 && NumElems == 16) {
4353    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
4354                                        *this);
4355    if (V.getNode()) return V;
4356  }
4357
4358  if (EVTBits == 16 && NumElems == 8) {
4359    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
4360                                      *this);
4361    if (V.getNode()) return V;
4362  }
4363
4364  // If element VT is == 32 bits, turn it into a number of shuffles.
4365  SmallVector<SDValue, 8> V;
4366  V.resize(NumElems);
4367  if (NumElems == 4 && NumZero > 0) {
4368    for (unsigned i = 0; i < 4; ++i) {
4369      bool isZero = !(NonZeros & (1 << i));
4370      if (isZero)
4371        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4372      else
4373        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4374    }
4375
4376    for (unsigned i = 0; i < 2; ++i) {
4377      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
4378        default: break;
4379        case 0:
4380          V[i] = V[i*2];  // Must be a zero vector.
4381          break;
4382        case 1:
4383          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
4384          break;
4385        case 2:
4386          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
4387          break;
4388        case 3:
4389          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
4390          break;
4391      }
4392    }
4393
4394    SmallVector<int, 8> MaskVec;
4395    bool Reverse = (NonZeros & 0x3) == 2;
4396    for (unsigned i = 0; i < 2; ++i)
4397      MaskVec.push_back(Reverse ? 1-i : i);
4398    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
4399    for (unsigned i = 0; i < 2; ++i)
4400      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
4401    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
4402  }
4403
4404  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
4405    // Check for a build vector of consecutive loads.
4406    for (unsigned i = 0; i < NumElems; ++i)
4407      V[i] = Op.getOperand(i);
4408
4409    // Check for elements which are consecutive loads.
4410    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
4411    if (LD.getNode())
4412      return LD;
4413
4414    // For SSE 4.1, use insertps to put the high elements into the low element.
4415    if (getSubtarget()->hasSSE41()) {
4416      SDValue Result;
4417      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
4418        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
4419      else
4420        Result = DAG.getUNDEF(VT);
4421
4422      for (unsigned i = 1; i < NumElems; ++i) {
4423        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
4424        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
4425                             Op.getOperand(i), DAG.getIntPtrConstant(i));
4426      }
4427      return Result;
4428    }
4429
4430    // Otherwise, expand into a number of unpckl*, start by extending each of
4431    // our (non-undef) elements to the full vector width with the element in the
4432    // bottom slot of the vector (which generates no code for SSE).
4433    for (unsigned i = 0; i < NumElems; ++i) {
4434      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
4435        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4436      else
4437        V[i] = DAG.getUNDEF(VT);
4438    }
4439
4440    // Next, we iteratively mix elements, e.g. for v4f32:
4441    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
4442    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
4443    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
4444    unsigned EltStride = NumElems >> 1;
4445    while (EltStride != 0) {
4446      for (unsigned i = 0; i < EltStride; ++i) {
4447        // If V[i+EltStride] is undef and this is the first round of mixing,
4448        // then it is safe to just drop this shuffle: V[i] is already in the
4449        // right place, the one element (since it's the first round) being
4450        // inserted as undef can be dropped.  This isn't safe for successive
4451        // rounds because they will permute elements within both vectors.
4452        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
4453            EltStride == NumElems/2)
4454          continue;
4455
4456        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
4457      }
4458      EltStride >>= 1;
4459    }
4460    return V[0];
4461  }
4462  return SDValue();
4463}
4464
4465SDValue
4466X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
4467  // We support concatenate two MMX registers and place them in a MMX
4468  // register.  This is better than doing a stack convert.
4469  DebugLoc dl = Op.getDebugLoc();
4470  EVT ResVT = Op.getValueType();
4471  assert(Op.getNumOperands() == 2);
4472  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
4473         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
4474  int Mask[2];
4475  SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
4476  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4477  InVec = Op.getOperand(1);
4478  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4479    unsigned NumElts = ResVT.getVectorNumElements();
4480    VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
4481    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
4482                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
4483  } else {
4484    InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
4485    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4486    Mask[0] = 0; Mask[1] = 2;
4487    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
4488  }
4489  return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
4490}
4491
4492// v8i16 shuffles - Prefer shuffles in the following order:
4493// 1. [all]   pshuflw, pshufhw, optional move
4494// 2. [ssse3] 1 x pshufb
4495// 3. [ssse3] 2 x pshufb + 1 x por
4496// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
4497SDValue
4498X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
4499                                            SelectionDAG &DAG) const {
4500  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4501  SDValue V1 = SVOp->getOperand(0);
4502  SDValue V2 = SVOp->getOperand(1);
4503  DebugLoc dl = SVOp->getDebugLoc();
4504  SmallVector<int, 8> MaskVals;
4505
4506  // Determine if more than 1 of the words in each of the low and high quadwords
4507  // of the result come from the same quadword of one of the two inputs.  Undef
4508  // mask values count as coming from any quadword, for better codegen.
4509  SmallVector<unsigned, 4> LoQuad(4);
4510  SmallVector<unsigned, 4> HiQuad(4);
4511  BitVector InputQuads(4);
4512  for (unsigned i = 0; i < 8; ++i) {
4513    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
4514    int EltIdx = SVOp->getMaskElt(i);
4515    MaskVals.push_back(EltIdx);
4516    if (EltIdx < 0) {
4517      ++Quad[0];
4518      ++Quad[1];
4519      ++Quad[2];
4520      ++Quad[3];
4521      continue;
4522    }
4523    ++Quad[EltIdx / 4];
4524    InputQuads.set(EltIdx / 4);
4525  }
4526
4527  int BestLoQuad = -1;
4528  unsigned MaxQuad = 1;
4529  for (unsigned i = 0; i < 4; ++i) {
4530    if (LoQuad[i] > MaxQuad) {
4531      BestLoQuad = i;
4532      MaxQuad = LoQuad[i];
4533    }
4534  }
4535
4536  int BestHiQuad = -1;
4537  MaxQuad = 1;
4538  for (unsigned i = 0; i < 4; ++i) {
4539    if (HiQuad[i] > MaxQuad) {
4540      BestHiQuad = i;
4541      MaxQuad = HiQuad[i];
4542    }
4543  }
4544
4545  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
4546  // of the two input vectors, shuffle them into one input vector so only a
4547  // single pshufb instruction is necessary. If There are more than 2 input
4548  // quads, disable the next transformation since it does not help SSSE3.
4549  bool V1Used = InputQuads[0] || InputQuads[1];
4550  bool V2Used = InputQuads[2] || InputQuads[3];
4551  if (Subtarget->hasSSSE3()) {
4552    if (InputQuads.count() == 2 && V1Used && V2Used) {
4553      BestLoQuad = InputQuads.find_first();
4554      BestHiQuad = InputQuads.find_next(BestLoQuad);
4555    }
4556    if (InputQuads.count() > 2) {
4557      BestLoQuad = -1;
4558      BestHiQuad = -1;
4559    }
4560  }
4561
4562  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
4563  // the shuffle mask.  If a quad is scored as -1, that means that it contains
4564  // words from all 4 input quadwords.
4565  SDValue NewV;
4566  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
4567    SmallVector<int, 8> MaskV;
4568    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
4569    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
4570    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
4571                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
4572                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
4573    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
4574
4575    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
4576    // source words for the shuffle, to aid later transformations.
4577    bool AllWordsInNewV = true;
4578    bool InOrder[2] = { true, true };
4579    for (unsigned i = 0; i != 8; ++i) {
4580      int idx = MaskVals[i];
4581      if (idx != (int)i)
4582        InOrder[i/4] = false;
4583      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
4584        continue;
4585      AllWordsInNewV = false;
4586      break;
4587    }
4588
4589    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
4590    if (AllWordsInNewV) {
4591      for (int i = 0; i != 8; ++i) {
4592        int idx = MaskVals[i];
4593        if (idx < 0)
4594          continue;
4595        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
4596        if ((idx != i) && idx < 4)
4597          pshufhw = false;
4598        if ((idx != i) && idx > 3)
4599          pshuflw = false;
4600      }
4601      V1 = NewV;
4602      V2Used = false;
4603      BestLoQuad = 0;
4604      BestHiQuad = 1;
4605    }
4606
4607    // If we've eliminated the use of V2, and the new mask is a pshuflw or
4608    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
4609    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
4610      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
4611      unsigned TargetMask = 0;
4612      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
4613                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
4614      TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
4615                             X86::getShufflePSHUFLWImmediate(NewV.getNode());
4616      V1 = NewV.getOperand(0);
4617      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
4618    }
4619  }
4620
4621  // If we have SSSE3, and all words of the result are from 1 input vector,
4622  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
4623  // is present, fall back to case 4.
4624  if (Subtarget->hasSSSE3()) {
4625    SmallVector<SDValue,16> pshufbMask;
4626
4627    // If we have elements from both input vectors, set the high bit of the
4628    // shuffle mask element to zero out elements that come from V2 in the V1
4629    // mask, and elements that come from V1 in the V2 mask, so that the two
4630    // results can be OR'd together.
4631    bool TwoInputs = V1Used && V2Used;
4632    for (unsigned i = 0; i != 8; ++i) {
4633      int EltIdx = MaskVals[i] * 2;
4634      if (TwoInputs && (EltIdx >= 16)) {
4635        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4636        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4637        continue;
4638      }
4639      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
4640      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
4641    }
4642    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
4643    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4644                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4645                                 MVT::v16i8, &pshufbMask[0], 16));
4646    if (!TwoInputs)
4647      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
4648
4649    // Calculate the shuffle mask for the second input, shuffle it, and
4650    // OR it with the first shuffled input.
4651    pshufbMask.clear();
4652    for (unsigned i = 0; i != 8; ++i) {
4653      int EltIdx = MaskVals[i] * 2;
4654      if (EltIdx < 16) {
4655        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4656        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4657        continue;
4658      }
4659      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4660      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
4661    }
4662    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
4663    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4664                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4665                                 MVT::v16i8, &pshufbMask[0], 16));
4666    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4667    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
4668  }
4669
4670  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
4671  // and update MaskVals with new element order.
4672  BitVector InOrder(8);
4673  if (BestLoQuad >= 0) {
4674    SmallVector<int, 8> MaskV;
4675    for (int i = 0; i != 4; ++i) {
4676      int idx = MaskVals[i];
4677      if (idx < 0) {
4678        MaskV.push_back(-1);
4679        InOrder.set(i);
4680      } else if ((idx / 4) == BestLoQuad) {
4681        MaskV.push_back(idx & 3);
4682        InOrder.set(i);
4683      } else {
4684        MaskV.push_back(-1);
4685      }
4686    }
4687    for (unsigned i = 4; i != 8; ++i)
4688      MaskV.push_back(i);
4689    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4690                                &MaskV[0]);
4691
4692    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
4693      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
4694                               NewV.getOperand(0),
4695                               X86::getShufflePSHUFLWImmediate(NewV.getNode()),
4696                               DAG);
4697  }
4698
4699  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
4700  // and update MaskVals with the new element order.
4701  if (BestHiQuad >= 0) {
4702    SmallVector<int, 8> MaskV;
4703    for (unsigned i = 0; i != 4; ++i)
4704      MaskV.push_back(i);
4705    for (unsigned i = 4; i != 8; ++i) {
4706      int idx = MaskVals[i];
4707      if (idx < 0) {
4708        MaskV.push_back(-1);
4709        InOrder.set(i);
4710      } else if ((idx / 4) == BestHiQuad) {
4711        MaskV.push_back((idx & 3) + 4);
4712        InOrder.set(i);
4713      } else {
4714        MaskV.push_back(-1);
4715      }
4716    }
4717    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4718                                &MaskV[0]);
4719
4720    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
4721      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
4722                              NewV.getOperand(0),
4723                              X86::getShufflePSHUFHWImmediate(NewV.getNode()),
4724                              DAG);
4725  }
4726
4727  // In case BestHi & BestLo were both -1, which means each quadword has a word
4728  // from each of the four input quadwords, calculate the InOrder bitvector now
4729  // before falling through to the insert/extract cleanup.
4730  if (BestLoQuad == -1 && BestHiQuad == -1) {
4731    NewV = V1;
4732    for (int i = 0; i != 8; ++i)
4733      if (MaskVals[i] < 0 || MaskVals[i] == i)
4734        InOrder.set(i);
4735  }
4736
4737  // The other elements are put in the right place using pextrw and pinsrw.
4738  for (unsigned i = 0; i != 8; ++i) {
4739    if (InOrder[i])
4740      continue;
4741    int EltIdx = MaskVals[i];
4742    if (EltIdx < 0)
4743      continue;
4744    SDValue ExtOp = (EltIdx < 8)
4745    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
4746                  DAG.getIntPtrConstant(EltIdx))
4747    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
4748                  DAG.getIntPtrConstant(EltIdx - 8));
4749    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
4750                       DAG.getIntPtrConstant(i));
4751  }
4752  return NewV;
4753}
4754
4755// v16i8 shuffles - Prefer shuffles in the following order:
4756// 1. [ssse3] 1 x pshufb
4757// 2. [ssse3] 2 x pshufb + 1 x por
4758// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
4759static
4760SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
4761                                 SelectionDAG &DAG,
4762                                 const X86TargetLowering &TLI) {
4763  SDValue V1 = SVOp->getOperand(0);
4764  SDValue V2 = SVOp->getOperand(1);
4765  DebugLoc dl = SVOp->getDebugLoc();
4766  SmallVector<int, 16> MaskVals;
4767  SVOp->getMask(MaskVals);
4768
4769  // If we have SSSE3, case 1 is generated when all result bytes come from
4770  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
4771  // present, fall back to case 3.
4772  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
4773  bool V1Only = true;
4774  bool V2Only = true;
4775  for (unsigned i = 0; i < 16; ++i) {
4776    int EltIdx = MaskVals[i];
4777    if (EltIdx < 0)
4778      continue;
4779    if (EltIdx < 16)
4780      V2Only = false;
4781    else
4782      V1Only = false;
4783  }
4784
4785  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
4786  if (TLI.getSubtarget()->hasSSSE3()) {
4787    SmallVector<SDValue,16> pshufbMask;
4788
4789    // If all result elements are from one input vector, then only translate
4790    // undef mask values to 0x80 (zero out result) in the pshufb mask.
4791    //
4792    // Otherwise, we have elements from both input vectors, and must zero out
4793    // elements that come from V2 in the first mask, and V1 in the second mask
4794    // so that we can OR them together.
4795    bool TwoInputs = !(V1Only || V2Only);
4796    for (unsigned i = 0; i != 16; ++i) {
4797      int EltIdx = MaskVals[i];
4798      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
4799        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4800        continue;
4801      }
4802      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
4803    }
4804    // If all the elements are from V2, assign it to V1 and return after
4805    // building the first pshufb.
4806    if (V2Only)
4807      V1 = V2;
4808    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4809                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4810                                 MVT::v16i8, &pshufbMask[0], 16));
4811    if (!TwoInputs)
4812      return V1;
4813
4814    // Calculate the shuffle mask for the second input, shuffle it, and
4815    // OR it with the first shuffled input.
4816    pshufbMask.clear();
4817    for (unsigned i = 0; i != 16; ++i) {
4818      int EltIdx = MaskVals[i];
4819      if (EltIdx < 16) {
4820        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4821        continue;
4822      }
4823      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4824    }
4825    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4826                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4827                                 MVT::v16i8, &pshufbMask[0], 16));
4828    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4829  }
4830
4831  // No SSSE3 - Calculate in place words and then fix all out of place words
4832  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
4833  // the 16 different words that comprise the two doublequadword input vectors.
4834  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
4835  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
4836  SDValue NewV = V2Only ? V2 : V1;
4837  for (int i = 0; i != 8; ++i) {
4838    int Elt0 = MaskVals[i*2];
4839    int Elt1 = MaskVals[i*2+1];
4840
4841    // This word of the result is all undef, skip it.
4842    if (Elt0 < 0 && Elt1 < 0)
4843      continue;
4844
4845    // This word of the result is already in the correct place, skip it.
4846    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
4847      continue;
4848    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
4849      continue;
4850
4851    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
4852    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
4853    SDValue InsElt;
4854
4855    // If Elt0 and Elt1 are defined, are consecutive, and can be load
4856    // using a single extract together, load it and store it.
4857    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
4858      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4859                           DAG.getIntPtrConstant(Elt1 / 2));
4860      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4861                        DAG.getIntPtrConstant(i));
4862      continue;
4863    }
4864
4865    // If Elt1 is defined, extract it from the appropriate source.  If the
4866    // source byte is not also odd, shift the extracted word left 8 bits
4867    // otherwise clear the bottom 8 bits if we need to do an or.
4868    if (Elt1 >= 0) {
4869      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4870                           DAG.getIntPtrConstant(Elt1 / 2));
4871      if ((Elt1 & 1) == 0)
4872        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
4873                             DAG.getConstant(8, TLI.getShiftAmountTy()));
4874      else if (Elt0 >= 0)
4875        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
4876                             DAG.getConstant(0xFF00, MVT::i16));
4877    }
4878    // If Elt0 is defined, extract it from the appropriate source.  If the
4879    // source byte is not also even, shift the extracted word right 8 bits. If
4880    // Elt1 was also defined, OR the extracted values together before
4881    // inserting them in the result.
4882    if (Elt0 >= 0) {
4883      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
4884                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
4885      if ((Elt0 & 1) != 0)
4886        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
4887                              DAG.getConstant(8, TLI.getShiftAmountTy()));
4888      else if (Elt1 >= 0)
4889        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
4890                             DAG.getConstant(0x00FF, MVT::i16));
4891      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
4892                         : InsElt0;
4893    }
4894    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4895                       DAG.getIntPtrConstant(i));
4896  }
4897  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
4898}
4899
4900/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
4901/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
4902/// done when every pair / quad of shuffle mask elements point to elements in
4903/// the right sequence. e.g.
4904/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
4905static
4906SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
4907                                 SelectionDAG &DAG, DebugLoc dl) {
4908  EVT VT = SVOp->getValueType(0);
4909  SDValue V1 = SVOp->getOperand(0);
4910  SDValue V2 = SVOp->getOperand(1);
4911  unsigned NumElems = VT.getVectorNumElements();
4912  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
4913  EVT NewVT;
4914  switch (VT.getSimpleVT().SimpleTy) {
4915  default: assert(false && "Unexpected!");
4916  case MVT::v4f32: NewVT = MVT::v2f64; break;
4917  case MVT::v4i32: NewVT = MVT::v2i64; break;
4918  case MVT::v8i16: NewVT = MVT::v4i32; break;
4919  case MVT::v16i8: NewVT = MVT::v4i32; break;
4920  }
4921
4922  int Scale = NumElems / NewWidth;
4923  SmallVector<int, 8> MaskVec;
4924  for (unsigned i = 0; i < NumElems; i += Scale) {
4925    int StartIdx = -1;
4926    for (int j = 0; j < Scale; ++j) {
4927      int EltIdx = SVOp->getMaskElt(i+j);
4928      if (EltIdx < 0)
4929        continue;
4930      if (StartIdx == -1)
4931        StartIdx = EltIdx - (EltIdx % Scale);
4932      if (EltIdx != StartIdx + j)
4933        return SDValue();
4934    }
4935    if (StartIdx == -1)
4936      MaskVec.push_back(-1);
4937    else
4938      MaskVec.push_back(StartIdx / Scale);
4939  }
4940
4941  V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
4942  V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
4943  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
4944}
4945
4946/// getVZextMovL - Return a zero-extending vector move low node.
4947///
4948static SDValue getVZextMovL(EVT VT, EVT OpVT,
4949                            SDValue SrcOp, SelectionDAG &DAG,
4950                            const X86Subtarget *Subtarget, DebugLoc dl) {
4951  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
4952    LoadSDNode *LD = NULL;
4953    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
4954      LD = dyn_cast<LoadSDNode>(SrcOp);
4955    if (!LD) {
4956      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
4957      // instead.
4958      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
4959      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
4960          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
4961          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
4962          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
4963        // PR2108
4964        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
4965        return DAG.getNode(ISD::BITCAST, dl, VT,
4966                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4967                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4968                                                   OpVT,
4969                                                   SrcOp.getOperand(0)
4970                                                          .getOperand(0))));
4971      }
4972    }
4973  }
4974
4975  return DAG.getNode(ISD::BITCAST, dl, VT,
4976                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4977                                 DAG.getNode(ISD::BITCAST, dl,
4978                                             OpVT, SrcOp)));
4979}
4980
4981/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
4982/// shuffles.
4983static SDValue
4984LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4985  SDValue V1 = SVOp->getOperand(0);
4986  SDValue V2 = SVOp->getOperand(1);
4987  DebugLoc dl = SVOp->getDebugLoc();
4988  EVT VT = SVOp->getValueType(0);
4989
4990  SmallVector<std::pair<int, int>, 8> Locs;
4991  Locs.resize(4);
4992  SmallVector<int, 8> Mask1(4U, -1);
4993  SmallVector<int, 8> PermMask;
4994  SVOp->getMask(PermMask);
4995
4996  unsigned NumHi = 0;
4997  unsigned NumLo = 0;
4998  for (unsigned i = 0; i != 4; ++i) {
4999    int Idx = PermMask[i];
5000    if (Idx < 0) {
5001      Locs[i] = std::make_pair(-1, -1);
5002    } else {
5003      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
5004      if (Idx < 4) {
5005        Locs[i] = std::make_pair(0, NumLo);
5006        Mask1[NumLo] = Idx;
5007        NumLo++;
5008      } else {
5009        Locs[i] = std::make_pair(1, NumHi);
5010        if (2+NumHi < 4)
5011          Mask1[2+NumHi] = Idx;
5012        NumHi++;
5013      }
5014    }
5015  }
5016
5017  if (NumLo <= 2 && NumHi <= 2) {
5018    // If no more than two elements come from either vector. This can be
5019    // implemented with two shuffles. First shuffle gather the elements.
5020    // The second shuffle, which takes the first shuffle as both of its
5021    // vector operands, put the elements into the right order.
5022    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5023
5024    SmallVector<int, 8> Mask2(4U, -1);
5025
5026    for (unsigned i = 0; i != 4; ++i) {
5027      if (Locs[i].first == -1)
5028        continue;
5029      else {
5030        unsigned Idx = (i < 2) ? 0 : 4;
5031        Idx += Locs[i].first * 2 + Locs[i].second;
5032        Mask2[i] = Idx;
5033      }
5034    }
5035
5036    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
5037  } else if (NumLo == 3 || NumHi == 3) {
5038    // Otherwise, we must have three elements from one vector, call it X, and
5039    // one element from the other, call it Y.  First, use a shufps to build an
5040    // intermediate vector with the one element from Y and the element from X
5041    // that will be in the same half in the final destination (the indexes don't
5042    // matter). Then, use a shufps to build the final vector, taking the half
5043    // containing the element from Y from the intermediate, and the other half
5044    // from X.
5045    if (NumHi == 3) {
5046      // Normalize it so the 3 elements come from V1.
5047      CommuteVectorShuffleMask(PermMask, VT);
5048      std::swap(V1, V2);
5049    }
5050
5051    // Find the element from V2.
5052    unsigned HiIndex;
5053    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
5054      int Val = PermMask[HiIndex];
5055      if (Val < 0)
5056        continue;
5057      if (Val >= 4)
5058        break;
5059    }
5060
5061    Mask1[0] = PermMask[HiIndex];
5062    Mask1[1] = -1;
5063    Mask1[2] = PermMask[HiIndex^1];
5064    Mask1[3] = -1;
5065    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5066
5067    if (HiIndex >= 2) {
5068      Mask1[0] = PermMask[0];
5069      Mask1[1] = PermMask[1];
5070      Mask1[2] = HiIndex & 1 ? 6 : 4;
5071      Mask1[3] = HiIndex & 1 ? 4 : 6;
5072      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5073    } else {
5074      Mask1[0] = HiIndex & 1 ? 2 : 0;
5075      Mask1[1] = HiIndex & 1 ? 0 : 2;
5076      Mask1[2] = PermMask[2];
5077      Mask1[3] = PermMask[3];
5078      if (Mask1[2] >= 0)
5079        Mask1[2] += 4;
5080      if (Mask1[3] >= 0)
5081        Mask1[3] += 4;
5082      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
5083    }
5084  }
5085
5086  // Break it into (shuffle shuffle_hi, shuffle_lo).
5087  Locs.clear();
5088  SmallVector<int,8> LoMask(4U, -1);
5089  SmallVector<int,8> HiMask(4U, -1);
5090
5091  SmallVector<int,8> *MaskPtr = &LoMask;
5092  unsigned MaskIdx = 0;
5093  unsigned LoIdx = 0;
5094  unsigned HiIdx = 2;
5095  for (unsigned i = 0; i != 4; ++i) {
5096    if (i == 2) {
5097      MaskPtr = &HiMask;
5098      MaskIdx = 1;
5099      LoIdx = 0;
5100      HiIdx = 2;
5101    }
5102    int Idx = PermMask[i];
5103    if (Idx < 0) {
5104      Locs[i] = std::make_pair(-1, -1);
5105    } else if (Idx < 4) {
5106      Locs[i] = std::make_pair(MaskIdx, LoIdx);
5107      (*MaskPtr)[LoIdx] = Idx;
5108      LoIdx++;
5109    } else {
5110      Locs[i] = std::make_pair(MaskIdx, HiIdx);
5111      (*MaskPtr)[HiIdx] = Idx;
5112      HiIdx++;
5113    }
5114  }
5115
5116  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
5117  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
5118  SmallVector<int, 8> MaskOps;
5119  for (unsigned i = 0; i != 4; ++i) {
5120    if (Locs[i].first == -1) {
5121      MaskOps.push_back(-1);
5122    } else {
5123      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
5124      MaskOps.push_back(Idx);
5125    }
5126  }
5127  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
5128}
5129
5130static bool MayFoldVectorLoad(SDValue V) {
5131  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
5132    V = V.getOperand(0);
5133  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
5134    V = V.getOperand(0);
5135  if (MayFoldLoad(V))
5136    return true;
5137  return false;
5138}
5139
5140// FIXME: the version above should always be used. Since there's
5141// a bug where several vector shuffles can't be folded because the
5142// DAG is not updated during lowering and a node claims to have two
5143// uses while it only has one, use this version, and let isel match
5144// another instruction if the load really happens to have more than
5145// one use. Remove this version after this bug get fixed.
5146// rdar://8434668, PR8156
5147static bool RelaxedMayFoldVectorLoad(SDValue V) {
5148  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
5149    V = V.getOperand(0);
5150  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
5151    V = V.getOperand(0);
5152  if (ISD::isNormalLoad(V.getNode()))
5153    return true;
5154  return false;
5155}
5156
5157/// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
5158/// a vector extract, and if both can be later optimized into a single load.
5159/// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
5160/// here because otherwise a target specific shuffle node is going to be
5161/// emitted for this shuffle, and the optimization not done.
5162/// FIXME: This is probably not the best approach, but fix the problem
5163/// until the right path is decided.
5164static
5165bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
5166                                         const TargetLowering &TLI) {
5167  EVT VT = V.getValueType();
5168  ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
5169
5170  // Be sure that the vector shuffle is present in a pattern like this:
5171  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
5172  if (!V.hasOneUse())
5173    return false;
5174
5175  SDNode *N = *V.getNode()->use_begin();
5176  if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
5177    return false;
5178
5179  SDValue EltNo = N->getOperand(1);
5180  if (!isa<ConstantSDNode>(EltNo))
5181    return false;
5182
5183  // If the bit convert changed the number of elements, it is unsafe
5184  // to examine the mask.
5185  bool HasShuffleIntoBitcast = false;
5186  if (V.getOpcode() == ISD::BITCAST) {
5187    EVT SrcVT = V.getOperand(0).getValueType();
5188    if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
5189      return false;
5190    V = V.getOperand(0);
5191    HasShuffleIntoBitcast = true;
5192  }
5193
5194  // Select the input vector, guarding against out of range extract vector.
5195  unsigned NumElems = VT.getVectorNumElements();
5196  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
5197  int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
5198  V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
5199
5200  // Skip one more bit_convert if necessary
5201  if (V.getOpcode() == ISD::BITCAST)
5202    V = V.getOperand(0);
5203
5204  if (ISD::isNormalLoad(V.getNode())) {
5205    // Is the original load suitable?
5206    LoadSDNode *LN0 = cast<LoadSDNode>(V);
5207
5208    // FIXME: avoid the multi-use bug that is preventing lots of
5209    // of foldings to be detected, this is still wrong of course, but
5210    // give the temporary desired behavior, and if it happens that
5211    // the load has real more uses, during isel it will not fold, and
5212    // will generate poor code.
5213    if (!LN0 || LN0->isVolatile()) // || !LN0->hasOneUse()
5214      return false;
5215
5216    if (!HasShuffleIntoBitcast)
5217      return true;
5218
5219    // If there's a bitcast before the shuffle, check if the load type and
5220    // alignment is valid.
5221    unsigned Align = LN0->getAlignment();
5222    unsigned NewAlign =
5223      TLI.getTargetData()->getABITypeAlignment(
5224                                    VT.getTypeForEVT(*DAG.getContext()));
5225
5226    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
5227      return false;
5228  }
5229
5230  return true;
5231}
5232
5233static
5234SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
5235  EVT VT = Op.getValueType();
5236
5237  // Canonizalize to v2f64.
5238  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
5239  return DAG.getNode(ISD::BITCAST, dl, VT,
5240                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
5241                                          V1, DAG));
5242}
5243
5244static
5245SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
5246                        bool HasSSE2) {
5247  SDValue V1 = Op.getOperand(0);
5248  SDValue V2 = Op.getOperand(1);
5249  EVT VT = Op.getValueType();
5250
5251  assert(VT != MVT::v2i64 && "unsupported shuffle type");
5252
5253  if (HasSSE2 && VT == MVT::v2f64)
5254    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
5255
5256  // v4f32 or v4i32
5257  return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V2, DAG);
5258}
5259
5260static
5261SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
5262  SDValue V1 = Op.getOperand(0);
5263  SDValue V2 = Op.getOperand(1);
5264  EVT VT = Op.getValueType();
5265
5266  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
5267         "unsupported shuffle type");
5268
5269  if (V2.getOpcode() == ISD::UNDEF)
5270    V2 = V1;
5271
5272  // v4i32 or v4f32
5273  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
5274}
5275
5276static
5277SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
5278  SDValue V1 = Op.getOperand(0);
5279  SDValue V2 = Op.getOperand(1);
5280  EVT VT = Op.getValueType();
5281  unsigned NumElems = VT.getVectorNumElements();
5282
5283  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
5284  // operand of these instructions is only memory, so check if there's a
5285  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
5286  // same masks.
5287  bool CanFoldLoad = false;
5288
5289  // Trivial case, when V2 comes from a load.
5290  if (MayFoldVectorLoad(V2))
5291    CanFoldLoad = true;
5292
5293  // When V1 is a load, it can be folded later into a store in isel, example:
5294  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
5295  //    turns into:
5296  //  (MOVLPSmr addr:$src1, VR128:$src2)
5297  // So, recognize this potential and also use MOVLPS or MOVLPD
5298  if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
5299    CanFoldLoad = true;
5300
5301  if (CanFoldLoad) {
5302    if (HasSSE2 && NumElems == 2)
5303      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
5304
5305    if (NumElems == 4)
5306      return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
5307  }
5308
5309  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5310  // movl and movlp will both match v2i64, but v2i64 is never matched by
5311  // movl earlier because we make it strict to avoid messing with the movlp load
5312  // folding logic (see the code above getMOVLP call). Match it here then,
5313  // this is horrible, but will stay like this until we move all shuffle
5314  // matching to x86 specific nodes. Note that for the 1st condition all
5315  // types are matched with movsd.
5316  if ((HasSSE2 && NumElems == 2) || !X86::isMOVLMask(SVOp))
5317    return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
5318  else if (HasSSE2)
5319    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
5320
5321
5322  assert(VT != MVT::v4i32 && "unsupported shuffle type");
5323
5324  // Invert the operand order and use SHUFPS to match it.
5325  return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V2, V1,
5326                              X86::getShuffleSHUFImmediate(SVOp), DAG);
5327}
5328
5329static inline unsigned getUNPCKLOpcode(EVT VT) {
5330  switch(VT.getSimpleVT().SimpleTy) {
5331  case MVT::v4i32: return X86ISD::PUNPCKLDQ;
5332  case MVT::v2i64: return X86ISD::PUNPCKLQDQ;
5333  case MVT::v4f32: return X86ISD::UNPCKLPS;
5334  case MVT::v2f64: return X86ISD::UNPCKLPD;
5335  case MVT::v16i8: return X86ISD::PUNPCKLBW;
5336  case MVT::v8i16: return X86ISD::PUNPCKLWD;
5337  default:
5338    llvm_unreachable("Unknow type for unpckl");
5339  }
5340  return 0;
5341}
5342
5343static inline unsigned getUNPCKHOpcode(EVT VT) {
5344  switch(VT.getSimpleVT().SimpleTy) {
5345  case MVT::v4i32: return X86ISD::PUNPCKHDQ;
5346  case MVT::v2i64: return X86ISD::PUNPCKHQDQ;
5347  case MVT::v4f32: return X86ISD::UNPCKHPS;
5348  case MVT::v2f64: return X86ISD::UNPCKHPD;
5349  case MVT::v16i8: return X86ISD::PUNPCKHBW;
5350  case MVT::v8i16: return X86ISD::PUNPCKHWD;
5351  default:
5352    llvm_unreachable("Unknow type for unpckh");
5353  }
5354  return 0;
5355}
5356
5357static
5358SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
5359                               const TargetLowering &TLI,
5360                               const X86Subtarget *Subtarget) {
5361  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5362  EVT VT = Op.getValueType();
5363  DebugLoc dl = Op.getDebugLoc();
5364  SDValue V1 = Op.getOperand(0);
5365  SDValue V2 = Op.getOperand(1);
5366
5367  if (isZeroShuffle(SVOp))
5368    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
5369
5370  // Handle splat operations
5371  if (SVOp->isSplat()) {
5372    // Special case, this is the only place now where it's
5373    // allowed to return a vector_shuffle operation without
5374    // using a target specific node, because *hopefully* it
5375    // will be optimized away by the dag combiner.
5376    if (VT.getVectorNumElements() <= 4 &&
5377        CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
5378      return Op;
5379
5380    // Handle splats by matching through known masks
5381    if (VT.getVectorNumElements() <= 4)
5382      return SDValue();
5383
5384    // Canonicalize all of the remaining to v4f32.
5385    return PromoteSplat(SVOp, DAG);
5386  }
5387
5388  // If the shuffle can be profitably rewritten as a narrower shuffle, then
5389  // do it!
5390  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
5391    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5392    if (NewOp.getNode())
5393      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
5394  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
5395    // FIXME: Figure out a cleaner way to do this.
5396    // Try to make use of movq to zero out the top part.
5397    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
5398      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5399      if (NewOp.getNode()) {
5400        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
5401          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
5402                              DAG, Subtarget, dl);
5403      }
5404    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
5405      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5406      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
5407        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
5408                            DAG, Subtarget, dl);
5409    }
5410  }
5411  return SDValue();
5412}
5413
5414SDValue
5415X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
5416  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5417  SDValue V1 = Op.getOperand(0);
5418  SDValue V2 = Op.getOperand(1);
5419  EVT VT = Op.getValueType();
5420  DebugLoc dl = Op.getDebugLoc();
5421  unsigned NumElems = VT.getVectorNumElements();
5422  bool isMMX = VT.getSizeInBits() == 64;
5423  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
5424  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
5425  bool V1IsSplat = false;
5426  bool V2IsSplat = false;
5427  bool HasSSE2 = Subtarget->hasSSE2() || Subtarget->hasAVX();
5428  bool HasSSE3 = Subtarget->hasSSE3() || Subtarget->hasAVX();
5429  bool HasSSSE3 = Subtarget->hasSSSE3() || Subtarget->hasAVX();
5430  MachineFunction &MF = DAG.getMachineFunction();
5431  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
5432
5433  // Shuffle operations on MMX not supported.
5434  if (isMMX)
5435    return Op;
5436
5437  // Vector shuffle lowering takes 3 steps:
5438  //
5439  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
5440  //    narrowing and commutation of operands should be handled.
5441  // 2) Matching of shuffles with known shuffle masks to x86 target specific
5442  //    shuffle nodes.
5443  // 3) Rewriting of unmatched masks into new generic shuffle operations,
5444  //    so the shuffle can be broken into other shuffles and the legalizer can
5445  //    try the lowering again.
5446  //
5447  // The general ideia is that no vector_shuffle operation should be left to
5448  // be matched during isel, all of them must be converted to a target specific
5449  // node here.
5450
5451  // Normalize the input vectors. Here splats, zeroed vectors, profitable
5452  // narrowing and commutation of operands should be handled. The actual code
5453  // doesn't include all of those, work in progress...
5454  SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
5455  if (NewOp.getNode())
5456    return NewOp;
5457
5458  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
5459  // unpckh_undef). Only use pshufd if speed is more important than size.
5460  if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp))
5461    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5462      return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
5463  if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp))
5464    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5465      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
5466
5467  if (X86::isMOVDDUPMask(SVOp) && HasSSE3 && V2IsUndef &&
5468      RelaxedMayFoldVectorLoad(V1))
5469    return getMOVDDup(Op, dl, V1, DAG);
5470
5471  if (X86::isMOVHLPS_v_undef_Mask(SVOp))
5472    return getMOVHighToLow(Op, dl, DAG);
5473
5474  // Use to match splats
5475  if (HasSSE2 && X86::isUNPCKHMask(SVOp) && V2IsUndef &&
5476      (VT == MVT::v2f64 || VT == MVT::v2i64))
5477    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
5478
5479  if (X86::isPSHUFDMask(SVOp)) {
5480    // The actual implementation will match the mask in the if above and then
5481    // during isel it can match several different instructions, not only pshufd
5482    // as its name says, sad but true, emulate the behavior for now...
5483    if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
5484        return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
5485
5486    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
5487
5488    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
5489      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
5490
5491    if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
5492      return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V1,
5493                                  TargetMask, DAG);
5494
5495    if (VT == MVT::v4f32)
5496      return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V1,
5497                                  TargetMask, DAG);
5498  }
5499
5500  // Check if this can be converted into a logical shift.
5501  bool isLeft = false;
5502  unsigned ShAmt = 0;
5503  SDValue ShVal;
5504  bool isShift = getSubtarget()->hasSSE2() &&
5505    isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
5506  if (isShift && ShVal.hasOneUse()) {
5507    // If the shifted value has multiple uses, it may be cheaper to use
5508    // v_set0 + movlhps or movhlps, etc.
5509    EVT EltVT = VT.getVectorElementType();
5510    ShAmt *= EltVT.getSizeInBits();
5511    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
5512  }
5513
5514  if (X86::isMOVLMask(SVOp)) {
5515    if (V1IsUndef)
5516      return V2;
5517    if (ISD::isBuildVectorAllZeros(V1.getNode()))
5518      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
5519    if (!X86::isMOVLPMask(SVOp)) {
5520      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
5521        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
5522
5523      if (VT == MVT::v4i32 || VT == MVT::v4f32)
5524        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
5525    }
5526  }
5527
5528  // FIXME: fold these into legal mask.
5529  if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp))
5530    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
5531
5532  if (X86::isMOVHLPSMask(SVOp))
5533    return getMOVHighToLow(Op, dl, DAG);
5534
5535  if (X86::isMOVSHDUPMask(SVOp) && HasSSE3 && V2IsUndef && NumElems == 4)
5536    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
5537
5538  if (X86::isMOVSLDUPMask(SVOp) && HasSSE3 && V2IsUndef && NumElems == 4)
5539    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
5540
5541  if (X86::isMOVLPMask(SVOp))
5542    return getMOVLP(Op, dl, DAG, HasSSE2);
5543
5544  if (ShouldXformToMOVHLPS(SVOp) ||
5545      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
5546    return CommuteVectorShuffle(SVOp, DAG);
5547
5548  if (isShift) {
5549    // No better options. Use a vshl / vsrl.
5550    EVT EltVT = VT.getVectorElementType();
5551    ShAmt *= EltVT.getSizeInBits();
5552    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
5553  }
5554
5555  bool Commuted = false;
5556  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
5557  // 1,1,1,1 -> v8i16 though.
5558  V1IsSplat = isSplatVector(V1.getNode());
5559  V2IsSplat = isSplatVector(V2.getNode());
5560
5561  // Canonicalize the splat or undef, if present, to be on the RHS.
5562  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
5563    Op = CommuteVectorShuffle(SVOp, DAG);
5564    SVOp = cast<ShuffleVectorSDNode>(Op);
5565    V1 = SVOp->getOperand(0);
5566    V2 = SVOp->getOperand(1);
5567    std::swap(V1IsSplat, V2IsSplat);
5568    std::swap(V1IsUndef, V2IsUndef);
5569    Commuted = true;
5570  }
5571
5572  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
5573    // Shuffling low element of v1 into undef, just return v1.
5574    if (V2IsUndef)
5575      return V1;
5576    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
5577    // the instruction selector will not match, so get a canonical MOVL with
5578    // swapped operands to undo the commute.
5579    return getMOVL(DAG, dl, VT, V2, V1);
5580  }
5581
5582  if (X86::isUNPCKLMask(SVOp))
5583    return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V2, DAG);
5584
5585  if (X86::isUNPCKHMask(SVOp))
5586    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V2, DAG);
5587
5588  if (V2IsSplat) {
5589    // Normalize mask so all entries that point to V2 points to its first
5590    // element then try to match unpck{h|l} again. If match, return a
5591    // new vector_shuffle with the corrected mask.
5592    SDValue NewMask = NormalizeMask(SVOp, DAG);
5593    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
5594    if (NSVOp != SVOp) {
5595      if (X86::isUNPCKLMask(NSVOp, true)) {
5596        return NewMask;
5597      } else if (X86::isUNPCKHMask(NSVOp, true)) {
5598        return NewMask;
5599      }
5600    }
5601  }
5602
5603  if (Commuted) {
5604    // Commute is back and try unpck* again.
5605    // FIXME: this seems wrong.
5606    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
5607    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
5608
5609    if (X86::isUNPCKLMask(NewSVOp))
5610      return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V2, V1, DAG);
5611
5612    if (X86::isUNPCKHMask(NewSVOp))
5613      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V2, V1, DAG);
5614  }
5615
5616  // Normalize the node to match x86 shuffle ops if needed
5617  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
5618    return CommuteVectorShuffle(SVOp, DAG);
5619
5620  // The checks below are all present in isShuffleMaskLegal, but they are
5621  // inlined here right now to enable us to directly emit target specific
5622  // nodes, and remove one by one until they don't return Op anymore.
5623  SmallVector<int, 16> M;
5624  SVOp->getMask(M);
5625
5626  if (isPALIGNRMask(M, VT, HasSSSE3))
5627    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
5628                                X86::getShufflePALIGNRImmediate(SVOp),
5629                                DAG);
5630
5631  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
5632      SVOp->getSplatIndex() == 0 && V2IsUndef) {
5633    if (VT == MVT::v2f64)
5634      return getTargetShuffleNode(X86ISD::UNPCKLPD, dl, VT, V1, V1, DAG);
5635    if (VT == MVT::v2i64)
5636      return getTargetShuffleNode(X86ISD::PUNPCKLQDQ, dl, VT, V1, V1, DAG);
5637  }
5638
5639  if (isPSHUFHWMask(M, VT))
5640    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
5641                                X86::getShufflePSHUFHWImmediate(SVOp),
5642                                DAG);
5643
5644  if (isPSHUFLWMask(M, VT))
5645    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
5646                                X86::getShufflePSHUFLWImmediate(SVOp),
5647                                DAG);
5648
5649  if (isSHUFPMask(M, VT)) {
5650    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
5651    if (VT == MVT::v4f32 || VT == MVT::v4i32)
5652      return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V2,
5653                                  TargetMask, DAG);
5654    if (VT == MVT::v2f64 || VT == MVT::v2i64)
5655      return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V2,
5656                                  TargetMask, DAG);
5657  }
5658
5659  if (X86::isUNPCKL_v_undef_Mask(SVOp))
5660    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5661      return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
5662  if (X86::isUNPCKH_v_undef_Mask(SVOp))
5663    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5664      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
5665
5666  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
5667  if (VT == MVT::v8i16) {
5668    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
5669    if (NewOp.getNode())
5670      return NewOp;
5671  }
5672
5673  if (VT == MVT::v16i8) {
5674    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
5675    if (NewOp.getNode())
5676      return NewOp;
5677  }
5678
5679  // Handle all 4 wide cases with a number of shuffles.
5680  if (NumElems == 4)
5681    return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
5682
5683  return SDValue();
5684}
5685
5686SDValue
5687X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
5688                                                SelectionDAG &DAG) const {
5689  EVT VT = Op.getValueType();
5690  DebugLoc dl = Op.getDebugLoc();
5691  if (VT.getSizeInBits() == 8) {
5692    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
5693                                    Op.getOperand(0), Op.getOperand(1));
5694    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
5695                                    DAG.getValueType(VT));
5696    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5697  } else if (VT.getSizeInBits() == 16) {
5698    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5699    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
5700    if (Idx == 0)
5701      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
5702                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5703                                     DAG.getNode(ISD::BITCAST, dl,
5704                                                 MVT::v4i32,
5705                                                 Op.getOperand(0)),
5706                                     Op.getOperand(1)));
5707    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
5708                                    Op.getOperand(0), Op.getOperand(1));
5709    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
5710                                    DAG.getValueType(VT));
5711    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5712  } else if (VT == MVT::f32) {
5713    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
5714    // the result back to FR32 register. It's only worth matching if the
5715    // result has a single use which is a store or a bitcast to i32.  And in
5716    // the case of a store, it's not worth it if the index is a constant 0,
5717    // because a MOVSSmr can be used instead, which is smaller and faster.
5718    if (!Op.hasOneUse())
5719      return SDValue();
5720    SDNode *User = *Op.getNode()->use_begin();
5721    if ((User->getOpcode() != ISD::STORE ||
5722         (isa<ConstantSDNode>(Op.getOperand(1)) &&
5723          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
5724        (User->getOpcode() != ISD::BITCAST ||
5725         User->getValueType(0) != MVT::i32))
5726      return SDValue();
5727    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5728                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
5729                                              Op.getOperand(0)),
5730                                              Op.getOperand(1));
5731    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
5732  } else if (VT == MVT::i32) {
5733    // ExtractPS works with constant index.
5734    if (isa<ConstantSDNode>(Op.getOperand(1)))
5735      return Op;
5736  }
5737  return SDValue();
5738}
5739
5740
5741SDValue
5742X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
5743                                           SelectionDAG &DAG) const {
5744  if (!isa<ConstantSDNode>(Op.getOperand(1)))
5745    return SDValue();
5746
5747  if (Subtarget->hasSSE41()) {
5748    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
5749    if (Res.getNode())
5750      return Res;
5751  }
5752
5753  EVT VT = Op.getValueType();
5754  DebugLoc dl = Op.getDebugLoc();
5755  // TODO: handle v16i8.
5756  if (VT.getSizeInBits() == 16) {
5757    SDValue Vec = Op.getOperand(0);
5758    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5759    if (Idx == 0)
5760      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
5761                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5762                                     DAG.getNode(ISD::BITCAST, dl,
5763                                                 MVT::v4i32, Vec),
5764                                     Op.getOperand(1)));
5765    // Transform it so it match pextrw which produces a 32-bit result.
5766    EVT EltVT = MVT::i32;
5767    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
5768                                    Op.getOperand(0), Op.getOperand(1));
5769    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
5770                                    DAG.getValueType(VT));
5771    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5772  } else if (VT.getSizeInBits() == 32) {
5773    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5774    if (Idx == 0)
5775      return Op;
5776
5777    // SHUFPS the element to the lowest double word, then movss.
5778    int Mask[4] = { Idx, -1, -1, -1 };
5779    EVT VVT = Op.getOperand(0).getValueType();
5780    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
5781                                       DAG.getUNDEF(VVT), Mask);
5782    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
5783                       DAG.getIntPtrConstant(0));
5784  } else if (VT.getSizeInBits() == 64) {
5785    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
5786    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
5787    //        to match extract_elt for f64.
5788    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5789    if (Idx == 0)
5790      return Op;
5791
5792    // UNPCKHPD the element to the lowest double word, then movsd.
5793    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
5794    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
5795    int Mask[2] = { 1, -1 };
5796    EVT VVT = Op.getOperand(0).getValueType();
5797    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
5798                                       DAG.getUNDEF(VVT), Mask);
5799    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
5800                       DAG.getIntPtrConstant(0));
5801  }
5802
5803  return SDValue();
5804}
5805
5806SDValue
5807X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
5808                                               SelectionDAG &DAG) const {
5809  EVT VT = Op.getValueType();
5810  EVT EltVT = VT.getVectorElementType();
5811  DebugLoc dl = Op.getDebugLoc();
5812
5813  SDValue N0 = Op.getOperand(0);
5814  SDValue N1 = Op.getOperand(1);
5815  SDValue N2 = Op.getOperand(2);
5816
5817  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
5818      isa<ConstantSDNode>(N2)) {
5819    unsigned Opc;
5820    if (VT == MVT::v8i16)
5821      Opc = X86ISD::PINSRW;
5822    else if (VT == MVT::v16i8)
5823      Opc = X86ISD::PINSRB;
5824    else
5825      Opc = X86ISD::PINSRB;
5826
5827    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
5828    // argument.
5829    if (N1.getValueType() != MVT::i32)
5830      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
5831    if (N2.getValueType() != MVT::i32)
5832      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
5833    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
5834  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
5835    // Bits [7:6] of the constant are the source select.  This will always be
5836    //  zero here.  The DAG Combiner may combine an extract_elt index into these
5837    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
5838    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
5839    // Bits [5:4] of the constant are the destination select.  This is the
5840    //  value of the incoming immediate.
5841    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
5842    //   combine either bitwise AND or insert of float 0.0 to set these bits.
5843    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
5844    // Create this as a scalar to vector..
5845    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
5846    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
5847  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
5848    // PINSR* works with constant index.
5849    return Op;
5850  }
5851  return SDValue();
5852}
5853
5854SDValue
5855X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
5856  EVT VT = Op.getValueType();
5857  EVT EltVT = VT.getVectorElementType();
5858
5859  if (Subtarget->hasSSE41())
5860    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
5861
5862  if (EltVT == MVT::i8)
5863    return SDValue();
5864
5865  DebugLoc dl = Op.getDebugLoc();
5866  SDValue N0 = Op.getOperand(0);
5867  SDValue N1 = Op.getOperand(1);
5868  SDValue N2 = Op.getOperand(2);
5869
5870  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
5871    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
5872    // as its second argument.
5873    if (N1.getValueType() != MVT::i32)
5874      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
5875    if (N2.getValueType() != MVT::i32)
5876      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
5877    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
5878  }
5879  return SDValue();
5880}
5881
5882SDValue
5883X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5884  DebugLoc dl = Op.getDebugLoc();
5885
5886  if (Op.getValueType() == MVT::v1i64 &&
5887      Op.getOperand(0).getValueType() == MVT::i64)
5888    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
5889
5890  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
5891  assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
5892         "Expected an SSE type!");
5893  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
5894                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
5895}
5896
5897// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
5898// a simple subregister reference or explicit instructions to grab
5899// upper bits of a vector.
5900SDValue
5901X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
5902  if (Subtarget->hasAVX()) {
5903    // TODO
5904  }
5905  return SDValue();
5906}
5907
5908// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
5909// simple superregister reference or explicit instructions to insert
5910// the upper bits of a vector.
5911SDValue
5912X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
5913  if (Subtarget->hasAVX()) {
5914    DebugLoc dl = Op.getNode()->getDebugLoc();
5915    SDValue Vec = Op.getNode()->getOperand(0);
5916    SDValue SubVec = Op.getNode()->getOperand(1);
5917    SDValue Idx = Op.getNode()->getOperand(2);
5918
5919    if (Op.getNode()->getValueType(0).getSizeInBits() == 256
5920        && SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
5921      // TODO
5922    }
5923  }
5924  return SDValue();
5925}
5926
5927// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
5928// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
5929// one of the above mentioned nodes. It has to be wrapped because otherwise
5930// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
5931// be used to form addressing mode. These wrapped nodes will be selected
5932// into MOV32ri.
5933SDValue
5934X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
5935  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
5936
5937  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5938  // global base reg.
5939  unsigned char OpFlag = 0;
5940  unsigned WrapperKind = X86ISD::Wrapper;
5941  CodeModel::Model M = getTargetMachine().getCodeModel();
5942
5943  if (Subtarget->isPICStyleRIPRel() &&
5944      (M == CodeModel::Small || M == CodeModel::Kernel))
5945    WrapperKind = X86ISD::WrapperRIP;
5946  else if (Subtarget->isPICStyleGOT())
5947    OpFlag = X86II::MO_GOTOFF;
5948  else if (Subtarget->isPICStyleStubPIC())
5949    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5950
5951  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
5952                                             CP->getAlignment(),
5953                                             CP->getOffset(), OpFlag);
5954  DebugLoc DL = CP->getDebugLoc();
5955  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5956  // With PIC, the address is actually $g + Offset.
5957  if (OpFlag) {
5958    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5959                         DAG.getNode(X86ISD::GlobalBaseReg,
5960                                     DebugLoc(), getPointerTy()),
5961                         Result);
5962  }
5963
5964  return Result;
5965}
5966
5967SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
5968  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
5969
5970  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5971  // global base reg.
5972  unsigned char OpFlag = 0;
5973  unsigned WrapperKind = X86ISD::Wrapper;
5974  CodeModel::Model M = getTargetMachine().getCodeModel();
5975
5976  if (Subtarget->isPICStyleRIPRel() &&
5977      (M == CodeModel::Small || M == CodeModel::Kernel))
5978    WrapperKind = X86ISD::WrapperRIP;
5979  else if (Subtarget->isPICStyleGOT())
5980    OpFlag = X86II::MO_GOTOFF;
5981  else if (Subtarget->isPICStyleStubPIC())
5982    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5983
5984  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
5985                                          OpFlag);
5986  DebugLoc DL = JT->getDebugLoc();
5987  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5988
5989  // With PIC, the address is actually $g + Offset.
5990  if (OpFlag)
5991    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5992                         DAG.getNode(X86ISD::GlobalBaseReg,
5993                                     DebugLoc(), getPointerTy()),
5994                         Result);
5995
5996  return Result;
5997}
5998
5999SDValue
6000X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
6001  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
6002
6003  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6004  // global base reg.
6005  unsigned char OpFlag = 0;
6006  unsigned WrapperKind = X86ISD::Wrapper;
6007  CodeModel::Model M = getTargetMachine().getCodeModel();
6008
6009  if (Subtarget->isPICStyleRIPRel() &&
6010      (M == CodeModel::Small || M == CodeModel::Kernel))
6011    WrapperKind = X86ISD::WrapperRIP;
6012  else if (Subtarget->isPICStyleGOT())
6013    OpFlag = X86II::MO_GOTOFF;
6014  else if (Subtarget->isPICStyleStubPIC())
6015    OpFlag = X86II::MO_PIC_BASE_OFFSET;
6016
6017  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
6018
6019  DebugLoc DL = Op.getDebugLoc();
6020  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6021
6022
6023  // With PIC, the address is actually $g + Offset.
6024  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
6025      !Subtarget->is64Bit()) {
6026    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6027                         DAG.getNode(X86ISD::GlobalBaseReg,
6028                                     DebugLoc(), getPointerTy()),
6029                         Result);
6030  }
6031
6032  return Result;
6033}
6034
6035SDValue
6036X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
6037  // Create the TargetBlockAddressAddress node.
6038  unsigned char OpFlags =
6039    Subtarget->ClassifyBlockAddressReference();
6040  CodeModel::Model M = getTargetMachine().getCodeModel();
6041  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
6042  DebugLoc dl = Op.getDebugLoc();
6043  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
6044                                       /*isTarget=*/true, OpFlags);
6045
6046  if (Subtarget->isPICStyleRIPRel() &&
6047      (M == CodeModel::Small || M == CodeModel::Kernel))
6048    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
6049  else
6050    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
6051
6052  // With PIC, the address is actually $g + Offset.
6053  if (isGlobalRelativeToPICBase(OpFlags)) {
6054    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6055                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
6056                         Result);
6057  }
6058
6059  return Result;
6060}
6061
6062SDValue
6063X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
6064                                      int64_t Offset,
6065                                      SelectionDAG &DAG) const {
6066  // Create the TargetGlobalAddress node, folding in the constant
6067  // offset if it is legal.
6068  unsigned char OpFlags =
6069    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
6070  CodeModel::Model M = getTargetMachine().getCodeModel();
6071  SDValue Result;
6072  if (OpFlags == X86II::MO_NO_FLAG &&
6073      X86::isOffsetSuitableForCodeModel(Offset, M)) {
6074    // A direct static reference to a global.
6075    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
6076    Offset = 0;
6077  } else {
6078    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
6079  }
6080
6081  if (Subtarget->isPICStyleRIPRel() &&
6082      (M == CodeModel::Small || M == CodeModel::Kernel))
6083    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
6084  else
6085    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
6086
6087  // With PIC, the address is actually $g + Offset.
6088  if (isGlobalRelativeToPICBase(OpFlags)) {
6089    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6090                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
6091                         Result);
6092  }
6093
6094  // For globals that require a load from a stub to get the address, emit the
6095  // load.
6096  if (isGlobalStubReference(OpFlags))
6097    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
6098                         MachinePointerInfo::getGOT(), false, false, 0);
6099
6100  // If there was a non-zero offset that we didn't fold, create an explicit
6101  // addition for it.
6102  if (Offset != 0)
6103    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
6104                         DAG.getConstant(Offset, getPointerTy()));
6105
6106  return Result;
6107}
6108
6109SDValue
6110X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
6111  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
6112  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
6113  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
6114}
6115
6116static SDValue
6117GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
6118           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
6119           unsigned char OperandFlags) {
6120  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6121  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6122  DebugLoc dl = GA->getDebugLoc();
6123  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
6124                                           GA->getValueType(0),
6125                                           GA->getOffset(),
6126                                           OperandFlags);
6127  if (InFlag) {
6128    SDValue Ops[] = { Chain,  TGA, *InFlag };
6129    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
6130  } else {
6131    SDValue Ops[]  = { Chain, TGA };
6132    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
6133  }
6134
6135  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
6136  MFI->setAdjustsStack(true);
6137
6138  SDValue Flag = Chain.getValue(1);
6139  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
6140}
6141
6142// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
6143static SDValue
6144LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6145                                const EVT PtrVT) {
6146  SDValue InFlag;
6147  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
6148  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
6149                                     DAG.getNode(X86ISD::GlobalBaseReg,
6150                                                 DebugLoc(), PtrVT), InFlag);
6151  InFlag = Chain.getValue(1);
6152
6153  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
6154}
6155
6156// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
6157static SDValue
6158LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6159                                const EVT PtrVT) {
6160  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
6161                    X86::RAX, X86II::MO_TLSGD);
6162}
6163
6164// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
6165// "local exec" model.
6166static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6167                                   const EVT PtrVT, TLSModel::Model model,
6168                                   bool is64Bit) {
6169  DebugLoc dl = GA->getDebugLoc();
6170
6171  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
6172  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
6173                                                         is64Bit ? 257 : 256));
6174
6175  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
6176                                      DAG.getIntPtrConstant(0),
6177                                      MachinePointerInfo(Ptr), false, false, 0);
6178
6179  unsigned char OperandFlags = 0;
6180  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
6181  // initialexec.
6182  unsigned WrapperKind = X86ISD::Wrapper;
6183  if (model == TLSModel::LocalExec) {
6184    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
6185  } else if (is64Bit) {
6186    assert(model == TLSModel::InitialExec);
6187    OperandFlags = X86II::MO_GOTTPOFF;
6188    WrapperKind = X86ISD::WrapperRIP;
6189  } else {
6190    assert(model == TLSModel::InitialExec);
6191    OperandFlags = X86II::MO_INDNTPOFF;
6192  }
6193
6194  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
6195  // exec)
6196  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
6197                                           GA->getValueType(0),
6198                                           GA->getOffset(), OperandFlags);
6199  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
6200
6201  if (model == TLSModel::InitialExec)
6202    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
6203                         MachinePointerInfo::getGOT(), false, false, 0);
6204
6205  // The address of the thread local variable is the add of the thread
6206  // pointer with the offset of the variable.
6207  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
6208}
6209
6210SDValue
6211X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
6212
6213  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
6214  const GlobalValue *GV = GA->getGlobal();
6215
6216  if (Subtarget->isTargetELF()) {
6217    // TODO: implement the "local dynamic" model
6218    // TODO: implement the "initial exec"model for pic executables
6219
6220    // If GV is an alias then use the aliasee for determining
6221    // thread-localness.
6222    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
6223      GV = GA->resolveAliasedGlobal(false);
6224
6225    TLSModel::Model model
6226      = getTLSModel(GV, getTargetMachine().getRelocationModel());
6227
6228    switch (model) {
6229      case TLSModel::GeneralDynamic:
6230      case TLSModel::LocalDynamic: // not implemented
6231        if (Subtarget->is64Bit())
6232          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
6233        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
6234
6235      case TLSModel::InitialExec:
6236      case TLSModel::LocalExec:
6237        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
6238                                   Subtarget->is64Bit());
6239    }
6240  } else if (Subtarget->isTargetDarwin()) {
6241    // Darwin only has one model of TLS.  Lower to that.
6242    unsigned char OpFlag = 0;
6243    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
6244                           X86ISD::WrapperRIP : X86ISD::Wrapper;
6245
6246    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6247    // global base reg.
6248    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
6249                  !Subtarget->is64Bit();
6250    if (PIC32)
6251      OpFlag = X86II::MO_TLVP_PIC_BASE;
6252    else
6253      OpFlag = X86II::MO_TLVP;
6254    DebugLoc DL = Op.getDebugLoc();
6255    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
6256                                                GA->getValueType(0),
6257                                                GA->getOffset(), OpFlag);
6258    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6259
6260    // With PIC32, the address is actually $g + Offset.
6261    if (PIC32)
6262      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6263                           DAG.getNode(X86ISD::GlobalBaseReg,
6264                                       DebugLoc(), getPointerTy()),
6265                           Offset);
6266
6267    // Lowering the machine isd will make sure everything is in the right
6268    // location.
6269    SDValue Chain = DAG.getEntryNode();
6270    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6271    SDValue Args[] = { Chain, Offset };
6272    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
6273
6274    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
6275    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6276    MFI->setAdjustsStack(true);
6277
6278    // And our return value (tls address) is in the standard call return value
6279    // location.
6280    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
6281    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
6282  }
6283
6284  assert(false &&
6285         "TLS not implemented for this target.");
6286
6287  llvm_unreachable("Unreachable");
6288  return SDValue();
6289}
6290
6291
6292/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
6293/// take a 2 x i32 value to shift plus a shift amount.
6294SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
6295  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
6296  EVT VT = Op.getValueType();
6297  unsigned VTBits = VT.getSizeInBits();
6298  DebugLoc dl = Op.getDebugLoc();
6299  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
6300  SDValue ShOpLo = Op.getOperand(0);
6301  SDValue ShOpHi = Op.getOperand(1);
6302  SDValue ShAmt  = Op.getOperand(2);
6303  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
6304                                     DAG.getConstant(VTBits - 1, MVT::i8))
6305                       : DAG.getConstant(0, VT);
6306
6307  SDValue Tmp2, Tmp3;
6308  if (Op.getOpcode() == ISD::SHL_PARTS) {
6309    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
6310    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
6311  } else {
6312    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
6313    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
6314  }
6315
6316  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
6317                                DAG.getConstant(VTBits, MVT::i8));
6318  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
6319                             AndNode, DAG.getConstant(0, MVT::i8));
6320
6321  SDValue Hi, Lo;
6322  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6323  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
6324  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
6325
6326  if (Op.getOpcode() == ISD::SHL_PARTS) {
6327    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
6328    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
6329  } else {
6330    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
6331    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
6332  }
6333
6334  SDValue Ops[2] = { Lo, Hi };
6335  return DAG.getMergeValues(Ops, 2, dl);
6336}
6337
6338SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
6339                                           SelectionDAG &DAG) const {
6340  EVT SrcVT = Op.getOperand(0).getValueType();
6341
6342  if (SrcVT.isVector())
6343    return SDValue();
6344
6345  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
6346         "Unknown SINT_TO_FP to lower!");
6347
6348  // These are really Legal; return the operand so the caller accepts it as
6349  // Legal.
6350  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
6351    return Op;
6352  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
6353      Subtarget->is64Bit()) {
6354    return Op;
6355  }
6356
6357  DebugLoc dl = Op.getDebugLoc();
6358  unsigned Size = SrcVT.getSizeInBits()/8;
6359  MachineFunction &MF = DAG.getMachineFunction();
6360  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
6361  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6362  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6363                               StackSlot,
6364                               MachinePointerInfo::getFixedStack(SSFI),
6365                               false, false, 0);
6366  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
6367}
6368
6369SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
6370                                     SDValue StackSlot,
6371                                     SelectionDAG &DAG) const {
6372  // Build the FILD
6373  DebugLoc DL = Op.getDebugLoc();
6374  SDVTList Tys;
6375  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
6376  if (useSSE)
6377    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
6378  else
6379    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
6380
6381  unsigned ByteSize = SrcVT.getSizeInBits()/8;
6382
6383  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
6384  MachineMemOperand *MMO =
6385    DAG.getMachineFunction()
6386    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6387                          MachineMemOperand::MOLoad, ByteSize, ByteSize);
6388
6389  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
6390  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
6391                                           X86ISD::FILD, DL,
6392                                           Tys, Ops, array_lengthof(Ops),
6393                                           SrcVT, MMO);
6394
6395  if (useSSE) {
6396    Chain = Result.getValue(1);
6397    SDValue InFlag = Result.getValue(2);
6398
6399    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
6400    // shouldn't be necessary except that RFP cannot be live across
6401    // multiple blocks. When stackifier is fixed, they can be uncoupled.
6402    MachineFunction &MF = DAG.getMachineFunction();
6403    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
6404    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
6405    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6406    Tys = DAG.getVTList(MVT::Other);
6407    SDValue Ops[] = {
6408      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
6409    };
6410    MachineMemOperand *MMO =
6411      DAG.getMachineFunction()
6412      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6413                            MachineMemOperand::MOStore, SSFISize, SSFISize);
6414
6415    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
6416                                    Ops, array_lengthof(Ops),
6417                                    Op.getValueType(), MMO);
6418    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
6419                         MachinePointerInfo::getFixedStack(SSFI),
6420                         false, false, 0);
6421  }
6422
6423  return Result;
6424}
6425
6426// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
6427SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
6428                                               SelectionDAG &DAG) const {
6429  // This algorithm is not obvious. Here it is in C code, more or less:
6430  /*
6431    double uint64_to_double( uint32_t hi, uint32_t lo ) {
6432      static const __m128i exp = { 0x4330000045300000ULL, 0 };
6433      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
6434
6435      // Copy ints to xmm registers.
6436      __m128i xh = _mm_cvtsi32_si128( hi );
6437      __m128i xl = _mm_cvtsi32_si128( lo );
6438
6439      // Combine into low half of a single xmm register.
6440      __m128i x = _mm_unpacklo_epi32( xh, xl );
6441      __m128d d;
6442      double sd;
6443
6444      // Merge in appropriate exponents to give the integer bits the right
6445      // magnitude.
6446      x = _mm_unpacklo_epi32( x, exp );
6447
6448      // Subtract away the biases to deal with the IEEE-754 double precision
6449      // implicit 1.
6450      d = _mm_sub_pd( (__m128d) x, bias );
6451
6452      // All conversions up to here are exact. The correctly rounded result is
6453      // calculated using the current rounding mode using the following
6454      // horizontal add.
6455      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
6456      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
6457                                // store doesn't really need to be here (except
6458                                // maybe to zero the other double)
6459      return sd;
6460    }
6461  */
6462
6463  DebugLoc dl = Op.getDebugLoc();
6464  LLVMContext *Context = DAG.getContext();
6465
6466  // Build some magic constants.
6467  std::vector<Constant*> CV0;
6468  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
6469  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
6470  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
6471  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
6472  Constant *C0 = ConstantVector::get(CV0);
6473  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
6474
6475  std::vector<Constant*> CV1;
6476  CV1.push_back(
6477    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
6478  CV1.push_back(
6479    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
6480  Constant *C1 = ConstantVector::get(CV1);
6481  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
6482
6483  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6484                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6485                                        Op.getOperand(0),
6486                                        DAG.getIntPtrConstant(1)));
6487  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6488                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6489                                        Op.getOperand(0),
6490                                        DAG.getIntPtrConstant(0)));
6491  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
6492  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
6493                              MachinePointerInfo::getConstantPool(),
6494                              false, false, 16);
6495  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
6496  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck2);
6497  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
6498                              MachinePointerInfo::getConstantPool(),
6499                              false, false, 16);
6500  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
6501
6502  // Add the halves; easiest way is to swap them into another reg first.
6503  int ShufMask[2] = { 1, -1 };
6504  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
6505                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
6506  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
6507  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
6508                     DAG.getIntPtrConstant(0));
6509}
6510
6511// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
6512SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
6513                                               SelectionDAG &DAG) const {
6514  DebugLoc dl = Op.getDebugLoc();
6515  // FP constant to bias correct the final result.
6516  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
6517                                   MVT::f64);
6518
6519  // Load the 32-bit value into an XMM register.
6520  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6521                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6522                                         Op.getOperand(0),
6523                                         DAG.getIntPtrConstant(0)));
6524
6525  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
6526                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
6527                     DAG.getIntPtrConstant(0));
6528
6529  // Or the load with the bias.
6530  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
6531                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
6532                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6533                                                   MVT::v2f64, Load)),
6534                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
6535                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6536                                                   MVT::v2f64, Bias)));
6537  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
6538                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
6539                   DAG.getIntPtrConstant(0));
6540
6541  // Subtract the bias.
6542  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
6543
6544  // Handle final rounding.
6545  EVT DestVT = Op.getValueType();
6546
6547  if (DestVT.bitsLT(MVT::f64)) {
6548    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
6549                       DAG.getIntPtrConstant(0));
6550  } else if (DestVT.bitsGT(MVT::f64)) {
6551    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
6552  }
6553
6554  // Handle final rounding.
6555  return Sub;
6556}
6557
6558SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
6559                                           SelectionDAG &DAG) const {
6560  SDValue N0 = Op.getOperand(0);
6561  DebugLoc dl = Op.getDebugLoc();
6562
6563  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
6564  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
6565  // the optimization here.
6566  if (DAG.SignBitIsZero(N0))
6567    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
6568
6569  EVT SrcVT = N0.getValueType();
6570  EVT DstVT = Op.getValueType();
6571  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
6572    return LowerUINT_TO_FP_i64(Op, DAG);
6573  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
6574    return LowerUINT_TO_FP_i32(Op, DAG);
6575
6576  // Make a 64-bit buffer, and use it to build an FILD.
6577  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
6578  if (SrcVT == MVT::i32) {
6579    SDValue WordOff = DAG.getConstant(4, getPointerTy());
6580    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
6581                                     getPointerTy(), StackSlot, WordOff);
6582    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6583                                  StackSlot, MachinePointerInfo(),
6584                                  false, false, 0);
6585    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
6586                                  OffsetSlot, MachinePointerInfo(),
6587                                  false, false, 0);
6588    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
6589    return Fild;
6590  }
6591
6592  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
6593  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6594                                StackSlot, MachinePointerInfo(),
6595                               false, false, 0);
6596  // For i64 source, we need to add the appropriate power of 2 if the input
6597  // was negative.  This is the same as the optimization in
6598  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
6599  // we must be careful to do the computation in x87 extended precision, not
6600  // in SSE. (The generic code can't know it's OK to do this, or how to.)
6601  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
6602  MachineMemOperand *MMO =
6603    DAG.getMachineFunction()
6604    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6605                          MachineMemOperand::MOLoad, 8, 8);
6606
6607  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
6608  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
6609  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
6610                                         MVT::i64, MMO);
6611
6612  APInt FF(32, 0x5F800000ULL);
6613
6614  // Check whether the sign bit is set.
6615  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
6616                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
6617                                 ISD::SETLT);
6618
6619  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
6620  SDValue FudgePtr = DAG.getConstantPool(
6621                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
6622                                         getPointerTy());
6623
6624  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
6625  SDValue Zero = DAG.getIntPtrConstant(0);
6626  SDValue Four = DAG.getIntPtrConstant(4);
6627  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
6628                               Zero, Four);
6629  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
6630
6631  // Load the value out, extending it from f32 to f80.
6632  // FIXME: Avoid the extend by constructing the right constant pool?
6633  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, MVT::f80, dl, DAG.getEntryNode(),
6634                                 FudgePtr, MachinePointerInfo::getConstantPool(),
6635                                 MVT::f32, false, false, 4);
6636  // Extend everything to 80 bits to force it to be done on x87.
6637  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
6638  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
6639}
6640
6641std::pair<SDValue,SDValue> X86TargetLowering::
6642FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
6643  DebugLoc DL = Op.getDebugLoc();
6644
6645  EVT DstTy = Op.getValueType();
6646
6647  if (!IsSigned) {
6648    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
6649    DstTy = MVT::i64;
6650  }
6651
6652  assert(DstTy.getSimpleVT() <= MVT::i64 &&
6653         DstTy.getSimpleVT() >= MVT::i16 &&
6654         "Unknown FP_TO_SINT to lower!");
6655
6656  // These are really Legal.
6657  if (DstTy == MVT::i32 &&
6658      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
6659    return std::make_pair(SDValue(), SDValue());
6660  if (Subtarget->is64Bit() &&
6661      DstTy == MVT::i64 &&
6662      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
6663    return std::make_pair(SDValue(), SDValue());
6664
6665  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
6666  // stack slot.
6667  MachineFunction &MF = DAG.getMachineFunction();
6668  unsigned MemSize = DstTy.getSizeInBits()/8;
6669  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
6670  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6671
6672
6673
6674  unsigned Opc;
6675  switch (DstTy.getSimpleVT().SimpleTy) {
6676  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
6677  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
6678  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
6679  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
6680  }
6681
6682  SDValue Chain = DAG.getEntryNode();
6683  SDValue Value = Op.getOperand(0);
6684  EVT TheVT = Op.getOperand(0).getValueType();
6685  if (isScalarFPTypeInSSEReg(TheVT)) {
6686    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
6687    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
6688                         MachinePointerInfo::getFixedStack(SSFI),
6689                         false, false, 0);
6690    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
6691    SDValue Ops[] = {
6692      Chain, StackSlot, DAG.getValueType(TheVT)
6693    };
6694
6695    MachineMemOperand *MMO =
6696      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6697                              MachineMemOperand::MOLoad, MemSize, MemSize);
6698    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
6699                                    DstTy, MMO);
6700    Chain = Value.getValue(1);
6701    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
6702    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6703  }
6704
6705  MachineMemOperand *MMO =
6706    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6707                            MachineMemOperand::MOStore, MemSize, MemSize);
6708
6709  // Build the FP_TO_INT*_IN_MEM
6710  SDValue Ops[] = { Chain, Value, StackSlot };
6711  SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
6712                                         Ops, 3, DstTy, MMO);
6713
6714  return std::make_pair(FIST, StackSlot);
6715}
6716
6717SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
6718                                           SelectionDAG &DAG) const {
6719  if (Op.getValueType().isVector())
6720    return SDValue();
6721
6722  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
6723  SDValue FIST = Vals.first, StackSlot = Vals.second;
6724  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
6725  if (FIST.getNode() == 0) return Op;
6726
6727  // Load the result.
6728  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
6729                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
6730}
6731
6732SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
6733                                           SelectionDAG &DAG) const {
6734  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
6735  SDValue FIST = Vals.first, StackSlot = Vals.second;
6736  assert(FIST.getNode() && "Unexpected failure");
6737
6738  // Load the result.
6739  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
6740                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
6741}
6742
6743SDValue X86TargetLowering::LowerFABS(SDValue Op,
6744                                     SelectionDAG &DAG) const {
6745  LLVMContext *Context = DAG.getContext();
6746  DebugLoc dl = Op.getDebugLoc();
6747  EVT VT = Op.getValueType();
6748  EVT EltVT = VT;
6749  if (VT.isVector())
6750    EltVT = VT.getVectorElementType();
6751  std::vector<Constant*> CV;
6752  if (EltVT == MVT::f64) {
6753    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
6754    CV.push_back(C);
6755    CV.push_back(C);
6756  } else {
6757    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
6758    CV.push_back(C);
6759    CV.push_back(C);
6760    CV.push_back(C);
6761    CV.push_back(C);
6762  }
6763  Constant *C = ConstantVector::get(CV);
6764  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6765  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
6766                             MachinePointerInfo::getConstantPool(),
6767                             false, false, 16);
6768  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
6769}
6770
6771SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
6772  LLVMContext *Context = DAG.getContext();
6773  DebugLoc dl = Op.getDebugLoc();
6774  EVT VT = Op.getValueType();
6775  EVT EltVT = VT;
6776  if (VT.isVector())
6777    EltVT = VT.getVectorElementType();
6778  std::vector<Constant*> CV;
6779  if (EltVT == MVT::f64) {
6780    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
6781    CV.push_back(C);
6782    CV.push_back(C);
6783  } else {
6784    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
6785    CV.push_back(C);
6786    CV.push_back(C);
6787    CV.push_back(C);
6788    CV.push_back(C);
6789  }
6790  Constant *C = ConstantVector::get(CV);
6791  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6792  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
6793                             MachinePointerInfo::getConstantPool(),
6794                             false, false, 16);
6795  if (VT.isVector()) {
6796    return DAG.getNode(ISD::BITCAST, dl, VT,
6797                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
6798                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
6799                                Op.getOperand(0)),
6800                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Mask)));
6801  } else {
6802    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
6803  }
6804}
6805
6806SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
6807  LLVMContext *Context = DAG.getContext();
6808  SDValue Op0 = Op.getOperand(0);
6809  SDValue Op1 = Op.getOperand(1);
6810  DebugLoc dl = Op.getDebugLoc();
6811  EVT VT = Op.getValueType();
6812  EVT SrcVT = Op1.getValueType();
6813
6814  // If second operand is smaller, extend it first.
6815  if (SrcVT.bitsLT(VT)) {
6816    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
6817    SrcVT = VT;
6818  }
6819  // And if it is bigger, shrink it first.
6820  if (SrcVT.bitsGT(VT)) {
6821    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
6822    SrcVT = VT;
6823  }
6824
6825  // At this point the operands and the result should have the same
6826  // type, and that won't be f80 since that is not custom lowered.
6827
6828  // First get the sign bit of second operand.
6829  std::vector<Constant*> CV;
6830  if (SrcVT == MVT::f64) {
6831    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
6832    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
6833  } else {
6834    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
6835    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6836    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6837    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6838  }
6839  Constant *C = ConstantVector::get(CV);
6840  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6841  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
6842                              MachinePointerInfo::getConstantPool(),
6843                              false, false, 16);
6844  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
6845
6846  // Shift sign bit right or left if the two operands have different types.
6847  if (SrcVT.bitsGT(VT)) {
6848    // Op0 is MVT::f32, Op1 is MVT::f64.
6849    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
6850    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
6851                          DAG.getConstant(32, MVT::i32));
6852    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
6853    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
6854                          DAG.getIntPtrConstant(0));
6855  }
6856
6857  // Clear first operand sign bit.
6858  CV.clear();
6859  if (VT == MVT::f64) {
6860    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
6861    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
6862  } else {
6863    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
6864    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6865    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6866    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6867  }
6868  C = ConstantVector::get(CV);
6869  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6870  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
6871                              MachinePointerInfo::getConstantPool(),
6872                              false, false, 16);
6873  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
6874
6875  // Or the value with the sign bit.
6876  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
6877}
6878
6879/// Emit nodes that will be selected as "test Op0,Op0", or something
6880/// equivalent.
6881SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
6882                                    SelectionDAG &DAG) const {
6883  DebugLoc dl = Op.getDebugLoc();
6884
6885  // CF and OF aren't always set the way we want. Determine which
6886  // of these we need.
6887  bool NeedCF = false;
6888  bool NeedOF = false;
6889  switch (X86CC) {
6890  default: break;
6891  case X86::COND_A: case X86::COND_AE:
6892  case X86::COND_B: case X86::COND_BE:
6893    NeedCF = true;
6894    break;
6895  case X86::COND_G: case X86::COND_GE:
6896  case X86::COND_L: case X86::COND_LE:
6897  case X86::COND_O: case X86::COND_NO:
6898    NeedOF = true;
6899    break;
6900  }
6901
6902  // See if we can use the EFLAGS value from the operand instead of
6903  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
6904  // we prove that the arithmetic won't overflow, we can't use OF or CF.
6905  if (Op.getResNo() != 0 || NeedOF || NeedCF)
6906    // Emit a CMP with 0, which is the TEST pattern.
6907    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
6908                       DAG.getConstant(0, Op.getValueType()));
6909
6910  unsigned Opcode = 0;
6911  unsigned NumOperands = 0;
6912  switch (Op.getNode()->getOpcode()) {
6913  case ISD::ADD:
6914    // Due to an isel shortcoming, be conservative if this add is likely to be
6915    // selected as part of a load-modify-store instruction. When the root node
6916    // in a match is a store, isel doesn't know how to remap non-chain non-flag
6917    // uses of other nodes in the match, such as the ADD in this case. This
6918    // leads to the ADD being left around and reselected, with the result being
6919    // two adds in the output.  Alas, even if none our users are stores, that
6920    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
6921    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
6922    // climbing the DAG back to the root, and it doesn't seem to be worth the
6923    // effort.
6924    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6925           UE = Op.getNode()->use_end(); UI != UE; ++UI)
6926      if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC)
6927        goto default_case;
6928
6929    if (ConstantSDNode *C =
6930        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
6931      // An add of one will be selected as an INC.
6932      if (C->getAPIntValue() == 1) {
6933        Opcode = X86ISD::INC;
6934        NumOperands = 1;
6935        break;
6936      }
6937
6938      // An add of negative one (subtract of one) will be selected as a DEC.
6939      if (C->getAPIntValue().isAllOnesValue()) {
6940        Opcode = X86ISD::DEC;
6941        NumOperands = 1;
6942        break;
6943      }
6944    }
6945
6946    // Otherwise use a regular EFLAGS-setting add.
6947    Opcode = X86ISD::ADD;
6948    NumOperands = 2;
6949    break;
6950  case ISD::AND: {
6951    // If the primary and result isn't used, don't bother using X86ISD::AND,
6952    // because a TEST instruction will be better.
6953    bool NonFlagUse = false;
6954    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6955           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
6956      SDNode *User = *UI;
6957      unsigned UOpNo = UI.getOperandNo();
6958      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
6959        // Look pass truncate.
6960        UOpNo = User->use_begin().getOperandNo();
6961        User = *User->use_begin();
6962      }
6963
6964      if (User->getOpcode() != ISD::BRCOND &&
6965          User->getOpcode() != ISD::SETCC &&
6966          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
6967        NonFlagUse = true;
6968        break;
6969      }
6970    }
6971
6972    if (!NonFlagUse)
6973      break;
6974  }
6975    // FALL THROUGH
6976  case ISD::SUB:
6977  case ISD::OR:
6978  case ISD::XOR:
6979    // Due to the ISEL shortcoming noted above, be conservative if this op is
6980    // likely to be selected as part of a load-modify-store instruction.
6981    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6982           UE = Op.getNode()->use_end(); UI != UE; ++UI)
6983      if (UI->getOpcode() == ISD::STORE)
6984        goto default_case;
6985
6986    // Otherwise use a regular EFLAGS-setting instruction.
6987    switch (Op.getNode()->getOpcode()) {
6988    default: llvm_unreachable("unexpected operator!");
6989    case ISD::SUB: Opcode = X86ISD::SUB; break;
6990    case ISD::OR:  Opcode = X86ISD::OR;  break;
6991    case ISD::XOR: Opcode = X86ISD::XOR; break;
6992    case ISD::AND: Opcode = X86ISD::AND; break;
6993    }
6994
6995    NumOperands = 2;
6996    break;
6997  case X86ISD::ADD:
6998  case X86ISD::SUB:
6999  case X86ISD::INC:
7000  case X86ISD::DEC:
7001  case X86ISD::OR:
7002  case X86ISD::XOR:
7003  case X86ISD::AND:
7004    return SDValue(Op.getNode(), 1);
7005  default:
7006  default_case:
7007    break;
7008  }
7009
7010  if (Opcode == 0)
7011    // Emit a CMP with 0, which is the TEST pattern.
7012    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
7013                       DAG.getConstant(0, Op.getValueType()));
7014
7015  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
7016  SmallVector<SDValue, 4> Ops;
7017  for (unsigned i = 0; i != NumOperands; ++i)
7018    Ops.push_back(Op.getOperand(i));
7019
7020  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
7021  DAG.ReplaceAllUsesWith(Op, New);
7022  return SDValue(New.getNode(), 1);
7023}
7024
7025/// Emit nodes that will be selected as "cmp Op0,Op1", or something
7026/// equivalent.
7027SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
7028                                   SelectionDAG &DAG) const {
7029  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
7030    if (C->getAPIntValue() == 0)
7031      return EmitTest(Op0, X86CC, DAG);
7032
7033  DebugLoc dl = Op0.getDebugLoc();
7034  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
7035}
7036
7037/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
7038/// if it's possible.
7039SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
7040                                     DebugLoc dl, SelectionDAG &DAG) const {
7041  SDValue Op0 = And.getOperand(0);
7042  SDValue Op1 = And.getOperand(1);
7043  if (Op0.getOpcode() == ISD::TRUNCATE)
7044    Op0 = Op0.getOperand(0);
7045  if (Op1.getOpcode() == ISD::TRUNCATE)
7046    Op1 = Op1.getOperand(0);
7047
7048  SDValue LHS, RHS;
7049  if (Op1.getOpcode() == ISD::SHL)
7050    std::swap(Op0, Op1);
7051  if (Op0.getOpcode() == ISD::SHL) {
7052    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
7053      if (And00C->getZExtValue() == 1) {
7054        // If we looked past a truncate, check that it's only truncating away
7055        // known zeros.
7056        unsigned BitWidth = Op0.getValueSizeInBits();
7057        unsigned AndBitWidth = And.getValueSizeInBits();
7058        if (BitWidth > AndBitWidth) {
7059          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
7060          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
7061          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
7062            return SDValue();
7063        }
7064        LHS = Op1;
7065        RHS = Op0.getOperand(1);
7066      }
7067  } else if (Op1.getOpcode() == ISD::Constant) {
7068    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
7069    SDValue AndLHS = Op0;
7070    if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
7071      LHS = AndLHS.getOperand(0);
7072      RHS = AndLHS.getOperand(1);
7073    }
7074  }
7075
7076  if (LHS.getNode()) {
7077    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
7078    // instruction.  Since the shift amount is in-range-or-undefined, we know
7079    // that doing a bittest on the i32 value is ok.  We extend to i32 because
7080    // the encoding for the i16 version is larger than the i32 version.
7081    // Also promote i16 to i32 for performance / code size reason.
7082    if (LHS.getValueType() == MVT::i8 ||
7083        LHS.getValueType() == MVT::i16)
7084      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
7085
7086    // If the operand types disagree, extend the shift amount to match.  Since
7087    // BT ignores high bits (like shifts) we can use anyextend.
7088    if (LHS.getValueType() != RHS.getValueType())
7089      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
7090
7091    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
7092    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
7093    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7094                       DAG.getConstant(Cond, MVT::i8), BT);
7095  }
7096
7097  return SDValue();
7098}
7099
7100SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
7101  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
7102  SDValue Op0 = Op.getOperand(0);
7103  SDValue Op1 = Op.getOperand(1);
7104  DebugLoc dl = Op.getDebugLoc();
7105  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7106
7107  // Optimize to BT if possible.
7108  // Lower (X & (1 << N)) == 0 to BT(X, N).
7109  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
7110  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
7111  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
7112      Op1.getOpcode() == ISD::Constant &&
7113      cast<ConstantSDNode>(Op1)->isNullValue() &&
7114      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
7115    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
7116    if (NewSetCC.getNode())
7117      return NewSetCC;
7118  }
7119
7120  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
7121  // these.
7122  if (Op1.getOpcode() == ISD::Constant &&
7123      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
7124       cast<ConstantSDNode>(Op1)->isNullValue()) &&
7125      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
7126
7127    // If the input is a setcc, then reuse the input setcc or use a new one with
7128    // the inverted condition.
7129    if (Op0.getOpcode() == X86ISD::SETCC) {
7130      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
7131      bool Invert = (CC == ISD::SETNE) ^
7132        cast<ConstantSDNode>(Op1)->isNullValue();
7133      if (!Invert) return Op0;
7134
7135      CCode = X86::GetOppositeBranchCondition(CCode);
7136      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7137                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
7138    }
7139  }
7140
7141  bool isFP = Op1.getValueType().isFloatingPoint();
7142  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
7143  if (X86CC == X86::COND_INVALID)
7144    return SDValue();
7145
7146  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
7147  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7148                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
7149}
7150
7151SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
7152  SDValue Cond;
7153  SDValue Op0 = Op.getOperand(0);
7154  SDValue Op1 = Op.getOperand(1);
7155  SDValue CC = Op.getOperand(2);
7156  EVT VT = Op.getValueType();
7157  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
7158  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
7159  DebugLoc dl = Op.getDebugLoc();
7160
7161  if (isFP) {
7162    unsigned SSECC = 8;
7163    EVT VT0 = Op0.getValueType();
7164    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
7165    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
7166    bool Swap = false;
7167
7168    switch (SetCCOpcode) {
7169    default: break;
7170    case ISD::SETOEQ:
7171    case ISD::SETEQ:  SSECC = 0; break;
7172    case ISD::SETOGT:
7173    case ISD::SETGT: Swap = true; // Fallthrough
7174    case ISD::SETLT:
7175    case ISD::SETOLT: SSECC = 1; break;
7176    case ISD::SETOGE:
7177    case ISD::SETGE: Swap = true; // Fallthrough
7178    case ISD::SETLE:
7179    case ISD::SETOLE: SSECC = 2; break;
7180    case ISD::SETUO:  SSECC = 3; break;
7181    case ISD::SETUNE:
7182    case ISD::SETNE:  SSECC = 4; break;
7183    case ISD::SETULE: Swap = true;
7184    case ISD::SETUGE: SSECC = 5; break;
7185    case ISD::SETULT: Swap = true;
7186    case ISD::SETUGT: SSECC = 6; break;
7187    case ISD::SETO:   SSECC = 7; break;
7188    }
7189    if (Swap)
7190      std::swap(Op0, Op1);
7191
7192    // In the two special cases we can't handle, emit two comparisons.
7193    if (SSECC == 8) {
7194      if (SetCCOpcode == ISD::SETUEQ) {
7195        SDValue UNORD, EQ;
7196        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
7197        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
7198        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
7199      }
7200      else if (SetCCOpcode == ISD::SETONE) {
7201        SDValue ORD, NEQ;
7202        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
7203        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
7204        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
7205      }
7206      llvm_unreachable("Illegal FP comparison");
7207    }
7208    // Handle all other FP comparisons here.
7209    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
7210  }
7211
7212  // We are handling one of the integer comparisons here.  Since SSE only has
7213  // GT and EQ comparisons for integer, swapping operands and multiple
7214  // operations may be required for some comparisons.
7215  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
7216  bool Swap = false, Invert = false, FlipSigns = false;
7217
7218  switch (VT.getSimpleVT().SimpleTy) {
7219  default: break;
7220  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
7221  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
7222  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
7223  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
7224  }
7225
7226  switch (SetCCOpcode) {
7227  default: break;
7228  case ISD::SETNE:  Invert = true;
7229  case ISD::SETEQ:  Opc = EQOpc; break;
7230  case ISD::SETLT:  Swap = true;
7231  case ISD::SETGT:  Opc = GTOpc; break;
7232  case ISD::SETGE:  Swap = true;
7233  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
7234  case ISD::SETULT: Swap = true;
7235  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
7236  case ISD::SETUGE: Swap = true;
7237  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
7238  }
7239  if (Swap)
7240    std::swap(Op0, Op1);
7241
7242  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
7243  // bits of the inputs before performing those operations.
7244  if (FlipSigns) {
7245    EVT EltVT = VT.getVectorElementType();
7246    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
7247                                      EltVT);
7248    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
7249    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
7250                                    SignBits.size());
7251    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
7252    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
7253  }
7254
7255  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
7256
7257  // If the logical-not of the result is required, perform that now.
7258  if (Invert)
7259    Result = DAG.getNOT(dl, Result, VT);
7260
7261  return Result;
7262}
7263
7264// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
7265static bool isX86LogicalCmp(SDValue Op) {
7266  unsigned Opc = Op.getNode()->getOpcode();
7267  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
7268    return true;
7269  if (Op.getResNo() == 1 &&
7270      (Opc == X86ISD::ADD ||
7271       Opc == X86ISD::SUB ||
7272       Opc == X86ISD::ADC ||
7273       Opc == X86ISD::SBB ||
7274       Opc == X86ISD::SMUL ||
7275       Opc == X86ISD::UMUL ||
7276       Opc == X86ISD::INC ||
7277       Opc == X86ISD::DEC ||
7278       Opc == X86ISD::OR ||
7279       Opc == X86ISD::XOR ||
7280       Opc == X86ISD::AND))
7281    return true;
7282
7283  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
7284    return true;
7285
7286  return false;
7287}
7288
7289static bool isZero(SDValue V) {
7290  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
7291  return C && C->isNullValue();
7292}
7293
7294static bool isAllOnes(SDValue V) {
7295  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
7296  return C && C->isAllOnesValue();
7297}
7298
7299SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
7300  bool addTest = true;
7301  SDValue Cond  = Op.getOperand(0);
7302  SDValue Op1 = Op.getOperand(1);
7303  SDValue Op2 = Op.getOperand(2);
7304  DebugLoc DL = Op.getDebugLoc();
7305  SDValue CC;
7306
7307  if (Cond.getOpcode() == ISD::SETCC) {
7308    SDValue NewCond = LowerSETCC(Cond, DAG);
7309    if (NewCond.getNode())
7310      Cond = NewCond;
7311  }
7312
7313  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
7314  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
7315  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
7316  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
7317  if (Cond.getOpcode() == X86ISD::SETCC &&
7318      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
7319      isZero(Cond.getOperand(1).getOperand(1))) {
7320    SDValue Cmp = Cond.getOperand(1);
7321
7322    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
7323
7324    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
7325        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
7326      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
7327
7328      SDValue CmpOp0 = Cmp.getOperand(0);
7329      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
7330                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
7331
7332      SDValue Res =   // Res = 0 or -1.
7333        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
7334                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
7335
7336      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
7337        Res = DAG.getNOT(DL, Res, Res.getValueType());
7338
7339      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
7340      if (N2C == 0 || !N2C->isNullValue())
7341        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
7342      return Res;
7343    }
7344  }
7345
7346  // Look past (and (setcc_carry (cmp ...)), 1).
7347  if (Cond.getOpcode() == ISD::AND &&
7348      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
7349    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
7350    if (C && C->getAPIntValue() == 1)
7351      Cond = Cond.getOperand(0);
7352  }
7353
7354  // If condition flag is set by a X86ISD::CMP, then use it as the condition
7355  // setting operand in place of the X86ISD::SETCC.
7356  if (Cond.getOpcode() == X86ISD::SETCC ||
7357      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
7358    CC = Cond.getOperand(0);
7359
7360    SDValue Cmp = Cond.getOperand(1);
7361    unsigned Opc = Cmp.getOpcode();
7362    EVT VT = Op.getValueType();
7363
7364    bool IllegalFPCMov = false;
7365    if (VT.isFloatingPoint() && !VT.isVector() &&
7366        !isScalarFPTypeInSSEReg(VT))  // FPStack?
7367      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
7368
7369    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
7370        Opc == X86ISD::BT) { // FIXME
7371      Cond = Cmp;
7372      addTest = false;
7373    }
7374  }
7375
7376  if (addTest) {
7377    // Look pass the truncate.
7378    if (Cond.getOpcode() == ISD::TRUNCATE)
7379      Cond = Cond.getOperand(0);
7380
7381    // We know the result of AND is compared against zero. Try to match
7382    // it to BT.
7383    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
7384      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
7385      if (NewSetCC.getNode()) {
7386        CC = NewSetCC.getOperand(0);
7387        Cond = NewSetCC.getOperand(1);
7388        addTest = false;
7389      }
7390    }
7391  }
7392
7393  if (addTest) {
7394    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7395    Cond = EmitTest(Cond, X86::COND_NE, DAG);
7396  }
7397
7398  // a <  b ? -1 :  0 -> RES = ~setcc_carry
7399  // a <  b ?  0 : -1 -> RES = setcc_carry
7400  // a >= b ? -1 :  0 -> RES = setcc_carry
7401  // a >= b ?  0 : -1 -> RES = ~setcc_carry
7402  if (Cond.getOpcode() == X86ISD::CMP) {
7403    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
7404
7405    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
7406        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
7407      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
7408                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
7409      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
7410        return DAG.getNOT(DL, Res, Res.getValueType());
7411      return Res;
7412    }
7413  }
7414
7415  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
7416  // condition is true.
7417  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
7418  SDValue Ops[] = { Op2, Op1, CC, Cond };
7419  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
7420}
7421
7422// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
7423// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
7424// from the AND / OR.
7425static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
7426  Opc = Op.getOpcode();
7427  if (Opc != ISD::OR && Opc != ISD::AND)
7428    return false;
7429  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
7430          Op.getOperand(0).hasOneUse() &&
7431          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
7432          Op.getOperand(1).hasOneUse());
7433}
7434
7435// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
7436// 1 and that the SETCC node has a single use.
7437static bool isXor1OfSetCC(SDValue Op) {
7438  if (Op.getOpcode() != ISD::XOR)
7439    return false;
7440  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7441  if (N1C && N1C->getAPIntValue() == 1) {
7442    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
7443      Op.getOperand(0).hasOneUse();
7444  }
7445  return false;
7446}
7447
7448SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
7449  bool addTest = true;
7450  SDValue Chain = Op.getOperand(0);
7451  SDValue Cond  = Op.getOperand(1);
7452  SDValue Dest  = Op.getOperand(2);
7453  DebugLoc dl = Op.getDebugLoc();
7454  SDValue CC;
7455
7456  if (Cond.getOpcode() == ISD::SETCC) {
7457    SDValue NewCond = LowerSETCC(Cond, DAG);
7458    if (NewCond.getNode())
7459      Cond = NewCond;
7460  }
7461#if 0
7462  // FIXME: LowerXALUO doesn't handle these!!
7463  else if (Cond.getOpcode() == X86ISD::ADD  ||
7464           Cond.getOpcode() == X86ISD::SUB  ||
7465           Cond.getOpcode() == X86ISD::SMUL ||
7466           Cond.getOpcode() == X86ISD::UMUL)
7467    Cond = LowerXALUO(Cond, DAG);
7468#endif
7469
7470  // Look pass (and (setcc_carry (cmp ...)), 1).
7471  if (Cond.getOpcode() == ISD::AND &&
7472      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
7473    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
7474    if (C && C->getAPIntValue() == 1)
7475      Cond = Cond.getOperand(0);
7476  }
7477
7478  // If condition flag is set by a X86ISD::CMP, then use it as the condition
7479  // setting operand in place of the X86ISD::SETCC.
7480  if (Cond.getOpcode() == X86ISD::SETCC ||
7481      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
7482    CC = Cond.getOperand(0);
7483
7484    SDValue Cmp = Cond.getOperand(1);
7485    unsigned Opc = Cmp.getOpcode();
7486    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
7487    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
7488      Cond = Cmp;
7489      addTest = false;
7490    } else {
7491      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
7492      default: break;
7493      case X86::COND_O:
7494      case X86::COND_B:
7495        // These can only come from an arithmetic instruction with overflow,
7496        // e.g. SADDO, UADDO.
7497        Cond = Cond.getNode()->getOperand(1);
7498        addTest = false;
7499        break;
7500      }
7501    }
7502  } else {
7503    unsigned CondOpc;
7504    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
7505      SDValue Cmp = Cond.getOperand(0).getOperand(1);
7506      if (CondOpc == ISD::OR) {
7507        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
7508        // two branches instead of an explicit OR instruction with a
7509        // separate test.
7510        if (Cmp == Cond.getOperand(1).getOperand(1) &&
7511            isX86LogicalCmp(Cmp)) {
7512          CC = Cond.getOperand(0).getOperand(0);
7513          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7514                              Chain, Dest, CC, Cmp);
7515          CC = Cond.getOperand(1).getOperand(0);
7516          Cond = Cmp;
7517          addTest = false;
7518        }
7519      } else { // ISD::AND
7520        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
7521        // two branches instead of an explicit AND instruction with a
7522        // separate test. However, we only do this if this block doesn't
7523        // have a fall-through edge, because this requires an explicit
7524        // jmp when the condition is false.
7525        if (Cmp == Cond.getOperand(1).getOperand(1) &&
7526            isX86LogicalCmp(Cmp) &&
7527            Op.getNode()->hasOneUse()) {
7528          X86::CondCode CCode =
7529            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
7530          CCode = X86::GetOppositeBranchCondition(CCode);
7531          CC = DAG.getConstant(CCode, MVT::i8);
7532          SDNode *User = *Op.getNode()->use_begin();
7533          // Look for an unconditional branch following this conditional branch.
7534          // We need this because we need to reverse the successors in order
7535          // to implement FCMP_OEQ.
7536          if (User->getOpcode() == ISD::BR) {
7537            SDValue FalseBB = User->getOperand(1);
7538            SDNode *NewBR =
7539              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
7540            assert(NewBR == User);
7541            (void)NewBR;
7542            Dest = FalseBB;
7543
7544            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7545                                Chain, Dest, CC, Cmp);
7546            X86::CondCode CCode =
7547              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
7548            CCode = X86::GetOppositeBranchCondition(CCode);
7549            CC = DAG.getConstant(CCode, MVT::i8);
7550            Cond = Cmp;
7551            addTest = false;
7552          }
7553        }
7554      }
7555    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
7556      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
7557      // It should be transformed during dag combiner except when the condition
7558      // is set by a arithmetics with overflow node.
7559      X86::CondCode CCode =
7560        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
7561      CCode = X86::GetOppositeBranchCondition(CCode);
7562      CC = DAG.getConstant(CCode, MVT::i8);
7563      Cond = Cond.getOperand(0).getOperand(1);
7564      addTest = false;
7565    }
7566  }
7567
7568  if (addTest) {
7569    // Look pass the truncate.
7570    if (Cond.getOpcode() == ISD::TRUNCATE)
7571      Cond = Cond.getOperand(0);
7572
7573    // We know the result of AND is compared against zero. Try to match
7574    // it to BT.
7575    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
7576      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
7577      if (NewSetCC.getNode()) {
7578        CC = NewSetCC.getOperand(0);
7579        Cond = NewSetCC.getOperand(1);
7580        addTest = false;
7581      }
7582    }
7583  }
7584
7585  if (addTest) {
7586    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7587    Cond = EmitTest(Cond, X86::COND_NE, DAG);
7588  }
7589  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7590                     Chain, Dest, CC, Cond);
7591}
7592
7593
7594// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
7595// Calls to _alloca is needed to probe the stack when allocating more than 4k
7596// bytes in one go. Touching the stack at 4K increments is necessary to ensure
7597// that the guard pages used by the OS virtual memory manager are allocated in
7598// correct sequence.
7599SDValue
7600X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7601                                           SelectionDAG &DAG) const {
7602  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows()) &&
7603         "This should be used only on Windows targets");
7604  DebugLoc dl = Op.getDebugLoc();
7605
7606  // Get the inputs.
7607  SDValue Chain = Op.getOperand(0);
7608  SDValue Size  = Op.getOperand(1);
7609  // FIXME: Ensure alignment here
7610
7611  SDValue Flag;
7612
7613  EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
7614
7615  Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
7616  Flag = Chain.getValue(1);
7617
7618  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7619
7620  Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
7621  Flag = Chain.getValue(1);
7622
7623  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
7624
7625  SDValue Ops1[2] = { Chain.getValue(0), Chain };
7626  return DAG.getMergeValues(Ops1, 2, dl);
7627}
7628
7629SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
7630  MachineFunction &MF = DAG.getMachineFunction();
7631  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
7632
7633  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
7634  DebugLoc DL = Op.getDebugLoc();
7635
7636  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
7637    // vastart just stores the address of the VarArgsFrameIndex slot into the
7638    // memory location argument.
7639    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
7640                                   getPointerTy());
7641    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
7642                        MachinePointerInfo(SV), false, false, 0);
7643  }
7644
7645  // __va_list_tag:
7646  //   gp_offset         (0 - 6 * 8)
7647  //   fp_offset         (48 - 48 + 8 * 16)
7648  //   overflow_arg_area (point to parameters coming in memory).
7649  //   reg_save_area
7650  SmallVector<SDValue, 8> MemOps;
7651  SDValue FIN = Op.getOperand(1);
7652  // Store gp_offset
7653  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
7654                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
7655                                               MVT::i32),
7656                               FIN, MachinePointerInfo(SV), false, false, 0);
7657  MemOps.push_back(Store);
7658
7659  // Store fp_offset
7660  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7661                    FIN, DAG.getIntPtrConstant(4));
7662  Store = DAG.getStore(Op.getOperand(0), DL,
7663                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
7664                                       MVT::i32),
7665                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
7666  MemOps.push_back(Store);
7667
7668  // Store ptr to overflow_arg_area
7669  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7670                    FIN, DAG.getIntPtrConstant(4));
7671  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
7672                                    getPointerTy());
7673  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
7674                       MachinePointerInfo(SV, 8),
7675                       false, false, 0);
7676  MemOps.push_back(Store);
7677
7678  // Store ptr to reg_save_area.
7679  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7680                    FIN, DAG.getIntPtrConstant(8));
7681  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
7682                                    getPointerTy());
7683  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
7684                       MachinePointerInfo(SV, 16), false, false, 0);
7685  MemOps.push_back(Store);
7686  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
7687                     &MemOps[0], MemOps.size());
7688}
7689
7690SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
7691  assert(Subtarget->is64Bit() &&
7692         "LowerVAARG only handles 64-bit va_arg!");
7693  assert((Subtarget->isTargetLinux() ||
7694          Subtarget->isTargetDarwin()) &&
7695          "Unhandled target in LowerVAARG");
7696  assert(Op.getNode()->getNumOperands() == 4);
7697  SDValue Chain = Op.getOperand(0);
7698  SDValue SrcPtr = Op.getOperand(1);
7699  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
7700  unsigned Align = Op.getConstantOperandVal(3);
7701  DebugLoc dl = Op.getDebugLoc();
7702
7703  EVT ArgVT = Op.getNode()->getValueType(0);
7704  const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
7705  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
7706  uint8_t ArgMode;
7707
7708  // Decide which area this value should be read from.
7709  // TODO: Implement the AMD64 ABI in its entirety. This simple
7710  // selection mechanism works only for the basic types.
7711  if (ArgVT == MVT::f80) {
7712    llvm_unreachable("va_arg for f80 not yet implemented");
7713  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
7714    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
7715  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
7716    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
7717  } else {
7718    llvm_unreachable("Unhandled argument type in LowerVAARG");
7719  }
7720
7721  if (ArgMode == 2) {
7722    // Sanity Check: Make sure using fp_offset makes sense.
7723    assert(!UseSoftFloat &&
7724           !(DAG.getMachineFunction()
7725                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
7726           Subtarget->hasXMM());
7727  }
7728
7729  // Insert VAARG_64 node into the DAG
7730  // VAARG_64 returns two values: Variable Argument Address, Chain
7731  SmallVector<SDValue, 11> InstOps;
7732  InstOps.push_back(Chain);
7733  InstOps.push_back(SrcPtr);
7734  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
7735  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
7736  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
7737  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
7738  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
7739                                          VTs, &InstOps[0], InstOps.size(),
7740                                          MVT::i64,
7741                                          MachinePointerInfo(SV),
7742                                          /*Align=*/0,
7743                                          /*Volatile=*/false,
7744                                          /*ReadMem=*/true,
7745                                          /*WriteMem=*/true);
7746  Chain = VAARG.getValue(1);
7747
7748  // Load the next argument and return it
7749  return DAG.getLoad(ArgVT, dl,
7750                     Chain,
7751                     VAARG,
7752                     MachinePointerInfo(),
7753                     false, false, 0);
7754}
7755
7756SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
7757  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
7758  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
7759  SDValue Chain = Op.getOperand(0);
7760  SDValue DstPtr = Op.getOperand(1);
7761  SDValue SrcPtr = Op.getOperand(2);
7762  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
7763  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
7764  DebugLoc DL = Op.getDebugLoc();
7765
7766  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
7767                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
7768                       false,
7769                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
7770}
7771
7772SDValue
7773X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
7774  DebugLoc dl = Op.getDebugLoc();
7775  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7776  switch (IntNo) {
7777  default: return SDValue();    // Don't custom lower most intrinsics.
7778  // Comparison intrinsics.
7779  case Intrinsic::x86_sse_comieq_ss:
7780  case Intrinsic::x86_sse_comilt_ss:
7781  case Intrinsic::x86_sse_comile_ss:
7782  case Intrinsic::x86_sse_comigt_ss:
7783  case Intrinsic::x86_sse_comige_ss:
7784  case Intrinsic::x86_sse_comineq_ss:
7785  case Intrinsic::x86_sse_ucomieq_ss:
7786  case Intrinsic::x86_sse_ucomilt_ss:
7787  case Intrinsic::x86_sse_ucomile_ss:
7788  case Intrinsic::x86_sse_ucomigt_ss:
7789  case Intrinsic::x86_sse_ucomige_ss:
7790  case Intrinsic::x86_sse_ucomineq_ss:
7791  case Intrinsic::x86_sse2_comieq_sd:
7792  case Intrinsic::x86_sse2_comilt_sd:
7793  case Intrinsic::x86_sse2_comile_sd:
7794  case Intrinsic::x86_sse2_comigt_sd:
7795  case Intrinsic::x86_sse2_comige_sd:
7796  case Intrinsic::x86_sse2_comineq_sd:
7797  case Intrinsic::x86_sse2_ucomieq_sd:
7798  case Intrinsic::x86_sse2_ucomilt_sd:
7799  case Intrinsic::x86_sse2_ucomile_sd:
7800  case Intrinsic::x86_sse2_ucomigt_sd:
7801  case Intrinsic::x86_sse2_ucomige_sd:
7802  case Intrinsic::x86_sse2_ucomineq_sd: {
7803    unsigned Opc = 0;
7804    ISD::CondCode CC = ISD::SETCC_INVALID;
7805    switch (IntNo) {
7806    default: break;
7807    case Intrinsic::x86_sse_comieq_ss:
7808    case Intrinsic::x86_sse2_comieq_sd:
7809      Opc = X86ISD::COMI;
7810      CC = ISD::SETEQ;
7811      break;
7812    case Intrinsic::x86_sse_comilt_ss:
7813    case Intrinsic::x86_sse2_comilt_sd:
7814      Opc = X86ISD::COMI;
7815      CC = ISD::SETLT;
7816      break;
7817    case Intrinsic::x86_sse_comile_ss:
7818    case Intrinsic::x86_sse2_comile_sd:
7819      Opc = X86ISD::COMI;
7820      CC = ISD::SETLE;
7821      break;
7822    case Intrinsic::x86_sse_comigt_ss:
7823    case Intrinsic::x86_sse2_comigt_sd:
7824      Opc = X86ISD::COMI;
7825      CC = ISD::SETGT;
7826      break;
7827    case Intrinsic::x86_sse_comige_ss:
7828    case Intrinsic::x86_sse2_comige_sd:
7829      Opc = X86ISD::COMI;
7830      CC = ISD::SETGE;
7831      break;
7832    case Intrinsic::x86_sse_comineq_ss:
7833    case Intrinsic::x86_sse2_comineq_sd:
7834      Opc = X86ISD::COMI;
7835      CC = ISD::SETNE;
7836      break;
7837    case Intrinsic::x86_sse_ucomieq_ss:
7838    case Intrinsic::x86_sse2_ucomieq_sd:
7839      Opc = X86ISD::UCOMI;
7840      CC = ISD::SETEQ;
7841      break;
7842    case Intrinsic::x86_sse_ucomilt_ss:
7843    case Intrinsic::x86_sse2_ucomilt_sd:
7844      Opc = X86ISD::UCOMI;
7845      CC = ISD::SETLT;
7846      break;
7847    case Intrinsic::x86_sse_ucomile_ss:
7848    case Intrinsic::x86_sse2_ucomile_sd:
7849      Opc = X86ISD::UCOMI;
7850      CC = ISD::SETLE;
7851      break;
7852    case Intrinsic::x86_sse_ucomigt_ss:
7853    case Intrinsic::x86_sse2_ucomigt_sd:
7854      Opc = X86ISD::UCOMI;
7855      CC = ISD::SETGT;
7856      break;
7857    case Intrinsic::x86_sse_ucomige_ss:
7858    case Intrinsic::x86_sse2_ucomige_sd:
7859      Opc = X86ISD::UCOMI;
7860      CC = ISD::SETGE;
7861      break;
7862    case Intrinsic::x86_sse_ucomineq_ss:
7863    case Intrinsic::x86_sse2_ucomineq_sd:
7864      Opc = X86ISD::UCOMI;
7865      CC = ISD::SETNE;
7866      break;
7867    }
7868
7869    SDValue LHS = Op.getOperand(1);
7870    SDValue RHS = Op.getOperand(2);
7871    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
7872    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
7873    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
7874    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7875                                DAG.getConstant(X86CC, MVT::i8), Cond);
7876    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
7877  }
7878  // ptest and testp intrinsics. The intrinsic these come from are designed to
7879  // return an integer value, not just an instruction so lower it to the ptest
7880  // or testp pattern and a setcc for the result.
7881  case Intrinsic::x86_sse41_ptestz:
7882  case Intrinsic::x86_sse41_ptestc:
7883  case Intrinsic::x86_sse41_ptestnzc:
7884  case Intrinsic::x86_avx_ptestz_256:
7885  case Intrinsic::x86_avx_ptestc_256:
7886  case Intrinsic::x86_avx_ptestnzc_256:
7887  case Intrinsic::x86_avx_vtestz_ps:
7888  case Intrinsic::x86_avx_vtestc_ps:
7889  case Intrinsic::x86_avx_vtestnzc_ps:
7890  case Intrinsic::x86_avx_vtestz_pd:
7891  case Intrinsic::x86_avx_vtestc_pd:
7892  case Intrinsic::x86_avx_vtestnzc_pd:
7893  case Intrinsic::x86_avx_vtestz_ps_256:
7894  case Intrinsic::x86_avx_vtestc_ps_256:
7895  case Intrinsic::x86_avx_vtestnzc_ps_256:
7896  case Intrinsic::x86_avx_vtestz_pd_256:
7897  case Intrinsic::x86_avx_vtestc_pd_256:
7898  case Intrinsic::x86_avx_vtestnzc_pd_256: {
7899    bool IsTestPacked = false;
7900    unsigned X86CC = 0;
7901    switch (IntNo) {
7902    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
7903    case Intrinsic::x86_avx_vtestz_ps:
7904    case Intrinsic::x86_avx_vtestz_pd:
7905    case Intrinsic::x86_avx_vtestz_ps_256:
7906    case Intrinsic::x86_avx_vtestz_pd_256:
7907      IsTestPacked = true; // Fallthrough
7908    case Intrinsic::x86_sse41_ptestz:
7909    case Intrinsic::x86_avx_ptestz_256:
7910      // ZF = 1
7911      X86CC = X86::COND_E;
7912      break;
7913    case Intrinsic::x86_avx_vtestc_ps:
7914    case Intrinsic::x86_avx_vtestc_pd:
7915    case Intrinsic::x86_avx_vtestc_ps_256:
7916    case Intrinsic::x86_avx_vtestc_pd_256:
7917      IsTestPacked = true; // Fallthrough
7918    case Intrinsic::x86_sse41_ptestc:
7919    case Intrinsic::x86_avx_ptestc_256:
7920      // CF = 1
7921      X86CC = X86::COND_B;
7922      break;
7923    case Intrinsic::x86_avx_vtestnzc_ps:
7924    case Intrinsic::x86_avx_vtestnzc_pd:
7925    case Intrinsic::x86_avx_vtestnzc_ps_256:
7926    case Intrinsic::x86_avx_vtestnzc_pd_256:
7927      IsTestPacked = true; // Fallthrough
7928    case Intrinsic::x86_sse41_ptestnzc:
7929    case Intrinsic::x86_avx_ptestnzc_256:
7930      // ZF and CF = 0
7931      X86CC = X86::COND_A;
7932      break;
7933    }
7934
7935    SDValue LHS = Op.getOperand(1);
7936    SDValue RHS = Op.getOperand(2);
7937    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
7938    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
7939    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
7940    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
7941    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
7942  }
7943
7944  // Fix vector shift instructions where the last operand is a non-immediate
7945  // i32 value.
7946  case Intrinsic::x86_sse2_pslli_w:
7947  case Intrinsic::x86_sse2_pslli_d:
7948  case Intrinsic::x86_sse2_pslli_q:
7949  case Intrinsic::x86_sse2_psrli_w:
7950  case Intrinsic::x86_sse2_psrli_d:
7951  case Intrinsic::x86_sse2_psrli_q:
7952  case Intrinsic::x86_sse2_psrai_w:
7953  case Intrinsic::x86_sse2_psrai_d:
7954  case Intrinsic::x86_mmx_pslli_w:
7955  case Intrinsic::x86_mmx_pslli_d:
7956  case Intrinsic::x86_mmx_pslli_q:
7957  case Intrinsic::x86_mmx_psrli_w:
7958  case Intrinsic::x86_mmx_psrli_d:
7959  case Intrinsic::x86_mmx_psrli_q:
7960  case Intrinsic::x86_mmx_psrai_w:
7961  case Intrinsic::x86_mmx_psrai_d: {
7962    SDValue ShAmt = Op.getOperand(2);
7963    if (isa<ConstantSDNode>(ShAmt))
7964      return SDValue();
7965
7966    unsigned NewIntNo = 0;
7967    EVT ShAmtVT = MVT::v4i32;
7968    switch (IntNo) {
7969    case Intrinsic::x86_sse2_pslli_w:
7970      NewIntNo = Intrinsic::x86_sse2_psll_w;
7971      break;
7972    case Intrinsic::x86_sse2_pslli_d:
7973      NewIntNo = Intrinsic::x86_sse2_psll_d;
7974      break;
7975    case Intrinsic::x86_sse2_pslli_q:
7976      NewIntNo = Intrinsic::x86_sse2_psll_q;
7977      break;
7978    case Intrinsic::x86_sse2_psrli_w:
7979      NewIntNo = Intrinsic::x86_sse2_psrl_w;
7980      break;
7981    case Intrinsic::x86_sse2_psrli_d:
7982      NewIntNo = Intrinsic::x86_sse2_psrl_d;
7983      break;
7984    case Intrinsic::x86_sse2_psrli_q:
7985      NewIntNo = Intrinsic::x86_sse2_psrl_q;
7986      break;
7987    case Intrinsic::x86_sse2_psrai_w:
7988      NewIntNo = Intrinsic::x86_sse2_psra_w;
7989      break;
7990    case Intrinsic::x86_sse2_psrai_d:
7991      NewIntNo = Intrinsic::x86_sse2_psra_d;
7992      break;
7993    default: {
7994      ShAmtVT = MVT::v2i32;
7995      switch (IntNo) {
7996      case Intrinsic::x86_mmx_pslli_w:
7997        NewIntNo = Intrinsic::x86_mmx_psll_w;
7998        break;
7999      case Intrinsic::x86_mmx_pslli_d:
8000        NewIntNo = Intrinsic::x86_mmx_psll_d;
8001        break;
8002      case Intrinsic::x86_mmx_pslli_q:
8003        NewIntNo = Intrinsic::x86_mmx_psll_q;
8004        break;
8005      case Intrinsic::x86_mmx_psrli_w:
8006        NewIntNo = Intrinsic::x86_mmx_psrl_w;
8007        break;
8008      case Intrinsic::x86_mmx_psrli_d:
8009        NewIntNo = Intrinsic::x86_mmx_psrl_d;
8010        break;
8011      case Intrinsic::x86_mmx_psrli_q:
8012        NewIntNo = Intrinsic::x86_mmx_psrl_q;
8013        break;
8014      case Intrinsic::x86_mmx_psrai_w:
8015        NewIntNo = Intrinsic::x86_mmx_psra_w;
8016        break;
8017      case Intrinsic::x86_mmx_psrai_d:
8018        NewIntNo = Intrinsic::x86_mmx_psra_d;
8019        break;
8020      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
8021      }
8022      break;
8023    }
8024    }
8025
8026    // The vector shift intrinsics with scalars uses 32b shift amounts but
8027    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
8028    // to be zero.
8029    SDValue ShOps[4];
8030    ShOps[0] = ShAmt;
8031    ShOps[1] = DAG.getConstant(0, MVT::i32);
8032    if (ShAmtVT == MVT::v4i32) {
8033      ShOps[2] = DAG.getUNDEF(MVT::i32);
8034      ShOps[3] = DAG.getUNDEF(MVT::i32);
8035      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
8036    } else {
8037      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
8038// FIXME this must be lowered to get rid of the invalid type.
8039    }
8040
8041    EVT VT = Op.getValueType();
8042    ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
8043    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8044                       DAG.getConstant(NewIntNo, MVT::i32),
8045                       Op.getOperand(1), ShAmt);
8046  }
8047  }
8048}
8049
8050SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
8051                                           SelectionDAG &DAG) const {
8052  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8053  MFI->setReturnAddressIsTaken(true);
8054
8055  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8056  DebugLoc dl = Op.getDebugLoc();
8057
8058  if (Depth > 0) {
8059    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
8060    SDValue Offset =
8061      DAG.getConstant(TD->getPointerSize(),
8062                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
8063    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
8064                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
8065                                   FrameAddr, Offset),
8066                       MachinePointerInfo(), false, false, 0);
8067  }
8068
8069  // Just load the return address.
8070  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
8071  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
8072                     RetAddrFI, MachinePointerInfo(), false, false, 0);
8073}
8074
8075SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
8076  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8077  MFI->setFrameAddressIsTaken(true);
8078
8079  EVT VT = Op.getValueType();
8080  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
8081  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8082  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
8083  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
8084  while (Depth--)
8085    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
8086                            MachinePointerInfo(),
8087                            false, false, 0);
8088  return FrameAddr;
8089}
8090
8091SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
8092                                                     SelectionDAG &DAG) const {
8093  return DAG.getIntPtrConstant(2*TD->getPointerSize());
8094}
8095
8096SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
8097  MachineFunction &MF = DAG.getMachineFunction();
8098  SDValue Chain     = Op.getOperand(0);
8099  SDValue Offset    = Op.getOperand(1);
8100  SDValue Handler   = Op.getOperand(2);
8101  DebugLoc dl       = Op.getDebugLoc();
8102
8103  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
8104                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
8105                                     getPointerTy());
8106  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
8107
8108  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
8109                                  DAG.getIntPtrConstant(TD->getPointerSize()));
8110  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
8111  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
8112                       false, false, 0);
8113  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
8114  MF.getRegInfo().addLiveOut(StoreAddrReg);
8115
8116  return DAG.getNode(X86ISD::EH_RETURN, dl,
8117                     MVT::Other,
8118                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
8119}
8120
8121SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
8122                                             SelectionDAG &DAG) const {
8123  SDValue Root = Op.getOperand(0);
8124  SDValue Trmp = Op.getOperand(1); // trampoline
8125  SDValue FPtr = Op.getOperand(2); // nested function
8126  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
8127  DebugLoc dl  = Op.getDebugLoc();
8128
8129  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
8130
8131  if (Subtarget->is64Bit()) {
8132    SDValue OutChains[6];
8133
8134    // Large code-model.
8135    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
8136    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
8137
8138    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
8139    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
8140
8141    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
8142
8143    // Load the pointer to the nested function into R11.
8144    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
8145    SDValue Addr = Trmp;
8146    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8147                                Addr, MachinePointerInfo(TrmpAddr),
8148                                false, false, 0);
8149
8150    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8151                       DAG.getConstant(2, MVT::i64));
8152    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
8153                                MachinePointerInfo(TrmpAddr, 2),
8154                                false, false, 2);
8155
8156    // Load the 'nest' parameter value into R10.
8157    // R10 is specified in X86CallingConv.td
8158    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
8159    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8160                       DAG.getConstant(10, MVT::i64));
8161    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8162                                Addr, MachinePointerInfo(TrmpAddr, 10),
8163                                false, false, 0);
8164
8165    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8166                       DAG.getConstant(12, MVT::i64));
8167    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
8168                                MachinePointerInfo(TrmpAddr, 12),
8169                                false, false, 2);
8170
8171    // Jump to the nested function.
8172    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
8173    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8174                       DAG.getConstant(20, MVT::i64));
8175    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8176                                Addr, MachinePointerInfo(TrmpAddr, 20),
8177                                false, false, 0);
8178
8179    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
8180    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8181                       DAG.getConstant(22, MVT::i64));
8182    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
8183                                MachinePointerInfo(TrmpAddr, 22),
8184                                false, false, 0);
8185
8186    SDValue Ops[] =
8187      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
8188    return DAG.getMergeValues(Ops, 2, dl);
8189  } else {
8190    const Function *Func =
8191      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
8192    CallingConv::ID CC = Func->getCallingConv();
8193    unsigned NestReg;
8194
8195    switch (CC) {
8196    default:
8197      llvm_unreachable("Unsupported calling convention");
8198    case CallingConv::C:
8199    case CallingConv::X86_StdCall: {
8200      // Pass 'nest' parameter in ECX.
8201      // Must be kept in sync with X86CallingConv.td
8202      NestReg = X86::ECX;
8203
8204      // Check that ECX wasn't needed by an 'inreg' parameter.
8205      const FunctionType *FTy = Func->getFunctionType();
8206      const AttrListPtr &Attrs = Func->getAttributes();
8207
8208      if (!Attrs.isEmpty() && !Func->isVarArg()) {
8209        unsigned InRegCount = 0;
8210        unsigned Idx = 1;
8211
8212        for (FunctionType::param_iterator I = FTy->param_begin(),
8213             E = FTy->param_end(); I != E; ++I, ++Idx)
8214          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
8215            // FIXME: should only count parameters that are lowered to integers.
8216            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
8217
8218        if (InRegCount > 2) {
8219          report_fatal_error("Nest register in use - reduce number of inreg"
8220                             " parameters!");
8221        }
8222      }
8223      break;
8224    }
8225    case CallingConv::X86_FastCall:
8226    case CallingConv::X86_ThisCall:
8227    case CallingConv::Fast:
8228      // Pass 'nest' parameter in EAX.
8229      // Must be kept in sync with X86CallingConv.td
8230      NestReg = X86::EAX;
8231      break;
8232    }
8233
8234    SDValue OutChains[4];
8235    SDValue Addr, Disp;
8236
8237    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8238                       DAG.getConstant(10, MVT::i32));
8239    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
8240
8241    // This is storing the opcode for MOV32ri.
8242    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
8243    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
8244    OutChains[0] = DAG.getStore(Root, dl,
8245                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
8246                                Trmp, MachinePointerInfo(TrmpAddr),
8247                                false, false, 0);
8248
8249    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8250                       DAG.getConstant(1, MVT::i32));
8251    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
8252                                MachinePointerInfo(TrmpAddr, 1),
8253                                false, false, 1);
8254
8255    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
8256    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8257                       DAG.getConstant(5, MVT::i32));
8258    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
8259                                MachinePointerInfo(TrmpAddr, 5),
8260                                false, false, 1);
8261
8262    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8263                       DAG.getConstant(6, MVT::i32));
8264    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
8265                                MachinePointerInfo(TrmpAddr, 6),
8266                                false, false, 1);
8267
8268    SDValue Ops[] =
8269      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
8270    return DAG.getMergeValues(Ops, 2, dl);
8271  }
8272}
8273
8274SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
8275                                            SelectionDAG &DAG) const {
8276  /*
8277   The rounding mode is in bits 11:10 of FPSR, and has the following
8278   settings:
8279     00 Round to nearest
8280     01 Round to -inf
8281     10 Round to +inf
8282     11 Round to 0
8283
8284  FLT_ROUNDS, on the other hand, expects the following:
8285    -1 Undefined
8286     0 Round to 0
8287     1 Round to nearest
8288     2 Round to +inf
8289     3 Round to -inf
8290
8291  To perform the conversion, we do:
8292    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
8293  */
8294
8295  MachineFunction &MF = DAG.getMachineFunction();
8296  const TargetMachine &TM = MF.getTarget();
8297  const TargetFrameLowering &TFI = *TM.getFrameLowering();
8298  unsigned StackAlignment = TFI.getStackAlignment();
8299  EVT VT = Op.getValueType();
8300  DebugLoc DL = Op.getDebugLoc();
8301
8302  // Save FP Control Word to stack slot
8303  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
8304  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8305
8306
8307  MachineMemOperand *MMO =
8308   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8309                           MachineMemOperand::MOStore, 2, 2);
8310
8311  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
8312  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
8313                                          DAG.getVTList(MVT::Other),
8314                                          Ops, 2, MVT::i16, MMO);
8315
8316  // Load FP Control Word from stack slot
8317  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
8318                            MachinePointerInfo(), false, false, 0);
8319
8320  // Transform as necessary
8321  SDValue CWD1 =
8322    DAG.getNode(ISD::SRL, DL, MVT::i16,
8323                DAG.getNode(ISD::AND, DL, MVT::i16,
8324                            CWD, DAG.getConstant(0x800, MVT::i16)),
8325                DAG.getConstant(11, MVT::i8));
8326  SDValue CWD2 =
8327    DAG.getNode(ISD::SRL, DL, MVT::i16,
8328                DAG.getNode(ISD::AND, DL, MVT::i16,
8329                            CWD, DAG.getConstant(0x400, MVT::i16)),
8330                DAG.getConstant(9, MVT::i8));
8331
8332  SDValue RetVal =
8333    DAG.getNode(ISD::AND, DL, MVT::i16,
8334                DAG.getNode(ISD::ADD, DL, MVT::i16,
8335                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
8336                            DAG.getConstant(1, MVT::i16)),
8337                DAG.getConstant(3, MVT::i16));
8338
8339
8340  return DAG.getNode((VT.getSizeInBits() < 16 ?
8341                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
8342}
8343
8344SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
8345  EVT VT = Op.getValueType();
8346  EVT OpVT = VT;
8347  unsigned NumBits = VT.getSizeInBits();
8348  DebugLoc dl = Op.getDebugLoc();
8349
8350  Op = Op.getOperand(0);
8351  if (VT == MVT::i8) {
8352    // Zero extend to i32 since there is not an i8 bsr.
8353    OpVT = MVT::i32;
8354    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
8355  }
8356
8357  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
8358  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
8359  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
8360
8361  // If src is zero (i.e. bsr sets ZF), returns NumBits.
8362  SDValue Ops[] = {
8363    Op,
8364    DAG.getConstant(NumBits+NumBits-1, OpVT),
8365    DAG.getConstant(X86::COND_E, MVT::i8),
8366    Op.getValue(1)
8367  };
8368  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
8369
8370  // Finally xor with NumBits-1.
8371  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
8372
8373  if (VT == MVT::i8)
8374    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
8375  return Op;
8376}
8377
8378SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
8379  EVT VT = Op.getValueType();
8380  EVT OpVT = VT;
8381  unsigned NumBits = VT.getSizeInBits();
8382  DebugLoc dl = Op.getDebugLoc();
8383
8384  Op = Op.getOperand(0);
8385  if (VT == MVT::i8) {
8386    OpVT = MVT::i32;
8387    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
8388  }
8389
8390  // Issue a bsf (scan bits forward) which also sets EFLAGS.
8391  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
8392  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
8393
8394  // If src is zero (i.e. bsf sets ZF), returns NumBits.
8395  SDValue Ops[] = {
8396    Op,
8397    DAG.getConstant(NumBits, OpVT),
8398    DAG.getConstant(X86::COND_E, MVT::i8),
8399    Op.getValue(1)
8400  };
8401  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
8402
8403  if (VT == MVT::i8)
8404    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
8405  return Op;
8406}
8407
8408SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) const {
8409  EVT VT = Op.getValueType();
8410  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
8411  DebugLoc dl = Op.getDebugLoc();
8412
8413  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
8414  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
8415  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
8416  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
8417  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
8418  //
8419  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
8420  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
8421  //  return AloBlo + AloBhi + AhiBlo;
8422
8423  SDValue A = Op.getOperand(0);
8424  SDValue B = Op.getOperand(1);
8425
8426  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8427                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8428                       A, DAG.getConstant(32, MVT::i32));
8429  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8430                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8431                       B, DAG.getConstant(32, MVT::i32));
8432  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8433                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
8434                       A, B);
8435  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8436                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
8437                       A, Bhi);
8438  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8439                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
8440                       Ahi, B);
8441  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8442                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8443                       AloBhi, DAG.getConstant(32, MVT::i32));
8444  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8445                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8446                       AhiBlo, DAG.getConstant(32, MVT::i32));
8447  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
8448  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
8449  return Res;
8450}
8451
8452SDValue X86TargetLowering::LowerSHL(SDValue Op, SelectionDAG &DAG) const {
8453  EVT VT = Op.getValueType();
8454  DebugLoc dl = Op.getDebugLoc();
8455  SDValue R = Op.getOperand(0);
8456
8457  LLVMContext *Context = DAG.getContext();
8458
8459  assert(Subtarget->hasSSE41() && "Cannot lower SHL without SSE4.1 or later");
8460
8461  if (VT == MVT::v4i32) {
8462    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8463                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
8464                     Op.getOperand(1), DAG.getConstant(23, MVT::i32));
8465
8466    ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
8467
8468    std::vector<Constant*> CV(4, CI);
8469    Constant *C = ConstantVector::get(CV);
8470    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8471    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8472                                 MachinePointerInfo::getConstantPool(),
8473                                 false, false, 16);
8474
8475    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
8476    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
8477    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
8478    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
8479  }
8480  if (VT == MVT::v16i8) {
8481    // a = a << 5;
8482    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8483                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
8484                     Op.getOperand(1), DAG.getConstant(5, MVT::i32));
8485
8486    ConstantInt *CM1 = ConstantInt::get(*Context, APInt(8, 15));
8487    ConstantInt *CM2 = ConstantInt::get(*Context, APInt(8, 63));
8488
8489    std::vector<Constant*> CVM1(16, CM1);
8490    std::vector<Constant*> CVM2(16, CM2);
8491    Constant *C = ConstantVector::get(CVM1);
8492    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8493    SDValue M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8494                            MachinePointerInfo::getConstantPool(),
8495                            false, false, 16);
8496
8497    // r = pblendv(r, psllw(r & (char16)15, 4), a);
8498    M = DAG.getNode(ISD::AND, dl, VT, R, M);
8499    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8500                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
8501                    DAG.getConstant(4, MVT::i32));
8502    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT, R, M, Op);
8503    // a += a
8504    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
8505
8506    C = ConstantVector::get(CVM2);
8507    CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8508    M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8509                    MachinePointerInfo::getConstantPool(),
8510                    false, false, 16);
8511
8512    // r = pblendv(r, psllw(r & (char16)63, 2), a);
8513    M = DAG.getNode(ISD::AND, dl, VT, R, M);
8514    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8515                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
8516                    DAG.getConstant(2, MVT::i32));
8517    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT, R, M, Op);
8518    // a += a
8519    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
8520
8521    // return pblendv(r, r+r, a);
8522    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT,
8523                    R, DAG.getNode(ISD::ADD, dl, VT, R, R), Op);
8524    return R;
8525  }
8526  return SDValue();
8527}
8528
8529SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
8530  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
8531  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
8532  // looks for this combo and may remove the "setcc" instruction if the "setcc"
8533  // has only one use.
8534  SDNode *N = Op.getNode();
8535  SDValue LHS = N->getOperand(0);
8536  SDValue RHS = N->getOperand(1);
8537  unsigned BaseOp = 0;
8538  unsigned Cond = 0;
8539  DebugLoc DL = Op.getDebugLoc();
8540  switch (Op.getOpcode()) {
8541  default: llvm_unreachable("Unknown ovf instruction!");
8542  case ISD::SADDO:
8543    // A subtract of one will be selected as a INC. Note that INC doesn't
8544    // set CF, so we can't do this for UADDO.
8545    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
8546      if (C->getAPIntValue() == 1) {
8547        BaseOp = X86ISD::INC;
8548        Cond = X86::COND_O;
8549        break;
8550      }
8551    BaseOp = X86ISD::ADD;
8552    Cond = X86::COND_O;
8553    break;
8554  case ISD::UADDO:
8555    BaseOp = X86ISD::ADD;
8556    Cond = X86::COND_B;
8557    break;
8558  case ISD::SSUBO:
8559    // A subtract of one will be selected as a DEC. Note that DEC doesn't
8560    // set CF, so we can't do this for USUBO.
8561    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
8562      if (C->getAPIntValue() == 1) {
8563        BaseOp = X86ISD::DEC;
8564        Cond = X86::COND_O;
8565        break;
8566      }
8567    BaseOp = X86ISD::SUB;
8568    Cond = X86::COND_O;
8569    break;
8570  case ISD::USUBO:
8571    BaseOp = X86ISD::SUB;
8572    Cond = X86::COND_B;
8573    break;
8574  case ISD::SMULO:
8575    BaseOp = X86ISD::SMUL;
8576    Cond = X86::COND_O;
8577    break;
8578  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
8579    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
8580                                 MVT::i32);
8581    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
8582
8583    SDValue SetCC =
8584      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
8585                  DAG.getConstant(X86::COND_O, MVT::i32),
8586                  SDValue(Sum.getNode(), 2));
8587
8588    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
8589    return Sum;
8590  }
8591  }
8592
8593  // Also sets EFLAGS.
8594  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
8595  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
8596
8597  SDValue SetCC =
8598    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
8599                DAG.getConstant(Cond, MVT::i32),
8600                SDValue(Sum.getNode(), 1));
8601
8602  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
8603  return Sum;
8604}
8605
8606SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
8607  DebugLoc dl = Op.getDebugLoc();
8608
8609  if (!Subtarget->hasSSE2()) {
8610    SDValue Chain = Op.getOperand(0);
8611    SDValue Zero = DAG.getConstant(0,
8612                                   Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
8613    SDValue Ops[] = {
8614      DAG.getRegister(X86::ESP, MVT::i32), // Base
8615      DAG.getTargetConstant(1, MVT::i8),   // Scale
8616      DAG.getRegister(0, MVT::i32),        // Index
8617      DAG.getTargetConstant(0, MVT::i32),  // Disp
8618      DAG.getRegister(0, MVT::i32),        // Segment.
8619      Zero,
8620      Chain
8621    };
8622    SDNode *Res =
8623      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
8624                          array_lengthof(Ops));
8625    return SDValue(Res, 0);
8626  }
8627
8628  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
8629  if (!isDev)
8630    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
8631
8632  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
8633  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
8634  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
8635  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
8636
8637  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
8638  if (!Op1 && !Op2 && !Op3 && Op4)
8639    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
8640
8641  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
8642  if (Op1 && !Op2 && !Op3 && !Op4)
8643    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
8644
8645  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
8646  //           (MFENCE)>;
8647  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
8648}
8649
8650SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
8651  EVT T = Op.getValueType();
8652  DebugLoc DL = Op.getDebugLoc();
8653  unsigned Reg = 0;
8654  unsigned size = 0;
8655  switch(T.getSimpleVT().SimpleTy) {
8656  default:
8657    assert(false && "Invalid value type!");
8658  case MVT::i8:  Reg = X86::AL;  size = 1; break;
8659  case MVT::i16: Reg = X86::AX;  size = 2; break;
8660  case MVT::i32: Reg = X86::EAX; size = 4; break;
8661  case MVT::i64:
8662    assert(Subtarget->is64Bit() && "Node not type legal!");
8663    Reg = X86::RAX; size = 8;
8664    break;
8665  }
8666  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
8667                                    Op.getOperand(2), SDValue());
8668  SDValue Ops[] = { cpIn.getValue(0),
8669                    Op.getOperand(1),
8670                    Op.getOperand(3),
8671                    DAG.getTargetConstant(size, MVT::i8),
8672                    cpIn.getValue(1) };
8673  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
8674  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
8675  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
8676                                           Ops, 5, T, MMO);
8677  SDValue cpOut =
8678    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
8679  return cpOut;
8680}
8681
8682SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
8683                                                 SelectionDAG &DAG) const {
8684  assert(Subtarget->is64Bit() && "Result not type legalized?");
8685  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
8686  SDValue TheChain = Op.getOperand(0);
8687  DebugLoc dl = Op.getDebugLoc();
8688  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
8689  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
8690  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
8691                                   rax.getValue(2));
8692  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
8693                            DAG.getConstant(32, MVT::i8));
8694  SDValue Ops[] = {
8695    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
8696    rdx.getValue(1)
8697  };
8698  return DAG.getMergeValues(Ops, 2, dl);
8699}
8700
8701SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
8702                                            SelectionDAG &DAG) const {
8703  EVT SrcVT = Op.getOperand(0).getValueType();
8704  EVT DstVT = Op.getValueType();
8705  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
8706         Subtarget->hasMMX() && "Unexpected custom BITCAST");
8707  assert((DstVT == MVT::i64 ||
8708          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
8709         "Unexpected custom BITCAST");
8710  // i64 <=> MMX conversions are Legal.
8711  if (SrcVT==MVT::i64 && DstVT.isVector())
8712    return Op;
8713  if (DstVT==MVT::i64 && SrcVT.isVector())
8714    return Op;
8715  // MMX <=> MMX conversions are Legal.
8716  if (SrcVT.isVector() && DstVT.isVector())
8717    return Op;
8718  // All other conversions need to be expanded.
8719  return SDValue();
8720}
8721
8722SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
8723  SDNode *Node = Op.getNode();
8724  DebugLoc dl = Node->getDebugLoc();
8725  EVT T = Node->getValueType(0);
8726  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
8727                              DAG.getConstant(0, T), Node->getOperand(2));
8728  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
8729                       cast<AtomicSDNode>(Node)->getMemoryVT(),
8730                       Node->getOperand(0),
8731                       Node->getOperand(1), negOp,
8732                       cast<AtomicSDNode>(Node)->getSrcValue(),
8733                       cast<AtomicSDNode>(Node)->getAlignment());
8734}
8735
8736static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
8737  EVT VT = Op.getNode()->getValueType(0);
8738
8739  // Let legalize expand this if it isn't a legal type yet.
8740  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
8741    return SDValue();
8742
8743  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
8744
8745  unsigned Opc;
8746  bool ExtraOp = false;
8747  switch (Op.getOpcode()) {
8748  default: assert(0 && "Invalid code");
8749  case ISD::ADDC: Opc = X86ISD::ADD; break;
8750  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
8751  case ISD::SUBC: Opc = X86ISD::SUB; break;
8752  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
8753  }
8754
8755  if (!ExtraOp)
8756    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
8757                       Op.getOperand(1));
8758  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
8759                     Op.getOperand(1), Op.getOperand(2));
8760}
8761
8762/// LowerOperation - Provide custom lowering hooks for some operations.
8763///
8764SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
8765  switch (Op.getOpcode()) {
8766  default: llvm_unreachable("Should not custom lower this!");
8767  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
8768  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
8769  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
8770  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
8771  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
8772  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
8773  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
8774  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
8775  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
8776  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
8777  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
8778  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
8779  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
8780  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
8781  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
8782  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
8783  case ISD::SHL_PARTS:
8784  case ISD::SRA_PARTS:
8785  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
8786  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
8787  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
8788  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
8789  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
8790  case ISD::FABS:               return LowerFABS(Op, DAG);
8791  case ISD::FNEG:               return LowerFNEG(Op, DAG);
8792  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
8793  case ISD::SETCC:              return LowerSETCC(Op, DAG);
8794  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
8795  case ISD::SELECT:             return LowerSELECT(Op, DAG);
8796  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
8797  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
8798  case ISD::VASTART:            return LowerVASTART(Op, DAG);
8799  case ISD::VAARG:              return LowerVAARG(Op, DAG);
8800  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
8801  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
8802  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
8803  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
8804  case ISD::FRAME_TO_ARGS_OFFSET:
8805                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
8806  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
8807  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
8808  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
8809  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
8810  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
8811  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
8812  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
8813  case ISD::SHL:                return LowerSHL(Op, DAG);
8814  case ISD::SADDO:
8815  case ISD::UADDO:
8816  case ISD::SSUBO:
8817  case ISD::USUBO:
8818  case ISD::SMULO:
8819  case ISD::UMULO:              return LowerXALUO(Op, DAG);
8820  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
8821  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
8822  case ISD::ADDC:
8823  case ISD::ADDE:
8824  case ISD::SUBC:
8825  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
8826  }
8827}
8828
8829void X86TargetLowering::
8830ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
8831                        SelectionDAG &DAG, unsigned NewOp) const {
8832  EVT T = Node->getValueType(0);
8833  DebugLoc dl = Node->getDebugLoc();
8834  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
8835
8836  SDValue Chain = Node->getOperand(0);
8837  SDValue In1 = Node->getOperand(1);
8838  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
8839                             Node->getOperand(2), DAG.getIntPtrConstant(0));
8840  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
8841                             Node->getOperand(2), DAG.getIntPtrConstant(1));
8842  SDValue Ops[] = { Chain, In1, In2L, In2H };
8843  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
8844  SDValue Result =
8845    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
8846                            cast<MemSDNode>(Node)->getMemOperand());
8847  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
8848  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
8849  Results.push_back(Result.getValue(2));
8850}
8851
8852/// ReplaceNodeResults - Replace a node with an illegal result type
8853/// with a new node built out of custom code.
8854void X86TargetLowering::ReplaceNodeResults(SDNode *N,
8855                                           SmallVectorImpl<SDValue>&Results,
8856                                           SelectionDAG &DAG) const {
8857  DebugLoc dl = N->getDebugLoc();
8858  switch (N->getOpcode()) {
8859  default:
8860    assert(false && "Do not know how to custom type legalize this operation!");
8861    return;
8862  case ISD::ADDC:
8863  case ISD::ADDE:
8864  case ISD::SUBC:
8865  case ISD::SUBE:
8866    // We don't want to expand or promote these.
8867    return;
8868  case ISD::FP_TO_SINT: {
8869    std::pair<SDValue,SDValue> Vals =
8870        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
8871    SDValue FIST = Vals.first, StackSlot = Vals.second;
8872    if (FIST.getNode() != 0) {
8873      EVT VT = N->getValueType(0);
8874      // Return a load from the stack slot.
8875      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
8876                                    MachinePointerInfo(), false, false, 0));
8877    }
8878    return;
8879  }
8880  case ISD::READCYCLECOUNTER: {
8881    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
8882    SDValue TheChain = N->getOperand(0);
8883    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
8884    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
8885                                     rd.getValue(1));
8886    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
8887                                     eax.getValue(2));
8888    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
8889    SDValue Ops[] = { eax, edx };
8890    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
8891    Results.push_back(edx.getValue(1));
8892    return;
8893  }
8894  case ISD::ATOMIC_CMP_SWAP: {
8895    EVT T = N->getValueType(0);
8896    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
8897    SDValue cpInL, cpInH;
8898    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
8899                        DAG.getConstant(0, MVT::i32));
8900    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
8901                        DAG.getConstant(1, MVT::i32));
8902    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
8903    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
8904                             cpInL.getValue(1));
8905    SDValue swapInL, swapInH;
8906    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
8907                          DAG.getConstant(0, MVT::i32));
8908    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
8909                          DAG.getConstant(1, MVT::i32));
8910    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
8911                               cpInH.getValue(1));
8912    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
8913                               swapInL.getValue(1));
8914    SDValue Ops[] = { swapInH.getValue(0),
8915                      N->getOperand(1),
8916                      swapInH.getValue(1) };
8917    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
8918    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
8919    SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG8_DAG, dl, Tys,
8920                                             Ops, 3, T, MMO);
8921    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
8922                                        MVT::i32, Result.getValue(1));
8923    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
8924                                        MVT::i32, cpOutL.getValue(2));
8925    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
8926    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
8927    Results.push_back(cpOutH.getValue(1));
8928    return;
8929  }
8930  case ISD::ATOMIC_LOAD_ADD:
8931    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
8932    return;
8933  case ISD::ATOMIC_LOAD_AND:
8934    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
8935    return;
8936  case ISD::ATOMIC_LOAD_NAND:
8937    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
8938    return;
8939  case ISD::ATOMIC_LOAD_OR:
8940    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
8941    return;
8942  case ISD::ATOMIC_LOAD_SUB:
8943    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
8944    return;
8945  case ISD::ATOMIC_LOAD_XOR:
8946    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
8947    return;
8948  case ISD::ATOMIC_SWAP:
8949    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
8950    return;
8951  }
8952}
8953
8954const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
8955  switch (Opcode) {
8956  default: return NULL;
8957  case X86ISD::BSF:                return "X86ISD::BSF";
8958  case X86ISD::BSR:                return "X86ISD::BSR";
8959  case X86ISD::SHLD:               return "X86ISD::SHLD";
8960  case X86ISD::SHRD:               return "X86ISD::SHRD";
8961  case X86ISD::FAND:               return "X86ISD::FAND";
8962  case X86ISD::FOR:                return "X86ISD::FOR";
8963  case X86ISD::FXOR:               return "X86ISD::FXOR";
8964  case X86ISD::FSRL:               return "X86ISD::FSRL";
8965  case X86ISD::FILD:               return "X86ISD::FILD";
8966  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
8967  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
8968  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
8969  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
8970  case X86ISD::FLD:                return "X86ISD::FLD";
8971  case X86ISD::FST:                return "X86ISD::FST";
8972  case X86ISD::CALL:               return "X86ISD::CALL";
8973  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
8974  case X86ISD::BT:                 return "X86ISD::BT";
8975  case X86ISD::CMP:                return "X86ISD::CMP";
8976  case X86ISD::COMI:               return "X86ISD::COMI";
8977  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
8978  case X86ISD::SETCC:              return "X86ISD::SETCC";
8979  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
8980  case X86ISD::CMOV:               return "X86ISD::CMOV";
8981  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
8982  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
8983  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
8984  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
8985  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
8986  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
8987  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
8988  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
8989  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
8990  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
8991  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
8992  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
8993  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
8994  case X86ISD::PANDN:              return "X86ISD::PANDN";
8995  case X86ISD::PSIGNB:             return "X86ISD::PSIGNB";
8996  case X86ISD::PSIGNW:             return "X86ISD::PSIGNW";
8997  case X86ISD::PSIGND:             return "X86ISD::PSIGND";
8998  case X86ISD::PBLENDVB:           return "X86ISD::PBLENDVB";
8999  case X86ISD::FMAX:               return "X86ISD::FMAX";
9000  case X86ISD::FMIN:               return "X86ISD::FMIN";
9001  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
9002  case X86ISD::FRCP:               return "X86ISD::FRCP";
9003  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
9004  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
9005  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
9006  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
9007  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
9008  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
9009  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
9010  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
9011  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
9012  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
9013  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
9014  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
9015  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
9016  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
9017  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
9018  case X86ISD::VSHL:               return "X86ISD::VSHL";
9019  case X86ISD::VSRL:               return "X86ISD::VSRL";
9020  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
9021  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
9022  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
9023  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
9024  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
9025  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
9026  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
9027  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
9028  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
9029  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
9030  case X86ISD::ADD:                return "X86ISD::ADD";
9031  case X86ISD::SUB:                return "X86ISD::SUB";
9032  case X86ISD::ADC:                return "X86ISD::ADC";
9033  case X86ISD::SBB:                return "X86ISD::SBB";
9034  case X86ISD::SMUL:               return "X86ISD::SMUL";
9035  case X86ISD::UMUL:               return "X86ISD::UMUL";
9036  case X86ISD::INC:                return "X86ISD::INC";
9037  case X86ISD::DEC:                return "X86ISD::DEC";
9038  case X86ISD::OR:                 return "X86ISD::OR";
9039  case X86ISD::XOR:                return "X86ISD::XOR";
9040  case X86ISD::AND:                return "X86ISD::AND";
9041  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
9042  case X86ISD::PTEST:              return "X86ISD::PTEST";
9043  case X86ISD::TESTP:              return "X86ISD::TESTP";
9044  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
9045  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
9046  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
9047  case X86ISD::PSHUFHW_LD:         return "X86ISD::PSHUFHW_LD";
9048  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
9049  case X86ISD::PSHUFLW_LD:         return "X86ISD::PSHUFLW_LD";
9050  case X86ISD::SHUFPS:             return "X86ISD::SHUFPS";
9051  case X86ISD::SHUFPD:             return "X86ISD::SHUFPD";
9052  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
9053  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
9054  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
9055  case X86ISD::MOVHLPD:            return "X86ISD::MOVHLPD";
9056  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
9057  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
9058  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
9059  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
9060  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
9061  case X86ISD::MOVSHDUP_LD:        return "X86ISD::MOVSHDUP_LD";
9062  case X86ISD::MOVSLDUP_LD:        return "X86ISD::MOVSLDUP_LD";
9063  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
9064  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
9065  case X86ISD::UNPCKLPS:           return "X86ISD::UNPCKLPS";
9066  case X86ISD::UNPCKLPD:           return "X86ISD::UNPCKLPD";
9067  case X86ISD::UNPCKHPS:           return "X86ISD::UNPCKHPS";
9068  case X86ISD::UNPCKHPD:           return "X86ISD::UNPCKHPD";
9069  case X86ISD::PUNPCKLBW:          return "X86ISD::PUNPCKLBW";
9070  case X86ISD::PUNPCKLWD:          return "X86ISD::PUNPCKLWD";
9071  case X86ISD::PUNPCKLDQ:          return "X86ISD::PUNPCKLDQ";
9072  case X86ISD::PUNPCKLQDQ:         return "X86ISD::PUNPCKLQDQ";
9073  case X86ISD::PUNPCKHBW:          return "X86ISD::PUNPCKHBW";
9074  case X86ISD::PUNPCKHWD:          return "X86ISD::PUNPCKHWD";
9075  case X86ISD::PUNPCKHDQ:          return "X86ISD::PUNPCKHDQ";
9076  case X86ISD::PUNPCKHQDQ:         return "X86ISD::PUNPCKHQDQ";
9077  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
9078  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
9079  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
9080  }
9081}
9082
9083// isLegalAddressingMode - Return true if the addressing mode represented
9084// by AM is legal for this target, for a load/store of the specified type.
9085bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
9086                                              const Type *Ty) const {
9087  // X86 supports extremely general addressing modes.
9088  CodeModel::Model M = getTargetMachine().getCodeModel();
9089  Reloc::Model R = getTargetMachine().getRelocationModel();
9090
9091  // X86 allows a sign-extended 32-bit immediate field as a displacement.
9092  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
9093    return false;
9094
9095  if (AM.BaseGV) {
9096    unsigned GVFlags =
9097      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
9098
9099    // If a reference to this global requires an extra load, we can't fold it.
9100    if (isGlobalStubReference(GVFlags))
9101      return false;
9102
9103    // If BaseGV requires a register for the PIC base, we cannot also have a
9104    // BaseReg specified.
9105    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
9106      return false;
9107
9108    // If lower 4G is not available, then we must use rip-relative addressing.
9109    if ((M != CodeModel::Small || R != Reloc::Static) &&
9110        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
9111      return false;
9112  }
9113
9114  switch (AM.Scale) {
9115  case 0:
9116  case 1:
9117  case 2:
9118  case 4:
9119  case 8:
9120    // These scales always work.
9121    break;
9122  case 3:
9123  case 5:
9124  case 9:
9125    // These scales are formed with basereg+scalereg.  Only accept if there is
9126    // no basereg yet.
9127    if (AM.HasBaseReg)
9128      return false;
9129    break;
9130  default:  // Other stuff never works.
9131    return false;
9132  }
9133
9134  return true;
9135}
9136
9137
9138bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
9139  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
9140    return false;
9141  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
9142  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
9143  if (NumBits1 <= NumBits2)
9144    return false;
9145  return true;
9146}
9147
9148bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
9149  if (!VT1.isInteger() || !VT2.isInteger())
9150    return false;
9151  unsigned NumBits1 = VT1.getSizeInBits();
9152  unsigned NumBits2 = VT2.getSizeInBits();
9153  if (NumBits1 <= NumBits2)
9154    return false;
9155  return true;
9156}
9157
9158bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
9159  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
9160  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
9161}
9162
9163bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
9164  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
9165  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
9166}
9167
9168bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
9169  // i16 instructions are longer (0x66 prefix) and potentially slower.
9170  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
9171}
9172
9173/// isShuffleMaskLegal - Targets can use this to indicate that they only
9174/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
9175/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
9176/// are assumed to be legal.
9177bool
9178X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
9179                                      EVT VT) const {
9180  // Very little shuffling can be done for 64-bit vectors right now.
9181  if (VT.getSizeInBits() == 64)
9182    return isPALIGNRMask(M, VT, Subtarget->hasSSSE3());
9183
9184  // FIXME: pshufb, blends, shifts.
9185  return (VT.getVectorNumElements() == 2 ||
9186          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
9187          isMOVLMask(M, VT) ||
9188          isSHUFPMask(M, VT) ||
9189          isPSHUFDMask(M, VT) ||
9190          isPSHUFHWMask(M, VT) ||
9191          isPSHUFLWMask(M, VT) ||
9192          isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
9193          isUNPCKLMask(M, VT) ||
9194          isUNPCKHMask(M, VT) ||
9195          isUNPCKL_v_undef_Mask(M, VT) ||
9196          isUNPCKH_v_undef_Mask(M, VT));
9197}
9198
9199bool
9200X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
9201                                          EVT VT) const {
9202  unsigned NumElts = VT.getVectorNumElements();
9203  // FIXME: This collection of masks seems suspect.
9204  if (NumElts == 2)
9205    return true;
9206  if (NumElts == 4 && VT.getSizeInBits() == 128) {
9207    return (isMOVLMask(Mask, VT)  ||
9208            isCommutedMOVLMask(Mask, VT, true) ||
9209            isSHUFPMask(Mask, VT) ||
9210            isCommutedSHUFPMask(Mask, VT));
9211  }
9212  return false;
9213}
9214
9215//===----------------------------------------------------------------------===//
9216//                           X86 Scheduler Hooks
9217//===----------------------------------------------------------------------===//
9218
9219// private utility function
9220MachineBasicBlock *
9221X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
9222                                                       MachineBasicBlock *MBB,
9223                                                       unsigned regOpc,
9224                                                       unsigned immOpc,
9225                                                       unsigned LoadOpc,
9226                                                       unsigned CXchgOpc,
9227                                                       unsigned notOpc,
9228                                                       unsigned EAXreg,
9229                                                       TargetRegisterClass *RC,
9230                                                       bool invSrc) const {
9231  // For the atomic bitwise operator, we generate
9232  //   thisMBB:
9233  //   newMBB:
9234  //     ld  t1 = [bitinstr.addr]
9235  //     op  t2 = t1, [bitinstr.val]
9236  //     mov EAX = t1
9237  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
9238  //     bz  newMBB
9239  //     fallthrough -->nextMBB
9240  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9241  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9242  MachineFunction::iterator MBBIter = MBB;
9243  ++MBBIter;
9244
9245  /// First build the CFG
9246  MachineFunction *F = MBB->getParent();
9247  MachineBasicBlock *thisMBB = MBB;
9248  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
9249  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
9250  F->insert(MBBIter, newMBB);
9251  F->insert(MBBIter, nextMBB);
9252
9253  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
9254  nextMBB->splice(nextMBB->begin(), thisMBB,
9255                  llvm::next(MachineBasicBlock::iterator(bInstr)),
9256                  thisMBB->end());
9257  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9258
9259  // Update thisMBB to fall through to newMBB
9260  thisMBB->addSuccessor(newMBB);
9261
9262  // newMBB jumps to itself and fall through to nextMBB
9263  newMBB->addSuccessor(nextMBB);
9264  newMBB->addSuccessor(newMBB);
9265
9266  // Insert instructions into newMBB based on incoming instruction
9267  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
9268         "unexpected number of operands");
9269  DebugLoc dl = bInstr->getDebugLoc();
9270  MachineOperand& destOper = bInstr->getOperand(0);
9271  MachineOperand* argOpers[2 + X86::AddrNumOperands];
9272  int numArgs = bInstr->getNumOperands() - 1;
9273  for (int i=0; i < numArgs; ++i)
9274    argOpers[i] = &bInstr->getOperand(i+1);
9275
9276  // x86 address has 4 operands: base, index, scale, and displacement
9277  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
9278  int valArgIndx = lastAddrIndx + 1;
9279
9280  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
9281  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
9282  for (int i=0; i <= lastAddrIndx; ++i)
9283    (*MIB).addOperand(*argOpers[i]);
9284
9285  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
9286  if (invSrc) {
9287    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
9288  }
9289  else
9290    tt = t1;
9291
9292  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
9293  assert((argOpers[valArgIndx]->isReg() ||
9294          argOpers[valArgIndx]->isImm()) &&
9295         "invalid operand");
9296  if (argOpers[valArgIndx]->isReg())
9297    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
9298  else
9299    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
9300  MIB.addReg(tt);
9301  (*MIB).addOperand(*argOpers[valArgIndx]);
9302
9303  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
9304  MIB.addReg(t1);
9305
9306  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
9307  for (int i=0; i <= lastAddrIndx; ++i)
9308    (*MIB).addOperand(*argOpers[i]);
9309  MIB.addReg(t2);
9310  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
9311  (*MIB).setMemRefs(bInstr->memoperands_begin(),
9312                    bInstr->memoperands_end());
9313
9314  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
9315  MIB.addReg(EAXreg);
9316
9317  // insert branch
9318  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
9319
9320  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
9321  return nextMBB;
9322}
9323
9324// private utility function:  64 bit atomics on 32 bit host.
9325MachineBasicBlock *
9326X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
9327                                                       MachineBasicBlock *MBB,
9328                                                       unsigned regOpcL,
9329                                                       unsigned regOpcH,
9330                                                       unsigned immOpcL,
9331                                                       unsigned immOpcH,
9332                                                       bool invSrc) const {
9333  // For the atomic bitwise operator, we generate
9334  //   thisMBB (instructions are in pairs, except cmpxchg8b)
9335  //     ld t1,t2 = [bitinstr.addr]
9336  //   newMBB:
9337  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
9338  //     op  t5, t6 <- out1, out2, [bitinstr.val]
9339  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
9340  //     mov ECX, EBX <- t5, t6
9341  //     mov EAX, EDX <- t1, t2
9342  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
9343  //     mov t3, t4 <- EAX, EDX
9344  //     bz  newMBB
9345  //     result in out1, out2
9346  //     fallthrough -->nextMBB
9347
9348  const TargetRegisterClass *RC = X86::GR32RegisterClass;
9349  const unsigned LoadOpc = X86::MOV32rm;
9350  const unsigned NotOpc = X86::NOT32r;
9351  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9352  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9353  MachineFunction::iterator MBBIter = MBB;
9354  ++MBBIter;
9355
9356  /// First build the CFG
9357  MachineFunction *F = MBB->getParent();
9358  MachineBasicBlock *thisMBB = MBB;
9359  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
9360  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
9361  F->insert(MBBIter, newMBB);
9362  F->insert(MBBIter, nextMBB);
9363
9364  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
9365  nextMBB->splice(nextMBB->begin(), thisMBB,
9366                  llvm::next(MachineBasicBlock::iterator(bInstr)),
9367                  thisMBB->end());
9368  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9369
9370  // Update thisMBB to fall through to newMBB
9371  thisMBB->addSuccessor(newMBB);
9372
9373  // newMBB jumps to itself and fall through to nextMBB
9374  newMBB->addSuccessor(nextMBB);
9375  newMBB->addSuccessor(newMBB);
9376
9377  DebugLoc dl = bInstr->getDebugLoc();
9378  // Insert instructions into newMBB based on incoming instruction
9379  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
9380  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
9381         "unexpected number of operands");
9382  MachineOperand& dest1Oper = bInstr->getOperand(0);
9383  MachineOperand& dest2Oper = bInstr->getOperand(1);
9384  MachineOperand* argOpers[2 + X86::AddrNumOperands];
9385  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
9386    argOpers[i] = &bInstr->getOperand(i+2);
9387
9388    // We use some of the operands multiple times, so conservatively just
9389    // clear any kill flags that might be present.
9390    if (argOpers[i]->isReg() && argOpers[i]->isUse())
9391      argOpers[i]->setIsKill(false);
9392  }
9393
9394  // x86 address has 5 operands: base, index, scale, displacement, and segment.
9395  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
9396
9397  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
9398  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
9399  for (int i=0; i <= lastAddrIndx; ++i)
9400    (*MIB).addOperand(*argOpers[i]);
9401  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
9402  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
9403  // add 4 to displacement.
9404  for (int i=0; i <= lastAddrIndx-2; ++i)
9405    (*MIB).addOperand(*argOpers[i]);
9406  MachineOperand newOp3 = *(argOpers[3]);
9407  if (newOp3.isImm())
9408    newOp3.setImm(newOp3.getImm()+4);
9409  else
9410    newOp3.setOffset(newOp3.getOffset()+4);
9411  (*MIB).addOperand(newOp3);
9412  (*MIB).addOperand(*argOpers[lastAddrIndx]);
9413
9414  // t3/4 are defined later, at the bottom of the loop
9415  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
9416  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
9417  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
9418    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
9419  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
9420    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
9421
9422  // The subsequent operations should be using the destination registers of
9423  //the PHI instructions.
9424  if (invSrc) {
9425    t1 = F->getRegInfo().createVirtualRegister(RC);
9426    t2 = F->getRegInfo().createVirtualRegister(RC);
9427    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
9428    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
9429  } else {
9430    t1 = dest1Oper.getReg();
9431    t2 = dest2Oper.getReg();
9432  }
9433
9434  int valArgIndx = lastAddrIndx + 1;
9435  assert((argOpers[valArgIndx]->isReg() ||
9436          argOpers[valArgIndx]->isImm()) &&
9437         "invalid operand");
9438  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
9439  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
9440  if (argOpers[valArgIndx]->isReg())
9441    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
9442  else
9443    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
9444  if (regOpcL != X86::MOV32rr)
9445    MIB.addReg(t1);
9446  (*MIB).addOperand(*argOpers[valArgIndx]);
9447  assert(argOpers[valArgIndx + 1]->isReg() ==
9448         argOpers[valArgIndx]->isReg());
9449  assert(argOpers[valArgIndx + 1]->isImm() ==
9450         argOpers[valArgIndx]->isImm());
9451  if (argOpers[valArgIndx + 1]->isReg())
9452    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
9453  else
9454    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
9455  if (regOpcH != X86::MOV32rr)
9456    MIB.addReg(t2);
9457  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
9458
9459  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
9460  MIB.addReg(t1);
9461  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
9462  MIB.addReg(t2);
9463
9464  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
9465  MIB.addReg(t5);
9466  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
9467  MIB.addReg(t6);
9468
9469  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
9470  for (int i=0; i <= lastAddrIndx; ++i)
9471    (*MIB).addOperand(*argOpers[i]);
9472
9473  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
9474  (*MIB).setMemRefs(bInstr->memoperands_begin(),
9475                    bInstr->memoperands_end());
9476
9477  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
9478  MIB.addReg(X86::EAX);
9479  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
9480  MIB.addReg(X86::EDX);
9481
9482  // insert branch
9483  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
9484
9485  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
9486  return nextMBB;
9487}
9488
9489// private utility function
9490MachineBasicBlock *
9491X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
9492                                                      MachineBasicBlock *MBB,
9493                                                      unsigned cmovOpc) const {
9494  // For the atomic min/max operator, we generate
9495  //   thisMBB:
9496  //   newMBB:
9497  //     ld t1 = [min/max.addr]
9498  //     mov t2 = [min/max.val]
9499  //     cmp  t1, t2
9500  //     cmov[cond] t2 = t1
9501  //     mov EAX = t1
9502  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
9503  //     bz   newMBB
9504  //     fallthrough -->nextMBB
9505  //
9506  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9507  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9508  MachineFunction::iterator MBBIter = MBB;
9509  ++MBBIter;
9510
9511  /// First build the CFG
9512  MachineFunction *F = MBB->getParent();
9513  MachineBasicBlock *thisMBB = MBB;
9514  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
9515  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
9516  F->insert(MBBIter, newMBB);
9517  F->insert(MBBIter, nextMBB);
9518
9519  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
9520  nextMBB->splice(nextMBB->begin(), thisMBB,
9521                  llvm::next(MachineBasicBlock::iterator(mInstr)),
9522                  thisMBB->end());
9523  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9524
9525  // Update thisMBB to fall through to newMBB
9526  thisMBB->addSuccessor(newMBB);
9527
9528  // newMBB jumps to newMBB and fall through to nextMBB
9529  newMBB->addSuccessor(nextMBB);
9530  newMBB->addSuccessor(newMBB);
9531
9532  DebugLoc dl = mInstr->getDebugLoc();
9533  // Insert instructions into newMBB based on incoming instruction
9534  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
9535         "unexpected number of operands");
9536  MachineOperand& destOper = mInstr->getOperand(0);
9537  MachineOperand* argOpers[2 + X86::AddrNumOperands];
9538  int numArgs = mInstr->getNumOperands() - 1;
9539  for (int i=0; i < numArgs; ++i)
9540    argOpers[i] = &mInstr->getOperand(i+1);
9541
9542  // x86 address has 4 operands: base, index, scale, and displacement
9543  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
9544  int valArgIndx = lastAddrIndx + 1;
9545
9546  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
9547  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
9548  for (int i=0; i <= lastAddrIndx; ++i)
9549    (*MIB).addOperand(*argOpers[i]);
9550
9551  // We only support register and immediate values
9552  assert((argOpers[valArgIndx]->isReg() ||
9553          argOpers[valArgIndx]->isImm()) &&
9554         "invalid operand");
9555
9556  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
9557  if (argOpers[valArgIndx]->isReg())
9558    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
9559  else
9560    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
9561  (*MIB).addOperand(*argOpers[valArgIndx]);
9562
9563  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
9564  MIB.addReg(t1);
9565
9566  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
9567  MIB.addReg(t1);
9568  MIB.addReg(t2);
9569
9570  // Generate movc
9571  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
9572  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
9573  MIB.addReg(t2);
9574  MIB.addReg(t1);
9575
9576  // Cmp and exchange if none has modified the memory location
9577  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
9578  for (int i=0; i <= lastAddrIndx; ++i)
9579    (*MIB).addOperand(*argOpers[i]);
9580  MIB.addReg(t3);
9581  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
9582  (*MIB).setMemRefs(mInstr->memoperands_begin(),
9583                    mInstr->memoperands_end());
9584
9585  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
9586  MIB.addReg(X86::EAX);
9587
9588  // insert branch
9589  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
9590
9591  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
9592  return nextMBB;
9593}
9594
9595// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
9596// or XMM0_V32I8 in AVX all of this code can be replaced with that
9597// in the .td file.
9598MachineBasicBlock *
9599X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
9600                            unsigned numArgs, bool memArg) const {
9601  assert((Subtarget->hasSSE42() || Subtarget->hasAVX()) &&
9602         "Target must have SSE4.2 or AVX features enabled");
9603
9604  DebugLoc dl = MI->getDebugLoc();
9605  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9606  unsigned Opc;
9607  if (!Subtarget->hasAVX()) {
9608    if (memArg)
9609      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
9610    else
9611      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
9612  } else {
9613    if (memArg)
9614      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
9615    else
9616      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
9617  }
9618
9619  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
9620  for (unsigned i = 0; i < numArgs; ++i) {
9621    MachineOperand &Op = MI->getOperand(i+1);
9622    if (!(Op.isReg() && Op.isImplicit()))
9623      MIB.addOperand(Op);
9624  }
9625  BuildMI(*BB, MI, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
9626    .addReg(X86::XMM0);
9627
9628  MI->eraseFromParent();
9629  return BB;
9630}
9631
9632MachineBasicBlock *
9633X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
9634  DebugLoc dl = MI->getDebugLoc();
9635  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9636
9637  // Address into RAX/EAX, other two args into ECX, EDX.
9638  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
9639  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
9640  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
9641  for (int i = 0; i < X86::AddrNumOperands; ++i)
9642    MIB.addOperand(MI->getOperand(i));
9643
9644  unsigned ValOps = X86::AddrNumOperands;
9645  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
9646    .addReg(MI->getOperand(ValOps).getReg());
9647  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
9648    .addReg(MI->getOperand(ValOps+1).getReg());
9649
9650  // The instruction doesn't actually take any operands though.
9651  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
9652
9653  MI->eraseFromParent(); // The pseudo is gone now.
9654  return BB;
9655}
9656
9657MachineBasicBlock *
9658X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
9659  DebugLoc dl = MI->getDebugLoc();
9660  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9661
9662  // First arg in ECX, the second in EAX.
9663  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
9664    .addReg(MI->getOperand(0).getReg());
9665  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
9666    .addReg(MI->getOperand(1).getReg());
9667
9668  // The instruction doesn't actually take any operands though.
9669  BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
9670
9671  MI->eraseFromParent(); // The pseudo is gone now.
9672  return BB;
9673}
9674
9675MachineBasicBlock *
9676X86TargetLowering::EmitVAARG64WithCustomInserter(
9677                   MachineInstr *MI,
9678                   MachineBasicBlock *MBB) const {
9679  // Emit va_arg instruction on X86-64.
9680
9681  // Operands to this pseudo-instruction:
9682  // 0  ) Output        : destination address (reg)
9683  // 1-5) Input         : va_list address (addr, i64mem)
9684  // 6  ) ArgSize       : Size (in bytes) of vararg type
9685  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
9686  // 8  ) Align         : Alignment of type
9687  // 9  ) EFLAGS (implicit-def)
9688
9689  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
9690  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
9691
9692  unsigned DestReg = MI->getOperand(0).getReg();
9693  MachineOperand &Base = MI->getOperand(1);
9694  MachineOperand &Scale = MI->getOperand(2);
9695  MachineOperand &Index = MI->getOperand(3);
9696  MachineOperand &Disp = MI->getOperand(4);
9697  MachineOperand &Segment = MI->getOperand(5);
9698  unsigned ArgSize = MI->getOperand(6).getImm();
9699  unsigned ArgMode = MI->getOperand(7).getImm();
9700  unsigned Align = MI->getOperand(8).getImm();
9701
9702  // Memory Reference
9703  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
9704  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
9705  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
9706
9707  // Machine Information
9708  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9709  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
9710  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
9711  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
9712  DebugLoc DL = MI->getDebugLoc();
9713
9714  // struct va_list {
9715  //   i32   gp_offset
9716  //   i32   fp_offset
9717  //   i64   overflow_area (address)
9718  //   i64   reg_save_area (address)
9719  // }
9720  // sizeof(va_list) = 24
9721  // alignment(va_list) = 8
9722
9723  unsigned TotalNumIntRegs = 6;
9724  unsigned TotalNumXMMRegs = 8;
9725  bool UseGPOffset = (ArgMode == 1);
9726  bool UseFPOffset = (ArgMode == 2);
9727  unsigned MaxOffset = TotalNumIntRegs * 8 +
9728                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
9729
9730  /* Align ArgSize to a multiple of 8 */
9731  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
9732  bool NeedsAlign = (Align > 8);
9733
9734  MachineBasicBlock *thisMBB = MBB;
9735  MachineBasicBlock *overflowMBB;
9736  MachineBasicBlock *offsetMBB;
9737  MachineBasicBlock *endMBB;
9738
9739  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
9740  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
9741  unsigned OffsetReg = 0;
9742
9743  if (!UseGPOffset && !UseFPOffset) {
9744    // If we only pull from the overflow region, we don't create a branch.
9745    // We don't need to alter control flow.
9746    OffsetDestReg = 0; // unused
9747    OverflowDestReg = DestReg;
9748
9749    offsetMBB = NULL;
9750    overflowMBB = thisMBB;
9751    endMBB = thisMBB;
9752  } else {
9753    // First emit code to check if gp_offset (or fp_offset) is below the bound.
9754    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
9755    // If not, pull from overflow_area. (branch to overflowMBB)
9756    //
9757    //       thisMBB
9758    //         |     .
9759    //         |        .
9760    //     offsetMBB   overflowMBB
9761    //         |        .
9762    //         |     .
9763    //        endMBB
9764
9765    // Registers for the PHI in endMBB
9766    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
9767    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
9768
9769    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9770    MachineFunction *MF = MBB->getParent();
9771    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
9772    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
9773    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
9774
9775    MachineFunction::iterator MBBIter = MBB;
9776    ++MBBIter;
9777
9778    // Insert the new basic blocks
9779    MF->insert(MBBIter, offsetMBB);
9780    MF->insert(MBBIter, overflowMBB);
9781    MF->insert(MBBIter, endMBB);
9782
9783    // Transfer the remainder of MBB and its successor edges to endMBB.
9784    endMBB->splice(endMBB->begin(), thisMBB,
9785                    llvm::next(MachineBasicBlock::iterator(MI)),
9786                    thisMBB->end());
9787    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9788
9789    // Make offsetMBB and overflowMBB successors of thisMBB
9790    thisMBB->addSuccessor(offsetMBB);
9791    thisMBB->addSuccessor(overflowMBB);
9792
9793    // endMBB is a successor of both offsetMBB and overflowMBB
9794    offsetMBB->addSuccessor(endMBB);
9795    overflowMBB->addSuccessor(endMBB);
9796
9797    // Load the offset value into a register
9798    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
9799    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
9800      .addOperand(Base)
9801      .addOperand(Scale)
9802      .addOperand(Index)
9803      .addDisp(Disp, UseFPOffset ? 4 : 0)
9804      .addOperand(Segment)
9805      .setMemRefs(MMOBegin, MMOEnd);
9806
9807    // Check if there is enough room left to pull this argument.
9808    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
9809      .addReg(OffsetReg)
9810      .addImm(MaxOffset + 8 - ArgSizeA8);
9811
9812    // Branch to "overflowMBB" if offset >= max
9813    // Fall through to "offsetMBB" otherwise
9814    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
9815      .addMBB(overflowMBB);
9816  }
9817
9818  // In offsetMBB, emit code to use the reg_save_area.
9819  if (offsetMBB) {
9820    assert(OffsetReg != 0);
9821
9822    // Read the reg_save_area address.
9823    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
9824    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
9825      .addOperand(Base)
9826      .addOperand(Scale)
9827      .addOperand(Index)
9828      .addDisp(Disp, 16)
9829      .addOperand(Segment)
9830      .setMemRefs(MMOBegin, MMOEnd);
9831
9832    // Zero-extend the offset
9833    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
9834      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
9835        .addImm(0)
9836        .addReg(OffsetReg)
9837        .addImm(X86::sub_32bit);
9838
9839    // Add the offset to the reg_save_area to get the final address.
9840    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
9841      .addReg(OffsetReg64)
9842      .addReg(RegSaveReg);
9843
9844    // Compute the offset for the next argument
9845    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
9846    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
9847      .addReg(OffsetReg)
9848      .addImm(UseFPOffset ? 16 : 8);
9849
9850    // Store it back into the va_list.
9851    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
9852      .addOperand(Base)
9853      .addOperand(Scale)
9854      .addOperand(Index)
9855      .addDisp(Disp, UseFPOffset ? 4 : 0)
9856      .addOperand(Segment)
9857      .addReg(NextOffsetReg)
9858      .setMemRefs(MMOBegin, MMOEnd);
9859
9860    // Jump to endMBB
9861    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
9862      .addMBB(endMBB);
9863  }
9864
9865  //
9866  // Emit code to use overflow area
9867  //
9868
9869  // Load the overflow_area address into a register.
9870  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
9871  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
9872    .addOperand(Base)
9873    .addOperand(Scale)
9874    .addOperand(Index)
9875    .addDisp(Disp, 8)
9876    .addOperand(Segment)
9877    .setMemRefs(MMOBegin, MMOEnd);
9878
9879  // If we need to align it, do so. Otherwise, just copy the address
9880  // to OverflowDestReg.
9881  if (NeedsAlign) {
9882    // Align the overflow address
9883    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
9884    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
9885
9886    // aligned_addr = (addr + (align-1)) & ~(align-1)
9887    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
9888      .addReg(OverflowAddrReg)
9889      .addImm(Align-1);
9890
9891    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
9892      .addReg(TmpReg)
9893      .addImm(~(uint64_t)(Align-1));
9894  } else {
9895    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
9896      .addReg(OverflowAddrReg);
9897  }
9898
9899  // Compute the next overflow address after this argument.
9900  // (the overflow address should be kept 8-byte aligned)
9901  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
9902  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
9903    .addReg(OverflowDestReg)
9904    .addImm(ArgSizeA8);
9905
9906  // Store the new overflow address.
9907  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
9908    .addOperand(Base)
9909    .addOperand(Scale)
9910    .addOperand(Index)
9911    .addDisp(Disp, 8)
9912    .addOperand(Segment)
9913    .addReg(NextAddrReg)
9914    .setMemRefs(MMOBegin, MMOEnd);
9915
9916  // If we branched, emit the PHI to the front of endMBB.
9917  if (offsetMBB) {
9918    BuildMI(*endMBB, endMBB->begin(), DL,
9919            TII->get(X86::PHI), DestReg)
9920      .addReg(OffsetDestReg).addMBB(offsetMBB)
9921      .addReg(OverflowDestReg).addMBB(overflowMBB);
9922  }
9923
9924  // Erase the pseudo instruction
9925  MI->eraseFromParent();
9926
9927  return endMBB;
9928}
9929
9930MachineBasicBlock *
9931X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
9932                                                 MachineInstr *MI,
9933                                                 MachineBasicBlock *MBB) const {
9934  // Emit code to save XMM registers to the stack. The ABI says that the
9935  // number of registers to save is given in %al, so it's theoretically
9936  // possible to do an indirect jump trick to avoid saving all of them,
9937  // however this code takes a simpler approach and just executes all
9938  // of the stores if %al is non-zero. It's less code, and it's probably
9939  // easier on the hardware branch predictor, and stores aren't all that
9940  // expensive anyway.
9941
9942  // Create the new basic blocks. One block contains all the XMM stores,
9943  // and one block is the final destination regardless of whether any
9944  // stores were performed.
9945  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9946  MachineFunction *F = MBB->getParent();
9947  MachineFunction::iterator MBBIter = MBB;
9948  ++MBBIter;
9949  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
9950  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
9951  F->insert(MBBIter, XMMSaveMBB);
9952  F->insert(MBBIter, EndMBB);
9953
9954  // Transfer the remainder of MBB and its successor edges to EndMBB.
9955  EndMBB->splice(EndMBB->begin(), MBB,
9956                 llvm::next(MachineBasicBlock::iterator(MI)),
9957                 MBB->end());
9958  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
9959
9960  // The original block will now fall through to the XMM save block.
9961  MBB->addSuccessor(XMMSaveMBB);
9962  // The XMMSaveMBB will fall through to the end block.
9963  XMMSaveMBB->addSuccessor(EndMBB);
9964
9965  // Now add the instructions.
9966  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9967  DebugLoc DL = MI->getDebugLoc();
9968
9969  unsigned CountReg = MI->getOperand(0).getReg();
9970  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
9971  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
9972
9973  if (!Subtarget->isTargetWin64()) {
9974    // If %al is 0, branch around the XMM save block.
9975    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
9976    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
9977    MBB->addSuccessor(EndMBB);
9978  }
9979
9980  // In the XMM save block, save all the XMM argument registers.
9981  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
9982    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
9983    MachineMemOperand *MMO =
9984      F->getMachineMemOperand(
9985          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
9986        MachineMemOperand::MOStore,
9987        /*Size=*/16, /*Align=*/16);
9988    BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
9989      .addFrameIndex(RegSaveFrameIndex)
9990      .addImm(/*Scale=*/1)
9991      .addReg(/*IndexReg=*/0)
9992      .addImm(/*Disp=*/Offset)
9993      .addReg(/*Segment=*/0)
9994      .addReg(MI->getOperand(i).getReg())
9995      .addMemOperand(MMO);
9996  }
9997
9998  MI->eraseFromParent();   // The pseudo instruction is gone now.
9999
10000  return EndMBB;
10001}
10002
10003MachineBasicBlock *
10004X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
10005                                     MachineBasicBlock *BB) const {
10006  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10007  DebugLoc DL = MI->getDebugLoc();
10008
10009  // To "insert" a SELECT_CC instruction, we actually have to insert the
10010  // diamond control-flow pattern.  The incoming instruction knows the
10011  // destination vreg to set, the condition code register to branch on, the
10012  // true/false values to select between, and a branch opcode to use.
10013  const BasicBlock *LLVM_BB = BB->getBasicBlock();
10014  MachineFunction::iterator It = BB;
10015  ++It;
10016
10017  //  thisMBB:
10018  //  ...
10019  //   TrueVal = ...
10020  //   cmpTY ccX, r1, r2
10021  //   bCC copy1MBB
10022  //   fallthrough --> copy0MBB
10023  MachineBasicBlock *thisMBB = BB;
10024  MachineFunction *F = BB->getParent();
10025  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
10026  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
10027  F->insert(It, copy0MBB);
10028  F->insert(It, sinkMBB);
10029
10030  // If the EFLAGS register isn't dead in the terminator, then claim that it's
10031  // live into the sink and copy blocks.
10032  const MachineFunction *MF = BB->getParent();
10033  const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
10034  BitVector ReservedRegs = TRI->getReservedRegs(*MF);
10035
10036  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
10037    const MachineOperand &MO = MI->getOperand(I);
10038    if (!MO.isReg() || !MO.isUse() || MO.isKill()) continue;
10039    unsigned Reg = MO.getReg();
10040    if (Reg != X86::EFLAGS) continue;
10041    copy0MBB->addLiveIn(Reg);
10042    sinkMBB->addLiveIn(Reg);
10043  }
10044
10045  // Transfer the remainder of BB and its successor edges to sinkMBB.
10046  sinkMBB->splice(sinkMBB->begin(), BB,
10047                  llvm::next(MachineBasicBlock::iterator(MI)),
10048                  BB->end());
10049  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
10050
10051  // Add the true and fallthrough blocks as its successors.
10052  BB->addSuccessor(copy0MBB);
10053  BB->addSuccessor(sinkMBB);
10054
10055  // Create the conditional branch instruction.
10056  unsigned Opc =
10057    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
10058  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
10059
10060  //  copy0MBB:
10061  //   %FalseValue = ...
10062  //   # fallthrough to sinkMBB
10063  copy0MBB->addSuccessor(sinkMBB);
10064
10065  //  sinkMBB:
10066  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
10067  //  ...
10068  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
10069          TII->get(X86::PHI), MI->getOperand(0).getReg())
10070    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
10071    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
10072
10073  MI->eraseFromParent();   // The pseudo instruction is gone now.
10074  return sinkMBB;
10075}
10076
10077MachineBasicBlock *
10078X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
10079                                          MachineBasicBlock *BB) const {
10080  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10081  DebugLoc DL = MI->getDebugLoc();
10082
10083  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
10084  // non-trivial part is impdef of ESP.
10085  // FIXME: The code should be tweaked as soon as we'll try to do codegen for
10086  // mingw-w64.
10087
10088  const char *StackProbeSymbol =
10089      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
10090
10091  BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
10092    .addExternalSymbol(StackProbeSymbol)
10093    .addReg(X86::EAX, RegState::Implicit)
10094    .addReg(X86::ESP, RegState::Implicit)
10095    .addReg(X86::EAX, RegState::Define | RegState::Implicit)
10096    .addReg(X86::ESP, RegState::Define | RegState::Implicit)
10097    .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
10098
10099  MI->eraseFromParent();   // The pseudo instruction is gone now.
10100  return BB;
10101}
10102
10103MachineBasicBlock *
10104X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
10105                                      MachineBasicBlock *BB) const {
10106  // This is pretty easy.  We're taking the value that we received from
10107  // our load from the relocation, sticking it in either RDI (x86-64)
10108  // or EAX and doing an indirect call.  The return value will then
10109  // be in the normal return register.
10110  const X86InstrInfo *TII
10111    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
10112  DebugLoc DL = MI->getDebugLoc();
10113  MachineFunction *F = BB->getParent();
10114
10115  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
10116  assert(MI->getOperand(3).isGlobal() && "This should be a global");
10117
10118  if (Subtarget->is64Bit()) {
10119    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
10120                                      TII->get(X86::MOV64rm), X86::RDI)
10121    .addReg(X86::RIP)
10122    .addImm(0).addReg(0)
10123    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
10124                      MI->getOperand(3).getTargetFlags())
10125    .addReg(0);
10126    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
10127    addDirectMem(MIB, X86::RDI);
10128  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
10129    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
10130                                      TII->get(X86::MOV32rm), X86::EAX)
10131    .addReg(0)
10132    .addImm(0).addReg(0)
10133    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
10134                      MI->getOperand(3).getTargetFlags())
10135    .addReg(0);
10136    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
10137    addDirectMem(MIB, X86::EAX);
10138  } else {
10139    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
10140                                      TII->get(X86::MOV32rm), X86::EAX)
10141    .addReg(TII->getGlobalBaseReg(F))
10142    .addImm(0).addReg(0)
10143    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
10144                      MI->getOperand(3).getTargetFlags())
10145    .addReg(0);
10146    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
10147    addDirectMem(MIB, X86::EAX);
10148  }
10149
10150  MI->eraseFromParent(); // The pseudo instruction is gone now.
10151  return BB;
10152}
10153
10154MachineBasicBlock *
10155X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
10156                                               MachineBasicBlock *BB) const {
10157  switch (MI->getOpcode()) {
10158  default: assert(false && "Unexpected instr type to insert");
10159  case X86::TAILJMPd64:
10160  case X86::TAILJMPr64:
10161  case X86::TAILJMPm64:
10162    assert(!"TAILJMP64 would not be touched here.");
10163  case X86::TCRETURNdi64:
10164  case X86::TCRETURNri64:
10165  case X86::TCRETURNmi64:
10166    // Defs of TCRETURNxx64 has Win64's callee-saved registers, as subset.
10167    // On AMD64, additional defs should be added before register allocation.
10168    if (!Subtarget->isTargetWin64()) {
10169      MI->addRegisterDefined(X86::RSI);
10170      MI->addRegisterDefined(X86::RDI);
10171      MI->addRegisterDefined(X86::XMM6);
10172      MI->addRegisterDefined(X86::XMM7);
10173      MI->addRegisterDefined(X86::XMM8);
10174      MI->addRegisterDefined(X86::XMM9);
10175      MI->addRegisterDefined(X86::XMM10);
10176      MI->addRegisterDefined(X86::XMM11);
10177      MI->addRegisterDefined(X86::XMM12);
10178      MI->addRegisterDefined(X86::XMM13);
10179      MI->addRegisterDefined(X86::XMM14);
10180      MI->addRegisterDefined(X86::XMM15);
10181    }
10182    return BB;
10183  case X86::WIN_ALLOCA:
10184    return EmitLoweredWinAlloca(MI, BB);
10185  case X86::TLSCall_32:
10186  case X86::TLSCall_64:
10187    return EmitLoweredTLSCall(MI, BB);
10188  case X86::CMOV_GR8:
10189  case X86::CMOV_FR32:
10190  case X86::CMOV_FR64:
10191  case X86::CMOV_V4F32:
10192  case X86::CMOV_V2F64:
10193  case X86::CMOV_V2I64:
10194  case X86::CMOV_GR16:
10195  case X86::CMOV_GR32:
10196  case X86::CMOV_RFP32:
10197  case X86::CMOV_RFP64:
10198  case X86::CMOV_RFP80:
10199    return EmitLoweredSelect(MI, BB);
10200
10201  case X86::FP32_TO_INT16_IN_MEM:
10202  case X86::FP32_TO_INT32_IN_MEM:
10203  case X86::FP32_TO_INT64_IN_MEM:
10204  case X86::FP64_TO_INT16_IN_MEM:
10205  case X86::FP64_TO_INT32_IN_MEM:
10206  case X86::FP64_TO_INT64_IN_MEM:
10207  case X86::FP80_TO_INT16_IN_MEM:
10208  case X86::FP80_TO_INT32_IN_MEM:
10209  case X86::FP80_TO_INT64_IN_MEM: {
10210    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10211    DebugLoc DL = MI->getDebugLoc();
10212
10213    // Change the floating point control register to use "round towards zero"
10214    // mode when truncating to an integer value.
10215    MachineFunction *F = BB->getParent();
10216    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
10217    addFrameReference(BuildMI(*BB, MI, DL,
10218                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
10219
10220    // Load the old value of the high byte of the control word...
10221    unsigned OldCW =
10222      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
10223    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
10224                      CWFrameIdx);
10225
10226    // Set the high part to be round to zero...
10227    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
10228      .addImm(0xC7F);
10229
10230    // Reload the modified control word now...
10231    addFrameReference(BuildMI(*BB, MI, DL,
10232                              TII->get(X86::FLDCW16m)), CWFrameIdx);
10233
10234    // Restore the memory image of control word to original value
10235    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
10236      .addReg(OldCW);
10237
10238    // Get the X86 opcode to use.
10239    unsigned Opc;
10240    switch (MI->getOpcode()) {
10241    default: llvm_unreachable("illegal opcode!");
10242    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
10243    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
10244    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
10245    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
10246    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
10247    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
10248    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
10249    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
10250    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
10251    }
10252
10253    X86AddressMode AM;
10254    MachineOperand &Op = MI->getOperand(0);
10255    if (Op.isReg()) {
10256      AM.BaseType = X86AddressMode::RegBase;
10257      AM.Base.Reg = Op.getReg();
10258    } else {
10259      AM.BaseType = X86AddressMode::FrameIndexBase;
10260      AM.Base.FrameIndex = Op.getIndex();
10261    }
10262    Op = MI->getOperand(1);
10263    if (Op.isImm())
10264      AM.Scale = Op.getImm();
10265    Op = MI->getOperand(2);
10266    if (Op.isImm())
10267      AM.IndexReg = Op.getImm();
10268    Op = MI->getOperand(3);
10269    if (Op.isGlobal()) {
10270      AM.GV = Op.getGlobal();
10271    } else {
10272      AM.Disp = Op.getImm();
10273    }
10274    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
10275                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
10276
10277    // Reload the original control word now.
10278    addFrameReference(BuildMI(*BB, MI, DL,
10279                              TII->get(X86::FLDCW16m)), CWFrameIdx);
10280
10281    MI->eraseFromParent();   // The pseudo instruction is gone now.
10282    return BB;
10283  }
10284    // String/text processing lowering.
10285  case X86::PCMPISTRM128REG:
10286  case X86::VPCMPISTRM128REG:
10287    return EmitPCMP(MI, BB, 3, false /* in-mem */);
10288  case X86::PCMPISTRM128MEM:
10289  case X86::VPCMPISTRM128MEM:
10290    return EmitPCMP(MI, BB, 3, true /* in-mem */);
10291  case X86::PCMPESTRM128REG:
10292  case X86::VPCMPESTRM128REG:
10293    return EmitPCMP(MI, BB, 5, false /* in mem */);
10294  case X86::PCMPESTRM128MEM:
10295  case X86::VPCMPESTRM128MEM:
10296    return EmitPCMP(MI, BB, 5, true /* in mem */);
10297
10298    // Thread synchronization.
10299  case X86::MONITOR:
10300    return EmitMonitor(MI, BB);
10301  case X86::MWAIT:
10302    return EmitMwait(MI, BB);
10303
10304    // Atomic Lowering.
10305  case X86::ATOMAND32:
10306    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
10307                                               X86::AND32ri, X86::MOV32rm,
10308                                               X86::LCMPXCHG32,
10309                                               X86::NOT32r, X86::EAX,
10310                                               X86::GR32RegisterClass);
10311  case X86::ATOMOR32:
10312    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
10313                                               X86::OR32ri, X86::MOV32rm,
10314                                               X86::LCMPXCHG32,
10315                                               X86::NOT32r, X86::EAX,
10316                                               X86::GR32RegisterClass);
10317  case X86::ATOMXOR32:
10318    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
10319                                               X86::XOR32ri, X86::MOV32rm,
10320                                               X86::LCMPXCHG32,
10321                                               X86::NOT32r, X86::EAX,
10322                                               X86::GR32RegisterClass);
10323  case X86::ATOMNAND32:
10324    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
10325                                               X86::AND32ri, X86::MOV32rm,
10326                                               X86::LCMPXCHG32,
10327                                               X86::NOT32r, X86::EAX,
10328                                               X86::GR32RegisterClass, true);
10329  case X86::ATOMMIN32:
10330    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
10331  case X86::ATOMMAX32:
10332    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
10333  case X86::ATOMUMIN32:
10334    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
10335  case X86::ATOMUMAX32:
10336    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
10337
10338  case X86::ATOMAND16:
10339    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
10340                                               X86::AND16ri, X86::MOV16rm,
10341                                               X86::LCMPXCHG16,
10342                                               X86::NOT16r, X86::AX,
10343                                               X86::GR16RegisterClass);
10344  case X86::ATOMOR16:
10345    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
10346                                               X86::OR16ri, X86::MOV16rm,
10347                                               X86::LCMPXCHG16,
10348                                               X86::NOT16r, X86::AX,
10349                                               X86::GR16RegisterClass);
10350  case X86::ATOMXOR16:
10351    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
10352                                               X86::XOR16ri, X86::MOV16rm,
10353                                               X86::LCMPXCHG16,
10354                                               X86::NOT16r, X86::AX,
10355                                               X86::GR16RegisterClass);
10356  case X86::ATOMNAND16:
10357    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
10358                                               X86::AND16ri, X86::MOV16rm,
10359                                               X86::LCMPXCHG16,
10360                                               X86::NOT16r, X86::AX,
10361                                               X86::GR16RegisterClass, true);
10362  case X86::ATOMMIN16:
10363    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
10364  case X86::ATOMMAX16:
10365    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
10366  case X86::ATOMUMIN16:
10367    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
10368  case X86::ATOMUMAX16:
10369    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
10370
10371  case X86::ATOMAND8:
10372    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
10373                                               X86::AND8ri, X86::MOV8rm,
10374                                               X86::LCMPXCHG8,
10375                                               X86::NOT8r, X86::AL,
10376                                               X86::GR8RegisterClass);
10377  case X86::ATOMOR8:
10378    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
10379                                               X86::OR8ri, X86::MOV8rm,
10380                                               X86::LCMPXCHG8,
10381                                               X86::NOT8r, X86::AL,
10382                                               X86::GR8RegisterClass);
10383  case X86::ATOMXOR8:
10384    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
10385                                               X86::XOR8ri, X86::MOV8rm,
10386                                               X86::LCMPXCHG8,
10387                                               X86::NOT8r, X86::AL,
10388                                               X86::GR8RegisterClass);
10389  case X86::ATOMNAND8:
10390    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
10391                                               X86::AND8ri, X86::MOV8rm,
10392                                               X86::LCMPXCHG8,
10393                                               X86::NOT8r, X86::AL,
10394                                               X86::GR8RegisterClass, true);
10395  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
10396  // This group is for 64-bit host.
10397  case X86::ATOMAND64:
10398    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
10399                                               X86::AND64ri32, X86::MOV64rm,
10400                                               X86::LCMPXCHG64,
10401                                               X86::NOT64r, X86::RAX,
10402                                               X86::GR64RegisterClass);
10403  case X86::ATOMOR64:
10404    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
10405                                               X86::OR64ri32, X86::MOV64rm,
10406                                               X86::LCMPXCHG64,
10407                                               X86::NOT64r, X86::RAX,
10408                                               X86::GR64RegisterClass);
10409  case X86::ATOMXOR64:
10410    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
10411                                               X86::XOR64ri32, X86::MOV64rm,
10412                                               X86::LCMPXCHG64,
10413                                               X86::NOT64r, X86::RAX,
10414                                               X86::GR64RegisterClass);
10415  case X86::ATOMNAND64:
10416    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
10417                                               X86::AND64ri32, X86::MOV64rm,
10418                                               X86::LCMPXCHG64,
10419                                               X86::NOT64r, X86::RAX,
10420                                               X86::GR64RegisterClass, true);
10421  case X86::ATOMMIN64:
10422    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
10423  case X86::ATOMMAX64:
10424    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
10425  case X86::ATOMUMIN64:
10426    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
10427  case X86::ATOMUMAX64:
10428    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
10429
10430  // This group does 64-bit operations on a 32-bit host.
10431  case X86::ATOMAND6432:
10432    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10433                                               X86::AND32rr, X86::AND32rr,
10434                                               X86::AND32ri, X86::AND32ri,
10435                                               false);
10436  case X86::ATOMOR6432:
10437    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10438                                               X86::OR32rr, X86::OR32rr,
10439                                               X86::OR32ri, X86::OR32ri,
10440                                               false);
10441  case X86::ATOMXOR6432:
10442    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10443                                               X86::XOR32rr, X86::XOR32rr,
10444                                               X86::XOR32ri, X86::XOR32ri,
10445                                               false);
10446  case X86::ATOMNAND6432:
10447    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10448                                               X86::AND32rr, X86::AND32rr,
10449                                               X86::AND32ri, X86::AND32ri,
10450                                               true);
10451  case X86::ATOMADD6432:
10452    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10453                                               X86::ADD32rr, X86::ADC32rr,
10454                                               X86::ADD32ri, X86::ADC32ri,
10455                                               false);
10456  case X86::ATOMSUB6432:
10457    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10458                                               X86::SUB32rr, X86::SBB32rr,
10459                                               X86::SUB32ri, X86::SBB32ri,
10460                                               false);
10461  case X86::ATOMSWAP6432:
10462    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10463                                               X86::MOV32rr, X86::MOV32rr,
10464                                               X86::MOV32ri, X86::MOV32ri,
10465                                               false);
10466  case X86::VASTART_SAVE_XMM_REGS:
10467    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
10468
10469  case X86::VAARG_64:
10470    return EmitVAARG64WithCustomInserter(MI, BB);
10471  }
10472}
10473
10474//===----------------------------------------------------------------------===//
10475//                           X86 Optimization Hooks
10476//===----------------------------------------------------------------------===//
10477
10478void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
10479                                                       const APInt &Mask,
10480                                                       APInt &KnownZero,
10481                                                       APInt &KnownOne,
10482                                                       const SelectionDAG &DAG,
10483                                                       unsigned Depth) const {
10484  unsigned Opc = Op.getOpcode();
10485  assert((Opc >= ISD::BUILTIN_OP_END ||
10486          Opc == ISD::INTRINSIC_WO_CHAIN ||
10487          Opc == ISD::INTRINSIC_W_CHAIN ||
10488          Opc == ISD::INTRINSIC_VOID) &&
10489         "Should use MaskedValueIsZero if you don't know whether Op"
10490         " is a target node!");
10491
10492  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
10493  switch (Opc) {
10494  default: break;
10495  case X86ISD::ADD:
10496  case X86ISD::SUB:
10497  case X86ISD::ADC:
10498  case X86ISD::SBB:
10499  case X86ISD::SMUL:
10500  case X86ISD::UMUL:
10501  case X86ISD::INC:
10502  case X86ISD::DEC:
10503  case X86ISD::OR:
10504  case X86ISD::XOR:
10505  case X86ISD::AND:
10506    // These nodes' second result is a boolean.
10507    if (Op.getResNo() == 0)
10508      break;
10509    // Fallthrough
10510  case X86ISD::SETCC:
10511    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
10512                                       Mask.getBitWidth() - 1);
10513    break;
10514  }
10515}
10516
10517unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
10518                                                         unsigned Depth) const {
10519  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
10520  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
10521    return Op.getValueType().getScalarType().getSizeInBits();
10522
10523  // Fallback case.
10524  return 1;
10525}
10526
10527/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
10528/// node is a GlobalAddress + offset.
10529bool X86TargetLowering::isGAPlusOffset(SDNode *N,
10530                                       const GlobalValue* &GA,
10531                                       int64_t &Offset) const {
10532  if (N->getOpcode() == X86ISD::Wrapper) {
10533    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
10534      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
10535      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
10536      return true;
10537    }
10538  }
10539  return TargetLowering::isGAPlusOffset(N, GA, Offset);
10540}
10541
10542/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
10543/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
10544/// if the load addresses are consecutive, non-overlapping, and in the right
10545/// order.
10546static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
10547                                     TargetLowering::DAGCombinerInfo &DCI) {
10548  DebugLoc dl = N->getDebugLoc();
10549  EVT VT = N->getValueType(0);
10550
10551  if (VT.getSizeInBits() != 128)
10552    return SDValue();
10553
10554  // Don't create instructions with illegal types after legalize types has run.
10555  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10556  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
10557    return SDValue();
10558
10559  SmallVector<SDValue, 16> Elts;
10560  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
10561    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
10562
10563  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
10564}
10565
10566/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
10567/// generation and convert it from being a bunch of shuffles and extracts
10568/// to a simple store and scalar loads to extract the elements.
10569static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
10570                                                const TargetLowering &TLI) {
10571  SDValue InputVector = N->getOperand(0);
10572
10573  // Only operate on vectors of 4 elements, where the alternative shuffling
10574  // gets to be more expensive.
10575  if (InputVector.getValueType() != MVT::v4i32)
10576    return SDValue();
10577
10578  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
10579  // single use which is a sign-extend or zero-extend, and all elements are
10580  // used.
10581  SmallVector<SDNode *, 4> Uses;
10582  unsigned ExtractedElements = 0;
10583  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
10584       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
10585    if (UI.getUse().getResNo() != InputVector.getResNo())
10586      return SDValue();
10587
10588    SDNode *Extract = *UI;
10589    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
10590      return SDValue();
10591
10592    if (Extract->getValueType(0) != MVT::i32)
10593      return SDValue();
10594    if (!Extract->hasOneUse())
10595      return SDValue();
10596    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
10597        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
10598      return SDValue();
10599    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
10600      return SDValue();
10601
10602    // Record which element was extracted.
10603    ExtractedElements |=
10604      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
10605
10606    Uses.push_back(Extract);
10607  }
10608
10609  // If not all the elements were used, this may not be worthwhile.
10610  if (ExtractedElements != 15)
10611    return SDValue();
10612
10613  // Ok, we've now decided to do the transformation.
10614  DebugLoc dl = InputVector.getDebugLoc();
10615
10616  // Store the value to a temporary stack slot.
10617  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
10618  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
10619                            MachinePointerInfo(), false, false, 0);
10620
10621  // Replace each use (extract) with a load of the appropriate element.
10622  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
10623       UE = Uses.end(); UI != UE; ++UI) {
10624    SDNode *Extract = *UI;
10625
10626    // Compute the element's address.
10627    SDValue Idx = Extract->getOperand(1);
10628    unsigned EltSize =
10629        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
10630    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
10631    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
10632
10633    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(),
10634                                     StackPtr, OffsetVal);
10635
10636    // Load the scalar.
10637    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
10638                                     ScalarAddr, MachinePointerInfo(),
10639                                     false, false, 0);
10640
10641    // Replace the exact with the load.
10642    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
10643  }
10644
10645  // The replacement was made in place; don't return anything.
10646  return SDValue();
10647}
10648
10649/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
10650static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
10651                                    const X86Subtarget *Subtarget) {
10652  DebugLoc DL = N->getDebugLoc();
10653  SDValue Cond = N->getOperand(0);
10654  // Get the LHS/RHS of the select.
10655  SDValue LHS = N->getOperand(1);
10656  SDValue RHS = N->getOperand(2);
10657
10658  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
10659  // instructions match the semantics of the common C idiom x<y?x:y but not
10660  // x<=y?x:y, because of how they handle negative zero (which can be
10661  // ignored in unsafe-math mode).
10662  if (Subtarget->hasSSE2() &&
10663      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
10664      Cond.getOpcode() == ISD::SETCC) {
10665    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
10666
10667    unsigned Opcode = 0;
10668    // Check for x CC y ? x : y.
10669    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
10670        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
10671      switch (CC) {
10672      default: break;
10673      case ISD::SETULT:
10674        // Converting this to a min would handle NaNs incorrectly, and swapping
10675        // the operands would cause it to handle comparisons between positive
10676        // and negative zero incorrectly.
10677        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
10678          if (!UnsafeFPMath &&
10679              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
10680            break;
10681          std::swap(LHS, RHS);
10682        }
10683        Opcode = X86ISD::FMIN;
10684        break;
10685      case ISD::SETOLE:
10686        // Converting this to a min would handle comparisons between positive
10687        // and negative zero incorrectly.
10688        if (!UnsafeFPMath &&
10689            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
10690          break;
10691        Opcode = X86ISD::FMIN;
10692        break;
10693      case ISD::SETULE:
10694        // Converting this to a min would handle both negative zeros and NaNs
10695        // incorrectly, but we can swap the operands to fix both.
10696        std::swap(LHS, RHS);
10697      case ISD::SETOLT:
10698      case ISD::SETLT:
10699      case ISD::SETLE:
10700        Opcode = X86ISD::FMIN;
10701        break;
10702
10703      case ISD::SETOGE:
10704        // Converting this to a max would handle comparisons between positive
10705        // and negative zero incorrectly.
10706        if (!UnsafeFPMath &&
10707            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(LHS))
10708          break;
10709        Opcode = X86ISD::FMAX;
10710        break;
10711      case ISD::SETUGT:
10712        // Converting this to a max would handle NaNs incorrectly, and swapping
10713        // the operands would cause it to handle comparisons between positive
10714        // and negative zero incorrectly.
10715        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
10716          if (!UnsafeFPMath &&
10717              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
10718            break;
10719          std::swap(LHS, RHS);
10720        }
10721        Opcode = X86ISD::FMAX;
10722        break;
10723      case ISD::SETUGE:
10724        // Converting this to a max would handle both negative zeros and NaNs
10725        // incorrectly, but we can swap the operands to fix both.
10726        std::swap(LHS, RHS);
10727      case ISD::SETOGT:
10728      case ISD::SETGT:
10729      case ISD::SETGE:
10730        Opcode = X86ISD::FMAX;
10731        break;
10732      }
10733    // Check for x CC y ? y : x -- a min/max with reversed arms.
10734    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
10735               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
10736      switch (CC) {
10737      default: break;
10738      case ISD::SETOGE:
10739        // Converting this to a min would handle comparisons between positive
10740        // and negative zero incorrectly, and swapping the operands would
10741        // cause it to handle NaNs incorrectly.
10742        if (!UnsafeFPMath &&
10743            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
10744          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
10745            break;
10746          std::swap(LHS, RHS);
10747        }
10748        Opcode = X86ISD::FMIN;
10749        break;
10750      case ISD::SETUGT:
10751        // Converting this to a min would handle NaNs incorrectly.
10752        if (!UnsafeFPMath &&
10753            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
10754          break;
10755        Opcode = X86ISD::FMIN;
10756        break;
10757      case ISD::SETUGE:
10758        // Converting this to a min would handle both negative zeros and NaNs
10759        // incorrectly, but we can swap the operands to fix both.
10760        std::swap(LHS, RHS);
10761      case ISD::SETOGT:
10762      case ISD::SETGT:
10763      case ISD::SETGE:
10764        Opcode = X86ISD::FMIN;
10765        break;
10766
10767      case ISD::SETULT:
10768        // Converting this to a max would handle NaNs incorrectly.
10769        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
10770          break;
10771        Opcode = X86ISD::FMAX;
10772        break;
10773      case ISD::SETOLE:
10774        // Converting this to a max would handle comparisons between positive
10775        // and negative zero incorrectly, and swapping the operands would
10776        // cause it to handle NaNs incorrectly.
10777        if (!UnsafeFPMath &&
10778            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
10779          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
10780            break;
10781          std::swap(LHS, RHS);
10782        }
10783        Opcode = X86ISD::FMAX;
10784        break;
10785      case ISD::SETULE:
10786        // Converting this to a max would handle both negative zeros and NaNs
10787        // incorrectly, but we can swap the operands to fix both.
10788        std::swap(LHS, RHS);
10789      case ISD::SETOLT:
10790      case ISD::SETLT:
10791      case ISD::SETLE:
10792        Opcode = X86ISD::FMAX;
10793        break;
10794      }
10795    }
10796
10797    if (Opcode)
10798      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
10799  }
10800
10801  // If this is a select between two integer constants, try to do some
10802  // optimizations.
10803  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
10804    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
10805      // Don't do this for crazy integer types.
10806      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
10807        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
10808        // so that TrueC (the true value) is larger than FalseC.
10809        bool NeedsCondInvert = false;
10810
10811        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
10812            // Efficiently invertible.
10813            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
10814             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
10815              isa<ConstantSDNode>(Cond.getOperand(1))))) {
10816          NeedsCondInvert = true;
10817          std::swap(TrueC, FalseC);
10818        }
10819
10820        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
10821        if (FalseC->getAPIntValue() == 0 &&
10822            TrueC->getAPIntValue().isPowerOf2()) {
10823          if (NeedsCondInvert) // Invert the condition if needed.
10824            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
10825                               DAG.getConstant(1, Cond.getValueType()));
10826
10827          // Zero extend the condition if needed.
10828          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
10829
10830          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
10831          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
10832                             DAG.getConstant(ShAmt, MVT::i8));
10833        }
10834
10835        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
10836        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
10837          if (NeedsCondInvert) // Invert the condition if needed.
10838            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
10839                               DAG.getConstant(1, Cond.getValueType()));
10840
10841          // Zero extend the condition if needed.
10842          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
10843                             FalseC->getValueType(0), Cond);
10844          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
10845                             SDValue(FalseC, 0));
10846        }
10847
10848        // Optimize cases that will turn into an LEA instruction.  This requires
10849        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
10850        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
10851          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
10852          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
10853
10854          bool isFastMultiplier = false;
10855          if (Diff < 10) {
10856            switch ((unsigned char)Diff) {
10857              default: break;
10858              case 1:  // result = add base, cond
10859              case 2:  // result = lea base(    , cond*2)
10860              case 3:  // result = lea base(cond, cond*2)
10861              case 4:  // result = lea base(    , cond*4)
10862              case 5:  // result = lea base(cond, cond*4)
10863              case 8:  // result = lea base(    , cond*8)
10864              case 9:  // result = lea base(cond, cond*8)
10865                isFastMultiplier = true;
10866                break;
10867            }
10868          }
10869
10870          if (isFastMultiplier) {
10871            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
10872            if (NeedsCondInvert) // Invert the condition if needed.
10873              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
10874                                 DAG.getConstant(1, Cond.getValueType()));
10875
10876            // Zero extend the condition if needed.
10877            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
10878                               Cond);
10879            // Scale the condition by the difference.
10880            if (Diff != 1)
10881              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
10882                                 DAG.getConstant(Diff, Cond.getValueType()));
10883
10884            // Add the base if non-zero.
10885            if (FalseC->getAPIntValue() != 0)
10886              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
10887                                 SDValue(FalseC, 0));
10888            return Cond;
10889          }
10890        }
10891      }
10892  }
10893
10894  return SDValue();
10895}
10896
10897/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
10898static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
10899                                  TargetLowering::DAGCombinerInfo &DCI) {
10900  DebugLoc DL = N->getDebugLoc();
10901
10902  // If the flag operand isn't dead, don't touch this CMOV.
10903  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
10904    return SDValue();
10905
10906  // If this is a select between two integer constants, try to do some
10907  // optimizations.  Note that the operands are ordered the opposite of SELECT
10908  // operands.
10909  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
10910    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
10911      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
10912      // larger than FalseC (the false value).
10913      X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
10914
10915      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
10916        CC = X86::GetOppositeBranchCondition(CC);
10917        std::swap(TrueC, FalseC);
10918      }
10919
10920      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
10921      // This is efficient for any integer data type (including i8/i16) and
10922      // shift amount.
10923      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
10924        SDValue Cond = N->getOperand(3);
10925        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10926                           DAG.getConstant(CC, MVT::i8), Cond);
10927
10928        // Zero extend the condition if needed.
10929        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
10930
10931        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
10932        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
10933                           DAG.getConstant(ShAmt, MVT::i8));
10934        if (N->getNumValues() == 2)  // Dead flag value?
10935          return DCI.CombineTo(N, Cond, SDValue());
10936        return Cond;
10937      }
10938
10939      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
10940      // for any integer data type, including i8/i16.
10941      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
10942        SDValue Cond = N->getOperand(3);
10943        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10944                           DAG.getConstant(CC, MVT::i8), Cond);
10945
10946        // Zero extend the condition if needed.
10947        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
10948                           FalseC->getValueType(0), Cond);
10949        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
10950                           SDValue(FalseC, 0));
10951
10952        if (N->getNumValues() == 2)  // Dead flag value?
10953          return DCI.CombineTo(N, Cond, SDValue());
10954        return Cond;
10955      }
10956
10957      // Optimize cases that will turn into an LEA instruction.  This requires
10958      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
10959      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
10960        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
10961        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
10962
10963        bool isFastMultiplier = false;
10964        if (Diff < 10) {
10965          switch ((unsigned char)Diff) {
10966          default: break;
10967          case 1:  // result = add base, cond
10968          case 2:  // result = lea base(    , cond*2)
10969          case 3:  // result = lea base(cond, cond*2)
10970          case 4:  // result = lea base(    , cond*4)
10971          case 5:  // result = lea base(cond, cond*4)
10972          case 8:  // result = lea base(    , cond*8)
10973          case 9:  // result = lea base(cond, cond*8)
10974            isFastMultiplier = true;
10975            break;
10976          }
10977        }
10978
10979        if (isFastMultiplier) {
10980          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
10981          SDValue Cond = N->getOperand(3);
10982          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10983                             DAG.getConstant(CC, MVT::i8), Cond);
10984          // Zero extend the condition if needed.
10985          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
10986                             Cond);
10987          // Scale the condition by the difference.
10988          if (Diff != 1)
10989            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
10990                               DAG.getConstant(Diff, Cond.getValueType()));
10991
10992          // Add the base if non-zero.
10993          if (FalseC->getAPIntValue() != 0)
10994            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
10995                               SDValue(FalseC, 0));
10996          if (N->getNumValues() == 2)  // Dead flag value?
10997            return DCI.CombineTo(N, Cond, SDValue());
10998          return Cond;
10999        }
11000      }
11001    }
11002  }
11003  return SDValue();
11004}
11005
11006
11007/// PerformMulCombine - Optimize a single multiply with constant into two
11008/// in order to implement it with two cheaper instructions, e.g.
11009/// LEA + SHL, LEA + LEA.
11010static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
11011                                 TargetLowering::DAGCombinerInfo &DCI) {
11012  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
11013    return SDValue();
11014
11015  EVT VT = N->getValueType(0);
11016  if (VT != MVT::i64)
11017    return SDValue();
11018
11019  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
11020  if (!C)
11021    return SDValue();
11022  uint64_t MulAmt = C->getZExtValue();
11023  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
11024    return SDValue();
11025
11026  uint64_t MulAmt1 = 0;
11027  uint64_t MulAmt2 = 0;
11028  if ((MulAmt % 9) == 0) {
11029    MulAmt1 = 9;
11030    MulAmt2 = MulAmt / 9;
11031  } else if ((MulAmt % 5) == 0) {
11032    MulAmt1 = 5;
11033    MulAmt2 = MulAmt / 5;
11034  } else if ((MulAmt % 3) == 0) {
11035    MulAmt1 = 3;
11036    MulAmt2 = MulAmt / 3;
11037  }
11038  if (MulAmt2 &&
11039      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
11040    DebugLoc DL = N->getDebugLoc();
11041
11042    if (isPowerOf2_64(MulAmt2) &&
11043        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
11044      // If second multiplifer is pow2, issue it first. We want the multiply by
11045      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
11046      // is an add.
11047      std::swap(MulAmt1, MulAmt2);
11048
11049    SDValue NewMul;
11050    if (isPowerOf2_64(MulAmt1))
11051      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
11052                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
11053    else
11054      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
11055                           DAG.getConstant(MulAmt1, VT));
11056
11057    if (isPowerOf2_64(MulAmt2))
11058      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
11059                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
11060    else
11061      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
11062                           DAG.getConstant(MulAmt2, VT));
11063
11064    // Do not add new nodes to DAG combiner worklist.
11065    DCI.CombineTo(N, NewMul, false);
11066  }
11067  return SDValue();
11068}
11069
11070static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
11071  SDValue N0 = N->getOperand(0);
11072  SDValue N1 = N->getOperand(1);
11073  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
11074  EVT VT = N0.getValueType();
11075
11076  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
11077  // since the result of setcc_c is all zero's or all ones.
11078  if (N1C && N0.getOpcode() == ISD::AND &&
11079      N0.getOperand(1).getOpcode() == ISD::Constant) {
11080    SDValue N00 = N0.getOperand(0);
11081    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
11082        ((N00.getOpcode() == ISD::ANY_EXTEND ||
11083          N00.getOpcode() == ISD::ZERO_EXTEND) &&
11084         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
11085      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
11086      APInt ShAmt = N1C->getAPIntValue();
11087      Mask = Mask.shl(ShAmt);
11088      if (Mask != 0)
11089        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
11090                           N00, DAG.getConstant(Mask, VT));
11091    }
11092  }
11093
11094  return SDValue();
11095}
11096
11097/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
11098///                       when possible.
11099static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
11100                                   const X86Subtarget *Subtarget) {
11101  EVT VT = N->getValueType(0);
11102  if (!VT.isVector() && VT.isInteger() &&
11103      N->getOpcode() == ISD::SHL)
11104    return PerformSHLCombine(N, DAG);
11105
11106  // On X86 with SSE2 support, we can transform this to a vector shift if
11107  // all elements are shifted by the same amount.  We can't do this in legalize
11108  // because the a constant vector is typically transformed to a constant pool
11109  // so we have no knowledge of the shift amount.
11110  if (!Subtarget->hasSSE2())
11111    return SDValue();
11112
11113  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
11114    return SDValue();
11115
11116  SDValue ShAmtOp = N->getOperand(1);
11117  EVT EltVT = VT.getVectorElementType();
11118  DebugLoc DL = N->getDebugLoc();
11119  SDValue BaseShAmt = SDValue();
11120  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
11121    unsigned NumElts = VT.getVectorNumElements();
11122    unsigned i = 0;
11123    for (; i != NumElts; ++i) {
11124      SDValue Arg = ShAmtOp.getOperand(i);
11125      if (Arg.getOpcode() == ISD::UNDEF) continue;
11126      BaseShAmt = Arg;
11127      break;
11128    }
11129    for (; i != NumElts; ++i) {
11130      SDValue Arg = ShAmtOp.getOperand(i);
11131      if (Arg.getOpcode() == ISD::UNDEF) continue;
11132      if (Arg != BaseShAmt) {
11133        return SDValue();
11134      }
11135    }
11136  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
11137             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
11138    SDValue InVec = ShAmtOp.getOperand(0);
11139    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
11140      unsigned NumElts = InVec.getValueType().getVectorNumElements();
11141      unsigned i = 0;
11142      for (; i != NumElts; ++i) {
11143        SDValue Arg = InVec.getOperand(i);
11144        if (Arg.getOpcode() == ISD::UNDEF) continue;
11145        BaseShAmt = Arg;
11146        break;
11147      }
11148    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
11149       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
11150         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
11151         if (C->getZExtValue() == SplatIdx)
11152           BaseShAmt = InVec.getOperand(1);
11153       }
11154    }
11155    if (BaseShAmt.getNode() == 0)
11156      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
11157                              DAG.getIntPtrConstant(0));
11158  } else
11159    return SDValue();
11160
11161  // The shift amount is an i32.
11162  if (EltVT.bitsGT(MVT::i32))
11163    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
11164  else if (EltVT.bitsLT(MVT::i32))
11165    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
11166
11167  // The shift amount is identical so we can do a vector shift.
11168  SDValue  ValOp = N->getOperand(0);
11169  switch (N->getOpcode()) {
11170  default:
11171    llvm_unreachable("Unknown shift opcode!");
11172    break;
11173  case ISD::SHL:
11174    if (VT == MVT::v2i64)
11175      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11176                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
11177                         ValOp, BaseShAmt);
11178    if (VT == MVT::v4i32)
11179      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11180                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
11181                         ValOp, BaseShAmt);
11182    if (VT == MVT::v8i16)
11183      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11184                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
11185                         ValOp, BaseShAmt);
11186    break;
11187  case ISD::SRA:
11188    if (VT == MVT::v4i32)
11189      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11190                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
11191                         ValOp, BaseShAmt);
11192    if (VT == MVT::v8i16)
11193      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11194                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
11195                         ValOp, BaseShAmt);
11196    break;
11197  case ISD::SRL:
11198    if (VT == MVT::v2i64)
11199      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11200                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
11201                         ValOp, BaseShAmt);
11202    if (VT == MVT::v4i32)
11203      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11204                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
11205                         ValOp, BaseShAmt);
11206    if (VT ==  MVT::v8i16)
11207      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11208                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
11209                         ValOp, BaseShAmt);
11210    break;
11211  }
11212  return SDValue();
11213}
11214
11215
11216static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
11217                                 TargetLowering::DAGCombinerInfo &DCI,
11218                                 const X86Subtarget *Subtarget) {
11219  if (DCI.isBeforeLegalizeOps())
11220    return SDValue();
11221
11222  // Want to form PANDN nodes, in the hopes of then easily combining them with
11223  // OR and AND nodes to form PBLEND/PSIGN.
11224  EVT VT = N->getValueType(0);
11225  if (VT != MVT::v2i64)
11226    return SDValue();
11227
11228  SDValue N0 = N->getOperand(0);
11229  SDValue N1 = N->getOperand(1);
11230  DebugLoc DL = N->getDebugLoc();
11231
11232  // Check LHS for vnot
11233  if (N0.getOpcode() == ISD::XOR &&
11234      ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
11235    return DAG.getNode(X86ISD::PANDN, DL, VT, N0.getOperand(0), N1);
11236
11237  // Check RHS for vnot
11238  if (N1.getOpcode() == ISD::XOR &&
11239      ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
11240    return DAG.getNode(X86ISD::PANDN, DL, VT, N1.getOperand(0), N0);
11241
11242  return SDValue();
11243}
11244
11245static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
11246                                TargetLowering::DAGCombinerInfo &DCI,
11247                                const X86Subtarget *Subtarget) {
11248  if (DCI.isBeforeLegalizeOps())
11249    return SDValue();
11250
11251  EVT VT = N->getValueType(0);
11252  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64 && VT != MVT::v2i64)
11253    return SDValue();
11254
11255  SDValue N0 = N->getOperand(0);
11256  SDValue N1 = N->getOperand(1);
11257
11258  // look for psign/blend
11259  if (Subtarget->hasSSSE3()) {
11260    if (VT == MVT::v2i64) {
11261      // Canonicalize pandn to RHS
11262      if (N0.getOpcode() == X86ISD::PANDN)
11263        std::swap(N0, N1);
11264      // or (and (m, x), (pandn m, y))
11265      if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::PANDN) {
11266        SDValue Mask = N1.getOperand(0);
11267        SDValue X    = N1.getOperand(1);
11268        SDValue Y;
11269        if (N0.getOperand(0) == Mask)
11270          Y = N0.getOperand(1);
11271        if (N0.getOperand(1) == Mask)
11272          Y = N0.getOperand(0);
11273
11274        // Check to see if the mask appeared in both the AND and PANDN and
11275        if (!Y.getNode())
11276          return SDValue();
11277
11278        // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
11279        if (Mask.getOpcode() != ISD::BITCAST ||
11280            X.getOpcode() != ISD::BITCAST ||
11281            Y.getOpcode() != ISD::BITCAST)
11282          return SDValue();
11283
11284        // Look through mask bitcast.
11285        Mask = Mask.getOperand(0);
11286        EVT MaskVT = Mask.getValueType();
11287
11288        // Validate that the Mask operand is a vector sra node.  The sra node
11289        // will be an intrinsic.
11290        if (Mask.getOpcode() != ISD::INTRINSIC_WO_CHAIN)
11291          return SDValue();
11292
11293        // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
11294        // there is no psrai.b
11295        switch (cast<ConstantSDNode>(Mask.getOperand(0))->getZExtValue()) {
11296        case Intrinsic::x86_sse2_psrai_w:
11297        case Intrinsic::x86_sse2_psrai_d:
11298          break;
11299        default: return SDValue();
11300        }
11301
11302        // Check that the SRA is all signbits.
11303        SDValue SraC = Mask.getOperand(2);
11304        unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
11305        unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
11306        if ((SraAmt + 1) != EltBits)
11307          return SDValue();
11308
11309        DebugLoc DL = N->getDebugLoc();
11310
11311        // Now we know we at least have a plendvb with the mask val.  See if
11312        // we can form a psignb/w/d.
11313        // psign = x.type == y.type == mask.type && y = sub(0, x);
11314        X = X.getOperand(0);
11315        Y = Y.getOperand(0);
11316        if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
11317            ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
11318            X.getValueType() == MaskVT && X.getValueType() == Y.getValueType()){
11319          unsigned Opc = 0;
11320          switch (EltBits) {
11321          case 8: Opc = X86ISD::PSIGNB; break;
11322          case 16: Opc = X86ISD::PSIGNW; break;
11323          case 32: Opc = X86ISD::PSIGND; break;
11324          default: break;
11325          }
11326          if (Opc) {
11327            SDValue Sign = DAG.getNode(Opc, DL, MaskVT, X, Mask.getOperand(1));
11328            return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Sign);
11329          }
11330        }
11331        // PBLENDVB only available on SSE 4.1
11332        if (!Subtarget->hasSSE41())
11333          return SDValue();
11334
11335        X = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, X);
11336        Y = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Y);
11337        Mask = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Mask);
11338        Mask = DAG.getNode(X86ISD::PBLENDVB, DL, MVT::v16i8, X, Y, Mask);
11339        return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Mask);
11340      }
11341    }
11342  }
11343
11344  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
11345  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
11346    std::swap(N0, N1);
11347  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
11348    return SDValue();
11349  if (!N0.hasOneUse() || !N1.hasOneUse())
11350    return SDValue();
11351
11352  SDValue ShAmt0 = N0.getOperand(1);
11353  if (ShAmt0.getValueType() != MVT::i8)
11354    return SDValue();
11355  SDValue ShAmt1 = N1.getOperand(1);
11356  if (ShAmt1.getValueType() != MVT::i8)
11357    return SDValue();
11358  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
11359    ShAmt0 = ShAmt0.getOperand(0);
11360  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
11361    ShAmt1 = ShAmt1.getOperand(0);
11362
11363  DebugLoc DL = N->getDebugLoc();
11364  unsigned Opc = X86ISD::SHLD;
11365  SDValue Op0 = N0.getOperand(0);
11366  SDValue Op1 = N1.getOperand(0);
11367  if (ShAmt0.getOpcode() == ISD::SUB) {
11368    Opc = X86ISD::SHRD;
11369    std::swap(Op0, Op1);
11370    std::swap(ShAmt0, ShAmt1);
11371  }
11372
11373  unsigned Bits = VT.getSizeInBits();
11374  if (ShAmt1.getOpcode() == ISD::SUB) {
11375    SDValue Sum = ShAmt1.getOperand(0);
11376    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
11377      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
11378      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
11379        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
11380      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
11381        return DAG.getNode(Opc, DL, VT,
11382                           Op0, Op1,
11383                           DAG.getNode(ISD::TRUNCATE, DL,
11384                                       MVT::i8, ShAmt0));
11385    }
11386  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
11387    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
11388    if (ShAmt0C &&
11389        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
11390      return DAG.getNode(Opc, DL, VT,
11391                         N0.getOperand(0), N1.getOperand(0),
11392                         DAG.getNode(ISD::TRUNCATE, DL,
11393                                       MVT::i8, ShAmt0));
11394  }
11395
11396  return SDValue();
11397}
11398
11399/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
11400static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
11401                                   const X86Subtarget *Subtarget) {
11402  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
11403  // the FP state in cases where an emms may be missing.
11404  // A preferable solution to the general problem is to figure out the right
11405  // places to insert EMMS.  This qualifies as a quick hack.
11406
11407  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
11408  StoreSDNode *St = cast<StoreSDNode>(N);
11409  EVT VT = St->getValue().getValueType();
11410  if (VT.getSizeInBits() != 64)
11411    return SDValue();
11412
11413  const Function *F = DAG.getMachineFunction().getFunction();
11414  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
11415  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
11416    && Subtarget->hasSSE2();
11417  if ((VT.isVector() ||
11418       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
11419      isa<LoadSDNode>(St->getValue()) &&
11420      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
11421      St->getChain().hasOneUse() && !St->isVolatile()) {
11422    SDNode* LdVal = St->getValue().getNode();
11423    LoadSDNode *Ld = 0;
11424    int TokenFactorIndex = -1;
11425    SmallVector<SDValue, 8> Ops;
11426    SDNode* ChainVal = St->getChain().getNode();
11427    // Must be a store of a load.  We currently handle two cases:  the load
11428    // is a direct child, and it's under an intervening TokenFactor.  It is
11429    // possible to dig deeper under nested TokenFactors.
11430    if (ChainVal == LdVal)
11431      Ld = cast<LoadSDNode>(St->getChain());
11432    else if (St->getValue().hasOneUse() &&
11433             ChainVal->getOpcode() == ISD::TokenFactor) {
11434      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
11435        if (ChainVal->getOperand(i).getNode() == LdVal) {
11436          TokenFactorIndex = i;
11437          Ld = cast<LoadSDNode>(St->getValue());
11438        } else
11439          Ops.push_back(ChainVal->getOperand(i));
11440      }
11441    }
11442
11443    if (!Ld || !ISD::isNormalLoad(Ld))
11444      return SDValue();
11445
11446    // If this is not the MMX case, i.e. we are just turning i64 load/store
11447    // into f64 load/store, avoid the transformation if there are multiple
11448    // uses of the loaded value.
11449    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
11450      return SDValue();
11451
11452    DebugLoc LdDL = Ld->getDebugLoc();
11453    DebugLoc StDL = N->getDebugLoc();
11454    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
11455    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
11456    // pair instead.
11457    if (Subtarget->is64Bit() || F64IsLegal) {
11458      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
11459      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
11460                                  Ld->getPointerInfo(), Ld->isVolatile(),
11461                                  Ld->isNonTemporal(), Ld->getAlignment());
11462      SDValue NewChain = NewLd.getValue(1);
11463      if (TokenFactorIndex != -1) {
11464        Ops.push_back(NewChain);
11465        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
11466                               Ops.size());
11467      }
11468      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
11469                          St->getPointerInfo(),
11470                          St->isVolatile(), St->isNonTemporal(),
11471                          St->getAlignment());
11472    }
11473
11474    // Otherwise, lower to two pairs of 32-bit loads / stores.
11475    SDValue LoAddr = Ld->getBasePtr();
11476    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
11477                                 DAG.getConstant(4, MVT::i32));
11478
11479    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
11480                               Ld->getPointerInfo(),
11481                               Ld->isVolatile(), Ld->isNonTemporal(),
11482                               Ld->getAlignment());
11483    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
11484                               Ld->getPointerInfo().getWithOffset(4),
11485                               Ld->isVolatile(), Ld->isNonTemporal(),
11486                               MinAlign(Ld->getAlignment(), 4));
11487
11488    SDValue NewChain = LoLd.getValue(1);
11489    if (TokenFactorIndex != -1) {
11490      Ops.push_back(LoLd);
11491      Ops.push_back(HiLd);
11492      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
11493                             Ops.size());
11494    }
11495
11496    LoAddr = St->getBasePtr();
11497    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
11498                         DAG.getConstant(4, MVT::i32));
11499
11500    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
11501                                St->getPointerInfo(),
11502                                St->isVolatile(), St->isNonTemporal(),
11503                                St->getAlignment());
11504    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
11505                                St->getPointerInfo().getWithOffset(4),
11506                                St->isVolatile(),
11507                                St->isNonTemporal(),
11508                                MinAlign(St->getAlignment(), 4));
11509    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
11510  }
11511  return SDValue();
11512}
11513
11514/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
11515/// X86ISD::FXOR nodes.
11516static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
11517  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
11518  // F[X]OR(0.0, x) -> x
11519  // F[X]OR(x, 0.0) -> x
11520  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
11521    if (C->getValueAPF().isPosZero())
11522      return N->getOperand(1);
11523  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
11524    if (C->getValueAPF().isPosZero())
11525      return N->getOperand(0);
11526  return SDValue();
11527}
11528
11529/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
11530static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
11531  // FAND(0.0, x) -> 0.0
11532  // FAND(x, 0.0) -> 0.0
11533  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
11534    if (C->getValueAPF().isPosZero())
11535      return N->getOperand(0);
11536  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
11537    if (C->getValueAPF().isPosZero())
11538      return N->getOperand(1);
11539  return SDValue();
11540}
11541
11542static SDValue PerformBTCombine(SDNode *N,
11543                                SelectionDAG &DAG,
11544                                TargetLowering::DAGCombinerInfo &DCI) {
11545  // BT ignores high bits in the bit index operand.
11546  SDValue Op1 = N->getOperand(1);
11547  if (Op1.hasOneUse()) {
11548    unsigned BitWidth = Op1.getValueSizeInBits();
11549    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
11550    APInt KnownZero, KnownOne;
11551    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
11552                                          !DCI.isBeforeLegalizeOps());
11553    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11554    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
11555        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
11556      DCI.CommitTargetLoweringOpt(TLO);
11557  }
11558  return SDValue();
11559}
11560
11561static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
11562  SDValue Op = N->getOperand(0);
11563  if (Op.getOpcode() == ISD::BITCAST)
11564    Op = Op.getOperand(0);
11565  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
11566  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
11567      VT.getVectorElementType().getSizeInBits() ==
11568      OpVT.getVectorElementType().getSizeInBits()) {
11569    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
11570  }
11571  return SDValue();
11572}
11573
11574static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
11575  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
11576  //           (and (i32 x86isd::setcc_carry), 1)
11577  // This eliminates the zext. This transformation is necessary because
11578  // ISD::SETCC is always legalized to i8.
11579  DebugLoc dl = N->getDebugLoc();
11580  SDValue N0 = N->getOperand(0);
11581  EVT VT = N->getValueType(0);
11582  if (N0.getOpcode() == ISD::AND &&
11583      N0.hasOneUse() &&
11584      N0.getOperand(0).hasOneUse()) {
11585    SDValue N00 = N0.getOperand(0);
11586    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
11587      return SDValue();
11588    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
11589    if (!C || C->getZExtValue() != 1)
11590      return SDValue();
11591    return DAG.getNode(ISD::AND, dl, VT,
11592                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
11593                                   N00.getOperand(0), N00.getOperand(1)),
11594                       DAG.getConstant(1, VT));
11595  }
11596
11597  return SDValue();
11598}
11599
11600// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
11601static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
11602  unsigned X86CC = N->getConstantOperandVal(0);
11603  SDValue EFLAG = N->getOperand(1);
11604  DebugLoc DL = N->getDebugLoc();
11605
11606  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
11607  // a zext and produces an all-ones bit which is more useful than 0/1 in some
11608  // cases.
11609  if (X86CC == X86::COND_B)
11610    return DAG.getNode(ISD::AND, DL, MVT::i8,
11611                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
11612                                   DAG.getConstant(X86CC, MVT::i8), EFLAG),
11613                       DAG.getConstant(1, MVT::i8));
11614
11615  return SDValue();
11616}
11617
11618// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
11619static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
11620                                 X86TargetLowering::DAGCombinerInfo &DCI) {
11621  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
11622  // the result is either zero or one (depending on the input carry bit).
11623  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
11624  if (X86::isZeroNode(N->getOperand(0)) &&
11625      X86::isZeroNode(N->getOperand(1)) &&
11626      // We don't have a good way to replace an EFLAGS use, so only do this when
11627      // dead right now.
11628      SDValue(N, 1).use_empty()) {
11629    DebugLoc DL = N->getDebugLoc();
11630    EVT VT = N->getValueType(0);
11631    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
11632    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
11633                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
11634                                           DAG.getConstant(X86::COND_B,MVT::i8),
11635                                           N->getOperand(2)),
11636                               DAG.getConstant(1, VT));
11637    return DCI.CombineTo(N, Res1, CarryOut);
11638  }
11639
11640  return SDValue();
11641}
11642
11643// fold (add Y, (sete  X, 0)) -> adc  0, Y
11644//      (add Y, (setne X, 0)) -> sbb -1, Y
11645//      (sub (sete  X, 0), Y) -> sbb  0, Y
11646//      (sub (setne X, 0), Y) -> adc -1, Y
11647static SDValue OptimizeConditonalInDecrement(SDNode *N, SelectionDAG &DAG) {
11648  DebugLoc DL = N->getDebugLoc();
11649
11650  // Look through ZExts.
11651  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
11652  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
11653    return SDValue();
11654
11655  SDValue SetCC = Ext.getOperand(0);
11656  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
11657    return SDValue();
11658
11659  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
11660  if (CC != X86::COND_E && CC != X86::COND_NE)
11661    return SDValue();
11662
11663  SDValue Cmp = SetCC.getOperand(1);
11664  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
11665      !X86::isZeroNode(Cmp.getOperand(1)) ||
11666      !Cmp.getOperand(0).getValueType().isInteger())
11667    return SDValue();
11668
11669  SDValue CmpOp0 = Cmp.getOperand(0);
11670  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
11671                               DAG.getConstant(1, CmpOp0.getValueType()));
11672
11673  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
11674  if (CC == X86::COND_NE)
11675    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
11676                       DL, OtherVal.getValueType(), OtherVal,
11677                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
11678  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
11679                     DL, OtherVal.getValueType(), OtherVal,
11680                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
11681}
11682
11683SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
11684                                             DAGCombinerInfo &DCI) const {
11685  SelectionDAG &DAG = DCI.DAG;
11686  switch (N->getOpcode()) {
11687  default: break;
11688  case ISD::EXTRACT_VECTOR_ELT:
11689    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
11690  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
11691  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
11692  case ISD::ADD:
11693  case ISD::SUB:            return OptimizeConditonalInDecrement(N, DAG);
11694  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
11695  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
11696  case ISD::SHL:
11697  case ISD::SRA:
11698  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
11699  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
11700  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
11701  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
11702  case X86ISD::FXOR:
11703  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
11704  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
11705  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
11706  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
11707  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
11708  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
11709  case X86ISD::SHUFPS:      // Handle all target specific shuffles
11710  case X86ISD::SHUFPD:
11711  case X86ISD::PALIGN:
11712  case X86ISD::PUNPCKHBW:
11713  case X86ISD::PUNPCKHWD:
11714  case X86ISD::PUNPCKHDQ:
11715  case X86ISD::PUNPCKHQDQ:
11716  case X86ISD::UNPCKHPS:
11717  case X86ISD::UNPCKHPD:
11718  case X86ISD::PUNPCKLBW:
11719  case X86ISD::PUNPCKLWD:
11720  case X86ISD::PUNPCKLDQ:
11721  case X86ISD::PUNPCKLQDQ:
11722  case X86ISD::UNPCKLPS:
11723  case X86ISD::UNPCKLPD:
11724  case X86ISD::MOVHLPS:
11725  case X86ISD::MOVLHPS:
11726  case X86ISD::PSHUFD:
11727  case X86ISD::PSHUFHW:
11728  case X86ISD::PSHUFLW:
11729  case X86ISD::MOVSS:
11730  case X86ISD::MOVSD:
11731  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI);
11732  }
11733
11734  return SDValue();
11735}
11736
11737/// isTypeDesirableForOp - Return true if the target has native support for
11738/// the specified value type and it is 'desirable' to use the type for the
11739/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
11740/// instruction encodings are longer and some i16 instructions are slow.
11741bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
11742  if (!isTypeLegal(VT))
11743    return false;
11744  if (VT != MVT::i16)
11745    return true;
11746
11747  switch (Opc) {
11748  default:
11749    return true;
11750  case ISD::LOAD:
11751  case ISD::SIGN_EXTEND:
11752  case ISD::ZERO_EXTEND:
11753  case ISD::ANY_EXTEND:
11754  case ISD::SHL:
11755  case ISD::SRL:
11756  case ISD::SUB:
11757  case ISD::ADD:
11758  case ISD::MUL:
11759  case ISD::AND:
11760  case ISD::OR:
11761  case ISD::XOR:
11762    return false;
11763  }
11764}
11765
11766/// IsDesirableToPromoteOp - This method query the target whether it is
11767/// beneficial for dag combiner to promote the specified node. If true, it
11768/// should return the desired promotion type by reference.
11769bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
11770  EVT VT = Op.getValueType();
11771  if (VT != MVT::i16)
11772    return false;
11773
11774  bool Promote = false;
11775  bool Commute = false;
11776  switch (Op.getOpcode()) {
11777  default: break;
11778  case ISD::LOAD: {
11779    LoadSDNode *LD = cast<LoadSDNode>(Op);
11780    // If the non-extending load has a single use and it's not live out, then it
11781    // might be folded.
11782    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
11783                                                     Op.hasOneUse()*/) {
11784      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
11785             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
11786        // The only case where we'd want to promote LOAD (rather then it being
11787        // promoted as an operand is when it's only use is liveout.
11788        if (UI->getOpcode() != ISD::CopyToReg)
11789          return false;
11790      }
11791    }
11792    Promote = true;
11793    break;
11794  }
11795  case ISD::SIGN_EXTEND:
11796  case ISD::ZERO_EXTEND:
11797  case ISD::ANY_EXTEND:
11798    Promote = true;
11799    break;
11800  case ISD::SHL:
11801  case ISD::SRL: {
11802    SDValue N0 = Op.getOperand(0);
11803    // Look out for (store (shl (load), x)).
11804    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
11805      return false;
11806    Promote = true;
11807    break;
11808  }
11809  case ISD::ADD:
11810  case ISD::MUL:
11811  case ISD::AND:
11812  case ISD::OR:
11813  case ISD::XOR:
11814    Commute = true;
11815    // fallthrough
11816  case ISD::SUB: {
11817    SDValue N0 = Op.getOperand(0);
11818    SDValue N1 = Op.getOperand(1);
11819    if (!Commute && MayFoldLoad(N1))
11820      return false;
11821    // Avoid disabling potential load folding opportunities.
11822    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
11823      return false;
11824    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
11825      return false;
11826    Promote = true;
11827  }
11828  }
11829
11830  PVT = MVT::i32;
11831  return Promote;
11832}
11833
11834//===----------------------------------------------------------------------===//
11835//                           X86 Inline Assembly Support
11836//===----------------------------------------------------------------------===//
11837
11838bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
11839  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
11840
11841  std::string AsmStr = IA->getAsmString();
11842
11843  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
11844  SmallVector<StringRef, 4> AsmPieces;
11845  SplitString(AsmStr, AsmPieces, ";\n");
11846
11847  switch (AsmPieces.size()) {
11848  default: return false;
11849  case 1:
11850    AsmStr = AsmPieces[0];
11851    AsmPieces.clear();
11852    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
11853
11854    // FIXME: this should verify that we are targetting a 486 or better.  If not,
11855    // we will turn this bswap into something that will be lowered to logical ops
11856    // instead of emitting the bswap asm.  For now, we don't support 486 or lower
11857    // so don't worry about this.
11858    // bswap $0
11859    if (AsmPieces.size() == 2 &&
11860        (AsmPieces[0] == "bswap" ||
11861         AsmPieces[0] == "bswapq" ||
11862         AsmPieces[0] == "bswapl") &&
11863        (AsmPieces[1] == "$0" ||
11864         AsmPieces[1] == "${0:q}")) {
11865      // No need to check constraints, nothing other than the equivalent of
11866      // "=r,0" would be valid here.
11867      const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
11868      if (!Ty || Ty->getBitWidth() % 16 != 0)
11869        return false;
11870      return IntrinsicLowering::LowerToByteSwap(CI);
11871    }
11872    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
11873    if (CI->getType()->isIntegerTy(16) &&
11874        AsmPieces.size() == 3 &&
11875        (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
11876        AsmPieces[1] == "$$8," &&
11877        AsmPieces[2] == "${0:w}" &&
11878        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
11879      AsmPieces.clear();
11880      const std::string &ConstraintsStr = IA->getConstraintString();
11881      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
11882      std::sort(AsmPieces.begin(), AsmPieces.end());
11883      if (AsmPieces.size() == 4 &&
11884          AsmPieces[0] == "~{cc}" &&
11885          AsmPieces[1] == "~{dirflag}" &&
11886          AsmPieces[2] == "~{flags}" &&
11887          AsmPieces[3] == "~{fpsr}") {
11888        const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
11889        if (!Ty || Ty->getBitWidth() % 16 != 0)
11890          return false;
11891        return IntrinsicLowering::LowerToByteSwap(CI);
11892      }
11893    }
11894    break;
11895  case 3:
11896    if (CI->getType()->isIntegerTy(32) &&
11897        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
11898      SmallVector<StringRef, 4> Words;
11899      SplitString(AsmPieces[0], Words, " \t,");
11900      if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
11901          Words[2] == "${0:w}") {
11902        Words.clear();
11903        SplitString(AsmPieces[1], Words, " \t,");
11904        if (Words.size() == 3 && Words[0] == "rorl" && Words[1] == "$$16" &&
11905            Words[2] == "$0") {
11906          Words.clear();
11907          SplitString(AsmPieces[2], Words, " \t,");
11908          if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
11909              Words[2] == "${0:w}") {
11910            AsmPieces.clear();
11911            const std::string &ConstraintsStr = IA->getConstraintString();
11912            SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
11913            std::sort(AsmPieces.begin(), AsmPieces.end());
11914            if (AsmPieces.size() == 4 &&
11915                AsmPieces[0] == "~{cc}" &&
11916                AsmPieces[1] == "~{dirflag}" &&
11917                AsmPieces[2] == "~{flags}" &&
11918                AsmPieces[3] == "~{fpsr}") {
11919              const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
11920              if (!Ty || Ty->getBitWidth() % 16 != 0)
11921                return false;
11922              return IntrinsicLowering::LowerToByteSwap(CI);
11923            }
11924          }
11925        }
11926      }
11927    }
11928
11929    if (CI->getType()->isIntegerTy(64)) {
11930      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
11931      if (Constraints.size() >= 2 &&
11932          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
11933          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
11934        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
11935        SmallVector<StringRef, 4> Words;
11936        SplitString(AsmPieces[0], Words, " \t");
11937        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
11938          Words.clear();
11939          SplitString(AsmPieces[1], Words, " \t");
11940          if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
11941            Words.clear();
11942            SplitString(AsmPieces[2], Words, " \t,");
11943            if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
11944                Words[2] == "%edx") {
11945              const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
11946              if (!Ty || Ty->getBitWidth() % 16 != 0)
11947                return false;
11948              return IntrinsicLowering::LowerToByteSwap(CI);
11949            }
11950          }
11951        }
11952      }
11953    }
11954    break;
11955  }
11956  return false;
11957}
11958
11959
11960
11961/// getConstraintType - Given a constraint letter, return the type of
11962/// constraint it is for this target.
11963X86TargetLowering::ConstraintType
11964X86TargetLowering::getConstraintType(const std::string &Constraint) const {
11965  if (Constraint.size() == 1) {
11966    switch (Constraint[0]) {
11967    case 'R':
11968    case 'q':
11969    case 'Q':
11970    case 'f':
11971    case 't':
11972    case 'u':
11973    case 'y':
11974    case 'x':
11975    case 'Y':
11976      return C_RegisterClass;
11977    case 'a':
11978    case 'b':
11979    case 'c':
11980    case 'd':
11981    case 'S':
11982    case 'D':
11983    case 'A':
11984      return C_Register;
11985    case 'I':
11986    case 'J':
11987    case 'K':
11988    case 'L':
11989    case 'M':
11990    case 'N':
11991    case 'G':
11992    case 'C':
11993    case 'e':
11994    case 'Z':
11995      return C_Other;
11996    default:
11997      break;
11998    }
11999  }
12000  return TargetLowering::getConstraintType(Constraint);
12001}
12002
12003/// Examine constraint type and operand type and determine a weight value.
12004/// This object must already have been set up with the operand type
12005/// and the current alternative constraint selected.
12006TargetLowering::ConstraintWeight
12007  X86TargetLowering::getSingleConstraintMatchWeight(
12008    AsmOperandInfo &info, const char *constraint) const {
12009  ConstraintWeight weight = CW_Invalid;
12010  Value *CallOperandVal = info.CallOperandVal;
12011    // If we don't have a value, we can't do a match,
12012    // but allow it at the lowest weight.
12013  if (CallOperandVal == NULL)
12014    return CW_Default;
12015  const Type *type = CallOperandVal->getType();
12016  // Look at the constraint type.
12017  switch (*constraint) {
12018  default:
12019    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
12020  case 'R':
12021  case 'q':
12022  case 'Q':
12023  case 'a':
12024  case 'b':
12025  case 'c':
12026  case 'd':
12027  case 'S':
12028  case 'D':
12029  case 'A':
12030    if (CallOperandVal->getType()->isIntegerTy())
12031      weight = CW_SpecificReg;
12032    break;
12033  case 'f':
12034  case 't':
12035  case 'u':
12036      if (type->isFloatingPointTy())
12037        weight = CW_SpecificReg;
12038      break;
12039  case 'y':
12040      if (type->isX86_MMXTy() && Subtarget->hasMMX())
12041        weight = CW_SpecificReg;
12042      break;
12043  case 'x':
12044  case 'Y':
12045    if ((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasXMM())
12046      weight = CW_Register;
12047    break;
12048  case 'I':
12049    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
12050      if (C->getZExtValue() <= 31)
12051        weight = CW_Constant;
12052    }
12053    break;
12054  case 'J':
12055    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12056      if (C->getZExtValue() <= 63)
12057        weight = CW_Constant;
12058    }
12059    break;
12060  case 'K':
12061    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12062      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
12063        weight = CW_Constant;
12064    }
12065    break;
12066  case 'L':
12067    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12068      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
12069        weight = CW_Constant;
12070    }
12071    break;
12072  case 'M':
12073    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12074      if (C->getZExtValue() <= 3)
12075        weight = CW_Constant;
12076    }
12077    break;
12078  case 'N':
12079    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12080      if (C->getZExtValue() <= 0xff)
12081        weight = CW_Constant;
12082    }
12083    break;
12084  case 'G':
12085  case 'C':
12086    if (dyn_cast<ConstantFP>(CallOperandVal)) {
12087      weight = CW_Constant;
12088    }
12089    break;
12090  case 'e':
12091    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12092      if ((C->getSExtValue() >= -0x80000000LL) &&
12093          (C->getSExtValue() <= 0x7fffffffLL))
12094        weight = CW_Constant;
12095    }
12096    break;
12097  case 'Z':
12098    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12099      if (C->getZExtValue() <= 0xffffffff)
12100        weight = CW_Constant;
12101    }
12102    break;
12103  }
12104  return weight;
12105}
12106
12107/// LowerXConstraint - try to replace an X constraint, which matches anything,
12108/// with another that has more specific requirements based on the type of the
12109/// corresponding operand.
12110const char *X86TargetLowering::
12111LowerXConstraint(EVT ConstraintVT) const {
12112  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
12113  // 'f' like normal targets.
12114  if (ConstraintVT.isFloatingPoint()) {
12115    if (Subtarget->hasXMMInt())
12116      return "Y";
12117    if (Subtarget->hasXMM())
12118      return "x";
12119  }
12120
12121  return TargetLowering::LowerXConstraint(ConstraintVT);
12122}
12123
12124/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
12125/// vector.  If it is invalid, don't add anything to Ops.
12126void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
12127                                                     char Constraint,
12128                                                     std::vector<SDValue>&Ops,
12129                                                     SelectionDAG &DAG) const {
12130  SDValue Result(0, 0);
12131
12132  switch (Constraint) {
12133  default: break;
12134  case 'I':
12135    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12136      if (C->getZExtValue() <= 31) {
12137        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
12138        break;
12139      }
12140    }
12141    return;
12142  case 'J':
12143    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12144      if (C->getZExtValue() <= 63) {
12145        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
12146        break;
12147      }
12148    }
12149    return;
12150  case 'K':
12151    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12152      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
12153        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
12154        break;
12155      }
12156    }
12157    return;
12158  case 'N':
12159    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12160      if (C->getZExtValue() <= 255) {
12161        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
12162        break;
12163      }
12164    }
12165    return;
12166  case 'e': {
12167    // 32-bit signed value
12168    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12169      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
12170                                           C->getSExtValue())) {
12171        // Widen to 64 bits here to get it sign extended.
12172        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
12173        break;
12174      }
12175    // FIXME gcc accepts some relocatable values here too, but only in certain
12176    // memory models; it's complicated.
12177    }
12178    return;
12179  }
12180  case 'Z': {
12181    // 32-bit unsigned value
12182    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12183      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
12184                                           C->getZExtValue())) {
12185        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
12186        break;
12187      }
12188    }
12189    // FIXME gcc accepts some relocatable values here too, but only in certain
12190    // memory models; it's complicated.
12191    return;
12192  }
12193  case 'i': {
12194    // Literal immediates are always ok.
12195    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
12196      // Widen to 64 bits here to get it sign extended.
12197      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
12198      break;
12199    }
12200
12201    // In any sort of PIC mode addresses need to be computed at runtime by
12202    // adding in a register or some sort of table lookup.  These can't
12203    // be used as immediates.
12204    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
12205      return;
12206
12207    // If we are in non-pic codegen mode, we allow the address of a global (with
12208    // an optional displacement) to be used with 'i'.
12209    GlobalAddressSDNode *GA = 0;
12210    int64_t Offset = 0;
12211
12212    // Match either (GA), (GA+C), (GA+C1+C2), etc.
12213    while (1) {
12214      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
12215        Offset += GA->getOffset();
12216        break;
12217      } else if (Op.getOpcode() == ISD::ADD) {
12218        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
12219          Offset += C->getZExtValue();
12220          Op = Op.getOperand(0);
12221          continue;
12222        }
12223      } else if (Op.getOpcode() == ISD::SUB) {
12224        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
12225          Offset += -C->getZExtValue();
12226          Op = Op.getOperand(0);
12227          continue;
12228        }
12229      }
12230
12231      // Otherwise, this isn't something we can handle, reject it.
12232      return;
12233    }
12234
12235    const GlobalValue *GV = GA->getGlobal();
12236    // If we require an extra load to get this address, as in PIC mode, we
12237    // can't accept it.
12238    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
12239                                                        getTargetMachine())))
12240      return;
12241
12242    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
12243                                        GA->getValueType(0), Offset);
12244    break;
12245  }
12246  }
12247
12248  if (Result.getNode()) {
12249    Ops.push_back(Result);
12250    return;
12251  }
12252  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
12253}
12254
12255std::vector<unsigned> X86TargetLowering::
12256getRegClassForInlineAsmConstraint(const std::string &Constraint,
12257                                  EVT VT) const {
12258  if (Constraint.size() == 1) {
12259    // FIXME: not handling fp-stack yet!
12260    switch (Constraint[0]) {      // GCC X86 Constraint Letters
12261    default: break;  // Unknown constraint letter
12262    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
12263      if (Subtarget->is64Bit()) {
12264        if (VT == MVT::i32)
12265          return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
12266                                       X86::ESI, X86::EDI, X86::R8D, X86::R9D,
12267                                       X86::R10D,X86::R11D,X86::R12D,
12268                                       X86::R13D,X86::R14D,X86::R15D,
12269                                       X86::EBP, X86::ESP, 0);
12270        else if (VT == MVT::i16)
12271          return make_vector<unsigned>(X86::AX,  X86::DX,  X86::CX, X86::BX,
12272                                       X86::SI,  X86::DI,  X86::R8W,X86::R9W,
12273                                       X86::R10W,X86::R11W,X86::R12W,
12274                                       X86::R13W,X86::R14W,X86::R15W,
12275                                       X86::BP,  X86::SP, 0);
12276        else if (VT == MVT::i8)
12277          return make_vector<unsigned>(X86::AL,  X86::DL,  X86::CL, X86::BL,
12278                                       X86::SIL, X86::DIL, X86::R8B,X86::R9B,
12279                                       X86::R10B,X86::R11B,X86::R12B,
12280                                       X86::R13B,X86::R14B,X86::R15B,
12281                                       X86::BPL, X86::SPL, 0);
12282
12283        else if (VT == MVT::i64)
12284          return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
12285                                       X86::RSI, X86::RDI, X86::R8,  X86::R9,
12286                                       X86::R10, X86::R11, X86::R12,
12287                                       X86::R13, X86::R14, X86::R15,
12288                                       X86::RBP, X86::RSP, 0);
12289
12290        break;
12291      }
12292      // 32-bit fallthrough
12293    case 'Q':   // Q_REGS
12294      if (VT == MVT::i32)
12295        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
12296      else if (VT == MVT::i16)
12297        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
12298      else if (VT == MVT::i8)
12299        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
12300      else if (VT == MVT::i64)
12301        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
12302      break;
12303    }
12304  }
12305
12306  return std::vector<unsigned>();
12307}
12308
12309std::pair<unsigned, const TargetRegisterClass*>
12310X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
12311                                                EVT VT) const {
12312  // First, see if this is a constraint that directly corresponds to an LLVM
12313  // register class.
12314  if (Constraint.size() == 1) {
12315    // GCC Constraint Letters
12316    switch (Constraint[0]) {
12317    default: break;
12318    case 'r':   // GENERAL_REGS
12319    case 'l':   // INDEX_REGS
12320      if (VT == MVT::i8)
12321        return std::make_pair(0U, X86::GR8RegisterClass);
12322      if (VT == MVT::i16)
12323        return std::make_pair(0U, X86::GR16RegisterClass);
12324      if (VT == MVT::i32 || !Subtarget->is64Bit())
12325        return std::make_pair(0U, X86::GR32RegisterClass);
12326      return std::make_pair(0U, X86::GR64RegisterClass);
12327    case 'R':   // LEGACY_REGS
12328      if (VT == MVT::i8)
12329        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
12330      if (VT == MVT::i16)
12331        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
12332      if (VT == MVT::i32 || !Subtarget->is64Bit())
12333        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
12334      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
12335    case 'f':  // FP Stack registers.
12336      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
12337      // value to the correct fpstack register class.
12338      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
12339        return std::make_pair(0U, X86::RFP32RegisterClass);
12340      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
12341        return std::make_pair(0U, X86::RFP64RegisterClass);
12342      return std::make_pair(0U, X86::RFP80RegisterClass);
12343    case 'y':   // MMX_REGS if MMX allowed.
12344      if (!Subtarget->hasMMX()) break;
12345      return std::make_pair(0U, X86::VR64RegisterClass);
12346    case 'Y':   // SSE_REGS if SSE2 allowed
12347      if (!Subtarget->hasXMMInt()) break;
12348      // FALL THROUGH.
12349    case 'x':   // SSE_REGS if SSE1 allowed
12350      if (!Subtarget->hasXMM()) break;
12351
12352      switch (VT.getSimpleVT().SimpleTy) {
12353      default: break;
12354      // Scalar SSE types.
12355      case MVT::f32:
12356      case MVT::i32:
12357        return std::make_pair(0U, X86::FR32RegisterClass);
12358      case MVT::f64:
12359      case MVT::i64:
12360        return std::make_pair(0U, X86::FR64RegisterClass);
12361      // Vector types.
12362      case MVT::v16i8:
12363      case MVT::v8i16:
12364      case MVT::v4i32:
12365      case MVT::v2i64:
12366      case MVT::v4f32:
12367      case MVT::v2f64:
12368        return std::make_pair(0U, X86::VR128RegisterClass);
12369      }
12370      break;
12371    }
12372  }
12373
12374  // Use the default implementation in TargetLowering to convert the register
12375  // constraint into a member of a register class.
12376  std::pair<unsigned, const TargetRegisterClass*> Res;
12377  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
12378
12379  // Not found as a standard register?
12380  if (Res.second == 0) {
12381    // Map st(0) -> st(7) -> ST0
12382    if (Constraint.size() == 7 && Constraint[0] == '{' &&
12383        tolower(Constraint[1]) == 's' &&
12384        tolower(Constraint[2]) == 't' &&
12385        Constraint[3] == '(' &&
12386        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
12387        Constraint[5] == ')' &&
12388        Constraint[6] == '}') {
12389
12390      Res.first = X86::ST0+Constraint[4]-'0';
12391      Res.second = X86::RFP80RegisterClass;
12392      return Res;
12393    }
12394
12395    // GCC allows "st(0)" to be called just plain "st".
12396    if (StringRef("{st}").equals_lower(Constraint)) {
12397      Res.first = X86::ST0;
12398      Res.second = X86::RFP80RegisterClass;
12399      return Res;
12400    }
12401
12402    // flags -> EFLAGS
12403    if (StringRef("{flags}").equals_lower(Constraint)) {
12404      Res.first = X86::EFLAGS;
12405      Res.second = X86::CCRRegisterClass;
12406      return Res;
12407    }
12408
12409    // 'A' means EAX + EDX.
12410    if (Constraint == "A") {
12411      Res.first = X86::EAX;
12412      Res.second = X86::GR32_ADRegisterClass;
12413      return Res;
12414    }
12415    return Res;
12416  }
12417
12418  // Otherwise, check to see if this is a register class of the wrong value
12419  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
12420  // turn into {ax},{dx}.
12421  if (Res.second->hasType(VT))
12422    return Res;   // Correct type already, nothing to do.
12423
12424  // All of the single-register GCC register classes map their values onto
12425  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
12426  // really want an 8-bit or 32-bit register, map to the appropriate register
12427  // class and return the appropriate register.
12428  if (Res.second == X86::GR16RegisterClass) {
12429    if (VT == MVT::i8) {
12430      unsigned DestReg = 0;
12431      switch (Res.first) {
12432      default: break;
12433      case X86::AX: DestReg = X86::AL; break;
12434      case X86::DX: DestReg = X86::DL; break;
12435      case X86::CX: DestReg = X86::CL; break;
12436      case X86::BX: DestReg = X86::BL; break;
12437      }
12438      if (DestReg) {
12439        Res.first = DestReg;
12440        Res.second = X86::GR8RegisterClass;
12441      }
12442    } else if (VT == MVT::i32) {
12443      unsigned DestReg = 0;
12444      switch (Res.first) {
12445      default: break;
12446      case X86::AX: DestReg = X86::EAX; break;
12447      case X86::DX: DestReg = X86::EDX; break;
12448      case X86::CX: DestReg = X86::ECX; break;
12449      case X86::BX: DestReg = X86::EBX; break;
12450      case X86::SI: DestReg = X86::ESI; break;
12451      case X86::DI: DestReg = X86::EDI; break;
12452      case X86::BP: DestReg = X86::EBP; break;
12453      case X86::SP: DestReg = X86::ESP; break;
12454      }
12455      if (DestReg) {
12456        Res.first = DestReg;
12457        Res.second = X86::GR32RegisterClass;
12458      }
12459    } else if (VT == MVT::i64) {
12460      unsigned DestReg = 0;
12461      switch (Res.first) {
12462      default: break;
12463      case X86::AX: DestReg = X86::RAX; break;
12464      case X86::DX: DestReg = X86::RDX; break;
12465      case X86::CX: DestReg = X86::RCX; break;
12466      case X86::BX: DestReg = X86::RBX; break;
12467      case X86::SI: DestReg = X86::RSI; break;
12468      case X86::DI: DestReg = X86::RDI; break;
12469      case X86::BP: DestReg = X86::RBP; break;
12470      case X86::SP: DestReg = X86::RSP; break;
12471      }
12472      if (DestReg) {
12473        Res.first = DestReg;
12474        Res.second = X86::GR64RegisterClass;
12475      }
12476    }
12477  } else if (Res.second == X86::FR32RegisterClass ||
12478             Res.second == X86::FR64RegisterClass ||
12479             Res.second == X86::VR128RegisterClass) {
12480    // Handle references to XMM physical registers that got mapped into the
12481    // wrong class.  This can happen with constraints like {xmm0} where the
12482    // target independent register mapper will just pick the first match it can
12483    // find, ignoring the required type.
12484    if (VT == MVT::f32)
12485      Res.second = X86::FR32RegisterClass;
12486    else if (VT == MVT::f64)
12487      Res.second = X86::FR64RegisterClass;
12488    else if (X86::VR128RegisterClass->hasType(VT))
12489      Res.second = X86::VR128RegisterClass;
12490  }
12491
12492  return Res;
12493}
12494