X86ISelLowering.cpp revision 29582d1223d2cd851e136bfe39c508930c4b5592
1f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//
3f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//                     The LLVM Compiler Infrastructure
4f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//
5f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette// This file is distributed under the University of Illinois Open Source
6f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette// License. See LICENSE.TXT for details.
7f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//
8f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//===----------------------------------------------------------------------===//
9f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//
10f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette// This file defines the interfaces that X86 uses to lower LLVM code into a
11f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette// selection DAG.
12f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//
13f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//===----------------------------------------------------------------------===//
14f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
15f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "X86.h"
16f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "X86InstrBuilder.h"
17f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "X86ISelLowering.h"
18f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "X86MachineFunctionInfo.h"
19f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "X86TargetMachine.h"
20f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/CallingConv.h"
21f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/Constants.h"
22f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/DerivedTypes.h"
23f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/GlobalVariable.h"
24f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/Function.h"
25f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/Intrinsics.h"
26f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/ADT/BitVector.h"
27f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/ADT/VectorExtras.h"
28f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/CodeGen/CallingConvLower.h"
29f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/CodeGen/MachineFrameInfo.h"
30f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/CodeGen/MachineFunction.h"
31f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/CodeGen/MachineInstrBuilder.h"
32f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/CodeGen/MachineModuleInfo.h"
33f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/CodeGen/MachineRegisterInfo.h"
34f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/CodeGen/PseudoSourceValue.h"
35f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/CodeGen/SelectionDAG.h"
36f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/Support/MathExtras.h"
37f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/Support/Debug.h"
38f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/Target/TargetOptions.h"
39f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/ADT/SmallSet.h"
40f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/ADT/StringExtras.h"
41f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/Support/CommandLine.h"
42f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viveretteusing namespace llvm;
43f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
44f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverettestatic cl::opt<bool>
45f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan ViveretteDisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX"));
46f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
47f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette// Forward declarations.
48f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverettestatic SDValue getMOVLMask(unsigned NumElems, SelectionDAG &DAG, DebugLoc dl);
49f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
50f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan ViveretteX86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
51f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  : TargetLowering(TM) {
52f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  Subtarget = &TM.getSubtarget<X86Subtarget>();
53f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  X86ScalarSSEf64 = Subtarget->hasSSE2();
54f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  X86ScalarSSEf32 = Subtarget->hasSSE1();
55f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
56f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
57f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  bool Fast = false;
58f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
59f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  RegInfo = TM.getRegisterInfo();
60f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  TD = getTargetData();
61f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
62f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // Set up the TargetLowering object.
63f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
64f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // X86 is weird, it always uses i8 for shift amounts and setcc results.
65f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setShiftAmountType(MVT::i8);
66f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setBooleanContents(ZeroOrOneBooleanContent);
67f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setSchedulingPreference(SchedulingForRegPressure);
68f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setShiftAmountFlavor(Mask);   // shl X, 32 == shl X, 0
69f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setStackPointerRegisterToSaveRestore(X86StackPtr);
70f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
71f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  if (Subtarget->isTargetDarwin()) {
72f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
73f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setUseUnderscoreSetJmp(false);
74f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setUseUnderscoreLongJmp(false);
75f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  } else if (Subtarget->isTargetMingw()) {
76f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    // MS runtime is weird: it exports _setjmp, but longjmp!
77f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setUseUnderscoreSetJmp(true);
78f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setUseUnderscoreLongJmp(false);
79f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  } else {
80f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setUseUnderscoreSetJmp(true);
81f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setUseUnderscoreLongJmp(true);
82f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  }
83f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
84f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // Set up the register classes.
85f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
86f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
87f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
88f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  if (Subtarget->is64Bit())
89f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
90f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
91f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
92f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
93f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // We don't accept any truncstore of integer registers.
94f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
95f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
96f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
97f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
98f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
99f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
100f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
101f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // SETOEQ and SETUNE require checking two conditions.
102f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
103f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
104f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
105f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
106f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
107f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
108f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
109f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
110f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // operation.
111f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
112f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
113f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
114f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
115f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  if (Subtarget->is64Bit()) {
116f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
117f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
118f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  } else {
119f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    if (X86ScalarSSEf64) {
120f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette      // We have an impenetrably clever algorithm for ui64->double only.
121f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette      setOperationAction(ISD::UINT_TO_FP   , MVT::i64  , Custom);
122f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
123f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette      // We have faster algorithm for ui32->single only.
124f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Custom);
125f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    } else
126f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Promote);
127f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  }
128f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
129f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
130  // this operation.
131  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
132  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
133  // SSE has no i16 to fp conversion, only i32
134  if (X86ScalarSSEf32) {
135    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
136    // f32 and f64 cases are Legal, f80 case is not
137    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
138  } else {
139    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
140    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
141  }
142
143  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
144  // are Legal, f80 is custom lowered.
145  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
146  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
147
148  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
149  // this operation.
150  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
151  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
152
153  if (X86ScalarSSEf32) {
154    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
155    // f32 and f64 cases are Legal, f80 case is not
156    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
157  } else {
158    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
159    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
160  }
161
162  // Handle FP_TO_UINT by promoting the destination to a larger signed
163  // conversion.
164  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
165  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
166  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
167
168  if (Subtarget->is64Bit()) {
169    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
170    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
171  } else {
172    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
173      // Expand FP_TO_UINT into a select.
174      // FIXME: We would like to use a Custom expander here eventually to do
175      // the optimal thing for SSE vs. the default expansion in the legalizer.
176      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
177    else
178      // With SSE3 we can use fisttpll to convert to a signed i64.
179      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Promote);
180  }
181
182  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
183  if (!X86ScalarSSEf64) {
184    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
185    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
186  }
187
188  // Scalar integer divide and remainder are lowered to use operations that
189  // produce two results, to match the available instructions. This exposes
190  // the two-result form to trivial CSE, which is able to combine x/y and x%y
191  // into a single instruction.
192  //
193  // Scalar integer multiply-high is also lowered to use two-result
194  // operations, to match the available instructions. However, plain multiply
195  // (low) operations are left as Legal, as there are single-result
196  // instructions for this in x86. Using the two-result multiply instructions
197  // when both high and low results are needed must be arranged by dagcombine.
198  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
199  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
200  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
201  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
202  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
203  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
204  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
205  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
206  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
207  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
208  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
209  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
210  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
211  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
212  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
213  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
214  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
215  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
216  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
217  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
218  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
219  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
220  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
221  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
222
223  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
224  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
225  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
226  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
227  if (Subtarget->is64Bit())
228    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
229  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
230  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
231  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
232  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
233  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
234  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
235  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
236  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
237
238  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
239  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
240  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
241  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
242  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
243  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
244  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
245  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
246  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
247  if (Subtarget->is64Bit()) {
248    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
249    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
250    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
251  }
252
253  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
254  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
255
256  // These should be promoted to a larger select which is supported.
257  setOperationAction(ISD::SELECT           , MVT::i1   , Promote);
258  setOperationAction(ISD::SELECT           , MVT::i8   , Promote);
259  // X86 wants to expand cmov itself.
260  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
261  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
262  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
263  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
264  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
265  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
266  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
267  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
268  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
269  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
270  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
271  if (Subtarget->is64Bit()) {
272    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
273    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
274  }
275  // X86 ret instruction may pop stack.
276  setOperationAction(ISD::RET             , MVT::Other, Custom);
277  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
278
279  // Darwin ABI issue.
280  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
281  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
282  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
283  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
284  if (Subtarget->is64Bit())
285    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
286  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
287  if (Subtarget->is64Bit()) {
288    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
289    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
290    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
291    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
292  }
293  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
294  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
295  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
296  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
297  if (Subtarget->is64Bit()) {
298    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
299    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
300    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
301  }
302
303  if (Subtarget->hasSSE1())
304    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
305
306  if (!Subtarget->hasSSE2())
307    setOperationAction(ISD::MEMBARRIER    , MVT::Other, Expand);
308
309  // Expand certain atomics
310  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom);
311  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom);
312  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
313  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
314
315  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom);
316  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom);
317  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
318  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
319
320  if (!Subtarget->is64Bit()) {
321    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
322    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
323    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
324    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
325    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
326    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
327    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
328  }
329
330  // Use the default ISD::DBG_STOPPOINT, ISD::DECLARE expansion.
331  setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
332  // FIXME - use subtarget debug flags
333  if (!Subtarget->isTargetDarwin() &&
334      !Subtarget->isTargetELF() &&
335      !Subtarget->isTargetCygMing()) {
336    setOperationAction(ISD::DBG_LABEL, MVT::Other, Expand);
337    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
338  }
339
340  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
341  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
342  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
343  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
344  if (Subtarget->is64Bit()) {
345    setExceptionPointerRegister(X86::RAX);
346    setExceptionSelectorRegister(X86::RDX);
347  } else {
348    setExceptionPointerRegister(X86::EAX);
349    setExceptionSelectorRegister(X86::EDX);
350  }
351  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
352  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
353
354  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
355
356  setOperationAction(ISD::TRAP, MVT::Other, Legal);
357
358  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
359  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
360  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
361  if (Subtarget->is64Bit()) {
362    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
363    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
364  } else {
365    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
366    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
367  }
368
369  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
370  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
371  if (Subtarget->is64Bit())
372    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
373  if (Subtarget->isTargetCygMing())
374    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
375  else
376    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
377
378  if (!UseSoftFloat && X86ScalarSSEf64) {
379    // f32 and f64 use SSE.
380    // Set up the FP register classes.
381    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
382    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
383
384    // Use ANDPD to simulate FABS.
385    setOperationAction(ISD::FABS , MVT::f64, Custom);
386    setOperationAction(ISD::FABS , MVT::f32, Custom);
387
388    // Use XORP to simulate FNEG.
389    setOperationAction(ISD::FNEG , MVT::f64, Custom);
390    setOperationAction(ISD::FNEG , MVT::f32, Custom);
391
392    // Use ANDPD and ORPD to simulate FCOPYSIGN.
393    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
394    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
395
396    // We don't support sin/cos/fmod
397    setOperationAction(ISD::FSIN , MVT::f64, Expand);
398    setOperationAction(ISD::FCOS , MVT::f64, Expand);
399    setOperationAction(ISD::FSIN , MVT::f32, Expand);
400    setOperationAction(ISD::FCOS , MVT::f32, Expand);
401
402    // Expand FP immediates into loads from the stack, except for the special
403    // cases we handle.
404    addLegalFPImmediate(APFloat(+0.0)); // xorpd
405    addLegalFPImmediate(APFloat(+0.0f)); // xorps
406
407    // Floating truncations from f80 and extensions to f80 go through memory.
408    // If optimizing, we lie about this though and handle it in
409    // InstructionSelectPreprocess so that dagcombine2 can hack on these.
410    if (Fast) {
411      setConvertAction(MVT::f32, MVT::f80, Expand);
412      setConvertAction(MVT::f64, MVT::f80, Expand);
413      setConvertAction(MVT::f80, MVT::f32, Expand);
414      setConvertAction(MVT::f80, MVT::f64, Expand);
415    }
416  } else if (!UseSoftFloat && X86ScalarSSEf32) {
417    // Use SSE for f32, x87 for f64.
418    // Set up the FP register classes.
419    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
420    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
421
422    // Use ANDPS to simulate FABS.
423    setOperationAction(ISD::FABS , MVT::f32, Custom);
424
425    // Use XORP to simulate FNEG.
426    setOperationAction(ISD::FNEG , MVT::f32, Custom);
427
428    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
429
430    // Use ANDPS and ORPS to simulate FCOPYSIGN.
431    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
432    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
433
434    // We don't support sin/cos/fmod
435    setOperationAction(ISD::FSIN , MVT::f32, Expand);
436    setOperationAction(ISD::FCOS , MVT::f32, Expand);
437
438    // Special cases we handle for FP constants.
439    addLegalFPImmediate(APFloat(+0.0f)); // xorps
440    addLegalFPImmediate(APFloat(+0.0)); // FLD0
441    addLegalFPImmediate(APFloat(+1.0)); // FLD1
442    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
443    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
444
445    // SSE <-> X87 conversions go through memory.  If optimizing, we lie about
446    // this though and handle it in InstructionSelectPreprocess so that
447    // dagcombine2 can hack on these.
448    if (Fast) {
449      setConvertAction(MVT::f32, MVT::f64, Expand);
450      setConvertAction(MVT::f32, MVT::f80, Expand);
451      setConvertAction(MVT::f80, MVT::f32, Expand);
452      setConvertAction(MVT::f64, MVT::f32, Expand);
453      // And x87->x87 truncations also.
454      setConvertAction(MVT::f80, MVT::f64, Expand);
455    }
456
457    if (!UnsafeFPMath) {
458      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
459      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
460    }
461  } else if (!UseSoftFloat) {
462    // f32 and f64 in x87.
463    // Set up the FP register classes.
464    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
465    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
466
467    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
468    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
469    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
470    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
471
472    // Floating truncations go through memory.  If optimizing, we lie about
473    // this though and handle it in InstructionSelectPreprocess so that
474    // dagcombine2 can hack on these.
475    if (Fast) {
476      setConvertAction(MVT::f80, MVT::f32, Expand);
477      setConvertAction(MVT::f64, MVT::f32, Expand);
478      setConvertAction(MVT::f80, MVT::f64, Expand);
479    }
480
481    if (!UnsafeFPMath) {
482      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
483      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
484    }
485    addLegalFPImmediate(APFloat(+0.0)); // FLD0
486    addLegalFPImmediate(APFloat(+1.0)); // FLD1
487    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
488    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
489    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
490    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
491    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
492    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
493  }
494
495  // Long double always uses X87.
496  if (!UseSoftFloat) {
497    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
498    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
499    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
500    {
501      bool ignored;
502      APFloat TmpFlt(+0.0);
503      TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
504                     &ignored);
505      addLegalFPImmediate(TmpFlt);  // FLD0
506      TmpFlt.changeSign();
507      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
508      APFloat TmpFlt2(+1.0);
509      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
510                      &ignored);
511      addLegalFPImmediate(TmpFlt2);  // FLD1
512      TmpFlt2.changeSign();
513      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
514    }
515
516    if (!UnsafeFPMath) {
517      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
518      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
519    }
520  }
521
522  // Always use a library call for pow.
523  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
524  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
525  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
526
527  setOperationAction(ISD::FLOG, MVT::f80, Expand);
528  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
529  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
530  setOperationAction(ISD::FEXP, MVT::f80, Expand);
531  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
532
533  // First set operation action for all vector types to either promote
534  // (for widening) or expand (for scalarization). Then we will selectively
535  // turn on ones that can be effectively codegen'd.
536  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
537       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
538    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
539    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
540    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
541    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
542    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
543    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
544    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
545    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
546    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
547    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
548    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
549    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
550    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
551    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
552    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
553    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
554    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
555    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
556    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
557    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
558    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
559    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
560    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
561    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
562    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
563    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
564    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
565    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
566    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
567    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
568    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
569    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
570    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
571    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
572    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
573    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
574    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
575    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
576    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
577    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
578    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
579    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
580    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
581  }
582
583  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
584  // with -msoft-float, disable use of MMX as well.
585  if (!UseSoftFloat && !DisableMMX && Subtarget->hasMMX()) {
586    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
587    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
588    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
589    addRegisterClass(MVT::v2f32, X86::VR64RegisterClass);
590    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
591
592    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
593    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
594    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
595    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
596
597    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
598    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
599    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
600    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
601
602    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
603    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
604
605    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
606    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
607    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
608    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
609    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
610    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
611    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
612
613    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
614    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
615    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
616    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
617    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
618    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
619    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
620
621    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
622    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
623    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
624    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
625    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
626    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
627    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
628
629    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
630    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
631    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
632    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
633    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
634    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
635    setOperationAction(ISD::LOAD,               MVT::v2f32, Promote);
636    AddPromotedToType (ISD::LOAD,               MVT::v2f32, MVT::v1i64);
637    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
638
639    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
640    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
641    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
642    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f32, Custom);
643    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
644
645    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
646    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
647    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
648    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
649
650    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2f32, Custom);
651    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
652    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
653    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
654
655    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i16, Custom);
656
657    setTruncStoreAction(MVT::v8i16, MVT::v8i8, Expand);
658    setOperationAction(ISD::TRUNCATE,           MVT::v8i8, Expand);
659    setOperationAction(ISD::SELECT,             MVT::v8i8, Promote);
660    setOperationAction(ISD::SELECT,             MVT::v4i16, Promote);
661    setOperationAction(ISD::SELECT,             MVT::v2i32, Promote);
662    setOperationAction(ISD::SELECT,             MVT::v1i64, Custom);
663  }
664
665  if (!UseSoftFloat && Subtarget->hasSSE1()) {
666    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
667
668    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
669    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
670    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
671    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
672    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
673    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
674    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
675    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
676    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
677    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
678    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
679    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
680  }
681
682  if (!UseSoftFloat && Subtarget->hasSSE2()) {
683    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
684
685    // FIXME: Unfortunately -soft-float means XMM registers cannot be used even
686    // for integer operations.
687    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
688    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
689    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
690    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
691
692    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
693    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
694    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
695    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
696    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
697    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
698    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
699    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
700    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
701    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
702    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
703    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
704    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
705    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
706    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
707    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
708
709    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
710    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
711    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
712    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
713
714    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
715    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
716    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
717    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
718    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
719
720    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
721    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
722      MVT VT = (MVT::SimpleValueType)i;
723      // Do not attempt to custom lower non-power-of-2 vectors
724      if (!isPowerOf2_32(VT.getVectorNumElements()))
725        continue;
726      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
727      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
728      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
729    }
730    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
731    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
732    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
733    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
734    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
735    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
736    if (Subtarget->is64Bit()) {
737      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
738      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
739    }
740
741    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
742    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
743      setOperationAction(ISD::AND,    (MVT::SimpleValueType)VT, Promote);
744      AddPromotedToType (ISD::AND,    (MVT::SimpleValueType)VT, MVT::v2i64);
745      setOperationAction(ISD::OR,     (MVT::SimpleValueType)VT, Promote);
746      AddPromotedToType (ISD::OR,     (MVT::SimpleValueType)VT, MVT::v2i64);
747      setOperationAction(ISD::XOR,    (MVT::SimpleValueType)VT, Promote);
748      AddPromotedToType (ISD::XOR,    (MVT::SimpleValueType)VT, MVT::v2i64);
749      setOperationAction(ISD::LOAD,   (MVT::SimpleValueType)VT, Promote);
750      AddPromotedToType (ISD::LOAD,   (MVT::SimpleValueType)VT, MVT::v2i64);
751      setOperationAction(ISD::SELECT, (MVT::SimpleValueType)VT, Promote);
752      AddPromotedToType (ISD::SELECT, (MVT::SimpleValueType)VT, MVT::v2i64);
753    }
754
755    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
756
757    // Custom lower v2i64 and v2f64 selects.
758    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
759    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
760    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
761    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
762
763  }
764
765  if (Subtarget->hasSSE41()) {
766    // FIXME: Do we need to handle scalar-to-vector here?
767    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
768
769    // i8 and i16 vectors are custom , because the source register and source
770    // source memory operand types are not the same width.  f32 vectors are
771    // custom since the immediate controlling the insert encodes additional
772    // information.
773    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
774    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
775    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
776    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
777
778    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
779    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
780    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
781    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
782
783    if (Subtarget->is64Bit()) {
784      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
785      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
786    }
787  }
788
789  if (Subtarget->hasSSE42()) {
790    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
791  }
792
793  // We want to custom lower some of our intrinsics.
794  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
795
796  // Add/Sub/Mul with overflow operations are custom lowered.
797  setOperationAction(ISD::SADDO, MVT::i32, Custom);
798  setOperationAction(ISD::SADDO, MVT::i64, Custom);
799  setOperationAction(ISD::UADDO, MVT::i32, Custom);
800  setOperationAction(ISD::UADDO, MVT::i64, Custom);
801  setOperationAction(ISD::SSUBO, MVT::i32, Custom);
802  setOperationAction(ISD::SSUBO, MVT::i64, Custom);
803  setOperationAction(ISD::USUBO, MVT::i32, Custom);
804  setOperationAction(ISD::USUBO, MVT::i64, Custom);
805  setOperationAction(ISD::SMULO, MVT::i32, Custom);
806  setOperationAction(ISD::SMULO, MVT::i64, Custom);
807  setOperationAction(ISD::UMULO, MVT::i32, Custom);
808  setOperationAction(ISD::UMULO, MVT::i64, Custom);
809
810  // We have target-specific dag combine patterns for the following nodes:
811  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
812  setTargetDAGCombine(ISD::BUILD_VECTOR);
813  setTargetDAGCombine(ISD::SELECT);
814  setTargetDAGCombine(ISD::SHL);
815  setTargetDAGCombine(ISD::SRA);
816  setTargetDAGCombine(ISD::SRL);
817  setTargetDAGCombine(ISD::STORE);
818
819  computeRegisterProperties();
820
821  // FIXME: These should be based on subtarget info. Plus, the values should
822  // be smaller when we are in optimizing for size mode.
823  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
824  maxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores
825  maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
826  allowUnalignedMemoryAccesses = true; // x86 supports it!
827  setPrefLoopAlignment(16);
828}
829
830
831MVT X86TargetLowering::getSetCCResultType(MVT VT) const {
832  return MVT::i8;
833}
834
835
836/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
837/// the desired ByVal argument alignment.
838static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
839  if (MaxAlign == 16)
840    return;
841  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
842    if (VTy->getBitWidth() == 128)
843      MaxAlign = 16;
844  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
845    unsigned EltAlign = 0;
846    getMaxByValAlign(ATy->getElementType(), EltAlign);
847    if (EltAlign > MaxAlign)
848      MaxAlign = EltAlign;
849  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
850    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
851      unsigned EltAlign = 0;
852      getMaxByValAlign(STy->getElementType(i), EltAlign);
853      if (EltAlign > MaxAlign)
854        MaxAlign = EltAlign;
855      if (MaxAlign == 16)
856        break;
857    }
858  }
859  return;
860}
861
862/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
863/// function arguments in the caller parameter area. For X86, aggregates
864/// that contain SSE vectors are placed at 16-byte boundaries while the rest
865/// are at 4-byte boundaries.
866unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
867  if (Subtarget->is64Bit()) {
868    // Max of 8 and alignment of type.
869    unsigned TyAlign = TD->getABITypeAlignment(Ty);
870    if (TyAlign > 8)
871      return TyAlign;
872    return 8;
873  }
874
875  unsigned Align = 4;
876  if (Subtarget->hasSSE1())
877    getMaxByValAlign(Ty, Align);
878  return Align;
879}
880
881/// getOptimalMemOpType - Returns the target specific optimal type for load
882/// and store operations as a result of memset, memcpy, and memmove
883/// lowering. It returns MVT::iAny if SelectionDAG should be responsible for
884/// determining it.
885MVT
886X86TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align,
887                                       bool isSrcConst, bool isSrcStr) const {
888  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
889  // linux.  This is because the stack realignment code can't handle certain
890  // cases like PR2962.  This should be removed when PR2962 is fixed.
891  if (Subtarget->getStackAlignment() >= 16) {
892    if ((isSrcConst || isSrcStr) && Subtarget->hasSSE2() && Size >= 16)
893      return MVT::v4i32;
894    if ((isSrcConst || isSrcStr) && Subtarget->hasSSE1() && Size >= 16)
895      return MVT::v4f32;
896  }
897  if (Subtarget->is64Bit() && Size >= 8)
898    return MVT::i64;
899  return MVT::i32;
900}
901
902
903/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
904/// jumptable.
905SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
906                                                      SelectionDAG &DAG) const {
907  if (usesGlobalOffsetTable())
908    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
909  if (!Subtarget->isPICStyleRIPRel())
910    // This doesn't have DebugLoc associated with it, but is not really the
911    // same as a Register.
912    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc::getUnknownLoc(),
913                       getPointerTy());
914  return Table;
915}
916
917//===----------------------------------------------------------------------===//
918//               Return Value Calling Convention Implementation
919//===----------------------------------------------------------------------===//
920
921#include "X86GenCallingConv.inc"
922
923/// LowerRET - Lower an ISD::RET node.
924SDValue X86TargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG) {
925  DebugLoc dl = Op.getDebugLoc();
926  assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
927
928  SmallVector<CCValAssign, 16> RVLocs;
929  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
930  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
931  CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
932  CCInfo.AnalyzeReturn(Op.getNode(), RetCC_X86);
933
934  // If this is the first return lowered for this function, add the regs to the
935  // liveout set for the function.
936  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
937    for (unsigned i = 0; i != RVLocs.size(); ++i)
938      if (RVLocs[i].isRegLoc())
939        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
940  }
941  SDValue Chain = Op.getOperand(0);
942
943  // Handle tail call return.
944  Chain = GetPossiblePreceedingTailCall(Chain, X86ISD::TAILCALL);
945  if (Chain.getOpcode() == X86ISD::TAILCALL) {
946    SDValue TailCall = Chain;
947    SDValue TargetAddress = TailCall.getOperand(1);
948    SDValue StackAdjustment = TailCall.getOperand(2);
949    assert(((TargetAddress.getOpcode() == ISD::Register &&
950               (cast<RegisterSDNode>(TargetAddress)->getReg() == X86::EAX ||
951                cast<RegisterSDNode>(TargetAddress)->getReg() == X86::R9)) ||
952              TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
953              TargetAddress.getOpcode() == ISD::TargetGlobalAddress) &&
954             "Expecting an global address, external symbol, or register");
955    assert(StackAdjustment.getOpcode() == ISD::Constant &&
956           "Expecting a const value");
957
958    SmallVector<SDValue,8> Operands;
959    Operands.push_back(Chain.getOperand(0));
960    Operands.push_back(TargetAddress);
961    Operands.push_back(StackAdjustment);
962    // Copy registers used by the call. Last operand is a flag so it is not
963    // copied.
964    for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) {
965      Operands.push_back(Chain.getOperand(i));
966    }
967    return DAG.getNode(X86ISD::TC_RETURN, dl, MVT::Other, &Operands[0],
968                       Operands.size());
969  }
970
971  // Regular return.
972  SDValue Flag;
973
974  SmallVector<SDValue, 6> RetOps;
975  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
976  // Operand #1 = Bytes To Pop
977  RetOps.push_back(DAG.getConstant(getBytesToPopOnReturn(), MVT::i16));
978
979  // Copy the result values into the output registers.
980  for (unsigned i = 0; i != RVLocs.size(); ++i) {
981    CCValAssign &VA = RVLocs[i];
982    assert(VA.isRegLoc() && "Can only return in registers!");
983    SDValue ValToCopy = Op.getOperand(i*2+1);
984
985    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
986    // the RET instruction and handled by the FP Stackifier.
987    if (VA.getLocReg() == X86::ST0 ||
988        VA.getLocReg() == X86::ST1) {
989      // If this is a copy from an xmm register to ST(0), use an FPExtend to
990      // change the value to the FP stack register class.
991      if (isScalarFPTypeInSSEReg(VA.getValVT()))
992        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
993      RetOps.push_back(ValToCopy);
994      // Don't emit a copytoreg.
995      continue;
996    }
997
998    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
999    // which is returned in RAX / RDX.
1000    if (Subtarget->is64Bit()) {
1001      MVT ValVT = ValToCopy.getValueType();
1002      if (ValVT.isVector() && ValVT.getSizeInBits() == 64) {
1003        ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, ValToCopy);
1004        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1)
1005          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, ValToCopy);
1006      }
1007    }
1008
1009    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1010    Flag = Chain.getValue(1);
1011  }
1012
1013  // The x86-64 ABI for returning structs by value requires that we copy
1014  // the sret argument into %rax for the return. We saved the argument into
1015  // a virtual register in the entry block, so now we copy the value out
1016  // and into %rax.
1017  if (Subtarget->is64Bit() &&
1018      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1019    MachineFunction &MF = DAG.getMachineFunction();
1020    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1021    unsigned Reg = FuncInfo->getSRetReturnReg();
1022    if (!Reg) {
1023      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1024      FuncInfo->setSRetReturnReg(Reg);
1025    }
1026    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1027
1028    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1029    Flag = Chain.getValue(1);
1030  }
1031
1032  RetOps[0] = Chain;  // Update chain.
1033
1034  // Add the flag if we have it.
1035  if (Flag.getNode())
1036    RetOps.push_back(Flag);
1037
1038  return DAG.getNode(X86ISD::RET_FLAG, dl,
1039                     MVT::Other, &RetOps[0], RetOps.size());
1040}
1041
1042
1043/// LowerCallResult - Lower the result values of an ISD::CALL into the
1044/// appropriate copies out of appropriate physical registers.  This assumes that
1045/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
1046/// being lowered.  The returns a SDNode with the same number of values as the
1047/// ISD::CALL.
1048SDNode *X86TargetLowering::
1049LowerCallResult(SDValue Chain, SDValue InFlag, CallSDNode *TheCall,
1050                unsigned CallingConv, SelectionDAG &DAG) {
1051
1052  DebugLoc dl = TheCall->getDebugLoc();
1053  // Assign locations to each value returned by this call.
1054  SmallVector<CCValAssign, 16> RVLocs;
1055  bool isVarArg = TheCall->isVarArg();
1056  bool Is64Bit = Subtarget->is64Bit();
1057  CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
1058  CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
1059
1060  SmallVector<SDValue, 8> ResultVals;
1061
1062  // Copy all of the result registers out of their specified physreg.
1063  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1064    CCValAssign &VA = RVLocs[i];
1065    MVT CopyVT = VA.getValVT();
1066
1067    // If this is x86-64, and we disabled SSE, we can't return FP values
1068    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1069        ((Is64Bit || TheCall->isInreg()) && !Subtarget->hasSSE1())) {
1070      cerr << "SSE register return with SSE disabled\n";
1071      exit(1);
1072    }
1073
1074    // If this is a call to a function that returns an fp value on the floating
1075    // point stack, but where we prefer to use the value in xmm registers, copy
1076    // it out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1077    if ((VA.getLocReg() == X86::ST0 ||
1078         VA.getLocReg() == X86::ST1) &&
1079        isScalarFPTypeInSSEReg(VA.getValVT())) {
1080      CopyVT = MVT::f80;
1081    }
1082
1083    SDValue Val;
1084    if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
1085      // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1086      if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1087        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1088                                   MVT::v2i64, InFlag).getValue(1);
1089        Val = Chain.getValue(0);
1090        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1091                          Val, DAG.getConstant(0, MVT::i64));
1092      } else {
1093        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1094                                   MVT::i64, InFlag).getValue(1);
1095        Val = Chain.getValue(0);
1096      }
1097      Val = DAG.getNode(ISD::BIT_CONVERT, dl, CopyVT, Val);
1098    } else {
1099      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1100                                 CopyVT, InFlag).getValue(1);
1101      Val = Chain.getValue(0);
1102    }
1103    InFlag = Chain.getValue(2);
1104
1105    if (CopyVT != VA.getValVT()) {
1106      // Round the F80 the right size, which also moves to the appropriate xmm
1107      // register.
1108      Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1109                        // This truncation won't change the value.
1110                        DAG.getIntPtrConstant(1));
1111    }
1112
1113    ResultVals.push_back(Val);
1114  }
1115
1116  // Merge everything together with a MERGE_VALUES node.
1117  ResultVals.push_back(Chain);
1118  return DAG.getNode(ISD::MERGE_VALUES, dl, TheCall->getVTList(),
1119                     &ResultVals[0], ResultVals.size()).getNode();
1120}
1121
1122
1123//===----------------------------------------------------------------------===//
1124//                C & StdCall & Fast Calling Convention implementation
1125//===----------------------------------------------------------------------===//
1126//  StdCall calling convention seems to be standard for many Windows' API
1127//  routines and around. It differs from C calling convention just a little:
1128//  callee should clean up the stack, not caller. Symbols should be also
1129//  decorated in some fancy way :) It doesn't support any vector arguments.
1130//  For info on fast calling convention see Fast Calling Convention (tail call)
1131//  implementation LowerX86_32FastCCCallTo.
1132
1133/// AddLiveIn - This helper function adds the specified physical register to the
1134/// MachineFunction as a live in value.  It also creates a corresponding virtual
1135/// register for it.
1136static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
1137                          const TargetRegisterClass *RC) {
1138  assert(RC->contains(PReg) && "Not the correct regclass!");
1139  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
1140  MF.getRegInfo().addLiveIn(PReg, VReg);
1141  return VReg;
1142}
1143
1144/// CallIsStructReturn - Determines whether a CALL node uses struct return
1145/// semantics.
1146static bool CallIsStructReturn(CallSDNode *TheCall) {
1147  unsigned NumOps = TheCall->getNumArgs();
1148  if (!NumOps)
1149    return false;
1150
1151  return TheCall->getArgFlags(0).isSRet();
1152}
1153
1154/// ArgsAreStructReturn - Determines whether a FORMAL_ARGUMENTS node uses struct
1155/// return semantics.
1156static bool ArgsAreStructReturn(SDValue Op) {
1157  unsigned NumArgs = Op.getNode()->getNumValues() - 1;
1158  if (!NumArgs)
1159    return false;
1160
1161  return cast<ARG_FLAGSSDNode>(Op.getOperand(3))->getArgFlags().isSRet();
1162}
1163
1164/// IsCalleePop - Determines whether a CALL or FORMAL_ARGUMENTS node requires
1165/// the callee to pop its own arguments. Callee pop is necessary to support tail
1166/// calls.
1167bool X86TargetLowering::IsCalleePop(bool IsVarArg, unsigned CallingConv) {
1168  if (IsVarArg)
1169    return false;
1170
1171  switch (CallingConv) {
1172  default:
1173    return false;
1174  case CallingConv::X86_StdCall:
1175    return !Subtarget->is64Bit();
1176  case CallingConv::X86_FastCall:
1177    return !Subtarget->is64Bit();
1178  case CallingConv::Fast:
1179    return PerformTailCallOpt;
1180  }
1181}
1182
1183/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1184/// given CallingConvention value.
1185CCAssignFn *X86TargetLowering::CCAssignFnForNode(unsigned CC) const {
1186  if (Subtarget->is64Bit()) {
1187    if (Subtarget->isTargetWin64())
1188      return CC_X86_Win64_C;
1189    else if (CC == CallingConv::Fast && PerformTailCallOpt)
1190      return CC_X86_64_TailCall;
1191    else
1192      return CC_X86_64_C;
1193  }
1194
1195  if (CC == CallingConv::X86_FastCall)
1196    return CC_X86_32_FastCall;
1197  else if (CC == CallingConv::Fast)
1198    return CC_X86_32_FastCC;
1199  else
1200    return CC_X86_32_C;
1201}
1202
1203/// NameDecorationForFORMAL_ARGUMENTS - Selects the appropriate decoration to
1204/// apply to a MachineFunction containing a given FORMAL_ARGUMENTS node.
1205NameDecorationStyle
1206X86TargetLowering::NameDecorationForFORMAL_ARGUMENTS(SDValue Op) {
1207  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1208  if (CC == CallingConv::X86_FastCall)
1209    return FastCall;
1210  else if (CC == CallingConv::X86_StdCall)
1211    return StdCall;
1212  return None;
1213}
1214
1215
1216/// CallRequiresGOTInRegister - Check whether the call requires the GOT pointer
1217/// in a register before calling.
1218bool X86TargetLowering::CallRequiresGOTPtrInReg(bool Is64Bit, bool IsTailCall) {
1219  return !IsTailCall && !Is64Bit &&
1220    getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1221    Subtarget->isPICStyleGOT();
1222}
1223
1224/// CallRequiresFnAddressInReg - Check whether the call requires the function
1225/// address to be loaded in a register.
1226bool
1227X86TargetLowering::CallRequiresFnAddressInReg(bool Is64Bit, bool IsTailCall) {
1228  return !Is64Bit && IsTailCall &&
1229    getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1230    Subtarget->isPICStyleGOT();
1231}
1232
1233/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1234/// by "Src" to address "Dst" with size and alignment information specified by
1235/// the specific parameter attribute. The copy will be passed as a byval
1236/// function parameter.
1237static SDValue
1238CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1239                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1240                          DebugLoc dl) {
1241  SDValue SizeNode     = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1242  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1243                       /*AlwaysInline=*/true, NULL, 0, NULL, 0);
1244}
1245
1246SDValue X86TargetLowering::LowerMemArgument(SDValue Op, SelectionDAG &DAG,
1247                                              const CCValAssign &VA,
1248                                              MachineFrameInfo *MFI,
1249                                              unsigned CC,
1250                                              SDValue Root, unsigned i) {
1251  // Create the nodes corresponding to a load from this parameter slot.
1252  ISD::ArgFlagsTy Flags =
1253    cast<ARG_FLAGSSDNode>(Op.getOperand(3 + i))->getArgFlags();
1254  bool AlwaysUseMutable = (CC==CallingConv::Fast) && PerformTailCallOpt;
1255  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1256
1257  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1258  // changed with more analysis.
1259  // In case of tail call optimization mark all arguments mutable. Since they
1260  // could be overwritten by lowering of arguments in case of a tail call.
1261  int FI = MFI->CreateFixedObject(VA.getValVT().getSizeInBits()/8,
1262                                  VA.getLocMemOffset(), isImmutable);
1263  SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1264  if (Flags.isByVal())
1265    return FIN;
1266  return DAG.getLoad(VA.getValVT(), Op.getDebugLoc(), Root, FIN,
1267                     PseudoSourceValue::getFixedStack(FI), 0);
1268}
1269
1270SDValue
1271X86TargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG) {
1272  MachineFunction &MF = DAG.getMachineFunction();
1273  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1274  DebugLoc dl = Op.getDebugLoc();
1275
1276  const Function* Fn = MF.getFunction();
1277  if (Fn->hasExternalLinkage() &&
1278      Subtarget->isTargetCygMing() &&
1279      Fn->getName() == "main")
1280    FuncInfo->setForceFramePointer(true);
1281
1282  // Decorate the function name.
1283  FuncInfo->setDecorationStyle(NameDecorationForFORMAL_ARGUMENTS(Op));
1284
1285  MachineFrameInfo *MFI = MF.getFrameInfo();
1286  SDValue Root = Op.getOperand(0);
1287  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() != 0;
1288  unsigned CC = MF.getFunction()->getCallingConv();
1289  bool Is64Bit = Subtarget->is64Bit();
1290  bool IsWin64 = Subtarget->isTargetWin64();
1291
1292  assert(!(isVarArg && CC == CallingConv::Fast) &&
1293         "Var args not supported with calling convention fastcc");
1294
1295  // Assign locations to all of the incoming arguments.
1296  SmallVector<CCValAssign, 16> ArgLocs;
1297  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1298  CCInfo.AnalyzeFormalArguments(Op.getNode(), CCAssignFnForNode(CC));
1299
1300  SmallVector<SDValue, 8> ArgValues;
1301  unsigned LastVal = ~0U;
1302  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1303    CCValAssign &VA = ArgLocs[i];
1304    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1305    // places.
1306    assert(VA.getValNo() != LastVal &&
1307           "Don't support value assigned to multiple locs yet");
1308    LastVal = VA.getValNo();
1309
1310    if (VA.isRegLoc()) {
1311      MVT RegVT = VA.getLocVT();
1312      TargetRegisterClass *RC = NULL;
1313      if (RegVT == MVT::i32)
1314        RC = X86::GR32RegisterClass;
1315      else if (Is64Bit && RegVT == MVT::i64)
1316        RC = X86::GR64RegisterClass;
1317      else if (RegVT == MVT::f32)
1318        RC = X86::FR32RegisterClass;
1319      else if (RegVT == MVT::f64)
1320        RC = X86::FR64RegisterClass;
1321      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1322        RC = X86::VR128RegisterClass;
1323      else if (RegVT.isVector()) {
1324        assert(RegVT.getSizeInBits() == 64);
1325        if (!Is64Bit)
1326          RC = X86::VR64RegisterClass;     // MMX values are passed in MMXs.
1327        else {
1328          // Darwin calling convention passes MMX values in either GPRs or
1329          // XMMs in x86-64. Other targets pass them in memory.
1330          if (RegVT != MVT::v1i64 && Subtarget->hasSSE2()) {
1331            RC = X86::VR128RegisterClass;  // MMX values are passed in XMMs.
1332            RegVT = MVT::v2i64;
1333          } else {
1334            RC = X86::GR64RegisterClass;   // v1i64 values are passed in GPRs.
1335            RegVT = MVT::i64;
1336          }
1337        }
1338      } else {
1339        assert(0 && "Unknown argument type!");
1340      }
1341
1342      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1343      SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, RegVT);
1344
1345      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1346      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1347      // right size.
1348      if (VA.getLocInfo() == CCValAssign::SExt)
1349        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1350                               DAG.getValueType(VA.getValVT()));
1351      else if (VA.getLocInfo() == CCValAssign::ZExt)
1352        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1353                               DAG.getValueType(VA.getValVT()));
1354
1355      if (VA.getLocInfo() != CCValAssign::Full)
1356        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1357
1358      // Handle MMX values passed in GPRs.
1359      if (Is64Bit && RegVT != VA.getLocVT()) {
1360        if (RegVT.getSizeInBits() == 64 && RC == X86::GR64RegisterClass)
1361          ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), ArgValue);
1362        else if (RC == X86::VR128RegisterClass) {
1363          ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1364                                 ArgValue, DAG.getConstant(0, MVT::i64));
1365          ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), ArgValue);
1366        }
1367      }
1368
1369      ArgValues.push_back(ArgValue);
1370    } else {
1371      assert(VA.isMemLoc());
1372      ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, CC, Root, i));
1373    }
1374  }
1375
1376  // The x86-64 ABI for returning structs by value requires that we copy
1377  // the sret argument into %rax for the return. Save the argument into
1378  // a virtual register so that we can access it from the return points.
1379  if (Is64Bit && DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1380    MachineFunction &MF = DAG.getMachineFunction();
1381    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1382    unsigned Reg = FuncInfo->getSRetReturnReg();
1383    if (!Reg) {
1384      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1385      FuncInfo->setSRetReturnReg(Reg);
1386    }
1387    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, ArgValues[0]);
1388    Root = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Root);
1389  }
1390
1391  unsigned StackSize = CCInfo.getNextStackOffset();
1392  // align stack specially for tail calls
1393  if (PerformTailCallOpt && CC == CallingConv::Fast)
1394    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1395
1396  // If the function takes variable number of arguments, make a frame index for
1397  // the start of the first vararg value... for expansion of llvm.va_start.
1398  if (isVarArg) {
1399    if (Is64Bit || CC != CallingConv::X86_FastCall) {
1400      VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1401    }
1402    if (Is64Bit) {
1403      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1404
1405      // FIXME: We should really autogenerate these arrays
1406      static const unsigned GPR64ArgRegsWin64[] = {
1407        X86::RCX, X86::RDX, X86::R8,  X86::R9
1408      };
1409      static const unsigned XMMArgRegsWin64[] = {
1410        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1411      };
1412      static const unsigned GPR64ArgRegs64Bit[] = {
1413        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1414      };
1415      static const unsigned XMMArgRegs64Bit[] = {
1416        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1417        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1418      };
1419      const unsigned *GPR64ArgRegs, *XMMArgRegs;
1420
1421      if (IsWin64) {
1422        TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
1423        GPR64ArgRegs = GPR64ArgRegsWin64;
1424        XMMArgRegs = XMMArgRegsWin64;
1425      } else {
1426        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1427        GPR64ArgRegs = GPR64ArgRegs64Bit;
1428        XMMArgRegs = XMMArgRegs64Bit;
1429      }
1430      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1431                                                       TotalNumIntRegs);
1432      unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
1433                                                       TotalNumXMMRegs);
1434
1435      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1436             "SSE register cannot be used when SSE is disabled!");
1437      assert(!(NumXMMRegs && UseSoftFloat) &&
1438             "SSE register cannot be used when SSE is disabled!");
1439      if (UseSoftFloat || !Subtarget->hasSSE1()) {
1440        // Kernel mode asks for SSE to be disabled, so don't push them
1441        // on the stack.
1442        TotalNumXMMRegs = 0;
1443      }
1444      // For X86-64, if there are vararg parameters that are passed via
1445      // registers, then we must store them to their spots on the stack so they
1446      // may be loaded by deferencing the result of va_next.
1447      VarArgsGPOffset = NumIntRegs * 8;
1448      VarArgsFPOffset = TotalNumIntRegs * 8 + NumXMMRegs * 16;
1449      RegSaveFrameIndex = MFI->CreateStackObject(TotalNumIntRegs * 8 +
1450                                                 TotalNumXMMRegs * 16, 16);
1451
1452      // Store the integer parameter registers.
1453      SmallVector<SDValue, 8> MemOps;
1454      SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1455      SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1456                                  DAG.getIntPtrConstant(VarArgsGPOffset));
1457      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1458        unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
1459                                  X86::GR64RegisterClass);
1460        SDValue Val = DAG.getCopyFromReg(Root, dl, VReg, MVT::i64);
1461        SDValue Store =
1462          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1463                       PseudoSourceValue::getFixedStack(RegSaveFrameIndex), 0);
1464        MemOps.push_back(Store);
1465        FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
1466                          DAG.getIntPtrConstant(8));
1467      }
1468
1469      // Now store the XMM (fp + vector) parameter registers.
1470      FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1471                        DAG.getIntPtrConstant(VarArgsFPOffset));
1472      for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1473        unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
1474                                  X86::VR128RegisterClass);
1475        SDValue Val = DAG.getCopyFromReg(Root, dl, VReg, MVT::v4f32);
1476        SDValue Store =
1477          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1478                       PseudoSourceValue::getFixedStack(RegSaveFrameIndex), 0);
1479        MemOps.push_back(Store);
1480        FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
1481                          DAG.getIntPtrConstant(16));
1482      }
1483      if (!MemOps.empty())
1484          Root = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1485                             &MemOps[0], MemOps.size());
1486    }
1487  }
1488
1489  ArgValues.push_back(Root);
1490
1491  // Some CCs need callee pop.
1492  if (IsCalleePop(isVarArg, CC)) {
1493    BytesToPopOnReturn  = StackSize; // Callee pops everything.
1494    BytesCallerReserves = 0;
1495  } else {
1496    BytesToPopOnReturn  = 0; // Callee pops nothing.
1497    // If this is an sret function, the return should pop the hidden pointer.
1498    if (!Is64Bit && CC != CallingConv::Fast && ArgsAreStructReturn(Op))
1499      BytesToPopOnReturn = 4;
1500    BytesCallerReserves = StackSize;
1501  }
1502
1503  if (!Is64Bit) {
1504    RegSaveFrameIndex = 0xAAAAAAA;   // RegSaveFrameIndex is X86-64 only.
1505    if (CC == CallingConv::X86_FastCall)
1506      VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1507  }
1508
1509  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1510
1511  // Return the new list of results.
1512  return DAG.getNode(ISD::MERGE_VALUES, dl, Op.getNode()->getVTList(),
1513                     &ArgValues[0], ArgValues.size()).getValue(Op.getResNo());
1514}
1515
1516SDValue
1517X86TargetLowering::LowerMemOpCallTo(CallSDNode *TheCall, SelectionDAG &DAG,
1518                                    const SDValue &StackPtr,
1519                                    const CCValAssign &VA,
1520                                    SDValue Chain,
1521                                    SDValue Arg, ISD::ArgFlagsTy Flags) {
1522  DebugLoc dl = TheCall->getDebugLoc();
1523  unsigned LocMemOffset = VA.getLocMemOffset();
1524  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1525  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1526  if (Flags.isByVal()) {
1527    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1528  }
1529  return DAG.getStore(Chain, dl, Arg, PtrOff,
1530                      PseudoSourceValue::getStack(), LocMemOffset);
1531}
1532
1533/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1534/// optimization is performed and it is required.
1535SDValue
1536X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1537                                           SDValue &OutRetAddr,
1538                                           SDValue Chain,
1539                                           bool IsTailCall,
1540                                           bool Is64Bit,
1541                                           int FPDiff,
1542                                           DebugLoc dl) {
1543  if (!IsTailCall || FPDiff==0) return Chain;
1544
1545  // Adjust the Return address stack slot.
1546  MVT VT = getPointerTy();
1547  OutRetAddr = getReturnAddressFrameIndex(DAG);
1548
1549  // Load the "old" Return address.
1550  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, NULL, 0);
1551  return SDValue(OutRetAddr.getNode(), 1);
1552}
1553
1554/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1555/// optimization is performed and it is required (FPDiff!=0).
1556static SDValue
1557EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1558                         SDValue Chain, SDValue RetAddrFrIdx,
1559                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1560  // Store the return address to the appropriate stack slot.
1561  if (!FPDiff) return Chain;
1562  // Calculate the new stack slot for the return address.
1563  int SlotSize = Is64Bit ? 8 : 4;
1564  int NewReturnAddrFI =
1565    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize);
1566  MVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1567  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1568  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1569                       PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0);
1570  return Chain;
1571}
1572
1573SDValue X86TargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) {
1574  MachineFunction &MF = DAG.getMachineFunction();
1575  CallSDNode *TheCall = cast<CallSDNode>(Op.getNode());
1576  SDValue Chain       = TheCall->getChain();
1577  unsigned CC         = TheCall->getCallingConv();
1578  bool isVarArg       = TheCall->isVarArg();
1579  bool IsTailCall     = TheCall->isTailCall() &&
1580                        CC == CallingConv::Fast && PerformTailCallOpt;
1581  SDValue Callee      = TheCall->getCallee();
1582  bool Is64Bit        = Subtarget->is64Bit();
1583  bool IsStructRet    = CallIsStructReturn(TheCall);
1584  DebugLoc dl         = TheCall->getDebugLoc();
1585
1586  assert(!(isVarArg && CC == CallingConv::Fast) &&
1587         "Var args not supported with calling convention fastcc");
1588
1589  // Analyze operands of the call, assigning locations to each operand.
1590  SmallVector<CCValAssign, 16> ArgLocs;
1591  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1592  CCInfo.AnalyzeCallOperands(TheCall, CCAssignFnForNode(CC));
1593
1594  // Get a count of how many bytes are to be pushed on the stack.
1595  unsigned NumBytes = CCInfo.getNextStackOffset();
1596  if (PerformTailCallOpt && CC == CallingConv::Fast)
1597    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1598
1599  int FPDiff = 0;
1600  if (IsTailCall) {
1601    // Lower arguments at fp - stackoffset + fpdiff.
1602    unsigned NumBytesCallerPushed =
1603      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1604    FPDiff = NumBytesCallerPushed - NumBytes;
1605
1606    // Set the delta of movement of the returnaddr stackslot.
1607    // But only set if delta is greater than previous delta.
1608    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1609      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1610  }
1611
1612  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1613
1614  SDValue RetAddrFrIdx;
1615  // Load return adress for tail calls.
1616  Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, IsTailCall, Is64Bit,
1617                                  FPDiff, dl);
1618
1619  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1620  SmallVector<SDValue, 8> MemOpChains;
1621  SDValue StackPtr;
1622
1623  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1624  // of tail call optimization arguments are handle later.
1625  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1626    CCValAssign &VA = ArgLocs[i];
1627    SDValue Arg = TheCall->getArg(i);
1628    ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
1629    bool isByVal = Flags.isByVal();
1630
1631    // Promote the value if needed.
1632    switch (VA.getLocInfo()) {
1633    default: assert(0 && "Unknown loc info!");
1634    case CCValAssign::Full: break;
1635    case CCValAssign::SExt:
1636      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1637      break;
1638    case CCValAssign::ZExt:
1639      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1640      break;
1641    case CCValAssign::AExt:
1642      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1643      break;
1644    }
1645
1646    if (VA.isRegLoc()) {
1647      if (Is64Bit) {
1648        MVT RegVT = VA.getLocVT();
1649        if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
1650          switch (VA.getLocReg()) {
1651          default:
1652            break;
1653          case X86::RDI: case X86::RSI: case X86::RDX: case X86::RCX:
1654          case X86::R8: {
1655            // Special case: passing MMX values in GPR registers.
1656            Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
1657            break;
1658          }
1659          case X86::XMM0: case X86::XMM1: case X86::XMM2: case X86::XMM3:
1660          case X86::XMM4: case X86::XMM5: case X86::XMM6: case X86::XMM7: {
1661            // Special case: passing MMX values in XMM registers.
1662            Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
1663            Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
1664            Arg = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, MVT::v2i64,
1665                              DAG.getUNDEF(MVT::v2i64), Arg,
1666                              getMOVLMask(2, DAG, dl));
1667            break;
1668          }
1669          }
1670      }
1671      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1672    } else {
1673      if (!IsTailCall || (IsTailCall && isByVal)) {
1674        assert(VA.isMemLoc());
1675        if (StackPtr.getNode() == 0)
1676          StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
1677
1678        MemOpChains.push_back(LowerMemOpCallTo(TheCall, DAG, StackPtr, VA,
1679                                               Chain, Arg, Flags));
1680      }
1681    }
1682  }
1683
1684  if (!MemOpChains.empty())
1685    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1686                        &MemOpChains[0], MemOpChains.size());
1687
1688  // Build a sequence of copy-to-reg nodes chained together with token chain
1689  // and flag operands which copy the outgoing args into registers.
1690  SDValue InFlag;
1691  // Tail call byval lowering might overwrite argument registers so in case of
1692  // tail call optimization the copies to registers are lowered later.
1693  if (!IsTailCall)
1694    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1695      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1696                               RegsToPass[i].second, InFlag);
1697      InFlag = Chain.getValue(1);
1698    }
1699
1700  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1701  // GOT pointer.
1702  if (CallRequiresGOTPtrInReg(Is64Bit, IsTailCall)) {
1703    Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
1704                             DAG.getNode(X86ISD::GlobalBaseReg,
1705                                         DebugLoc::getUnknownLoc(),
1706                                         getPointerTy()),
1707                             InFlag);
1708    InFlag = Chain.getValue(1);
1709  }
1710  // If we are tail calling and generating PIC/GOT style code load the address
1711  // of the callee into ecx. The value in ecx is used as target of the tail
1712  // jump. This is done to circumvent the ebx/callee-saved problem for tail
1713  // calls on PIC/GOT architectures. Normally we would just put the address of
1714  // GOT into ebx and then call target@PLT. But for tail callss ebx would be
1715  // restored (since ebx is callee saved) before jumping to the target@PLT.
1716  if (CallRequiresFnAddressInReg(Is64Bit, IsTailCall)) {
1717    // Note: The actual moving to ecx is done further down.
1718    GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
1719    if (G && !G->getGlobal()->hasHiddenVisibility() &&
1720        !G->getGlobal()->hasProtectedVisibility())
1721      Callee =  LowerGlobalAddress(Callee, DAG);
1722    else if (isa<ExternalSymbolSDNode>(Callee))
1723      Callee = LowerExternalSymbol(Callee,DAG);
1724  }
1725
1726  if (Is64Bit && isVarArg) {
1727    // From AMD64 ABI document:
1728    // For calls that may call functions that use varargs or stdargs
1729    // (prototype-less calls or calls to functions containing ellipsis (...) in
1730    // the declaration) %al is used as hidden argument to specify the number
1731    // of SSE registers used. The contents of %al do not need to match exactly
1732    // the number of registers, but must be an ubound on the number of SSE
1733    // registers used and is in the range 0 - 8 inclusive.
1734
1735    // FIXME: Verify this on Win64
1736    // Count the number of XMM registers allocated.
1737    static const unsigned XMMArgRegs[] = {
1738      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1739      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1740    };
1741    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1742    assert((Subtarget->hasSSE1() || !NumXMMRegs)
1743           && "SSE registers cannot be used when SSE is disabled");
1744
1745    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
1746                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1747    InFlag = Chain.getValue(1);
1748  }
1749
1750
1751  // For tail calls lower the arguments to the 'real' stack slot.
1752  if (IsTailCall) {
1753    SmallVector<SDValue, 8> MemOpChains2;
1754    SDValue FIN;
1755    int FI = 0;
1756    // Do not flag preceeding copytoreg stuff together with the following stuff.
1757    InFlag = SDValue();
1758    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1759      CCValAssign &VA = ArgLocs[i];
1760      if (!VA.isRegLoc()) {
1761        assert(VA.isMemLoc());
1762        SDValue Arg = TheCall->getArg(i);
1763        ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
1764        // Create frame index.
1765        int32_t Offset = VA.getLocMemOffset()+FPDiff;
1766        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
1767        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
1768        FIN = DAG.getFrameIndex(FI, getPointerTy());
1769
1770        if (Flags.isByVal()) {
1771          // Copy relative to framepointer.
1772          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
1773          if (StackPtr.getNode() == 0)
1774            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
1775                                          getPointerTy());
1776          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
1777
1778          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN, Chain,
1779                                                           Flags, DAG, dl));
1780        } else {
1781          // Store relative to framepointer.
1782          MemOpChains2.push_back(
1783            DAG.getStore(Chain, dl, Arg, FIN,
1784                         PseudoSourceValue::getFixedStack(FI), 0));
1785        }
1786      }
1787    }
1788
1789    if (!MemOpChains2.empty())
1790      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1791                          &MemOpChains2[0], MemOpChains2.size());
1792
1793    // Copy arguments to their registers.
1794    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1795      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1796                               RegsToPass[i].second, InFlag);
1797      InFlag = Chain.getValue(1);
1798    }
1799    InFlag =SDValue();
1800
1801    // Store the return address to the appropriate stack slot.
1802    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
1803                                     FPDiff, dl);
1804  }
1805
1806  // If the callee is a GlobalAddress node (quite common, every direct call is)
1807  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1808  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1809    // We should use extra load for direct calls to dllimported functions in
1810    // non-JIT mode.
1811    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1812                                        getTargetMachine(), true))
1813      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy(),
1814                                          G->getOffset());
1815  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1816    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1817  } else if (IsTailCall) {
1818    unsigned Opc = Is64Bit ? X86::R9 : X86::EAX;
1819
1820    Chain = DAG.getCopyToReg(Chain,  dl,
1821                             DAG.getRegister(Opc, getPointerTy()),
1822                             Callee,InFlag);
1823    Callee = DAG.getRegister(Opc, getPointerTy());
1824    // Add register as live out.
1825    DAG.getMachineFunction().getRegInfo().addLiveOut(Opc);
1826  }
1827
1828  // Returns a chain & a flag for retval copy to use.
1829  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1830  SmallVector<SDValue, 8> Ops;
1831
1832  if (IsTailCall) {
1833    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1834                           DAG.getIntPtrConstant(0, true), InFlag);
1835    InFlag = Chain.getValue(1);
1836
1837    // Returns a chain & a flag for retval copy to use.
1838    NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1839    Ops.clear();
1840  }
1841
1842  Ops.push_back(Chain);
1843  Ops.push_back(Callee);
1844
1845  if (IsTailCall)
1846    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
1847
1848  // Add argument registers to the end of the list so that they are known live
1849  // into the call.
1850  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1851    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1852                                  RegsToPass[i].second.getValueType()));
1853
1854  // Add an implicit use GOT pointer in EBX.
1855  if (!IsTailCall && !Is64Bit &&
1856      getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1857      Subtarget->isPICStyleGOT())
1858    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1859
1860  // Add an implicit use of AL for x86 vararg functions.
1861  if (Is64Bit && isVarArg)
1862    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
1863
1864  if (InFlag.getNode())
1865    Ops.push_back(InFlag);
1866
1867  if (IsTailCall) {
1868    assert(InFlag.getNode() &&
1869           "Flag must be set. Depend on flag being set in LowerRET");
1870    Chain = DAG.getNode(X86ISD::TAILCALL, dl,
1871                        TheCall->getVTList(), &Ops[0], Ops.size());
1872
1873    return SDValue(Chain.getNode(), Op.getResNo());
1874  }
1875
1876  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
1877  InFlag = Chain.getValue(1);
1878
1879  // Create the CALLSEQ_END node.
1880  unsigned NumBytesForCalleeToPush;
1881  if (IsCalleePop(isVarArg, CC))
1882    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
1883  else if (!Is64Bit && CC != CallingConv::Fast && IsStructRet)
1884    // If this is is a call to a struct-return function, the callee
1885    // pops the hidden struct pointer, so we have to push it back.
1886    // This is common for Darwin/X86, Linux & Mingw32 targets.
1887    NumBytesForCalleeToPush = 4;
1888  else
1889    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
1890
1891  // Returns a flag for retval copy to use.
1892  Chain = DAG.getCALLSEQ_END(Chain,
1893                             DAG.getIntPtrConstant(NumBytes, true),
1894                             DAG.getIntPtrConstant(NumBytesForCalleeToPush,
1895                                                   true),
1896                             InFlag);
1897  InFlag = Chain.getValue(1);
1898
1899  // Handle result values, copying them out of physregs into vregs that we
1900  // return.
1901  return SDValue(LowerCallResult(Chain, InFlag, TheCall, CC, DAG),
1902                 Op.getResNo());
1903}
1904
1905
1906//===----------------------------------------------------------------------===//
1907//                Fast Calling Convention (tail call) implementation
1908//===----------------------------------------------------------------------===//
1909
1910//  Like std call, callee cleans arguments, convention except that ECX is
1911//  reserved for storing the tail called function address. Only 2 registers are
1912//  free for argument passing (inreg). Tail call optimization is performed
1913//  provided:
1914//                * tailcallopt is enabled
1915//                * caller/callee are fastcc
1916//  On X86_64 architecture with GOT-style position independent code only local
1917//  (within module) calls are supported at the moment.
1918//  To keep the stack aligned according to platform abi the function
1919//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
1920//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
1921//  If a tail called function callee has more arguments than the caller the
1922//  caller needs to make sure that there is room to move the RETADDR to. This is
1923//  achieved by reserving an area the size of the argument delta right after the
1924//  original REtADDR, but before the saved framepointer or the spilled registers
1925//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
1926//  stack layout:
1927//    arg1
1928//    arg2
1929//    RETADDR
1930//    [ new RETADDR
1931//      move area ]
1932//    (possible EBP)
1933//    ESI
1934//    EDI
1935//    local1 ..
1936
1937/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
1938/// for a 16 byte align requirement.
1939unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
1940                                                        SelectionDAG& DAG) {
1941  MachineFunction &MF = DAG.getMachineFunction();
1942  const TargetMachine &TM = MF.getTarget();
1943  const TargetFrameInfo &TFI = *TM.getFrameInfo();
1944  unsigned StackAlignment = TFI.getStackAlignment();
1945  uint64_t AlignMask = StackAlignment - 1;
1946  int64_t Offset = StackSize;
1947  uint64_t SlotSize = TD->getPointerSize();
1948  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
1949    // Number smaller than 12 so just add the difference.
1950    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
1951  } else {
1952    // Mask out lower bits, add stackalignment once plus the 12 bytes.
1953    Offset = ((~AlignMask) & Offset) + StackAlignment +
1954      (StackAlignment-SlotSize);
1955  }
1956  return Offset;
1957}
1958
1959/// IsEligibleForTailCallElimination - Check to see whether the next instruction
1960/// following the call is a return. A function is eligible if caller/callee
1961/// calling conventions match, currently only fastcc supports tail calls, and
1962/// the function CALL is immediatly followed by a RET.
1963bool X86TargetLowering::IsEligibleForTailCallOptimization(CallSDNode *TheCall,
1964                                                      SDValue Ret,
1965                                                      SelectionDAG& DAG) const {
1966  if (!PerformTailCallOpt)
1967    return false;
1968
1969  if (CheckTailCallReturnConstraints(TheCall, Ret)) {
1970    MachineFunction &MF = DAG.getMachineFunction();
1971    unsigned CallerCC = MF.getFunction()->getCallingConv();
1972    unsigned CalleeCC= TheCall->getCallingConv();
1973    if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
1974      SDValue Callee = TheCall->getCallee();
1975      // On x86/32Bit PIC/GOT  tail calls are supported.
1976      if (getTargetMachine().getRelocationModel() != Reloc::PIC_ ||
1977          !Subtarget->isPICStyleGOT()|| !Subtarget->is64Bit())
1978        return true;
1979
1980      // Can only do local tail calls (in same module, hidden or protected) on
1981      // x86_64 PIC/GOT at the moment.
1982      if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1983        return G->getGlobal()->hasHiddenVisibility()
1984            || G->getGlobal()->hasProtectedVisibility();
1985    }
1986  }
1987
1988  return false;
1989}
1990
1991FastISel *
1992X86TargetLowering::createFastISel(MachineFunction &mf,
1993                                  MachineModuleInfo *mmo,
1994                                  DwarfWriter *dw,
1995                                  DenseMap<const Value *, unsigned> &vm,
1996                                  DenseMap<const BasicBlock *,
1997                                           MachineBasicBlock *> &bm,
1998                                  DenseMap<const AllocaInst *, int> &am
1999#ifndef NDEBUG
2000                                  , SmallSet<Instruction*, 8> &cil
2001#endif
2002                                  ) {
2003  return X86::createFastISel(mf, mmo, dw, vm, bm, am
2004#ifndef NDEBUG
2005                             , cil
2006#endif
2007                             );
2008}
2009
2010
2011//===----------------------------------------------------------------------===//
2012//                           Other Lowering Hooks
2013//===----------------------------------------------------------------------===//
2014
2015
2016SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
2017  MachineFunction &MF = DAG.getMachineFunction();
2018  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2019  int ReturnAddrIndex = FuncInfo->getRAIndex();
2020
2021  if (ReturnAddrIndex == 0) {
2022    // Set up a frame object for the return address.
2023    uint64_t SlotSize = TD->getPointerSize();
2024    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize);
2025    FuncInfo->setRAIndex(ReturnAddrIndex);
2026  }
2027
2028  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2029}
2030
2031
2032/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2033/// specific condition code, returning the condition code and the LHS/RHS of the
2034/// comparison to make.
2035static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2036                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2037  if (!isFP) {
2038    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2039      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2040        // X > -1   -> X == 0, jump !sign.
2041        RHS = DAG.getConstant(0, RHS.getValueType());
2042        return X86::COND_NS;
2043      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2044        // X < 0   -> X == 0, jump on sign.
2045        return X86::COND_S;
2046      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2047        // X < 1   -> X <= 0
2048        RHS = DAG.getConstant(0, RHS.getValueType());
2049        return X86::COND_LE;
2050      }
2051    }
2052
2053    switch (SetCCOpcode) {
2054    default: assert(0 && "Invalid integer condition!");
2055    case ISD::SETEQ:  return X86::COND_E;
2056    case ISD::SETGT:  return X86::COND_G;
2057    case ISD::SETGE:  return X86::COND_GE;
2058    case ISD::SETLT:  return X86::COND_L;
2059    case ISD::SETLE:  return X86::COND_LE;
2060    case ISD::SETNE:  return X86::COND_NE;
2061    case ISD::SETULT: return X86::COND_B;
2062    case ISD::SETUGT: return X86::COND_A;
2063    case ISD::SETULE: return X86::COND_BE;
2064    case ISD::SETUGE: return X86::COND_AE;
2065    }
2066  }
2067
2068  // First determine if it is required or is profitable to flip the operands.
2069
2070  // If LHS is a foldable load, but RHS is not, flip the condition.
2071  if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
2072      !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
2073    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2074    std::swap(LHS, RHS);
2075  }
2076
2077  switch (SetCCOpcode) {
2078  default: break;
2079  case ISD::SETOLT:
2080  case ISD::SETOLE:
2081  case ISD::SETUGT:
2082  case ISD::SETUGE:
2083    std::swap(LHS, RHS);
2084    break;
2085  }
2086
2087  // On a floating point condition, the flags are set as follows:
2088  // ZF  PF  CF   op
2089  //  0 | 0 | 0 | X > Y
2090  //  0 | 0 | 1 | X < Y
2091  //  1 | 0 | 0 | X == Y
2092  //  1 | 1 | 1 | unordered
2093  switch (SetCCOpcode) {
2094  default: assert(0 && "Condcode should be pre-legalized away");
2095  case ISD::SETUEQ:
2096  case ISD::SETEQ:   return X86::COND_E;
2097  case ISD::SETOLT:              // flipped
2098  case ISD::SETOGT:
2099  case ISD::SETGT:   return X86::COND_A;
2100  case ISD::SETOLE:              // flipped
2101  case ISD::SETOGE:
2102  case ISD::SETGE:   return X86::COND_AE;
2103  case ISD::SETUGT:              // flipped
2104  case ISD::SETULT:
2105  case ISD::SETLT:   return X86::COND_B;
2106  case ISD::SETUGE:              // flipped
2107  case ISD::SETULE:
2108  case ISD::SETLE:   return X86::COND_BE;
2109  case ISD::SETONE:
2110  case ISD::SETNE:   return X86::COND_NE;
2111  case ISD::SETUO:   return X86::COND_P;
2112  case ISD::SETO:    return X86::COND_NP;
2113  }
2114}
2115
2116/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2117/// code. Current x86 isa includes the following FP cmov instructions:
2118/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2119static bool hasFPCMov(unsigned X86CC) {
2120  switch (X86CC) {
2121  default:
2122    return false;
2123  case X86::COND_B:
2124  case X86::COND_BE:
2125  case X86::COND_E:
2126  case X86::COND_P:
2127  case X86::COND_A:
2128  case X86::COND_AE:
2129  case X86::COND_NE:
2130  case X86::COND_NP:
2131    return true;
2132  }
2133}
2134
2135/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode.  Return
2136/// true if Op is undef or if its value falls within the specified range (L, H].
2137static bool isUndefOrInRange(SDValue Op, unsigned Low, unsigned Hi) {
2138  if (Op.getOpcode() == ISD::UNDEF)
2139    return true;
2140
2141  unsigned Val = cast<ConstantSDNode>(Op)->getZExtValue();
2142  return (Val >= Low && Val < Hi);
2143}
2144
2145/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode.  Return
2146/// true if Op is undef or if its value equal to the specified value.
2147static bool isUndefOrEqual(SDValue Op, unsigned Val) {
2148  if (Op.getOpcode() == ISD::UNDEF)
2149    return true;
2150  return cast<ConstantSDNode>(Op)->getZExtValue() == Val;
2151}
2152
2153/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
2154/// specifies a shuffle of elements that is suitable for input to PSHUFD.
2155bool X86::isPSHUFDMask(SDNode *N) {
2156  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2157
2158  if (N->getNumOperands() != 2 && N->getNumOperands() != 4)
2159    return false;
2160
2161  // Check if the value doesn't reference the second vector.
2162  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2163    SDValue Arg = N->getOperand(i);
2164    if (Arg.getOpcode() == ISD::UNDEF) continue;
2165    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2166    if (cast<ConstantSDNode>(Arg)->getZExtValue() >= e)
2167      return false;
2168  }
2169
2170  return true;
2171}
2172
2173/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
2174/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
2175bool X86::isPSHUFHWMask(SDNode *N) {
2176  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2177
2178  if (N->getNumOperands() != 8)
2179    return false;
2180
2181  // Lower quadword copied in order.
2182  for (unsigned i = 0; i != 4; ++i) {
2183    SDValue Arg = N->getOperand(i);
2184    if (Arg.getOpcode() == ISD::UNDEF) continue;
2185    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2186    if (cast<ConstantSDNode>(Arg)->getZExtValue() != i)
2187      return false;
2188  }
2189
2190  // Upper quadword shuffled.
2191  for (unsigned i = 4; i != 8; ++i) {
2192    SDValue Arg = N->getOperand(i);
2193    if (Arg.getOpcode() == ISD::UNDEF) continue;
2194    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2195    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2196    if (Val < 4 || Val > 7)
2197      return false;
2198  }
2199
2200  return true;
2201}
2202
2203/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
2204/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
2205bool X86::isPSHUFLWMask(SDNode *N) {
2206  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2207
2208  if (N->getNumOperands() != 8)
2209    return false;
2210
2211  // Upper quadword copied in order.
2212  for (unsigned i = 4; i != 8; ++i)
2213    if (!isUndefOrEqual(N->getOperand(i), i))
2214      return false;
2215
2216  // Lower quadword shuffled.
2217  for (unsigned i = 0; i != 4; ++i)
2218    if (!isUndefOrInRange(N->getOperand(i), 0, 4))
2219      return false;
2220
2221  return true;
2222}
2223
2224/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2225/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2226template<class SDOperand>
2227static bool isSHUFPMask(SDOperand *Elems, unsigned NumElems) {
2228  if (NumElems != 2 && NumElems != 4) return false;
2229
2230  unsigned Half = NumElems / 2;
2231  for (unsigned i = 0; i < Half; ++i)
2232    if (!isUndefOrInRange(Elems[i], 0, NumElems))
2233      return false;
2234  for (unsigned i = Half; i < NumElems; ++i)
2235    if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2))
2236      return false;
2237
2238  return true;
2239}
2240
2241bool X86::isSHUFPMask(SDNode *N) {
2242  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2243  return ::isSHUFPMask(N->op_begin(), N->getNumOperands());
2244}
2245
2246/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2247/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2248/// half elements to come from vector 1 (which would equal the dest.) and
2249/// the upper half to come from vector 2.
2250template<class SDOperand>
2251static bool isCommutedSHUFP(SDOperand *Ops, unsigned NumOps) {
2252  if (NumOps != 2 && NumOps != 4) return false;
2253
2254  unsigned Half = NumOps / 2;
2255  for (unsigned i = 0; i < Half; ++i)
2256    if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2))
2257      return false;
2258  for (unsigned i = Half; i < NumOps; ++i)
2259    if (!isUndefOrInRange(Ops[i], 0, NumOps))
2260      return false;
2261  return true;
2262}
2263
2264static bool isCommutedSHUFP(SDNode *N) {
2265  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2266  return isCommutedSHUFP(N->op_begin(), N->getNumOperands());
2267}
2268
2269/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2270/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2271bool X86::isMOVHLPSMask(SDNode *N) {
2272  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2273
2274  if (N->getNumOperands() != 4)
2275    return false;
2276
2277  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2278  return isUndefOrEqual(N->getOperand(0), 6) &&
2279         isUndefOrEqual(N->getOperand(1), 7) &&
2280         isUndefOrEqual(N->getOperand(2), 2) &&
2281         isUndefOrEqual(N->getOperand(3), 3);
2282}
2283
2284/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2285/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2286/// <2, 3, 2, 3>
2287bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
2288  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2289
2290  if (N->getNumOperands() != 4)
2291    return false;
2292
2293  // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
2294  return isUndefOrEqual(N->getOperand(0), 2) &&
2295         isUndefOrEqual(N->getOperand(1), 3) &&
2296         isUndefOrEqual(N->getOperand(2), 2) &&
2297         isUndefOrEqual(N->getOperand(3), 3);
2298}
2299
2300/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2301/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2302bool X86::isMOVLPMask(SDNode *N) {
2303  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2304
2305  unsigned NumElems = N->getNumOperands();
2306  if (NumElems != 2 && NumElems != 4)
2307    return false;
2308
2309  for (unsigned i = 0; i < NumElems/2; ++i)
2310    if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
2311      return false;
2312
2313  for (unsigned i = NumElems/2; i < NumElems; ++i)
2314    if (!isUndefOrEqual(N->getOperand(i), i))
2315      return false;
2316
2317  return true;
2318}
2319
2320/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
2321/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
2322/// and MOVLHPS.
2323bool X86::isMOVHPMask(SDNode *N) {
2324  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2325
2326  unsigned NumElems = N->getNumOperands();
2327  if (NumElems != 2 && NumElems != 4)
2328    return false;
2329
2330  for (unsigned i = 0; i < NumElems/2; ++i)
2331    if (!isUndefOrEqual(N->getOperand(i), i))
2332      return false;
2333
2334  for (unsigned i = 0; i < NumElems/2; ++i) {
2335    SDValue Arg = N->getOperand(i + NumElems/2);
2336    if (!isUndefOrEqual(Arg, i + NumElems))
2337      return false;
2338  }
2339
2340  return true;
2341}
2342
2343/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2344/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2345template<class SDOperand>
2346bool static isUNPCKLMask(SDOperand *Elts, unsigned NumElts,
2347                         bool V2IsSplat = false) {
2348  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2349    return false;
2350
2351  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2352    SDValue BitI  = Elts[i];
2353    SDValue BitI1 = Elts[i+1];
2354    if (!isUndefOrEqual(BitI, j))
2355      return false;
2356    if (V2IsSplat) {
2357      if (!isUndefOrEqual(BitI1, NumElts))
2358        return false;
2359    } else {
2360      if (!isUndefOrEqual(BitI1, j + NumElts))
2361        return false;
2362    }
2363  }
2364
2365  return true;
2366}
2367
2368bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
2369  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2370  return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2371}
2372
2373/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2374/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2375template<class SDOperand>
2376bool static isUNPCKHMask(SDOperand *Elts, unsigned NumElts,
2377                         bool V2IsSplat = false) {
2378  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2379    return false;
2380
2381  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2382    SDValue BitI  = Elts[i];
2383    SDValue BitI1 = Elts[i+1];
2384    if (!isUndefOrEqual(BitI, j + NumElts/2))
2385      return false;
2386    if (V2IsSplat) {
2387      if (isUndefOrEqual(BitI1, NumElts))
2388        return false;
2389    } else {
2390      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2391        return false;
2392    }
2393  }
2394
2395  return true;
2396}
2397
2398bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
2399  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2400  return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2401}
2402
2403/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2404/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2405/// <0, 0, 1, 1>
2406bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
2407  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2408
2409  unsigned NumElems = N->getNumOperands();
2410  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2411    return false;
2412
2413  for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
2414    SDValue BitI  = N->getOperand(i);
2415    SDValue BitI1 = N->getOperand(i+1);
2416
2417    if (!isUndefOrEqual(BitI, j))
2418      return false;
2419    if (!isUndefOrEqual(BitI1, j))
2420      return false;
2421  }
2422
2423  return true;
2424}
2425
2426/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2427/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2428/// <2, 2, 3, 3>
2429bool X86::isUNPCKH_v_undef_Mask(SDNode *N) {
2430  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2431
2432  unsigned NumElems = N->getNumOperands();
2433  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2434    return false;
2435
2436  for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2437    SDValue BitI  = N->getOperand(i);
2438    SDValue BitI1 = N->getOperand(i + 1);
2439
2440    if (!isUndefOrEqual(BitI, j))
2441      return false;
2442    if (!isUndefOrEqual(BitI1, j))
2443      return false;
2444  }
2445
2446  return true;
2447}
2448
2449/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2450/// specifies a shuffle of elements that is suitable for input to MOVSS,
2451/// MOVSD, and MOVD, i.e. setting the lowest element.
2452template<class SDOperand>
2453static bool isMOVLMask(SDOperand *Elts, unsigned NumElts) {
2454  if (NumElts != 2 && NumElts != 4)
2455    return false;
2456
2457  if (!isUndefOrEqual(Elts[0], NumElts))
2458    return false;
2459
2460  for (unsigned i = 1; i < NumElts; ++i) {
2461    if (!isUndefOrEqual(Elts[i], i))
2462      return false;
2463  }
2464
2465  return true;
2466}
2467
2468bool X86::isMOVLMask(SDNode *N) {
2469  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2470  return ::isMOVLMask(N->op_begin(), N->getNumOperands());
2471}
2472
2473/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2474/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
2475/// element of vector 2 and the other elements to come from vector 1 in order.
2476template<class SDOperand>
2477static bool isCommutedMOVL(SDOperand *Ops, unsigned NumOps,
2478                           bool V2IsSplat = false,
2479                           bool V2IsUndef = false) {
2480  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2481    return false;
2482
2483  if (!isUndefOrEqual(Ops[0], 0))
2484    return false;
2485
2486  for (unsigned i = 1; i < NumOps; ++i) {
2487    SDValue Arg = Ops[i];
2488    if (!(isUndefOrEqual(Arg, i+NumOps) ||
2489          (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) ||
2490          (V2IsSplat && isUndefOrEqual(Arg, NumOps))))
2491      return false;
2492  }
2493
2494  return true;
2495}
2496
2497static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
2498                           bool V2IsUndef = false) {
2499  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2500  return isCommutedMOVL(N->op_begin(), N->getNumOperands(),
2501                        V2IsSplat, V2IsUndef);
2502}
2503
2504/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2505/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2506bool X86::isMOVSHDUPMask(SDNode *N) {
2507  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2508
2509  if (N->getNumOperands() != 4)
2510    return false;
2511
2512  // Expect 1, 1, 3, 3
2513  for (unsigned i = 0; i < 2; ++i) {
2514    SDValue Arg = N->getOperand(i);
2515    if (Arg.getOpcode() == ISD::UNDEF) continue;
2516    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2517    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2518    if (Val != 1) return false;
2519  }
2520
2521  bool HasHi = false;
2522  for (unsigned i = 2; i < 4; ++i) {
2523    SDValue Arg = N->getOperand(i);
2524    if (Arg.getOpcode() == ISD::UNDEF) continue;
2525    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2526    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2527    if (Val != 3) return false;
2528    HasHi = true;
2529  }
2530
2531  // Don't use movshdup if it can be done with a shufps.
2532  return HasHi;
2533}
2534
2535/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2536/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2537bool X86::isMOVSLDUPMask(SDNode *N) {
2538  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2539
2540  if (N->getNumOperands() != 4)
2541    return false;
2542
2543  // Expect 0, 0, 2, 2
2544  for (unsigned i = 0; i < 2; ++i) {
2545    SDValue Arg = N->getOperand(i);
2546    if (Arg.getOpcode() == ISD::UNDEF) continue;
2547    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2548    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2549    if (Val != 0) return false;
2550  }
2551
2552  bool HasHi = false;
2553  for (unsigned i = 2; i < 4; ++i) {
2554    SDValue Arg = N->getOperand(i);
2555    if (Arg.getOpcode() == ISD::UNDEF) continue;
2556    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2557    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2558    if (Val != 2) return false;
2559    HasHi = true;
2560  }
2561
2562  // Don't use movshdup if it can be done with a shufps.
2563  return HasHi;
2564}
2565
2566/// isIdentityMask - Return true if the specified VECTOR_SHUFFLE operand
2567/// specifies a identity operation on the LHS or RHS.
2568static bool isIdentityMask(SDNode *N, bool RHS = false) {
2569  unsigned NumElems = N->getNumOperands();
2570  for (unsigned i = 0; i < NumElems; ++i)
2571    if (!isUndefOrEqual(N->getOperand(i), i + (RHS ? NumElems : 0)))
2572      return false;
2573  return true;
2574}
2575
2576/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2577/// a splat of a single element.
2578static bool isSplatMask(SDNode *N) {
2579  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2580
2581  // This is a splat operation if each element of the permute is the same, and
2582  // if the value doesn't reference the second vector.
2583  unsigned NumElems = N->getNumOperands();
2584  SDValue ElementBase;
2585  unsigned i = 0;
2586  for (; i != NumElems; ++i) {
2587    SDValue Elt = N->getOperand(i);
2588    if (isa<ConstantSDNode>(Elt)) {
2589      ElementBase = Elt;
2590      break;
2591    }
2592  }
2593
2594  if (!ElementBase.getNode())
2595    return false;
2596
2597  for (; i != NumElems; ++i) {
2598    SDValue Arg = N->getOperand(i);
2599    if (Arg.getOpcode() == ISD::UNDEF) continue;
2600    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2601    if (Arg != ElementBase) return false;
2602  }
2603
2604  // Make sure it is a splat of the first vector operand.
2605  return cast<ConstantSDNode>(ElementBase)->getZExtValue() < NumElems;
2606}
2607
2608/// getSplatMaskEltNo - Given a splat mask, return the index to the element
2609/// we want to splat.
2610static SDValue getSplatMaskEltNo(SDNode *N) {
2611  assert(isSplatMask(N) && "Not a splat mask");
2612  unsigned NumElems = N->getNumOperands();
2613  SDValue ElementBase;
2614  unsigned i = 0;
2615  for (; i != NumElems; ++i) {
2616    SDValue Elt = N->getOperand(i);
2617    if (isa<ConstantSDNode>(Elt))
2618      return Elt;
2619  }
2620  assert(0 && " No splat value found!");
2621  return SDValue();
2622}
2623
2624
2625/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2626/// a splat of a single element and it's a 2 or 4 element mask.
2627bool X86::isSplatMask(SDNode *N) {
2628  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2629
2630  // We can only splat 64-bit, and 32-bit quantities with a single instruction.
2631  if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
2632    return false;
2633  return ::isSplatMask(N);
2634}
2635
2636/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
2637/// specifies a splat of zero element.
2638bool X86::isSplatLoMask(SDNode *N) {
2639  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2640
2641  for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
2642    if (!isUndefOrEqual(N->getOperand(i), 0))
2643      return false;
2644  return true;
2645}
2646
2647/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2648/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
2649bool X86::isMOVDDUPMask(SDNode *N) {
2650  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2651
2652  unsigned e = N->getNumOperands() / 2;
2653  for (unsigned i = 0; i < e; ++i)
2654    if (!isUndefOrEqual(N->getOperand(i), i))
2655      return false;
2656  for (unsigned i = 0; i < e; ++i)
2657    if (!isUndefOrEqual(N->getOperand(e+i), i))
2658      return false;
2659  return true;
2660}
2661
2662/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2663/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2664/// instructions.
2665unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2666  unsigned NumOperands = N->getNumOperands();
2667  unsigned Shift = (NumOperands == 4) ? 2 : 1;
2668  unsigned Mask = 0;
2669  for (unsigned i = 0; i < NumOperands; ++i) {
2670    unsigned Val = 0;
2671    SDValue Arg = N->getOperand(NumOperands-i-1);
2672    if (Arg.getOpcode() != ISD::UNDEF)
2673      Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2674    if (Val >= NumOperands) Val -= NumOperands;
2675    Mask |= Val;
2676    if (i != NumOperands - 1)
2677      Mask <<= Shift;
2678  }
2679
2680  return Mask;
2681}
2682
2683/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2684/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2685/// instructions.
2686unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2687  unsigned Mask = 0;
2688  // 8 nodes, but we only care about the last 4.
2689  for (unsigned i = 7; i >= 4; --i) {
2690    unsigned Val = 0;
2691    SDValue Arg = N->getOperand(i);
2692    if (Arg.getOpcode() != ISD::UNDEF) {
2693      Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2694      Mask |= (Val - 4);
2695    }
2696    if (i != 4)
2697      Mask <<= 2;
2698  }
2699
2700  return Mask;
2701}
2702
2703/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2704/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2705/// instructions.
2706unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2707  unsigned Mask = 0;
2708  // 8 nodes, but we only care about the first 4.
2709  for (int i = 3; i >= 0; --i) {
2710    unsigned Val = 0;
2711    SDValue Arg = N->getOperand(i);
2712    if (Arg.getOpcode() != ISD::UNDEF)
2713      Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2714    Mask |= Val;
2715    if (i != 0)
2716      Mask <<= 2;
2717  }
2718
2719  return Mask;
2720}
2721
2722/// CommuteVectorShuffle - Swap vector_shuffle operands as well as
2723/// values in ther permute mask.
2724static SDValue CommuteVectorShuffle(SDValue Op, SDValue &V1,
2725                                      SDValue &V2, SDValue &Mask,
2726                                      SelectionDAG &DAG) {
2727  MVT VT = Op.getValueType();
2728  MVT MaskVT = Mask.getValueType();
2729  MVT EltVT = MaskVT.getVectorElementType();
2730  unsigned NumElems = Mask.getNumOperands();
2731  SmallVector<SDValue, 8> MaskVec;
2732  DebugLoc dl = Op.getDebugLoc();
2733
2734  for (unsigned i = 0; i != NumElems; ++i) {
2735    SDValue Arg = Mask.getOperand(i);
2736    if (Arg.getOpcode() == ISD::UNDEF) {
2737      MaskVec.push_back(DAG.getUNDEF(EltVT));
2738      continue;
2739    }
2740    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2741    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2742    if (Val < NumElems)
2743      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2744    else
2745      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2746  }
2747
2748  std::swap(V1, V2);
2749  Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT, &MaskVec[0], NumElems);
2750  return DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, V1, V2, Mask);
2751}
2752
2753/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
2754/// the two vector operands have swapped position.
2755static
2756SDValue CommuteVectorShuffleMask(SDValue Mask, SelectionDAG &DAG, DebugLoc dl) {
2757  MVT MaskVT = Mask.getValueType();
2758  MVT EltVT = MaskVT.getVectorElementType();
2759  unsigned NumElems = Mask.getNumOperands();
2760  SmallVector<SDValue, 8> MaskVec;
2761  for (unsigned i = 0; i != NumElems; ++i) {
2762    SDValue Arg = Mask.getOperand(i);
2763    if (Arg.getOpcode() == ISD::UNDEF) {
2764      MaskVec.push_back(DAG.getUNDEF(EltVT));
2765      continue;
2766    }
2767    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2768    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2769    if (Val < NumElems)
2770      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2771    else
2772      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2773  }
2774  return DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT, &MaskVec[0], NumElems);
2775}
2776
2777
2778/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2779/// match movhlps. The lower half elements should come from upper half of
2780/// V1 (and in order), and the upper half elements should come from the upper
2781/// half of V2 (and in order).
2782static bool ShouldXformToMOVHLPS(SDNode *Mask) {
2783  unsigned NumElems = Mask->getNumOperands();
2784  if (NumElems != 4)
2785    return false;
2786  for (unsigned i = 0, e = 2; i != e; ++i)
2787    if (!isUndefOrEqual(Mask->getOperand(i), i+2))
2788      return false;
2789  for (unsigned i = 2; i != 4; ++i)
2790    if (!isUndefOrEqual(Mask->getOperand(i), i+4))
2791      return false;
2792  return true;
2793}
2794
2795/// isScalarLoadToVector - Returns true if the node is a scalar load that
2796/// is promoted to a vector. It also returns the LoadSDNode by reference if
2797/// required.
2798static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
2799  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
2800    return false;
2801  N = N->getOperand(0).getNode();
2802  if (!ISD::isNON_EXTLoad(N))
2803    return false;
2804  if (LD)
2805    *LD = cast<LoadSDNode>(N);
2806  return true;
2807}
2808
2809/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2810/// match movlp{s|d}. The lower half elements should come from lower half of
2811/// V1 (and in order), and the upper half elements should come from the upper
2812/// half of V2 (and in order). And since V1 will become the source of the
2813/// MOVLP, it must be either a vector load or a scalar load to vector.
2814static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
2815  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2816    return false;
2817  // Is V2 is a vector load, don't do this transformation. We will try to use
2818  // load folding shufps op.
2819  if (ISD::isNON_EXTLoad(V2))
2820    return false;
2821
2822  unsigned NumElems = Mask->getNumOperands();
2823  if (NumElems != 2 && NumElems != 4)
2824    return false;
2825  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2826    if (!isUndefOrEqual(Mask->getOperand(i), i))
2827      return false;
2828  for (unsigned i = NumElems/2; i != NumElems; ++i)
2829    if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
2830      return false;
2831  return true;
2832}
2833
2834/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2835/// all the same.
2836static bool isSplatVector(SDNode *N) {
2837  if (N->getOpcode() != ISD::BUILD_VECTOR)
2838    return false;
2839
2840  SDValue SplatValue = N->getOperand(0);
2841  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2842    if (N->getOperand(i) != SplatValue)
2843      return false;
2844  return true;
2845}
2846
2847/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2848/// to an undef.
2849static bool isUndefShuffle(SDNode *N) {
2850  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2851    return false;
2852
2853  SDValue V1 = N->getOperand(0);
2854  SDValue V2 = N->getOperand(1);
2855  SDValue Mask = N->getOperand(2);
2856  unsigned NumElems = Mask.getNumOperands();
2857  for (unsigned i = 0; i != NumElems; ++i) {
2858    SDValue Arg = Mask.getOperand(i);
2859    if (Arg.getOpcode() != ISD::UNDEF) {
2860      unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2861      if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
2862        return false;
2863      else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
2864        return false;
2865    }
2866  }
2867  return true;
2868}
2869
2870/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2871/// constant +0.0.
2872static inline bool isZeroNode(SDValue Elt) {
2873  return ((isa<ConstantSDNode>(Elt) &&
2874           cast<ConstantSDNode>(Elt)->getZExtValue() == 0) ||
2875          (isa<ConstantFPSDNode>(Elt) &&
2876           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
2877}
2878
2879/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2880/// to an zero vector.
2881static bool isZeroShuffle(SDNode *N) {
2882  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2883    return false;
2884
2885  SDValue V1 = N->getOperand(0);
2886  SDValue V2 = N->getOperand(1);
2887  SDValue Mask = N->getOperand(2);
2888  unsigned NumElems = Mask.getNumOperands();
2889  for (unsigned i = 0; i != NumElems; ++i) {
2890    SDValue Arg = Mask.getOperand(i);
2891    if (Arg.getOpcode() == ISD::UNDEF)
2892      continue;
2893
2894    unsigned Idx = cast<ConstantSDNode>(Arg)->getZExtValue();
2895    if (Idx < NumElems) {
2896      unsigned Opc = V1.getNode()->getOpcode();
2897      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
2898        continue;
2899      if (Opc != ISD::BUILD_VECTOR ||
2900          !isZeroNode(V1.getNode()->getOperand(Idx)))
2901        return false;
2902    } else if (Idx >= NumElems) {
2903      unsigned Opc = V2.getNode()->getOpcode();
2904      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
2905        continue;
2906      if (Opc != ISD::BUILD_VECTOR ||
2907          !isZeroNode(V2.getNode()->getOperand(Idx - NumElems)))
2908        return false;
2909    }
2910  }
2911  return true;
2912}
2913
2914/// getZeroVector - Returns a vector of specified type with all zero elements.
2915///
2916static SDValue getZeroVector(MVT VT, bool HasSSE2, SelectionDAG &DAG,
2917                             DebugLoc dl) {
2918  assert(VT.isVector() && "Expected a vector type");
2919
2920  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2921  // type.  This ensures they get CSE'd.
2922  SDValue Vec;
2923  if (VT.getSizeInBits() == 64) { // MMX
2924    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
2925    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
2926  } else if (HasSSE2) {  // SSE2
2927    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
2928    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
2929  } else { // SSE1
2930    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
2931    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
2932  }
2933  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
2934}
2935
2936/// getOnesVector - Returns a vector of specified type with all bits set.
2937///
2938static SDValue getOnesVector(MVT VT, SelectionDAG &DAG, DebugLoc dl) {
2939  assert(VT.isVector() && "Expected a vector type");
2940
2941  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2942  // type.  This ensures they get CSE'd.
2943  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
2944  SDValue Vec;
2945  if (VT.getSizeInBits() == 64)  // MMX
2946    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
2947  else                                              // SSE
2948    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
2949  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
2950}
2951
2952
2953/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2954/// that point to V2 points to its first element.
2955static SDValue NormalizeMask(SDValue Mask, SelectionDAG &DAG) {
2956  assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
2957
2958  bool Changed = false;
2959  SmallVector<SDValue, 8> MaskVec;
2960  unsigned NumElems = Mask.getNumOperands();
2961  for (unsigned i = 0; i != NumElems; ++i) {
2962    SDValue Arg = Mask.getOperand(i);
2963    if (Arg.getOpcode() != ISD::UNDEF) {
2964      unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2965      if (Val > NumElems) {
2966        Arg = DAG.getConstant(NumElems, Arg.getValueType());
2967        Changed = true;
2968      }
2969    }
2970    MaskVec.push_back(Arg);
2971  }
2972
2973  if (Changed)
2974    Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getDebugLoc(),
2975                       Mask.getValueType(),
2976                       &MaskVec[0], MaskVec.size());
2977  return Mask;
2978}
2979
2980/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2981/// operation of specified width.
2982static SDValue getMOVLMask(unsigned NumElems, SelectionDAG &DAG, DebugLoc dl) {
2983  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2984  MVT BaseVT = MaskVT.getVectorElementType();
2985
2986  SmallVector<SDValue, 8> MaskVec;
2987  MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
2988  for (unsigned i = 1; i != NumElems; ++i)
2989    MaskVec.push_back(DAG.getConstant(i, BaseVT));
2990  return DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT,
2991                     &MaskVec[0], MaskVec.size());
2992}
2993
2994/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
2995/// of specified width.
2996static SDValue getUnpacklMask(unsigned NumElems, SelectionDAG &DAG,
2997                              DebugLoc dl) {
2998  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2999  MVT BaseVT = MaskVT.getVectorElementType();
3000  SmallVector<SDValue, 8> MaskVec;
3001  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3002    MaskVec.push_back(DAG.getConstant(i,            BaseVT));
3003    MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
3004  }
3005  return DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT,
3006                     &MaskVec[0], MaskVec.size());
3007}
3008
3009/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
3010/// of specified width.
3011static SDValue getUnpackhMask(unsigned NumElems, SelectionDAG &DAG,
3012                              DebugLoc dl) {
3013  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3014  MVT BaseVT = MaskVT.getVectorElementType();
3015  unsigned Half = NumElems/2;
3016  SmallVector<SDValue, 8> MaskVec;
3017  for (unsigned i = 0; i != Half; ++i) {
3018    MaskVec.push_back(DAG.getConstant(i + Half,            BaseVT));
3019    MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
3020  }
3021  return DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT,
3022                     &MaskVec[0], MaskVec.size());
3023}
3024
3025/// getSwapEltZeroMask - Returns a vector_shuffle mask for a shuffle that swaps
3026/// element #0 of a vector with the specified index, leaving the rest of the
3027/// elements in place.
3028static SDValue getSwapEltZeroMask(unsigned NumElems, unsigned DestElt,
3029                                   SelectionDAG &DAG, DebugLoc dl) {
3030  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3031  MVT BaseVT = MaskVT.getVectorElementType();
3032  SmallVector<SDValue, 8> MaskVec;
3033  // Element #0 of the result gets the elt we are replacing.
3034  MaskVec.push_back(DAG.getConstant(DestElt, BaseVT));
3035  for (unsigned i = 1; i != NumElems; ++i)
3036    MaskVec.push_back(DAG.getConstant(i == DestElt ? 0 : i, BaseVT));
3037  return DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT,
3038                     &MaskVec[0], MaskVec.size());
3039}
3040
3041/// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32.
3042static SDValue PromoteSplat(SDValue Op, SelectionDAG &DAG, bool HasSSE2) {
3043  MVT PVT = HasSSE2 ? MVT::v4i32 : MVT::v4f32;
3044  MVT VT = Op.getValueType();
3045  if (PVT == VT)
3046    return Op;
3047  SDValue V1 = Op.getOperand(0);
3048  SDValue Mask = Op.getOperand(2);
3049  unsigned MaskNumElems = Mask.getNumOperands();
3050  unsigned NumElems = MaskNumElems;
3051  DebugLoc dl = Op.getDebugLoc();
3052  // Special handling of v4f32 -> v4i32.
3053  if (VT != MVT::v4f32) {
3054    // Find which element we want to splat.
3055    SDNode* EltNoNode = getSplatMaskEltNo(Mask.getNode()).getNode();
3056    unsigned EltNo = cast<ConstantSDNode>(EltNoNode)->getZExtValue();
3057    // unpack elements to the correct location
3058    while (NumElems > 4) {
3059      if (EltNo < NumElems/2) {
3060        Mask = getUnpacklMask(MaskNumElems, DAG, dl);
3061      } else {
3062        Mask = getUnpackhMask(MaskNumElems, DAG, dl);
3063        EltNo -= NumElems/2;
3064      }
3065      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, V1, V1, Mask);
3066      NumElems >>= 1;
3067    }
3068    SDValue Cst = DAG.getConstant(EltNo, MVT::i32);
3069    Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3070  }
3071
3072  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1);
3073  SDValue Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, PVT, V1,
3074                                  DAG.getUNDEF(PVT), Mask);
3075  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Shuffle);
3076}
3077
3078/// isVectorLoad - Returns true if the node is a vector load, a scalar
3079/// load that's promoted to vector, or a load bitcasted.
3080static bool isVectorLoad(SDValue Op) {
3081  assert(Op.getValueType().isVector() && "Expected a vector type");
3082  if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR ||
3083      Op.getOpcode() == ISD::BIT_CONVERT) {
3084    return isa<LoadSDNode>(Op.getOperand(0));
3085  }
3086  return isa<LoadSDNode>(Op);
3087}
3088
3089
3090/// CanonicalizeMovddup - Cannonicalize movddup shuffle to v2f64.
3091///
3092static SDValue CanonicalizeMovddup(SDValue Op, SDValue V1, SDValue Mask,
3093                                   SelectionDAG &DAG, bool HasSSE3) {
3094  // If we have sse3 and shuffle has more than one use or input is a load, then
3095  // use movddup. Otherwise, use movlhps.
3096  bool UseMovddup = HasSSE3 && (!Op.hasOneUse() || isVectorLoad(V1));
3097  MVT PVT = UseMovddup ? MVT::v2f64 : MVT::v4f32;
3098  MVT VT = Op.getValueType();
3099  if (VT == PVT)
3100    return Op;
3101  DebugLoc dl = Op.getDebugLoc();
3102  unsigned NumElems = PVT.getVectorNumElements();
3103  if (NumElems == 2) {
3104    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3105    Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
3106  } else {
3107    assert(NumElems == 4);
3108    SDValue Cst0 = DAG.getTargetConstant(0, MVT::i32);
3109    SDValue Cst1 = DAG.getTargetConstant(1, MVT::i32);
3110    Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
3111                       Cst0, Cst1, Cst0, Cst1);
3112  }
3113
3114  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1);
3115  SDValue Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, PVT, V1,
3116                                DAG.getUNDEF(PVT), Mask);
3117  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Shuffle);
3118}
3119
3120/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3121/// vector of zero or undef vector.  This produces a shuffle where the low
3122/// element of V2 is swizzled into the zero/undef vector, landing at element
3123/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
3124static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3125                                             bool isZero, bool HasSSE2,
3126                                             SelectionDAG &DAG) {
3127  DebugLoc dl = V2.getDebugLoc();
3128  MVT VT = V2.getValueType();
3129  SDValue V1 = isZero
3130    ? getZeroVector(VT, HasSSE2, DAG, dl) : DAG.getUNDEF(VT);
3131  unsigned NumElems = V2.getValueType().getVectorNumElements();
3132  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3133  MVT EVT = MaskVT.getVectorElementType();
3134  SmallVector<SDValue, 16> MaskVec;
3135  for (unsigned i = 0; i != NumElems; ++i)
3136    if (i == Idx)  // If this is the insertion idx, put the low elt of V2 here.
3137      MaskVec.push_back(DAG.getConstant(NumElems, EVT));
3138    else
3139      MaskVec.push_back(DAG.getConstant(i, EVT));
3140  SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT,
3141                               &MaskVec[0], MaskVec.size());
3142  return DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, V1, V2, Mask);
3143}
3144
3145/// getNumOfConsecutiveZeros - Return the number of elements in a result of
3146/// a shuffle that is zero.
3147static
3148unsigned getNumOfConsecutiveZeros(SDValue Op, SDValue Mask,
3149                                  unsigned NumElems, bool Low,
3150                                  SelectionDAG &DAG) {
3151  unsigned NumZeros = 0;
3152  for (unsigned i = 0; i < NumElems; ++i) {
3153    unsigned Index = Low ? i : NumElems-i-1;
3154    SDValue Idx = Mask.getOperand(Index);
3155    if (Idx.getOpcode() == ISD::UNDEF) {
3156      ++NumZeros;
3157      continue;
3158    }
3159    SDValue Elt = DAG.getShuffleScalarElt(Op.getNode(), Index);
3160    if (Elt.getNode() && isZeroNode(Elt))
3161      ++NumZeros;
3162    else
3163      break;
3164  }
3165  return NumZeros;
3166}
3167
3168/// isVectorShift - Returns true if the shuffle can be implemented as a
3169/// logical left or right shift of a vector.
3170static bool isVectorShift(SDValue Op, SDValue Mask, SelectionDAG &DAG,
3171                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3172  unsigned NumElems = Mask.getNumOperands();
3173
3174  isLeft = true;
3175  unsigned NumZeros= getNumOfConsecutiveZeros(Op, Mask, NumElems, true, DAG);
3176  if (!NumZeros) {
3177    isLeft = false;
3178    NumZeros = getNumOfConsecutiveZeros(Op, Mask, NumElems, false, DAG);
3179    if (!NumZeros)
3180      return false;
3181  }
3182
3183  bool SeenV1 = false;
3184  bool SeenV2 = false;
3185  for (unsigned i = NumZeros; i < NumElems; ++i) {
3186    unsigned Val = isLeft ? (i - NumZeros) : i;
3187    SDValue Idx = Mask.getOperand(isLeft ? i : (i - NumZeros));
3188    if (Idx.getOpcode() == ISD::UNDEF)
3189      continue;
3190    unsigned Index = cast<ConstantSDNode>(Idx)->getZExtValue();
3191    if (Index < NumElems)
3192      SeenV1 = true;
3193    else {
3194      Index -= NumElems;
3195      SeenV2 = true;
3196    }
3197    if (Index != Val)
3198      return false;
3199  }
3200  if (SeenV1 && SeenV2)
3201    return false;
3202
3203  ShVal = SeenV1 ? Op.getOperand(0) : Op.getOperand(1);
3204  ShAmt = NumZeros;
3205  return true;
3206}
3207
3208
3209/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3210///
3211static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
3212                                       unsigned NumNonZero, unsigned NumZero,
3213                                       SelectionDAG &DAG, TargetLowering &TLI) {
3214  if (NumNonZero > 8)
3215    return SDValue();
3216
3217  DebugLoc dl = Op.getDebugLoc();
3218  SDValue V(0, 0);
3219  bool First = true;
3220  for (unsigned i = 0; i < 16; ++i) {
3221    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3222    if (ThisIsNonZero && First) {
3223      if (NumZero)
3224        V = getZeroVector(MVT::v8i16, true, DAG, dl);
3225      else
3226        V = DAG.getUNDEF(MVT::v8i16);
3227      First = false;
3228    }
3229
3230    if ((i & 1) != 0) {
3231      SDValue ThisElt(0, 0), LastElt(0, 0);
3232      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3233      if (LastIsNonZero) {
3234        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
3235                              MVT::i16, Op.getOperand(i-1));
3236      }
3237      if (ThisIsNonZero) {
3238        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
3239        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
3240                              ThisElt, DAG.getConstant(8, MVT::i8));
3241        if (LastIsNonZero)
3242          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
3243      } else
3244        ThisElt = LastElt;
3245
3246      if (ThisElt.getNode())
3247        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
3248                        DAG.getIntPtrConstant(i/2));
3249    }
3250  }
3251
3252  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V);
3253}
3254
3255/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3256///
3257static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
3258                                       unsigned NumNonZero, unsigned NumZero,
3259                                       SelectionDAG &DAG, TargetLowering &TLI) {
3260  if (NumNonZero > 4)
3261    return SDValue();
3262
3263  DebugLoc dl = Op.getDebugLoc();
3264  SDValue V(0, 0);
3265  bool First = true;
3266  for (unsigned i = 0; i < 8; ++i) {
3267    bool isNonZero = (NonZeros & (1 << i)) != 0;
3268    if (isNonZero) {
3269      if (First) {
3270        if (NumZero)
3271          V = getZeroVector(MVT::v8i16, true, DAG, dl);
3272        else
3273          V = DAG.getUNDEF(MVT::v8i16);
3274        First = false;
3275      }
3276      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
3277                      MVT::v8i16, V, Op.getOperand(i),
3278                      DAG.getIntPtrConstant(i));
3279    }
3280  }
3281
3282  return V;
3283}
3284
3285/// getVShift - Return a vector logical shift node.
3286///
3287static SDValue getVShift(bool isLeft, MVT VT, SDValue SrcOp,
3288                           unsigned NumBits, SelectionDAG &DAG,
3289                           const TargetLowering &TLI, DebugLoc dl) {
3290  bool isMMX = VT.getSizeInBits() == 64;
3291  MVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
3292  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3293  SrcOp = DAG.getNode(ISD::BIT_CONVERT, dl, ShVT, SrcOp);
3294  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3295                     DAG.getNode(Opc, dl, ShVT, SrcOp,
3296                             DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3297}
3298
3299SDValue
3300X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
3301  DebugLoc dl = Op.getDebugLoc();
3302  // All zero's are handled with pxor, all one's are handled with pcmpeqd.
3303  if (ISD::isBuildVectorAllZeros(Op.getNode())
3304      || ISD::isBuildVectorAllOnes(Op.getNode())) {
3305    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3306    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3307    // eliminated on x86-32 hosts.
3308    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
3309      return Op;
3310
3311    if (ISD::isBuildVectorAllOnes(Op.getNode()))
3312      return getOnesVector(Op.getValueType(), DAG, dl);
3313    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
3314  }
3315
3316  MVT VT = Op.getValueType();
3317  MVT EVT = VT.getVectorElementType();
3318  unsigned EVTBits = EVT.getSizeInBits();
3319
3320  unsigned NumElems = Op.getNumOperands();
3321  unsigned NumZero  = 0;
3322  unsigned NumNonZero = 0;
3323  unsigned NonZeros = 0;
3324  bool IsAllConstants = true;
3325  SmallSet<SDValue, 8> Values;
3326  for (unsigned i = 0; i < NumElems; ++i) {
3327    SDValue Elt = Op.getOperand(i);
3328    if (Elt.getOpcode() == ISD::UNDEF)
3329      continue;
3330    Values.insert(Elt);
3331    if (Elt.getOpcode() != ISD::Constant &&
3332        Elt.getOpcode() != ISD::ConstantFP)
3333      IsAllConstants = false;
3334    if (isZeroNode(Elt))
3335      NumZero++;
3336    else {
3337      NonZeros |= (1 << i);
3338      NumNonZero++;
3339    }
3340  }
3341
3342  if (NumNonZero == 0) {
3343    // All undef vector. Return an UNDEF.  All zero vectors were handled above.
3344    return DAG.getUNDEF(VT);
3345  }
3346
3347  // Special case for single non-zero, non-undef, element.
3348  if (NumNonZero == 1 && NumElems <= 4) {
3349    unsigned Idx = CountTrailingZeros_32(NonZeros);
3350    SDValue Item = Op.getOperand(Idx);
3351
3352    // If this is an insertion of an i64 value on x86-32, and if the top bits of
3353    // the value are obviously zero, truncate the value to i32 and do the
3354    // insertion that way.  Only do this if the value is non-constant or if the
3355    // value is a constant being inserted into element 0.  It is cheaper to do
3356    // a constant pool load than it is to do a movd + shuffle.
3357    if (EVT == MVT::i64 && !Subtarget->is64Bit() &&
3358        (!IsAllConstants || Idx == 0)) {
3359      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
3360        // Handle MMX and SSE both.
3361        MVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
3362        unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
3363
3364        // Truncate the value (which may itself be a constant) to i32, and
3365        // convert it to a vector with movd (S2V+shuffle to zero extend).
3366        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
3367        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
3368        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3369                                           Subtarget->hasSSE2(), DAG);
3370
3371        // Now we have our 32-bit value zero extended in the low element of
3372        // a vector.  If Idx != 0, swizzle it into place.
3373        if (Idx != 0) {
3374          SDValue Ops[] = {
3375            Item, DAG.getUNDEF(Item.getValueType()),
3376            getSwapEltZeroMask(VecElts, Idx, DAG, dl)
3377          };
3378          Item = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VecVT, Ops, 3);
3379        }
3380        return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Item);
3381      }
3382    }
3383
3384    // If we have a constant or non-constant insertion into the low element of
3385    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3386    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
3387    // depending on what the source datatype is.  Because we can only get here
3388    // when NumElems <= 4, this only needs to handle i32/f32/i64/f64.
3389    if (Idx == 0 &&
3390        // Don't do this for i64 values on x86-32.
3391        (EVT != MVT::i64 || Subtarget->is64Bit())) {
3392      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3393      // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3394      return getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3395                                         Subtarget->hasSSE2(), DAG);
3396    }
3397
3398    // Is it a vector logical left shift?
3399    if (NumElems == 2 && Idx == 1 &&
3400        isZeroNode(Op.getOperand(0)) && !isZeroNode(Op.getOperand(1))) {
3401      unsigned NumBits = VT.getSizeInBits();
3402      return getVShift(true, VT,
3403                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
3404                                   VT, Op.getOperand(1)),
3405                       NumBits/2, DAG, *this, dl);
3406    }
3407
3408    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
3409      return SDValue();
3410
3411    // Otherwise, if this is a vector with i32 or f32 elements, and the element
3412    // is a non-constant being inserted into an element other than the low one,
3413    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
3414    // movd/movss) to move this into the low element, then shuffle it into
3415    // place.
3416    if (EVTBits == 32) {
3417      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3418
3419      // Turn it into a shuffle of zero and zero-extended scalar to vector.
3420      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3421                                         Subtarget->hasSSE2(), DAG);
3422      MVT MaskVT  = MVT::getIntVectorWithNumElements(NumElems);
3423      MVT MaskEVT = MaskVT.getVectorElementType();
3424      SmallVector<SDValue, 8> MaskVec;
3425      for (unsigned i = 0; i < NumElems; i++)
3426        MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
3427      SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT,
3428                                   &MaskVec[0], MaskVec.size());
3429      return DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, Item,
3430                         DAG.getUNDEF(VT), Mask);
3431    }
3432  }
3433
3434  // Splat is obviously ok. Let legalizer expand it to a shuffle.
3435  if (Values.size() == 1)
3436    return SDValue();
3437
3438  // A vector full of immediates; various special cases are already
3439  // handled, so this is best done with a single constant-pool load.
3440  if (IsAllConstants)
3441    return SDValue();
3442
3443  // Let legalizer expand 2-wide build_vectors.
3444  if (EVTBits == 64) {
3445    if (NumNonZero == 1) {
3446      // One half is zero or undef.
3447      unsigned Idx = CountTrailingZeros_32(NonZeros);
3448      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
3449                                 Op.getOperand(Idx));
3450      return getShuffleVectorZeroOrUndef(V2, Idx, true,
3451                                         Subtarget->hasSSE2(), DAG);
3452    }
3453    return SDValue();
3454  }
3455
3456  // If element VT is < 32 bits, convert it to inserts into a zero vector.
3457  if (EVTBits == 8 && NumElems == 16) {
3458    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3459                                        *this);
3460    if (V.getNode()) return V;
3461  }
3462
3463  if (EVTBits == 16 && NumElems == 8) {
3464    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3465                                        *this);
3466    if (V.getNode()) return V;
3467  }
3468
3469  // If element VT is == 32 bits, turn it into a number of shuffles.
3470  SmallVector<SDValue, 8> V;
3471  V.resize(NumElems);
3472  if (NumElems == 4 && NumZero > 0) {
3473    for (unsigned i = 0; i < 4; ++i) {
3474      bool isZero = !(NonZeros & (1 << i));
3475      if (isZero)
3476        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
3477      else
3478        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3479    }
3480
3481    for (unsigned i = 0; i < 2; ++i) {
3482      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3483        default: break;
3484        case 0:
3485          V[i] = V[i*2];  // Must be a zero vector.
3486          break;
3487        case 1:
3488          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, V[i*2+1], V[i*2],
3489                             getMOVLMask(NumElems, DAG, dl));
3490          break;
3491        case 2:
3492          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, V[i*2], V[i*2+1],
3493                             getMOVLMask(NumElems, DAG, dl));
3494          break;
3495        case 3:
3496          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, V[i*2], V[i*2+1],
3497                             getUnpacklMask(NumElems, DAG, dl));
3498          break;
3499      }
3500    }
3501
3502    MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3503    MVT EVT = MaskVT.getVectorElementType();
3504    SmallVector<SDValue, 8> MaskVec;
3505    bool Reverse = (NonZeros & 0x3) == 2;
3506    for (unsigned i = 0; i < 2; ++i)
3507      if (Reverse)
3508        MaskVec.push_back(DAG.getConstant(1-i, EVT));
3509      else
3510        MaskVec.push_back(DAG.getConstant(i, EVT));
3511    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3512    for (unsigned i = 0; i < 2; ++i)
3513      if (Reverse)
3514        MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
3515      else
3516        MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
3517    SDValue ShufMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT,
3518                                     &MaskVec[0], MaskVec.size());
3519    return DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, V[0], V[1], ShufMask);
3520  }
3521
3522  if (Values.size() > 2) {
3523    // Expand into a number of unpckl*.
3524    // e.g. for v4f32
3525    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3526    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3527    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
3528    SDValue UnpckMask = getUnpacklMask(NumElems, DAG, dl);
3529    for (unsigned i = 0; i < NumElems; ++i)
3530      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3531    NumElems >>= 1;
3532    while (NumElems != 0) {
3533      for (unsigned i = 0; i < NumElems; ++i)
3534        V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, V[i], V[i + NumElems],
3535                           UnpckMask);
3536      NumElems >>= 1;
3537    }
3538    return V[0];
3539  }
3540
3541  return SDValue();
3542}
3543
3544// v8i16 shuffles - Prefer shuffles in the following order:
3545// 1. [all]   pshuflw, pshufhw, optional move
3546// 2. [ssse3] 1 x pshufb
3547// 3. [ssse3] 2 x pshufb + 1 x por
3548// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
3549static
3550SDValue LowerVECTOR_SHUFFLEv8i16(SDValue V1, SDValue V2,
3551                                 SDValue PermMask, SelectionDAG &DAG,
3552                                 X86TargetLowering &TLI, DebugLoc dl) {
3553  SmallVector<SDValue, 8> MaskElts(PermMask.getNode()->op_begin(),
3554                                   PermMask.getNode()->op_end());
3555  SmallVector<int, 8> MaskVals;
3556
3557  // Determine if more than 1 of the words in each of the low and high quadwords
3558  // of the result come from the same quadword of one of the two inputs.  Undef
3559  // mask values count as coming from any quadword, for better codegen.
3560  SmallVector<unsigned, 4> LoQuad(4);
3561  SmallVector<unsigned, 4> HiQuad(4);
3562  BitVector InputQuads(4);
3563  for (unsigned i = 0; i < 8; ++i) {
3564    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
3565    SDValue Elt = MaskElts[i];
3566    int EltIdx = Elt.getOpcode() == ISD::UNDEF ? -1 :
3567                 cast<ConstantSDNode>(Elt)->getZExtValue();
3568    MaskVals.push_back(EltIdx);
3569    if (EltIdx < 0) {
3570      ++Quad[0];
3571      ++Quad[1];
3572      ++Quad[2];
3573      ++Quad[3];
3574      continue;
3575    }
3576    ++Quad[EltIdx / 4];
3577    InputQuads.set(EltIdx / 4);
3578  }
3579
3580  int BestLoQuad = -1;
3581  unsigned MaxQuad = 1;
3582  for (unsigned i = 0; i < 4; ++i) {
3583    if (LoQuad[i] > MaxQuad) {
3584      BestLoQuad = i;
3585      MaxQuad = LoQuad[i];
3586    }
3587  }
3588
3589  int BestHiQuad = -1;
3590  MaxQuad = 1;
3591  for (unsigned i = 0; i < 4; ++i) {
3592    if (HiQuad[i] > MaxQuad) {
3593      BestHiQuad = i;
3594      MaxQuad = HiQuad[i];
3595    }
3596  }
3597
3598  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
3599  // of the two input vectors, shuffle them into one input vector so only a
3600  // single pshufb instruction is necessary. If There are more than 2 input
3601  // quads, disable the next transformation since it does not help SSSE3.
3602  bool V1Used = InputQuads[0] || InputQuads[1];
3603  bool V2Used = InputQuads[2] || InputQuads[3];
3604  if (TLI.getSubtarget()->hasSSSE3()) {
3605    if (InputQuads.count() == 2 && V1Used && V2Used) {
3606      BestLoQuad = InputQuads.find_first();
3607      BestHiQuad = InputQuads.find_next(BestLoQuad);
3608    }
3609    if (InputQuads.count() > 2) {
3610      BestLoQuad = -1;
3611      BestHiQuad = -1;
3612    }
3613  }
3614
3615  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
3616  // the shuffle mask.  If a quad is scored as -1, that means that it contains
3617  // words from all 4 input quadwords.
3618  SDValue NewV;
3619  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
3620    SmallVector<SDValue,8> MaskV;
3621    MaskV.push_back(DAG.getConstant(BestLoQuad < 0 ? 0 : BestLoQuad, MVT::i64));
3622    MaskV.push_back(DAG.getConstant(BestHiQuad < 0 ? 1 : BestHiQuad, MVT::i64));
3623    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, &MaskV[0], 2);
3624
3625    NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, MVT::v2i64,
3626                     DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V1),
3627                     DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V2), Mask);
3628    NewV = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, NewV);
3629
3630    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
3631    // source words for the shuffle, to aid later transformations.
3632    bool AllWordsInNewV = true;
3633    for (unsigned i = 0; i != 8; ++i) {
3634      int idx = MaskVals[i];
3635      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
3636        continue;
3637      AllWordsInNewV = false;
3638      break;
3639    }
3640
3641    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
3642    if (AllWordsInNewV) {
3643      for (int i = 0; i != 8; ++i) {
3644        int idx = MaskVals[i];
3645        if (idx < 0)
3646          continue;
3647        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
3648        if ((idx != i) && idx < 4)
3649          pshufhw = false;
3650        if ((idx != i) && idx > 3)
3651          pshuflw = false;
3652      }
3653      V1 = NewV;
3654      V2Used = false;
3655      BestLoQuad = 0;
3656      BestHiQuad = 1;
3657    }
3658
3659    // If we've eliminated the use of V2, and the new mask is a pshuflw or
3660    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
3661    if (pshufhw || pshuflw) {
3662      MaskV.clear();
3663      for (unsigned i = 0; i != 8; ++i)
3664        MaskV.push_back((MaskVals[i] < 0) ? DAG.getUNDEF(MVT::i16)
3665                                          : DAG.getConstant(MaskVals[i],
3666                                                            MVT::i16));
3667      return DAG.getNode(ISD::VECTOR_SHUFFLE, dl, MVT::v8i16, NewV,
3668                         DAG.getUNDEF(MVT::v8i16),
3669                         DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i16,
3670                                     &MaskV[0], 8));
3671    }
3672  }
3673
3674  // If we have SSSE3, and all words of the result are from 1 input vector,
3675  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
3676  // is present, fall back to case 4.
3677  if (TLI.getSubtarget()->hasSSSE3()) {
3678    SmallVector<SDValue,16> pshufbMask;
3679
3680    // If we have elements from both input vectors, set the high bit of the
3681    // shuffle mask element to zero out elements that come from V2 in the V1
3682    // mask, and elements that come from V1 in the V2 mask, so that the two
3683    // results can be OR'd together.
3684    bool TwoInputs = V1Used && V2Used;
3685    for (unsigned i = 0; i != 8; ++i) {
3686      int EltIdx = MaskVals[i] * 2;
3687      if (TwoInputs && (EltIdx >= 16)) {
3688        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3689        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3690        continue;
3691      }
3692      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
3693      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
3694    }
3695    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V1);
3696    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
3697                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3698                                 MVT::v16i8, &pshufbMask[0], 16));
3699    if (!TwoInputs)
3700      return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
3701
3702    // Calculate the shuffle mask for the second input, shuffle it, and
3703    // OR it with the first shuffled input.
3704    pshufbMask.clear();
3705    for (unsigned i = 0; i != 8; ++i) {
3706      int EltIdx = MaskVals[i] * 2;
3707      if (EltIdx < 16) {
3708        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3709        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3710        continue;
3711      }
3712      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
3713      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
3714    }
3715    V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V2);
3716    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
3717                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3718                                 MVT::v16i8, &pshufbMask[0], 16));
3719    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
3720    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
3721  }
3722
3723  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
3724  // and update MaskVals with new element order.
3725  BitVector InOrder(8);
3726  if (BestLoQuad >= 0) {
3727    SmallVector<SDValue, 8> MaskV;
3728    for (int i = 0; i != 4; ++i) {
3729      int idx = MaskVals[i];
3730      if (idx < 0) {
3731        MaskV.push_back(DAG.getUNDEF(MVT::i16));
3732        InOrder.set(i);
3733      } else if ((idx / 4) == BestLoQuad) {
3734        MaskV.push_back(DAG.getConstant(idx & 3, MVT::i16));
3735        InOrder.set(i);
3736      } else {
3737        MaskV.push_back(DAG.getUNDEF(MVT::i16));
3738      }
3739    }
3740    for (unsigned i = 4; i != 8; ++i)
3741      MaskV.push_back(DAG.getConstant(i, MVT::i16));
3742    NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, MVT::v8i16, NewV,
3743                       DAG.getUNDEF(MVT::v8i16),
3744                       DAG.getNode(ISD::BUILD_VECTOR, dl,
3745                                   MVT::v8i16, &MaskV[0], 8));
3746  }
3747
3748  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
3749  // and update MaskVals with the new element order.
3750  if (BestHiQuad >= 0) {
3751    SmallVector<SDValue, 8> MaskV;
3752    for (unsigned i = 0; i != 4; ++i)
3753      MaskV.push_back(DAG.getConstant(i, MVT::i16));
3754    for (unsigned i = 4; i != 8; ++i) {
3755      int idx = MaskVals[i];
3756      if (idx < 0) {
3757        MaskV.push_back(DAG.getUNDEF(MVT::i16));
3758        InOrder.set(i);
3759      } else if ((idx / 4) == BestHiQuad) {
3760        MaskV.push_back(DAG.getConstant((idx & 3) + 4, MVT::i16));
3761        InOrder.set(i);
3762      } else {
3763        MaskV.push_back(DAG.getUNDEF(MVT::i16));
3764      }
3765    }
3766    NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, MVT::v8i16, NewV,
3767                       DAG.getUNDEF(MVT::v8i16),
3768                       DAG.getNode(ISD::BUILD_VECTOR, dl,
3769                                   MVT::v8i16, &MaskV[0], 8));
3770  }
3771
3772  // In case BestHi & BestLo were both -1, which means each quadword has a word
3773  // from each of the four input quadwords, calculate the InOrder bitvector now
3774  // before falling through to the insert/extract cleanup.
3775  if (BestLoQuad == -1 && BestHiQuad == -1) {
3776    NewV = V1;
3777    for (int i = 0; i != 8; ++i)
3778      if (MaskVals[i] < 0 || MaskVals[i] == i)
3779        InOrder.set(i);
3780  }
3781
3782  // The other elements are put in the right place using pextrw and pinsrw.
3783  for (unsigned i = 0; i != 8; ++i) {
3784    if (InOrder[i])
3785      continue;
3786    int EltIdx = MaskVals[i];
3787    if (EltIdx < 0)
3788      continue;
3789    SDValue ExtOp = (EltIdx < 8)
3790    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
3791                  DAG.getIntPtrConstant(EltIdx))
3792    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
3793                  DAG.getIntPtrConstant(EltIdx - 8));
3794    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
3795                       DAG.getIntPtrConstant(i));
3796  }
3797  return NewV;
3798}
3799
3800// v16i8 shuffles - Prefer shuffles in the following order:
3801// 1. [ssse3] 1 x pshufb
3802// 2. [ssse3] 2 x pshufb + 1 x por
3803// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
3804static
3805SDValue LowerVECTOR_SHUFFLEv16i8(SDValue V1, SDValue V2,
3806                                 SDValue PermMask, SelectionDAG &DAG,
3807                                 X86TargetLowering &TLI, DebugLoc dl) {
3808  SmallVector<SDValue, 16> MaskElts(PermMask.getNode()->op_begin(),
3809                                    PermMask.getNode()->op_end());
3810  SmallVector<int, 16> MaskVals;
3811
3812  // If we have SSSE3, case 1 is generated when all result bytes come from
3813  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
3814  // present, fall back to case 3.
3815  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
3816  bool V1Only = true;
3817  bool V2Only = true;
3818  for (unsigned i = 0; i < 16; ++i) {
3819    SDValue Elt = MaskElts[i];
3820    int EltIdx = Elt.getOpcode() == ISD::UNDEF ? -1 :
3821                 cast<ConstantSDNode>(Elt)->getZExtValue();
3822    MaskVals.push_back(EltIdx);
3823    if (EltIdx < 0)
3824      continue;
3825    if (EltIdx < 16)
3826      V2Only = false;
3827    else
3828      V1Only = false;
3829  }
3830
3831  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
3832  if (TLI.getSubtarget()->hasSSSE3()) {
3833    SmallVector<SDValue,16> pshufbMask;
3834
3835    // If all result elements are from one input vector, then only translate
3836    // undef mask values to 0x80 (zero out result) in the pshufb mask.
3837    //
3838    // Otherwise, we have elements from both input vectors, and must zero out
3839    // elements that come from V2 in the first mask, and V1 in the second mask
3840    // so that we can OR them together.
3841    bool TwoInputs = !(V1Only || V2Only);
3842    for (unsigned i = 0; i != 16; ++i) {
3843      int EltIdx = MaskVals[i];
3844      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
3845        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3846        continue;
3847      }
3848      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
3849    }
3850    // If all the elements are from V2, assign it to V1 and return after
3851    // building the first pshufb.
3852    if (V2Only)
3853      V1 = V2;
3854    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
3855                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3856                                 MVT::v16i8, &pshufbMask[0], 16));
3857    if (!TwoInputs)
3858      return V1;
3859
3860    // Calculate the shuffle mask for the second input, shuffle it, and
3861    // OR it with the first shuffled input.
3862    pshufbMask.clear();
3863    for (unsigned i = 0; i != 16; ++i) {
3864      int EltIdx = MaskVals[i];
3865      if (EltIdx < 16) {
3866        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3867        continue;
3868      }
3869      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
3870    }
3871    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
3872                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3873                                 MVT::v16i8, &pshufbMask[0], 16));
3874    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
3875  }
3876
3877  // No SSSE3 - Calculate in place words and then fix all out of place words
3878  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
3879  // the 16 different words that comprise the two doublequadword input vectors.
3880  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
3881  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V2);
3882  SDValue NewV = V2Only ? V2 : V1;
3883  for (int i = 0; i != 8; ++i) {
3884    int Elt0 = MaskVals[i*2];
3885    int Elt1 = MaskVals[i*2+1];
3886
3887    // This word of the result is all undef, skip it.
3888    if (Elt0 < 0 && Elt1 < 0)
3889      continue;
3890
3891    // This word of the result is already in the correct place, skip it.
3892    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
3893      continue;
3894    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
3895      continue;
3896
3897    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
3898    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
3899    SDValue InsElt;
3900
3901    // If Elt1 is defined, extract it from the appropriate source.  If the
3902    // source byte is not also odd, shift the extracted word left 8 bits.
3903    if (Elt1 >= 0) {
3904      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
3905                           DAG.getIntPtrConstant(Elt1 / 2));
3906      if ((Elt1 & 1) == 0)
3907        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
3908                             DAG.getConstant(8, TLI.getShiftAmountTy()));
3909    }
3910    // If Elt0 is defined, extract it from the appropriate source.  If the
3911    // source byte is not also even, shift the extracted word right 8 bits. If
3912    // Elt1 was also defined, OR the extracted values together before
3913    // inserting them in the result.
3914    if (Elt0 >= 0) {
3915      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
3916                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
3917      if ((Elt0 & 1) != 0)
3918        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
3919                              DAG.getConstant(8, TLI.getShiftAmountTy()));
3920      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
3921                         : InsElt0;
3922    }
3923    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
3924                       DAG.getIntPtrConstant(i));
3925  }
3926  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, NewV);
3927}
3928
3929/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
3930/// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
3931/// done when every pair / quad of shuffle mask elements point to elements in
3932/// the right sequence. e.g.
3933/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
3934static
3935SDValue RewriteAsNarrowerShuffle(SDValue V1, SDValue V2,
3936                                MVT VT,
3937                                SDValue PermMask, SelectionDAG &DAG,
3938                                TargetLowering &TLI, DebugLoc dl) {
3939  unsigned NumElems = PermMask.getNumOperands();
3940  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
3941  MVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
3942  MVT MaskEltVT = MaskVT.getVectorElementType();
3943  MVT NewVT = MaskVT;
3944  switch (VT.getSimpleVT()) {
3945  default: assert(false && "Unexpected!");
3946  case MVT::v4f32: NewVT = MVT::v2f64; break;
3947  case MVT::v4i32: NewVT = MVT::v2i64; break;
3948  case MVT::v8i16: NewVT = MVT::v4i32; break;
3949  case MVT::v16i8: NewVT = MVT::v4i32; break;
3950  }
3951
3952  if (NewWidth == 2) {
3953    if (VT.isInteger())
3954      NewVT = MVT::v2i64;
3955    else
3956      NewVT = MVT::v2f64;
3957  }
3958  unsigned Scale = NumElems / NewWidth;
3959  SmallVector<SDValue, 8> MaskVec;
3960  for (unsigned i = 0; i < NumElems; i += Scale) {
3961    unsigned StartIdx = ~0U;
3962    for (unsigned j = 0; j < Scale; ++j) {
3963      SDValue Elt = PermMask.getOperand(i+j);
3964      if (Elt.getOpcode() == ISD::UNDEF)
3965        continue;
3966      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3967      if (StartIdx == ~0U)
3968        StartIdx = EltIdx - (EltIdx % Scale);
3969      if (EltIdx != StartIdx + j)
3970        return SDValue();
3971    }
3972    if (StartIdx == ~0U)
3973      MaskVec.push_back(DAG.getUNDEF(MaskEltVT));
3974    else
3975      MaskVec.push_back(DAG.getConstant(StartIdx / Scale, MaskEltVT));
3976  }
3977
3978  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V1);
3979  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V2);
3980  return DAG.getNode(ISD::VECTOR_SHUFFLE, dl, NewVT, V1, V2,
3981                     DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT,
3982                                 &MaskVec[0], MaskVec.size()));
3983}
3984
3985/// getVZextMovL - Return a zero-extending vector move low node.
3986///
3987static SDValue getVZextMovL(MVT VT, MVT OpVT,
3988                              SDValue SrcOp, SelectionDAG &DAG,
3989                              const X86Subtarget *Subtarget, DebugLoc dl) {
3990  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
3991    LoadSDNode *LD = NULL;
3992    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
3993      LD = dyn_cast<LoadSDNode>(SrcOp);
3994    if (!LD) {
3995      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
3996      // instead.
3997      MVT EVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
3998      if ((EVT != MVT::i64 || Subtarget->is64Bit()) &&
3999          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
4000          SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
4001          SrcOp.getOperand(0).getOperand(0).getValueType() == EVT) {
4002        // PR2108
4003        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
4004        return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4005                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4006                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4007                                                   OpVT,
4008                                                   SrcOp.getOperand(0)
4009                                                          .getOperand(0))));
4010      }
4011    }
4012  }
4013
4014  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4015                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4016                                 DAG.getNode(ISD::BIT_CONVERT, dl,
4017                                             OpVT, SrcOp)));
4018}
4019
4020/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
4021/// shuffles.
4022static SDValue
4023LowerVECTOR_SHUFFLE_4wide(SDValue V1, SDValue V2,
4024                          SDValue PermMask, MVT VT, SelectionDAG &DAG,
4025                          DebugLoc dl) {
4026  MVT MaskVT = PermMask.getValueType();
4027  MVT MaskEVT = MaskVT.getVectorElementType();
4028  SmallVector<std::pair<int, int>, 8> Locs;
4029  Locs.resize(4);
4030  SmallVector<SDValue, 8> Mask1(4, DAG.getUNDEF(MaskEVT));
4031  unsigned NumHi = 0;
4032  unsigned NumLo = 0;
4033  for (unsigned i = 0; i != 4; ++i) {
4034    SDValue Elt = PermMask.getOperand(i);
4035    if (Elt.getOpcode() == ISD::UNDEF) {
4036      Locs[i] = std::make_pair(-1, -1);
4037    } else {
4038      unsigned Val = cast<ConstantSDNode>(Elt)->getZExtValue();
4039      assert(Val < 8 && "Invalid VECTOR_SHUFFLE index!");
4040      if (Val < 4) {
4041        Locs[i] = std::make_pair(0, NumLo);
4042        Mask1[NumLo] = Elt;
4043        NumLo++;
4044      } else {
4045        Locs[i] = std::make_pair(1, NumHi);
4046        if (2+NumHi < 4)
4047          Mask1[2+NumHi] = Elt;
4048        NumHi++;
4049      }
4050    }
4051  }
4052
4053  if (NumLo <= 2 && NumHi <= 2) {
4054    // If no more than two elements come from either vector. This can be
4055    // implemented with two shuffles. First shuffle gather the elements.
4056    // The second shuffle, which takes the first shuffle as both of its
4057    // vector operands, put the elements into the right order.
4058    V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, V1, V2,
4059                     DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT,
4060                                 &Mask1[0], Mask1.size()));
4061
4062    SmallVector<SDValue, 8> Mask2(4, DAG.getUNDEF(MaskEVT));
4063    for (unsigned i = 0; i != 4; ++i) {
4064      if (Locs[i].first == -1)
4065        continue;
4066      else {
4067        unsigned Idx = (i < 2) ? 0 : 4;
4068        Idx += Locs[i].first * 2 + Locs[i].second;
4069        Mask2[i] = DAG.getConstant(Idx, MaskEVT);
4070      }
4071    }
4072
4073    return DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, V1, V1,
4074                       DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT,
4075                                   &Mask2[0], Mask2.size()));
4076  } else if (NumLo == 3 || NumHi == 3) {
4077    // Otherwise, we must have three elements from one vector, call it X, and
4078    // one element from the other, call it Y.  First, use a shufps to build an
4079    // intermediate vector with the one element from Y and the element from X
4080    // that will be in the same half in the final destination (the indexes don't
4081    // matter). Then, use a shufps to build the final vector, taking the half
4082    // containing the element from Y from the intermediate, and the other half
4083    // from X.
4084    if (NumHi == 3) {
4085      // Normalize it so the 3 elements come from V1.
4086      PermMask = CommuteVectorShuffleMask(PermMask, DAG, dl);
4087      std::swap(V1, V2);
4088    }
4089
4090    // Find the element from V2.
4091    unsigned HiIndex;
4092    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
4093      SDValue Elt = PermMask.getOperand(HiIndex);
4094      if (Elt.getOpcode() == ISD::UNDEF)
4095        continue;
4096      unsigned Val = cast<ConstantSDNode>(Elt)->getZExtValue();
4097      if (Val >= 4)
4098        break;
4099    }
4100
4101    Mask1[0] = PermMask.getOperand(HiIndex);
4102    Mask1[1] = DAG.getUNDEF(MaskEVT);
4103    Mask1[2] = PermMask.getOperand(HiIndex^1);
4104    Mask1[3] = DAG.getUNDEF(MaskEVT);
4105    V2 = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, V1, V2,
4106                     DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT, &Mask1[0], 4));
4107
4108    if (HiIndex >= 2) {
4109      Mask1[0] = PermMask.getOperand(0);
4110      Mask1[1] = PermMask.getOperand(1);
4111      Mask1[2] = DAG.getConstant(HiIndex & 1 ? 6 : 4, MaskEVT);
4112      Mask1[3] = DAG.getConstant(HiIndex & 1 ? 4 : 6, MaskEVT);
4113      return DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, V1, V2,
4114                         DAG.getNode(ISD::BUILD_VECTOR, dl,
4115                                     MaskVT, &Mask1[0], 4));
4116    } else {
4117      Mask1[0] = DAG.getConstant(HiIndex & 1 ? 2 : 0, MaskEVT);
4118      Mask1[1] = DAG.getConstant(HiIndex & 1 ? 0 : 2, MaskEVT);
4119      Mask1[2] = PermMask.getOperand(2);
4120      Mask1[3] = PermMask.getOperand(3);
4121      if (Mask1[2].getOpcode() != ISD::UNDEF)
4122        Mask1[2] =
4123          DAG.getConstant(cast<ConstantSDNode>(Mask1[2])->getZExtValue()+4,
4124                          MaskEVT);
4125      if (Mask1[3].getOpcode() != ISD::UNDEF)
4126        Mask1[3] =
4127          DAG.getConstant(cast<ConstantSDNode>(Mask1[3])->getZExtValue()+4,
4128                          MaskEVT);
4129      return DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, V2, V1,
4130                         DAG.getNode(ISD::BUILD_VECTOR, dl,
4131                                     MaskVT, &Mask1[0], 4));
4132    }
4133  }
4134
4135  // Break it into (shuffle shuffle_hi, shuffle_lo).
4136  Locs.clear();
4137  SmallVector<SDValue,8> LoMask(4, DAG.getUNDEF(MaskEVT));
4138  SmallVector<SDValue,8> HiMask(4, DAG.getUNDEF(MaskEVT));
4139  SmallVector<SDValue,8> *MaskPtr = &LoMask;
4140  unsigned MaskIdx = 0;
4141  unsigned LoIdx = 0;
4142  unsigned HiIdx = 2;
4143  for (unsigned i = 0; i != 4; ++i) {
4144    if (i == 2) {
4145      MaskPtr = &HiMask;
4146      MaskIdx = 1;
4147      LoIdx = 0;
4148      HiIdx = 2;
4149    }
4150    SDValue Elt = PermMask.getOperand(i);
4151    if (Elt.getOpcode() == ISD::UNDEF) {
4152      Locs[i] = std::make_pair(-1, -1);
4153    } else if (cast<ConstantSDNode>(Elt)->getZExtValue() < 4) {
4154      Locs[i] = std::make_pair(MaskIdx, LoIdx);
4155      (*MaskPtr)[LoIdx] = Elt;
4156      LoIdx++;
4157    } else {
4158      Locs[i] = std::make_pair(MaskIdx, HiIdx);
4159      (*MaskPtr)[HiIdx] = Elt;
4160      HiIdx++;
4161    }
4162  }
4163
4164  SDValue LoShuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, V1, V2,
4165                                    DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT,
4166                                                &LoMask[0], LoMask.size()));
4167  SDValue HiShuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, V1, V2,
4168                                    DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT,
4169                                                &HiMask[0], HiMask.size()));
4170  SmallVector<SDValue, 8> MaskOps;
4171  for (unsigned i = 0; i != 4; ++i) {
4172    if (Locs[i].first == -1) {
4173      MaskOps.push_back(DAG.getUNDEF(MaskEVT));
4174    } else {
4175      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
4176      MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
4177    }
4178  }
4179  return DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, LoShuffle, HiShuffle,
4180                     DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT,
4181                                 &MaskOps[0], MaskOps.size()));
4182}
4183
4184SDValue
4185X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
4186  SDValue V1 = Op.getOperand(0);
4187  SDValue V2 = Op.getOperand(1);
4188  SDValue PermMask = Op.getOperand(2);
4189  MVT VT = Op.getValueType();
4190  DebugLoc dl = Op.getDebugLoc();
4191  unsigned NumElems = PermMask.getNumOperands();
4192  bool isMMX = VT.getSizeInBits() == 64;
4193  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
4194  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
4195  bool V1IsSplat = false;
4196  bool V2IsSplat = false;
4197
4198  // FIXME: Check for legal shuffle and return?
4199
4200  if (isUndefShuffle(Op.getNode()))
4201    return DAG.getUNDEF(VT);
4202
4203  if (isZeroShuffle(Op.getNode()))
4204    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4205
4206  if (isIdentityMask(PermMask.getNode()))
4207    return V1;
4208  else if (isIdentityMask(PermMask.getNode(), true))
4209    return V2;
4210
4211  // Canonicalize movddup shuffles.
4212  if (V2IsUndef && Subtarget->hasSSE2() &&
4213      VT.getSizeInBits() == 128 &&
4214      X86::isMOVDDUPMask(PermMask.getNode()))
4215    return CanonicalizeMovddup(Op, V1, PermMask, DAG, Subtarget->hasSSE3());
4216
4217  if (isSplatMask(PermMask.getNode())) {
4218    if (isMMX || NumElems < 4) return Op;
4219    // Promote it to a v4{if}32 splat.
4220    return PromoteSplat(Op, DAG, Subtarget->hasSSE2());
4221  }
4222
4223  // If the shuffle can be profitably rewritten as a narrower shuffle, then
4224  // do it!
4225  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
4226    SDValue NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask, DAG,
4227                                            *this, dl);
4228    if (NewOp.getNode())
4229      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4230                         LowerVECTOR_SHUFFLE(NewOp, DAG));
4231  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
4232    // FIXME: Figure out a cleaner way to do this.
4233    // Try to make use of movq to zero out the top part.
4234    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
4235      SDValue NewOp = RewriteAsNarrowerShuffle(V1, V2, VT, PermMask,
4236                                                 DAG, *this, dl);
4237      if (NewOp.getNode()) {
4238        SDValue NewV1 = NewOp.getOperand(0);
4239        SDValue NewV2 = NewOp.getOperand(1);
4240        SDValue NewMask = NewOp.getOperand(2);
4241        if (isCommutedMOVL(NewMask.getNode(), true, false)) {
4242          NewOp = CommuteVectorShuffle(NewOp, NewV1, NewV2, NewMask, DAG);
4243          return getVZextMovL(VT, NewOp.getValueType(), NewV2, DAG, Subtarget,
4244                              dl);
4245        }
4246      }
4247    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
4248      SDValue NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask,
4249                                                DAG, *this, dl);
4250      if (NewOp.getNode() && X86::isMOVLMask(NewOp.getOperand(2).getNode()))
4251        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
4252                             DAG, Subtarget, dl);
4253    }
4254  }
4255
4256  // Check if this can be converted into a logical shift.
4257  bool isLeft = false;
4258  unsigned ShAmt = 0;
4259  SDValue ShVal;
4260  bool isShift = isVectorShift(Op, PermMask, DAG, isLeft, ShVal, ShAmt);
4261  if (isShift && ShVal.hasOneUse()) {
4262    // If the shifted value has multiple uses, it may be cheaper to use
4263    // v_set0 + movlhps or movhlps, etc.
4264    MVT EVT = VT.getVectorElementType();
4265    ShAmt *= EVT.getSizeInBits();
4266    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4267  }
4268
4269  if (X86::isMOVLMask(PermMask.getNode())) {
4270    if (V1IsUndef)
4271      return V2;
4272    if (ISD::isBuildVectorAllZeros(V1.getNode()))
4273      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
4274    if (!isMMX)
4275      return Op;
4276  }
4277
4278  if (!isMMX && (X86::isMOVSHDUPMask(PermMask.getNode()) ||
4279                 X86::isMOVSLDUPMask(PermMask.getNode()) ||
4280                 X86::isMOVHLPSMask(PermMask.getNode()) ||
4281                 X86::isMOVHPMask(PermMask.getNode()) ||
4282                 X86::isMOVLPMask(PermMask.getNode())))
4283    return Op;
4284
4285  if (ShouldXformToMOVHLPS(PermMask.getNode()) ||
4286      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), PermMask.getNode()))
4287    return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
4288
4289  if (isShift) {
4290    // No better options. Use a vshl / vsrl.
4291    MVT EVT = VT.getVectorElementType();
4292    ShAmt *= EVT.getSizeInBits();
4293    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4294  }
4295
4296  bool Commuted = false;
4297  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
4298  // 1,1,1,1 -> v8i16 though.
4299  V1IsSplat = isSplatVector(V1.getNode());
4300  V2IsSplat = isSplatVector(V2.getNode());
4301
4302  // Canonicalize the splat or undef, if present, to be on the RHS.
4303  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
4304    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
4305    std::swap(V1IsSplat, V2IsSplat);
4306    std::swap(V1IsUndef, V2IsUndef);
4307    Commuted = true;
4308  }
4309
4310  // FIXME: Figure out a cleaner way to do this.
4311  if (isCommutedMOVL(PermMask.getNode(), V2IsSplat, V2IsUndef)) {
4312    if (V2IsUndef) return V1;
4313    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
4314    if (V2IsSplat) {
4315      // V2 is a splat, so the mask may be malformed. That is, it may point
4316      // to any V2 element. The instruction selectior won't like this. Get
4317      // a corrected mask and commute to form a proper MOVS{S|D}.
4318      SDValue NewMask = getMOVLMask(NumElems, DAG, dl);
4319      if (NewMask.getNode() != PermMask.getNode())
4320        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, V1, V2, NewMask);
4321    }
4322    return Op;
4323  }
4324
4325  if (X86::isUNPCKL_v_undef_Mask(PermMask.getNode()) ||
4326      X86::isUNPCKH_v_undef_Mask(PermMask.getNode()) ||
4327      X86::isUNPCKLMask(PermMask.getNode()) ||
4328      X86::isUNPCKHMask(PermMask.getNode()))
4329    return Op;
4330
4331  if (V2IsSplat) {
4332    // Normalize mask so all entries that point to V2 points to its first
4333    // element then try to match unpck{h|l} again. If match, return a
4334    // new vector_shuffle with the corrected mask.
4335    SDValue NewMask = NormalizeMask(PermMask, DAG);
4336    if (NewMask.getNode() != PermMask.getNode()) {
4337      if (X86::isUNPCKLMask(NewMask.getNode(), true)) {
4338        SDValue NewMask = getUnpacklMask(NumElems, DAG, dl);
4339        return DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, V1, V2, NewMask);
4340      } else if (X86::isUNPCKHMask(NewMask.getNode(), true)) {
4341        SDValue NewMask = getUnpackhMask(NumElems, DAG, dl);
4342        return DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, V1, V2, NewMask);
4343      }
4344    }
4345  }
4346
4347  // Normalize the node to match x86 shuffle ops if needed
4348  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.getNode()))
4349      Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
4350
4351  if (Commuted) {
4352    // Commute is back and try unpck* again.
4353    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
4354    if (X86::isUNPCKL_v_undef_Mask(PermMask.getNode()) ||
4355        X86::isUNPCKH_v_undef_Mask(PermMask.getNode()) ||
4356        X86::isUNPCKLMask(PermMask.getNode()) ||
4357        X86::isUNPCKHMask(PermMask.getNode()))
4358      return Op;
4359  }
4360
4361  // FIXME: for mmx, bitcast v2i32 to v4i16 for shuffle.
4362  // Try PSHUF* first, then SHUFP*.
4363  // MMX doesn't have PSHUFD but it does have PSHUFW. While it's theoretically
4364  // possible to shuffle a v2i32 using PSHUFW, that's not yet implemented.
4365  if (isMMX && NumElems == 4 && X86::isPSHUFDMask(PermMask.getNode())) {
4366    if (V2.getOpcode() != ISD::UNDEF)
4367      return DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, V1,
4368                         DAG.getUNDEF(VT), PermMask);
4369    return Op;
4370  }
4371
4372  if (!isMMX) {
4373    if (Subtarget->hasSSE2() &&
4374        (X86::isPSHUFDMask(PermMask.getNode()) ||
4375         X86::isPSHUFHWMask(PermMask.getNode()) ||
4376         X86::isPSHUFLWMask(PermMask.getNode()))) {
4377      MVT RVT = VT;
4378      if (VT == MVT::v4f32) {
4379        RVT = MVT::v4i32;
4380        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, RVT,
4381                         DAG.getNode(ISD::BIT_CONVERT, dl, RVT, V1),
4382                         DAG.getUNDEF(RVT), PermMask);
4383      } else if (V2.getOpcode() != ISD::UNDEF)
4384        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, RVT, V1,
4385                         DAG.getUNDEF(RVT), PermMask);
4386      if (RVT != VT)
4387        Op = DAG.getNode(ISD::BIT_CONVERT, dl, VT, Op);
4388      return Op;
4389    }
4390
4391    // Binary or unary shufps.
4392    if (X86::isSHUFPMask(PermMask.getNode()) ||
4393        (V2.getOpcode() == ISD::UNDEF && X86::isPSHUFDMask(PermMask.getNode())))
4394      return Op;
4395  }
4396
4397  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
4398  if (VT == MVT::v8i16) {
4399    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(V1, V2, PermMask, DAG, *this, dl);
4400    if (NewOp.getNode())
4401      return NewOp;
4402  }
4403
4404  if (VT == MVT::v16i8) {
4405    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(V1, V2, PermMask, DAG, *this, dl);
4406    if (NewOp.getNode())
4407      return NewOp;
4408  }
4409
4410  // Handle all 4 wide cases with a number of shuffles except for MMX.
4411  if (NumElems == 4 && !isMMX)
4412    return LowerVECTOR_SHUFFLE_4wide(V1, V2, PermMask, VT, DAG, dl);
4413
4414  return SDValue();
4415}
4416
4417SDValue
4418X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
4419                                                SelectionDAG &DAG) {
4420  MVT VT = Op.getValueType();
4421  DebugLoc dl = Op.getDebugLoc();
4422  if (VT.getSizeInBits() == 8) {
4423    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
4424                                    Op.getOperand(0), Op.getOperand(1));
4425    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4426                                    DAG.getValueType(VT));
4427    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4428  } else if (VT.getSizeInBits() == 16) {
4429    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4430    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
4431    if (Idx == 0)
4432      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4433                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4434                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4435                                                 MVT::v4i32,
4436                                                 Op.getOperand(0)),
4437                                     Op.getOperand(1)));
4438    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
4439                                    Op.getOperand(0), Op.getOperand(1));
4440    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4441                                    DAG.getValueType(VT));
4442    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4443  } else if (VT == MVT::f32) {
4444    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
4445    // the result back to FR32 register. It's only worth matching if the
4446    // result has a single use which is a store or a bitcast to i32.  And in
4447    // the case of a store, it's not worth it if the index is a constant 0,
4448    // because a MOVSSmr can be used instead, which is smaller and faster.
4449    if (!Op.hasOneUse())
4450      return SDValue();
4451    SDNode *User = *Op.getNode()->use_begin();
4452    if ((User->getOpcode() != ISD::STORE ||
4453         (isa<ConstantSDNode>(Op.getOperand(1)) &&
4454          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
4455        (User->getOpcode() != ISD::BIT_CONVERT ||
4456         User->getValueType(0) != MVT::i32))
4457      return SDValue();
4458    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4459                                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32,
4460                                              Op.getOperand(0)),
4461                                              Op.getOperand(1));
4462    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Extract);
4463  } else if (VT == MVT::i32) {
4464    // ExtractPS works with constant index.
4465    if (isa<ConstantSDNode>(Op.getOperand(1)))
4466      return Op;
4467  }
4468  return SDValue();
4469}
4470
4471
4472SDValue
4473X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4474  if (!isa<ConstantSDNode>(Op.getOperand(1)))
4475    return SDValue();
4476
4477  if (Subtarget->hasSSE41()) {
4478    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
4479    if (Res.getNode())
4480      return Res;
4481  }
4482
4483  MVT VT = Op.getValueType();
4484  DebugLoc dl = Op.getDebugLoc();
4485  // TODO: handle v16i8.
4486  if (VT.getSizeInBits() == 16) {
4487    SDValue Vec = Op.getOperand(0);
4488    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4489    if (Idx == 0)
4490      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4491                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4492                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4493                                                 MVT::v4i32, Vec),
4494                                     Op.getOperand(1)));
4495    // Transform it so it match pextrw which produces a 32-bit result.
4496    MVT EVT = (MVT::SimpleValueType)(VT.getSimpleVT()+1);
4497    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EVT,
4498                                    Op.getOperand(0), Op.getOperand(1));
4499    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EVT, Extract,
4500                                    DAG.getValueType(VT));
4501    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4502  } else if (VT.getSizeInBits() == 32) {
4503    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4504    if (Idx == 0)
4505      return Op;
4506    // SHUFPS the element to the lowest double word, then movss.
4507    MVT MaskVT = MVT::getIntVectorWithNumElements(4);
4508    SmallVector<SDValue, 8> IdxVec;
4509    IdxVec.
4510      push_back(DAG.getConstant(Idx, MaskVT.getVectorElementType()));
4511    IdxVec.
4512      push_back(DAG.getUNDEF(MaskVT.getVectorElementType()));
4513    IdxVec.
4514      push_back(DAG.getUNDEF(MaskVT.getVectorElementType()));
4515    IdxVec.
4516      push_back(DAG.getUNDEF(MaskVT.getVectorElementType()));
4517    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT,
4518                                 &IdxVec[0], IdxVec.size());
4519    SDValue Vec = Op.getOperand(0);
4520    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, Vec.getValueType(),
4521                      Vec, DAG.getUNDEF(Vec.getValueType()), Mask);
4522    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4523                       DAG.getIntPtrConstant(0));
4524  } else if (VT.getSizeInBits() == 64) {
4525    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
4526    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
4527    //        to match extract_elt for f64.
4528    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4529    if (Idx == 0)
4530      return Op;
4531
4532    // UNPCKHPD the element to the lowest double word, then movsd.
4533    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
4534    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
4535    MVT MaskVT = MVT::getIntVectorWithNumElements(2);
4536    SmallVector<SDValue, 8> IdxVec;
4537    IdxVec.push_back(DAG.getConstant(1, MaskVT.getVectorElementType()));
4538    IdxVec.
4539      push_back(DAG.getUNDEF(MaskVT.getVectorElementType()));
4540    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT,
4541                                 &IdxVec[0], IdxVec.size());
4542    SDValue Vec = Op.getOperand(0);
4543    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, Vec.getValueType(),
4544                      Vec, DAG.getUNDEF(Vec.getValueType()),
4545                      Mask);
4546    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4547                       DAG.getIntPtrConstant(0));
4548  }
4549
4550  return SDValue();
4551}
4552
4553SDValue
4554X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG){
4555  MVT VT = Op.getValueType();
4556  MVT EVT = VT.getVectorElementType();
4557  DebugLoc dl = Op.getDebugLoc();
4558
4559  SDValue N0 = Op.getOperand(0);
4560  SDValue N1 = Op.getOperand(1);
4561  SDValue N2 = Op.getOperand(2);
4562
4563  if ((EVT.getSizeInBits() == 8 || EVT.getSizeInBits() == 16) &&
4564      isa<ConstantSDNode>(N2)) {
4565    unsigned Opc = (EVT.getSizeInBits() == 8) ? X86ISD::PINSRB
4566                                              : X86ISD::PINSRW;
4567    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
4568    // argument.
4569    if (N1.getValueType() != MVT::i32)
4570      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
4571    if (N2.getValueType() != MVT::i32)
4572      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4573    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
4574  } else if (EVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
4575    // Bits [7:6] of the constant are the source select.  This will always be
4576    //  zero here.  The DAG Combiner may combine an extract_elt index into these
4577    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
4578    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
4579    // Bits [5:4] of the constant are the destination select.  This is the
4580    //  value of the incoming immediate.
4581    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
4582    //   combine either bitwise AND or insert of float 0.0 to set these bits.
4583    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
4584    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
4585  } else if (EVT == MVT::i32) {
4586    // InsertPS works with constant index.
4587    if (isa<ConstantSDNode>(N2))
4588      return Op;
4589  }
4590  return SDValue();
4591}
4592
4593SDValue
4594X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4595  MVT VT = Op.getValueType();
4596  MVT EVT = VT.getVectorElementType();
4597
4598  if (Subtarget->hasSSE41())
4599    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
4600
4601  if (EVT == MVT::i8)
4602    return SDValue();
4603
4604  DebugLoc dl = Op.getDebugLoc();
4605  SDValue N0 = Op.getOperand(0);
4606  SDValue N1 = Op.getOperand(1);
4607  SDValue N2 = Op.getOperand(2);
4608
4609  if (EVT.getSizeInBits() == 16) {
4610    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
4611    // as its second argument.
4612    if (N1.getValueType() != MVT::i32)
4613      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
4614    if (N2.getValueType() != MVT::i32)
4615      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4616    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
4617  }
4618  return SDValue();
4619}
4620
4621SDValue
4622X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
4623  DebugLoc dl = Op.getDebugLoc();
4624  if (Op.getValueType() == MVT::v2f32)
4625    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f32,
4626                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i32,
4627                                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32,
4628                                               Op.getOperand(0))));
4629
4630  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
4631  MVT VT = MVT::v2i32;
4632  switch (Op.getValueType().getSimpleVT()) {
4633  default: break;
4634  case MVT::v16i8:
4635  case MVT::v8i16:
4636    VT = MVT::v4i32;
4637    break;
4638  }
4639  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(),
4640                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, AnyExt));
4641}
4642
4643// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
4644// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
4645// one of the above mentioned nodes. It has to be wrapped because otherwise
4646// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
4647// be used to form addressing mode. These wrapped nodes will be selected
4648// into MOV32ri.
4649SDValue
4650X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
4651  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
4652  // FIXME there isn't really any debug info here, should come from the parent
4653  DebugLoc dl = CP->getDebugLoc();
4654  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(),
4655                                               getPointerTy(),
4656                                               CP->getAlignment());
4657  Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
4658  // With PIC, the address is actually $g + Offset.
4659  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4660      !Subtarget->isPICStyleRIPRel()) {
4661    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
4662                         DAG.getNode(X86ISD::GlobalBaseReg,
4663                                     DebugLoc::getUnknownLoc(),
4664                                     getPointerTy()),
4665                         Result);
4666  }
4667
4668  return Result;
4669}
4670
4671SDValue
4672X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
4673                                      int64_t Offset,
4674                                      SelectionDAG &DAG) const {
4675  bool IsPic = getTargetMachine().getRelocationModel() == Reloc::PIC_;
4676  bool ExtraLoadRequired =
4677    Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false);
4678
4679  // Create the TargetGlobalAddress node, folding in the constant
4680  // offset if it is legal.
4681  SDValue Result;
4682  if (!IsPic && !ExtraLoadRequired && isInt32(Offset)) {
4683    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), Offset);
4684    Offset = 0;
4685  } else
4686    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), 0);
4687  Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
4688
4689  // With PIC, the address is actually $g + Offset.
4690  if (IsPic && !Subtarget->isPICStyleRIPRel()) {
4691    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
4692                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
4693                         Result);
4694  }
4695
4696  // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
4697  // load the value at address GV, not the value of GV itself. This means that
4698  // the GlobalAddress must be in the base or index register of the address, not
4699  // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
4700  // The same applies for external symbols during PIC codegen
4701  if (ExtraLoadRequired)
4702    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
4703                         PseudoSourceValue::getGOT(), 0);
4704
4705  // If there was a non-zero offset that we didn't fold, create an explicit
4706  // addition for it.
4707  if (Offset != 0)
4708    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
4709                         DAG.getConstant(Offset, getPointerTy()));
4710
4711  return Result;
4712}
4713
4714SDValue
4715X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) {
4716  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
4717  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
4718  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
4719}
4720
4721// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
4722static SDValue
4723LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4724                                const MVT PtrVT) {
4725  SDValue InFlag;
4726  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
4727  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
4728                                     DAG.getNode(X86ISD::GlobalBaseReg,
4729                                                 DebugLoc::getUnknownLoc(),
4730                                                 PtrVT), InFlag);
4731  InFlag = Chain.getValue(1);
4732
4733  // emit leal symbol@TLSGD(,%ebx,1), %eax
4734  SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
4735  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4736                                             GA->getValueType(0),
4737                                             GA->getOffset());
4738  SDValue Ops[] = { Chain,  TGA, InFlag };
4739  SDValue Result = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
4740  InFlag = Result.getValue(2);
4741  Chain = Result.getValue(1);
4742
4743  // call ___tls_get_addr. This function receives its argument in
4744  // the register EAX.
4745  Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Result, InFlag);
4746  InFlag = Chain.getValue(1);
4747
4748  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4749  SDValue Ops1[] = { Chain,
4750                      DAG.getTargetExternalSymbol("___tls_get_addr",
4751                                                  PtrVT),
4752                      DAG.getRegister(X86::EAX, PtrVT),
4753                      DAG.getRegister(X86::EBX, PtrVT),
4754                      InFlag };
4755  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, Ops1, 5);
4756  InFlag = Chain.getValue(1);
4757
4758  return DAG.getCopyFromReg(Chain, dl, X86::EAX, PtrVT, InFlag);
4759}
4760
4761// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
4762static SDValue
4763LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4764                                const MVT PtrVT) {
4765  SDValue InFlag, Chain;
4766  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
4767
4768  // emit leaq symbol@TLSGD(%rip), %rdi
4769  SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
4770  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4771                                             GA->getValueType(0),
4772                                             GA->getOffset());
4773  SDValue Ops[]  = { DAG.getEntryNode(), TGA};
4774  SDValue Result = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
4775  Chain  = Result.getValue(1);
4776  InFlag = Result.getValue(2);
4777
4778  // call __tls_get_addr. This function receives its argument in
4779  // the register RDI.
4780  Chain = DAG.getCopyToReg(Chain, dl, X86::RDI, Result, InFlag);
4781  InFlag = Chain.getValue(1);
4782
4783  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4784  SDValue Ops1[] = { Chain,
4785                      DAG.getTargetExternalSymbol("__tls_get_addr",
4786                                                  PtrVT),
4787                      DAG.getRegister(X86::RDI, PtrVT),
4788                      InFlag };
4789  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, Ops1, 4);
4790  InFlag = Chain.getValue(1);
4791
4792  return DAG.getCopyFromReg(Chain, dl, X86::RAX, PtrVT, InFlag);
4793}
4794
4795// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
4796// "local exec" model.
4797static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4798                                   const MVT PtrVT, TLSModel::Model model) {
4799  DebugLoc dl = GA->getDebugLoc();
4800  // Get the Thread Pointer
4801  SDValue ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER,
4802                                      DebugLoc::getUnknownLoc(), PtrVT);
4803  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
4804  // exec)
4805  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4806                                             GA->getValueType(0),
4807                                             GA->getOffset());
4808  SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, PtrVT, TGA);
4809
4810  if (model == TLSModel::InitialExec)
4811    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
4812                         PseudoSourceValue::getGOT(), 0);
4813
4814  // The address of the thread local variable is the add of the thread
4815  // pointer with the offset of the variable.
4816  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
4817}
4818
4819SDValue
4820X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
4821  // TODO: implement the "local dynamic" model
4822  // TODO: implement the "initial exec"model for pic executables
4823  assert(Subtarget->isTargetELF() &&
4824         "TLS not implemented for non-ELF targets");
4825  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
4826  GlobalValue *GV = GA->getGlobal();
4827  TLSModel::Model model =
4828    getTLSModel (GV, getTargetMachine().getRelocationModel());
4829  if (Subtarget->is64Bit()) {
4830    switch (model) {
4831    case TLSModel::GeneralDynamic:
4832    case TLSModel::LocalDynamic: // not implemented
4833    case TLSModel::InitialExec:  // not implemented
4834    case TLSModel::LocalExec:    // not implemented
4835      return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
4836    default:
4837      assert (0 && "Unknown TLS model");
4838    }
4839  } else {
4840    switch (model) {
4841    case TLSModel::GeneralDynamic:
4842    case TLSModel::LocalDynamic: // not implemented
4843      return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
4844
4845    case TLSModel::InitialExec:
4846    case TLSModel::LocalExec:
4847      return LowerToTLSExecModel(GA, DAG, getPointerTy(), model);
4848    default:
4849      assert (0 && "Unknown TLS model");
4850    }
4851  }
4852}
4853
4854SDValue
4855X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) {
4856  // FIXME there isn't really any debug info here
4857  DebugLoc dl = Op.getDebugLoc();
4858  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
4859  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
4860  Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
4861  // With PIC, the address is actually $g + Offset.
4862  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4863      !Subtarget->isPICStyleRIPRel()) {
4864    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
4865                         DAG.getNode(X86ISD::GlobalBaseReg,
4866                                     DebugLoc::getUnknownLoc(),
4867                                     getPointerTy()),
4868                         Result);
4869  }
4870
4871  return Result;
4872}
4873
4874SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
4875  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
4876  // FIXME there isn't really any debug into here
4877  DebugLoc dl = JT->getDebugLoc();
4878  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
4879  Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
4880  // With PIC, the address is actually $g + Offset.
4881  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4882      !Subtarget->isPICStyleRIPRel()) {
4883    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
4884                         DAG.getNode(X86ISD::GlobalBaseReg,
4885                                     DebugLoc::getUnknownLoc(),
4886                                     getPointerTy()),
4887                         Result);
4888  }
4889
4890  return Result;
4891}
4892
4893/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
4894/// take a 2 x i32 value to shift plus a shift amount.
4895SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) {
4896  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4897  MVT VT = Op.getValueType();
4898  unsigned VTBits = VT.getSizeInBits();
4899  DebugLoc dl = Op.getDebugLoc();
4900  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
4901  SDValue ShOpLo = Op.getOperand(0);
4902  SDValue ShOpHi = Op.getOperand(1);
4903  SDValue ShAmt  = Op.getOperand(2);
4904  SDValue Tmp1 = isSRA ?
4905    DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
4906                DAG.getConstant(VTBits - 1, MVT::i8)) :
4907    DAG.getConstant(0, VT);
4908
4909  SDValue Tmp2, Tmp3;
4910  if (Op.getOpcode() == ISD::SHL_PARTS) {
4911    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
4912    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
4913  } else {
4914    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
4915    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
4916  }
4917
4918  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
4919                                  DAG.getConstant(VTBits, MVT::i8));
4920  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, VT,
4921                               AndNode, DAG.getConstant(0, MVT::i8));
4922
4923  SDValue Hi, Lo;
4924  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4925  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
4926  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
4927
4928  if (Op.getOpcode() == ISD::SHL_PARTS) {
4929    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
4930    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
4931  } else {
4932    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
4933    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
4934  }
4935
4936  SDValue Ops[2] = { Lo, Hi };
4937  return DAG.getMergeValues(Ops, 2, dl);
4938}
4939
4940SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
4941  MVT SrcVT = Op.getOperand(0).getValueType();
4942  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
4943         "Unknown SINT_TO_FP to lower!");
4944
4945  // These are really Legal; caller falls through into that case.
4946  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
4947    return SDValue();
4948  if (SrcVT == MVT::i64 && Op.getValueType() != MVT::f80 &&
4949      Subtarget->is64Bit())
4950    return SDValue();
4951
4952  DebugLoc dl = Op.getDebugLoc();
4953  unsigned Size = SrcVT.getSizeInBits()/8;
4954  MachineFunction &MF = DAG.getMachineFunction();
4955  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
4956  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4957  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
4958                                 StackSlot,
4959                                 PseudoSourceValue::getFixedStack(SSFI), 0);
4960
4961  // Build the FILD
4962  SDVTList Tys;
4963  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
4964  if (useSSE)
4965    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
4966  else
4967    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
4968  SmallVector<SDValue, 8> Ops;
4969  Ops.push_back(Chain);
4970  Ops.push_back(StackSlot);
4971  Ops.push_back(DAG.getValueType(SrcVT));
4972  SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, dl,
4973                                 Tys, &Ops[0], Ops.size());
4974
4975  if (useSSE) {
4976    Chain = Result.getValue(1);
4977    SDValue InFlag = Result.getValue(2);
4978
4979    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
4980    // shouldn't be necessary except that RFP cannot be live across
4981    // multiple blocks. When stackifier is fixed, they can be uncoupled.
4982    MachineFunction &MF = DAG.getMachineFunction();
4983    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
4984    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4985    Tys = DAG.getVTList(MVT::Other);
4986    SmallVector<SDValue, 8> Ops;
4987    Ops.push_back(Chain);
4988    Ops.push_back(Result);
4989    Ops.push_back(StackSlot);
4990    Ops.push_back(DAG.getValueType(Op.getValueType()));
4991    Ops.push_back(InFlag);
4992    Chain = DAG.getNode(X86ISD::FST, dl, Tys, &Ops[0], Ops.size());
4993    Result = DAG.getLoad(Op.getValueType(), dl, Chain, StackSlot,
4994                         PseudoSourceValue::getFixedStack(SSFI), 0);
4995  }
4996
4997  return Result;
4998}
4999
5000// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
5001SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) {
5002  // This algorithm is not obvious. Here it is in C code, more or less:
5003  /*
5004    double uint64_to_double( uint32_t hi, uint32_t lo ) {
5005      static const __m128i exp = { 0x4330000045300000ULL, 0 };
5006      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
5007
5008      // Copy ints to xmm registers.
5009      __m128i xh = _mm_cvtsi32_si128( hi );
5010      __m128i xl = _mm_cvtsi32_si128( lo );
5011
5012      // Combine into low half of a single xmm register.
5013      __m128i x = _mm_unpacklo_epi32( xh, xl );
5014      __m128d d;
5015      double sd;
5016
5017      // Merge in appropriate exponents to give the integer bits the right
5018      // magnitude.
5019      x = _mm_unpacklo_epi32( x, exp );
5020
5021      // Subtract away the biases to deal with the IEEE-754 double precision
5022      // implicit 1.
5023      d = _mm_sub_pd( (__m128d) x, bias );
5024
5025      // All conversions up to here are exact. The correctly rounded result is
5026      // calculated using the current rounding mode using the following
5027      // horizontal add.
5028      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
5029      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
5030                                // store doesn't really need to be here (except
5031                                // maybe to zero the other double)
5032      return sd;
5033    }
5034  */
5035
5036  DebugLoc dl = Op.getDebugLoc();
5037
5038  // Build some magic constants.
5039  std::vector<Constant*> CV0;
5040  CV0.push_back(ConstantInt::get(APInt(32, 0x45300000)));
5041  CV0.push_back(ConstantInt::get(APInt(32, 0x43300000)));
5042  CV0.push_back(ConstantInt::get(APInt(32, 0)));
5043  CV0.push_back(ConstantInt::get(APInt(32, 0)));
5044  Constant *C0 = ConstantVector::get(CV0);
5045  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 4);
5046
5047  std::vector<Constant*> CV1;
5048  CV1.push_back(ConstantFP::get(APFloat(APInt(64, 0x4530000000000000ULL))));
5049  CV1.push_back(ConstantFP::get(APFloat(APInt(64, 0x4330000000000000ULL))));
5050  Constant *C1 = ConstantVector::get(CV1);
5051  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 4);
5052
5053  SmallVector<SDValue, 4> MaskVec;
5054  MaskVec.push_back(DAG.getConstant(0, MVT::i32));
5055  MaskVec.push_back(DAG.getConstant(4, MVT::i32));
5056  MaskVec.push_back(DAG.getConstant(1, MVT::i32));
5057  MaskVec.push_back(DAG.getConstant(5, MVT::i32));
5058  SDValue UnpcklMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
5059                                   &MaskVec[0], MaskVec.size());
5060  SmallVector<SDValue, 4> MaskVec2;
5061  MaskVec2.push_back(DAG.getConstant(1, MVT::i32));
5062  MaskVec2.push_back(DAG.getConstant(0, MVT::i32));
5063  SDValue ShufMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32,
5064                                 &MaskVec2[0], MaskVec2.size());
5065
5066  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5067                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5068                                        Op.getOperand(0),
5069                                        DAG.getIntPtrConstant(1)));
5070  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5071                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5072                                        Op.getOperand(0),
5073                                        DAG.getIntPtrConstant(0)));
5074  SDValue Unpck1 = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, MVT::v4i32,
5075                                XR1, XR2, UnpcklMask);
5076  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
5077                              PseudoSourceValue::getConstantPool(), 0,
5078                              false, 16);
5079  SDValue Unpck2 = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, MVT::v4i32,
5080                               Unpck1, CLod0, UnpcklMask);
5081  SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Unpck2);
5082  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
5083                              PseudoSourceValue::getConstantPool(), 0,
5084                              false, 16);
5085  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
5086
5087  // Add the halves; easiest way is to swap them into another reg first.
5088  SDValue Shuf = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, MVT::v2f64,
5089                             Sub, Sub, ShufMask);
5090  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
5091  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
5092                     DAG.getIntPtrConstant(0));
5093}
5094
5095// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
5096SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) {
5097  DebugLoc dl = Op.getDebugLoc();
5098  // FP constant to bias correct the final result.
5099  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
5100                                   MVT::f64);
5101
5102  // Load the 32-bit value into an XMM register.
5103  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5104                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5105                                         Op.getOperand(0),
5106                                         DAG.getIntPtrConstant(0)));
5107
5108  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5109                     DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Load),
5110                     DAG.getIntPtrConstant(0));
5111
5112  // Or the load with the bias.
5113  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
5114                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5115                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5116                                                   MVT::v2f64, Load)),
5117                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5118                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5119                                                   MVT::v2f64, Bias)));
5120  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5121                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Or),
5122                   DAG.getIntPtrConstant(0));
5123
5124  // Subtract the bias.
5125  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
5126
5127  // Handle final rounding.
5128  MVT DestVT = Op.getValueType();
5129
5130  if (DestVT.bitsLT(MVT::f64)) {
5131    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
5132                       DAG.getIntPtrConstant(0));
5133  } else if (DestVT.bitsGT(MVT::f64)) {
5134    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
5135  }
5136
5137  // Handle final rounding.
5138  return Sub;
5139}
5140
5141SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
5142  SDValue N0 = Op.getOperand(0);
5143  DebugLoc dl = Op.getDebugLoc();
5144
5145  // Now not UINT_TO_FP is legal (it's marked custom), dag combiner won't
5146  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
5147  // the optimization here.
5148  if (DAG.SignBitIsZero(N0))
5149    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
5150
5151  MVT SrcVT = N0.getValueType();
5152  if (SrcVT == MVT::i64) {
5153    // We only handle SSE2 f64 target here; caller can handle the rest.
5154    if (Op.getValueType() != MVT::f64 || !X86ScalarSSEf64)
5155      return SDValue();
5156
5157    return LowerUINT_TO_FP_i64(Op, DAG);
5158  } else if (SrcVT == MVT::i32) {
5159    return LowerUINT_TO_FP_i32(Op, DAG);
5160  }
5161
5162  assert(0 && "Unknown UINT_TO_FP to lower!");
5163  return SDValue();
5164}
5165
5166std::pair<SDValue,SDValue> X86TargetLowering::
5167FP_TO_SINTHelper(SDValue Op, SelectionDAG &DAG) {
5168  DebugLoc dl = Op.getDebugLoc();
5169  assert(Op.getValueType().getSimpleVT() <= MVT::i64 &&
5170         Op.getValueType().getSimpleVT() >= MVT::i16 &&
5171         "Unknown FP_TO_SINT to lower!");
5172
5173  // These are really Legal.
5174  if (Op.getValueType() == MVT::i32 &&
5175      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5176    return std::make_pair(SDValue(), SDValue());
5177  if (Subtarget->is64Bit() &&
5178      Op.getValueType() == MVT::i64 &&
5179      Op.getOperand(0).getValueType() != MVT::f80)
5180    return std::make_pair(SDValue(), SDValue());
5181
5182  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
5183  // stack slot.
5184  MachineFunction &MF = DAG.getMachineFunction();
5185  unsigned MemSize = Op.getValueType().getSizeInBits()/8;
5186  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
5187  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5188  unsigned Opc;
5189  switch (Op.getValueType().getSimpleVT()) {
5190  default: assert(0 && "Invalid FP_TO_SINT to lower!");
5191  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
5192  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
5193  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
5194  }
5195
5196  SDValue Chain = DAG.getEntryNode();
5197  SDValue Value = Op.getOperand(0);
5198  if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
5199    assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
5200    Chain = DAG.getStore(Chain, dl, Value, StackSlot,
5201                         PseudoSourceValue::getFixedStack(SSFI), 0);
5202    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
5203    SDValue Ops[] = {
5204      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
5205    };
5206    Value = DAG.getNode(X86ISD::FLD, dl, Tys, Ops, 3);
5207    Chain = Value.getValue(1);
5208    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
5209    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5210  }
5211
5212  // Build the FP_TO_INT*_IN_MEM
5213  SDValue Ops[] = { Chain, Value, StackSlot };
5214  SDValue FIST = DAG.getNode(Opc, dl, MVT::Other, Ops, 3);
5215
5216  return std::make_pair(FIST, StackSlot);
5217}
5218
5219SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
5220  std::pair<SDValue,SDValue> Vals = FP_TO_SINTHelper(Op, DAG);
5221  SDValue FIST = Vals.first, StackSlot = Vals.second;
5222  if (FIST.getNode() == 0) return SDValue();
5223
5224  // Load the result.
5225  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5226                     FIST, StackSlot, NULL, 0);
5227}
5228
5229SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) {
5230  DebugLoc dl = Op.getDebugLoc();
5231  MVT VT = Op.getValueType();
5232  MVT EltVT = VT;
5233  if (VT.isVector())
5234    EltVT = VT.getVectorElementType();
5235  std::vector<Constant*> CV;
5236  if (EltVT == MVT::f64) {
5237    Constant *C = ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63))));
5238    CV.push_back(C);
5239    CV.push_back(C);
5240  } else {
5241    Constant *C = ConstantFP::get(APFloat(APInt(32, ~(1U << 31))));
5242    CV.push_back(C);
5243    CV.push_back(C);
5244    CV.push_back(C);
5245    CV.push_back(C);
5246  }
5247  Constant *C = ConstantVector::get(CV);
5248  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
5249  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5250                               PseudoSourceValue::getConstantPool(), 0,
5251                               false, 16);
5252  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
5253}
5254
5255SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) {
5256  DebugLoc dl = Op.getDebugLoc();
5257  MVT VT = Op.getValueType();
5258  MVT EltVT = VT;
5259  unsigned EltNum = 1;
5260  if (VT.isVector()) {
5261    EltVT = VT.getVectorElementType();
5262    EltNum = VT.getVectorNumElements();
5263  }
5264  std::vector<Constant*> CV;
5265  if (EltVT == MVT::f64) {
5266    Constant *C = ConstantFP::get(APFloat(APInt(64, 1ULL << 63)));
5267    CV.push_back(C);
5268    CV.push_back(C);
5269  } else {
5270    Constant *C = ConstantFP::get(APFloat(APInt(32, 1U << 31)));
5271    CV.push_back(C);
5272    CV.push_back(C);
5273    CV.push_back(C);
5274    CV.push_back(C);
5275  }
5276  Constant *C = ConstantVector::get(CV);
5277  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
5278  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5279                               PseudoSourceValue::getConstantPool(), 0,
5280                               false, 16);
5281  if (VT.isVector()) {
5282    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
5283                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
5284                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5285                                Op.getOperand(0)),
5286                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, Mask)));
5287  } else {
5288    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
5289  }
5290}
5291
5292SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
5293  SDValue Op0 = Op.getOperand(0);
5294  SDValue Op1 = Op.getOperand(1);
5295  DebugLoc dl = Op.getDebugLoc();
5296  MVT VT = Op.getValueType();
5297  MVT SrcVT = Op1.getValueType();
5298
5299  // If second operand is smaller, extend it first.
5300  if (SrcVT.bitsLT(VT)) {
5301    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
5302    SrcVT = VT;
5303  }
5304  // And if it is bigger, shrink it first.
5305  if (SrcVT.bitsGT(VT)) {
5306    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
5307    SrcVT = VT;
5308  }
5309
5310  // At this point the operands and the result should have the same
5311  // type, and that won't be f80 since that is not custom lowered.
5312
5313  // First get the sign bit of second operand.
5314  std::vector<Constant*> CV;
5315  if (SrcVT == MVT::f64) {
5316    CV.push_back(ConstantFP::get(APFloat(APInt(64, 1ULL << 63))));
5317    CV.push_back(ConstantFP::get(APFloat(APInt(64, 0))));
5318  } else {
5319    CV.push_back(ConstantFP::get(APFloat(APInt(32, 1U << 31))));
5320    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
5321    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
5322    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
5323  }
5324  Constant *C = ConstantVector::get(CV);
5325  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
5326  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
5327                                PseudoSourceValue::getConstantPool(), 0,
5328                                false, 16);
5329  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
5330
5331  // Shift sign bit right or left if the two operands have different types.
5332  if (SrcVT.bitsGT(VT)) {
5333    // Op0 is MVT::f32, Op1 is MVT::f64.
5334    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
5335    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
5336                          DAG.getConstant(32, MVT::i32));
5337    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, SignBit);
5338    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
5339                          DAG.getIntPtrConstant(0));
5340  }
5341
5342  // Clear first operand sign bit.
5343  CV.clear();
5344  if (VT == MVT::f64) {
5345    CV.push_back(ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63)))));
5346    CV.push_back(ConstantFP::get(APFloat(APInt(64, 0))));
5347  } else {
5348    CV.push_back(ConstantFP::get(APFloat(APInt(32, ~(1U << 31)))));
5349    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
5350    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
5351    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
5352  }
5353  C = ConstantVector::get(CV);
5354  CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
5355  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5356                                PseudoSourceValue::getConstantPool(), 0,
5357                                false, 16);
5358  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
5359
5360  // Or the value with the sign bit.
5361  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
5362}
5363
5364SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
5365  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
5366  SDValue Op0 = Op.getOperand(0);
5367  SDValue Op1 = Op.getOperand(1);
5368  DebugLoc dl = Op.getDebugLoc();
5369  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
5370
5371  // Lower (X & (1 << N)) == 0 to BT(X, N).
5372  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
5373  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
5374  if (Op0.getOpcode() == ISD::AND &&
5375      Op0.hasOneUse() &&
5376      Op1.getOpcode() == ISD::Constant &&
5377      cast<ConstantSDNode>(Op1)->getZExtValue() == 0 &&
5378      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
5379    SDValue LHS, RHS;
5380    if (Op0.getOperand(1).getOpcode() == ISD::SHL) {
5381      if (ConstantSDNode *Op010C =
5382            dyn_cast<ConstantSDNode>(Op0.getOperand(1).getOperand(0)))
5383        if (Op010C->getZExtValue() == 1) {
5384          LHS = Op0.getOperand(0);
5385          RHS = Op0.getOperand(1).getOperand(1);
5386        }
5387    } else if (Op0.getOperand(0).getOpcode() == ISD::SHL) {
5388      if (ConstantSDNode *Op000C =
5389            dyn_cast<ConstantSDNode>(Op0.getOperand(0).getOperand(0)))
5390        if (Op000C->getZExtValue() == 1) {
5391          LHS = Op0.getOperand(1);
5392          RHS = Op0.getOperand(0).getOperand(1);
5393        }
5394    } else if (Op0.getOperand(1).getOpcode() == ISD::Constant) {
5395      ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op0.getOperand(1));
5396      SDValue AndLHS = Op0.getOperand(0);
5397      if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
5398        LHS = AndLHS.getOperand(0);
5399        RHS = AndLHS.getOperand(1);
5400      }
5401    }
5402
5403    if (LHS.getNode()) {
5404      // If LHS is i8, promote it to i16 with any_extend.  There is no i8 BT
5405      // instruction.  Since the shift amount is in-range-or-undefined, we know
5406      // that doing a bittest on the i16 value is ok.  We extend to i32 because
5407      // the encoding for the i16 version is larger than the i32 version.
5408      if (LHS.getValueType() == MVT::i8)
5409        LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
5410
5411      // If the operand types disagree, extend the shift amount to match.  Since
5412      // BT ignores high bits (like shifts) we can use anyextend.
5413      if (LHS.getValueType() != RHS.getValueType())
5414        RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
5415
5416      SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
5417      unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
5418      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
5419                         DAG.getConstant(Cond, MVT::i8), BT);
5420    }
5421  }
5422
5423  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
5424  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
5425
5426  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
5427  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
5428                     DAG.getConstant(X86CC, MVT::i8), Cond);
5429}
5430
5431SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
5432  SDValue Cond;
5433  SDValue Op0 = Op.getOperand(0);
5434  SDValue Op1 = Op.getOperand(1);
5435  SDValue CC = Op.getOperand(2);
5436  MVT VT = Op.getValueType();
5437  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
5438  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
5439  DebugLoc dl = Op.getDebugLoc();
5440
5441  if (isFP) {
5442    unsigned SSECC = 8;
5443    MVT VT0 = Op0.getValueType();
5444    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
5445    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
5446    bool Swap = false;
5447
5448    switch (SetCCOpcode) {
5449    default: break;
5450    case ISD::SETOEQ:
5451    case ISD::SETEQ:  SSECC = 0; break;
5452    case ISD::SETOGT:
5453    case ISD::SETGT: Swap = true; // Fallthrough
5454    case ISD::SETLT:
5455    case ISD::SETOLT: SSECC = 1; break;
5456    case ISD::SETOGE:
5457    case ISD::SETGE: Swap = true; // Fallthrough
5458    case ISD::SETLE:
5459    case ISD::SETOLE: SSECC = 2; break;
5460    case ISD::SETUO:  SSECC = 3; break;
5461    case ISD::SETUNE:
5462    case ISD::SETNE:  SSECC = 4; break;
5463    case ISD::SETULE: Swap = true;
5464    case ISD::SETUGE: SSECC = 5; break;
5465    case ISD::SETULT: Swap = true;
5466    case ISD::SETUGT: SSECC = 6; break;
5467    case ISD::SETO:   SSECC = 7; break;
5468    }
5469    if (Swap)
5470      std::swap(Op0, Op1);
5471
5472    // In the two special cases we can't handle, emit two comparisons.
5473    if (SSECC == 8) {
5474      if (SetCCOpcode == ISD::SETUEQ) {
5475        SDValue UNORD, EQ;
5476        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
5477        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
5478        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
5479      }
5480      else if (SetCCOpcode == ISD::SETONE) {
5481        SDValue ORD, NEQ;
5482        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
5483        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
5484        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
5485      }
5486      assert(0 && "Illegal FP comparison");
5487    }
5488    // Handle all other FP comparisons here.
5489    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
5490  }
5491
5492  // We are handling one of the integer comparisons here.  Since SSE only has
5493  // GT and EQ comparisons for integer, swapping operands and multiple
5494  // operations may be required for some comparisons.
5495  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
5496  bool Swap = false, Invert = false, FlipSigns = false;
5497
5498  switch (VT.getSimpleVT()) {
5499  default: break;
5500  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
5501  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
5502  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
5503  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
5504  }
5505
5506  switch (SetCCOpcode) {
5507  default: break;
5508  case ISD::SETNE:  Invert = true;
5509  case ISD::SETEQ:  Opc = EQOpc; break;
5510  case ISD::SETLT:  Swap = true;
5511  case ISD::SETGT:  Opc = GTOpc; break;
5512  case ISD::SETGE:  Swap = true;
5513  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
5514  case ISD::SETULT: Swap = true;
5515  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
5516  case ISD::SETUGE: Swap = true;
5517  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
5518  }
5519  if (Swap)
5520    std::swap(Op0, Op1);
5521
5522  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
5523  // bits of the inputs before performing those operations.
5524  if (FlipSigns) {
5525    MVT EltVT = VT.getVectorElementType();
5526    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
5527                                      EltVT);
5528    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
5529    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
5530                                    SignBits.size());
5531    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
5532    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
5533  }
5534
5535  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
5536
5537  // If the logical-not of the result is required, perform that now.
5538  if (Invert)
5539    Result = DAG.getNOT(dl, Result, VT);
5540
5541  return Result;
5542}
5543
5544// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
5545static bool isX86LogicalCmp(unsigned Opc) {
5546  return Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI;
5547}
5548
5549SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) {
5550  bool addTest = true;
5551  SDValue Cond  = Op.getOperand(0);
5552  DebugLoc dl = Op.getDebugLoc();
5553  SDValue CC;
5554
5555  if (Cond.getOpcode() == ISD::SETCC)
5556    Cond = LowerSETCC(Cond, DAG);
5557
5558  // If condition flag is set by a X86ISD::CMP, then use it as the condition
5559  // setting operand in place of the X86ISD::SETCC.
5560  if (Cond.getOpcode() == X86ISD::SETCC) {
5561    CC = Cond.getOperand(0);
5562
5563    SDValue Cmp = Cond.getOperand(1);
5564    unsigned Opc = Cmp.getOpcode();
5565    MVT VT = Op.getValueType();
5566
5567    bool IllegalFPCMov = false;
5568    if (VT.isFloatingPoint() && !VT.isVector() &&
5569        !isScalarFPTypeInSSEReg(VT))  // FPStack?
5570      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
5571
5572    if ((isX86LogicalCmp(Opc) && !IllegalFPCMov) || Opc == X86ISD::BT) { // FIXME
5573      Cond = Cmp;
5574      addTest = false;
5575    }
5576  }
5577
5578  if (addTest) {
5579    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5580    Cond= DAG.getNode(X86ISD::CMP, dl, MVT::i32, Cond,
5581                      DAG.getConstant(0, MVT::i8));
5582  }
5583
5584  const MVT *VTs = DAG.getNodeValueTypes(Op.getValueType(),
5585                                                    MVT::Flag);
5586  SmallVector<SDValue, 4> Ops;
5587  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
5588  // condition is true.
5589  Ops.push_back(Op.getOperand(2));
5590  Ops.push_back(Op.getOperand(1));
5591  Ops.push_back(CC);
5592  Ops.push_back(Cond);
5593  return DAG.getNode(X86ISD::CMOV, dl, VTs, 2, &Ops[0], Ops.size());
5594}
5595
5596// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
5597// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
5598// from the AND / OR.
5599static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
5600  Opc = Op.getOpcode();
5601  if (Opc != ISD::OR && Opc != ISD::AND)
5602    return false;
5603  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
5604          Op.getOperand(0).hasOneUse() &&
5605          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
5606          Op.getOperand(1).hasOneUse());
5607}
5608
5609// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
5610// 1 and that the SETCC node has a single use.
5611static bool isXor1OfSetCC(SDValue Op) {
5612  if (Op.getOpcode() != ISD::XOR)
5613    return false;
5614  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5615  if (N1C && N1C->getAPIntValue() == 1) {
5616    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
5617      Op.getOperand(0).hasOneUse();
5618  }
5619  return false;
5620}
5621
5622SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) {
5623  bool addTest = true;
5624  SDValue Chain = Op.getOperand(0);
5625  SDValue Cond  = Op.getOperand(1);
5626  SDValue Dest  = Op.getOperand(2);
5627  DebugLoc dl = Op.getDebugLoc();
5628  SDValue CC;
5629
5630  if (Cond.getOpcode() == ISD::SETCC)
5631    Cond = LowerSETCC(Cond, DAG);
5632#if 0
5633  // FIXME: LowerXALUO doesn't handle these!!
5634  else if (Cond.getOpcode() == X86ISD::ADD  ||
5635           Cond.getOpcode() == X86ISD::SUB  ||
5636           Cond.getOpcode() == X86ISD::SMUL ||
5637           Cond.getOpcode() == X86ISD::UMUL)
5638    Cond = LowerXALUO(Cond, DAG);
5639#endif
5640
5641  // If condition flag is set by a X86ISD::CMP, then use it as the condition
5642  // setting operand in place of the X86ISD::SETCC.
5643  if (Cond.getOpcode() == X86ISD::SETCC) {
5644    CC = Cond.getOperand(0);
5645
5646    SDValue Cmp = Cond.getOperand(1);
5647    unsigned Opc = Cmp.getOpcode();
5648    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
5649    if (isX86LogicalCmp(Opc) || Opc == X86ISD::BT) {
5650      Cond = Cmp;
5651      addTest = false;
5652    } else {
5653      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
5654      default: break;
5655      case X86::COND_O:
5656      case X86::COND_B:
5657        // These can only come from an arithmetic instruction with overflow,
5658        // e.g. SADDO, UADDO.
5659        Cond = Cond.getNode()->getOperand(1);
5660        addTest = false;
5661        break;
5662      }
5663    }
5664  } else {
5665    unsigned CondOpc;
5666    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
5667      SDValue Cmp = Cond.getOperand(0).getOperand(1);
5668      unsigned Opc = Cmp.getOpcode();
5669      if (CondOpc == ISD::OR) {
5670        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
5671        // two branches instead of an explicit OR instruction with a
5672        // separate test.
5673        if (Cmp == Cond.getOperand(1).getOperand(1) &&
5674            isX86LogicalCmp(Opc)) {
5675          CC = Cond.getOperand(0).getOperand(0);
5676          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
5677                              Chain, Dest, CC, Cmp);
5678          CC = Cond.getOperand(1).getOperand(0);
5679          Cond = Cmp;
5680          addTest = false;
5681        }
5682      } else { // ISD::AND
5683        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
5684        // two branches instead of an explicit AND instruction with a
5685        // separate test. However, we only do this if this block doesn't
5686        // have a fall-through edge, because this requires an explicit
5687        // jmp when the condition is false.
5688        if (Cmp == Cond.getOperand(1).getOperand(1) &&
5689            isX86LogicalCmp(Opc) &&
5690            Op.getNode()->hasOneUse()) {
5691          X86::CondCode CCode =
5692            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
5693          CCode = X86::GetOppositeBranchCondition(CCode);
5694          CC = DAG.getConstant(CCode, MVT::i8);
5695          SDValue User = SDValue(*Op.getNode()->use_begin(), 0);
5696          // Look for an unconditional branch following this conditional branch.
5697          // We need this because we need to reverse the successors in order
5698          // to implement FCMP_OEQ.
5699          if (User.getOpcode() == ISD::BR) {
5700            SDValue FalseBB = User.getOperand(1);
5701            SDValue NewBR =
5702              DAG.UpdateNodeOperands(User, User.getOperand(0), Dest);
5703            assert(NewBR == User);
5704            Dest = FalseBB;
5705
5706            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
5707                                Chain, Dest, CC, Cmp);
5708            X86::CondCode CCode =
5709              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
5710            CCode = X86::GetOppositeBranchCondition(CCode);
5711            CC = DAG.getConstant(CCode, MVT::i8);
5712            Cond = Cmp;
5713            addTest = false;
5714          }
5715        }
5716      }
5717    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
5718      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
5719      // It should be transformed during dag combiner except when the condition
5720      // is set by a arithmetics with overflow node.
5721      X86::CondCode CCode =
5722        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
5723      CCode = X86::GetOppositeBranchCondition(CCode);
5724      CC = DAG.getConstant(CCode, MVT::i8);
5725      Cond = Cond.getOperand(0).getOperand(1);
5726      addTest = false;
5727    }
5728  }
5729
5730  if (addTest) {
5731    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5732    Cond= DAG.getNode(X86ISD::CMP, dl, MVT::i32, Cond,
5733                      DAG.getConstant(0, MVT::i8));
5734  }
5735  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
5736                     Chain, Dest, CC, Cond);
5737}
5738
5739
5740// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
5741// Calls to _alloca is needed to probe the stack when allocating more than 4k
5742// bytes in one go. Touching the stack at 4K increments is necessary to ensure
5743// that the guard pages used by the OS virtual memory manager are allocated in
5744// correct sequence.
5745SDValue
5746X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
5747                                           SelectionDAG &DAG) {
5748  assert(Subtarget->isTargetCygMing() &&
5749         "This should be used only on Cygwin/Mingw targets");
5750  DebugLoc dl = Op.getDebugLoc();
5751
5752  // Get the inputs.
5753  SDValue Chain = Op.getOperand(0);
5754  SDValue Size  = Op.getOperand(1);
5755  // FIXME: Ensure alignment here
5756
5757  SDValue Flag;
5758
5759  MVT IntPtr = getPointerTy();
5760  MVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
5761
5762  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
5763
5764  Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
5765  Flag = Chain.getValue(1);
5766
5767  SDVTList  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
5768  SDValue Ops[] = { Chain,
5769                      DAG.getTargetExternalSymbol("_alloca", IntPtr),
5770                      DAG.getRegister(X86::EAX, IntPtr),
5771                      DAG.getRegister(X86StackPtr, SPTy),
5772                      Flag };
5773  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, Ops, 5);
5774  Flag = Chain.getValue(1);
5775
5776  Chain = DAG.getCALLSEQ_END(Chain,
5777                             DAG.getIntPtrConstant(0, true),
5778                             DAG.getIntPtrConstant(0, true),
5779                             Flag);
5780
5781  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
5782
5783  SDValue Ops1[2] = { Chain.getValue(0), Chain };
5784  return DAG.getMergeValues(Ops1, 2, dl);
5785}
5786
5787SDValue
5788X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
5789                                           SDValue Chain,
5790                                           SDValue Dst, SDValue Src,
5791                                           SDValue Size, unsigned Align,
5792                                           const Value *DstSV,
5793                                           uint64_t DstSVOff) {
5794  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5795
5796  // If not DWORD aligned or size is more than the threshold, call the library.
5797  // The libc version is likely to be faster for these cases. It can use the
5798  // address value and run time information about the CPU.
5799  if ((Align & 3) != 0 ||
5800      !ConstantSize ||
5801      ConstantSize->getZExtValue() >
5802        getSubtarget()->getMaxInlineSizeThreshold()) {
5803    SDValue InFlag(0, 0);
5804
5805    // Check to see if there is a specialized entry-point for memory zeroing.
5806    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src);
5807
5808    if (const char *bzeroEntry =  V &&
5809        V->isNullValue() ? Subtarget->getBZeroEntry() : 0) {
5810      MVT IntPtr = getPointerTy();
5811      const Type *IntPtrTy = TD->getIntPtrType();
5812      TargetLowering::ArgListTy Args;
5813      TargetLowering::ArgListEntry Entry;
5814      Entry.Node = Dst;
5815      Entry.Ty = IntPtrTy;
5816      Args.push_back(Entry);
5817      Entry.Node = Size;
5818      Args.push_back(Entry);
5819      std::pair<SDValue,SDValue> CallResult =
5820        LowerCallTo(Chain, Type::VoidTy, false, false, false, false,
5821                    CallingConv::C, false,
5822                    DAG.getExternalSymbol(bzeroEntry, IntPtr), Args, DAG, dl);
5823      return CallResult.second;
5824    }
5825
5826    // Otherwise have the target-independent code call memset.
5827    return SDValue();
5828  }
5829
5830  uint64_t SizeVal = ConstantSize->getZExtValue();
5831  SDValue InFlag(0, 0);
5832  MVT AVT;
5833  SDValue Count;
5834  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src);
5835  unsigned BytesLeft = 0;
5836  bool TwoRepStos = false;
5837  if (ValC) {
5838    unsigned ValReg;
5839    uint64_t Val = ValC->getZExtValue() & 255;
5840
5841    // If the value is a constant, then we can potentially use larger sets.
5842    switch (Align & 3) {
5843    case 2:   // WORD aligned
5844      AVT = MVT::i16;
5845      ValReg = X86::AX;
5846      Val = (Val << 8) | Val;
5847      break;
5848    case 0:  // DWORD aligned
5849      AVT = MVT::i32;
5850      ValReg = X86::EAX;
5851      Val = (Val << 8)  | Val;
5852      Val = (Val << 16) | Val;
5853      if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) {  // QWORD aligned
5854        AVT = MVT::i64;
5855        ValReg = X86::RAX;
5856        Val = (Val << 32) | Val;
5857      }
5858      break;
5859    default:  // Byte aligned
5860      AVT = MVT::i8;
5861      ValReg = X86::AL;
5862      Count = DAG.getIntPtrConstant(SizeVal);
5863      break;
5864    }
5865
5866    if (AVT.bitsGT(MVT::i8)) {
5867      unsigned UBytes = AVT.getSizeInBits() / 8;
5868      Count = DAG.getIntPtrConstant(SizeVal / UBytes);
5869      BytesLeft = SizeVal % UBytes;
5870    }
5871
5872    Chain  = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, AVT),
5873                              InFlag);
5874    InFlag = Chain.getValue(1);
5875  } else {
5876    AVT = MVT::i8;
5877    Count  = DAG.getIntPtrConstant(SizeVal);
5878    Chain  = DAG.getCopyToReg(Chain, dl, X86::AL, Src, InFlag);
5879    InFlag = Chain.getValue(1);
5880  }
5881
5882  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
5883                                                              X86::ECX,
5884                            Count, InFlag);
5885  InFlag = Chain.getValue(1);
5886  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
5887                                                              X86::EDI,
5888                            Dst, InFlag);
5889  InFlag = Chain.getValue(1);
5890
5891  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5892  SmallVector<SDValue, 8> Ops;
5893  Ops.push_back(Chain);
5894  Ops.push_back(DAG.getValueType(AVT));
5895  Ops.push_back(InFlag);
5896  Chain  = DAG.getNode(X86ISD::REP_STOS, dl, Tys, &Ops[0], Ops.size());
5897
5898  if (TwoRepStos) {
5899    InFlag = Chain.getValue(1);
5900    Count  = Size;
5901    MVT CVT = Count.getValueType();
5902    SDValue Left = DAG.getNode(ISD::AND, dl, CVT, Count,
5903                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
5904    Chain  = DAG.getCopyToReg(Chain, dl, (CVT == MVT::i64) ? X86::RCX :
5905                                                             X86::ECX,
5906                              Left, InFlag);
5907    InFlag = Chain.getValue(1);
5908    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5909    Ops.clear();
5910    Ops.push_back(Chain);
5911    Ops.push_back(DAG.getValueType(MVT::i8));
5912    Ops.push_back(InFlag);
5913    Chain  = DAG.getNode(X86ISD::REP_STOS, dl, Tys, &Ops[0], Ops.size());
5914  } else if (BytesLeft) {
5915    // Handle the last 1 - 7 bytes.
5916    unsigned Offset = SizeVal - BytesLeft;
5917    MVT AddrVT = Dst.getValueType();
5918    MVT SizeVT = Size.getValueType();
5919
5920    Chain = DAG.getMemset(Chain, dl,
5921                          DAG.getNode(ISD::ADD, dl, AddrVT, Dst,
5922                                      DAG.getConstant(Offset, AddrVT)),
5923                          Src,
5924                          DAG.getConstant(BytesLeft, SizeVT),
5925                          Align, DstSV, DstSVOff + Offset);
5926  }
5927
5928  // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
5929  return Chain;
5930}
5931
5932SDValue
5933X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
5934                                      SDValue Chain, SDValue Dst, SDValue Src,
5935                                      SDValue Size, unsigned Align,
5936                                      bool AlwaysInline,
5937                                      const Value *DstSV, uint64_t DstSVOff,
5938                                      const Value *SrcSV, uint64_t SrcSVOff) {
5939  // This requires the copy size to be a constant, preferrably
5940  // within a subtarget-specific limit.
5941  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5942  if (!ConstantSize)
5943    return SDValue();
5944  uint64_t SizeVal = ConstantSize->getZExtValue();
5945  if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
5946    return SDValue();
5947
5948  /// If not DWORD aligned, call the library.
5949  if ((Align & 3) != 0)
5950    return SDValue();
5951
5952  // DWORD aligned
5953  MVT AVT = MVT::i32;
5954  if (Subtarget->is64Bit() && ((Align & 0x7) == 0))  // QWORD aligned
5955    AVT = MVT::i64;
5956
5957  unsigned UBytes = AVT.getSizeInBits() / 8;
5958  unsigned CountVal = SizeVal / UBytes;
5959  SDValue Count = DAG.getIntPtrConstant(CountVal);
5960  unsigned BytesLeft = SizeVal % UBytes;
5961
5962  SDValue InFlag(0, 0);
5963  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
5964                                                              X86::ECX,
5965                            Count, InFlag);
5966  InFlag = Chain.getValue(1);
5967  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
5968                                                             X86::EDI,
5969                            Dst, InFlag);
5970  InFlag = Chain.getValue(1);
5971  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RSI :
5972                                                              X86::ESI,
5973                            Src, InFlag);
5974  InFlag = Chain.getValue(1);
5975
5976  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5977  SmallVector<SDValue, 8> Ops;
5978  Ops.push_back(Chain);
5979  Ops.push_back(DAG.getValueType(AVT));
5980  Ops.push_back(InFlag);
5981  SDValue RepMovs = DAG.getNode(X86ISD::REP_MOVS, dl, Tys, &Ops[0], Ops.size());
5982
5983  SmallVector<SDValue, 4> Results;
5984  Results.push_back(RepMovs);
5985  if (BytesLeft) {
5986    // Handle the last 1 - 7 bytes.
5987    unsigned Offset = SizeVal - BytesLeft;
5988    MVT DstVT = Dst.getValueType();
5989    MVT SrcVT = Src.getValueType();
5990    MVT SizeVT = Size.getValueType();
5991    Results.push_back(DAG.getMemcpy(Chain, dl,
5992                                    DAG.getNode(ISD::ADD, dl, DstVT, Dst,
5993                                                DAG.getConstant(Offset, DstVT)),
5994                                    DAG.getNode(ISD::ADD, dl, SrcVT, Src,
5995                                                DAG.getConstant(Offset, SrcVT)),
5996                                    DAG.getConstant(BytesLeft, SizeVT),
5997                                    Align, AlwaysInline,
5998                                    DstSV, DstSVOff + Offset,
5999                                    SrcSV, SrcSVOff + Offset));
6000  }
6001
6002  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6003                     &Results[0], Results.size());
6004}
6005
6006SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) {
6007  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
6008  DebugLoc dl = Op.getDebugLoc();
6009
6010  if (!Subtarget->is64Bit()) {
6011    // vastart just stores the address of the VarArgsFrameIndex slot into the
6012    // memory location argument.
6013    SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
6014    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0);
6015  }
6016
6017  // __va_list_tag:
6018  //   gp_offset         (0 - 6 * 8)
6019  //   fp_offset         (48 - 48 + 8 * 16)
6020  //   overflow_arg_area (point to parameters coming in memory).
6021  //   reg_save_area
6022  SmallVector<SDValue, 8> MemOps;
6023  SDValue FIN = Op.getOperand(1);
6024  // Store gp_offset
6025  SDValue Store = DAG.getStore(Op.getOperand(0), dl,
6026                                 DAG.getConstant(VarArgsGPOffset, MVT::i32),
6027                                 FIN, SV, 0);
6028  MemOps.push_back(Store);
6029
6030  // Store fp_offset
6031  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6032                    FIN, DAG.getIntPtrConstant(4));
6033  Store = DAG.getStore(Op.getOperand(0), dl,
6034                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
6035                       FIN, SV, 0);
6036  MemOps.push_back(Store);
6037
6038  // Store ptr to overflow_arg_area
6039  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6040                    FIN, DAG.getIntPtrConstant(4));
6041  SDValue OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
6042  Store = DAG.getStore(Op.getOperand(0), dl, OVFIN, FIN, SV, 0);
6043  MemOps.push_back(Store);
6044
6045  // Store ptr to reg_save_area.
6046  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6047                    FIN, DAG.getIntPtrConstant(8));
6048  SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
6049  Store = DAG.getStore(Op.getOperand(0), dl, RSFIN, FIN, SV, 0);
6050  MemOps.push_back(Store);
6051  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6052                     &MemOps[0], MemOps.size());
6053}
6054
6055SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) {
6056  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6057  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
6058  SDValue Chain = Op.getOperand(0);
6059  SDValue SrcPtr = Op.getOperand(1);
6060  SDValue SrcSV = Op.getOperand(2);
6061
6062  assert(0 && "VAArgInst is not yet implemented for x86-64!");
6063  abort();
6064  return SDValue();
6065}
6066
6067SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) {
6068  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6069  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
6070  SDValue Chain = Op.getOperand(0);
6071  SDValue DstPtr = Op.getOperand(1);
6072  SDValue SrcPtr = Op.getOperand(2);
6073  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
6074  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
6075  DebugLoc dl = Op.getDebugLoc();
6076
6077  return DAG.getMemcpy(Chain, dl, DstPtr, SrcPtr,
6078                       DAG.getIntPtrConstant(24), 8, false,
6079                       DstSV, 0, SrcSV, 0);
6080}
6081
6082SDValue
6083X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
6084  DebugLoc dl = Op.getDebugLoc();
6085  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6086  switch (IntNo) {
6087  default: return SDValue();    // Don't custom lower most intrinsics.
6088  // Comparison intrinsics.
6089  case Intrinsic::x86_sse_comieq_ss:
6090  case Intrinsic::x86_sse_comilt_ss:
6091  case Intrinsic::x86_sse_comile_ss:
6092  case Intrinsic::x86_sse_comigt_ss:
6093  case Intrinsic::x86_sse_comige_ss:
6094  case Intrinsic::x86_sse_comineq_ss:
6095  case Intrinsic::x86_sse_ucomieq_ss:
6096  case Intrinsic::x86_sse_ucomilt_ss:
6097  case Intrinsic::x86_sse_ucomile_ss:
6098  case Intrinsic::x86_sse_ucomigt_ss:
6099  case Intrinsic::x86_sse_ucomige_ss:
6100  case Intrinsic::x86_sse_ucomineq_ss:
6101  case Intrinsic::x86_sse2_comieq_sd:
6102  case Intrinsic::x86_sse2_comilt_sd:
6103  case Intrinsic::x86_sse2_comile_sd:
6104  case Intrinsic::x86_sse2_comigt_sd:
6105  case Intrinsic::x86_sse2_comige_sd:
6106  case Intrinsic::x86_sse2_comineq_sd:
6107  case Intrinsic::x86_sse2_ucomieq_sd:
6108  case Intrinsic::x86_sse2_ucomilt_sd:
6109  case Intrinsic::x86_sse2_ucomile_sd:
6110  case Intrinsic::x86_sse2_ucomigt_sd:
6111  case Intrinsic::x86_sse2_ucomige_sd:
6112  case Intrinsic::x86_sse2_ucomineq_sd: {
6113    unsigned Opc = 0;
6114    ISD::CondCode CC = ISD::SETCC_INVALID;
6115    switch (IntNo) {
6116    default: break;
6117    case Intrinsic::x86_sse_comieq_ss:
6118    case Intrinsic::x86_sse2_comieq_sd:
6119      Opc = X86ISD::COMI;
6120      CC = ISD::SETEQ;
6121      break;
6122    case Intrinsic::x86_sse_comilt_ss:
6123    case Intrinsic::x86_sse2_comilt_sd:
6124      Opc = X86ISD::COMI;
6125      CC = ISD::SETLT;
6126      break;
6127    case Intrinsic::x86_sse_comile_ss:
6128    case Intrinsic::x86_sse2_comile_sd:
6129      Opc = X86ISD::COMI;
6130      CC = ISD::SETLE;
6131      break;
6132    case Intrinsic::x86_sse_comigt_ss:
6133    case Intrinsic::x86_sse2_comigt_sd:
6134      Opc = X86ISD::COMI;
6135      CC = ISD::SETGT;
6136      break;
6137    case Intrinsic::x86_sse_comige_ss:
6138    case Intrinsic::x86_sse2_comige_sd:
6139      Opc = X86ISD::COMI;
6140      CC = ISD::SETGE;
6141      break;
6142    case Intrinsic::x86_sse_comineq_ss:
6143    case Intrinsic::x86_sse2_comineq_sd:
6144      Opc = X86ISD::COMI;
6145      CC = ISD::SETNE;
6146      break;
6147    case Intrinsic::x86_sse_ucomieq_ss:
6148    case Intrinsic::x86_sse2_ucomieq_sd:
6149      Opc = X86ISD::UCOMI;
6150      CC = ISD::SETEQ;
6151      break;
6152    case Intrinsic::x86_sse_ucomilt_ss:
6153    case Intrinsic::x86_sse2_ucomilt_sd:
6154      Opc = X86ISD::UCOMI;
6155      CC = ISD::SETLT;
6156      break;
6157    case Intrinsic::x86_sse_ucomile_ss:
6158    case Intrinsic::x86_sse2_ucomile_sd:
6159      Opc = X86ISD::UCOMI;
6160      CC = ISD::SETLE;
6161      break;
6162    case Intrinsic::x86_sse_ucomigt_ss:
6163    case Intrinsic::x86_sse2_ucomigt_sd:
6164      Opc = X86ISD::UCOMI;
6165      CC = ISD::SETGT;
6166      break;
6167    case Intrinsic::x86_sse_ucomige_ss:
6168    case Intrinsic::x86_sse2_ucomige_sd:
6169      Opc = X86ISD::UCOMI;
6170      CC = ISD::SETGE;
6171      break;
6172    case Intrinsic::x86_sse_ucomineq_ss:
6173    case Intrinsic::x86_sse2_ucomineq_sd:
6174      Opc = X86ISD::UCOMI;
6175      CC = ISD::SETNE;
6176      break;
6177    }
6178
6179    SDValue LHS = Op.getOperand(1);
6180    SDValue RHS = Op.getOperand(2);
6181    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
6182    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
6183    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6184                                DAG.getConstant(X86CC, MVT::i8), Cond);
6185    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
6186  }
6187
6188  // Fix vector shift instructions where the last operand is a non-immediate
6189  // i32 value.
6190  case Intrinsic::x86_sse2_pslli_w:
6191  case Intrinsic::x86_sse2_pslli_d:
6192  case Intrinsic::x86_sse2_pslli_q:
6193  case Intrinsic::x86_sse2_psrli_w:
6194  case Intrinsic::x86_sse2_psrli_d:
6195  case Intrinsic::x86_sse2_psrli_q:
6196  case Intrinsic::x86_sse2_psrai_w:
6197  case Intrinsic::x86_sse2_psrai_d:
6198  case Intrinsic::x86_mmx_pslli_w:
6199  case Intrinsic::x86_mmx_pslli_d:
6200  case Intrinsic::x86_mmx_pslli_q:
6201  case Intrinsic::x86_mmx_psrli_w:
6202  case Intrinsic::x86_mmx_psrli_d:
6203  case Intrinsic::x86_mmx_psrli_q:
6204  case Intrinsic::x86_mmx_psrai_w:
6205  case Intrinsic::x86_mmx_psrai_d: {
6206    SDValue ShAmt = Op.getOperand(2);
6207    if (isa<ConstantSDNode>(ShAmt))
6208      return SDValue();
6209
6210    unsigned NewIntNo = 0;
6211    MVT ShAmtVT = MVT::v4i32;
6212    switch (IntNo) {
6213    case Intrinsic::x86_sse2_pslli_w:
6214      NewIntNo = Intrinsic::x86_sse2_psll_w;
6215      break;
6216    case Intrinsic::x86_sse2_pslli_d:
6217      NewIntNo = Intrinsic::x86_sse2_psll_d;
6218      break;
6219    case Intrinsic::x86_sse2_pslli_q:
6220      NewIntNo = Intrinsic::x86_sse2_psll_q;
6221      break;
6222    case Intrinsic::x86_sse2_psrli_w:
6223      NewIntNo = Intrinsic::x86_sse2_psrl_w;
6224      break;
6225    case Intrinsic::x86_sse2_psrli_d:
6226      NewIntNo = Intrinsic::x86_sse2_psrl_d;
6227      break;
6228    case Intrinsic::x86_sse2_psrli_q:
6229      NewIntNo = Intrinsic::x86_sse2_psrl_q;
6230      break;
6231    case Intrinsic::x86_sse2_psrai_w:
6232      NewIntNo = Intrinsic::x86_sse2_psra_w;
6233      break;
6234    case Intrinsic::x86_sse2_psrai_d:
6235      NewIntNo = Intrinsic::x86_sse2_psra_d;
6236      break;
6237    default: {
6238      ShAmtVT = MVT::v2i32;
6239      switch (IntNo) {
6240      case Intrinsic::x86_mmx_pslli_w:
6241        NewIntNo = Intrinsic::x86_mmx_psll_w;
6242        break;
6243      case Intrinsic::x86_mmx_pslli_d:
6244        NewIntNo = Intrinsic::x86_mmx_psll_d;
6245        break;
6246      case Intrinsic::x86_mmx_pslli_q:
6247        NewIntNo = Intrinsic::x86_mmx_psll_q;
6248        break;
6249      case Intrinsic::x86_mmx_psrli_w:
6250        NewIntNo = Intrinsic::x86_mmx_psrl_w;
6251        break;
6252      case Intrinsic::x86_mmx_psrli_d:
6253        NewIntNo = Intrinsic::x86_mmx_psrl_d;
6254        break;
6255      case Intrinsic::x86_mmx_psrli_q:
6256        NewIntNo = Intrinsic::x86_mmx_psrl_q;
6257        break;
6258      case Intrinsic::x86_mmx_psrai_w:
6259        NewIntNo = Intrinsic::x86_mmx_psra_w;
6260        break;
6261      case Intrinsic::x86_mmx_psrai_d:
6262        NewIntNo = Intrinsic::x86_mmx_psra_d;
6263        break;
6264      default: abort();  // Can't reach here.
6265      }
6266      break;
6267    }
6268    }
6269    MVT VT = Op.getValueType();
6270    ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, VT,
6271                        DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, ShAmtVT, ShAmt));
6272    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6273                       DAG.getConstant(NewIntNo, MVT::i32),
6274                       Op.getOperand(1), ShAmt);
6275  }
6276  }
6277}
6278
6279SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
6280  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6281  DebugLoc dl = Op.getDebugLoc();
6282
6283  if (Depth > 0) {
6284    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
6285    SDValue Offset =
6286      DAG.getConstant(TD->getPointerSize(),
6287                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
6288    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
6289                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
6290                                   FrameAddr, Offset),
6291                       NULL, 0);
6292  }
6293
6294  // Just load the return address.
6295  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
6296  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
6297                     RetAddrFI, NULL, 0);
6298}
6299
6300SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
6301  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6302  MFI->setFrameAddressIsTaken(true);
6303  MVT VT = Op.getValueType();
6304  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
6305  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6306  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
6307  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
6308  while (Depth--)
6309    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0);
6310  return FrameAddr;
6311}
6312
6313SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
6314                                                     SelectionDAG &DAG) {
6315  return DAG.getIntPtrConstant(2*TD->getPointerSize());
6316}
6317
6318SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
6319{
6320  MachineFunction &MF = DAG.getMachineFunction();
6321  SDValue Chain     = Op.getOperand(0);
6322  SDValue Offset    = Op.getOperand(1);
6323  SDValue Handler   = Op.getOperand(2);
6324  DebugLoc dl       = Op.getDebugLoc();
6325
6326  SDValue Frame = DAG.getRegister(Subtarget->is64Bit() ? X86::RBP : X86::EBP,
6327                                  getPointerTy());
6328  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
6329
6330  SDValue StoreAddr = DAG.getNode(ISD::SUB, dl, getPointerTy(), Frame,
6331                                  DAG.getIntPtrConstant(-TD->getPointerSize()));
6332  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
6333  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, NULL, 0);
6334  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
6335  MF.getRegInfo().addLiveOut(StoreAddrReg);
6336
6337  return DAG.getNode(X86ISD::EH_RETURN, dl,
6338                     MVT::Other,
6339                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
6340}
6341
6342SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
6343                                             SelectionDAG &DAG) {
6344  SDValue Root = Op.getOperand(0);
6345  SDValue Trmp = Op.getOperand(1); // trampoline
6346  SDValue FPtr = Op.getOperand(2); // nested function
6347  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
6348  DebugLoc dl  = Op.getDebugLoc();
6349
6350  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
6351
6352  const X86InstrInfo *TII =
6353    ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
6354
6355  if (Subtarget->is64Bit()) {
6356    SDValue OutChains[6];
6357
6358    // Large code-model.
6359
6360    const unsigned char JMP64r  = TII->getBaseOpcodeFor(X86::JMP64r);
6361    const unsigned char MOV64ri = TII->getBaseOpcodeFor(X86::MOV64ri);
6362
6363    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
6364    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
6365
6366    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
6367
6368    // Load the pointer to the nested function into R11.
6369    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
6370    SDValue Addr = Trmp;
6371    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
6372                                Addr, TrmpAddr, 0);
6373
6374    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6375                       DAG.getConstant(2, MVT::i64));
6376    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, TrmpAddr, 2, false, 2);
6377
6378    // Load the 'nest' parameter value into R10.
6379    // R10 is specified in X86CallingConv.td
6380    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
6381    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6382                       DAG.getConstant(10, MVT::i64));
6383    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
6384                                Addr, TrmpAddr, 10);
6385
6386    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6387                       DAG.getConstant(12, MVT::i64));
6388    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 12, false, 2);
6389
6390    // Jump to the nested function.
6391    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
6392    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6393                       DAG.getConstant(20, MVT::i64));
6394    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
6395                                Addr, TrmpAddr, 20);
6396
6397    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
6398    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6399                       DAG.getConstant(22, MVT::i64));
6400    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
6401                                TrmpAddr, 22);
6402
6403    SDValue Ops[] =
6404      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
6405    return DAG.getMergeValues(Ops, 2, dl);
6406  } else {
6407    const Function *Func =
6408      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
6409    unsigned CC = Func->getCallingConv();
6410    unsigned NestReg;
6411
6412    switch (CC) {
6413    default:
6414      assert(0 && "Unsupported calling convention");
6415    case CallingConv::C:
6416    case CallingConv::X86_StdCall: {
6417      // Pass 'nest' parameter in ECX.
6418      // Must be kept in sync with X86CallingConv.td
6419      NestReg = X86::ECX;
6420
6421      // Check that ECX wasn't needed by an 'inreg' parameter.
6422      const FunctionType *FTy = Func->getFunctionType();
6423      const AttrListPtr &Attrs = Func->getAttributes();
6424
6425      if (!Attrs.isEmpty() && !Func->isVarArg()) {
6426        unsigned InRegCount = 0;
6427        unsigned Idx = 1;
6428
6429        for (FunctionType::param_iterator I = FTy->param_begin(),
6430             E = FTy->param_end(); I != E; ++I, ++Idx)
6431          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
6432            // FIXME: should only count parameters that are lowered to integers.
6433            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
6434
6435        if (InRegCount > 2) {
6436          cerr << "Nest register in use - reduce number of inreg parameters!\n";
6437          abort();
6438        }
6439      }
6440      break;
6441    }
6442    case CallingConv::X86_FastCall:
6443    case CallingConv::Fast:
6444      // Pass 'nest' parameter in EAX.
6445      // Must be kept in sync with X86CallingConv.td
6446      NestReg = X86::EAX;
6447      break;
6448    }
6449
6450    SDValue OutChains[4];
6451    SDValue Addr, Disp;
6452
6453    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6454                       DAG.getConstant(10, MVT::i32));
6455    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
6456
6457    const unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
6458    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
6459    OutChains[0] = DAG.getStore(Root, dl,
6460                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
6461                                Trmp, TrmpAddr, 0);
6462
6463    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6464                       DAG.getConstant(1, MVT::i32));
6465    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 1, false, 1);
6466
6467    const unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
6468    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6469                       DAG.getConstant(5, MVT::i32));
6470    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
6471                                TrmpAddr, 5, false, 1);
6472
6473    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6474                       DAG.getConstant(6, MVT::i32));
6475    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, TrmpAddr, 6, false, 1);
6476
6477    SDValue Ops[] =
6478      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
6479    return DAG.getMergeValues(Ops, 2, dl);
6480  }
6481}
6482
6483SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
6484  /*
6485   The rounding mode is in bits 11:10 of FPSR, and has the following
6486   settings:
6487     00 Round to nearest
6488     01 Round to -inf
6489     10 Round to +inf
6490     11 Round to 0
6491
6492  FLT_ROUNDS, on the other hand, expects the following:
6493    -1 Undefined
6494     0 Round to 0
6495     1 Round to nearest
6496     2 Round to +inf
6497     3 Round to -inf
6498
6499  To perform the conversion, we do:
6500    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
6501  */
6502
6503  MachineFunction &MF = DAG.getMachineFunction();
6504  const TargetMachine &TM = MF.getTarget();
6505  const TargetFrameInfo &TFI = *TM.getFrameInfo();
6506  unsigned StackAlignment = TFI.getStackAlignment();
6507  MVT VT = Op.getValueType();
6508  DebugLoc dl = Op.getDebugLoc();
6509
6510  // Save FP Control Word to stack slot
6511  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment);
6512  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6513
6514  SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, dl, MVT::Other,
6515                              DAG.getEntryNode(), StackSlot);
6516
6517  // Load FP Control Word from stack slot
6518  SDValue CWD = DAG.getLoad(MVT::i16, dl, Chain, StackSlot, NULL, 0);
6519
6520  // Transform as necessary
6521  SDValue CWD1 =
6522    DAG.getNode(ISD::SRL, dl, MVT::i16,
6523                DAG.getNode(ISD::AND, dl, MVT::i16,
6524                            CWD, DAG.getConstant(0x800, MVT::i16)),
6525                DAG.getConstant(11, MVT::i8));
6526  SDValue CWD2 =
6527    DAG.getNode(ISD::SRL, dl, MVT::i16,
6528                DAG.getNode(ISD::AND, dl, MVT::i16,
6529                            CWD, DAG.getConstant(0x400, MVT::i16)),
6530                DAG.getConstant(9, MVT::i8));
6531
6532  SDValue RetVal =
6533    DAG.getNode(ISD::AND, dl, MVT::i16,
6534                DAG.getNode(ISD::ADD, dl, MVT::i16,
6535                            DAG.getNode(ISD::OR, dl, MVT::i16, CWD1, CWD2),
6536                            DAG.getConstant(1, MVT::i16)),
6537                DAG.getConstant(3, MVT::i16));
6538
6539
6540  return DAG.getNode((VT.getSizeInBits() < 16 ?
6541                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
6542}
6543
6544SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
6545  MVT VT = Op.getValueType();
6546  MVT OpVT = VT;
6547  unsigned NumBits = VT.getSizeInBits();
6548  DebugLoc dl = Op.getDebugLoc();
6549
6550  Op = Op.getOperand(0);
6551  if (VT == MVT::i8) {
6552    // Zero extend to i32 since there is not an i8 bsr.
6553    OpVT = MVT::i32;
6554    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
6555  }
6556
6557  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
6558  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
6559  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
6560
6561  // If src is zero (i.e. bsr sets ZF), returns NumBits.
6562  SmallVector<SDValue, 4> Ops;
6563  Ops.push_back(Op);
6564  Ops.push_back(DAG.getConstant(NumBits+NumBits-1, OpVT));
6565  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
6566  Ops.push_back(Op.getValue(1));
6567  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, &Ops[0], 4);
6568
6569  // Finally xor with NumBits-1.
6570  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
6571
6572  if (VT == MVT::i8)
6573    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
6574  return Op;
6575}
6576
6577SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
6578  MVT VT = Op.getValueType();
6579  MVT OpVT = VT;
6580  unsigned NumBits = VT.getSizeInBits();
6581  DebugLoc dl = Op.getDebugLoc();
6582
6583  Op = Op.getOperand(0);
6584  if (VT == MVT::i8) {
6585    OpVT = MVT::i32;
6586    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
6587  }
6588
6589  // Issue a bsf (scan bits forward) which also sets EFLAGS.
6590  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
6591  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
6592
6593  // If src is zero (i.e. bsf sets ZF), returns NumBits.
6594  SmallVector<SDValue, 4> Ops;
6595  Ops.push_back(Op);
6596  Ops.push_back(DAG.getConstant(NumBits, OpVT));
6597  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
6598  Ops.push_back(Op.getValue(1));
6599  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, &Ops[0], 4);
6600
6601  if (VT == MVT::i8)
6602    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
6603  return Op;
6604}
6605
6606SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) {
6607  MVT VT = Op.getValueType();
6608  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
6609  DebugLoc dl = Op.getDebugLoc();
6610
6611  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
6612  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
6613  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
6614  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
6615  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
6616  //
6617  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
6618  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
6619  //  return AloBlo + AloBhi + AhiBlo;
6620
6621  SDValue A = Op.getOperand(0);
6622  SDValue B = Op.getOperand(1);
6623
6624  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6625                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
6626                       A, DAG.getConstant(32, MVT::i32));
6627  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6628                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
6629                       B, DAG.getConstant(32, MVT::i32));
6630  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6631                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6632                       A, B);
6633  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6634                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6635                       A, Bhi);
6636  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6637                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6638                       Ahi, B);
6639  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6640                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
6641                       AloBhi, DAG.getConstant(32, MVT::i32));
6642  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6643                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
6644                       AhiBlo, DAG.getConstant(32, MVT::i32));
6645  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
6646  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
6647  return Res;
6648}
6649
6650
6651SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) {
6652  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
6653  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
6654  // looks for this combo and may remove the "setcc" instruction if the "setcc"
6655  // has only one use.
6656  SDNode *N = Op.getNode();
6657  SDValue LHS = N->getOperand(0);
6658  SDValue RHS = N->getOperand(1);
6659  unsigned BaseOp = 0;
6660  unsigned Cond = 0;
6661  DebugLoc dl = Op.getDebugLoc();
6662
6663  switch (Op.getOpcode()) {
6664  default: assert(0 && "Unknown ovf instruction!");
6665  case ISD::SADDO:
6666    BaseOp = X86ISD::ADD;
6667    Cond = X86::COND_O;
6668    break;
6669  case ISD::UADDO:
6670    BaseOp = X86ISD::ADD;
6671    Cond = X86::COND_B;
6672    break;
6673  case ISD::SSUBO:
6674    BaseOp = X86ISD::SUB;
6675    Cond = X86::COND_O;
6676    break;
6677  case ISD::USUBO:
6678    BaseOp = X86ISD::SUB;
6679    Cond = X86::COND_B;
6680    break;
6681  case ISD::SMULO:
6682    BaseOp = X86ISD::SMUL;
6683    Cond = X86::COND_O;
6684    break;
6685  case ISD::UMULO:
6686    BaseOp = X86ISD::UMUL;
6687    Cond = X86::COND_B;
6688    break;
6689  }
6690
6691  // Also sets EFLAGS.
6692  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
6693  SDValue Sum = DAG.getNode(BaseOp, dl, VTs, LHS, RHS);
6694
6695  SDValue SetCC =
6696    DAG.getNode(X86ISD::SETCC, dl, N->getValueType(1),
6697                DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1));
6698
6699  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
6700  return Sum;
6701}
6702
6703SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) {
6704  MVT T = Op.getValueType();
6705  DebugLoc dl = Op.getDebugLoc();
6706  unsigned Reg = 0;
6707  unsigned size = 0;
6708  switch(T.getSimpleVT()) {
6709  default:
6710    assert(false && "Invalid value type!");
6711  case MVT::i8:  Reg = X86::AL;  size = 1; break;
6712  case MVT::i16: Reg = X86::AX;  size = 2; break;
6713  case MVT::i32: Reg = X86::EAX; size = 4; break;
6714  case MVT::i64:
6715    assert(Subtarget->is64Bit() && "Node not type legal!");
6716    Reg = X86::RAX; size = 8;
6717    break;
6718  }
6719  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), dl, Reg,
6720                                    Op.getOperand(2), SDValue());
6721  SDValue Ops[] = { cpIn.getValue(0),
6722                    Op.getOperand(1),
6723                    Op.getOperand(3),
6724                    DAG.getTargetConstant(size, MVT::i8),
6725                    cpIn.getValue(1) };
6726  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6727  SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, dl, Tys, Ops, 5);
6728  SDValue cpOut =
6729    DAG.getCopyFromReg(Result.getValue(0), dl, Reg, T, Result.getValue(1));
6730  return cpOut;
6731}
6732
6733SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
6734                                                 SelectionDAG &DAG) {
6735  assert(Subtarget->is64Bit() && "Result not type legalized?");
6736  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6737  SDValue TheChain = Op.getOperand(0);
6738  DebugLoc dl = Op.getDebugLoc();
6739  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
6740  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
6741  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
6742                                   rax.getValue(2));
6743  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
6744                            DAG.getConstant(32, MVT::i8));
6745  SDValue Ops[] = {
6746    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
6747    rdx.getValue(1)
6748  };
6749  return DAG.getMergeValues(Ops, 2, dl);
6750}
6751
6752SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
6753  SDNode *Node = Op.getNode();
6754  DebugLoc dl = Node->getDebugLoc();
6755  MVT T = Node->getValueType(0);
6756  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
6757                              DAG.getConstant(0, T), Node->getOperand(2));
6758  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
6759                       cast<AtomicSDNode>(Node)->getMemoryVT(),
6760                       Node->getOperand(0),
6761                       Node->getOperand(1), negOp,
6762                       cast<AtomicSDNode>(Node)->getSrcValue(),
6763                       cast<AtomicSDNode>(Node)->getAlignment());
6764}
6765
6766/// LowerOperation - Provide custom lowering hooks for some operations.
6767///
6768SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
6769  switch (Op.getOpcode()) {
6770  default: assert(0 && "Should not custom lower this!");
6771  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
6772  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
6773  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
6774  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
6775  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
6776  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
6777  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
6778  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
6779  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
6780  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
6781  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
6782  case ISD::SHL_PARTS:
6783  case ISD::SRA_PARTS:
6784  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
6785  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
6786  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
6787  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
6788  case ISD::FABS:               return LowerFABS(Op, DAG);
6789  case ISD::FNEG:               return LowerFNEG(Op, DAG);
6790  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
6791  case ISD::SETCC:              return LowerSETCC(Op, DAG);
6792  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
6793  case ISD::SELECT:             return LowerSELECT(Op, DAG);
6794  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
6795  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
6796  case ISD::CALL:               return LowerCALL(Op, DAG);
6797  case ISD::RET:                return LowerRET(Op, DAG);
6798  case ISD::FORMAL_ARGUMENTS:   return LowerFORMAL_ARGUMENTS(Op, DAG);
6799  case ISD::VASTART:            return LowerVASTART(Op, DAG);
6800  case ISD::VAARG:              return LowerVAARG(Op, DAG);
6801  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
6802  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
6803  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
6804  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
6805  case ISD::FRAME_TO_ARGS_OFFSET:
6806                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
6807  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
6808  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
6809  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
6810  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
6811  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
6812  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
6813  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
6814  case ISD::SADDO:
6815  case ISD::UADDO:
6816  case ISD::SSUBO:
6817  case ISD::USUBO:
6818  case ISD::SMULO:
6819  case ISD::UMULO:              return LowerXALUO(Op, DAG);
6820  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
6821  }
6822}
6823
6824void X86TargetLowering::
6825ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
6826                        SelectionDAG &DAG, unsigned NewOp) {
6827  MVT T = Node->getValueType(0);
6828  DebugLoc dl = Node->getDebugLoc();
6829  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
6830
6831  SDValue Chain = Node->getOperand(0);
6832  SDValue In1 = Node->getOperand(1);
6833  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6834                             Node->getOperand(2), DAG.getIntPtrConstant(0));
6835  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6836                             Node->getOperand(2), DAG.getIntPtrConstant(1));
6837  // This is a generalized SDNode, not an AtomicSDNode, so it doesn't
6838  // have a MemOperand.  Pass the info through as a normal operand.
6839  SDValue LSI = DAG.getMemOperand(cast<MemSDNode>(Node)->getMemOperand());
6840  SDValue Ops[] = { Chain, In1, In2L, In2H, LSI };
6841  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
6842  SDValue Result = DAG.getNode(NewOp, dl, Tys, Ops, 5);
6843  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
6844  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
6845  Results.push_back(Result.getValue(2));
6846}
6847
6848/// ReplaceNodeResults - Replace a node with an illegal result type
6849/// with a new node built out of custom code.
6850void X86TargetLowering::ReplaceNodeResults(SDNode *N,
6851                                           SmallVectorImpl<SDValue>&Results,
6852                                           SelectionDAG &DAG) {
6853  DebugLoc dl = N->getDebugLoc();
6854  switch (N->getOpcode()) {
6855  default:
6856    assert(false && "Do not know how to custom type legalize this operation!");
6857    return;
6858  case ISD::FP_TO_SINT: {
6859    std::pair<SDValue,SDValue> Vals = FP_TO_SINTHelper(SDValue(N, 0), DAG);
6860    SDValue FIST = Vals.first, StackSlot = Vals.second;
6861    if (FIST.getNode() != 0) {
6862      MVT VT = N->getValueType(0);
6863      // Return a load from the stack slot.
6864      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, NULL, 0));
6865    }
6866    return;
6867  }
6868  case ISD::READCYCLECOUNTER: {
6869    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6870    SDValue TheChain = N->getOperand(0);
6871    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
6872    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
6873                                     rd.getValue(1));
6874    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
6875                                     eax.getValue(2));
6876    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
6877    SDValue Ops[] = { eax, edx };
6878    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
6879    Results.push_back(edx.getValue(1));
6880    return;
6881  }
6882  case ISD::ATOMIC_CMP_SWAP: {
6883    MVT T = N->getValueType(0);
6884    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
6885    SDValue cpInL, cpInH;
6886    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
6887                        DAG.getConstant(0, MVT::i32));
6888    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
6889                        DAG.getConstant(1, MVT::i32));
6890    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
6891    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
6892                             cpInL.getValue(1));
6893    SDValue swapInL, swapInH;
6894    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
6895                          DAG.getConstant(0, MVT::i32));
6896    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
6897                          DAG.getConstant(1, MVT::i32));
6898    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
6899                               cpInH.getValue(1));
6900    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
6901                               swapInL.getValue(1));
6902    SDValue Ops[] = { swapInH.getValue(0),
6903                      N->getOperand(1),
6904                      swapInH.getValue(1) };
6905    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6906    SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, dl, Tys, Ops, 3);
6907    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
6908                                        MVT::i32, Result.getValue(1));
6909    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
6910                                        MVT::i32, cpOutL.getValue(2));
6911    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
6912    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
6913    Results.push_back(cpOutH.getValue(1));
6914    return;
6915  }
6916  case ISD::ATOMIC_LOAD_ADD:
6917    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
6918    return;
6919  case ISD::ATOMIC_LOAD_AND:
6920    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
6921    return;
6922  case ISD::ATOMIC_LOAD_NAND:
6923    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
6924    return;
6925  case ISD::ATOMIC_LOAD_OR:
6926    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
6927    return;
6928  case ISD::ATOMIC_LOAD_SUB:
6929    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
6930    return;
6931  case ISD::ATOMIC_LOAD_XOR:
6932    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
6933    return;
6934  case ISD::ATOMIC_SWAP:
6935    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
6936    return;
6937  }
6938}
6939
6940const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
6941  switch (Opcode) {
6942  default: return NULL;
6943  case X86ISD::BSF:                return "X86ISD::BSF";
6944  case X86ISD::BSR:                return "X86ISD::BSR";
6945  case X86ISD::SHLD:               return "X86ISD::SHLD";
6946  case X86ISD::SHRD:               return "X86ISD::SHRD";
6947  case X86ISD::FAND:               return "X86ISD::FAND";
6948  case X86ISD::FOR:                return "X86ISD::FOR";
6949  case X86ISD::FXOR:               return "X86ISD::FXOR";
6950  case X86ISD::FSRL:               return "X86ISD::FSRL";
6951  case X86ISD::FILD:               return "X86ISD::FILD";
6952  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
6953  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
6954  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
6955  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
6956  case X86ISD::FLD:                return "X86ISD::FLD";
6957  case X86ISD::FST:                return "X86ISD::FST";
6958  case X86ISD::CALL:               return "X86ISD::CALL";
6959  case X86ISD::TAILCALL:           return "X86ISD::TAILCALL";
6960  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
6961  case X86ISD::BT:                 return "X86ISD::BT";
6962  case X86ISD::CMP:                return "X86ISD::CMP";
6963  case X86ISD::COMI:               return "X86ISD::COMI";
6964  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
6965  case X86ISD::SETCC:              return "X86ISD::SETCC";
6966  case X86ISD::CMOV:               return "X86ISD::CMOV";
6967  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
6968  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
6969  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
6970  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
6971  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
6972  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
6973  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
6974  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
6975  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
6976  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
6977  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
6978  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
6979  case X86ISD::FMAX:               return "X86ISD::FMAX";
6980  case X86ISD::FMIN:               return "X86ISD::FMIN";
6981  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
6982  case X86ISD::FRCP:               return "X86ISD::FRCP";
6983  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
6984  case X86ISD::THREAD_POINTER:     return "X86ISD::THREAD_POINTER";
6985  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
6986  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
6987  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
6988  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
6989  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
6990  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
6991  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
6992  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
6993  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
6994  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
6995  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
6996  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
6997  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
6998  case X86ISD::VSHL:               return "X86ISD::VSHL";
6999  case X86ISD::VSRL:               return "X86ISD::VSRL";
7000  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
7001  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
7002  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
7003  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
7004  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
7005  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
7006  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
7007  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
7008  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
7009  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
7010  case X86ISD::ADD:                return "X86ISD::ADD";
7011  case X86ISD::SUB:                return "X86ISD::SUB";
7012  case X86ISD::SMUL:               return "X86ISD::SMUL";
7013  case X86ISD::UMUL:               return "X86ISD::UMUL";
7014  }
7015}
7016
7017// isLegalAddressingMode - Return true if the addressing mode represented
7018// by AM is legal for this target, for a load/store of the specified type.
7019bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
7020                                              const Type *Ty) const {
7021  // X86 supports extremely general addressing modes.
7022
7023  // X86 allows a sign-extended 32-bit immediate field as a displacement.
7024  if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
7025    return false;
7026
7027  if (AM.BaseGV) {
7028    // We can only fold this if we don't need an extra load.
7029    if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
7030      return false;
7031    // If BaseGV requires a register, we cannot also have a BaseReg.
7032    if (Subtarget->GVRequiresRegister(AM.BaseGV, getTargetMachine(), false) &&
7033        AM.HasBaseReg)
7034      return false;
7035
7036    // X86-64 only supports addr of globals in small code model.
7037    if (Subtarget->is64Bit()) {
7038      if (getTargetMachine().getCodeModel() != CodeModel::Small)
7039        return false;
7040      // If lower 4G is not available, then we must use rip-relative addressing.
7041      if (AM.BaseOffs || AM.Scale > 1)
7042        return false;
7043    }
7044  }
7045
7046  switch (AM.Scale) {
7047  case 0:
7048  case 1:
7049  case 2:
7050  case 4:
7051  case 8:
7052    // These scales always work.
7053    break;
7054  case 3:
7055  case 5:
7056  case 9:
7057    // These scales are formed with basereg+scalereg.  Only accept if there is
7058    // no basereg yet.
7059    if (AM.HasBaseReg)
7060      return false;
7061    break;
7062  default:  // Other stuff never works.
7063    return false;
7064  }
7065
7066  return true;
7067}
7068
7069
7070bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
7071  if (!Ty1->isInteger() || !Ty2->isInteger())
7072    return false;
7073  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
7074  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
7075  if (NumBits1 <= NumBits2)
7076    return false;
7077  return Subtarget->is64Bit() || NumBits1 < 64;
7078}
7079
7080bool X86TargetLowering::isTruncateFree(MVT VT1, MVT VT2) const {
7081  if (!VT1.isInteger() || !VT2.isInteger())
7082    return false;
7083  unsigned NumBits1 = VT1.getSizeInBits();
7084  unsigned NumBits2 = VT2.getSizeInBits();
7085  if (NumBits1 <= NumBits2)
7086    return false;
7087  return Subtarget->is64Bit() || NumBits1 < 64;
7088}
7089
7090/// isShuffleMaskLegal - Targets can use this to indicate that they only
7091/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
7092/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
7093/// are assumed to be legal.
7094bool
7095X86TargetLowering::isShuffleMaskLegal(SDValue Mask, MVT VT) const {
7096  // Only do shuffles on 128-bit vector types for now.
7097  // FIXME: pshufb, blends
7098  if (VT.getSizeInBits() == 64) return false;
7099  return (Mask.getNode()->getNumOperands() <= 4 ||
7100          isIdentityMask(Mask.getNode()) ||
7101          isIdentityMask(Mask.getNode(), true) ||
7102          isSplatMask(Mask.getNode())  ||
7103          X86::isPSHUFHWMask(Mask.getNode()) ||
7104          X86::isPSHUFLWMask(Mask.getNode()) ||
7105          X86::isUNPCKLMask(Mask.getNode()) ||
7106          X86::isUNPCKHMask(Mask.getNode()) ||
7107          X86::isUNPCKL_v_undef_Mask(Mask.getNode()) ||
7108          X86::isUNPCKH_v_undef_Mask(Mask.getNode()));
7109}
7110
7111bool
7112X86TargetLowering::isVectorClearMaskLegal(const std::vector<SDValue> &BVOps,
7113                                          MVT EVT, SelectionDAG &DAG) const {
7114  unsigned NumElts = BVOps.size();
7115  // Only do shuffles on 128-bit vector types for now.
7116  if (EVT.getSizeInBits() * NumElts == 64) return false;
7117  if (NumElts == 2) return true;
7118  if (NumElts == 4) {
7119    return (isMOVLMask(&BVOps[0], 4)  ||
7120            isCommutedMOVL(&BVOps[0], 4, true) ||
7121            isSHUFPMask(&BVOps[0], 4) ||
7122            isCommutedSHUFP(&BVOps[0], 4));
7123  }
7124  return false;
7125}
7126
7127//===----------------------------------------------------------------------===//
7128//                           X86 Scheduler Hooks
7129//===----------------------------------------------------------------------===//
7130
7131// private utility function
7132MachineBasicBlock *
7133X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
7134                                                       MachineBasicBlock *MBB,
7135                                                       unsigned regOpc,
7136                                                       unsigned immOpc,
7137                                                       unsigned LoadOpc,
7138                                                       unsigned CXchgOpc,
7139                                                       unsigned copyOpc,
7140                                                       unsigned notOpc,
7141                                                       unsigned EAXreg,
7142                                                       TargetRegisterClass *RC,
7143                                                       bool invSrc) const {
7144  // For the atomic bitwise operator, we generate
7145  //   thisMBB:
7146  //   newMBB:
7147  //     ld  t1 = [bitinstr.addr]
7148  //     op  t2 = t1, [bitinstr.val]
7149  //     mov EAX = t1
7150  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
7151  //     bz  newMBB
7152  //     fallthrough -->nextMBB
7153  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7154  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7155  MachineFunction::iterator MBBIter = MBB;
7156  ++MBBIter;
7157
7158  /// First build the CFG
7159  MachineFunction *F = MBB->getParent();
7160  MachineBasicBlock *thisMBB = MBB;
7161  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7162  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7163  F->insert(MBBIter, newMBB);
7164  F->insert(MBBIter, nextMBB);
7165
7166  // Move all successors to thisMBB to nextMBB
7167  nextMBB->transferSuccessors(thisMBB);
7168
7169  // Update thisMBB to fall through to newMBB
7170  thisMBB->addSuccessor(newMBB);
7171
7172  // newMBB jumps to itself and fall through to nextMBB
7173  newMBB->addSuccessor(nextMBB);
7174  newMBB->addSuccessor(newMBB);
7175
7176  // Insert instructions into newMBB based on incoming instruction
7177  assert(bInstr->getNumOperands() < 8 && "unexpected number of operands");
7178  DebugLoc dl = bInstr->getDebugLoc();
7179  MachineOperand& destOper = bInstr->getOperand(0);
7180  MachineOperand* argOpers[6];
7181  int numArgs = bInstr->getNumOperands() - 1;
7182  for (int i=0; i < numArgs; ++i)
7183    argOpers[i] = &bInstr->getOperand(i+1);
7184
7185  // x86 address has 4 operands: base, index, scale, and displacement
7186  int lastAddrIndx = 3; // [0,3]
7187  int valArgIndx = 4;
7188
7189  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
7190  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
7191  for (int i=0; i <= lastAddrIndx; ++i)
7192    (*MIB).addOperand(*argOpers[i]);
7193
7194  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
7195  if (invSrc) {
7196    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
7197  }
7198  else
7199    tt = t1;
7200
7201  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
7202  assert((argOpers[valArgIndx]->isReg() ||
7203          argOpers[valArgIndx]->isImm()) &&
7204         "invalid operand");
7205  if (argOpers[valArgIndx]->isReg())
7206    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
7207  else
7208    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
7209  MIB.addReg(tt);
7210  (*MIB).addOperand(*argOpers[valArgIndx]);
7211
7212  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), EAXreg);
7213  MIB.addReg(t1);
7214
7215  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
7216  for (int i=0; i <= lastAddrIndx; ++i)
7217    (*MIB).addOperand(*argOpers[i]);
7218  MIB.addReg(t2);
7219  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7220  (*MIB).addMemOperand(*F, *bInstr->memoperands_begin());
7221
7222  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), destOper.getReg());
7223  MIB.addReg(EAXreg);
7224
7225  // insert branch
7226  BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
7227
7228  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
7229  return nextMBB;
7230}
7231
7232// private utility function:  64 bit atomics on 32 bit host.
7233MachineBasicBlock *
7234X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
7235                                                       MachineBasicBlock *MBB,
7236                                                       unsigned regOpcL,
7237                                                       unsigned regOpcH,
7238                                                       unsigned immOpcL,
7239                                                       unsigned immOpcH,
7240                                                       bool invSrc) const {
7241  // For the atomic bitwise operator, we generate
7242  //   thisMBB (instructions are in pairs, except cmpxchg8b)
7243  //     ld t1,t2 = [bitinstr.addr]
7244  //   newMBB:
7245  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
7246  //     op  t5, t6 <- out1, out2, [bitinstr.val]
7247  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
7248  //     mov ECX, EBX <- t5, t6
7249  //     mov EAX, EDX <- t1, t2
7250  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
7251  //     mov t3, t4 <- EAX, EDX
7252  //     bz  newMBB
7253  //     result in out1, out2
7254  //     fallthrough -->nextMBB
7255
7256  const TargetRegisterClass *RC = X86::GR32RegisterClass;
7257  const unsigned LoadOpc = X86::MOV32rm;
7258  const unsigned copyOpc = X86::MOV32rr;
7259  const unsigned NotOpc = X86::NOT32r;
7260  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7261  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7262  MachineFunction::iterator MBBIter = MBB;
7263  ++MBBIter;
7264
7265  /// First build the CFG
7266  MachineFunction *F = MBB->getParent();
7267  MachineBasicBlock *thisMBB = MBB;
7268  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7269  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7270  F->insert(MBBIter, newMBB);
7271  F->insert(MBBIter, nextMBB);
7272
7273  // Move all successors to thisMBB to nextMBB
7274  nextMBB->transferSuccessors(thisMBB);
7275
7276  // Update thisMBB to fall through to newMBB
7277  thisMBB->addSuccessor(newMBB);
7278
7279  // newMBB jumps to itself and fall through to nextMBB
7280  newMBB->addSuccessor(nextMBB);
7281  newMBB->addSuccessor(newMBB);
7282
7283  DebugLoc dl = bInstr->getDebugLoc();
7284  // Insert instructions into newMBB based on incoming instruction
7285  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
7286  assert(bInstr->getNumOperands() < 18 && "unexpected number of operands");
7287  MachineOperand& dest1Oper = bInstr->getOperand(0);
7288  MachineOperand& dest2Oper = bInstr->getOperand(1);
7289  MachineOperand* argOpers[6];
7290  for (int i=0; i < 6; ++i)
7291    argOpers[i] = &bInstr->getOperand(i+2);
7292
7293  // x86 address has 4 operands: base, index, scale, and displacement
7294  int lastAddrIndx = 3; // [0,3]
7295
7296  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
7297  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
7298  for (int i=0; i <= lastAddrIndx; ++i)
7299    (*MIB).addOperand(*argOpers[i]);
7300  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
7301  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
7302  // add 4 to displacement.
7303  for (int i=0; i <= lastAddrIndx-1; ++i)
7304    (*MIB).addOperand(*argOpers[i]);
7305  MachineOperand newOp3 = *(argOpers[3]);
7306  if (newOp3.isImm())
7307    newOp3.setImm(newOp3.getImm()+4);
7308  else
7309    newOp3.setOffset(newOp3.getOffset()+4);
7310  (*MIB).addOperand(newOp3);
7311
7312  // t3/4 are defined later, at the bottom of the loop
7313  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
7314  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
7315  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
7316    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
7317  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
7318    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
7319
7320  unsigned tt1 = F->getRegInfo().createVirtualRegister(RC);
7321  unsigned tt2 = F->getRegInfo().createVirtualRegister(RC);
7322  if (invSrc) {
7323    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), tt1).addReg(t1);
7324    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), tt2).addReg(t2);
7325  } else {
7326    tt1 = t1;
7327    tt2 = t2;
7328  }
7329
7330  assert((argOpers[4]->isReg() || argOpers[4]->isImm()) &&
7331         "invalid operand");
7332  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
7333  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
7334  if (argOpers[4]->isReg())
7335    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
7336  else
7337    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
7338  if (regOpcL != X86::MOV32rr)
7339    MIB.addReg(tt1);
7340  (*MIB).addOperand(*argOpers[4]);
7341  assert(argOpers[5]->isReg() == argOpers[4]->isReg());
7342  assert(argOpers[5]->isImm() == argOpers[4]->isImm());
7343  if (argOpers[5]->isReg())
7344    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
7345  else
7346    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
7347  if (regOpcH != X86::MOV32rr)
7348    MIB.addReg(tt2);
7349  (*MIB).addOperand(*argOpers[5]);
7350
7351  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EAX);
7352  MIB.addReg(t1);
7353  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EDX);
7354  MIB.addReg(t2);
7355
7356  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EBX);
7357  MIB.addReg(t5);
7358  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::ECX);
7359  MIB.addReg(t6);
7360
7361  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
7362  for (int i=0; i <= lastAddrIndx; ++i)
7363    (*MIB).addOperand(*argOpers[i]);
7364
7365  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7366  (*MIB).addMemOperand(*F, *bInstr->memoperands_begin());
7367
7368  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t3);
7369  MIB.addReg(X86::EAX);
7370  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t4);
7371  MIB.addReg(X86::EDX);
7372
7373  // insert branch
7374  BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
7375
7376  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
7377  return nextMBB;
7378}
7379
7380// private utility function
7381MachineBasicBlock *
7382X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
7383                                                      MachineBasicBlock *MBB,
7384                                                      unsigned cmovOpc) const {
7385  // For the atomic min/max operator, we generate
7386  //   thisMBB:
7387  //   newMBB:
7388  //     ld t1 = [min/max.addr]
7389  //     mov t2 = [min/max.val]
7390  //     cmp  t1, t2
7391  //     cmov[cond] t2 = t1
7392  //     mov EAX = t1
7393  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
7394  //     bz   newMBB
7395  //     fallthrough -->nextMBB
7396  //
7397  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7398  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7399  MachineFunction::iterator MBBIter = MBB;
7400  ++MBBIter;
7401
7402  /// First build the CFG
7403  MachineFunction *F = MBB->getParent();
7404  MachineBasicBlock *thisMBB = MBB;
7405  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7406  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7407  F->insert(MBBIter, newMBB);
7408  F->insert(MBBIter, nextMBB);
7409
7410  // Move all successors to thisMBB to nextMBB
7411  nextMBB->transferSuccessors(thisMBB);
7412
7413  // Update thisMBB to fall through to newMBB
7414  thisMBB->addSuccessor(newMBB);
7415
7416  // newMBB jumps to newMBB and fall through to nextMBB
7417  newMBB->addSuccessor(nextMBB);
7418  newMBB->addSuccessor(newMBB);
7419
7420  DebugLoc dl = mInstr->getDebugLoc();
7421  // Insert instructions into newMBB based on incoming instruction
7422  assert(mInstr->getNumOperands() < 8 && "unexpected number of operands");
7423  MachineOperand& destOper = mInstr->getOperand(0);
7424  MachineOperand* argOpers[6];
7425  int numArgs = mInstr->getNumOperands() - 1;
7426  for (int i=0; i < numArgs; ++i)
7427    argOpers[i] = &mInstr->getOperand(i+1);
7428
7429  // x86 address has 4 operands: base, index, scale, and displacement
7430  int lastAddrIndx = 3; // [0,3]
7431  int valArgIndx = 4;
7432
7433  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7434  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
7435  for (int i=0; i <= lastAddrIndx; ++i)
7436    (*MIB).addOperand(*argOpers[i]);
7437
7438  // We only support register and immediate values
7439  assert((argOpers[valArgIndx]->isReg() ||
7440          argOpers[valArgIndx]->isImm()) &&
7441         "invalid operand");
7442
7443  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7444  if (argOpers[valArgIndx]->isReg())
7445    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
7446  else
7447    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
7448  (*MIB).addOperand(*argOpers[valArgIndx]);
7449
7450  MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), X86::EAX);
7451  MIB.addReg(t1);
7452
7453  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
7454  MIB.addReg(t1);
7455  MIB.addReg(t2);
7456
7457  // Generate movc
7458  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7459  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
7460  MIB.addReg(t2);
7461  MIB.addReg(t1);
7462
7463  // Cmp and exchange if none has modified the memory location
7464  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
7465  for (int i=0; i <= lastAddrIndx; ++i)
7466    (*MIB).addOperand(*argOpers[i]);
7467  MIB.addReg(t3);
7468  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7469  (*MIB).addMemOperand(*F, *mInstr->memoperands_begin());
7470
7471  MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), destOper.getReg());
7472  MIB.addReg(X86::EAX);
7473
7474  // insert branch
7475  BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
7476
7477  F->DeleteMachineInstr(mInstr);   // The pseudo instruction is gone now.
7478  return nextMBB;
7479}
7480
7481
7482MachineBasicBlock *
7483X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
7484                                               MachineBasicBlock *BB) const {
7485  DebugLoc dl = MI->getDebugLoc();
7486  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7487  switch (MI->getOpcode()) {
7488  default: assert(false && "Unexpected instr type to insert");
7489  case X86::CMOV_V1I64:
7490  case X86::CMOV_FR32:
7491  case X86::CMOV_FR64:
7492  case X86::CMOV_V4F32:
7493  case X86::CMOV_V2F64:
7494  case X86::CMOV_V2I64: {
7495    // To "insert" a SELECT_CC instruction, we actually have to insert the
7496    // diamond control-flow pattern.  The incoming instruction knows the
7497    // destination vreg to set, the condition code register to branch on, the
7498    // true/false values to select between, and a branch opcode to use.
7499    const BasicBlock *LLVM_BB = BB->getBasicBlock();
7500    MachineFunction::iterator It = BB;
7501    ++It;
7502
7503    //  thisMBB:
7504    //  ...
7505    //   TrueVal = ...
7506    //   cmpTY ccX, r1, r2
7507    //   bCC copy1MBB
7508    //   fallthrough --> copy0MBB
7509    MachineBasicBlock *thisMBB = BB;
7510    MachineFunction *F = BB->getParent();
7511    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
7512    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
7513    unsigned Opc =
7514      X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
7515    BuildMI(BB, dl, TII->get(Opc)).addMBB(sinkMBB);
7516    F->insert(It, copy0MBB);
7517    F->insert(It, sinkMBB);
7518    // Update machine-CFG edges by transferring all successors of the current
7519    // block to the new block which will contain the Phi node for the select.
7520    sinkMBB->transferSuccessors(BB);
7521
7522    // Add the true and fallthrough blocks as its successors.
7523    BB->addSuccessor(copy0MBB);
7524    BB->addSuccessor(sinkMBB);
7525
7526    //  copy0MBB:
7527    //   %FalseValue = ...
7528    //   # fallthrough to sinkMBB
7529    BB = copy0MBB;
7530
7531    // Update machine-CFG edges
7532    BB->addSuccessor(sinkMBB);
7533
7534    //  sinkMBB:
7535    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
7536    //  ...
7537    BB = sinkMBB;
7538    BuildMI(BB, dl, TII->get(X86::PHI), MI->getOperand(0).getReg())
7539      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
7540      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
7541
7542    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
7543    return BB;
7544  }
7545
7546  case X86::FP32_TO_INT16_IN_MEM:
7547  case X86::FP32_TO_INT32_IN_MEM:
7548  case X86::FP32_TO_INT64_IN_MEM:
7549  case X86::FP64_TO_INT16_IN_MEM:
7550  case X86::FP64_TO_INT32_IN_MEM:
7551  case X86::FP64_TO_INT64_IN_MEM:
7552  case X86::FP80_TO_INT16_IN_MEM:
7553  case X86::FP80_TO_INT32_IN_MEM:
7554  case X86::FP80_TO_INT64_IN_MEM: {
7555    // Change the floating point control register to use "round towards zero"
7556    // mode when truncating to an integer value.
7557    MachineFunction *F = BB->getParent();
7558    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
7559    addFrameReference(BuildMI(BB, dl, TII->get(X86::FNSTCW16m)), CWFrameIdx);
7560
7561    // Load the old value of the high byte of the control word...
7562    unsigned OldCW =
7563      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
7564    addFrameReference(BuildMI(BB, dl, TII->get(X86::MOV16rm), OldCW),
7565                      CWFrameIdx);
7566
7567    // Set the high part to be round to zero...
7568    addFrameReference(BuildMI(BB, dl, TII->get(X86::MOV16mi)), CWFrameIdx)
7569      .addImm(0xC7F);
7570
7571    // Reload the modified control word now...
7572    addFrameReference(BuildMI(BB, dl, TII->get(X86::FLDCW16m)), CWFrameIdx);
7573
7574    // Restore the memory image of control word to original value
7575    addFrameReference(BuildMI(BB, dl, TII->get(X86::MOV16mr)), CWFrameIdx)
7576      .addReg(OldCW);
7577
7578    // Get the X86 opcode to use.
7579    unsigned Opc;
7580    switch (MI->getOpcode()) {
7581    default: assert(0 && "illegal opcode!");
7582    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
7583    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
7584    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
7585    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
7586    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
7587    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
7588    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
7589    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
7590    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
7591    }
7592
7593    X86AddressMode AM;
7594    MachineOperand &Op = MI->getOperand(0);
7595    if (Op.isReg()) {
7596      AM.BaseType = X86AddressMode::RegBase;
7597      AM.Base.Reg = Op.getReg();
7598    } else {
7599      AM.BaseType = X86AddressMode::FrameIndexBase;
7600      AM.Base.FrameIndex = Op.getIndex();
7601    }
7602    Op = MI->getOperand(1);
7603    if (Op.isImm())
7604      AM.Scale = Op.getImm();
7605    Op = MI->getOperand(2);
7606    if (Op.isImm())
7607      AM.IndexReg = Op.getImm();
7608    Op = MI->getOperand(3);
7609    if (Op.isGlobal()) {
7610      AM.GV = Op.getGlobal();
7611    } else {
7612      AM.Disp = Op.getImm();
7613    }
7614    addFullAddress(BuildMI(BB, dl, TII->get(Opc)), AM)
7615                      .addReg(MI->getOperand(4).getReg());
7616
7617    // Reload the original control word now.
7618    addFrameReference(BuildMI(BB, dl, TII->get(X86::FLDCW16m)), CWFrameIdx);
7619
7620    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
7621    return BB;
7622  }
7623  case X86::ATOMAND32:
7624    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
7625                                               X86::AND32ri, X86::MOV32rm,
7626                                               X86::LCMPXCHG32, X86::MOV32rr,
7627                                               X86::NOT32r, X86::EAX,
7628                                               X86::GR32RegisterClass);
7629  case X86::ATOMOR32:
7630    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
7631                                               X86::OR32ri, X86::MOV32rm,
7632                                               X86::LCMPXCHG32, X86::MOV32rr,
7633                                               X86::NOT32r, X86::EAX,
7634                                               X86::GR32RegisterClass);
7635  case X86::ATOMXOR32:
7636    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
7637                                               X86::XOR32ri, X86::MOV32rm,
7638                                               X86::LCMPXCHG32, X86::MOV32rr,
7639                                               X86::NOT32r, X86::EAX,
7640                                               X86::GR32RegisterClass);
7641  case X86::ATOMNAND32:
7642    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
7643                                               X86::AND32ri, X86::MOV32rm,
7644                                               X86::LCMPXCHG32, X86::MOV32rr,
7645                                               X86::NOT32r, X86::EAX,
7646                                               X86::GR32RegisterClass, true);
7647  case X86::ATOMMIN32:
7648    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
7649  case X86::ATOMMAX32:
7650    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
7651  case X86::ATOMUMIN32:
7652    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
7653  case X86::ATOMUMAX32:
7654    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
7655
7656  case X86::ATOMAND16:
7657    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
7658                                               X86::AND16ri, X86::MOV16rm,
7659                                               X86::LCMPXCHG16, X86::MOV16rr,
7660                                               X86::NOT16r, X86::AX,
7661                                               X86::GR16RegisterClass);
7662  case X86::ATOMOR16:
7663    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
7664                                               X86::OR16ri, X86::MOV16rm,
7665                                               X86::LCMPXCHG16, X86::MOV16rr,
7666                                               X86::NOT16r, X86::AX,
7667                                               X86::GR16RegisterClass);
7668  case X86::ATOMXOR16:
7669    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
7670                                               X86::XOR16ri, X86::MOV16rm,
7671                                               X86::LCMPXCHG16, X86::MOV16rr,
7672                                               X86::NOT16r, X86::AX,
7673                                               X86::GR16RegisterClass);
7674  case X86::ATOMNAND16:
7675    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
7676                                               X86::AND16ri, X86::MOV16rm,
7677                                               X86::LCMPXCHG16, X86::MOV16rr,
7678                                               X86::NOT16r, X86::AX,
7679                                               X86::GR16RegisterClass, true);
7680  case X86::ATOMMIN16:
7681    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
7682  case X86::ATOMMAX16:
7683    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
7684  case X86::ATOMUMIN16:
7685    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
7686  case X86::ATOMUMAX16:
7687    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
7688
7689  case X86::ATOMAND8:
7690    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
7691                                               X86::AND8ri, X86::MOV8rm,
7692                                               X86::LCMPXCHG8, X86::MOV8rr,
7693                                               X86::NOT8r, X86::AL,
7694                                               X86::GR8RegisterClass);
7695  case X86::ATOMOR8:
7696    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
7697                                               X86::OR8ri, X86::MOV8rm,
7698                                               X86::LCMPXCHG8, X86::MOV8rr,
7699                                               X86::NOT8r, X86::AL,
7700                                               X86::GR8RegisterClass);
7701  case X86::ATOMXOR8:
7702    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
7703                                               X86::XOR8ri, X86::MOV8rm,
7704                                               X86::LCMPXCHG8, X86::MOV8rr,
7705                                               X86::NOT8r, X86::AL,
7706                                               X86::GR8RegisterClass);
7707  case X86::ATOMNAND8:
7708    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
7709                                               X86::AND8ri, X86::MOV8rm,
7710                                               X86::LCMPXCHG8, X86::MOV8rr,
7711                                               X86::NOT8r, X86::AL,
7712                                               X86::GR8RegisterClass, true);
7713  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
7714  // This group is for 64-bit host.
7715  case X86::ATOMAND64:
7716    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
7717                                               X86::AND64ri32, X86::MOV64rm,
7718                                               X86::LCMPXCHG64, X86::MOV64rr,
7719                                               X86::NOT64r, X86::RAX,
7720                                               X86::GR64RegisterClass);
7721  case X86::ATOMOR64:
7722    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
7723                                               X86::OR64ri32, X86::MOV64rm,
7724                                               X86::LCMPXCHG64, X86::MOV64rr,
7725                                               X86::NOT64r, X86::RAX,
7726                                               X86::GR64RegisterClass);
7727  case X86::ATOMXOR64:
7728    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
7729                                               X86::XOR64ri32, X86::MOV64rm,
7730                                               X86::LCMPXCHG64, X86::MOV64rr,
7731                                               X86::NOT64r, X86::RAX,
7732                                               X86::GR64RegisterClass);
7733  case X86::ATOMNAND64:
7734    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
7735                                               X86::AND64ri32, X86::MOV64rm,
7736                                               X86::LCMPXCHG64, X86::MOV64rr,
7737                                               X86::NOT64r, X86::RAX,
7738                                               X86::GR64RegisterClass, true);
7739  case X86::ATOMMIN64:
7740    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
7741  case X86::ATOMMAX64:
7742    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
7743  case X86::ATOMUMIN64:
7744    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
7745  case X86::ATOMUMAX64:
7746    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
7747
7748  // This group does 64-bit operations on a 32-bit host.
7749  case X86::ATOMAND6432:
7750    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7751                                               X86::AND32rr, X86::AND32rr,
7752                                               X86::AND32ri, X86::AND32ri,
7753                                               false);
7754  case X86::ATOMOR6432:
7755    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7756                                               X86::OR32rr, X86::OR32rr,
7757                                               X86::OR32ri, X86::OR32ri,
7758                                               false);
7759  case X86::ATOMXOR6432:
7760    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7761                                               X86::XOR32rr, X86::XOR32rr,
7762                                               X86::XOR32ri, X86::XOR32ri,
7763                                               false);
7764  case X86::ATOMNAND6432:
7765    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7766                                               X86::AND32rr, X86::AND32rr,
7767                                               X86::AND32ri, X86::AND32ri,
7768                                               true);
7769  case X86::ATOMADD6432:
7770    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7771                                               X86::ADD32rr, X86::ADC32rr,
7772                                               X86::ADD32ri, X86::ADC32ri,
7773                                               false);
7774  case X86::ATOMSUB6432:
7775    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7776                                               X86::SUB32rr, X86::SBB32rr,
7777                                               X86::SUB32ri, X86::SBB32ri,
7778                                               false);
7779  case X86::ATOMSWAP6432:
7780    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7781                                               X86::MOV32rr, X86::MOV32rr,
7782                                               X86::MOV32ri, X86::MOV32ri,
7783                                               false);
7784  }
7785}
7786
7787//===----------------------------------------------------------------------===//
7788//                           X86 Optimization Hooks
7789//===----------------------------------------------------------------------===//
7790
7791void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
7792                                                       const APInt &Mask,
7793                                                       APInt &KnownZero,
7794                                                       APInt &KnownOne,
7795                                                       const SelectionDAG &DAG,
7796                                                       unsigned Depth) const {
7797  unsigned Opc = Op.getOpcode();
7798  assert((Opc >= ISD::BUILTIN_OP_END ||
7799          Opc == ISD::INTRINSIC_WO_CHAIN ||
7800          Opc == ISD::INTRINSIC_W_CHAIN ||
7801          Opc == ISD::INTRINSIC_VOID) &&
7802         "Should use MaskedValueIsZero if you don't know whether Op"
7803         " is a target node!");
7804
7805  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
7806  switch (Opc) {
7807  default: break;
7808  case X86ISD::ADD:
7809  case X86ISD::SUB:
7810  case X86ISD::SMUL:
7811  case X86ISD::UMUL:
7812    // These nodes' second result is a boolean.
7813    if (Op.getResNo() == 0)
7814      break;
7815    // Fallthrough
7816  case X86ISD::SETCC:
7817    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
7818                                       Mask.getBitWidth() - 1);
7819    break;
7820  }
7821}
7822
7823/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
7824/// node is a GlobalAddress + offset.
7825bool X86TargetLowering::isGAPlusOffset(SDNode *N,
7826                                       GlobalValue* &GA, int64_t &Offset) const{
7827  if (N->getOpcode() == X86ISD::Wrapper) {
7828    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
7829      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
7830      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
7831      return true;
7832    }
7833  }
7834  return TargetLowering::isGAPlusOffset(N, GA, Offset);
7835}
7836
7837static bool isBaseAlignmentOfN(unsigned N, SDNode *Base,
7838                               const TargetLowering &TLI) {
7839  GlobalValue *GV;
7840  int64_t Offset = 0;
7841  if (TLI.isGAPlusOffset(Base, GV, Offset))
7842    return (GV->getAlignment() >= N && (Offset % N) == 0);
7843  // DAG combine handles the stack object case.
7844  return false;
7845}
7846
7847static bool EltsFromConsecutiveLoads(SDNode *N, SDValue PermMask,
7848                                     unsigned NumElems, MVT EVT,
7849                                     SDNode *&Base,
7850                                     SelectionDAG &DAG, MachineFrameInfo *MFI,
7851                                     const TargetLowering &TLI) {
7852  Base = NULL;
7853  for (unsigned i = 0; i < NumElems; ++i) {
7854    SDValue Idx = PermMask.getOperand(i);
7855    if (Idx.getOpcode() == ISD::UNDEF) {
7856      if (!Base)
7857        return false;
7858      continue;
7859    }
7860
7861    SDValue Elt = DAG.getShuffleScalarElt(N, i);
7862    if (!Elt.getNode() ||
7863        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
7864      return false;
7865    if (!Base) {
7866      Base = Elt.getNode();
7867      if (Base->getOpcode() == ISD::UNDEF)
7868        return false;
7869      continue;
7870    }
7871    if (Elt.getOpcode() == ISD::UNDEF)
7872      continue;
7873
7874    if (!TLI.isConsecutiveLoad(Elt.getNode(), Base,
7875                               EVT.getSizeInBits()/8, i, MFI))
7876      return false;
7877  }
7878  return true;
7879}
7880
7881/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
7882/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
7883/// if the load addresses are consecutive, non-overlapping, and in the right
7884/// order.
7885static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
7886                                       const TargetLowering &TLI) {
7887  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7888  DebugLoc dl = N->getDebugLoc();
7889  MVT VT = N->getValueType(0);
7890  MVT EVT = VT.getVectorElementType();
7891  SDValue PermMask = N->getOperand(2);
7892  unsigned NumElems = PermMask.getNumOperands();
7893  SDNode *Base = NULL;
7894  if (!EltsFromConsecutiveLoads(N, PermMask, NumElems, EVT, Base,
7895                                DAG, MFI, TLI))
7896    return SDValue();
7897
7898  LoadSDNode *LD = cast<LoadSDNode>(Base);
7899  if (isBaseAlignmentOfN(16, Base->getOperand(1).getNode(), TLI))
7900    return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(),
7901                       LD->getSrcValue(), LD->getSrcValueOffset(),
7902                       LD->isVolatile());
7903  return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(),
7904                     LD->getSrcValue(), LD->getSrcValueOffset(),
7905                     LD->isVolatile(), LD->getAlignment());
7906}
7907
7908/// PerformBuildVectorCombine - build_vector 0,(load i64 / f64) -> movq / movsd.
7909static SDValue PerformBuildVectorCombine(SDNode *N, SelectionDAG &DAG,
7910                                         TargetLowering::DAGCombinerInfo &DCI,
7911                                         const X86Subtarget *Subtarget,
7912                                         const TargetLowering &TLI) {
7913  unsigned NumOps = N->getNumOperands();
7914  DebugLoc dl = N->getDebugLoc();
7915
7916  // Ignore single operand BUILD_VECTOR.
7917  if (NumOps == 1)
7918    return SDValue();
7919
7920  MVT VT = N->getValueType(0);
7921  MVT EVT = VT.getVectorElementType();
7922  if ((EVT != MVT::i64 && EVT != MVT::f64) || Subtarget->is64Bit())
7923    // We are looking for load i64 and zero extend. We want to transform
7924    // it before legalizer has a chance to expand it. Also look for i64
7925    // BUILD_PAIR bit casted to f64.
7926    return SDValue();
7927  // This must be an insertion into a zero vector.
7928  SDValue HighElt = N->getOperand(1);
7929  if (!isZeroNode(HighElt))
7930    return SDValue();
7931
7932  // Value must be a load.
7933  SDNode *Base = N->getOperand(0).getNode();
7934  if (!isa<LoadSDNode>(Base)) {
7935    if (Base->getOpcode() != ISD::BIT_CONVERT)
7936      return SDValue();
7937    Base = Base->getOperand(0).getNode();
7938    if (!isa<LoadSDNode>(Base))
7939      return SDValue();
7940  }
7941
7942  // Transform it into VZEXT_LOAD addr.
7943  LoadSDNode *LD = cast<LoadSDNode>(Base);
7944
7945  // Load must not be an extload.
7946  if (LD->getExtensionType() != ISD::NON_EXTLOAD)
7947    return SDValue();
7948
7949  // Load type should legal type so we don't have to legalize it.
7950  if (!TLI.isTypeLegal(VT))
7951    return SDValue();
7952
7953  SDVTList Tys = DAG.getVTList(VT, MVT::Other);
7954  SDValue Ops[] = { LD->getChain(), LD->getBasePtr() };
7955  SDValue ResNode = DAG.getNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2);
7956  TargetLowering::TargetLoweringOpt TLO(DAG);
7957  TLO.CombineTo(SDValue(Base, 1), ResNode.getValue(1));
7958  DCI.CommitTargetLoweringOpt(TLO);
7959  return ResNode;
7960}
7961
7962/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
7963static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
7964                                      const X86Subtarget *Subtarget) {
7965  DebugLoc dl = N->getDebugLoc();
7966  SDValue Cond = N->getOperand(0);
7967
7968  // If we have SSE[12] support, try to form min/max nodes.
7969  if (Subtarget->hasSSE2() &&
7970      (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
7971    if (Cond.getOpcode() == ISD::SETCC) {
7972      // Get the LHS/RHS of the select.
7973      SDValue LHS = N->getOperand(1);
7974      SDValue RHS = N->getOperand(2);
7975      ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
7976
7977      unsigned Opcode = 0;
7978      if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
7979        switch (CC) {
7980        default: break;
7981        case ISD::SETOLE: // (X <= Y) ? X : Y -> min
7982        case ISD::SETULE:
7983        case ISD::SETLE:
7984          if (!UnsafeFPMath) break;
7985          // FALL THROUGH.
7986        case ISD::SETOLT:  // (X olt/lt Y) ? X : Y -> min
7987        case ISD::SETLT:
7988          Opcode = X86ISD::FMIN;
7989          break;
7990
7991        case ISD::SETOGT: // (X > Y) ? X : Y -> max
7992        case ISD::SETUGT:
7993        case ISD::SETGT:
7994          if (!UnsafeFPMath) break;
7995          // FALL THROUGH.
7996        case ISD::SETUGE:  // (X uge/ge Y) ? X : Y -> max
7997        case ISD::SETGE:
7998          Opcode = X86ISD::FMAX;
7999          break;
8000        }
8001      } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
8002        switch (CC) {
8003        default: break;
8004        case ISD::SETOGT: // (X > Y) ? Y : X -> min
8005        case ISD::SETUGT:
8006        case ISD::SETGT:
8007          if (!UnsafeFPMath) break;
8008          // FALL THROUGH.
8009        case ISD::SETUGE:  // (X uge/ge Y) ? Y : X -> min
8010        case ISD::SETGE:
8011          Opcode = X86ISD::FMIN;
8012          break;
8013
8014        case ISD::SETOLE:   // (X <= Y) ? Y : X -> max
8015        case ISD::SETULE:
8016        case ISD::SETLE:
8017          if (!UnsafeFPMath) break;
8018          // FALL THROUGH.
8019        case ISD::SETOLT:   // (X olt/lt Y) ? Y : X -> max
8020        case ISD::SETLT:
8021          Opcode = X86ISD::FMAX;
8022          break;
8023        }
8024      }
8025
8026      if (Opcode)
8027        return DAG.getNode(Opcode, dl, N->getValueType(0), LHS, RHS);
8028    }
8029
8030  }
8031
8032  return SDValue();
8033}
8034
8035/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
8036///                       when possible.
8037static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
8038                                   const X86Subtarget *Subtarget) {
8039  // On X86 with SSE2 support, we can transform this to a vector shift if
8040  // all elements are shifted by the same amount.  We can't do this in legalize
8041  // because the a constant vector is typically transformed to a constant pool
8042  // so we have no knowledge of the shift amount.
8043  if (!Subtarget->hasSSE2())
8044    return SDValue();
8045
8046  MVT VT = N->getValueType(0);
8047  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
8048    return SDValue();
8049
8050  SDValue ShAmtOp = N->getOperand(1);
8051  MVT EltVT = VT.getVectorElementType();
8052  DebugLoc dl = N->getDebugLoc();
8053  SDValue BaseShAmt;
8054  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
8055    unsigned NumElts = VT.getVectorNumElements();
8056    unsigned i = 0;
8057    for (; i != NumElts; ++i) {
8058      SDValue Arg = ShAmtOp.getOperand(i);
8059      if (Arg.getOpcode() == ISD::UNDEF) continue;
8060      BaseShAmt = Arg;
8061      break;
8062    }
8063    for (; i != NumElts; ++i) {
8064      SDValue Arg = ShAmtOp.getOperand(i);
8065      if (Arg.getOpcode() == ISD::UNDEF) continue;
8066      if (Arg != BaseShAmt) {
8067        return SDValue();
8068      }
8069    }
8070  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
8071             isSplatMask(ShAmtOp.getOperand(2).getNode())) {
8072      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, ShAmtOp,
8073                              DAG.getIntPtrConstant(0));
8074  } else
8075    return SDValue();
8076
8077  if (EltVT.bitsGT(MVT::i32))
8078    BaseShAmt = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BaseShAmt);
8079  else if (EltVT.bitsLT(MVT::i32))
8080    BaseShAmt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BaseShAmt);
8081
8082  // The shift amount is identical so we can do a vector shift.
8083  SDValue  ValOp = N->getOperand(0);
8084  switch (N->getOpcode()) {
8085  default:
8086    assert(0 && "Unknown shift opcode!");
8087    break;
8088  case ISD::SHL:
8089    if (VT == MVT::v2i64)
8090      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8091                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8092                         ValOp, BaseShAmt);
8093    if (VT == MVT::v4i32)
8094      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8095                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
8096                         ValOp, BaseShAmt);
8097    if (VT == MVT::v8i16)
8098      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8099                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
8100                         ValOp, BaseShAmt);
8101    break;
8102  case ISD::SRA:
8103    if (VT == MVT::v4i32)
8104      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8105                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
8106                         ValOp, BaseShAmt);
8107    if (VT == MVT::v8i16)
8108      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8109                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
8110                         ValOp, BaseShAmt);
8111    break;
8112  case ISD::SRL:
8113    if (VT == MVT::v2i64)
8114      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8115                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8116                         ValOp, BaseShAmt);
8117    if (VT == MVT::v4i32)
8118      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8119                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
8120                         ValOp, BaseShAmt);
8121    if (VT ==  MVT::v8i16)
8122      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8123                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
8124                         ValOp, BaseShAmt);
8125    break;
8126  }
8127  return SDValue();
8128}
8129
8130/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
8131static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
8132                                     const X86Subtarget *Subtarget) {
8133  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
8134  // the FP state in cases where an emms may be missing.
8135  // A preferable solution to the general problem is to figure out the right
8136  // places to insert EMMS.  This qualifies as a quick hack.
8137  StoreSDNode *St = cast<StoreSDNode>(N);
8138  if (St->getValue().getValueType().isVector() &&
8139      St->getValue().getValueType().getSizeInBits() == 64 &&
8140      isa<LoadSDNode>(St->getValue()) &&
8141      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
8142      St->getChain().hasOneUse() && !St->isVolatile()) {
8143    SDNode* LdVal = St->getValue().getNode();
8144    LoadSDNode *Ld = 0;
8145    int TokenFactorIndex = -1;
8146    SmallVector<SDValue, 8> Ops;
8147    SDNode* ChainVal = St->getChain().getNode();
8148    // Must be a store of a load.  We currently handle two cases:  the load
8149    // is a direct child, and it's under an intervening TokenFactor.  It is
8150    // possible to dig deeper under nested TokenFactors.
8151    if (ChainVal == LdVal)
8152      Ld = cast<LoadSDNode>(St->getChain());
8153    else if (St->getValue().hasOneUse() &&
8154             ChainVal->getOpcode() == ISD::TokenFactor) {
8155      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
8156        if (ChainVal->getOperand(i).getNode() == LdVal) {
8157          TokenFactorIndex = i;
8158          Ld = cast<LoadSDNode>(St->getValue());
8159        } else
8160          Ops.push_back(ChainVal->getOperand(i));
8161      }
8162    }
8163    if (Ld) {
8164      DebugLoc dl = N->getDebugLoc();
8165      // If we are a 64-bit capable x86, lower to a single movq load/store pair.
8166      if (Subtarget->is64Bit()) {
8167        SDValue NewLd = DAG.getLoad(MVT::i64, dl, Ld->getChain(),
8168                                      Ld->getBasePtr(), Ld->getSrcValue(),
8169                                      Ld->getSrcValueOffset(), Ld->isVolatile(),
8170                                      Ld->getAlignment());
8171        SDValue NewChain = NewLd.getValue(1);
8172        if (TokenFactorIndex != -1) {
8173          Ops.push_back(NewChain);
8174          NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Ops[0],
8175                                 Ops.size());
8176        }
8177        return DAG.getStore(NewChain, dl, NewLd, St->getBasePtr(),
8178                            St->getSrcValue(), St->getSrcValueOffset(),
8179                            St->isVolatile(), St->getAlignment());
8180      }
8181
8182      // Otherwise, lower to two 32-bit copies.
8183      SDValue LoAddr = Ld->getBasePtr();
8184      SDValue HiAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, LoAddr,
8185                                     DAG.getConstant(4, MVT::i32));
8186
8187      SDValue LoLd = DAG.getLoad(MVT::i32, dl, Ld->getChain(), LoAddr,
8188                                   Ld->getSrcValue(), Ld->getSrcValueOffset(),
8189                                   Ld->isVolatile(), Ld->getAlignment());
8190      SDValue HiLd = DAG.getLoad(MVT::i32, dl, Ld->getChain(), HiAddr,
8191                                   Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
8192                                   Ld->isVolatile(),
8193                                   MinAlign(Ld->getAlignment(), 4));
8194
8195      SDValue NewChain = LoLd.getValue(1);
8196      if (TokenFactorIndex != -1) {
8197        Ops.push_back(LoLd);
8198        Ops.push_back(HiLd);
8199        NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Ops[0],
8200                               Ops.size());
8201      }
8202
8203      LoAddr = St->getBasePtr();
8204      HiAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, LoAddr,
8205                           DAG.getConstant(4, MVT::i32));
8206
8207      SDValue LoSt = DAG.getStore(NewChain, dl, LoLd, LoAddr,
8208                          St->getSrcValue(), St->getSrcValueOffset(),
8209                          St->isVolatile(), St->getAlignment());
8210      SDValue HiSt = DAG.getStore(NewChain, dl, HiLd, HiAddr,
8211                                    St->getSrcValue(),
8212                                    St->getSrcValueOffset() + 4,
8213                                    St->isVolatile(),
8214                                    MinAlign(St->getAlignment(), 4));
8215      return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoSt, HiSt);
8216    }
8217  }
8218  return SDValue();
8219}
8220
8221/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
8222/// X86ISD::FXOR nodes.
8223static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
8224  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
8225  // F[X]OR(0.0, x) -> x
8226  // F[X]OR(x, 0.0) -> x
8227  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
8228    if (C->getValueAPF().isPosZero())
8229      return N->getOperand(1);
8230  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
8231    if (C->getValueAPF().isPosZero())
8232      return N->getOperand(0);
8233  return SDValue();
8234}
8235
8236/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
8237static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
8238  // FAND(0.0, x) -> 0.0
8239  // FAND(x, 0.0) -> 0.0
8240  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
8241    if (C->getValueAPF().isPosZero())
8242      return N->getOperand(0);
8243  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
8244    if (C->getValueAPF().isPosZero())
8245      return N->getOperand(1);
8246  return SDValue();
8247}
8248
8249static SDValue PerformBTCombine(SDNode *N,
8250                                SelectionDAG &DAG,
8251                                TargetLowering::DAGCombinerInfo &DCI) {
8252  // BT ignores high bits in the bit index operand.
8253  SDValue Op1 = N->getOperand(1);
8254  if (Op1.hasOneUse()) {
8255    unsigned BitWidth = Op1.getValueSizeInBits();
8256    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
8257    APInt KnownZero, KnownOne;
8258    TargetLowering::TargetLoweringOpt TLO(DAG);
8259    TargetLowering &TLI = DAG.getTargetLoweringInfo();
8260    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
8261        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
8262      DCI.CommitTargetLoweringOpt(TLO);
8263  }
8264  return SDValue();
8265}
8266
8267SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
8268                                             DAGCombinerInfo &DCI) const {
8269  SelectionDAG &DAG = DCI.DAG;
8270  switch (N->getOpcode()) {
8271  default: break;
8272  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
8273  case ISD::BUILD_VECTOR:
8274    return PerformBuildVectorCombine(N, DAG, DCI, Subtarget, *this);
8275  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
8276  case ISD::SHL:
8277  case ISD::SRA:
8278  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
8279  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
8280  case X86ISD::FXOR:
8281  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
8282  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
8283  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
8284  }
8285
8286  return SDValue();
8287}
8288
8289//===----------------------------------------------------------------------===//
8290//                           X86 Inline Assembly Support
8291//===----------------------------------------------------------------------===//
8292
8293/// getConstraintType - Given a constraint letter, return the type of
8294/// constraint it is for this target.
8295X86TargetLowering::ConstraintType
8296X86TargetLowering::getConstraintType(const std::string &Constraint) const {
8297  if (Constraint.size() == 1) {
8298    switch (Constraint[0]) {
8299    case 'A':
8300      return C_Register;
8301    case 'f':
8302    case 'r':
8303    case 'R':
8304    case 'l':
8305    case 'q':
8306    case 'Q':
8307    case 'x':
8308    case 'y':
8309    case 'Y':
8310      return C_RegisterClass;
8311    case 'e':
8312    case 'Z':
8313      return C_Other;
8314    default:
8315      break;
8316    }
8317  }
8318  return TargetLowering::getConstraintType(Constraint);
8319}
8320
8321/// LowerXConstraint - try to replace an X constraint, which matches anything,
8322/// with another that has more specific requirements based on the type of the
8323/// corresponding operand.
8324const char *X86TargetLowering::
8325LowerXConstraint(MVT ConstraintVT) const {
8326  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
8327  // 'f' like normal targets.
8328  if (ConstraintVT.isFloatingPoint()) {
8329    if (Subtarget->hasSSE2())
8330      return "Y";
8331    if (Subtarget->hasSSE1())
8332      return "x";
8333  }
8334
8335  return TargetLowering::LowerXConstraint(ConstraintVT);
8336}
8337
8338/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
8339/// vector.  If it is invalid, don't add anything to Ops.
8340void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
8341                                                     char Constraint,
8342                                                     bool hasMemory,
8343                                                     std::vector<SDValue>&Ops,
8344                                                     SelectionDAG &DAG) const {
8345  SDValue Result(0, 0);
8346
8347  switch (Constraint) {
8348  default: break;
8349  case 'I':
8350    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8351      if (C->getZExtValue() <= 31) {
8352        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
8353        break;
8354      }
8355    }
8356    return;
8357  case 'J':
8358    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8359      if (C->getZExtValue() <= 63) {
8360        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
8361        break;
8362      }
8363    }
8364    return;
8365  case 'N':
8366    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8367      if (C->getZExtValue() <= 255) {
8368        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
8369        break;
8370      }
8371    }
8372    return;
8373  case 'e': {
8374    // 32-bit signed value
8375    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8376      const ConstantInt *CI = C->getConstantIntValue();
8377      if (CI->isValueValidForType(Type::Int32Ty, C->getSExtValue())) {
8378        // Widen to 64 bits here to get it sign extended.
8379        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
8380        break;
8381      }
8382    // FIXME gcc accepts some relocatable values here too, but only in certain
8383    // memory models; it's complicated.
8384    }
8385    return;
8386  }
8387  case 'Z': {
8388    // 32-bit unsigned value
8389    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8390      const ConstantInt *CI = C->getConstantIntValue();
8391      if (CI->isValueValidForType(Type::Int32Ty, C->getZExtValue())) {
8392        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
8393        break;
8394      }
8395    }
8396    // FIXME gcc accepts some relocatable values here too, but only in certain
8397    // memory models; it's complicated.
8398    return;
8399  }
8400  case 'i': {
8401    // Literal immediates are always ok.
8402    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
8403      // Widen to 64 bits here to get it sign extended.
8404      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
8405      break;
8406    }
8407
8408    // If we are in non-pic codegen mode, we allow the address of a global (with
8409    // an optional displacement) to be used with 'i'.
8410    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
8411    int64_t Offset = 0;
8412
8413    // Match either (GA) or (GA+C)
8414    if (GA) {
8415      Offset = GA->getOffset();
8416    } else if (Op.getOpcode() == ISD::ADD) {
8417      ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8418      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
8419      if (C && GA) {
8420        Offset = GA->getOffset()+C->getZExtValue();
8421      } else {
8422        C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8423        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
8424        if (C && GA)
8425          Offset = GA->getOffset()+C->getZExtValue();
8426        else
8427          C = 0, GA = 0;
8428      }
8429    }
8430
8431    if (GA) {
8432      if (hasMemory)
8433        Op = LowerGlobalAddress(GA->getGlobal(), Op.getDebugLoc(),
8434                                Offset, DAG);
8435      else
8436        Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
8437                                        Offset);
8438      Result = Op;
8439      break;
8440    }
8441
8442    // Otherwise, not valid for this mode.
8443    return;
8444  }
8445  }
8446
8447  if (Result.getNode()) {
8448    Ops.push_back(Result);
8449    return;
8450  }
8451  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory,
8452                                                      Ops, DAG);
8453}
8454
8455std::vector<unsigned> X86TargetLowering::
8456getRegClassForInlineAsmConstraint(const std::string &Constraint,
8457                                  MVT VT) const {
8458  if (Constraint.size() == 1) {
8459    // FIXME: not handling fp-stack yet!
8460    switch (Constraint[0]) {      // GCC X86 Constraint Letters
8461    default: break;  // Unknown constraint letter
8462    case 'q':   // Q_REGS (GENERAL_REGS in 64-bit mode)
8463    case 'Q':   // Q_REGS
8464      if (VT == MVT::i32)
8465        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
8466      else if (VT == MVT::i16)
8467        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
8468      else if (VT == MVT::i8)
8469        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
8470      else if (VT == MVT::i64)
8471        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
8472      break;
8473    }
8474  }
8475
8476  return std::vector<unsigned>();
8477}
8478
8479std::pair<unsigned, const TargetRegisterClass*>
8480X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
8481                                                MVT VT) const {
8482  // First, see if this is a constraint that directly corresponds to an LLVM
8483  // register class.
8484  if (Constraint.size() == 1) {
8485    // GCC Constraint Letters
8486    switch (Constraint[0]) {
8487    default: break;
8488    case 'r':   // GENERAL_REGS
8489    case 'R':   // LEGACY_REGS
8490    case 'l':   // INDEX_REGS
8491      if (VT == MVT::i8)
8492        return std::make_pair(0U, X86::GR8RegisterClass);
8493      if (VT == MVT::i16)
8494        return std::make_pair(0U, X86::GR16RegisterClass);
8495      if (VT == MVT::i32 || !Subtarget->is64Bit())
8496        return std::make_pair(0U, X86::GR32RegisterClass);
8497      return std::make_pair(0U, X86::GR64RegisterClass);
8498    case 'f':  // FP Stack registers.
8499      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
8500      // value to the correct fpstack register class.
8501      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
8502        return std::make_pair(0U, X86::RFP32RegisterClass);
8503      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
8504        return std::make_pair(0U, X86::RFP64RegisterClass);
8505      return std::make_pair(0U, X86::RFP80RegisterClass);
8506    case 'y':   // MMX_REGS if MMX allowed.
8507      if (!Subtarget->hasMMX()) break;
8508      return std::make_pair(0U, X86::VR64RegisterClass);
8509    case 'Y':   // SSE_REGS if SSE2 allowed
8510      if (!Subtarget->hasSSE2()) break;
8511      // FALL THROUGH.
8512    case 'x':   // SSE_REGS if SSE1 allowed
8513      if (!Subtarget->hasSSE1()) break;
8514
8515      switch (VT.getSimpleVT()) {
8516      default: break;
8517      // Scalar SSE types.
8518      case MVT::f32:
8519      case MVT::i32:
8520        return std::make_pair(0U, X86::FR32RegisterClass);
8521      case MVT::f64:
8522      case MVT::i64:
8523        return std::make_pair(0U, X86::FR64RegisterClass);
8524      // Vector types.
8525      case MVT::v16i8:
8526      case MVT::v8i16:
8527      case MVT::v4i32:
8528      case MVT::v2i64:
8529      case MVT::v4f32:
8530      case MVT::v2f64:
8531        return std::make_pair(0U, X86::VR128RegisterClass);
8532      }
8533      break;
8534    }
8535  }
8536
8537  // Use the default implementation in TargetLowering to convert the register
8538  // constraint into a member of a register class.
8539  std::pair<unsigned, const TargetRegisterClass*> Res;
8540  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
8541
8542  // Not found as a standard register?
8543  if (Res.second == 0) {
8544    // GCC calls "st(0)" just plain "st".
8545    if (StringsEqualNoCase("{st}", Constraint)) {
8546      Res.first = X86::ST0;
8547      Res.second = X86::RFP80RegisterClass;
8548    }
8549    // 'A' means EAX + EDX.
8550    if (Constraint == "A") {
8551      Res.first = X86::EAX;
8552      Res.second = X86::GRADRegisterClass;
8553    }
8554    return Res;
8555  }
8556
8557  // Otherwise, check to see if this is a register class of the wrong value
8558  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
8559  // turn into {ax},{dx}.
8560  if (Res.second->hasType(VT))
8561    return Res;   // Correct type already, nothing to do.
8562
8563  // All of the single-register GCC register classes map their values onto
8564  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
8565  // really want an 8-bit or 32-bit register, map to the appropriate register
8566  // class and return the appropriate register.
8567  if (Res.second == X86::GR16RegisterClass) {
8568    if (VT == MVT::i8) {
8569      unsigned DestReg = 0;
8570      switch (Res.first) {
8571      default: break;
8572      case X86::AX: DestReg = X86::AL; break;
8573      case X86::DX: DestReg = X86::DL; break;
8574      case X86::CX: DestReg = X86::CL; break;
8575      case X86::BX: DestReg = X86::BL; break;
8576      }
8577      if (DestReg) {
8578        Res.first = DestReg;
8579        Res.second = Res.second = X86::GR8RegisterClass;
8580      }
8581    } else if (VT == MVT::i32) {
8582      unsigned DestReg = 0;
8583      switch (Res.first) {
8584      default: break;
8585      case X86::AX: DestReg = X86::EAX; break;
8586      case X86::DX: DestReg = X86::EDX; break;
8587      case X86::CX: DestReg = X86::ECX; break;
8588      case X86::BX: DestReg = X86::EBX; break;
8589      case X86::SI: DestReg = X86::ESI; break;
8590      case X86::DI: DestReg = X86::EDI; break;
8591      case X86::BP: DestReg = X86::EBP; break;
8592      case X86::SP: DestReg = X86::ESP; break;
8593      }
8594      if (DestReg) {
8595        Res.first = DestReg;
8596        Res.second = Res.second = X86::GR32RegisterClass;
8597      }
8598    } else if (VT == MVT::i64) {
8599      unsigned DestReg = 0;
8600      switch (Res.first) {
8601      default: break;
8602      case X86::AX: DestReg = X86::RAX; break;
8603      case X86::DX: DestReg = X86::RDX; break;
8604      case X86::CX: DestReg = X86::RCX; break;
8605      case X86::BX: DestReg = X86::RBX; break;
8606      case X86::SI: DestReg = X86::RSI; break;
8607      case X86::DI: DestReg = X86::RDI; break;
8608      case X86::BP: DestReg = X86::RBP; break;
8609      case X86::SP: DestReg = X86::RSP; break;
8610      }
8611      if (DestReg) {
8612        Res.first = DestReg;
8613        Res.second = Res.second = X86::GR64RegisterClass;
8614      }
8615    }
8616  } else if (Res.second == X86::FR32RegisterClass ||
8617             Res.second == X86::FR64RegisterClass ||
8618             Res.second == X86::VR128RegisterClass) {
8619    // Handle references to XMM physical registers that got mapped into the
8620    // wrong class.  This can happen with constraints like {xmm0} where the
8621    // target independent register mapper will just pick the first match it can
8622    // find, ignoring the required type.
8623    if (VT == MVT::f32)
8624      Res.second = X86::FR32RegisterClass;
8625    else if (VT == MVT::f64)
8626      Res.second = X86::FR64RegisterClass;
8627    else if (X86::VR128RegisterClass->hasType(VT))
8628      Res.second = X86::VR128RegisterClass;
8629  }
8630
8631  return Res;
8632}
8633
8634//===----------------------------------------------------------------------===//
8635//                           X86 Widen vector type
8636//===----------------------------------------------------------------------===//
8637
8638/// getWidenVectorType: given a vector type, returns the type to widen
8639/// to (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
8640/// If there is no vector type that we want to widen to, returns MVT::Other
8641/// When and where to widen is target dependent based on the cost of
8642/// scalarizing vs using the wider vector type.
8643
8644MVT X86TargetLowering::getWidenVectorType(MVT VT) const {
8645  assert(VT.isVector());
8646  if (isTypeLegal(VT))
8647    return VT;
8648
8649  // TODO: In computeRegisterProperty, we can compute the list of legal vector
8650  //       type based on element type.  This would speed up our search (though
8651  //       it may not be worth it since the size of the list is relatively
8652  //       small).
8653  MVT EltVT = VT.getVectorElementType();
8654  unsigned NElts = VT.getVectorNumElements();
8655
8656  // On X86, it make sense to widen any vector wider than 1
8657  if (NElts <= 1)
8658    return MVT::Other;
8659
8660  for (unsigned nVT = MVT::FIRST_VECTOR_VALUETYPE;
8661       nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
8662    MVT SVT = (MVT::SimpleValueType)nVT;
8663
8664    if (isTypeLegal(SVT) &&
8665        SVT.getVectorElementType() == EltVT &&
8666        SVT.getVectorNumElements() > NElts)
8667      return SVT;
8668  }
8669  return MVT::Other;
8670}
8671