X86ISelLowering.cpp revision 2c651fe6f445724627dcc48064797dca2aa4aedc
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86ISelLowering.h"
17#include "X86.h"
18#include "X86InstrBuilder.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/MC/MCAsmInfo.h"
39#include "llvm/MC/MCContext.h"
40#include "llvm/MC/MCExpr.h"
41#include "llvm/MC/MCSymbol.h"
42#include "llvm/ADT/SmallSet.h"
43#include "llvm/ADT/Statistic.h"
44#include "llvm/ADT/StringExtras.h"
45#include "llvm/ADT/VariadicFunction.h"
46#include "llvm/Support/CallSite.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/Target/TargetOptions.h"
51#include <bitset>
52using namespace llvm;
53
54STATISTIC(NumTailCalls, "Number of tail calls");
55
56// Forward declarations.
57static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
58                       SDValue V2);
59
60/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
61/// sets things up to match to an AVX VEXTRACTF128 instruction or a
62/// simple subregister reference.  Idx is an index in the 128 bits we
63/// want.  It need not be aligned to a 128-bit bounday.  That makes
64/// lowering EXTRACT_VECTOR_ELT operations easier.
65static SDValue Extract128BitVector(SDValue Vec,
66                                   SDValue Idx,
67                                   SelectionDAG &DAG,
68                                   DebugLoc dl) {
69  EVT VT = Vec.getValueType();
70  assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
71  EVT ElVT = VT.getVectorElementType();
72  int Factor = VT.getSizeInBits()/128;
73  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
74                                  VT.getVectorNumElements()/Factor);
75
76  // Extract from UNDEF is UNDEF.
77  if (Vec.getOpcode() == ISD::UNDEF)
78    return DAG.getNode(ISD::UNDEF, dl, ResultVT);
79
80  if (isa<ConstantSDNode>(Idx)) {
81    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
82
83    // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
84    // we can match to VEXTRACTF128.
85    unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
86
87    // This is the index of the first element of the 128-bit chunk
88    // we want.
89    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
90                                 * ElemsPerChunk);
91
92    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
93    SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
94                                 VecIdx);
95
96    return Result;
97  }
98
99  return SDValue();
100}
101
102/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
103/// sets things up to match to an AVX VINSERTF128 instruction or a
104/// simple superregister reference.  Idx is an index in the 128 bits
105/// we want.  It need not be aligned to a 128-bit bounday.  That makes
106/// lowering INSERT_VECTOR_ELT operations easier.
107static SDValue Insert128BitVector(SDValue Result,
108                                  SDValue Vec,
109                                  SDValue Idx,
110                                  SelectionDAG &DAG,
111                                  DebugLoc dl) {
112  if (isa<ConstantSDNode>(Idx)) {
113    EVT VT = Vec.getValueType();
114    assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
115
116    EVT ElVT = VT.getVectorElementType();
117    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
118    EVT ResultVT = Result.getValueType();
119
120    // Insert the relevant 128 bits.
121    unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
122
123    // This is the index of the first element of the 128-bit chunk
124    // we want.
125    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
126                                 * ElemsPerChunk);
127
128    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
129    Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
130                         VecIdx);
131    return Result;
132  }
133
134  return SDValue();
135}
136
137static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
138  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
139  bool is64Bit = Subtarget->is64Bit();
140
141  if (Subtarget->isTargetEnvMacho()) {
142    if (is64Bit)
143      return new X8664_MachoTargetObjectFile();
144    return new TargetLoweringObjectFileMachO();
145  }
146
147  if (Subtarget->isTargetELF())
148    return new TargetLoweringObjectFileELF();
149  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
150    return new TargetLoweringObjectFileCOFF();
151  llvm_unreachable("unknown subtarget type");
152}
153
154X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
155  : TargetLowering(TM, createTLOF(TM)) {
156  Subtarget = &TM.getSubtarget<X86Subtarget>();
157  X86ScalarSSEf64 = Subtarget->hasSSE2();
158  X86ScalarSSEf32 = Subtarget->hasSSE1();
159  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
160
161  RegInfo = TM.getRegisterInfo();
162  TD = getTargetData();
163
164  // Set up the TargetLowering object.
165  static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
166
167  // X86 is weird, it always uses i8 for shift amounts and setcc results.
168  setBooleanContents(ZeroOrOneBooleanContent);
169  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
170  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
171
172  // For 64-bit since we have so many registers use the ILP scheduler, for
173  // 32-bit code use the register pressure specific scheduling.
174  // For 32 bit Atom, use Hybrid (register pressure + latency) scheduling.
175  if (Subtarget->is64Bit())
176    setSchedulingPreference(Sched::ILP);
177  else if (Subtarget->isAtom())
178    setSchedulingPreference(Sched::Hybrid);
179  else
180    setSchedulingPreference(Sched::RegPressure);
181  setStackPointerRegisterToSaveRestore(X86StackPtr);
182
183  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
184    // Setup Windows compiler runtime calls.
185    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
186    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
187    setLibcallName(RTLIB::SREM_I64, "_allrem");
188    setLibcallName(RTLIB::UREM_I64, "_aullrem");
189    setLibcallName(RTLIB::MUL_I64, "_allmul");
190    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
191    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
192    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
193    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
194    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
195
196    // The _ftol2 runtime function has an unusual calling conv, which
197    // is modeled by a special pseudo-instruction.
198    setLibcallName(RTLIB::FPTOUINT_F64_I64, 0);
199    setLibcallName(RTLIB::FPTOUINT_F32_I64, 0);
200    setLibcallName(RTLIB::FPTOUINT_F64_I32, 0);
201    setLibcallName(RTLIB::FPTOUINT_F32_I32, 0);
202  }
203
204  if (Subtarget->isTargetDarwin()) {
205    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
206    setUseUnderscoreSetJmp(false);
207    setUseUnderscoreLongJmp(false);
208  } else if (Subtarget->isTargetMingw()) {
209    // MS runtime is weird: it exports _setjmp, but longjmp!
210    setUseUnderscoreSetJmp(true);
211    setUseUnderscoreLongJmp(false);
212  } else {
213    setUseUnderscoreSetJmp(true);
214    setUseUnderscoreLongJmp(true);
215  }
216
217  // Set up the register classes.
218  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
219  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
220  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
221  if (Subtarget->is64Bit())
222    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
223
224  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
225
226  // We don't accept any truncstore of integer registers.
227  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
228  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
229  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
230  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
231  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
232  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
233
234  // SETOEQ and SETUNE require checking two conditions.
235  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
236  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
237  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
238  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
239  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
240  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
241
242  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
243  // operation.
244  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
245  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
246  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
247
248  if (Subtarget->is64Bit()) {
249    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
250    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
251  } else if (!TM.Options.UseSoftFloat) {
252    // We have an algorithm for SSE2->double, and we turn this into a
253    // 64-bit FILD followed by conditional FADD for other targets.
254    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
255    // We have an algorithm for SSE2, and we turn this into a 64-bit
256    // FILD for other targets.
257    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
258  }
259
260  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
261  // this operation.
262  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
263  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
264
265  if (!TM.Options.UseSoftFloat) {
266    // SSE has no i16 to fp conversion, only i32
267    if (X86ScalarSSEf32) {
268      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
269      // f32 and f64 cases are Legal, f80 case is not
270      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
271    } else {
272      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
273      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
274    }
275  } else {
276    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
277    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
278  }
279
280  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
281  // are Legal, f80 is custom lowered.
282  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
283  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
284
285  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
286  // this operation.
287  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
288  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
289
290  if (X86ScalarSSEf32) {
291    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
292    // f32 and f64 cases are Legal, f80 case is not
293    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
294  } else {
295    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
296    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
297  }
298
299  // Handle FP_TO_UINT by promoting the destination to a larger signed
300  // conversion.
301  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
302  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
303  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
304
305  if (Subtarget->is64Bit()) {
306    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
307    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
308  } else if (!TM.Options.UseSoftFloat) {
309    // Since AVX is a superset of SSE3, only check for SSE here.
310    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
311      // Expand FP_TO_UINT into a select.
312      // FIXME: We would like to use a Custom expander here eventually to do
313      // the optimal thing for SSE vs. the default expansion in the legalizer.
314      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
315    else
316      // With SSE3 we can use fisttpll to convert to a signed i64; without
317      // SSE, we're stuck with a fistpll.
318      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
319  }
320
321  if (isTargetFTOL()) {
322    // Use the _ftol2 runtime function, which has a pseudo-instruction
323    // to handle its weird calling convention.
324    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Custom);
325  }
326
327  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
328  if (!X86ScalarSSEf64) {
329    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
330    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
331    if (Subtarget->is64Bit()) {
332      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
333      // Without SSE, i64->f64 goes through memory.
334      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
335    }
336  }
337
338  // Scalar integer divide and remainder are lowered to use operations that
339  // produce two results, to match the available instructions. This exposes
340  // the two-result form to trivial CSE, which is able to combine x/y and x%y
341  // into a single instruction.
342  //
343  // Scalar integer multiply-high is also lowered to use two-result
344  // operations, to match the available instructions. However, plain multiply
345  // (low) operations are left as Legal, as there are single-result
346  // instructions for this in x86. Using the two-result multiply instructions
347  // when both high and low results are needed must be arranged by dagcombine.
348  for (unsigned i = 0, e = 4; i != e; ++i) {
349    MVT VT = IntVTs[i];
350    setOperationAction(ISD::MULHS, VT, Expand);
351    setOperationAction(ISD::MULHU, VT, Expand);
352    setOperationAction(ISD::SDIV, VT, Expand);
353    setOperationAction(ISD::UDIV, VT, Expand);
354    setOperationAction(ISD::SREM, VT, Expand);
355    setOperationAction(ISD::UREM, VT, Expand);
356
357    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
358    setOperationAction(ISD::ADDC, VT, Custom);
359    setOperationAction(ISD::ADDE, VT, Custom);
360    setOperationAction(ISD::SUBC, VT, Custom);
361    setOperationAction(ISD::SUBE, VT, Custom);
362  }
363
364  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
365  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
366  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
367  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
368  if (Subtarget->is64Bit())
369    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
370  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
371  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
372  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
373  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
374  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
375  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
376  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
377  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
378
379  // Promote the i8 variants and force them on up to i32 which has a shorter
380  // encoding.
381  setOperationAction(ISD::CTTZ             , MVT::i8   , Promote);
382  AddPromotedToType (ISD::CTTZ             , MVT::i8   , MVT::i32);
383  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Promote);
384  AddPromotedToType (ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , MVT::i32);
385  if (Subtarget->hasBMI()) {
386    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Expand);
387    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Expand);
388    if (Subtarget->is64Bit())
389      setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
390  } else {
391    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
392    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
393    if (Subtarget->is64Bit())
394      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
395  }
396
397  if (Subtarget->hasLZCNT()) {
398    // When promoting the i8 variants, force them to i32 for a shorter
399    // encoding.
400    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
401    AddPromotedToType (ISD::CTLZ           , MVT::i8   , MVT::i32);
402    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Promote);
403    AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
404    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Expand);
405    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Expand);
406    if (Subtarget->is64Bit())
407      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
408  } else {
409    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
410    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
411    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
412    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom);
413    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom);
414    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom);
415    if (Subtarget->is64Bit()) {
416      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
417      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
418    }
419  }
420
421  if (Subtarget->hasPOPCNT()) {
422    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
423  } else {
424    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
425    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
426    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
427    if (Subtarget->is64Bit())
428      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
429  }
430
431  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
432  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
433
434  // These should be promoted to a larger select which is supported.
435  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
436  // X86 wants to expand cmov itself.
437  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
438  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
439  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
440  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
441  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
442  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
443  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
444  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
445  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
446  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
447  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
448  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
449  if (Subtarget->is64Bit()) {
450    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
451    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
452  }
453  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
454
455  // Darwin ABI issue.
456  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
457  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
458  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
459  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
460  if (Subtarget->is64Bit())
461    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
462  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
463  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
464  if (Subtarget->is64Bit()) {
465    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
466    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
467    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
468    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
469    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
470  }
471  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
472  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
473  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
474  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
475  if (Subtarget->is64Bit()) {
476    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
477    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
478    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
479  }
480
481  if (Subtarget->hasSSE1())
482    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
483
484  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
485  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
486
487  // On X86 and X86-64, atomic operations are lowered to locked instructions.
488  // Locked instructions, in turn, have implicit fence semantics (all memory
489  // operations are flushed before issuing the locked instruction, and they
490  // are not buffered), so we can fold away the common pattern of
491  // fence-atomic-fence.
492  setShouldFoldAtomicFences(true);
493
494  // Expand certain atomics
495  for (unsigned i = 0, e = 4; i != e; ++i) {
496    MVT VT = IntVTs[i];
497    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
498    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
499    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
500  }
501
502  if (!Subtarget->is64Bit()) {
503    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
504    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
505    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
506    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
507    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
508    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
509    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
510    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
511  }
512
513  if (Subtarget->hasCmpxchg16b()) {
514    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
515  }
516
517  // FIXME - use subtarget debug flags
518  if (!Subtarget->isTargetDarwin() &&
519      !Subtarget->isTargetELF() &&
520      !Subtarget->isTargetCygMing()) {
521    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
522  }
523
524  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
525  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
526  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
527  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
528  if (Subtarget->is64Bit()) {
529    setExceptionPointerRegister(X86::RAX);
530    setExceptionSelectorRegister(X86::RDX);
531  } else {
532    setExceptionPointerRegister(X86::EAX);
533    setExceptionSelectorRegister(X86::EDX);
534  }
535  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
536  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
537
538  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
539  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
540
541  setOperationAction(ISD::TRAP, MVT::Other, Legal);
542
543  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
544  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
545  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
546  if (Subtarget->is64Bit()) {
547    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
548    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
549  } else {
550    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
551    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
552  }
553
554  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
555  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
556
557  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
558    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
559                       MVT::i64 : MVT::i32, Custom);
560  else if (TM.Options.EnableSegmentedStacks)
561    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
562                       MVT::i64 : MVT::i32, Custom);
563  else
564    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
565                       MVT::i64 : MVT::i32, Expand);
566
567  if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
568    // f32 and f64 use SSE.
569    // Set up the FP register classes.
570    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
571    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
572
573    // Use ANDPD to simulate FABS.
574    setOperationAction(ISD::FABS , MVT::f64, Custom);
575    setOperationAction(ISD::FABS , MVT::f32, Custom);
576
577    // Use XORP to simulate FNEG.
578    setOperationAction(ISD::FNEG , MVT::f64, Custom);
579    setOperationAction(ISD::FNEG , MVT::f32, Custom);
580
581    // Use ANDPD and ORPD to simulate FCOPYSIGN.
582    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
583    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
584
585    // Lower this to FGETSIGNx86 plus an AND.
586    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
587    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
588
589    // We don't support sin/cos/fmod
590    setOperationAction(ISD::FSIN , MVT::f64, Expand);
591    setOperationAction(ISD::FCOS , MVT::f64, Expand);
592    setOperationAction(ISD::FSIN , MVT::f32, Expand);
593    setOperationAction(ISD::FCOS , MVT::f32, Expand);
594
595    // Expand FP immediates into loads from the stack, except for the special
596    // cases we handle.
597    addLegalFPImmediate(APFloat(+0.0)); // xorpd
598    addLegalFPImmediate(APFloat(+0.0f)); // xorps
599  } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
600    // Use SSE for f32, x87 for f64.
601    // Set up the FP register classes.
602    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
603    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
604
605    // Use ANDPS to simulate FABS.
606    setOperationAction(ISD::FABS , MVT::f32, Custom);
607
608    // Use XORP to simulate FNEG.
609    setOperationAction(ISD::FNEG , MVT::f32, Custom);
610
611    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
612
613    // Use ANDPS and ORPS to simulate FCOPYSIGN.
614    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
615    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
616
617    // We don't support sin/cos/fmod
618    setOperationAction(ISD::FSIN , MVT::f32, Expand);
619    setOperationAction(ISD::FCOS , MVT::f32, Expand);
620
621    // Special cases we handle for FP constants.
622    addLegalFPImmediate(APFloat(+0.0f)); // xorps
623    addLegalFPImmediate(APFloat(+0.0)); // FLD0
624    addLegalFPImmediate(APFloat(+1.0)); // FLD1
625    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
626    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
627
628    if (!TM.Options.UnsafeFPMath) {
629      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
630      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
631    }
632  } else if (!TM.Options.UseSoftFloat) {
633    // f32 and f64 in x87.
634    // Set up the FP register classes.
635    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
636    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
637
638    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
639    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
640    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
641    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
642
643    if (!TM.Options.UnsafeFPMath) {
644      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
645      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
646    }
647    addLegalFPImmediate(APFloat(+0.0)); // FLD0
648    addLegalFPImmediate(APFloat(+1.0)); // FLD1
649    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
650    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
651    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
652    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
653    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
654    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
655  }
656
657  // We don't support FMA.
658  setOperationAction(ISD::FMA, MVT::f64, Expand);
659  setOperationAction(ISD::FMA, MVT::f32, Expand);
660
661  // Long double always uses X87.
662  if (!TM.Options.UseSoftFloat) {
663    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
664    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
665    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
666    {
667      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
668      addLegalFPImmediate(TmpFlt);  // FLD0
669      TmpFlt.changeSign();
670      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
671
672      bool ignored;
673      APFloat TmpFlt2(+1.0);
674      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
675                      &ignored);
676      addLegalFPImmediate(TmpFlt2);  // FLD1
677      TmpFlt2.changeSign();
678      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
679    }
680
681    if (!TM.Options.UnsafeFPMath) {
682      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
683      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
684    }
685
686    setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
687    setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
688    setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
689    setOperationAction(ISD::FRINT,  MVT::f80, Expand);
690    setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
691    setOperationAction(ISD::FMA, MVT::f80, Expand);
692  }
693
694  // Always use a library call for pow.
695  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
696  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
697  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
698
699  setOperationAction(ISD::FLOG, MVT::f80, Expand);
700  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
701  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
702  setOperationAction(ISD::FEXP, MVT::f80, Expand);
703  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
704
705  // First set operation action for all vector types to either promote
706  // (for widening) or expand (for scalarization). Then we will selectively
707  // turn on ones that can be effectively codegen'd.
708  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
709       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
710    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
711    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
712    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
713    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
714    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
715    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
716    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
717    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
718    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
719    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
720    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
721    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
722    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
723    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
724    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
725    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
726    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
727    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
728    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
729    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
730    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
731    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
732    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
733    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
734    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
735    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
736    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
737    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
738    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
739    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
740    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
741    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
742    setOperationAction(ISD::CTTZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
743    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
744    setOperationAction(ISD::CTLZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
745    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
746    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
747    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
748    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
749    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
750    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
751    setOperationAction(ISD::SETCC, (MVT::SimpleValueType)VT, Expand);
752    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
753    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
754    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
755    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
756    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
757    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
758    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
759    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
760    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
761    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
762    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
763    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
764    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
765    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
766    setOperationAction(ISD::VSELECT,  (MVT::SimpleValueType)VT, Expand);
767    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
768         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
769      setTruncStoreAction((MVT::SimpleValueType)VT,
770                          (MVT::SimpleValueType)InnerVT, Expand);
771    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
772    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
773    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
774  }
775
776  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
777  // with -msoft-float, disable use of MMX as well.
778  if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
779    addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
780    // No operations on x86mmx supported, everything uses intrinsics.
781  }
782
783  // MMX-sized vectors (other than x86mmx) are expected to be expanded
784  // into smaller operations.
785  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
786  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
787  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
788  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
789  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
790  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
791  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
792  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
793  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
794  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
795  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
796  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
797  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
798  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
799  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
800  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
801  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
802  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
803  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
804  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
805  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
806  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
807  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
808  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
809  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
810  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
811  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
812  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
813  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
814
815  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
816    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
817
818    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
819    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
820    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
821    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
822    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
823    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
824    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
825    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
826    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
827    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
828    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
829    setOperationAction(ISD::SETCC,              MVT::v4f32, Custom);
830  }
831
832  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
833    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
834
835    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
836    // registers cannot be used even for integer operations.
837    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
838    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
839    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
840    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
841
842    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
843    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
844    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
845    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
846    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
847    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
848    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
849    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
850    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
851    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
852    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
853    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
854    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
855    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
856    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
857    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
858
859    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
860    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
861    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
862    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
863
864    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
865    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
866    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
867    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
868    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
869
870    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
871    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
872    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
873    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
874    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
875
876    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
877    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
878      EVT VT = (MVT::SimpleValueType)i;
879      // Do not attempt to custom lower non-power-of-2 vectors
880      if (!isPowerOf2_32(VT.getVectorNumElements()))
881        continue;
882      // Do not attempt to custom lower non-128-bit vectors
883      if (!VT.is128BitVector())
884        continue;
885      setOperationAction(ISD::BUILD_VECTOR,
886                         VT.getSimpleVT().SimpleTy, Custom);
887      setOperationAction(ISD::VECTOR_SHUFFLE,
888                         VT.getSimpleVT().SimpleTy, Custom);
889      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
890                         VT.getSimpleVT().SimpleTy, Custom);
891    }
892
893    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
894    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
895    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
896    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
897    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
898    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
899
900    if (Subtarget->is64Bit()) {
901      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
902      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
903    }
904
905    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
906    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
907      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
908      EVT VT = SVT;
909
910      // Do not attempt to promote non-128-bit vectors
911      if (!VT.is128BitVector())
912        continue;
913
914      setOperationAction(ISD::AND,    SVT, Promote);
915      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
916      setOperationAction(ISD::OR,     SVT, Promote);
917      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
918      setOperationAction(ISD::XOR,    SVT, Promote);
919      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
920      setOperationAction(ISD::LOAD,   SVT, Promote);
921      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
922      setOperationAction(ISD::SELECT, SVT, Promote);
923      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
924    }
925
926    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
927
928    // Custom lower v2i64 and v2f64 selects.
929    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
930    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
931    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
932    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
933
934    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
935    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
936  }
937
938  if (Subtarget->hasSSE41()) {
939    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
940    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
941    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
942    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
943    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
944    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
945    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
946    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
947    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
948    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
949
950    // FIXME: Do we need to handle scalar-to-vector here?
951    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
952
953    setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
954    setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
955    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
956    setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
957    setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
958
959    // i8 and i16 vectors are custom , because the source register and source
960    // source memory operand types are not the same width.  f32 vectors are
961    // custom since the immediate controlling the insert encodes additional
962    // information.
963    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
964    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
965    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
966    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
967
968    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
969    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
970    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
971    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
972
973    // FIXME: these should be Legal but thats only for the case where
974    // the index is constant.  For now custom expand to deal with that.
975    if (Subtarget->is64Bit()) {
976      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
977      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
978    }
979  }
980
981  if (Subtarget->hasSSE2()) {
982    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
983    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
984
985    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
986    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
987
988    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
989    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
990
991    if (Subtarget->hasAVX2()) {
992      setOperationAction(ISD::SRL,             MVT::v2i64, Legal);
993      setOperationAction(ISD::SRL,             MVT::v4i32, Legal);
994
995      setOperationAction(ISD::SHL,             MVT::v2i64, Legal);
996      setOperationAction(ISD::SHL,             MVT::v4i32, Legal);
997
998      setOperationAction(ISD::SRA,             MVT::v4i32, Legal);
999    } else {
1000      setOperationAction(ISD::SRL,             MVT::v2i64, Custom);
1001      setOperationAction(ISD::SRL,             MVT::v4i32, Custom);
1002
1003      setOperationAction(ISD::SHL,             MVT::v2i64, Custom);
1004      setOperationAction(ISD::SHL,             MVT::v4i32, Custom);
1005
1006      setOperationAction(ISD::SRA,             MVT::v4i32, Custom);
1007    }
1008  }
1009
1010  if (Subtarget->hasSSE42())
1011    setOperationAction(ISD::SETCC,             MVT::v2i64, Custom);
1012
1013  if (!TM.Options.UseSoftFloat && Subtarget->hasAVX()) {
1014    addRegisterClass(MVT::v32i8,  X86::VR256RegisterClass);
1015    addRegisterClass(MVT::v16i16, X86::VR256RegisterClass);
1016    addRegisterClass(MVT::v8i32,  X86::VR256RegisterClass);
1017    addRegisterClass(MVT::v8f32,  X86::VR256RegisterClass);
1018    addRegisterClass(MVT::v4i64,  X86::VR256RegisterClass);
1019    addRegisterClass(MVT::v4f64,  X86::VR256RegisterClass);
1020
1021    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
1022    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
1023    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
1024
1025    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
1026    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1027    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1028    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1029    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1030    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1031
1032    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1033    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1034    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1035    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1036    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1037    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1038
1039    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1040    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1041    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1042
1043    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4f64,  Custom);
1044    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i64,  Custom);
1045    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f32,  Custom);
1046    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i32,  Custom);
1047    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v32i8,  Custom);
1048    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i16, Custom);
1049
1050    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1051    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1052
1053    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1054    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1055
1056    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1057    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1058
1059    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1060    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1061    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1062    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1063
1064    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1065    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1066    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1067
1068    setOperationAction(ISD::VSELECT,           MVT::v4f64, Legal);
1069    setOperationAction(ISD::VSELECT,           MVT::v4i64, Legal);
1070    setOperationAction(ISD::VSELECT,           MVT::v8i32, Legal);
1071    setOperationAction(ISD::VSELECT,           MVT::v8f32, Legal);
1072
1073    if (Subtarget->hasAVX2()) {
1074      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1075      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1076      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1077      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1078
1079      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1080      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1081      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1082      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1083
1084      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1085      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1086      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1087      // Don't lower v32i8 because there is no 128-bit byte mul
1088
1089      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1090
1091      setOperationAction(ISD::SRL,             MVT::v4i64, Legal);
1092      setOperationAction(ISD::SRL,             MVT::v8i32, Legal);
1093
1094      setOperationAction(ISD::SHL,             MVT::v4i64, Legal);
1095      setOperationAction(ISD::SHL,             MVT::v8i32, Legal);
1096
1097      setOperationAction(ISD::SRA,             MVT::v8i32, Legal);
1098    } else {
1099      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1100      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1101      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1102      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1103
1104      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1105      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1106      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1107      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1108
1109      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1110      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1111      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1112      // Don't lower v32i8 because there is no 128-bit byte mul
1113
1114      setOperationAction(ISD::SRL,             MVT::v4i64, Custom);
1115      setOperationAction(ISD::SRL,             MVT::v8i32, Custom);
1116
1117      setOperationAction(ISD::SHL,             MVT::v4i64, Custom);
1118      setOperationAction(ISD::SHL,             MVT::v8i32, Custom);
1119
1120      setOperationAction(ISD::SRA,             MVT::v8i32, Custom);
1121    }
1122
1123    // Custom lower several nodes for 256-bit types.
1124    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1125                  i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1126      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1127      EVT VT = SVT;
1128
1129      // Extract subvector is special because the value type
1130      // (result) is 128-bit but the source is 256-bit wide.
1131      if (VT.is128BitVector())
1132        setOperationAction(ISD::EXTRACT_SUBVECTOR, SVT, Custom);
1133
1134      // Do not attempt to custom lower other non-256-bit vectors
1135      if (!VT.is256BitVector())
1136        continue;
1137
1138      setOperationAction(ISD::BUILD_VECTOR,       SVT, Custom);
1139      setOperationAction(ISD::VECTOR_SHUFFLE,     SVT, Custom);
1140      setOperationAction(ISD::INSERT_VECTOR_ELT,  SVT, Custom);
1141      setOperationAction(ISD::EXTRACT_VECTOR_ELT, SVT, Custom);
1142      setOperationAction(ISD::SCALAR_TO_VECTOR,   SVT, Custom);
1143      setOperationAction(ISD::INSERT_SUBVECTOR,   SVT, Custom);
1144    }
1145
1146    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1147    for (unsigned i = (unsigned)MVT::v32i8; i != (unsigned)MVT::v4i64; ++i) {
1148      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1149      EVT VT = SVT;
1150
1151      // Do not attempt to promote non-256-bit vectors
1152      if (!VT.is256BitVector())
1153        continue;
1154
1155      setOperationAction(ISD::AND,    SVT, Promote);
1156      AddPromotedToType (ISD::AND,    SVT, MVT::v4i64);
1157      setOperationAction(ISD::OR,     SVT, Promote);
1158      AddPromotedToType (ISD::OR,     SVT, MVT::v4i64);
1159      setOperationAction(ISD::XOR,    SVT, Promote);
1160      AddPromotedToType (ISD::XOR,    SVT, MVT::v4i64);
1161      setOperationAction(ISD::LOAD,   SVT, Promote);
1162      AddPromotedToType (ISD::LOAD,   SVT, MVT::v4i64);
1163      setOperationAction(ISD::SELECT, SVT, Promote);
1164      AddPromotedToType (ISD::SELECT, SVT, MVT::v4i64);
1165    }
1166  }
1167
1168  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1169  // of this type with custom code.
1170  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1171         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; VT++) {
1172    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
1173                       Custom);
1174  }
1175
1176  // We want to custom lower some of our intrinsics.
1177  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1178
1179
1180  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1181  // handle type legalization for these operations here.
1182  //
1183  // FIXME: We really should do custom legalization for addition and
1184  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1185  // than generic legalization for 64-bit multiplication-with-overflow, though.
1186  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1187    // Add/Sub/Mul with overflow operations are custom lowered.
1188    MVT VT = IntVTs[i];
1189    setOperationAction(ISD::SADDO, VT, Custom);
1190    setOperationAction(ISD::UADDO, VT, Custom);
1191    setOperationAction(ISD::SSUBO, VT, Custom);
1192    setOperationAction(ISD::USUBO, VT, Custom);
1193    setOperationAction(ISD::SMULO, VT, Custom);
1194    setOperationAction(ISD::UMULO, VT, Custom);
1195  }
1196
1197  // There are no 8-bit 3-address imul/mul instructions
1198  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1199  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1200
1201  if (!Subtarget->is64Bit()) {
1202    // These libcalls are not available in 32-bit.
1203    setLibcallName(RTLIB::SHL_I128, 0);
1204    setLibcallName(RTLIB::SRL_I128, 0);
1205    setLibcallName(RTLIB::SRA_I128, 0);
1206  }
1207
1208  // We have target-specific dag combine patterns for the following nodes:
1209  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1210  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1211  setTargetDAGCombine(ISD::VSELECT);
1212  setTargetDAGCombine(ISD::SELECT);
1213  setTargetDAGCombine(ISD::SHL);
1214  setTargetDAGCombine(ISD::SRA);
1215  setTargetDAGCombine(ISD::SRL);
1216  setTargetDAGCombine(ISD::OR);
1217  setTargetDAGCombine(ISD::AND);
1218  setTargetDAGCombine(ISD::ADD);
1219  setTargetDAGCombine(ISD::FADD);
1220  setTargetDAGCombine(ISD::FSUB);
1221  setTargetDAGCombine(ISD::SUB);
1222  setTargetDAGCombine(ISD::LOAD);
1223  setTargetDAGCombine(ISD::STORE);
1224  setTargetDAGCombine(ISD::ZERO_EXTEND);
1225  setTargetDAGCombine(ISD::SIGN_EXTEND);
1226  setTargetDAGCombine(ISD::TRUNCATE);
1227  setTargetDAGCombine(ISD::SINT_TO_FP);
1228  if (Subtarget->is64Bit())
1229    setTargetDAGCombine(ISD::MUL);
1230  if (Subtarget->hasBMI())
1231    setTargetDAGCombine(ISD::XOR);
1232
1233  computeRegisterProperties();
1234
1235  // On Darwin, -Os means optimize for size without hurting performance,
1236  // do not reduce the limit.
1237  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1238  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1239  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1240  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1241  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1242  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1243  setPrefLoopAlignment(4); // 2^4 bytes.
1244  benefitFromCodePlacementOpt = true;
1245
1246  setPrefFunctionAlignment(4); // 2^4 bytes.
1247}
1248
1249
1250EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1251  if (!VT.isVector()) return MVT::i8;
1252  return VT.changeVectorElementTypeToInteger();
1253}
1254
1255
1256/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1257/// the desired ByVal argument alignment.
1258static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1259  if (MaxAlign == 16)
1260    return;
1261  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1262    if (VTy->getBitWidth() == 128)
1263      MaxAlign = 16;
1264  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1265    unsigned EltAlign = 0;
1266    getMaxByValAlign(ATy->getElementType(), EltAlign);
1267    if (EltAlign > MaxAlign)
1268      MaxAlign = EltAlign;
1269  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1270    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1271      unsigned EltAlign = 0;
1272      getMaxByValAlign(STy->getElementType(i), EltAlign);
1273      if (EltAlign > MaxAlign)
1274        MaxAlign = EltAlign;
1275      if (MaxAlign == 16)
1276        break;
1277    }
1278  }
1279  return;
1280}
1281
1282/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1283/// function arguments in the caller parameter area. For X86, aggregates
1284/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1285/// are at 4-byte boundaries.
1286unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1287  if (Subtarget->is64Bit()) {
1288    // Max of 8 and alignment of type.
1289    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1290    if (TyAlign > 8)
1291      return TyAlign;
1292    return 8;
1293  }
1294
1295  unsigned Align = 4;
1296  if (Subtarget->hasSSE1())
1297    getMaxByValAlign(Ty, Align);
1298  return Align;
1299}
1300
1301/// getOptimalMemOpType - Returns the target specific optimal type for load
1302/// and store operations as a result of memset, memcpy, and memmove
1303/// lowering. If DstAlign is zero that means it's safe to destination
1304/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1305/// means there isn't a need to check it against alignment requirement,
1306/// probably because the source does not need to be loaded. If
1307/// 'IsZeroVal' is true, that means it's safe to return a
1308/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1309/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1310/// constant so it does not need to be loaded.
1311/// It returns EVT::Other if the type should be determined using generic
1312/// target-independent logic.
1313EVT
1314X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1315                                       unsigned DstAlign, unsigned SrcAlign,
1316                                       bool IsZeroVal,
1317                                       bool MemcpyStrSrc,
1318                                       MachineFunction &MF) const {
1319  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1320  // linux.  This is because the stack realignment code can't handle certain
1321  // cases like PR2962.  This should be removed when PR2962 is fixed.
1322  const Function *F = MF.getFunction();
1323  if (IsZeroVal &&
1324      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1325    if (Size >= 16 &&
1326        (Subtarget->isUnalignedMemAccessFast() ||
1327         ((DstAlign == 0 || DstAlign >= 16) &&
1328          (SrcAlign == 0 || SrcAlign >= 16))) &&
1329        Subtarget->getStackAlignment() >= 16) {
1330      if (Subtarget->getStackAlignment() >= 32) {
1331        if (Subtarget->hasAVX2())
1332          return MVT::v8i32;
1333        if (Subtarget->hasAVX())
1334          return MVT::v8f32;
1335      }
1336      if (Subtarget->hasSSE2())
1337        return MVT::v4i32;
1338      if (Subtarget->hasSSE1())
1339        return MVT::v4f32;
1340    } else if (!MemcpyStrSrc && Size >= 8 &&
1341               !Subtarget->is64Bit() &&
1342               Subtarget->getStackAlignment() >= 8 &&
1343               Subtarget->hasSSE2()) {
1344      // Do not use f64 to lower memcpy if source is string constant. It's
1345      // better to use i32 to avoid the loads.
1346      return MVT::f64;
1347    }
1348  }
1349  if (Subtarget->is64Bit() && Size >= 8)
1350    return MVT::i64;
1351  return MVT::i32;
1352}
1353
1354/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1355/// current function.  The returned value is a member of the
1356/// MachineJumpTableInfo::JTEntryKind enum.
1357unsigned X86TargetLowering::getJumpTableEncoding() const {
1358  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1359  // symbol.
1360  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1361      Subtarget->isPICStyleGOT())
1362    return MachineJumpTableInfo::EK_Custom32;
1363
1364  // Otherwise, use the normal jump table encoding heuristics.
1365  return TargetLowering::getJumpTableEncoding();
1366}
1367
1368const MCExpr *
1369X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1370                                             const MachineBasicBlock *MBB,
1371                                             unsigned uid,MCContext &Ctx) const{
1372  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1373         Subtarget->isPICStyleGOT());
1374  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1375  // entries.
1376  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1377                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1378}
1379
1380/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1381/// jumptable.
1382SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1383                                                    SelectionDAG &DAG) const {
1384  if (!Subtarget->is64Bit())
1385    // This doesn't have DebugLoc associated with it, but is not really the
1386    // same as a Register.
1387    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1388  return Table;
1389}
1390
1391/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1392/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1393/// MCExpr.
1394const MCExpr *X86TargetLowering::
1395getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1396                             MCContext &Ctx) const {
1397  // X86-64 uses RIP relative addressing based on the jump table label.
1398  if (Subtarget->isPICStyleRIPRel())
1399    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1400
1401  // Otherwise, the reference is relative to the PIC base.
1402  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1403}
1404
1405// FIXME: Why this routine is here? Move to RegInfo!
1406std::pair<const TargetRegisterClass*, uint8_t>
1407X86TargetLowering::findRepresentativeClass(EVT VT) const{
1408  const TargetRegisterClass *RRC = 0;
1409  uint8_t Cost = 1;
1410  switch (VT.getSimpleVT().SimpleTy) {
1411  default:
1412    return TargetLowering::findRepresentativeClass(VT);
1413  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1414    RRC = (Subtarget->is64Bit()
1415           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1416    break;
1417  case MVT::x86mmx:
1418    RRC = X86::VR64RegisterClass;
1419    break;
1420  case MVT::f32: case MVT::f64:
1421  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1422  case MVT::v4f32: case MVT::v2f64:
1423  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1424  case MVT::v4f64:
1425    RRC = X86::VR128RegisterClass;
1426    break;
1427  }
1428  return std::make_pair(RRC, Cost);
1429}
1430
1431bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1432                                               unsigned &Offset) const {
1433  if (!Subtarget->isTargetLinux())
1434    return false;
1435
1436  if (Subtarget->is64Bit()) {
1437    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1438    Offset = 0x28;
1439    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1440      AddressSpace = 256;
1441    else
1442      AddressSpace = 257;
1443  } else {
1444    // %gs:0x14 on i386
1445    Offset = 0x14;
1446    AddressSpace = 256;
1447  }
1448  return true;
1449}
1450
1451
1452//===----------------------------------------------------------------------===//
1453//               Return Value Calling Convention Implementation
1454//===----------------------------------------------------------------------===//
1455
1456#include "X86GenCallingConv.inc"
1457
1458bool
1459X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1460				  MachineFunction &MF, bool isVarArg,
1461                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1462                        LLVMContext &Context) const {
1463  SmallVector<CCValAssign, 16> RVLocs;
1464  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1465                 RVLocs, Context);
1466  return CCInfo.CheckReturn(Outs, RetCC_X86);
1467}
1468
1469SDValue
1470X86TargetLowering::LowerReturn(SDValue Chain,
1471                               CallingConv::ID CallConv, bool isVarArg,
1472                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1473                               const SmallVectorImpl<SDValue> &OutVals,
1474                               DebugLoc dl, SelectionDAG &DAG) const {
1475  MachineFunction &MF = DAG.getMachineFunction();
1476  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1477
1478  SmallVector<CCValAssign, 16> RVLocs;
1479  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1480                 RVLocs, *DAG.getContext());
1481  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1482
1483  // Add the regs to the liveout set for the function.
1484  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1485  for (unsigned i = 0; i != RVLocs.size(); ++i)
1486    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1487      MRI.addLiveOut(RVLocs[i].getLocReg());
1488
1489  SDValue Flag;
1490
1491  SmallVector<SDValue, 6> RetOps;
1492  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1493  // Operand #1 = Bytes To Pop
1494  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1495                   MVT::i16));
1496
1497  // Copy the result values into the output registers.
1498  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1499    CCValAssign &VA = RVLocs[i];
1500    assert(VA.isRegLoc() && "Can only return in registers!");
1501    SDValue ValToCopy = OutVals[i];
1502    EVT ValVT = ValToCopy.getValueType();
1503
1504    // If this is x86-64, and we disabled SSE, we can't return FP values,
1505    // or SSE or MMX vectors.
1506    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1507         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1508          (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1509      report_fatal_error("SSE register return with SSE disabled");
1510    }
1511    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1512    // llvm-gcc has never done it right and no one has noticed, so this
1513    // should be OK for now.
1514    if (ValVT == MVT::f64 &&
1515        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1516      report_fatal_error("SSE2 register return with SSE2 disabled");
1517
1518    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1519    // the RET instruction and handled by the FP Stackifier.
1520    if (VA.getLocReg() == X86::ST0 ||
1521        VA.getLocReg() == X86::ST1) {
1522      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1523      // change the value to the FP stack register class.
1524      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1525        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1526      RetOps.push_back(ValToCopy);
1527      // Don't emit a copytoreg.
1528      continue;
1529    }
1530
1531    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1532    // which is returned in RAX / RDX.
1533    if (Subtarget->is64Bit()) {
1534      if (ValVT == MVT::x86mmx) {
1535        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1536          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1537          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1538                                  ValToCopy);
1539          // If we don't have SSE2 available, convert to v4f32 so the generated
1540          // register is legal.
1541          if (!Subtarget->hasSSE2())
1542            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1543        }
1544      }
1545    }
1546
1547    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1548    Flag = Chain.getValue(1);
1549  }
1550
1551  // The x86-64 ABI for returning structs by value requires that we copy
1552  // the sret argument into %rax for the return. We saved the argument into
1553  // a virtual register in the entry block, so now we copy the value out
1554  // and into %rax.
1555  if (Subtarget->is64Bit() &&
1556      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1557    MachineFunction &MF = DAG.getMachineFunction();
1558    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1559    unsigned Reg = FuncInfo->getSRetReturnReg();
1560    assert(Reg &&
1561           "SRetReturnReg should have been set in LowerFormalArguments().");
1562    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1563
1564    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1565    Flag = Chain.getValue(1);
1566
1567    // RAX now acts like a return value.
1568    MRI.addLiveOut(X86::RAX);
1569  }
1570
1571  RetOps[0] = Chain;  // Update chain.
1572
1573  // Add the flag if we have it.
1574  if (Flag.getNode())
1575    RetOps.push_back(Flag);
1576
1577  return DAG.getNode(X86ISD::RET_FLAG, dl,
1578                     MVT::Other, &RetOps[0], RetOps.size());
1579}
1580
1581bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
1582  if (N->getNumValues() != 1)
1583    return false;
1584  if (!N->hasNUsesOfValue(1, 0))
1585    return false;
1586
1587  SDValue TCChain = Chain;
1588  SDNode *Copy = *N->use_begin();
1589  if (Copy->getOpcode() == ISD::CopyToReg) {
1590    // If the copy has a glue operand, we conservatively assume it isn't safe to
1591    // perform a tail call.
1592    if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
1593      return false;
1594    TCChain = Copy->getOperand(0);
1595  } else if (Copy->getOpcode() != ISD::FP_EXTEND)
1596    return false;
1597
1598  bool HasRet = false;
1599  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1600       UI != UE; ++UI) {
1601    if (UI->getOpcode() != X86ISD::RET_FLAG)
1602      return false;
1603    HasRet = true;
1604  }
1605
1606  if (!HasRet)
1607    return false;
1608
1609  Chain = TCChain;
1610  return true;
1611}
1612
1613EVT
1614X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1615                                            ISD::NodeType ExtendKind) const {
1616  MVT ReturnMVT;
1617  // TODO: Is this also valid on 32-bit?
1618  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1619    ReturnMVT = MVT::i8;
1620  else
1621    ReturnMVT = MVT::i32;
1622
1623  EVT MinVT = getRegisterType(Context, ReturnMVT);
1624  return VT.bitsLT(MinVT) ? MinVT : VT;
1625}
1626
1627/// LowerCallResult - Lower the result values of a call into the
1628/// appropriate copies out of appropriate physical registers.
1629///
1630SDValue
1631X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1632                                   CallingConv::ID CallConv, bool isVarArg,
1633                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1634                                   DebugLoc dl, SelectionDAG &DAG,
1635                                   SmallVectorImpl<SDValue> &InVals) const {
1636
1637  // Assign locations to each value returned by this call.
1638  SmallVector<CCValAssign, 16> RVLocs;
1639  bool Is64Bit = Subtarget->is64Bit();
1640  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1641		 getTargetMachine(), RVLocs, *DAG.getContext());
1642  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1643
1644  // Copy all of the result registers out of their specified physreg.
1645  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1646    CCValAssign &VA = RVLocs[i];
1647    EVT CopyVT = VA.getValVT();
1648
1649    // If this is x86-64, and we disabled SSE, we can't return FP values
1650    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1651        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1652      report_fatal_error("SSE register return with SSE disabled");
1653    }
1654
1655    SDValue Val;
1656
1657    // If this is a call to a function that returns an fp value on the floating
1658    // point stack, we must guarantee the the value is popped from the stack, so
1659    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1660    // if the return value is not used. We use the FpPOP_RETVAL instruction
1661    // instead.
1662    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1663      // If we prefer to use the value in xmm registers, copy it out as f80 and
1664      // use a truncate to move it from fp stack reg to xmm reg.
1665      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1666      SDValue Ops[] = { Chain, InFlag };
1667      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1668                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1669      Val = Chain.getValue(0);
1670
1671      // Round the f80 to the right size, which also moves it to the appropriate
1672      // xmm register.
1673      if (CopyVT != VA.getValVT())
1674        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1675                          // This truncation won't change the value.
1676                          DAG.getIntPtrConstant(1));
1677    } else {
1678      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1679                                 CopyVT, InFlag).getValue(1);
1680      Val = Chain.getValue(0);
1681    }
1682    InFlag = Chain.getValue(2);
1683    InVals.push_back(Val);
1684  }
1685
1686  return Chain;
1687}
1688
1689
1690//===----------------------------------------------------------------------===//
1691//                C & StdCall & Fast Calling Convention implementation
1692//===----------------------------------------------------------------------===//
1693//  StdCall calling convention seems to be standard for many Windows' API
1694//  routines and around. It differs from C calling convention just a little:
1695//  callee should clean up the stack, not caller. Symbols should be also
1696//  decorated in some fancy way :) It doesn't support any vector arguments.
1697//  For info on fast calling convention see Fast Calling Convention (tail call)
1698//  implementation LowerX86_32FastCCCallTo.
1699
1700/// CallIsStructReturn - Determines whether a call uses struct return
1701/// semantics.
1702static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1703  if (Outs.empty())
1704    return false;
1705
1706  return Outs[0].Flags.isSRet();
1707}
1708
1709/// ArgsAreStructReturn - Determines whether a function uses struct
1710/// return semantics.
1711static bool
1712ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1713  if (Ins.empty())
1714    return false;
1715
1716  return Ins[0].Flags.isSRet();
1717}
1718
1719/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1720/// by "Src" to address "Dst" with size and alignment information specified by
1721/// the specific parameter attribute. The copy will be passed as a byval
1722/// function parameter.
1723static SDValue
1724CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1725                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1726                          DebugLoc dl) {
1727  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1728
1729  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1730                       /*isVolatile*/false, /*AlwaysInline=*/true,
1731                       MachinePointerInfo(), MachinePointerInfo());
1732}
1733
1734/// IsTailCallConvention - Return true if the calling convention is one that
1735/// supports tail call optimization.
1736static bool IsTailCallConvention(CallingConv::ID CC) {
1737  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1738}
1739
1740bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1741  if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
1742    return false;
1743
1744  CallSite CS(CI);
1745  CallingConv::ID CalleeCC = CS.getCallingConv();
1746  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1747    return false;
1748
1749  return true;
1750}
1751
1752/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1753/// a tailcall target by changing its ABI.
1754static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
1755                                   bool GuaranteedTailCallOpt) {
1756  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1757}
1758
1759SDValue
1760X86TargetLowering::LowerMemArgument(SDValue Chain,
1761                                    CallingConv::ID CallConv,
1762                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1763                                    DebugLoc dl, SelectionDAG &DAG,
1764                                    const CCValAssign &VA,
1765                                    MachineFrameInfo *MFI,
1766                                    unsigned i) const {
1767  // Create the nodes corresponding to a load from this parameter slot.
1768  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1769  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
1770                              getTargetMachine().Options.GuaranteedTailCallOpt);
1771  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1772  EVT ValVT;
1773
1774  // If value is passed by pointer we have address passed instead of the value
1775  // itself.
1776  if (VA.getLocInfo() == CCValAssign::Indirect)
1777    ValVT = VA.getLocVT();
1778  else
1779    ValVT = VA.getValVT();
1780
1781  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1782  // changed with more analysis.
1783  // In case of tail call optimization mark all arguments mutable. Since they
1784  // could be overwritten by lowering of arguments in case of a tail call.
1785  if (Flags.isByVal()) {
1786    unsigned Bytes = Flags.getByValSize();
1787    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1788    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1789    return DAG.getFrameIndex(FI, getPointerTy());
1790  } else {
1791    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1792                                    VA.getLocMemOffset(), isImmutable);
1793    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1794    return DAG.getLoad(ValVT, dl, Chain, FIN,
1795                       MachinePointerInfo::getFixedStack(FI),
1796                       false, false, false, 0);
1797  }
1798}
1799
1800SDValue
1801X86TargetLowering::LowerFormalArguments(SDValue Chain,
1802                                        CallingConv::ID CallConv,
1803                                        bool isVarArg,
1804                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1805                                        DebugLoc dl,
1806                                        SelectionDAG &DAG,
1807                                        SmallVectorImpl<SDValue> &InVals)
1808                                          const {
1809  MachineFunction &MF = DAG.getMachineFunction();
1810  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1811
1812  const Function* Fn = MF.getFunction();
1813  if (Fn->hasExternalLinkage() &&
1814      Subtarget->isTargetCygMing() &&
1815      Fn->getName() == "main")
1816    FuncInfo->setForceFramePointer(true);
1817
1818  MachineFrameInfo *MFI = MF.getFrameInfo();
1819  bool Is64Bit = Subtarget->is64Bit();
1820  bool IsWindows = Subtarget->isTargetWindows();
1821  bool IsWin64 = Subtarget->isTargetWin64();
1822
1823  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1824         "Var args not supported with calling convention fastcc or ghc");
1825
1826  // Assign locations to all of the incoming arguments.
1827  SmallVector<CCValAssign, 16> ArgLocs;
1828  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1829                 ArgLocs, *DAG.getContext());
1830
1831  // Allocate shadow area for Win64
1832  if (IsWin64) {
1833    CCInfo.AllocateStack(32, 8);
1834  }
1835
1836  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1837
1838  unsigned LastVal = ~0U;
1839  SDValue ArgValue;
1840  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1841    CCValAssign &VA = ArgLocs[i];
1842    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1843    // places.
1844    assert(VA.getValNo() != LastVal &&
1845           "Don't support value assigned to multiple locs yet");
1846    (void)LastVal;
1847    LastVal = VA.getValNo();
1848
1849    if (VA.isRegLoc()) {
1850      EVT RegVT = VA.getLocVT();
1851      const TargetRegisterClass *RC;
1852      if (RegVT == MVT::i32)
1853        RC = X86::GR32RegisterClass;
1854      else if (Is64Bit && RegVT == MVT::i64)
1855        RC = X86::GR64RegisterClass;
1856      else if (RegVT == MVT::f32)
1857        RC = X86::FR32RegisterClass;
1858      else if (RegVT == MVT::f64)
1859        RC = X86::FR64RegisterClass;
1860      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1861        RC = X86::VR256RegisterClass;
1862      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1863        RC = X86::VR128RegisterClass;
1864      else if (RegVT == MVT::x86mmx)
1865        RC = X86::VR64RegisterClass;
1866      else
1867        llvm_unreachable("Unknown argument type!");
1868
1869      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1870      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1871
1872      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1873      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1874      // right size.
1875      if (VA.getLocInfo() == CCValAssign::SExt)
1876        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1877                               DAG.getValueType(VA.getValVT()));
1878      else if (VA.getLocInfo() == CCValAssign::ZExt)
1879        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1880                               DAG.getValueType(VA.getValVT()));
1881      else if (VA.getLocInfo() == CCValAssign::BCvt)
1882        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1883
1884      if (VA.isExtInLoc()) {
1885        // Handle MMX values passed in XMM regs.
1886        if (RegVT.isVector()) {
1887          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1888                                 ArgValue);
1889        } else
1890          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1891      }
1892    } else {
1893      assert(VA.isMemLoc());
1894      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1895    }
1896
1897    // If value is passed via pointer - do a load.
1898    if (VA.getLocInfo() == CCValAssign::Indirect)
1899      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1900                             MachinePointerInfo(), false, false, false, 0);
1901
1902    InVals.push_back(ArgValue);
1903  }
1904
1905  // The x86-64 ABI for returning structs by value requires that we copy
1906  // the sret argument into %rax for the return. Save the argument into
1907  // a virtual register so that we can access it from the return points.
1908  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1909    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1910    unsigned Reg = FuncInfo->getSRetReturnReg();
1911    if (!Reg) {
1912      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1913      FuncInfo->setSRetReturnReg(Reg);
1914    }
1915    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1916    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1917  }
1918
1919  unsigned StackSize = CCInfo.getNextStackOffset();
1920  // Align stack specially for tail calls.
1921  if (FuncIsMadeTailCallSafe(CallConv,
1922                             MF.getTarget().Options.GuaranteedTailCallOpt))
1923    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1924
1925  // If the function takes variable number of arguments, make a frame index for
1926  // the start of the first vararg value... for expansion of llvm.va_start.
1927  if (isVarArg) {
1928    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1929                    CallConv != CallingConv::X86_ThisCall)) {
1930      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1931    }
1932    if (Is64Bit) {
1933      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1934
1935      // FIXME: We should really autogenerate these arrays
1936      static const uint16_t GPR64ArgRegsWin64[] = {
1937        X86::RCX, X86::RDX, X86::R8,  X86::R9
1938      };
1939      static const uint16_t GPR64ArgRegs64Bit[] = {
1940        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1941      };
1942      static const uint16_t XMMArgRegs64Bit[] = {
1943        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1944        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1945      };
1946      const uint16_t *GPR64ArgRegs;
1947      unsigned NumXMMRegs = 0;
1948
1949      if (IsWin64) {
1950        // The XMM registers which might contain var arg parameters are shadowed
1951        // in their paired GPR.  So we only need to save the GPR to their home
1952        // slots.
1953        TotalNumIntRegs = 4;
1954        GPR64ArgRegs = GPR64ArgRegsWin64;
1955      } else {
1956        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1957        GPR64ArgRegs = GPR64ArgRegs64Bit;
1958
1959        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
1960                                                TotalNumXMMRegs);
1961      }
1962      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1963                                                       TotalNumIntRegs);
1964
1965      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1966      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1967             "SSE register cannot be used when SSE is disabled!");
1968      assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
1969               NoImplicitFloatOps) &&
1970             "SSE register cannot be used when SSE is disabled!");
1971      if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
1972          !Subtarget->hasSSE1())
1973        // Kernel mode asks for SSE to be disabled, so don't push them
1974        // on the stack.
1975        TotalNumXMMRegs = 0;
1976
1977      if (IsWin64) {
1978        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1979        // Get to the caller-allocated home save location.  Add 8 to account
1980        // for the return address.
1981        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1982        FuncInfo->setRegSaveFrameIndex(
1983          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1984        // Fixup to set vararg frame on shadow area (4 x i64).
1985        if (NumIntRegs < 4)
1986          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1987      } else {
1988        // For X86-64, if there are vararg parameters that are passed via
1989        // registers, then we must store them to their spots on the stack so
1990        // they may be loaded by deferencing the result of va_next.
1991        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1992        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1993        FuncInfo->setRegSaveFrameIndex(
1994          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1995                               false));
1996      }
1997
1998      // Store the integer parameter registers.
1999      SmallVector<SDValue, 8> MemOps;
2000      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
2001                                        getPointerTy());
2002      unsigned Offset = FuncInfo->getVarArgsGPOffset();
2003      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
2004        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
2005                                  DAG.getIntPtrConstant(Offset));
2006        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
2007                                     X86::GR64RegisterClass);
2008        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2009        SDValue Store =
2010          DAG.getStore(Val.getValue(1), dl, Val, FIN,
2011                       MachinePointerInfo::getFixedStack(
2012                         FuncInfo->getRegSaveFrameIndex(), Offset),
2013                       false, false, 0);
2014        MemOps.push_back(Store);
2015        Offset += 8;
2016      }
2017
2018      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
2019        // Now store the XMM (fp + vector) parameter registers.
2020        SmallVector<SDValue, 11> SaveXMMOps;
2021        SaveXMMOps.push_back(Chain);
2022
2023        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
2024        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
2025        SaveXMMOps.push_back(ALVal);
2026
2027        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2028                               FuncInfo->getRegSaveFrameIndex()));
2029        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2030                               FuncInfo->getVarArgsFPOffset()));
2031
2032        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
2033          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
2034                                       X86::VR128RegisterClass);
2035          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
2036          SaveXMMOps.push_back(Val);
2037        }
2038        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2039                                     MVT::Other,
2040                                     &SaveXMMOps[0], SaveXMMOps.size()));
2041      }
2042
2043      if (!MemOps.empty())
2044        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2045                            &MemOps[0], MemOps.size());
2046    }
2047  }
2048
2049  // Some CCs need callee pop.
2050  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2051                       MF.getTarget().Options.GuaranteedTailCallOpt)) {
2052    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2053  } else {
2054    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2055    // If this is an sret function, the return should pop the hidden pointer.
2056    if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2057        ArgsAreStructReturn(Ins))
2058      FuncInfo->setBytesToPopOnReturn(4);
2059  }
2060
2061  if (!Is64Bit) {
2062    // RegSaveFrameIndex is X86-64 only.
2063    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2064    if (CallConv == CallingConv::X86_FastCall ||
2065        CallConv == CallingConv::X86_ThisCall)
2066      // fastcc functions can't have varargs.
2067      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2068  }
2069
2070  FuncInfo->setArgumentStackSize(StackSize);
2071
2072  return Chain;
2073}
2074
2075SDValue
2076X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2077                                    SDValue StackPtr, SDValue Arg,
2078                                    DebugLoc dl, SelectionDAG &DAG,
2079                                    const CCValAssign &VA,
2080                                    ISD::ArgFlagsTy Flags) const {
2081  unsigned LocMemOffset = VA.getLocMemOffset();
2082  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2083  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2084  if (Flags.isByVal())
2085    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2086
2087  return DAG.getStore(Chain, dl, Arg, PtrOff,
2088                      MachinePointerInfo::getStack(LocMemOffset),
2089                      false, false, 0);
2090}
2091
2092/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2093/// optimization is performed and it is required.
2094SDValue
2095X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2096                                           SDValue &OutRetAddr, SDValue Chain,
2097                                           bool IsTailCall, bool Is64Bit,
2098                                           int FPDiff, DebugLoc dl) const {
2099  // Adjust the Return address stack slot.
2100  EVT VT = getPointerTy();
2101  OutRetAddr = getReturnAddressFrameIndex(DAG);
2102
2103  // Load the "old" Return address.
2104  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2105                           false, false, false, 0);
2106  return SDValue(OutRetAddr.getNode(), 1);
2107}
2108
2109/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2110/// optimization is performed and it is required (FPDiff!=0).
2111static SDValue
2112EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2113                         SDValue Chain, SDValue RetAddrFrIdx,
2114                         bool Is64Bit, int FPDiff, DebugLoc dl) {
2115  // Store the return address to the appropriate stack slot.
2116  if (!FPDiff) return Chain;
2117  // Calculate the new stack slot for the return address.
2118  int SlotSize = Is64Bit ? 8 : 4;
2119  int NewReturnAddrFI =
2120    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2121  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2122  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
2123  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2124                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2125                       false, false, 0);
2126  return Chain;
2127}
2128
2129SDValue
2130X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2131                             CallingConv::ID CallConv, bool isVarArg,
2132                             bool doesNotRet, bool &isTailCall,
2133                             const SmallVectorImpl<ISD::OutputArg> &Outs,
2134                             const SmallVectorImpl<SDValue> &OutVals,
2135                             const SmallVectorImpl<ISD::InputArg> &Ins,
2136                             DebugLoc dl, SelectionDAG &DAG,
2137                             SmallVectorImpl<SDValue> &InVals) const {
2138  MachineFunction &MF = DAG.getMachineFunction();
2139  bool Is64Bit        = Subtarget->is64Bit();
2140  bool IsWin64        = Subtarget->isTargetWin64();
2141  bool IsWindows      = Subtarget->isTargetWindows();
2142  bool IsStructRet    = CallIsStructReturn(Outs);
2143  bool IsSibcall      = false;
2144
2145  if (MF.getTarget().Options.DisableTailCalls)
2146    isTailCall = false;
2147
2148  if (isTailCall) {
2149    // Check if it's really possible to do a tail call.
2150    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2151                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
2152                                                   Outs, OutVals, Ins, DAG);
2153
2154    // Sibcalls are automatically detected tailcalls which do not require
2155    // ABI changes.
2156    if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2157      IsSibcall = true;
2158
2159    if (isTailCall)
2160      ++NumTailCalls;
2161  }
2162
2163  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2164         "Var args not supported with calling convention fastcc or ghc");
2165
2166  // Analyze operands of the call, assigning locations to each operand.
2167  SmallVector<CCValAssign, 16> ArgLocs;
2168  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2169                 ArgLocs, *DAG.getContext());
2170
2171  // Allocate shadow area for Win64
2172  if (IsWin64) {
2173    CCInfo.AllocateStack(32, 8);
2174  }
2175
2176  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2177
2178  // Get a count of how many bytes are to be pushed on the stack.
2179  unsigned NumBytes = CCInfo.getNextStackOffset();
2180  if (IsSibcall)
2181    // This is a sibcall. The memory operands are available in caller's
2182    // own caller's stack.
2183    NumBytes = 0;
2184  else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
2185           IsTailCallConvention(CallConv))
2186    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2187
2188  int FPDiff = 0;
2189  if (isTailCall && !IsSibcall) {
2190    // Lower arguments at fp - stackoffset + fpdiff.
2191    unsigned NumBytesCallerPushed =
2192      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2193    FPDiff = NumBytesCallerPushed - NumBytes;
2194
2195    // Set the delta of movement of the returnaddr stackslot.
2196    // But only set if delta is greater than previous delta.
2197    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2198      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2199  }
2200
2201  if (!IsSibcall)
2202    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2203
2204  SDValue RetAddrFrIdx;
2205  // Load return address for tail calls.
2206  if (isTailCall && FPDiff)
2207    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2208                                    Is64Bit, FPDiff, dl);
2209
2210  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2211  SmallVector<SDValue, 8> MemOpChains;
2212  SDValue StackPtr;
2213
2214  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2215  // of tail call optimization arguments are handle later.
2216  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2217    CCValAssign &VA = ArgLocs[i];
2218    EVT RegVT = VA.getLocVT();
2219    SDValue Arg = OutVals[i];
2220    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2221    bool isByVal = Flags.isByVal();
2222
2223    // Promote the value if needed.
2224    switch (VA.getLocInfo()) {
2225    default: llvm_unreachable("Unknown loc info!");
2226    case CCValAssign::Full: break;
2227    case CCValAssign::SExt:
2228      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2229      break;
2230    case CCValAssign::ZExt:
2231      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2232      break;
2233    case CCValAssign::AExt:
2234      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2235        // Special case: passing MMX values in XMM registers.
2236        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2237        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2238        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2239      } else
2240        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2241      break;
2242    case CCValAssign::BCvt:
2243      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2244      break;
2245    case CCValAssign::Indirect: {
2246      // Store the argument.
2247      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2248      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2249      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2250                           MachinePointerInfo::getFixedStack(FI),
2251                           false, false, 0);
2252      Arg = SpillSlot;
2253      break;
2254    }
2255    }
2256
2257    if (VA.isRegLoc()) {
2258      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2259      if (isVarArg && IsWin64) {
2260        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2261        // shadow reg if callee is a varargs function.
2262        unsigned ShadowReg = 0;
2263        switch (VA.getLocReg()) {
2264        case X86::XMM0: ShadowReg = X86::RCX; break;
2265        case X86::XMM1: ShadowReg = X86::RDX; break;
2266        case X86::XMM2: ShadowReg = X86::R8; break;
2267        case X86::XMM3: ShadowReg = X86::R9; break;
2268        }
2269        if (ShadowReg)
2270          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2271      }
2272    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2273      assert(VA.isMemLoc());
2274      if (StackPtr.getNode() == 0)
2275        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2276      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2277                                             dl, DAG, VA, Flags));
2278    }
2279  }
2280
2281  if (!MemOpChains.empty())
2282    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2283                        &MemOpChains[0], MemOpChains.size());
2284
2285  // Build a sequence of copy-to-reg nodes chained together with token chain
2286  // and flag operands which copy the outgoing args into registers.
2287  SDValue InFlag;
2288  // Tail call byval lowering might overwrite argument registers so in case of
2289  // tail call optimization the copies to registers are lowered later.
2290  if (!isTailCall)
2291    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2292      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2293                               RegsToPass[i].second, InFlag);
2294      InFlag = Chain.getValue(1);
2295    }
2296
2297  if (Subtarget->isPICStyleGOT()) {
2298    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2299    // GOT pointer.
2300    if (!isTailCall) {
2301      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2302                               DAG.getNode(X86ISD::GlobalBaseReg,
2303                                           DebugLoc(), getPointerTy()),
2304                               InFlag);
2305      InFlag = Chain.getValue(1);
2306    } else {
2307      // If we are tail calling and generating PIC/GOT style code load the
2308      // address of the callee into ECX. The value in ecx is used as target of
2309      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2310      // for tail calls on PIC/GOT architectures. Normally we would just put the
2311      // address of GOT into ebx and then call target@PLT. But for tail calls
2312      // ebx would be restored (since ebx is callee saved) before jumping to the
2313      // target@PLT.
2314
2315      // Note: The actual moving to ECX is done further down.
2316      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2317      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2318          !G->getGlobal()->hasProtectedVisibility())
2319        Callee = LowerGlobalAddress(Callee, DAG);
2320      else if (isa<ExternalSymbolSDNode>(Callee))
2321        Callee = LowerExternalSymbol(Callee, DAG);
2322    }
2323  }
2324
2325  if (Is64Bit && isVarArg && !IsWin64) {
2326    // From AMD64 ABI document:
2327    // For calls that may call functions that use varargs or stdargs
2328    // (prototype-less calls or calls to functions containing ellipsis (...) in
2329    // the declaration) %al is used as hidden argument to specify the number
2330    // of SSE registers used. The contents of %al do not need to match exactly
2331    // the number of registers, but must be an ubound on the number of SSE
2332    // registers used and is in the range 0 - 8 inclusive.
2333
2334    // Count the number of XMM registers allocated.
2335    static const uint16_t XMMArgRegs[] = {
2336      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2337      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2338    };
2339    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2340    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2341           && "SSE registers cannot be used when SSE is disabled");
2342
2343    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2344                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2345    InFlag = Chain.getValue(1);
2346  }
2347
2348
2349  // For tail calls lower the arguments to the 'real' stack slot.
2350  if (isTailCall) {
2351    // Force all the incoming stack arguments to be loaded from the stack
2352    // before any new outgoing arguments are stored to the stack, because the
2353    // outgoing stack slots may alias the incoming argument stack slots, and
2354    // the alias isn't otherwise explicit. This is slightly more conservative
2355    // than necessary, because it means that each store effectively depends
2356    // on every argument instead of just those arguments it would clobber.
2357    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2358
2359    SmallVector<SDValue, 8> MemOpChains2;
2360    SDValue FIN;
2361    int FI = 0;
2362    // Do not flag preceding copytoreg stuff together with the following stuff.
2363    InFlag = SDValue();
2364    if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2365      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2366        CCValAssign &VA = ArgLocs[i];
2367        if (VA.isRegLoc())
2368          continue;
2369        assert(VA.isMemLoc());
2370        SDValue Arg = OutVals[i];
2371        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2372        // Create frame index.
2373        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2374        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2375        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2376        FIN = DAG.getFrameIndex(FI, getPointerTy());
2377
2378        if (Flags.isByVal()) {
2379          // Copy relative to framepointer.
2380          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2381          if (StackPtr.getNode() == 0)
2382            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2383                                          getPointerTy());
2384          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2385
2386          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2387                                                           ArgChain,
2388                                                           Flags, DAG, dl));
2389        } else {
2390          // Store relative to framepointer.
2391          MemOpChains2.push_back(
2392            DAG.getStore(ArgChain, dl, Arg, FIN,
2393                         MachinePointerInfo::getFixedStack(FI),
2394                         false, false, 0));
2395        }
2396      }
2397    }
2398
2399    if (!MemOpChains2.empty())
2400      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2401                          &MemOpChains2[0], MemOpChains2.size());
2402
2403    // Copy arguments to their registers.
2404    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2405      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2406                               RegsToPass[i].second, InFlag);
2407      InFlag = Chain.getValue(1);
2408    }
2409    InFlag =SDValue();
2410
2411    // Store the return address to the appropriate stack slot.
2412    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2413                                     FPDiff, dl);
2414  }
2415
2416  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2417    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2418    // In the 64-bit large code model, we have to make all calls
2419    // through a register, since the call instruction's 32-bit
2420    // pc-relative offset may not be large enough to hold the whole
2421    // address.
2422  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2423    // If the callee is a GlobalAddress node (quite common, every direct call
2424    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2425    // it.
2426
2427    // We should use extra load for direct calls to dllimported functions in
2428    // non-JIT mode.
2429    const GlobalValue *GV = G->getGlobal();
2430    if (!GV->hasDLLImportLinkage()) {
2431      unsigned char OpFlags = 0;
2432      bool ExtraLoad = false;
2433      unsigned WrapperKind = ISD::DELETED_NODE;
2434
2435      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2436      // external symbols most go through the PLT in PIC mode.  If the symbol
2437      // has hidden or protected visibility, or if it is static or local, then
2438      // we don't need to use the PLT - we can directly call it.
2439      if (Subtarget->isTargetELF() &&
2440          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2441          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2442        OpFlags = X86II::MO_PLT;
2443      } else if (Subtarget->isPICStyleStubAny() &&
2444                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2445                 (!Subtarget->getTargetTriple().isMacOSX() ||
2446                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2447        // PC-relative references to external symbols should go through $stub,
2448        // unless we're building with the leopard linker or later, which
2449        // automatically synthesizes these stubs.
2450        OpFlags = X86II::MO_DARWIN_STUB;
2451      } else if (Subtarget->isPICStyleRIPRel() &&
2452                 isa<Function>(GV) &&
2453                 cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
2454        // If the function is marked as non-lazy, generate an indirect call
2455        // which loads from the GOT directly. This avoids runtime overhead
2456        // at the cost of eager binding (and one extra byte of encoding).
2457        OpFlags = X86II::MO_GOTPCREL;
2458        WrapperKind = X86ISD::WrapperRIP;
2459        ExtraLoad = true;
2460      }
2461
2462      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2463                                          G->getOffset(), OpFlags);
2464
2465      // Add a wrapper if needed.
2466      if (WrapperKind != ISD::DELETED_NODE)
2467        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2468      // Add extra indirection if needed.
2469      if (ExtraLoad)
2470        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2471                             MachinePointerInfo::getGOT(),
2472                             false, false, false, 0);
2473    }
2474  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2475    unsigned char OpFlags = 0;
2476
2477    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2478    // external symbols should go through the PLT.
2479    if (Subtarget->isTargetELF() &&
2480        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2481      OpFlags = X86II::MO_PLT;
2482    } else if (Subtarget->isPICStyleStubAny() &&
2483               (!Subtarget->getTargetTriple().isMacOSX() ||
2484                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2485      // PC-relative references to external symbols should go through $stub,
2486      // unless we're building with the leopard linker or later, which
2487      // automatically synthesizes these stubs.
2488      OpFlags = X86II::MO_DARWIN_STUB;
2489    }
2490
2491    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2492                                         OpFlags);
2493  }
2494
2495  // Returns a chain & a flag for retval copy to use.
2496  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2497  SmallVector<SDValue, 8> Ops;
2498
2499  if (!IsSibcall && isTailCall) {
2500    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2501                           DAG.getIntPtrConstant(0, true), InFlag);
2502    InFlag = Chain.getValue(1);
2503  }
2504
2505  Ops.push_back(Chain);
2506  Ops.push_back(Callee);
2507
2508  if (isTailCall)
2509    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2510
2511  // Add argument registers to the end of the list so that they are known live
2512  // into the call.
2513  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2514    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2515                                  RegsToPass[i].second.getValueType()));
2516
2517  // Add an implicit use GOT pointer in EBX.
2518  if (!isTailCall && Subtarget->isPICStyleGOT())
2519    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2520
2521  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2522  if (Is64Bit && isVarArg && !IsWin64)
2523    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2524
2525  // Add a register mask operand representing the call-preserved registers.
2526  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2527  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2528  assert(Mask && "Missing call preserved mask for calling convention");
2529  Ops.push_back(DAG.getRegisterMask(Mask));
2530
2531  if (InFlag.getNode())
2532    Ops.push_back(InFlag);
2533
2534  if (isTailCall) {
2535    // We used to do:
2536    //// If this is the first return lowered for this function, add the regs
2537    //// to the liveout set for the function.
2538    // This isn't right, although it's probably harmless on x86; liveouts
2539    // should be computed from returns not tail calls.  Consider a void
2540    // function making a tail call to a function returning int.
2541    return DAG.getNode(X86ISD::TC_RETURN, dl,
2542                       NodeTys, &Ops[0], Ops.size());
2543  }
2544
2545  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2546  InFlag = Chain.getValue(1);
2547
2548  // Create the CALLSEQ_END node.
2549  unsigned NumBytesForCalleeToPush;
2550  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2551                       getTargetMachine().Options.GuaranteedTailCallOpt))
2552    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2553  else if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2554           IsStructRet)
2555    // If this is a call to a struct-return function, the callee
2556    // pops the hidden struct pointer, so we have to push it back.
2557    // This is common for Darwin/X86, Linux & Mingw32 targets.
2558    // For MSVC Win32 targets, the caller pops the hidden struct pointer.
2559    NumBytesForCalleeToPush = 4;
2560  else
2561    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2562
2563  // Returns a flag for retval copy to use.
2564  if (!IsSibcall) {
2565    Chain = DAG.getCALLSEQ_END(Chain,
2566                               DAG.getIntPtrConstant(NumBytes, true),
2567                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2568                                                     true),
2569                               InFlag);
2570    InFlag = Chain.getValue(1);
2571  }
2572
2573  // Handle result values, copying them out of physregs into vregs that we
2574  // return.
2575  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2576                         Ins, dl, DAG, InVals);
2577}
2578
2579
2580//===----------------------------------------------------------------------===//
2581//                Fast Calling Convention (tail call) implementation
2582//===----------------------------------------------------------------------===//
2583
2584//  Like std call, callee cleans arguments, convention except that ECX is
2585//  reserved for storing the tail called function address. Only 2 registers are
2586//  free for argument passing (inreg). Tail call optimization is performed
2587//  provided:
2588//                * tailcallopt is enabled
2589//                * caller/callee are fastcc
2590//  On X86_64 architecture with GOT-style position independent code only local
2591//  (within module) calls are supported at the moment.
2592//  To keep the stack aligned according to platform abi the function
2593//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2594//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2595//  If a tail called function callee has more arguments than the caller the
2596//  caller needs to make sure that there is room to move the RETADDR to. This is
2597//  achieved by reserving an area the size of the argument delta right after the
2598//  original REtADDR, but before the saved framepointer or the spilled registers
2599//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2600//  stack layout:
2601//    arg1
2602//    arg2
2603//    RETADDR
2604//    [ new RETADDR
2605//      move area ]
2606//    (possible EBP)
2607//    ESI
2608//    EDI
2609//    local1 ..
2610
2611/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2612/// for a 16 byte align requirement.
2613unsigned
2614X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2615                                               SelectionDAG& DAG) const {
2616  MachineFunction &MF = DAG.getMachineFunction();
2617  const TargetMachine &TM = MF.getTarget();
2618  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2619  unsigned StackAlignment = TFI.getStackAlignment();
2620  uint64_t AlignMask = StackAlignment - 1;
2621  int64_t Offset = StackSize;
2622  uint64_t SlotSize = TD->getPointerSize();
2623  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2624    // Number smaller than 12 so just add the difference.
2625    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2626  } else {
2627    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2628    Offset = ((~AlignMask) & Offset) + StackAlignment +
2629      (StackAlignment-SlotSize);
2630  }
2631  return Offset;
2632}
2633
2634/// MatchingStackOffset - Return true if the given stack call argument is
2635/// already available in the same position (relatively) of the caller's
2636/// incoming argument stack.
2637static
2638bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2639                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2640                         const X86InstrInfo *TII) {
2641  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2642  int FI = INT_MAX;
2643  if (Arg.getOpcode() == ISD::CopyFromReg) {
2644    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2645    if (!TargetRegisterInfo::isVirtualRegister(VR))
2646      return false;
2647    MachineInstr *Def = MRI->getVRegDef(VR);
2648    if (!Def)
2649      return false;
2650    if (!Flags.isByVal()) {
2651      if (!TII->isLoadFromStackSlot(Def, FI))
2652        return false;
2653    } else {
2654      unsigned Opcode = Def->getOpcode();
2655      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2656          Def->getOperand(1).isFI()) {
2657        FI = Def->getOperand(1).getIndex();
2658        Bytes = Flags.getByValSize();
2659      } else
2660        return false;
2661    }
2662  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2663    if (Flags.isByVal())
2664      // ByVal argument is passed in as a pointer but it's now being
2665      // dereferenced. e.g.
2666      // define @foo(%struct.X* %A) {
2667      //   tail call @bar(%struct.X* byval %A)
2668      // }
2669      return false;
2670    SDValue Ptr = Ld->getBasePtr();
2671    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2672    if (!FINode)
2673      return false;
2674    FI = FINode->getIndex();
2675  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2676    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2677    FI = FINode->getIndex();
2678    Bytes = Flags.getByValSize();
2679  } else
2680    return false;
2681
2682  assert(FI != INT_MAX);
2683  if (!MFI->isFixedObjectIndex(FI))
2684    return false;
2685  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2686}
2687
2688/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2689/// for tail call optimization. Targets which want to do tail call
2690/// optimization should implement this function.
2691bool
2692X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2693                                                     CallingConv::ID CalleeCC,
2694                                                     bool isVarArg,
2695                                                     bool isCalleeStructRet,
2696                                                     bool isCallerStructRet,
2697                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2698                                    const SmallVectorImpl<SDValue> &OutVals,
2699                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2700                                                     SelectionDAG& DAG) const {
2701  if (!IsTailCallConvention(CalleeCC) &&
2702      CalleeCC != CallingConv::C)
2703    return false;
2704
2705  // If -tailcallopt is specified, make fastcc functions tail-callable.
2706  const MachineFunction &MF = DAG.getMachineFunction();
2707  const Function *CallerF = DAG.getMachineFunction().getFunction();
2708  CallingConv::ID CallerCC = CallerF->getCallingConv();
2709  bool CCMatch = CallerCC == CalleeCC;
2710
2711  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2712    if (IsTailCallConvention(CalleeCC) && CCMatch)
2713      return true;
2714    return false;
2715  }
2716
2717  // Look for obvious safe cases to perform tail call optimization that do not
2718  // require ABI changes. This is what gcc calls sibcall.
2719
2720  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2721  // emit a special epilogue.
2722  if (RegInfo->needsStackRealignment(MF))
2723    return false;
2724
2725  // Also avoid sibcall optimization if either caller or callee uses struct
2726  // return semantics.
2727  if (isCalleeStructRet || isCallerStructRet)
2728    return false;
2729
2730  // An stdcall caller is expected to clean up its arguments; the callee
2731  // isn't going to do that.
2732  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2733    return false;
2734
2735  // Do not sibcall optimize vararg calls unless all arguments are passed via
2736  // registers.
2737  if (isVarArg && !Outs.empty()) {
2738
2739    // Optimizing for varargs on Win64 is unlikely to be safe without
2740    // additional testing.
2741    if (Subtarget->isTargetWin64())
2742      return false;
2743
2744    SmallVector<CCValAssign, 16> ArgLocs;
2745    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2746		   getTargetMachine(), ArgLocs, *DAG.getContext());
2747
2748    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2749    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2750      if (!ArgLocs[i].isRegLoc())
2751        return false;
2752  }
2753
2754  // If the call result is in ST0 / ST1, it needs to be popped off the x87
2755  // stack.  Therefore, if it's not used by the call it is not safe to optimize
2756  // this into a sibcall.
2757  bool Unused = false;
2758  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2759    if (!Ins[i].Used) {
2760      Unused = true;
2761      break;
2762    }
2763  }
2764  if (Unused) {
2765    SmallVector<CCValAssign, 16> RVLocs;
2766    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2767		   getTargetMachine(), RVLocs, *DAG.getContext());
2768    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2769    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2770      CCValAssign &VA = RVLocs[i];
2771      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2772        return false;
2773    }
2774  }
2775
2776  // If the calling conventions do not match, then we'd better make sure the
2777  // results are returned in the same way as what the caller expects.
2778  if (!CCMatch) {
2779    SmallVector<CCValAssign, 16> RVLocs1;
2780    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2781		    getTargetMachine(), RVLocs1, *DAG.getContext());
2782    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2783
2784    SmallVector<CCValAssign, 16> RVLocs2;
2785    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2786		    getTargetMachine(), RVLocs2, *DAG.getContext());
2787    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2788
2789    if (RVLocs1.size() != RVLocs2.size())
2790      return false;
2791    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2792      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2793        return false;
2794      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2795        return false;
2796      if (RVLocs1[i].isRegLoc()) {
2797        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2798          return false;
2799      } else {
2800        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2801          return false;
2802      }
2803    }
2804  }
2805
2806  // If the callee takes no arguments then go on to check the results of the
2807  // call.
2808  if (!Outs.empty()) {
2809    // Check if stack adjustment is needed. For now, do not do this if any
2810    // argument is passed on the stack.
2811    SmallVector<CCValAssign, 16> ArgLocs;
2812    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2813		   getTargetMachine(), ArgLocs, *DAG.getContext());
2814
2815    // Allocate shadow area for Win64
2816    if (Subtarget->isTargetWin64()) {
2817      CCInfo.AllocateStack(32, 8);
2818    }
2819
2820    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2821    if (CCInfo.getNextStackOffset()) {
2822      MachineFunction &MF = DAG.getMachineFunction();
2823      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2824        return false;
2825
2826      // Check if the arguments are already laid out in the right way as
2827      // the caller's fixed stack objects.
2828      MachineFrameInfo *MFI = MF.getFrameInfo();
2829      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2830      const X86InstrInfo *TII =
2831        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2832      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2833        CCValAssign &VA = ArgLocs[i];
2834        SDValue Arg = OutVals[i];
2835        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2836        if (VA.getLocInfo() == CCValAssign::Indirect)
2837          return false;
2838        if (!VA.isRegLoc()) {
2839          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2840                                   MFI, MRI, TII))
2841            return false;
2842        }
2843      }
2844    }
2845
2846    // If the tailcall address may be in a register, then make sure it's
2847    // possible to register allocate for it. In 32-bit, the call address can
2848    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2849    // callee-saved registers are restored. These happen to be the same
2850    // registers used to pass 'inreg' arguments so watch out for those.
2851    if (!Subtarget->is64Bit() &&
2852        !isa<GlobalAddressSDNode>(Callee) &&
2853        !isa<ExternalSymbolSDNode>(Callee)) {
2854      unsigned NumInRegs = 0;
2855      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2856        CCValAssign &VA = ArgLocs[i];
2857        if (!VA.isRegLoc())
2858          continue;
2859        unsigned Reg = VA.getLocReg();
2860        switch (Reg) {
2861        default: break;
2862        case X86::EAX: case X86::EDX: case X86::ECX:
2863          if (++NumInRegs == 3)
2864            return false;
2865          break;
2866        }
2867      }
2868    }
2869  }
2870
2871  return true;
2872}
2873
2874FastISel *
2875X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2876  return X86::createFastISel(funcInfo);
2877}
2878
2879
2880//===----------------------------------------------------------------------===//
2881//                           Other Lowering Hooks
2882//===----------------------------------------------------------------------===//
2883
2884static bool MayFoldLoad(SDValue Op) {
2885  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2886}
2887
2888static bool MayFoldIntoStore(SDValue Op) {
2889  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2890}
2891
2892static bool isTargetShuffle(unsigned Opcode) {
2893  switch(Opcode) {
2894  default: return false;
2895  case X86ISD::PSHUFD:
2896  case X86ISD::PSHUFHW:
2897  case X86ISD::PSHUFLW:
2898  case X86ISD::SHUFP:
2899  case X86ISD::PALIGN:
2900  case X86ISD::MOVLHPS:
2901  case X86ISD::MOVLHPD:
2902  case X86ISD::MOVHLPS:
2903  case X86ISD::MOVLPS:
2904  case X86ISD::MOVLPD:
2905  case X86ISD::MOVSHDUP:
2906  case X86ISD::MOVSLDUP:
2907  case X86ISD::MOVDDUP:
2908  case X86ISD::MOVSS:
2909  case X86ISD::MOVSD:
2910  case X86ISD::UNPCKL:
2911  case X86ISD::UNPCKH:
2912  case X86ISD::VPERMILP:
2913  case X86ISD::VPERM2X128:
2914    return true;
2915  }
2916}
2917
2918static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2919                                    SDValue V1, SelectionDAG &DAG) {
2920  switch(Opc) {
2921  default: llvm_unreachable("Unknown x86 shuffle node");
2922  case X86ISD::MOVSHDUP:
2923  case X86ISD::MOVSLDUP:
2924  case X86ISD::MOVDDUP:
2925    return DAG.getNode(Opc, dl, VT, V1);
2926  }
2927}
2928
2929static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2930                                    SDValue V1, unsigned TargetMask,
2931                                    SelectionDAG &DAG) {
2932  switch(Opc) {
2933  default: llvm_unreachable("Unknown x86 shuffle node");
2934  case X86ISD::PSHUFD:
2935  case X86ISD::PSHUFHW:
2936  case X86ISD::PSHUFLW:
2937  case X86ISD::VPERMILP:
2938  case X86ISD::VPERMI:
2939    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2940  }
2941}
2942
2943static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2944                                    SDValue V1, SDValue V2, unsigned TargetMask,
2945                                    SelectionDAG &DAG) {
2946  switch(Opc) {
2947  default: llvm_unreachable("Unknown x86 shuffle node");
2948  case X86ISD::PALIGN:
2949  case X86ISD::SHUFP:
2950  case X86ISD::VPERM2X128:
2951    return DAG.getNode(Opc, dl, VT, V1, V2,
2952                       DAG.getConstant(TargetMask, MVT::i8));
2953  }
2954}
2955
2956static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2957                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2958  switch(Opc) {
2959  default: llvm_unreachable("Unknown x86 shuffle node");
2960  case X86ISD::MOVLHPS:
2961  case X86ISD::MOVLHPD:
2962  case X86ISD::MOVHLPS:
2963  case X86ISD::MOVLPS:
2964  case X86ISD::MOVLPD:
2965  case X86ISD::MOVSS:
2966  case X86ISD::MOVSD:
2967  case X86ISD::UNPCKL:
2968  case X86ISD::UNPCKH:
2969    return DAG.getNode(Opc, dl, VT, V1, V2);
2970  }
2971}
2972
2973SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2974  MachineFunction &MF = DAG.getMachineFunction();
2975  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2976  int ReturnAddrIndex = FuncInfo->getRAIndex();
2977
2978  if (ReturnAddrIndex == 0) {
2979    // Set up a frame object for the return address.
2980    uint64_t SlotSize = TD->getPointerSize();
2981    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2982                                                           false);
2983    FuncInfo->setRAIndex(ReturnAddrIndex);
2984  }
2985
2986  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2987}
2988
2989
2990bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2991                                       bool hasSymbolicDisplacement) {
2992  // Offset should fit into 32 bit immediate field.
2993  if (!isInt<32>(Offset))
2994    return false;
2995
2996  // If we don't have a symbolic displacement - we don't have any extra
2997  // restrictions.
2998  if (!hasSymbolicDisplacement)
2999    return true;
3000
3001  // FIXME: Some tweaks might be needed for medium code model.
3002  if (M != CodeModel::Small && M != CodeModel::Kernel)
3003    return false;
3004
3005  // For small code model we assume that latest object is 16MB before end of 31
3006  // bits boundary. We may also accept pretty large negative constants knowing
3007  // that all objects are in the positive half of address space.
3008  if (M == CodeModel::Small && Offset < 16*1024*1024)
3009    return true;
3010
3011  // For kernel code model we know that all object resist in the negative half
3012  // of 32bits address space. We may not accept negative offsets, since they may
3013  // be just off and we may accept pretty large positive ones.
3014  if (M == CodeModel::Kernel && Offset > 0)
3015    return true;
3016
3017  return false;
3018}
3019
3020/// isCalleePop - Determines whether the callee is required to pop its
3021/// own arguments. Callee pop is necessary to support tail calls.
3022bool X86::isCalleePop(CallingConv::ID CallingConv,
3023                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3024  if (IsVarArg)
3025    return false;
3026
3027  switch (CallingConv) {
3028  default:
3029    return false;
3030  case CallingConv::X86_StdCall:
3031    return !is64Bit;
3032  case CallingConv::X86_FastCall:
3033    return !is64Bit;
3034  case CallingConv::X86_ThisCall:
3035    return !is64Bit;
3036  case CallingConv::Fast:
3037    return TailCallOpt;
3038  case CallingConv::GHC:
3039    return TailCallOpt;
3040  }
3041}
3042
3043/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3044/// specific condition code, returning the condition code and the LHS/RHS of the
3045/// comparison to make.
3046static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3047                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3048  if (!isFP) {
3049    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3050      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3051        // X > -1   -> X == 0, jump !sign.
3052        RHS = DAG.getConstant(0, RHS.getValueType());
3053        return X86::COND_NS;
3054      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3055        // X < 0   -> X == 0, jump on sign.
3056        return X86::COND_S;
3057      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3058        // X < 1   -> X <= 0
3059        RHS = DAG.getConstant(0, RHS.getValueType());
3060        return X86::COND_LE;
3061      }
3062    }
3063
3064    switch (SetCCOpcode) {
3065    default: llvm_unreachable("Invalid integer condition!");
3066    case ISD::SETEQ:  return X86::COND_E;
3067    case ISD::SETGT:  return X86::COND_G;
3068    case ISD::SETGE:  return X86::COND_GE;
3069    case ISD::SETLT:  return X86::COND_L;
3070    case ISD::SETLE:  return X86::COND_LE;
3071    case ISD::SETNE:  return X86::COND_NE;
3072    case ISD::SETULT: return X86::COND_B;
3073    case ISD::SETUGT: return X86::COND_A;
3074    case ISD::SETULE: return X86::COND_BE;
3075    case ISD::SETUGE: return X86::COND_AE;
3076    }
3077  }
3078
3079  // First determine if it is required or is profitable to flip the operands.
3080
3081  // If LHS is a foldable load, but RHS is not, flip the condition.
3082  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3083      !ISD::isNON_EXTLoad(RHS.getNode())) {
3084    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3085    std::swap(LHS, RHS);
3086  }
3087
3088  switch (SetCCOpcode) {
3089  default: break;
3090  case ISD::SETOLT:
3091  case ISD::SETOLE:
3092  case ISD::SETUGT:
3093  case ISD::SETUGE:
3094    std::swap(LHS, RHS);
3095    break;
3096  }
3097
3098  // On a floating point condition, the flags are set as follows:
3099  // ZF  PF  CF   op
3100  //  0 | 0 | 0 | X > Y
3101  //  0 | 0 | 1 | X < Y
3102  //  1 | 0 | 0 | X == Y
3103  //  1 | 1 | 1 | unordered
3104  switch (SetCCOpcode) {
3105  default: llvm_unreachable("Condcode should be pre-legalized away");
3106  case ISD::SETUEQ:
3107  case ISD::SETEQ:   return X86::COND_E;
3108  case ISD::SETOLT:              // flipped
3109  case ISD::SETOGT:
3110  case ISD::SETGT:   return X86::COND_A;
3111  case ISD::SETOLE:              // flipped
3112  case ISD::SETOGE:
3113  case ISD::SETGE:   return X86::COND_AE;
3114  case ISD::SETUGT:              // flipped
3115  case ISD::SETULT:
3116  case ISD::SETLT:   return X86::COND_B;
3117  case ISD::SETUGE:              // flipped
3118  case ISD::SETULE:
3119  case ISD::SETLE:   return X86::COND_BE;
3120  case ISD::SETONE:
3121  case ISD::SETNE:   return X86::COND_NE;
3122  case ISD::SETUO:   return X86::COND_P;
3123  case ISD::SETO:    return X86::COND_NP;
3124  case ISD::SETOEQ:
3125  case ISD::SETUNE:  return X86::COND_INVALID;
3126  }
3127}
3128
3129/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3130/// code. Current x86 isa includes the following FP cmov instructions:
3131/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3132static bool hasFPCMov(unsigned X86CC) {
3133  switch (X86CC) {
3134  default:
3135    return false;
3136  case X86::COND_B:
3137  case X86::COND_BE:
3138  case X86::COND_E:
3139  case X86::COND_P:
3140  case X86::COND_A:
3141  case X86::COND_AE:
3142  case X86::COND_NE:
3143  case X86::COND_NP:
3144    return true;
3145  }
3146}
3147
3148/// isFPImmLegal - Returns true if the target can instruction select the
3149/// specified FP immediate natively. If false, the legalizer will
3150/// materialize the FP immediate as a load from a constant pool.
3151bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3152  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3153    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3154      return true;
3155  }
3156  return false;
3157}
3158
3159/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3160/// the specified range (L, H].
3161static bool isUndefOrInRange(int Val, int Low, int Hi) {
3162  return (Val < 0) || (Val >= Low && Val < Hi);
3163}
3164
3165/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3166/// specified value.
3167static bool isUndefOrEqual(int Val, int CmpVal) {
3168  if (Val < 0 || Val == CmpVal)
3169    return true;
3170  return false;
3171}
3172
3173/// isSequentialOrUndefInRange - Return true if every element in Mask, begining
3174/// from position Pos and ending in Pos+Size, falls within the specified
3175/// sequential range (L, L+Pos]. or is undef.
3176static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
3177                                       int Pos, int Size, int Low) {
3178  for (int i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3179    if (!isUndefOrEqual(Mask[i], Low))
3180      return false;
3181  return true;
3182}
3183
3184/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3185/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3186/// the second operand.
3187static bool isPSHUFDMask(ArrayRef<int> Mask, EVT VT) {
3188  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3189    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3190  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3191    return (Mask[0] < 2 && Mask[1] < 2);
3192  return false;
3193}
3194
3195/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3196/// is suitable for input to PSHUFHW.
3197static bool isPSHUFHWMask(ArrayRef<int> Mask, EVT VT) {
3198  if (VT != MVT::v8i16)
3199    return false;
3200
3201  // Lower quadword copied in order or undef.
3202  if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
3203    return false;
3204
3205  // Upper quadword shuffled.
3206  for (unsigned i = 4; i != 8; ++i)
3207    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
3208      return false;
3209
3210  return true;
3211}
3212
3213/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3214/// is suitable for input to PSHUFLW.
3215static bool isPSHUFLWMask(ArrayRef<int> Mask, EVT VT) {
3216  if (VT != MVT::v8i16)
3217    return false;
3218
3219  // Upper quadword copied in order.
3220  if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
3221    return false;
3222
3223  // Lower quadword shuffled.
3224  for (unsigned i = 0; i != 4; ++i)
3225    if (Mask[i] >= 4)
3226      return false;
3227
3228  return true;
3229}
3230
3231/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3232/// is suitable for input to PALIGNR.
3233static bool isPALIGNRMask(ArrayRef<int> Mask, EVT VT,
3234                          const X86Subtarget *Subtarget) {
3235  if ((VT.getSizeInBits() == 128 && !Subtarget->hasSSSE3()) ||
3236      (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2()))
3237    return false;
3238
3239  unsigned NumElts = VT.getVectorNumElements();
3240  unsigned NumLanes = VT.getSizeInBits()/128;
3241  unsigned NumLaneElts = NumElts/NumLanes;
3242
3243  // Do not handle 64-bit element shuffles with palignr.
3244  if (NumLaneElts == 2)
3245    return false;
3246
3247  for (unsigned l = 0; l != NumElts; l+=NumLaneElts) {
3248    unsigned i;
3249    for (i = 0; i != NumLaneElts; ++i) {
3250      if (Mask[i+l] >= 0)
3251        break;
3252    }
3253
3254    // Lane is all undef, go to next lane
3255    if (i == NumLaneElts)
3256      continue;
3257
3258    int Start = Mask[i+l];
3259
3260    // Make sure its in this lane in one of the sources
3261    if (!isUndefOrInRange(Start, l, l+NumLaneElts) &&
3262        !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts))
3263      return false;
3264
3265    // If not lane 0, then we must match lane 0
3266    if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l))
3267      return false;
3268
3269    // Correct second source to be contiguous with first source
3270    if (Start >= (int)NumElts)
3271      Start -= NumElts - NumLaneElts;
3272
3273    // Make sure we're shifting in the right direction.
3274    if (Start <= (int)(i+l))
3275      return false;
3276
3277    Start -= i;
3278
3279    // Check the rest of the elements to see if they are consecutive.
3280    for (++i; i != NumLaneElts; ++i) {
3281      int Idx = Mask[i+l];
3282
3283      // Make sure its in this lane
3284      if (!isUndefOrInRange(Idx, l, l+NumLaneElts) &&
3285          !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts))
3286        return false;
3287
3288      // If not lane 0, then we must match lane 0
3289      if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l))
3290        return false;
3291
3292      if (Idx >= (int)NumElts)
3293        Idx -= NumElts - NumLaneElts;
3294
3295      if (!isUndefOrEqual(Idx, Start+i))
3296        return false;
3297
3298    }
3299  }
3300
3301  return true;
3302}
3303
3304/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3305/// the two vector operands have swapped position.
3306static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
3307                                     unsigned NumElems) {
3308  for (unsigned i = 0; i != NumElems; ++i) {
3309    int idx = Mask[i];
3310    if (idx < 0)
3311      continue;
3312    else if (idx < (int)NumElems)
3313      Mask[i] = idx + NumElems;
3314    else
3315      Mask[i] = idx - NumElems;
3316  }
3317}
3318
3319/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3320/// specifies a shuffle of elements that is suitable for input to 128/256-bit
3321/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
3322/// reverse of what x86 shuffles want.
3323static bool isSHUFPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX,
3324                        bool Commuted = false) {
3325  if (!HasAVX && VT.getSizeInBits() == 256)
3326    return false;
3327
3328  unsigned NumElems = VT.getVectorNumElements();
3329  unsigned NumLanes = VT.getSizeInBits()/128;
3330  unsigned NumLaneElems = NumElems/NumLanes;
3331
3332  if (NumLaneElems != 2 && NumLaneElems != 4)
3333    return false;
3334
3335  // VSHUFPSY divides the resulting vector into 4 chunks.
3336  // The sources are also splitted into 4 chunks, and each destination
3337  // chunk must come from a different source chunk.
3338  //
3339  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3340  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3341  //
3342  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3343  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3344  //
3345  // VSHUFPDY divides the resulting vector into 4 chunks.
3346  // The sources are also splitted into 4 chunks, and each destination
3347  // chunk must come from a different source chunk.
3348  //
3349  //  SRC1 =>      X3       X2       X1       X0
3350  //  SRC2 =>      Y3       Y2       Y1       Y0
3351  //
3352  //  DST  =>  Y3..Y2,  X3..X2,  Y1..Y0,  X1..X0
3353  //
3354  unsigned HalfLaneElems = NumLaneElems/2;
3355  for (unsigned l = 0; l != NumElems; l += NumLaneElems) {
3356    for (unsigned i = 0; i != NumLaneElems; ++i) {
3357      int Idx = Mask[i+l];
3358      unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0);
3359      if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems))
3360        return false;
3361      // For VSHUFPSY, the mask of the second half must be the same as the
3362      // first but with the appropriate offsets. This works in the same way as
3363      // VPERMILPS works with masks.
3364      if (NumElems != 8 || l == 0 || Mask[i] < 0)
3365        continue;
3366      if (!isUndefOrEqual(Idx, Mask[i]+l))
3367        return false;
3368    }
3369  }
3370
3371  return true;
3372}
3373
3374/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3375/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3376static bool isMOVHLPSMask(ArrayRef<int> Mask, EVT VT) {
3377  unsigned NumElems = VT.getVectorNumElements();
3378
3379  if (VT.getSizeInBits() != 128)
3380    return false;
3381
3382  if (NumElems != 4)
3383    return false;
3384
3385  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3386  return isUndefOrEqual(Mask[0], 6) &&
3387         isUndefOrEqual(Mask[1], 7) &&
3388         isUndefOrEqual(Mask[2], 2) &&
3389         isUndefOrEqual(Mask[3], 3);
3390}
3391
3392/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3393/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3394/// <2, 3, 2, 3>
3395static bool isMOVHLPS_v_undef_Mask(ArrayRef<int> Mask, EVT VT) {
3396  unsigned NumElems = VT.getVectorNumElements();
3397
3398  if (VT.getSizeInBits() != 128)
3399    return false;
3400
3401  if (NumElems != 4)
3402    return false;
3403
3404  return isUndefOrEqual(Mask[0], 2) &&
3405         isUndefOrEqual(Mask[1], 3) &&
3406         isUndefOrEqual(Mask[2], 2) &&
3407         isUndefOrEqual(Mask[3], 3);
3408}
3409
3410/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3411/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3412static bool isMOVLPMask(ArrayRef<int> Mask, EVT VT) {
3413  if (VT.getSizeInBits() != 128)
3414    return false;
3415
3416  unsigned NumElems = VT.getVectorNumElements();
3417
3418  if (NumElems != 2 && NumElems != 4)
3419    return false;
3420
3421  for (unsigned i = 0; i != NumElems/2; ++i)
3422    if (!isUndefOrEqual(Mask[i], i + NumElems))
3423      return false;
3424
3425  for (unsigned i = NumElems/2; i != NumElems; ++i)
3426    if (!isUndefOrEqual(Mask[i], i))
3427      return false;
3428
3429  return true;
3430}
3431
3432/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3433/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3434static bool isMOVLHPSMask(ArrayRef<int> Mask, EVT VT) {
3435  unsigned NumElems = VT.getVectorNumElements();
3436
3437  if ((NumElems != 2 && NumElems != 4)
3438      || VT.getSizeInBits() > 128)
3439    return false;
3440
3441  for (unsigned i = 0; i != NumElems/2; ++i)
3442    if (!isUndefOrEqual(Mask[i], i))
3443      return false;
3444
3445  for (unsigned i = 0; i != NumElems/2; ++i)
3446    if (!isUndefOrEqual(Mask[i + NumElems/2], i + NumElems))
3447      return false;
3448
3449  return true;
3450}
3451
3452/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3453/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3454static bool isUNPCKLMask(ArrayRef<int> Mask, EVT VT,
3455                         bool HasAVX2, bool V2IsSplat = false) {
3456  unsigned NumElts = VT.getVectorNumElements();
3457
3458  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3459         "Unsupported vector type for unpckh");
3460
3461  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3462      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3463    return false;
3464
3465  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3466  // independently on 128-bit lanes.
3467  unsigned NumLanes = VT.getSizeInBits()/128;
3468  unsigned NumLaneElts = NumElts/NumLanes;
3469
3470  for (unsigned l = 0; l != NumLanes; ++l) {
3471    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3472         i != (l+1)*NumLaneElts;
3473         i += 2, ++j) {
3474      int BitI  = Mask[i];
3475      int BitI1 = Mask[i+1];
3476      if (!isUndefOrEqual(BitI, j))
3477        return false;
3478      if (V2IsSplat) {
3479        if (!isUndefOrEqual(BitI1, NumElts))
3480          return false;
3481      } else {
3482        if (!isUndefOrEqual(BitI1, j + NumElts))
3483          return false;
3484      }
3485    }
3486  }
3487
3488  return true;
3489}
3490
3491/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3492/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3493static bool isUNPCKHMask(ArrayRef<int> Mask, EVT VT,
3494                         bool HasAVX2, bool V2IsSplat = false) {
3495  unsigned NumElts = VT.getVectorNumElements();
3496
3497  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3498         "Unsupported vector type for unpckh");
3499
3500  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3501      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3502    return false;
3503
3504  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3505  // independently on 128-bit lanes.
3506  unsigned NumLanes = VT.getSizeInBits()/128;
3507  unsigned NumLaneElts = NumElts/NumLanes;
3508
3509  for (unsigned l = 0; l != NumLanes; ++l) {
3510    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3511         i != (l+1)*NumLaneElts; i += 2, ++j) {
3512      int BitI  = Mask[i];
3513      int BitI1 = Mask[i+1];
3514      if (!isUndefOrEqual(BitI, j))
3515        return false;
3516      if (V2IsSplat) {
3517        if (isUndefOrEqual(BitI1, NumElts))
3518          return false;
3519      } else {
3520        if (!isUndefOrEqual(BitI1, j+NumElts))
3521          return false;
3522      }
3523    }
3524  }
3525  return true;
3526}
3527
3528/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3529/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3530/// <0, 0, 1, 1>
3531static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, EVT VT,
3532                                  bool HasAVX2) {
3533  unsigned NumElts = VT.getVectorNumElements();
3534
3535  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3536         "Unsupported vector type for unpckh");
3537
3538  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3539      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3540    return false;
3541
3542  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3543  // FIXME: Need a better way to get rid of this, there's no latency difference
3544  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3545  // the former later. We should also remove the "_undef" special mask.
3546  if (NumElts == 4 && VT.getSizeInBits() == 256)
3547    return false;
3548
3549  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3550  // independently on 128-bit lanes.
3551  unsigned NumLanes = VT.getSizeInBits()/128;
3552  unsigned NumLaneElts = NumElts/NumLanes;
3553
3554  for (unsigned l = 0; l != NumLanes; ++l) {
3555    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3556         i != (l+1)*NumLaneElts;
3557         i += 2, ++j) {
3558      int BitI  = Mask[i];
3559      int BitI1 = Mask[i+1];
3560
3561      if (!isUndefOrEqual(BitI, j))
3562        return false;
3563      if (!isUndefOrEqual(BitI1, j))
3564        return false;
3565    }
3566  }
3567
3568  return true;
3569}
3570
3571/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3572/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3573/// <2, 2, 3, 3>
3574static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3575  unsigned NumElts = VT.getVectorNumElements();
3576
3577  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3578         "Unsupported vector type for unpckh");
3579
3580  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3581      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3582    return false;
3583
3584  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3585  // independently on 128-bit lanes.
3586  unsigned NumLanes = VT.getSizeInBits()/128;
3587  unsigned NumLaneElts = NumElts/NumLanes;
3588
3589  for (unsigned l = 0; l != NumLanes; ++l) {
3590    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3591         i != (l+1)*NumLaneElts; i += 2, ++j) {
3592      int BitI  = Mask[i];
3593      int BitI1 = Mask[i+1];
3594      if (!isUndefOrEqual(BitI, j))
3595        return false;
3596      if (!isUndefOrEqual(BitI1, j))
3597        return false;
3598    }
3599  }
3600  return true;
3601}
3602
3603/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3604/// specifies a shuffle of elements that is suitable for input to MOVSS,
3605/// MOVSD, and MOVD, i.e. setting the lowest element.
3606static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) {
3607  if (VT.getVectorElementType().getSizeInBits() < 32)
3608    return false;
3609  if (VT.getSizeInBits() == 256)
3610    return false;
3611
3612  unsigned NumElts = VT.getVectorNumElements();
3613
3614  if (!isUndefOrEqual(Mask[0], NumElts))
3615    return false;
3616
3617  for (unsigned i = 1; i != NumElts; ++i)
3618    if (!isUndefOrEqual(Mask[i], i))
3619      return false;
3620
3621  return true;
3622}
3623
3624/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
3625/// as permutations between 128-bit chunks or halves. As an example: this
3626/// shuffle bellow:
3627///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3628/// The first half comes from the second half of V1 and the second half from the
3629/// the second half of V2.
3630static bool isVPERM2X128Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3631  if (!HasAVX || VT.getSizeInBits() != 256)
3632    return false;
3633
3634  // The shuffle result is divided into half A and half B. In total the two
3635  // sources have 4 halves, namely: C, D, E, F. The final values of A and
3636  // B must come from C, D, E or F.
3637  unsigned HalfSize = VT.getVectorNumElements()/2;
3638  bool MatchA = false, MatchB = false;
3639
3640  // Check if A comes from one of C, D, E, F.
3641  for (unsigned Half = 0; Half != 4; ++Half) {
3642    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3643      MatchA = true;
3644      break;
3645    }
3646  }
3647
3648  // Check if B comes from one of C, D, E, F.
3649  for (unsigned Half = 0; Half != 4; ++Half) {
3650    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3651      MatchB = true;
3652      break;
3653    }
3654  }
3655
3656  return MatchA && MatchB;
3657}
3658
3659/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
3660/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
3661static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
3662  EVT VT = SVOp->getValueType(0);
3663
3664  unsigned HalfSize = VT.getVectorNumElements()/2;
3665
3666  unsigned FstHalf = 0, SndHalf = 0;
3667  for (unsigned i = 0; i < HalfSize; ++i) {
3668    if (SVOp->getMaskElt(i) > 0) {
3669      FstHalf = SVOp->getMaskElt(i)/HalfSize;
3670      break;
3671    }
3672  }
3673  for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
3674    if (SVOp->getMaskElt(i) > 0) {
3675      SndHalf = SVOp->getMaskElt(i)/HalfSize;
3676      break;
3677    }
3678  }
3679
3680  return (FstHalf | (SndHalf << 4));
3681}
3682
3683/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
3684/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3685/// Note that VPERMIL mask matching is different depending whether theunderlying
3686/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3687/// to the same elements of the low, but to the higher half of the source.
3688/// In VPERMILPD the two lanes could be shuffled independently of each other
3689/// with the same restriction that lanes can't be crossed. Also handles PSHUFDY.
3690static bool isVPERMILPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3691  if (!HasAVX)
3692    return false;
3693
3694  unsigned NumElts = VT.getVectorNumElements();
3695  // Only match 256-bit with 32/64-bit types
3696  if (VT.getSizeInBits() != 256 || (NumElts != 4 && NumElts != 8))
3697    return false;
3698
3699  unsigned NumLanes = VT.getSizeInBits()/128;
3700  unsigned LaneSize = NumElts/NumLanes;
3701  for (unsigned l = 0; l != NumElts; l += LaneSize) {
3702    for (unsigned i = 0; i != LaneSize; ++i) {
3703      if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
3704        return false;
3705      if (NumElts != 8 || l == 0)
3706        continue;
3707      // VPERMILPS handling
3708      if (Mask[i] < 0)
3709        continue;
3710      if (!isUndefOrEqual(Mask[i+l], Mask[i]+l))
3711        return false;
3712    }
3713  }
3714
3715  return true;
3716}
3717
3718/// isCommutedMOVLMask - Returns true if the shuffle mask is except the reverse
3719/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3720/// element of vector 2 and the other elements to come from vector 1 in order.
3721static bool isCommutedMOVLMask(ArrayRef<int> Mask, EVT VT,
3722                               bool V2IsSplat = false, bool V2IsUndef = false) {
3723  unsigned NumOps = VT.getVectorNumElements();
3724  if (VT.getSizeInBits() == 256)
3725    return false;
3726  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3727    return false;
3728
3729  if (!isUndefOrEqual(Mask[0], 0))
3730    return false;
3731
3732  for (unsigned i = 1; i != NumOps; ++i)
3733    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3734          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3735          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3736      return false;
3737
3738  return true;
3739}
3740
3741/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3742/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3743/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3744static bool isMOVSHDUPMask(ArrayRef<int> Mask, EVT VT,
3745                           const X86Subtarget *Subtarget) {
3746  if (!Subtarget->hasSSE3())
3747    return false;
3748
3749  unsigned NumElems = VT.getVectorNumElements();
3750
3751  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3752      (VT.getSizeInBits() == 256 && NumElems != 8))
3753    return false;
3754
3755  // "i+1" is the value the indexed mask element must have
3756  for (unsigned i = 0; i != NumElems; i += 2)
3757    if (!isUndefOrEqual(Mask[i], i+1) ||
3758        !isUndefOrEqual(Mask[i+1], i+1))
3759      return false;
3760
3761  return true;
3762}
3763
3764/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3765/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3766/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3767static bool isMOVSLDUPMask(ArrayRef<int> Mask, EVT VT,
3768                           const X86Subtarget *Subtarget) {
3769  if (!Subtarget->hasSSE3())
3770    return false;
3771
3772  unsigned NumElems = VT.getVectorNumElements();
3773
3774  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3775      (VT.getSizeInBits() == 256 && NumElems != 8))
3776    return false;
3777
3778  // "i" is the value the indexed mask element must have
3779  for (unsigned i = 0; i != NumElems; i += 2)
3780    if (!isUndefOrEqual(Mask[i], i) ||
3781        !isUndefOrEqual(Mask[i+1], i))
3782      return false;
3783
3784  return true;
3785}
3786
3787/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
3788/// specifies a shuffle of elements that is suitable for input to 256-bit
3789/// version of MOVDDUP.
3790static bool isMOVDDUPYMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3791  unsigned NumElts = VT.getVectorNumElements();
3792
3793  if (!HasAVX || VT.getSizeInBits() != 256 || NumElts != 4)
3794    return false;
3795
3796  for (unsigned i = 0; i != NumElts/2; ++i)
3797    if (!isUndefOrEqual(Mask[i], 0))
3798      return false;
3799  for (unsigned i = NumElts/2; i != NumElts; ++i)
3800    if (!isUndefOrEqual(Mask[i], NumElts/2))
3801      return false;
3802  return true;
3803}
3804
3805/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3806/// specifies a shuffle of elements that is suitable for input to 128-bit
3807/// version of MOVDDUP.
3808static bool isMOVDDUPMask(ArrayRef<int> Mask, EVT VT) {
3809  if (VT.getSizeInBits() != 128)
3810    return false;
3811
3812  unsigned e = VT.getVectorNumElements() / 2;
3813  for (unsigned i = 0; i != e; ++i)
3814    if (!isUndefOrEqual(Mask[i], i))
3815      return false;
3816  for (unsigned i = 0; i != e; ++i)
3817    if (!isUndefOrEqual(Mask[e+i], i))
3818      return false;
3819  return true;
3820}
3821
3822/// isVEXTRACTF128Index - Return true if the specified
3823/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3824/// suitable for input to VEXTRACTF128.
3825bool X86::isVEXTRACTF128Index(SDNode *N) {
3826  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3827    return false;
3828
3829  // The index should be aligned on a 128-bit boundary.
3830  uint64_t Index =
3831    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3832
3833  unsigned VL = N->getValueType(0).getVectorNumElements();
3834  unsigned VBits = N->getValueType(0).getSizeInBits();
3835  unsigned ElSize = VBits / VL;
3836  bool Result = (Index * ElSize) % 128 == 0;
3837
3838  return Result;
3839}
3840
3841/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
3842/// operand specifies a subvector insert that is suitable for input to
3843/// VINSERTF128.
3844bool X86::isVINSERTF128Index(SDNode *N) {
3845  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3846    return false;
3847
3848  // The index should be aligned on a 128-bit boundary.
3849  uint64_t Index =
3850    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3851
3852  unsigned VL = N->getValueType(0).getVectorNumElements();
3853  unsigned VBits = N->getValueType(0).getSizeInBits();
3854  unsigned ElSize = VBits / VL;
3855  bool Result = (Index * ElSize) % 128 == 0;
3856
3857  return Result;
3858}
3859
3860/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3861/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3862/// Handles 128-bit and 256-bit.
3863static unsigned getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
3864  EVT VT = N->getValueType(0);
3865
3866  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3867         "Unsupported vector type for PSHUF/SHUFP");
3868
3869  // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate
3870  // independently on 128-bit lanes.
3871  unsigned NumElts = VT.getVectorNumElements();
3872  unsigned NumLanes = VT.getSizeInBits()/128;
3873  unsigned NumLaneElts = NumElts/NumLanes;
3874
3875  assert((NumLaneElts == 2 || NumLaneElts == 4) &&
3876         "Only supports 2 or 4 elements per lane");
3877
3878  unsigned Shift = (NumLaneElts == 4) ? 1 : 0;
3879  unsigned Mask = 0;
3880  for (unsigned i = 0; i != NumElts; ++i) {
3881    int Elt = N->getMaskElt(i);
3882    if (Elt < 0) continue;
3883    Elt %= NumLaneElts;
3884    unsigned ShAmt = i << Shift;
3885    if (ShAmt >= 8) ShAmt -= 8;
3886    Mask |= Elt << ShAmt;
3887  }
3888
3889  return Mask;
3890}
3891
3892/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3893/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3894static unsigned getShufflePSHUFHWImmediate(ShuffleVectorSDNode *N) {
3895  unsigned Mask = 0;
3896  // 8 nodes, but we only care about the last 4.
3897  for (unsigned i = 7; i >= 4; --i) {
3898    int Val = N->getMaskElt(i);
3899    if (Val >= 0)
3900      Mask |= (Val - 4);
3901    if (i != 4)
3902      Mask <<= 2;
3903  }
3904  return Mask;
3905}
3906
3907/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3908/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3909static unsigned getShufflePSHUFLWImmediate(ShuffleVectorSDNode *N) {
3910  unsigned Mask = 0;
3911  // 8 nodes, but we only care about the first 4.
3912  for (int i = 3; i >= 0; --i) {
3913    int Val = N->getMaskElt(i);
3914    if (Val >= 0)
3915      Mask |= Val;
3916    if (i != 0)
3917      Mask <<= 2;
3918  }
3919  return Mask;
3920}
3921
3922/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3923/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3924static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
3925  EVT VT = SVOp->getValueType(0);
3926  unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3;
3927
3928  unsigned NumElts = VT.getVectorNumElements();
3929  unsigned NumLanes = VT.getSizeInBits()/128;
3930  unsigned NumLaneElts = NumElts/NumLanes;
3931
3932  int Val = 0;
3933  unsigned i;
3934  for (i = 0; i != NumElts; ++i) {
3935    Val = SVOp->getMaskElt(i);
3936    if (Val >= 0)
3937      break;
3938  }
3939  if (Val >= (int)NumElts)
3940    Val -= NumElts - NumLaneElts;
3941
3942  assert(Val - i > 0 && "PALIGNR imm should be positive");
3943  return (Val - i) * EltSize;
3944}
3945
3946/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
3947/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
3948/// instructions.
3949unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
3950  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3951    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
3952
3953  uint64_t Index =
3954    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3955
3956  EVT VecVT = N->getOperand(0).getValueType();
3957  EVT ElVT = VecVT.getVectorElementType();
3958
3959  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
3960  return Index / NumElemsPerChunk;
3961}
3962
3963/// getInsertVINSERTF128Immediate - Return the appropriate immediate
3964/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
3965/// instructions.
3966unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
3967  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3968    llvm_unreachable("Illegal insert subvector for VINSERTF128");
3969
3970  uint64_t Index =
3971    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3972
3973  EVT VecVT = N->getValueType(0);
3974  EVT ElVT = VecVT.getVectorElementType();
3975
3976  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
3977  return Index / NumElemsPerChunk;
3978}
3979
3980/// getShuffleCLImmediate - Return the appropriate immediate to shuffle
3981/// the specified VECTOR_SHUFFLE mask with VPERMQ and VPERMPD instructions.
3982/// Handles 256-bit.
3983static unsigned getShuffleCLImmediate(ShuffleVectorSDNode *N) {
3984  EVT VT = N->getValueType(0);
3985
3986  unsigned NumElts = VT.getVectorNumElements();
3987
3988  assert((VT.is256BitVector() && NumElts == 4) &&
3989         "Unsupported vector type for VPERMQ/VPERMPD");
3990
3991  unsigned Mask = 0;
3992  for (unsigned i = 0; i != NumElts; ++i) {
3993    int Elt = N->getMaskElt(i);
3994    if (Elt < 0)
3995      continue;
3996    Mask |= Elt << (i*2);
3997  }
3998
3999  return Mask;
4000}
4001/// isZeroNode - Returns true if Elt is a constant zero or a floating point
4002/// constant +0.0.
4003bool X86::isZeroNode(SDValue Elt) {
4004  return ((isa<ConstantSDNode>(Elt) &&
4005           cast<ConstantSDNode>(Elt)->isNullValue()) ||
4006          (isa<ConstantFPSDNode>(Elt) &&
4007           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
4008}
4009
4010/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4011/// their permute mask.
4012static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4013                                    SelectionDAG &DAG) {
4014  EVT VT = SVOp->getValueType(0);
4015  unsigned NumElems = VT.getVectorNumElements();
4016  SmallVector<int, 8> MaskVec;
4017
4018  for (unsigned i = 0; i != NumElems; ++i) {
4019    int idx = SVOp->getMaskElt(i);
4020    if (idx < 0)
4021      MaskVec.push_back(idx);
4022    else if (idx < (int)NumElems)
4023      MaskVec.push_back(idx + NumElems);
4024    else
4025      MaskVec.push_back(idx - NumElems);
4026  }
4027  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4028                              SVOp->getOperand(0), &MaskVec[0]);
4029}
4030
4031/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4032/// match movhlps. The lower half elements should come from upper half of
4033/// V1 (and in order), and the upper half elements should come from the upper
4034/// half of V2 (and in order).
4035static bool ShouldXformToMOVHLPS(ArrayRef<int> Mask, EVT VT) {
4036  if (VT.getSizeInBits() != 128)
4037    return false;
4038  if (VT.getVectorNumElements() != 4)
4039    return false;
4040  for (unsigned i = 0, e = 2; i != e; ++i)
4041    if (!isUndefOrEqual(Mask[i], i+2))
4042      return false;
4043  for (unsigned i = 2; i != 4; ++i)
4044    if (!isUndefOrEqual(Mask[i], i+4))
4045      return false;
4046  return true;
4047}
4048
4049/// isScalarLoadToVector - Returns true if the node is a scalar load that
4050/// is promoted to a vector. It also returns the LoadSDNode by reference if
4051/// required.
4052static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4053  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4054    return false;
4055  N = N->getOperand(0).getNode();
4056  if (!ISD::isNON_EXTLoad(N))
4057    return false;
4058  if (LD)
4059    *LD = cast<LoadSDNode>(N);
4060  return true;
4061}
4062
4063// Test whether the given value is a vector value which will be legalized
4064// into a load.
4065static bool WillBeConstantPoolLoad(SDNode *N) {
4066  if (N->getOpcode() != ISD::BUILD_VECTOR)
4067    return false;
4068
4069  // Check for any non-constant elements.
4070  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4071    switch (N->getOperand(i).getNode()->getOpcode()) {
4072    case ISD::UNDEF:
4073    case ISD::ConstantFP:
4074    case ISD::Constant:
4075      break;
4076    default:
4077      return false;
4078    }
4079
4080  // Vectors of all-zeros and all-ones are materialized with special
4081  // instructions rather than being loaded.
4082  return !ISD::isBuildVectorAllZeros(N) &&
4083         !ISD::isBuildVectorAllOnes(N);
4084}
4085
4086/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4087/// match movlp{s|d}. The lower half elements should come from lower half of
4088/// V1 (and in order), and the upper half elements should come from the upper
4089/// half of V2 (and in order). And since V1 will become the source of the
4090/// MOVLP, it must be either a vector load or a scalar load to vector.
4091static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4092                               ArrayRef<int> Mask, EVT VT) {
4093  if (VT.getSizeInBits() != 128)
4094    return false;
4095
4096  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4097    return false;
4098  // Is V2 is a vector load, don't do this transformation. We will try to use
4099  // load folding shufps op.
4100  if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4101    return false;
4102
4103  unsigned NumElems = VT.getVectorNumElements();
4104
4105  if (NumElems != 2 && NumElems != 4)
4106    return false;
4107  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4108    if (!isUndefOrEqual(Mask[i], i))
4109      return false;
4110  for (unsigned i = NumElems/2; i != NumElems; ++i)
4111    if (!isUndefOrEqual(Mask[i], i+NumElems))
4112      return false;
4113  return true;
4114}
4115
4116/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4117/// all the same.
4118static bool isSplatVector(SDNode *N) {
4119  if (N->getOpcode() != ISD::BUILD_VECTOR)
4120    return false;
4121
4122  SDValue SplatValue = N->getOperand(0);
4123  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4124    if (N->getOperand(i) != SplatValue)
4125      return false;
4126  return true;
4127}
4128
4129/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4130/// to an zero vector.
4131/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4132static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4133  SDValue V1 = N->getOperand(0);
4134  SDValue V2 = N->getOperand(1);
4135  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4136  for (unsigned i = 0; i != NumElems; ++i) {
4137    int Idx = N->getMaskElt(i);
4138    if (Idx >= (int)NumElems) {
4139      unsigned Opc = V2.getOpcode();
4140      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4141        continue;
4142      if (Opc != ISD::BUILD_VECTOR ||
4143          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4144        return false;
4145    } else if (Idx >= 0) {
4146      unsigned Opc = V1.getOpcode();
4147      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4148        continue;
4149      if (Opc != ISD::BUILD_VECTOR ||
4150          !X86::isZeroNode(V1.getOperand(Idx)))
4151        return false;
4152    }
4153  }
4154  return true;
4155}
4156
4157/// getZeroVector - Returns a vector of specified type with all zero elements.
4158///
4159static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget,
4160                             SelectionDAG &DAG, DebugLoc dl) {
4161  assert(VT.isVector() && "Expected a vector type");
4162
4163  // Always build SSE zero vectors as <4 x i32> bitcasted
4164  // to their dest type. This ensures they get CSE'd.
4165  SDValue Vec;
4166  if (VT.getSizeInBits() == 128) {  // SSE
4167    if (Subtarget->hasSSE2()) {  // SSE2
4168      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4169      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4170    } else { // SSE1
4171      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4172      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4173    }
4174  } else if (VT.getSizeInBits() == 256) { // AVX
4175    if (Subtarget->hasAVX2()) { // AVX2
4176      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4177      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4178      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4179    } else {
4180      // 256-bit logic and arithmetic instructions in AVX are all
4181      // floating-point, no support for integer ops. Emit fp zeroed vectors.
4182      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4183      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4184      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4185    }
4186  }
4187  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4188}
4189
4190/// getOnesVector - Returns a vector of specified type with all bits set.
4191/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4192/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4193/// Then bitcast to their original type, ensuring they get CSE'd.
4194static SDValue getOnesVector(EVT VT, bool HasAVX2, SelectionDAG &DAG,
4195                             DebugLoc dl) {
4196  assert(VT.isVector() && "Expected a vector type");
4197  assert((VT.is128BitVector() || VT.is256BitVector())
4198         && "Expected a 128-bit or 256-bit vector type");
4199
4200  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4201  SDValue Vec;
4202  if (VT.getSizeInBits() == 256) {
4203    if (HasAVX2) { // AVX2
4204      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4205      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4206    } else { // AVX
4207      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4208      SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, MVT::v8i32),
4209                                Vec, DAG.getConstant(0, MVT::i32), DAG, dl);
4210      Vec = Insert128BitVector(InsV, Vec,
4211                    DAG.getConstant(4 /* NumElems/2 */, MVT::i32), DAG, dl);
4212    }
4213  } else {
4214    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4215  }
4216
4217  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4218}
4219
4220/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4221/// that point to V2 points to its first element.
4222static void NormalizeMask(SmallVectorImpl<int> &Mask, unsigned NumElems) {
4223  for (unsigned i = 0; i != NumElems; ++i) {
4224    if (Mask[i] > (int)NumElems) {
4225      Mask[i] = NumElems;
4226    }
4227  }
4228}
4229
4230/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4231/// operation of specified width.
4232static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4233                       SDValue V2) {
4234  unsigned NumElems = VT.getVectorNumElements();
4235  SmallVector<int, 8> Mask;
4236  Mask.push_back(NumElems);
4237  for (unsigned i = 1; i != NumElems; ++i)
4238    Mask.push_back(i);
4239  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4240}
4241
4242/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4243static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4244                          SDValue V2) {
4245  unsigned NumElems = VT.getVectorNumElements();
4246  SmallVector<int, 8> Mask;
4247  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4248    Mask.push_back(i);
4249    Mask.push_back(i + NumElems);
4250  }
4251  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4252}
4253
4254/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4255static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4256                          SDValue V2) {
4257  unsigned NumElems = VT.getVectorNumElements();
4258  unsigned Half = NumElems/2;
4259  SmallVector<int, 8> Mask;
4260  for (unsigned i = 0; i != Half; ++i) {
4261    Mask.push_back(i + Half);
4262    Mask.push_back(i + NumElems + Half);
4263  }
4264  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4265}
4266
4267// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4268// a generic shuffle instruction because the target has no such instructions.
4269// Generate shuffles which repeat i16 and i8 several times until they can be
4270// represented by v4f32 and then be manipulated by target suported shuffles.
4271static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4272  EVT VT = V.getValueType();
4273  int NumElems = VT.getVectorNumElements();
4274  DebugLoc dl = V.getDebugLoc();
4275
4276  while (NumElems > 4) {
4277    if (EltNo < NumElems/2) {
4278      V = getUnpackl(DAG, dl, VT, V, V);
4279    } else {
4280      V = getUnpackh(DAG, dl, VT, V, V);
4281      EltNo -= NumElems/2;
4282    }
4283    NumElems >>= 1;
4284  }
4285  return V;
4286}
4287
4288/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4289static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4290  EVT VT = V.getValueType();
4291  DebugLoc dl = V.getDebugLoc();
4292  assert((VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256)
4293         && "Vector size not supported");
4294
4295  if (VT.getSizeInBits() == 128) {
4296    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4297    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4298    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4299                             &SplatMask[0]);
4300  } else {
4301    // To use VPERMILPS to splat scalars, the second half of indicies must
4302    // refer to the higher part, which is a duplication of the lower one,
4303    // because VPERMILPS can only handle in-lane permutations.
4304    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4305                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4306
4307    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4308    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4309                             &SplatMask[0]);
4310  }
4311
4312  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4313}
4314
4315/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4316static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4317  EVT SrcVT = SV->getValueType(0);
4318  SDValue V1 = SV->getOperand(0);
4319  DebugLoc dl = SV->getDebugLoc();
4320
4321  int EltNo = SV->getSplatIndex();
4322  int NumElems = SrcVT.getVectorNumElements();
4323  unsigned Size = SrcVT.getSizeInBits();
4324
4325  assert(((Size == 128 && NumElems > 4) || Size == 256) &&
4326          "Unknown how to promote splat for type");
4327
4328  // Extract the 128-bit part containing the splat element and update
4329  // the splat element index when it refers to the higher register.
4330  if (Size == 256) {
4331    unsigned Idx = (EltNo >= NumElems/2) ? NumElems/2 : 0;
4332    V1 = Extract128BitVector(V1, DAG.getConstant(Idx, MVT::i32), DAG, dl);
4333    if (Idx > 0)
4334      EltNo -= NumElems/2;
4335  }
4336
4337  // All i16 and i8 vector types can't be used directly by a generic shuffle
4338  // instruction because the target has no such instruction. Generate shuffles
4339  // which repeat i16 and i8 several times until they fit in i32, and then can
4340  // be manipulated by target suported shuffles.
4341  EVT EltVT = SrcVT.getVectorElementType();
4342  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4343    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4344
4345  // Recreate the 256-bit vector and place the same 128-bit vector
4346  // into the low and high part. This is necessary because we want
4347  // to use VPERM* to shuffle the vectors
4348  if (Size == 256) {
4349    SDValue InsV = Insert128BitVector(DAG.getUNDEF(SrcVT), V1,
4350                         DAG.getConstant(0, MVT::i32), DAG, dl);
4351    V1 = Insert128BitVector(InsV, V1,
4352               DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
4353  }
4354
4355  return getLegalSplat(DAG, V1, EltNo);
4356}
4357
4358/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4359/// vector of zero or undef vector.  This produces a shuffle where the low
4360/// element of V2 is swizzled into the zero/undef vector, landing at element
4361/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4362static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4363                                           bool IsZero,
4364                                           const X86Subtarget *Subtarget,
4365                                           SelectionDAG &DAG) {
4366  EVT VT = V2.getValueType();
4367  SDValue V1 = IsZero
4368    ? getZeroVector(VT, Subtarget, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4369  unsigned NumElems = VT.getVectorNumElements();
4370  SmallVector<int, 16> MaskVec;
4371  for (unsigned i = 0; i != NumElems; ++i)
4372    // If this is the insertion idx, put the low elt of V2 here.
4373    MaskVec.push_back(i == Idx ? NumElems : i);
4374  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4375}
4376
4377/// getTargetShuffleMask - Calculates the shuffle mask corresponding to the
4378/// target specific opcode. Returns true if the Mask could be calculated.
4379/// Sets IsUnary to true if only uses one source.
4380static bool getTargetShuffleMask(SDNode *N, EVT VT,
4381                                 SmallVectorImpl<int> &Mask, bool &IsUnary) {
4382  unsigned NumElems = VT.getVectorNumElements();
4383  SDValue ImmN;
4384
4385  IsUnary = false;
4386  switch(N->getOpcode()) {
4387  case X86ISD::SHUFP:
4388    ImmN = N->getOperand(N->getNumOperands()-1);
4389    DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4390    break;
4391  case X86ISD::UNPCKH:
4392    DecodeUNPCKHMask(VT, Mask);
4393    break;
4394  case X86ISD::UNPCKL:
4395    DecodeUNPCKLMask(VT, Mask);
4396    break;
4397  case X86ISD::MOVHLPS:
4398    DecodeMOVHLPSMask(NumElems, Mask);
4399    break;
4400  case X86ISD::MOVLHPS:
4401    DecodeMOVLHPSMask(NumElems, Mask);
4402    break;
4403  case X86ISD::PSHUFD:
4404  case X86ISD::VPERMILP:
4405    ImmN = N->getOperand(N->getNumOperands()-1);
4406    DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4407    IsUnary = true;
4408    break;
4409  case X86ISD::PSHUFHW:
4410    ImmN = N->getOperand(N->getNumOperands()-1);
4411    DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4412    IsUnary = true;
4413    break;
4414  case X86ISD::PSHUFLW:
4415    ImmN = N->getOperand(N->getNumOperands()-1);
4416    DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4417    IsUnary = true;
4418    break;
4419  case X86ISD::MOVSS:
4420  case X86ISD::MOVSD: {
4421    // The index 0 always comes from the first element of the second source,
4422    // this is why MOVSS and MOVSD are used in the first place. The other
4423    // elements come from the other positions of the first source vector
4424    Mask.push_back(NumElems);
4425    for (unsigned i = 1; i != NumElems; ++i) {
4426      Mask.push_back(i);
4427    }
4428    break;
4429  }
4430  case X86ISD::VPERM2X128:
4431    ImmN = N->getOperand(N->getNumOperands()-1);
4432    DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4433    break;
4434  case X86ISD::MOVDDUP:
4435  case X86ISD::MOVLHPD:
4436  case X86ISD::MOVLPD:
4437  case X86ISD::MOVLPS:
4438  case X86ISD::MOVSHDUP:
4439  case X86ISD::MOVSLDUP:
4440  case X86ISD::PALIGN:
4441    // Not yet implemented
4442    return false;
4443  default: llvm_unreachable("unknown target shuffle node");
4444  }
4445
4446  return true;
4447}
4448
4449/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4450/// element of the result of the vector shuffle.
4451static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
4452                                   unsigned Depth) {
4453  if (Depth == 6)
4454    return SDValue();  // Limit search depth.
4455
4456  SDValue V = SDValue(N, 0);
4457  EVT VT = V.getValueType();
4458  unsigned Opcode = V.getOpcode();
4459
4460  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4461  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4462    int Elt = SV->getMaskElt(Index);
4463
4464    if (Elt < 0)
4465      return DAG.getUNDEF(VT.getVectorElementType());
4466
4467    unsigned NumElems = VT.getVectorNumElements();
4468    SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0)
4469                                         : SV->getOperand(1);
4470    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1);
4471  }
4472
4473  // Recurse into target specific vector shuffles to find scalars.
4474  if (isTargetShuffle(Opcode)) {
4475    unsigned NumElems = VT.getVectorNumElements();
4476    SmallVector<int, 16> ShuffleMask;
4477    SDValue ImmN;
4478    bool IsUnary;
4479
4480    if (!getTargetShuffleMask(N, VT, ShuffleMask, IsUnary))
4481      return SDValue();
4482
4483    int Elt = ShuffleMask[Index];
4484    if (Elt < 0)
4485      return DAG.getUNDEF(VT.getVectorElementType());
4486
4487    SDValue NewV = (Elt < (int)NumElems) ? N->getOperand(0)
4488                                           : N->getOperand(1);
4489    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG,
4490                               Depth+1);
4491  }
4492
4493  // Actual nodes that may contain scalar elements
4494  if (Opcode == ISD::BITCAST) {
4495    V = V.getOperand(0);
4496    EVT SrcVT = V.getValueType();
4497    unsigned NumElems = VT.getVectorNumElements();
4498
4499    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4500      return SDValue();
4501  }
4502
4503  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4504    return (Index == 0) ? V.getOperand(0)
4505                        : DAG.getUNDEF(VT.getVectorElementType());
4506
4507  if (V.getOpcode() == ISD::BUILD_VECTOR)
4508    return V.getOperand(Index);
4509
4510  return SDValue();
4511}
4512
4513/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4514/// shuffle operation which come from a consecutively from a zero. The
4515/// search can start in two different directions, from left or right.
4516static
4517unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, unsigned NumElems,
4518                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4519  unsigned i;
4520  for (i = 0; i != NumElems; ++i) {
4521    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4522    SDValue Elt = getShuffleScalarElt(SVOp, Index, DAG, 0);
4523    if (!(Elt.getNode() &&
4524         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4525      break;
4526  }
4527
4528  return i;
4529}
4530
4531/// isShuffleMaskConsecutive - Check if the shuffle mask indicies [MaskI, MaskE)
4532/// correspond consecutively to elements from one of the vector operands,
4533/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4534static
4535bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp,
4536                              unsigned MaskI, unsigned MaskE, unsigned OpIdx,
4537                              unsigned NumElems, unsigned &OpNum) {
4538  bool SeenV1 = false;
4539  bool SeenV2 = false;
4540
4541  for (unsigned i = MaskI; i != MaskE; ++i, ++OpIdx) {
4542    int Idx = SVOp->getMaskElt(i);
4543    // Ignore undef indicies
4544    if (Idx < 0)
4545      continue;
4546
4547    if (Idx < (int)NumElems)
4548      SeenV1 = true;
4549    else
4550      SeenV2 = true;
4551
4552    // Only accept consecutive elements from the same vector
4553    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4554      return false;
4555  }
4556
4557  OpNum = SeenV1 ? 0 : 1;
4558  return true;
4559}
4560
4561/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4562/// logical left shift of a vector.
4563static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4564                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4565  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4566  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4567              false /* check zeros from right */, DAG);
4568  unsigned OpSrc;
4569
4570  if (!NumZeros)
4571    return false;
4572
4573  // Considering the elements in the mask that are not consecutive zeros,
4574  // check if they consecutively come from only one of the source vectors.
4575  //
4576  //               V1 = {X, A, B, C}     0
4577  //                         \  \  \    /
4578  //   vector_shuffle V1, V2 <1, 2, 3, X>
4579  //
4580  if (!isShuffleMaskConsecutive(SVOp,
4581            0,                   // Mask Start Index
4582            NumElems-NumZeros,   // Mask End Index(exclusive)
4583            NumZeros,            // Where to start looking in the src vector
4584            NumElems,            // Number of elements in vector
4585            OpSrc))              // Which source operand ?
4586    return false;
4587
4588  isLeft = false;
4589  ShAmt = NumZeros;
4590  ShVal = SVOp->getOperand(OpSrc);
4591  return true;
4592}
4593
4594/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4595/// logical left shift of a vector.
4596static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4597                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4598  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4599  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4600              true /* check zeros from left */, DAG);
4601  unsigned OpSrc;
4602
4603  if (!NumZeros)
4604    return false;
4605
4606  // Considering the elements in the mask that are not consecutive zeros,
4607  // check if they consecutively come from only one of the source vectors.
4608  //
4609  //                           0    { A, B, X, X } = V2
4610  //                          / \    /  /
4611  //   vector_shuffle V1, V2 <X, X, 4, 5>
4612  //
4613  if (!isShuffleMaskConsecutive(SVOp,
4614            NumZeros,     // Mask Start Index
4615            NumElems,     // Mask End Index(exclusive)
4616            0,            // Where to start looking in the src vector
4617            NumElems,     // Number of elements in vector
4618            OpSrc))       // Which source operand ?
4619    return false;
4620
4621  isLeft = true;
4622  ShAmt = NumZeros;
4623  ShVal = SVOp->getOperand(OpSrc);
4624  return true;
4625}
4626
4627/// isVectorShift - Returns true if the shuffle can be implemented as a
4628/// logical left or right shift of a vector.
4629static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4630                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4631  // Although the logic below support any bitwidth size, there are no
4632  // shift instructions which handle more than 128-bit vectors.
4633  if (SVOp->getValueType(0).getSizeInBits() > 128)
4634    return false;
4635
4636  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4637      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4638    return true;
4639
4640  return false;
4641}
4642
4643/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4644///
4645static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4646                                       unsigned NumNonZero, unsigned NumZero,
4647                                       SelectionDAG &DAG,
4648                                       const X86Subtarget* Subtarget,
4649                                       const TargetLowering &TLI) {
4650  if (NumNonZero > 8)
4651    return SDValue();
4652
4653  DebugLoc dl = Op.getDebugLoc();
4654  SDValue V(0, 0);
4655  bool First = true;
4656  for (unsigned i = 0; i < 16; ++i) {
4657    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4658    if (ThisIsNonZero && First) {
4659      if (NumZero)
4660        V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4661      else
4662        V = DAG.getUNDEF(MVT::v8i16);
4663      First = false;
4664    }
4665
4666    if ((i & 1) != 0) {
4667      SDValue ThisElt(0, 0), LastElt(0, 0);
4668      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4669      if (LastIsNonZero) {
4670        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4671                              MVT::i16, Op.getOperand(i-1));
4672      }
4673      if (ThisIsNonZero) {
4674        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4675        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4676                              ThisElt, DAG.getConstant(8, MVT::i8));
4677        if (LastIsNonZero)
4678          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4679      } else
4680        ThisElt = LastElt;
4681
4682      if (ThisElt.getNode())
4683        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4684                        DAG.getIntPtrConstant(i/2));
4685    }
4686  }
4687
4688  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4689}
4690
4691/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4692///
4693static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4694                                     unsigned NumNonZero, unsigned NumZero,
4695                                     SelectionDAG &DAG,
4696                                     const X86Subtarget* Subtarget,
4697                                     const TargetLowering &TLI) {
4698  if (NumNonZero > 4)
4699    return SDValue();
4700
4701  DebugLoc dl = Op.getDebugLoc();
4702  SDValue V(0, 0);
4703  bool First = true;
4704  for (unsigned i = 0; i < 8; ++i) {
4705    bool isNonZero = (NonZeros & (1 << i)) != 0;
4706    if (isNonZero) {
4707      if (First) {
4708        if (NumZero)
4709          V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4710        else
4711          V = DAG.getUNDEF(MVT::v8i16);
4712        First = false;
4713      }
4714      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4715                      MVT::v8i16, V, Op.getOperand(i),
4716                      DAG.getIntPtrConstant(i));
4717    }
4718  }
4719
4720  return V;
4721}
4722
4723/// getVShift - Return a vector logical shift node.
4724///
4725static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4726                         unsigned NumBits, SelectionDAG &DAG,
4727                         const TargetLowering &TLI, DebugLoc dl) {
4728  assert(VT.getSizeInBits() == 128 && "Unknown type for VShift");
4729  EVT ShVT = MVT::v2i64;
4730  unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
4731  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4732  return DAG.getNode(ISD::BITCAST, dl, VT,
4733                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4734                             DAG.getConstant(NumBits,
4735                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4736}
4737
4738SDValue
4739X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4740                                          SelectionDAG &DAG) const {
4741
4742  // Check if the scalar load can be widened into a vector load. And if
4743  // the address is "base + cst" see if the cst can be "absorbed" into
4744  // the shuffle mask.
4745  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4746    SDValue Ptr = LD->getBasePtr();
4747    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4748      return SDValue();
4749    EVT PVT = LD->getValueType(0);
4750    if (PVT != MVT::i32 && PVT != MVT::f32)
4751      return SDValue();
4752
4753    int FI = -1;
4754    int64_t Offset = 0;
4755    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4756      FI = FINode->getIndex();
4757      Offset = 0;
4758    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4759               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4760      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4761      Offset = Ptr.getConstantOperandVal(1);
4762      Ptr = Ptr.getOperand(0);
4763    } else {
4764      return SDValue();
4765    }
4766
4767    // FIXME: 256-bit vector instructions don't require a strict alignment,
4768    // improve this code to support it better.
4769    unsigned RequiredAlign = VT.getSizeInBits()/8;
4770    SDValue Chain = LD->getChain();
4771    // Make sure the stack object alignment is at least 16 or 32.
4772    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4773    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4774      if (MFI->isFixedObjectIndex(FI)) {
4775        // Can't change the alignment. FIXME: It's possible to compute
4776        // the exact stack offset and reference FI + adjust offset instead.
4777        // If someone *really* cares about this. That's the way to implement it.
4778        return SDValue();
4779      } else {
4780        MFI->setObjectAlignment(FI, RequiredAlign);
4781      }
4782    }
4783
4784    // (Offset % 16 or 32) must be multiple of 4. Then address is then
4785    // Ptr + (Offset & ~15).
4786    if (Offset < 0)
4787      return SDValue();
4788    if ((Offset % RequiredAlign) & 3)
4789      return SDValue();
4790    int64_t StartOffset = Offset & ~(RequiredAlign-1);
4791    if (StartOffset)
4792      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4793                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4794
4795    int EltNo = (Offset - StartOffset) >> 2;
4796    int NumElems = VT.getVectorNumElements();
4797
4798    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4799    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4800                             LD->getPointerInfo().getWithOffset(StartOffset),
4801                             false, false, false, 0);
4802
4803    SmallVector<int, 8> Mask;
4804    for (int i = 0; i < NumElems; ++i)
4805      Mask.push_back(EltNo);
4806
4807    return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]);
4808  }
4809
4810  return SDValue();
4811}
4812
4813/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4814/// vector of type 'VT', see if the elements can be replaced by a single large
4815/// load which has the same value as a build_vector whose operands are 'elts'.
4816///
4817/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4818///
4819/// FIXME: we'd also like to handle the case where the last elements are zero
4820/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4821/// There's even a handy isZeroNode for that purpose.
4822static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4823                                        DebugLoc &DL, SelectionDAG &DAG) {
4824  EVT EltVT = VT.getVectorElementType();
4825  unsigned NumElems = Elts.size();
4826
4827  LoadSDNode *LDBase = NULL;
4828  unsigned LastLoadedElt = -1U;
4829
4830  // For each element in the initializer, see if we've found a load or an undef.
4831  // If we don't find an initial load element, or later load elements are
4832  // non-consecutive, bail out.
4833  for (unsigned i = 0; i < NumElems; ++i) {
4834    SDValue Elt = Elts[i];
4835
4836    if (!Elt.getNode() ||
4837        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4838      return SDValue();
4839    if (!LDBase) {
4840      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4841        return SDValue();
4842      LDBase = cast<LoadSDNode>(Elt.getNode());
4843      LastLoadedElt = i;
4844      continue;
4845    }
4846    if (Elt.getOpcode() == ISD::UNDEF)
4847      continue;
4848
4849    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4850    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4851      return SDValue();
4852    LastLoadedElt = i;
4853  }
4854
4855  // If we have found an entire vector of loads and undefs, then return a large
4856  // load of the entire vector width starting at the base pointer.  If we found
4857  // consecutive loads for the low half, generate a vzext_load node.
4858  if (LastLoadedElt == NumElems - 1) {
4859    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4860      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4861                         LDBase->getPointerInfo(),
4862                         LDBase->isVolatile(), LDBase->isNonTemporal(),
4863                         LDBase->isInvariant(), 0);
4864    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4865                       LDBase->getPointerInfo(),
4866                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4867                       LDBase->isInvariant(), LDBase->getAlignment());
4868  } else if (NumElems == 4 && LastLoadedElt == 1 &&
4869             DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
4870    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4871    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4872    SDValue ResNode =
4873        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
4874                                LDBase->getPointerInfo(),
4875                                LDBase->getAlignment(),
4876                                false/*isVolatile*/, true/*ReadMem*/,
4877                                false/*WriteMem*/);
4878    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
4879  }
4880  return SDValue();
4881}
4882
4883/// LowerVectorBroadcast - Attempt to use the vbroadcast instruction
4884/// to generate a splat value for the following cases:
4885/// 1. A splat BUILD_VECTOR which uses a single scalar load, or a constant.
4886/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
4887/// a scalar load, or a constant.
4888/// The VBROADCAST node is returned when a pattern is found,
4889/// or SDValue() otherwise.
4890SDValue
4891X86TargetLowering::LowerVectorBroadcast(SDValue &Op, SelectionDAG &DAG) const {
4892  if (!Subtarget->hasAVX())
4893    return SDValue();
4894
4895  EVT VT = Op.getValueType();
4896  DebugLoc dl = Op.getDebugLoc();
4897
4898  SDValue Ld;
4899  bool ConstSplatVal;
4900
4901  switch (Op.getOpcode()) {
4902    default:
4903      // Unknown pattern found.
4904      return SDValue();
4905
4906    case ISD::BUILD_VECTOR: {
4907      // The BUILD_VECTOR node must be a splat.
4908      if (!isSplatVector(Op.getNode()))
4909        return SDValue();
4910
4911      Ld = Op.getOperand(0);
4912      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
4913                     Ld.getOpcode() == ISD::ConstantFP);
4914
4915      // The suspected load node has several users. Make sure that all
4916      // of its users are from the BUILD_VECTOR node.
4917      // Constants may have multiple users.
4918      if (!ConstSplatVal && !Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
4919        return SDValue();
4920      break;
4921    }
4922
4923    case ISD::VECTOR_SHUFFLE: {
4924      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4925
4926      // Shuffles must have a splat mask where the first element is
4927      // broadcasted.
4928      if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
4929        return SDValue();
4930
4931      SDValue Sc = Op.getOperand(0);
4932      if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR)
4933        return SDValue();
4934
4935      Ld = Sc.getOperand(0);
4936      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
4937                       Ld.getOpcode() == ISD::ConstantFP);
4938
4939      // The scalar_to_vector node and the suspected
4940      // load node must have exactly one user.
4941      // Constants may have multiple users.
4942      if (!ConstSplatVal && (!Sc.hasOneUse() || !Ld.hasOneUse()))
4943        return SDValue();
4944      break;
4945    }
4946  }
4947
4948  bool Is256 = VT.getSizeInBits() == 256;
4949  bool Is128 = VT.getSizeInBits() == 128;
4950
4951  // Handle the broadcasting a single constant scalar from the constant pool
4952  // into a vector. On Sandybridge it is still better to load a constant vector
4953  // from the constant pool and not to broadcast it from a scalar.
4954  if (ConstSplatVal && Subtarget->hasAVX2()) {
4955    EVT CVT = Ld.getValueType();
4956    assert(!CVT.isVector() && "Must not broadcast a vector type");
4957    unsigned ScalarSize = CVT.getSizeInBits();
4958
4959    if ((Is256 && (ScalarSize == 32 || ScalarSize == 64)) ||
4960        (Is128 && (ScalarSize == 32))) {
4961
4962      const Constant *C = 0;
4963      if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld))
4964        C = CI->getConstantIntValue();
4965      else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld))
4966        C = CF->getConstantFPValue();
4967
4968      assert(C && "Invalid constant type");
4969
4970      SDValue CP = DAG.getConstantPool(C, getPointerTy());
4971      unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
4972      Ld = DAG.getLoad(CVT, dl, DAG.getEntryNode(), CP,
4973                         MachinePointerInfo::getConstantPool(),
4974                         false, false, false, Alignment);
4975
4976      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
4977    }
4978  }
4979
4980  // The scalar source must be a normal load.
4981  if (!ISD::isNormalLoad(Ld.getNode()))
4982    return SDValue();
4983
4984  // Reject loads that have uses of the chain result
4985  if (Ld->hasAnyUseOfValue(1))
4986    return SDValue();
4987
4988  unsigned ScalarSize = Ld.getValueType().getSizeInBits();
4989
4990  // VBroadcast to YMM
4991  if (Is256 && (ScalarSize == 32 || ScalarSize == 64))
4992    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
4993
4994  // VBroadcast to XMM
4995  if (Is128 && (ScalarSize == 32))
4996    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
4997
4998  // The integer check is needed for the 64-bit into 128-bit so it doesn't match
4999  // double since there is vbroadcastsd xmm
5000  if (Subtarget->hasAVX2() && Ld.getValueType().isInteger()) {
5001    // VBroadcast to YMM
5002    if (Is256 && (ScalarSize == 8 || ScalarSize == 16))
5003      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5004
5005    // VBroadcast to XMM
5006    if (Is128 && (ScalarSize ==  8 || ScalarSize == 16 || ScalarSize == 64))
5007      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5008  }
5009
5010  // Unsupported broadcast.
5011  return SDValue();
5012}
5013
5014SDValue
5015X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5016  DebugLoc dl = Op.getDebugLoc();
5017
5018  EVT VT = Op.getValueType();
5019  EVT ExtVT = VT.getVectorElementType();
5020  unsigned NumElems = Op.getNumOperands();
5021
5022  // Vectors containing all zeros can be matched by pxor and xorps later
5023  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5024    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5025    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5026    if (VT == MVT::v4i32 || VT == MVT::v8i32)
5027      return Op;
5028
5029    return getZeroVector(VT, Subtarget, DAG, dl);
5030  }
5031
5032  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5033  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
5034  // vpcmpeqd on 256-bit vectors.
5035  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5036    if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasAVX2()))
5037      return Op;
5038
5039    return getOnesVector(VT, Subtarget->hasAVX2(), DAG, dl);
5040  }
5041
5042  SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
5043  if (Broadcast.getNode())
5044    return Broadcast;
5045
5046  unsigned EVTBits = ExtVT.getSizeInBits();
5047
5048  unsigned NumZero  = 0;
5049  unsigned NumNonZero = 0;
5050  unsigned NonZeros = 0;
5051  bool IsAllConstants = true;
5052  SmallSet<SDValue, 8> Values;
5053  for (unsigned i = 0; i < NumElems; ++i) {
5054    SDValue Elt = Op.getOperand(i);
5055    if (Elt.getOpcode() == ISD::UNDEF)
5056      continue;
5057    Values.insert(Elt);
5058    if (Elt.getOpcode() != ISD::Constant &&
5059        Elt.getOpcode() != ISD::ConstantFP)
5060      IsAllConstants = false;
5061    if (X86::isZeroNode(Elt))
5062      NumZero++;
5063    else {
5064      NonZeros |= (1 << i);
5065      NumNonZero++;
5066    }
5067  }
5068
5069  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5070  if (NumNonZero == 0)
5071    return DAG.getUNDEF(VT);
5072
5073  // Special case for single non-zero, non-undef, element.
5074  if (NumNonZero == 1) {
5075    unsigned Idx = CountTrailingZeros_32(NonZeros);
5076    SDValue Item = Op.getOperand(Idx);
5077
5078    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5079    // the value are obviously zero, truncate the value to i32 and do the
5080    // insertion that way.  Only do this if the value is non-constant or if the
5081    // value is a constant being inserted into element 0.  It is cheaper to do
5082    // a constant pool load than it is to do a movd + shuffle.
5083    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5084        (!IsAllConstants || Idx == 0)) {
5085      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5086        // Handle SSE only.
5087        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5088        EVT VecVT = MVT::v4i32;
5089        unsigned VecElts = 4;
5090
5091        // Truncate the value (which may itself be a constant) to i32, and
5092        // convert it to a vector with movd (S2V+shuffle to zero extend).
5093        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5094        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5095        Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5096
5097        // Now we have our 32-bit value zero extended in the low element of
5098        // a vector.  If Idx != 0, swizzle it into place.
5099        if (Idx != 0) {
5100          SmallVector<int, 4> Mask;
5101          Mask.push_back(Idx);
5102          for (unsigned i = 1; i != VecElts; ++i)
5103            Mask.push_back(i);
5104          Item = DAG.getVectorShuffle(VecVT, dl, Item,
5105                                      DAG.getUNDEF(Item.getValueType()),
5106                                      &Mask[0]);
5107        }
5108        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5109      }
5110    }
5111
5112    // If we have a constant or non-constant insertion into the low element of
5113    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5114    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5115    // depending on what the source datatype is.
5116    if (Idx == 0) {
5117      if (NumZero == 0)
5118        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5119
5120      if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5121          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5122        if (VT.getSizeInBits() == 256) {
5123          SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl);
5124          return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
5125                             Item, DAG.getIntPtrConstant(0));
5126        }
5127        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5128        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5129        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5130        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5131      }
5132
5133      if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5134        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5135        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
5136        if (VT.getSizeInBits() == 256) {
5137          SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl);
5138          Item = Insert128BitVector(ZeroVec, Item, DAG.getConstant(0, MVT::i32),
5139                                    DAG, dl);
5140        } else {
5141          assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5142          Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5143        }
5144        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5145      }
5146    }
5147
5148    // Is it a vector logical left shift?
5149    if (NumElems == 2 && Idx == 1 &&
5150        X86::isZeroNode(Op.getOperand(0)) &&
5151        !X86::isZeroNode(Op.getOperand(1))) {
5152      unsigned NumBits = VT.getSizeInBits();
5153      return getVShift(true, VT,
5154                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5155                                   VT, Op.getOperand(1)),
5156                       NumBits/2, DAG, *this, dl);
5157    }
5158
5159    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5160      return SDValue();
5161
5162    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5163    // is a non-constant being inserted into an element other than the low one,
5164    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5165    // movd/movss) to move this into the low element, then shuffle it into
5166    // place.
5167    if (EVTBits == 32) {
5168      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5169
5170      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5171      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG);
5172      SmallVector<int, 8> MaskVec;
5173      for (unsigned i = 0; i < NumElems; i++)
5174        MaskVec.push_back(i == Idx ? 0 : 1);
5175      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5176    }
5177  }
5178
5179  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5180  if (Values.size() == 1) {
5181    if (EVTBits == 32) {
5182      // Instead of a shuffle like this:
5183      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5184      // Check if it's possible to issue this instead.
5185      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5186      unsigned Idx = CountTrailingZeros_32(NonZeros);
5187      SDValue Item = Op.getOperand(Idx);
5188      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5189        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5190    }
5191    return SDValue();
5192  }
5193
5194  // A vector full of immediates; various special cases are already
5195  // handled, so this is best done with a single constant-pool load.
5196  if (IsAllConstants)
5197    return SDValue();
5198
5199  // For AVX-length vectors, build the individual 128-bit pieces and use
5200  // shuffles to put them in place.
5201  if (VT.getSizeInBits() == 256) {
5202    SmallVector<SDValue, 32> V;
5203    for (unsigned i = 0; i != NumElems; ++i)
5204      V.push_back(Op.getOperand(i));
5205
5206    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5207
5208    // Build both the lower and upper subvector.
5209    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5210    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5211                                NumElems/2);
5212
5213    // Recreate the wider vector with the lower and upper part.
5214    SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Lower,
5215                                DAG.getConstant(0, MVT::i32), DAG, dl);
5216    return Insert128BitVector(Vec, Upper, DAG.getConstant(NumElems/2, MVT::i32),
5217                              DAG, dl);
5218  }
5219
5220  // Let legalizer expand 2-wide build_vectors.
5221  if (EVTBits == 64) {
5222    if (NumNonZero == 1) {
5223      // One half is zero or undef.
5224      unsigned Idx = CountTrailingZeros_32(NonZeros);
5225      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5226                                 Op.getOperand(Idx));
5227      return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
5228    }
5229    return SDValue();
5230  }
5231
5232  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5233  if (EVTBits == 8 && NumElems == 16) {
5234    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5235                                        Subtarget, *this);
5236    if (V.getNode()) return V;
5237  }
5238
5239  if (EVTBits == 16 && NumElems == 8) {
5240    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5241                                      Subtarget, *this);
5242    if (V.getNode()) return V;
5243  }
5244
5245  // If element VT is == 32 bits, turn it into a number of shuffles.
5246  SmallVector<SDValue, 8> V(NumElems);
5247  if (NumElems == 4 && NumZero > 0) {
5248    for (unsigned i = 0; i < 4; ++i) {
5249      bool isZero = !(NonZeros & (1 << i));
5250      if (isZero)
5251        V[i] = getZeroVector(VT, Subtarget, DAG, dl);
5252      else
5253        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5254    }
5255
5256    for (unsigned i = 0; i < 2; ++i) {
5257      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5258        default: break;
5259        case 0:
5260          V[i] = V[i*2];  // Must be a zero vector.
5261          break;
5262        case 1:
5263          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5264          break;
5265        case 2:
5266          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5267          break;
5268        case 3:
5269          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5270          break;
5271      }
5272    }
5273
5274    bool Reverse1 = (NonZeros & 0x3) == 2;
5275    bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5276    int MaskVec[] = {
5277      Reverse1 ? 1 : 0,
5278      Reverse1 ? 0 : 1,
5279      static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
5280      static_cast<int>(Reverse2 ? NumElems   : NumElems+1)
5281    };
5282    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5283  }
5284
5285  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
5286    // Check for a build vector of consecutive loads.
5287    for (unsigned i = 0; i < NumElems; ++i)
5288      V[i] = Op.getOperand(i);
5289
5290    // Check for elements which are consecutive loads.
5291    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5292    if (LD.getNode())
5293      return LD;
5294
5295    // For SSE 4.1, use insertps to put the high elements into the low element.
5296    if (getSubtarget()->hasSSE41()) {
5297      SDValue Result;
5298      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5299        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5300      else
5301        Result = DAG.getUNDEF(VT);
5302
5303      for (unsigned i = 1; i < NumElems; ++i) {
5304        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5305        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5306                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5307      }
5308      return Result;
5309    }
5310
5311    // Otherwise, expand into a number of unpckl*, start by extending each of
5312    // our (non-undef) elements to the full vector width with the element in the
5313    // bottom slot of the vector (which generates no code for SSE).
5314    for (unsigned i = 0; i < NumElems; ++i) {
5315      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5316        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5317      else
5318        V[i] = DAG.getUNDEF(VT);
5319    }
5320
5321    // Next, we iteratively mix elements, e.g. for v4f32:
5322    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5323    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5324    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5325    unsigned EltStride = NumElems >> 1;
5326    while (EltStride != 0) {
5327      for (unsigned i = 0; i < EltStride; ++i) {
5328        // If V[i+EltStride] is undef and this is the first round of mixing,
5329        // then it is safe to just drop this shuffle: V[i] is already in the
5330        // right place, the one element (since it's the first round) being
5331        // inserted as undef can be dropped.  This isn't safe for successive
5332        // rounds because they will permute elements within both vectors.
5333        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5334            EltStride == NumElems/2)
5335          continue;
5336
5337        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5338      }
5339      EltStride >>= 1;
5340    }
5341    return V[0];
5342  }
5343  return SDValue();
5344}
5345
5346// LowerMMXCONCAT_VECTORS - We support concatenate two MMX registers and place
5347// them in a MMX register.  This is better than doing a stack convert.
5348static SDValue LowerMMXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5349  DebugLoc dl = Op.getDebugLoc();
5350  EVT ResVT = Op.getValueType();
5351
5352  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
5353         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
5354  int Mask[2];
5355  SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
5356  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5357  InVec = Op.getOperand(1);
5358  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5359    unsigned NumElts = ResVT.getVectorNumElements();
5360    VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5361    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
5362                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
5363  } else {
5364    InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
5365    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5366    Mask[0] = 0; Mask[1] = 2;
5367    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
5368  }
5369  return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5370}
5371
5372// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5373// to create 256-bit vectors from two other 128-bit ones.
5374static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5375  DebugLoc dl = Op.getDebugLoc();
5376  EVT ResVT = Op.getValueType();
5377
5378  assert(ResVT.getSizeInBits() == 256 && "Value type must be 256-bit wide");
5379
5380  SDValue V1 = Op.getOperand(0);
5381  SDValue V2 = Op.getOperand(1);
5382  unsigned NumElems = ResVT.getVectorNumElements();
5383
5384  SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, ResVT), V1,
5385                                 DAG.getConstant(0, MVT::i32), DAG, dl);
5386  return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
5387                            DAG, dl);
5388}
5389
5390SDValue
5391X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
5392  EVT ResVT = Op.getValueType();
5393
5394  assert(Op.getNumOperands() == 2);
5395  assert((ResVT.getSizeInBits() == 128 || ResVT.getSizeInBits() == 256) &&
5396         "Unsupported CONCAT_VECTORS for value type");
5397
5398  // We support concatenate two MMX registers and place them in a MMX register.
5399  // This is better than doing a stack convert.
5400  if (ResVT.is128BitVector())
5401    return LowerMMXCONCAT_VECTORS(Op, DAG);
5402
5403  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5404  // from two other 128-bit ones.
5405  return LowerAVXCONCAT_VECTORS(Op, DAG);
5406}
5407
5408// Try to lower a shuffle node into a simple blend instruction.
5409static SDValue LowerVECTOR_SHUFFLEtoBlend(SDValue Op,
5410                                          const X86Subtarget *Subtarget,
5411                                          SelectionDAG &DAG) {
5412  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5413  SDValue V1 = SVOp->getOperand(0);
5414  SDValue V2 = SVOp->getOperand(1);
5415  DebugLoc dl = SVOp->getDebugLoc();
5416  EVT VT = Op.getValueType();
5417  EVT InVT = V1.getValueType();
5418  int MaskSize = VT.getVectorNumElements();
5419  int InSize = InVT.getVectorNumElements();
5420
5421  if (!Subtarget->hasSSE41())
5422    return SDValue();
5423
5424  if (MaskSize != InSize)
5425    return SDValue();
5426
5427  int ISDNo = 0;
5428  MVT OpTy;
5429
5430  switch (VT.getSimpleVT().SimpleTy) {
5431  default: return SDValue();
5432  case MVT::v8i16:
5433           ISDNo = X86ISD::BLENDPW;
5434           OpTy = MVT::v8i16;
5435           break;
5436  case MVT::v4i32:
5437  case MVT::v4f32:
5438           ISDNo = X86ISD::BLENDPS;
5439           OpTy = MVT::v4f32;
5440           break;
5441  case MVT::v2i64:
5442  case MVT::v2f64:
5443           ISDNo = X86ISD::BLENDPD;
5444           OpTy = MVT::v2f64;
5445           break;
5446  case MVT::v8i32:
5447  case MVT::v8f32:
5448           if (!Subtarget->hasAVX())
5449             return SDValue();
5450           ISDNo = X86ISD::BLENDPS;
5451           OpTy = MVT::v8f32;
5452           break;
5453  case MVT::v4i64:
5454  case MVT::v4f64:
5455           if (!Subtarget->hasAVX())
5456             return SDValue();
5457           ISDNo = X86ISD::BLENDPD;
5458           OpTy = MVT::v4f64;
5459           break;
5460  case MVT::v16i16:
5461           if (!Subtarget->hasAVX2())
5462             return SDValue();
5463           ISDNo = X86ISD::BLENDPW;
5464           OpTy = MVT::v16i16;
5465           break;
5466  }
5467  assert(ISDNo && "Invalid Op Number");
5468
5469  unsigned MaskVals = 0;
5470
5471  for (int i = 0; i < MaskSize; ++i) {
5472    int EltIdx = SVOp->getMaskElt(i);
5473    if (EltIdx == i || EltIdx == -1)
5474      MaskVals |= (1<<i);
5475    else if (EltIdx == (i + MaskSize))
5476      continue; // Bit is set to zero;
5477    else return SDValue();
5478  }
5479
5480  V1 = DAG.getNode(ISD::BITCAST, dl, OpTy, V1);
5481  V2 = DAG.getNode(ISD::BITCAST, dl, OpTy, V2);
5482  SDValue Ret =  DAG.getNode(ISDNo, dl, OpTy, V1, V2,
5483                             DAG.getConstant(MaskVals, MVT::i32));
5484  return DAG.getNode(ISD::BITCAST, dl, VT, Ret);
5485}
5486
5487// v8i16 shuffles - Prefer shuffles in the following order:
5488// 1. [all]   pshuflw, pshufhw, optional move
5489// 2. [ssse3] 1 x pshufb
5490// 3. [ssse3] 2 x pshufb + 1 x por
5491// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5492SDValue
5493X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
5494                                            SelectionDAG &DAG) const {
5495  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5496  SDValue V1 = SVOp->getOperand(0);
5497  SDValue V2 = SVOp->getOperand(1);
5498  DebugLoc dl = SVOp->getDebugLoc();
5499  SmallVector<int, 8> MaskVals;
5500
5501  // Determine if more than 1 of the words in each of the low and high quadwords
5502  // of the result come from the same quadword of one of the two inputs.  Undef
5503  // mask values count as coming from any quadword, for better codegen.
5504  unsigned LoQuad[] = { 0, 0, 0, 0 };
5505  unsigned HiQuad[] = { 0, 0, 0, 0 };
5506  std::bitset<4> InputQuads;
5507  for (unsigned i = 0; i < 8; ++i) {
5508    unsigned *Quad = i < 4 ? LoQuad : HiQuad;
5509    int EltIdx = SVOp->getMaskElt(i);
5510    MaskVals.push_back(EltIdx);
5511    if (EltIdx < 0) {
5512      ++Quad[0];
5513      ++Quad[1];
5514      ++Quad[2];
5515      ++Quad[3];
5516      continue;
5517    }
5518    ++Quad[EltIdx / 4];
5519    InputQuads.set(EltIdx / 4);
5520  }
5521
5522  int BestLoQuad = -1;
5523  unsigned MaxQuad = 1;
5524  for (unsigned i = 0; i < 4; ++i) {
5525    if (LoQuad[i] > MaxQuad) {
5526      BestLoQuad = i;
5527      MaxQuad = LoQuad[i];
5528    }
5529  }
5530
5531  int BestHiQuad = -1;
5532  MaxQuad = 1;
5533  for (unsigned i = 0; i < 4; ++i) {
5534    if (HiQuad[i] > MaxQuad) {
5535      BestHiQuad = i;
5536      MaxQuad = HiQuad[i];
5537    }
5538  }
5539
5540  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5541  // of the two input vectors, shuffle them into one input vector so only a
5542  // single pshufb instruction is necessary. If There are more than 2 input
5543  // quads, disable the next transformation since it does not help SSSE3.
5544  bool V1Used = InputQuads[0] || InputQuads[1];
5545  bool V2Used = InputQuads[2] || InputQuads[3];
5546  if (Subtarget->hasSSSE3()) {
5547    if (InputQuads.count() == 2 && V1Used && V2Used) {
5548      BestLoQuad = InputQuads[0] ? 0 : 1;
5549      BestHiQuad = InputQuads[2] ? 2 : 3;
5550    }
5551    if (InputQuads.count() > 2) {
5552      BestLoQuad = -1;
5553      BestHiQuad = -1;
5554    }
5555  }
5556
5557  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5558  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5559  // words from all 4 input quadwords.
5560  SDValue NewV;
5561  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5562    int MaskV[] = {
5563      BestLoQuad < 0 ? 0 : BestLoQuad,
5564      BestHiQuad < 0 ? 1 : BestHiQuad
5565    };
5566    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5567                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5568                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5569    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5570
5571    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5572    // source words for the shuffle, to aid later transformations.
5573    bool AllWordsInNewV = true;
5574    bool InOrder[2] = { true, true };
5575    for (unsigned i = 0; i != 8; ++i) {
5576      int idx = MaskVals[i];
5577      if (idx != (int)i)
5578        InOrder[i/4] = false;
5579      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5580        continue;
5581      AllWordsInNewV = false;
5582      break;
5583    }
5584
5585    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5586    if (AllWordsInNewV) {
5587      for (int i = 0; i != 8; ++i) {
5588        int idx = MaskVals[i];
5589        if (idx < 0)
5590          continue;
5591        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5592        if ((idx != i) && idx < 4)
5593          pshufhw = false;
5594        if ((idx != i) && idx > 3)
5595          pshuflw = false;
5596      }
5597      V1 = NewV;
5598      V2Used = false;
5599      BestLoQuad = 0;
5600      BestHiQuad = 1;
5601    }
5602
5603    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5604    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5605    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5606      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5607      unsigned TargetMask = 0;
5608      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5609                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5610      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5611      TargetMask = pshufhw ? getShufflePSHUFHWImmediate(SVOp):
5612                             getShufflePSHUFLWImmediate(SVOp);
5613      V1 = NewV.getOperand(0);
5614      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5615    }
5616  }
5617
5618  // If we have SSSE3, and all words of the result are from 1 input vector,
5619  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5620  // is present, fall back to case 4.
5621  if (Subtarget->hasSSSE3()) {
5622    SmallVector<SDValue,16> pshufbMask;
5623
5624    // If we have elements from both input vectors, set the high bit of the
5625    // shuffle mask element to zero out elements that come from V2 in the V1
5626    // mask, and elements that come from V1 in the V2 mask, so that the two
5627    // results can be OR'd together.
5628    bool TwoInputs = V1Used && V2Used;
5629    for (unsigned i = 0; i != 8; ++i) {
5630      int EltIdx = MaskVals[i] * 2;
5631      if (TwoInputs && (EltIdx >= 16)) {
5632        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5633        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5634        continue;
5635      }
5636      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
5637      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
5638    }
5639    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5640    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5641                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5642                                 MVT::v16i8, &pshufbMask[0], 16));
5643    if (!TwoInputs)
5644      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5645
5646    // Calculate the shuffle mask for the second input, shuffle it, and
5647    // OR it with the first shuffled input.
5648    pshufbMask.clear();
5649    for (unsigned i = 0; i != 8; ++i) {
5650      int EltIdx = MaskVals[i] * 2;
5651      if (EltIdx < 16) {
5652        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5653        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5654        continue;
5655      }
5656      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5657      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
5658    }
5659    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5660    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5661                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5662                                 MVT::v16i8, &pshufbMask[0], 16));
5663    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5664    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5665  }
5666
5667  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5668  // and update MaskVals with new element order.
5669  std::bitset<8> InOrder;
5670  if (BestLoQuad >= 0) {
5671    int MaskV[] = { -1, -1, -1, -1, 4, 5, 6, 7 };
5672    for (int i = 0; i != 4; ++i) {
5673      int idx = MaskVals[i];
5674      if (idx < 0) {
5675        InOrder.set(i);
5676      } else if ((idx / 4) == BestLoQuad) {
5677        MaskV[i] = idx & 3;
5678        InOrder.set(i);
5679      }
5680    }
5681    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5682                                &MaskV[0]);
5683
5684    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5685      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5686      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5687                                  NewV.getOperand(0),
5688                                  getShufflePSHUFLWImmediate(SVOp), DAG);
5689    }
5690  }
5691
5692  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5693  // and update MaskVals with the new element order.
5694  if (BestHiQuad >= 0) {
5695    int MaskV[] = { 0, 1, 2, 3, -1, -1, -1, -1 };
5696    for (unsigned i = 4; i != 8; ++i) {
5697      int idx = MaskVals[i];
5698      if (idx < 0) {
5699        InOrder.set(i);
5700      } else if ((idx / 4) == BestHiQuad) {
5701        MaskV[i] = (idx & 3) + 4;
5702        InOrder.set(i);
5703      }
5704    }
5705    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5706                                &MaskV[0]);
5707
5708    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5709      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5710      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5711                                  NewV.getOperand(0),
5712                                  getShufflePSHUFHWImmediate(SVOp), DAG);
5713    }
5714  }
5715
5716  // In case BestHi & BestLo were both -1, which means each quadword has a word
5717  // from each of the four input quadwords, calculate the InOrder bitvector now
5718  // before falling through to the insert/extract cleanup.
5719  if (BestLoQuad == -1 && BestHiQuad == -1) {
5720    NewV = V1;
5721    for (int i = 0; i != 8; ++i)
5722      if (MaskVals[i] < 0 || MaskVals[i] == i)
5723        InOrder.set(i);
5724  }
5725
5726  // The other elements are put in the right place using pextrw and pinsrw.
5727  for (unsigned i = 0; i != 8; ++i) {
5728    if (InOrder[i])
5729      continue;
5730    int EltIdx = MaskVals[i];
5731    if (EltIdx < 0)
5732      continue;
5733    SDValue ExtOp = (EltIdx < 8)
5734    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5735                  DAG.getIntPtrConstant(EltIdx))
5736    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5737                  DAG.getIntPtrConstant(EltIdx - 8));
5738    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5739                       DAG.getIntPtrConstant(i));
5740  }
5741  return NewV;
5742}
5743
5744// v16i8 shuffles - Prefer shuffles in the following order:
5745// 1. [ssse3] 1 x pshufb
5746// 2. [ssse3] 2 x pshufb + 1 x por
5747// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5748static
5749SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5750                                 SelectionDAG &DAG,
5751                                 const X86TargetLowering &TLI) {
5752  SDValue V1 = SVOp->getOperand(0);
5753  SDValue V2 = SVOp->getOperand(1);
5754  DebugLoc dl = SVOp->getDebugLoc();
5755  ArrayRef<int> MaskVals = SVOp->getMask();
5756
5757  // If we have SSSE3, case 1 is generated when all result bytes come from
5758  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5759  // present, fall back to case 3.
5760  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
5761  bool V1Only = true;
5762  bool V2Only = true;
5763  for (unsigned i = 0; i < 16; ++i) {
5764    int EltIdx = MaskVals[i];
5765    if (EltIdx < 0)
5766      continue;
5767    if (EltIdx < 16)
5768      V2Only = false;
5769    else
5770      V1Only = false;
5771  }
5772
5773  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5774  if (TLI.getSubtarget()->hasSSSE3()) {
5775    SmallVector<SDValue,16> pshufbMask;
5776
5777    // If all result elements are from one input vector, then only translate
5778    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5779    //
5780    // Otherwise, we have elements from both input vectors, and must zero out
5781    // elements that come from V2 in the first mask, and V1 in the second mask
5782    // so that we can OR them together.
5783    bool TwoInputs = !(V1Only || V2Only);
5784    for (unsigned i = 0; i != 16; ++i) {
5785      int EltIdx = MaskVals[i];
5786      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
5787        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5788        continue;
5789      }
5790      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5791    }
5792    // If all the elements are from V2, assign it to V1 and return after
5793    // building the first pshufb.
5794    if (V2Only)
5795      V1 = V2;
5796    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5797                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5798                                 MVT::v16i8, &pshufbMask[0], 16));
5799    if (!TwoInputs)
5800      return V1;
5801
5802    // Calculate the shuffle mask for the second input, shuffle it, and
5803    // OR it with the first shuffled input.
5804    pshufbMask.clear();
5805    for (unsigned i = 0; i != 16; ++i) {
5806      int EltIdx = MaskVals[i];
5807      if (EltIdx < 16) {
5808        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5809        continue;
5810      }
5811      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5812    }
5813    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5814                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5815                                 MVT::v16i8, &pshufbMask[0], 16));
5816    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5817  }
5818
5819  // No SSSE3 - Calculate in place words and then fix all out of place words
5820  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5821  // the 16 different words that comprise the two doublequadword input vectors.
5822  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5823  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5824  SDValue NewV = V2Only ? V2 : V1;
5825  for (int i = 0; i != 8; ++i) {
5826    int Elt0 = MaskVals[i*2];
5827    int Elt1 = MaskVals[i*2+1];
5828
5829    // This word of the result is all undef, skip it.
5830    if (Elt0 < 0 && Elt1 < 0)
5831      continue;
5832
5833    // This word of the result is already in the correct place, skip it.
5834    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
5835      continue;
5836    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
5837      continue;
5838
5839    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5840    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5841    SDValue InsElt;
5842
5843    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5844    // using a single extract together, load it and store it.
5845    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5846      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5847                           DAG.getIntPtrConstant(Elt1 / 2));
5848      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5849                        DAG.getIntPtrConstant(i));
5850      continue;
5851    }
5852
5853    // If Elt1 is defined, extract it from the appropriate source.  If the
5854    // source byte is not also odd, shift the extracted word left 8 bits
5855    // otherwise clear the bottom 8 bits if we need to do an or.
5856    if (Elt1 >= 0) {
5857      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5858                           DAG.getIntPtrConstant(Elt1 / 2));
5859      if ((Elt1 & 1) == 0)
5860        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5861                             DAG.getConstant(8,
5862                                  TLI.getShiftAmountTy(InsElt.getValueType())));
5863      else if (Elt0 >= 0)
5864        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5865                             DAG.getConstant(0xFF00, MVT::i16));
5866    }
5867    // If Elt0 is defined, extract it from the appropriate source.  If the
5868    // source byte is not also even, shift the extracted word right 8 bits. If
5869    // Elt1 was also defined, OR the extracted values together before
5870    // inserting them in the result.
5871    if (Elt0 >= 0) {
5872      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5873                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5874      if ((Elt0 & 1) != 0)
5875        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5876                              DAG.getConstant(8,
5877                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
5878      else if (Elt1 >= 0)
5879        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5880                             DAG.getConstant(0x00FF, MVT::i16));
5881      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5882                         : InsElt0;
5883    }
5884    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5885                       DAG.getIntPtrConstant(i));
5886  }
5887  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5888}
5889
5890/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5891/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5892/// done when every pair / quad of shuffle mask elements point to elements in
5893/// the right sequence. e.g.
5894/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5895static
5896SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5897                                 SelectionDAG &DAG, DebugLoc dl) {
5898  EVT VT = SVOp->getValueType(0);
5899  SDValue V1 = SVOp->getOperand(0);
5900  SDValue V2 = SVOp->getOperand(1);
5901  unsigned NumElems = VT.getVectorNumElements();
5902  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
5903  EVT NewVT;
5904  switch (VT.getSimpleVT().SimpleTy) {
5905  default: llvm_unreachable("Unexpected!");
5906  case MVT::v4f32: NewVT = MVT::v2f64; break;
5907  case MVT::v4i32: NewVT = MVT::v2i64; break;
5908  case MVT::v8i16: NewVT = MVT::v4i32; break;
5909  case MVT::v16i8: NewVT = MVT::v4i32; break;
5910  }
5911
5912  int Scale = NumElems / NewWidth;
5913  SmallVector<int, 8> MaskVec;
5914  for (unsigned i = 0; i < NumElems; i += Scale) {
5915    int StartIdx = -1;
5916    for (int j = 0; j < Scale; ++j) {
5917      int EltIdx = SVOp->getMaskElt(i+j);
5918      if (EltIdx < 0)
5919        continue;
5920      if (StartIdx == -1)
5921        StartIdx = EltIdx - (EltIdx % Scale);
5922      if (EltIdx != StartIdx + j)
5923        return SDValue();
5924    }
5925    if (StartIdx == -1)
5926      MaskVec.push_back(-1);
5927    else
5928      MaskVec.push_back(StartIdx / Scale);
5929  }
5930
5931  V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
5932  V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
5933  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
5934}
5935
5936/// getVZextMovL - Return a zero-extending vector move low node.
5937///
5938static SDValue getVZextMovL(EVT VT, EVT OpVT,
5939                            SDValue SrcOp, SelectionDAG &DAG,
5940                            const X86Subtarget *Subtarget, DebugLoc dl) {
5941  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
5942    LoadSDNode *LD = NULL;
5943    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
5944      LD = dyn_cast<LoadSDNode>(SrcOp);
5945    if (!LD) {
5946      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
5947      // instead.
5948      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
5949      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
5950          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5951          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
5952          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
5953        // PR2108
5954        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
5955        return DAG.getNode(ISD::BITCAST, dl, VT,
5956                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5957                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5958                                                   OpVT,
5959                                                   SrcOp.getOperand(0)
5960                                                          .getOperand(0))));
5961      }
5962    }
5963  }
5964
5965  return DAG.getNode(ISD::BITCAST, dl, VT,
5966                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5967                                 DAG.getNode(ISD::BITCAST, dl,
5968                                             OpVT, SrcOp)));
5969}
5970
5971/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
5972/// which could not be matched by any known target speficic shuffle
5973static SDValue
5974LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5975  EVT VT = SVOp->getValueType(0);
5976
5977  unsigned NumElems = VT.getVectorNumElements();
5978  unsigned NumLaneElems = NumElems / 2;
5979
5980  DebugLoc dl = SVOp->getDebugLoc();
5981  MVT EltVT = VT.getVectorElementType().getSimpleVT();
5982  EVT NVT = MVT::getVectorVT(EltVT, NumLaneElems);
5983  SDValue Shufs[2];
5984
5985  SmallVector<int, 16> Mask;
5986  for (unsigned l = 0; l < 2; ++l) {
5987    // Build a shuffle mask for the output, discovering on the fly which
5988    // input vectors to use as shuffle operands (recorded in InputUsed).
5989    // If building a suitable shuffle vector proves too hard, then bail
5990    // out with useBuildVector set.
5991    int InputUsed[2] = { -1, -1 }; // Not yet discovered.
5992    unsigned LaneStart = l * NumLaneElems;
5993    for (unsigned i = 0; i != NumLaneElems; ++i) {
5994      // The mask element.  This indexes into the input.
5995      int Idx = SVOp->getMaskElt(i+LaneStart);
5996      if (Idx < 0) {
5997        // the mask element does not index into any input vector.
5998        Mask.push_back(-1);
5999        continue;
6000      }
6001
6002      // The input vector this mask element indexes into.
6003      int Input = Idx / NumLaneElems;
6004
6005      // Turn the index into an offset from the start of the input vector.
6006      Idx -= Input * NumLaneElems;
6007
6008      // Find or create a shuffle vector operand to hold this input.
6009      unsigned OpNo;
6010      for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
6011        if (InputUsed[OpNo] == Input)
6012          // This input vector is already an operand.
6013          break;
6014        if (InputUsed[OpNo] < 0) {
6015          // Create a new operand for this input vector.
6016          InputUsed[OpNo] = Input;
6017          break;
6018        }
6019      }
6020
6021      if (OpNo >= array_lengthof(InputUsed)) {
6022        // More than two input vectors used! Give up.
6023        return SDValue();
6024      }
6025
6026      // Add the mask index for the new shuffle vector.
6027      Mask.push_back(Idx + OpNo * NumLaneElems);
6028    }
6029
6030    if (InputUsed[0] < 0) {
6031      // No input vectors were used! The result is undefined.
6032      Shufs[l] = DAG.getUNDEF(NVT);
6033    } else {
6034      SDValue Op0 = Extract128BitVector(SVOp->getOperand(InputUsed[0] / 2),
6035                   DAG.getConstant((InputUsed[0] % 2) * NumLaneElems, MVT::i32),
6036                                   DAG, dl);
6037      // If only one input was used, use an undefined vector for the other.
6038      SDValue Op1 = (InputUsed[1] < 0) ? DAG.getUNDEF(NVT) :
6039        Extract128BitVector(SVOp->getOperand(InputUsed[1] / 2),
6040                   DAG.getConstant((InputUsed[1] % 2) * NumLaneElems, MVT::i32),
6041                                   DAG, dl);
6042      // At least one input vector was used. Create a new shuffle vector.
6043      Shufs[l] = DAG.getVectorShuffle(NVT, dl, Op0, Op1, &Mask[0]);
6044    }
6045
6046    Mask.clear();
6047  }
6048
6049  // Concatenate the result back
6050  SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Shufs[0],
6051                                 DAG.getConstant(0, MVT::i32), DAG, dl);
6052  return Insert128BitVector(V, Shufs[1],DAG.getConstant(NumLaneElems, MVT::i32),
6053                            DAG, dl);
6054}
6055
6056/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6057/// 4 elements, and match them with several different shuffle types.
6058static SDValue
6059LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6060  SDValue V1 = SVOp->getOperand(0);
6061  SDValue V2 = SVOp->getOperand(1);
6062  DebugLoc dl = SVOp->getDebugLoc();
6063  EVT VT = SVOp->getValueType(0);
6064
6065  assert(VT.getSizeInBits() == 128 && "Unsupported vector size");
6066
6067  std::pair<int, int> Locs[4];
6068  int Mask1[] = { -1, -1, -1, -1 };
6069  SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end());
6070
6071  unsigned NumHi = 0;
6072  unsigned NumLo = 0;
6073  for (unsigned i = 0; i != 4; ++i) {
6074    int Idx = PermMask[i];
6075    if (Idx < 0) {
6076      Locs[i] = std::make_pair(-1, -1);
6077    } else {
6078      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6079      if (Idx < 4) {
6080        Locs[i] = std::make_pair(0, NumLo);
6081        Mask1[NumLo] = Idx;
6082        NumLo++;
6083      } else {
6084        Locs[i] = std::make_pair(1, NumHi);
6085        if (2+NumHi < 4)
6086          Mask1[2+NumHi] = Idx;
6087        NumHi++;
6088      }
6089    }
6090  }
6091
6092  if (NumLo <= 2 && NumHi <= 2) {
6093    // If no more than two elements come from either vector. This can be
6094    // implemented with two shuffles. First shuffle gather the elements.
6095    // The second shuffle, which takes the first shuffle as both of its
6096    // vector operands, put the elements into the right order.
6097    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6098
6099    int Mask2[] = { -1, -1, -1, -1 };
6100
6101    for (unsigned i = 0; i != 4; ++i)
6102      if (Locs[i].first != -1) {
6103        unsigned Idx = (i < 2) ? 0 : 4;
6104        Idx += Locs[i].first * 2 + Locs[i].second;
6105        Mask2[i] = Idx;
6106      }
6107
6108    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6109  } else if (NumLo == 3 || NumHi == 3) {
6110    // Otherwise, we must have three elements from one vector, call it X, and
6111    // one element from the other, call it Y.  First, use a shufps to build an
6112    // intermediate vector with the one element from Y and the element from X
6113    // that will be in the same half in the final destination (the indexes don't
6114    // matter). Then, use a shufps to build the final vector, taking the half
6115    // containing the element from Y from the intermediate, and the other half
6116    // from X.
6117    if (NumHi == 3) {
6118      // Normalize it so the 3 elements come from V1.
6119      CommuteVectorShuffleMask(PermMask, 4);
6120      std::swap(V1, V2);
6121    }
6122
6123    // Find the element from V2.
6124    unsigned HiIndex;
6125    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6126      int Val = PermMask[HiIndex];
6127      if (Val < 0)
6128        continue;
6129      if (Val >= 4)
6130        break;
6131    }
6132
6133    Mask1[0] = PermMask[HiIndex];
6134    Mask1[1] = -1;
6135    Mask1[2] = PermMask[HiIndex^1];
6136    Mask1[3] = -1;
6137    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6138
6139    if (HiIndex >= 2) {
6140      Mask1[0] = PermMask[0];
6141      Mask1[1] = PermMask[1];
6142      Mask1[2] = HiIndex & 1 ? 6 : 4;
6143      Mask1[3] = HiIndex & 1 ? 4 : 6;
6144      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6145    } else {
6146      Mask1[0] = HiIndex & 1 ? 2 : 0;
6147      Mask1[1] = HiIndex & 1 ? 0 : 2;
6148      Mask1[2] = PermMask[2];
6149      Mask1[3] = PermMask[3];
6150      if (Mask1[2] >= 0)
6151        Mask1[2] += 4;
6152      if (Mask1[3] >= 0)
6153        Mask1[3] += 4;
6154      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6155    }
6156  }
6157
6158  // Break it into (shuffle shuffle_hi, shuffle_lo).
6159  int LoMask[] = { -1, -1, -1, -1 };
6160  int HiMask[] = { -1, -1, -1, -1 };
6161
6162  int *MaskPtr = LoMask;
6163  unsigned MaskIdx = 0;
6164  unsigned LoIdx = 0;
6165  unsigned HiIdx = 2;
6166  for (unsigned i = 0; i != 4; ++i) {
6167    if (i == 2) {
6168      MaskPtr = HiMask;
6169      MaskIdx = 1;
6170      LoIdx = 0;
6171      HiIdx = 2;
6172    }
6173    int Idx = PermMask[i];
6174    if (Idx < 0) {
6175      Locs[i] = std::make_pair(-1, -1);
6176    } else if (Idx < 4) {
6177      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6178      MaskPtr[LoIdx] = Idx;
6179      LoIdx++;
6180    } else {
6181      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6182      MaskPtr[HiIdx] = Idx;
6183      HiIdx++;
6184    }
6185  }
6186
6187  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6188  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6189  int MaskOps[] = { -1, -1, -1, -1 };
6190  for (unsigned i = 0; i != 4; ++i)
6191    if (Locs[i].first != -1)
6192      MaskOps[i] = Locs[i].first * 4 + Locs[i].second;
6193  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6194}
6195
6196static bool MayFoldVectorLoad(SDValue V) {
6197  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6198    V = V.getOperand(0);
6199  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6200    V = V.getOperand(0);
6201  if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
6202      V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
6203    // BUILD_VECTOR (load), undef
6204    V = V.getOperand(0);
6205  if (MayFoldLoad(V))
6206    return true;
6207  return false;
6208}
6209
6210// FIXME: the version above should always be used. Since there's
6211// a bug where several vector shuffles can't be folded because the
6212// DAG is not updated during lowering and a node claims to have two
6213// uses while it only has one, use this version, and let isel match
6214// another instruction if the load really happens to have more than
6215// one use. Remove this version after this bug get fixed.
6216// rdar://8434668, PR8156
6217static bool RelaxedMayFoldVectorLoad(SDValue V) {
6218  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6219    V = V.getOperand(0);
6220  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6221    V = V.getOperand(0);
6222  if (ISD::isNormalLoad(V.getNode()))
6223    return true;
6224  return false;
6225}
6226
6227static
6228SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6229  EVT VT = Op.getValueType();
6230
6231  // Canonizalize to v2f64.
6232  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6233  return DAG.getNode(ISD::BITCAST, dl, VT,
6234                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6235                                          V1, DAG));
6236}
6237
6238static
6239SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6240                        bool HasSSE2) {
6241  SDValue V1 = Op.getOperand(0);
6242  SDValue V2 = Op.getOperand(1);
6243  EVT VT = Op.getValueType();
6244
6245  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6246
6247  if (HasSSE2 && VT == MVT::v2f64)
6248    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6249
6250  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6251  return DAG.getNode(ISD::BITCAST, dl, VT,
6252                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6253                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6254                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6255}
6256
6257static
6258SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6259  SDValue V1 = Op.getOperand(0);
6260  SDValue V2 = Op.getOperand(1);
6261  EVT VT = Op.getValueType();
6262
6263  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6264         "unsupported shuffle type");
6265
6266  if (V2.getOpcode() == ISD::UNDEF)
6267    V2 = V1;
6268
6269  // v4i32 or v4f32
6270  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6271}
6272
6273static
6274SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
6275  SDValue V1 = Op.getOperand(0);
6276  SDValue V2 = Op.getOperand(1);
6277  EVT VT = Op.getValueType();
6278  unsigned NumElems = VT.getVectorNumElements();
6279
6280  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6281  // operand of these instructions is only memory, so check if there's a
6282  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6283  // same masks.
6284  bool CanFoldLoad = false;
6285
6286  // Trivial case, when V2 comes from a load.
6287  if (MayFoldVectorLoad(V2))
6288    CanFoldLoad = true;
6289
6290  // When V1 is a load, it can be folded later into a store in isel, example:
6291  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6292  //    turns into:
6293  //  (MOVLPSmr addr:$src1, VR128:$src2)
6294  // So, recognize this potential and also use MOVLPS or MOVLPD
6295  else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6296    CanFoldLoad = true;
6297
6298  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6299  if (CanFoldLoad) {
6300    if (HasSSE2 && NumElems == 2)
6301      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6302
6303    if (NumElems == 4)
6304      // If we don't care about the second element, procede to use movss.
6305      if (SVOp->getMaskElt(1) != -1)
6306        return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6307  }
6308
6309  // movl and movlp will both match v2i64, but v2i64 is never matched by
6310  // movl earlier because we make it strict to avoid messing with the movlp load
6311  // folding logic (see the code above getMOVLP call). Match it here then,
6312  // this is horrible, but will stay like this until we move all shuffle
6313  // matching to x86 specific nodes. Note that for the 1st condition all
6314  // types are matched with movsd.
6315  if (HasSSE2) {
6316    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6317    // as to remove this logic from here, as much as possible
6318    if (NumElems == 2 || !isMOVLMask(SVOp->getMask(), VT))
6319      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6320    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6321  }
6322
6323  assert(VT != MVT::v4i32 && "unsupported shuffle type");
6324
6325  // Invert the operand order and use SHUFPS to match it.
6326  return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
6327                              getShuffleSHUFImmediate(SVOp), DAG);
6328}
6329
6330SDValue
6331X86TargetLowering::NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG) const {
6332  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6333  EVT VT = Op.getValueType();
6334  DebugLoc dl = Op.getDebugLoc();
6335  SDValue V1 = Op.getOperand(0);
6336  SDValue V2 = Op.getOperand(1);
6337
6338  if (isZeroShuffle(SVOp))
6339    return getZeroVector(VT, Subtarget, DAG, dl);
6340
6341  // Handle splat operations
6342  if (SVOp->isSplat()) {
6343    unsigned NumElem = VT.getVectorNumElements();
6344    int Size = VT.getSizeInBits();
6345
6346    // Use vbroadcast whenever the splat comes from a foldable load
6347    SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
6348    if (Broadcast.getNode())
6349      return Broadcast;
6350
6351    // Handle splats by matching through known shuffle masks
6352    if ((Size == 128 && NumElem <= 4) ||
6353        (Size == 256 && NumElem < 8))
6354      return SDValue();
6355
6356    // All remaning splats are promoted to target supported vector shuffles.
6357    return PromoteSplat(SVOp, DAG);
6358  }
6359
6360  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6361  // do it!
6362  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
6363    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6364    if (NewOp.getNode())
6365      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6366  } else if ((VT == MVT::v4i32 ||
6367             (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
6368    // FIXME: Figure out a cleaner way to do this.
6369    // Try to make use of movq to zero out the top part.
6370    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6371      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6372      if (NewOp.getNode()) {
6373        EVT NewVT = NewOp.getValueType();
6374        if (isCommutedMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(),
6375                               NewVT, true, false))
6376          return getVZextMovL(VT, NewVT, NewOp.getOperand(0),
6377                              DAG, Subtarget, dl);
6378      }
6379    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6380      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6381      if (NewOp.getNode()) {
6382        EVT NewVT = NewOp.getValueType();
6383        if (isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(), NewVT))
6384          return getVZextMovL(VT, NewVT, NewOp.getOperand(1),
6385                              DAG, Subtarget, dl);
6386      }
6387    }
6388  }
6389  return SDValue();
6390}
6391
6392SDValue
6393X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6394  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6395  SDValue V1 = Op.getOperand(0);
6396  SDValue V2 = Op.getOperand(1);
6397  EVT VT = Op.getValueType();
6398  DebugLoc dl = Op.getDebugLoc();
6399  unsigned NumElems = VT.getVectorNumElements();
6400  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6401  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6402  bool V1IsSplat = false;
6403  bool V2IsSplat = false;
6404  bool HasSSE2 = Subtarget->hasSSE2();
6405  bool HasAVX    = Subtarget->hasAVX();
6406  bool HasAVX2   = Subtarget->hasAVX2();
6407  MachineFunction &MF = DAG.getMachineFunction();
6408  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
6409
6410  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
6411
6412  if (V1IsUndef && V2IsUndef)
6413    return DAG.getUNDEF(VT);
6414
6415  assert(!V1IsUndef && "Op 1 of shuffle should not be undef");
6416
6417  // Vector shuffle lowering takes 3 steps:
6418  //
6419  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6420  //    narrowing and commutation of operands should be handled.
6421  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6422  //    shuffle nodes.
6423  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6424  //    so the shuffle can be broken into other shuffles and the legalizer can
6425  //    try the lowering again.
6426  //
6427  // The general idea is that no vector_shuffle operation should be left to
6428  // be matched during isel, all of them must be converted to a target specific
6429  // node here.
6430
6431  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6432  // narrowing and commutation of operands should be handled. The actual code
6433  // doesn't include all of those, work in progress...
6434  SDValue NewOp = NormalizeVectorShuffle(Op, DAG);
6435  if (NewOp.getNode())
6436    return NewOp;
6437
6438  SmallVector<int, 8> M(SVOp->getMask().begin(), SVOp->getMask().end());
6439
6440  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6441  // unpckh_undef). Only use pshufd if speed is more important than size.
6442  if (OptForSize && isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6443    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6444  if (OptForSize && isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6445    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6446
6447  if (isMOVDDUPMask(M, VT) && Subtarget->hasSSE3() &&
6448      V2IsUndef && RelaxedMayFoldVectorLoad(V1))
6449    return getMOVDDup(Op, dl, V1, DAG);
6450
6451  if (isMOVHLPS_v_undef_Mask(M, VT))
6452    return getMOVHighToLow(Op, dl, DAG);
6453
6454  // Use to match splats
6455  if (HasSSE2 && isUNPCKHMask(M, VT, HasAVX2) && V2IsUndef &&
6456      (VT == MVT::v2f64 || VT == MVT::v2i64))
6457    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6458
6459  if (isPSHUFDMask(M, VT)) {
6460    // The actual implementation will match the mask in the if above and then
6461    // during isel it can match several different instructions, not only pshufd
6462    // as its name says, sad but true, emulate the behavior for now...
6463    if (isMOVDDUPMask(M, VT) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6464      return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6465
6466    unsigned TargetMask = getShuffleSHUFImmediate(SVOp);
6467
6468    if (HasAVX && (VT == MVT::v4f32 || VT == MVT::v2f64))
6469      return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1, TargetMask, DAG);
6470
6471    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
6472      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6473
6474    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
6475                                TargetMask, DAG);
6476  }
6477
6478  // Check if this can be converted into a logical shift.
6479  bool isLeft = false;
6480  unsigned ShAmt = 0;
6481  SDValue ShVal;
6482  bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6483  if (isShift && ShVal.hasOneUse()) {
6484    // If the shifted value has multiple uses, it may be cheaper to use
6485    // v_set0 + movlhps or movhlps, etc.
6486    EVT EltVT = VT.getVectorElementType();
6487    ShAmt *= EltVT.getSizeInBits();
6488    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6489  }
6490
6491  if (isMOVLMask(M, VT)) {
6492    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6493      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6494    if (!isMOVLPMask(M, VT)) {
6495      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6496        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6497
6498      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6499        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6500    }
6501  }
6502
6503  // FIXME: fold these into legal mask.
6504  if (isMOVLHPSMask(M, VT) && !isUNPCKLMask(M, VT, HasAVX2))
6505    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
6506
6507  if (isMOVHLPSMask(M, VT))
6508    return getMOVHighToLow(Op, dl, DAG);
6509
6510  if (V2IsUndef && isMOVSHDUPMask(M, VT, Subtarget))
6511    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6512
6513  if (V2IsUndef && isMOVSLDUPMask(M, VT, Subtarget))
6514    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6515
6516  if (isMOVLPMask(M, VT))
6517    return getMOVLP(Op, dl, DAG, HasSSE2);
6518
6519  if (ShouldXformToMOVHLPS(M, VT) ||
6520      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), M, VT))
6521    return CommuteVectorShuffle(SVOp, DAG);
6522
6523  if (isShift) {
6524    // No better options. Use a vshldq / vsrldq.
6525    EVT EltVT = VT.getVectorElementType();
6526    ShAmt *= EltVT.getSizeInBits();
6527    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6528  }
6529
6530  bool Commuted = false;
6531  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6532  // 1,1,1,1 -> v8i16 though.
6533  V1IsSplat = isSplatVector(V1.getNode());
6534  V2IsSplat = isSplatVector(V2.getNode());
6535
6536  // Canonicalize the splat or undef, if present, to be on the RHS.
6537  if (!V2IsUndef && V1IsSplat && !V2IsSplat) {
6538    CommuteVectorShuffleMask(M, NumElems);
6539    std::swap(V1, V2);
6540    std::swap(V1IsSplat, V2IsSplat);
6541    Commuted = true;
6542  }
6543
6544  if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
6545    // Shuffling low element of v1 into undef, just return v1.
6546    if (V2IsUndef)
6547      return V1;
6548    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6549    // the instruction selector will not match, so get a canonical MOVL with
6550    // swapped operands to undo the commute.
6551    return getMOVL(DAG, dl, VT, V2, V1);
6552  }
6553
6554  if (isUNPCKLMask(M, VT, HasAVX2))
6555    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6556
6557  if (isUNPCKHMask(M, VT, HasAVX2))
6558    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6559
6560  if (V2IsSplat) {
6561    // Normalize mask so all entries that point to V2 points to its first
6562    // element then try to match unpck{h|l} again. If match, return a
6563    // new vector_shuffle with the corrected mask.p
6564    SmallVector<int, 8> NewMask(M.begin(), M.end());
6565    NormalizeMask(NewMask, NumElems);
6566    if (isUNPCKLMask(NewMask, VT, HasAVX2, true)) {
6567      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6568    } else if (isUNPCKHMask(NewMask, VT, HasAVX2, true)) {
6569      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6570    }
6571  }
6572
6573  if (Commuted) {
6574    // Commute is back and try unpck* again.
6575    // FIXME: this seems wrong.
6576    CommuteVectorShuffleMask(M, NumElems);
6577    std::swap(V1, V2);
6578    std::swap(V1IsSplat, V2IsSplat);
6579    Commuted = false;
6580
6581    if (isUNPCKLMask(M, VT, HasAVX2))
6582      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6583
6584    if (isUNPCKHMask(M, VT, HasAVX2))
6585      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6586  }
6587
6588  // Normalize the node to match x86 shuffle ops if needed
6589  if (!V2IsUndef && (isSHUFPMask(M, VT, HasAVX, /* Commuted */ true)))
6590    return CommuteVectorShuffle(SVOp, DAG);
6591
6592  // The checks below are all present in isShuffleMaskLegal, but they are
6593  // inlined here right now to enable us to directly emit target specific
6594  // nodes, and remove one by one until they don't return Op anymore.
6595
6596  if (isPALIGNRMask(M, VT, Subtarget))
6597    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6598                                getShufflePALIGNRImmediate(SVOp),
6599                                DAG);
6600
6601  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6602      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6603    if (VT == MVT::v2f64 || VT == MVT::v2i64)
6604      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6605  }
6606
6607  if (isPSHUFHWMask(M, VT))
6608    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6609                                getShufflePSHUFHWImmediate(SVOp),
6610                                DAG);
6611
6612  if (isPSHUFLWMask(M, VT))
6613    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6614                                getShufflePSHUFLWImmediate(SVOp),
6615                                DAG);
6616
6617  if (isSHUFPMask(M, VT, HasAVX))
6618    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
6619                                getShuffleSHUFImmediate(SVOp), DAG);
6620
6621  if (isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6622    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6623  if (isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6624    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6625
6626  //===--------------------------------------------------------------------===//
6627  // Generate target specific nodes for 128 or 256-bit shuffles only
6628  // supported in the AVX instruction set.
6629  //
6630
6631  // Handle VMOVDDUPY permutations
6632  if (V2IsUndef && isMOVDDUPYMask(M, VT, HasAVX))
6633    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
6634
6635  // Handle VPERMILPS/D* permutations
6636  if (isVPERMILPMask(M, VT, HasAVX)) {
6637    if (HasAVX2 && VT == MVT::v8i32)
6638      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1,
6639                                  getShuffleSHUFImmediate(SVOp), DAG);
6640    return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
6641                                getShuffleSHUFImmediate(SVOp), DAG);
6642  }
6643
6644  // Handle VPERM2F128/VPERM2I128 permutations
6645  if (isVPERM2X128Mask(M, VT, HasAVX))
6646    return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
6647                                V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
6648
6649  SDValue BlendOp = LowerVECTOR_SHUFFLEtoBlend(Op, Subtarget, DAG);
6650  if (BlendOp.getNode())
6651    return BlendOp;
6652
6653  if (V2IsUndef && HasAVX2 && (VT == MVT::v8i32 || VT == MVT::v8f32)) {
6654    SmallVector<SDValue, 8> permclMask;
6655    for (unsigned i = 0; i != 8; ++i) {
6656      permclMask.push_back(DAG.getConstant((M[i]>=0) ? M[i] : 0, MVT::i32));
6657    }
6658    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32,
6659                               &permclMask[0], 8);
6660    // Bitcast is for VPERMPS since mask is v8i32 but node takes v8f32
6661    return DAG.getNode(X86ISD::VPERMV, dl, VT,
6662                       DAG.getNode(ISD::BITCAST, dl, VT, Mask), V1);
6663  }
6664
6665  if (V2IsUndef && HasAVX2 && (VT == MVT::v4i64 || VT == MVT::v4f64))
6666    return getTargetShuffleNode(X86ISD::VPERMI, dl, VT, V1,
6667                                getShuffleCLImmediate(SVOp), DAG);
6668
6669
6670  //===--------------------------------------------------------------------===//
6671  // Since no target specific shuffle was selected for this generic one,
6672  // lower it into other known shuffles. FIXME: this isn't true yet, but
6673  // this is the plan.
6674  //
6675
6676  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6677  if (VT == MVT::v8i16) {
6678    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
6679    if (NewOp.getNode())
6680      return NewOp;
6681  }
6682
6683  if (VT == MVT::v16i8) {
6684    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6685    if (NewOp.getNode())
6686      return NewOp;
6687  }
6688
6689  // Handle all 128-bit wide vectors with 4 elements, and match them with
6690  // several different shuffle types.
6691  if (NumElems == 4 && VT.getSizeInBits() == 128)
6692    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6693
6694  // Handle general 256-bit shuffles
6695  if (VT.is256BitVector())
6696    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6697
6698  return SDValue();
6699}
6700
6701SDValue
6702X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6703                                                SelectionDAG &DAG) const {
6704  EVT VT = Op.getValueType();
6705  DebugLoc dl = Op.getDebugLoc();
6706
6707  if (Op.getOperand(0).getValueType().getSizeInBits() != 128)
6708    return SDValue();
6709
6710  if (VT.getSizeInBits() == 8) {
6711    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6712                                    Op.getOperand(0), Op.getOperand(1));
6713    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6714                                    DAG.getValueType(VT));
6715    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6716  } else if (VT.getSizeInBits() == 16) {
6717    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6718    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6719    if (Idx == 0)
6720      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6721                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6722                                     DAG.getNode(ISD::BITCAST, dl,
6723                                                 MVT::v4i32,
6724                                                 Op.getOperand(0)),
6725                                     Op.getOperand(1)));
6726    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6727                                    Op.getOperand(0), Op.getOperand(1));
6728    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6729                                    DAG.getValueType(VT));
6730    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6731  } else if (VT == MVT::f32) {
6732    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6733    // the result back to FR32 register. It's only worth matching if the
6734    // result has a single use which is a store or a bitcast to i32.  And in
6735    // the case of a store, it's not worth it if the index is a constant 0,
6736    // because a MOVSSmr can be used instead, which is smaller and faster.
6737    if (!Op.hasOneUse())
6738      return SDValue();
6739    SDNode *User = *Op.getNode()->use_begin();
6740    if ((User->getOpcode() != ISD::STORE ||
6741         (isa<ConstantSDNode>(Op.getOperand(1)) &&
6742          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6743        (User->getOpcode() != ISD::BITCAST ||
6744         User->getValueType(0) != MVT::i32))
6745      return SDValue();
6746    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6747                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
6748                                              Op.getOperand(0)),
6749                                              Op.getOperand(1));
6750    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
6751  } else if (VT == MVT::i32 || VT == MVT::i64) {
6752    // ExtractPS/pextrq works with constant index.
6753    if (isa<ConstantSDNode>(Op.getOperand(1)))
6754      return Op;
6755  }
6756  return SDValue();
6757}
6758
6759
6760SDValue
6761X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6762                                           SelectionDAG &DAG) const {
6763  if (!isa<ConstantSDNode>(Op.getOperand(1)))
6764    return SDValue();
6765
6766  SDValue Vec = Op.getOperand(0);
6767  EVT VecVT = Vec.getValueType();
6768
6769  // If this is a 256-bit vector result, first extract the 128-bit vector and
6770  // then extract the element from the 128-bit vector.
6771  if (VecVT.getSizeInBits() == 256) {
6772    DebugLoc dl = Op.getNode()->getDebugLoc();
6773    unsigned NumElems = VecVT.getVectorNumElements();
6774    SDValue Idx = Op.getOperand(1);
6775    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6776
6777    // Get the 128-bit vector.
6778    bool Upper = IdxVal >= NumElems/2;
6779    Vec = Extract128BitVector(Vec,
6780                    DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32), DAG, dl);
6781
6782    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6783                    Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : Idx);
6784  }
6785
6786  assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
6787
6788  if (Subtarget->hasSSE41()) {
6789    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6790    if (Res.getNode())
6791      return Res;
6792  }
6793
6794  EVT VT = Op.getValueType();
6795  DebugLoc dl = Op.getDebugLoc();
6796  // TODO: handle v16i8.
6797  if (VT.getSizeInBits() == 16) {
6798    SDValue Vec = Op.getOperand(0);
6799    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6800    if (Idx == 0)
6801      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6802                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6803                                     DAG.getNode(ISD::BITCAST, dl,
6804                                                 MVT::v4i32, Vec),
6805                                     Op.getOperand(1)));
6806    // Transform it so it match pextrw which produces a 32-bit result.
6807    EVT EltVT = MVT::i32;
6808    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6809                                    Op.getOperand(0), Op.getOperand(1));
6810    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6811                                    DAG.getValueType(VT));
6812    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6813  } else if (VT.getSizeInBits() == 32) {
6814    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6815    if (Idx == 0)
6816      return Op;
6817
6818    // SHUFPS the element to the lowest double word, then movss.
6819    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
6820    EVT VVT = Op.getOperand(0).getValueType();
6821    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6822                                       DAG.getUNDEF(VVT), Mask);
6823    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6824                       DAG.getIntPtrConstant(0));
6825  } else if (VT.getSizeInBits() == 64) {
6826    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6827    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6828    //        to match extract_elt for f64.
6829    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6830    if (Idx == 0)
6831      return Op;
6832
6833    // UNPCKHPD the element to the lowest double word, then movsd.
6834    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6835    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6836    int Mask[2] = { 1, -1 };
6837    EVT VVT = Op.getOperand(0).getValueType();
6838    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6839                                       DAG.getUNDEF(VVT), Mask);
6840    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6841                       DAG.getIntPtrConstant(0));
6842  }
6843
6844  return SDValue();
6845}
6846
6847SDValue
6848X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
6849                                               SelectionDAG &DAG) const {
6850  EVT VT = Op.getValueType();
6851  EVT EltVT = VT.getVectorElementType();
6852  DebugLoc dl = Op.getDebugLoc();
6853
6854  SDValue N0 = Op.getOperand(0);
6855  SDValue N1 = Op.getOperand(1);
6856  SDValue N2 = Op.getOperand(2);
6857
6858  if (VT.getSizeInBits() == 256)
6859    return SDValue();
6860
6861  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
6862      isa<ConstantSDNode>(N2)) {
6863    unsigned Opc;
6864    if (VT == MVT::v8i16)
6865      Opc = X86ISD::PINSRW;
6866    else if (VT == MVT::v16i8)
6867      Opc = X86ISD::PINSRB;
6868    else
6869      Opc = X86ISD::PINSRB;
6870
6871    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
6872    // argument.
6873    if (N1.getValueType() != MVT::i32)
6874      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6875    if (N2.getValueType() != MVT::i32)
6876      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6877    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
6878  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
6879    // Bits [7:6] of the constant are the source select.  This will always be
6880    //  zero here.  The DAG Combiner may combine an extract_elt index into these
6881    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
6882    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
6883    // Bits [5:4] of the constant are the destination select.  This is the
6884    //  value of the incoming immediate.
6885    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
6886    //   combine either bitwise AND or insert of float 0.0 to set these bits.
6887    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
6888    // Create this as a scalar to vector..
6889    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
6890    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
6891  } else if ((EltVT == MVT::i32 || EltVT == MVT::i64) &&
6892             isa<ConstantSDNode>(N2)) {
6893    // PINSR* works with constant index.
6894    return Op;
6895  }
6896  return SDValue();
6897}
6898
6899SDValue
6900X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
6901  EVT VT = Op.getValueType();
6902  EVT EltVT = VT.getVectorElementType();
6903
6904  DebugLoc dl = Op.getDebugLoc();
6905  SDValue N0 = Op.getOperand(0);
6906  SDValue N1 = Op.getOperand(1);
6907  SDValue N2 = Op.getOperand(2);
6908
6909  // If this is a 256-bit vector result, first extract the 128-bit vector,
6910  // insert the element into the extracted half and then place it back.
6911  if (VT.getSizeInBits() == 256) {
6912    if (!isa<ConstantSDNode>(N2))
6913      return SDValue();
6914
6915    // Get the desired 128-bit vector half.
6916    unsigned NumElems = VT.getVectorNumElements();
6917    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
6918    bool Upper = IdxVal >= NumElems/2;
6919    SDValue Ins128Idx = DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32);
6920    SDValue V = Extract128BitVector(N0, Ins128Idx, DAG, dl);
6921
6922    // Insert the element into the desired half.
6923    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V,
6924                 N1, Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : N2);
6925
6926    // Insert the changed part back to the 256-bit vector
6927    return Insert128BitVector(N0, V, Ins128Idx, DAG, dl);
6928  }
6929
6930  if (Subtarget->hasSSE41())
6931    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
6932
6933  if (EltVT == MVT::i8)
6934    return SDValue();
6935
6936  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
6937    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
6938    // as its second argument.
6939    if (N1.getValueType() != MVT::i32)
6940      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6941    if (N2.getValueType() != MVT::i32)
6942      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6943    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
6944  }
6945  return SDValue();
6946}
6947
6948SDValue
6949X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
6950  LLVMContext *Context = DAG.getContext();
6951  DebugLoc dl = Op.getDebugLoc();
6952  EVT OpVT = Op.getValueType();
6953
6954  // If this is a 256-bit vector result, first insert into a 128-bit
6955  // vector and then insert into the 256-bit vector.
6956  if (OpVT.getSizeInBits() > 128) {
6957    // Insert into a 128-bit vector.
6958    EVT VT128 = EVT::getVectorVT(*Context,
6959                                 OpVT.getVectorElementType(),
6960                                 OpVT.getVectorNumElements() / 2);
6961
6962    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
6963
6964    // Insert the 128-bit vector.
6965    return Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, OpVT), Op,
6966                              DAG.getConstant(0, MVT::i32),
6967                              DAG, dl);
6968  }
6969
6970  if (Op.getValueType() == MVT::v1i64 &&
6971      Op.getOperand(0).getValueType() == MVT::i64)
6972    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
6973
6974  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
6975  assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
6976         "Expected an SSE type!");
6977  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
6978                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
6979}
6980
6981// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
6982// a simple subregister reference or explicit instructions to grab
6983// upper bits of a vector.
6984SDValue
6985X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
6986  if (Subtarget->hasAVX()) {
6987    DebugLoc dl = Op.getNode()->getDebugLoc();
6988    SDValue Vec = Op.getNode()->getOperand(0);
6989    SDValue Idx = Op.getNode()->getOperand(1);
6990
6991    if (Op.getNode()->getValueType(0).getSizeInBits() == 128
6992        && Vec.getNode()->getValueType(0).getSizeInBits() == 256) {
6993        return Extract128BitVector(Vec, Idx, DAG, dl);
6994    }
6995  }
6996  return SDValue();
6997}
6998
6999// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
7000// simple superregister reference or explicit instructions to insert
7001// the upper bits of a vector.
7002SDValue
7003X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7004  if (Subtarget->hasAVX()) {
7005    DebugLoc dl = Op.getNode()->getDebugLoc();
7006    SDValue Vec = Op.getNode()->getOperand(0);
7007    SDValue SubVec = Op.getNode()->getOperand(1);
7008    SDValue Idx = Op.getNode()->getOperand(2);
7009
7010    if (Op.getNode()->getValueType(0).getSizeInBits() == 256
7011        && SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
7012      return Insert128BitVector(Vec, SubVec, Idx, DAG, dl);
7013    }
7014  }
7015  return SDValue();
7016}
7017
7018// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7019// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7020// one of the above mentioned nodes. It has to be wrapped because otherwise
7021// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7022// be used to form addressing mode. These wrapped nodes will be selected
7023// into MOV32ri.
7024SDValue
7025X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7026  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7027
7028  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7029  // global base reg.
7030  unsigned char OpFlag = 0;
7031  unsigned WrapperKind = X86ISD::Wrapper;
7032  CodeModel::Model M = getTargetMachine().getCodeModel();
7033
7034  if (Subtarget->isPICStyleRIPRel() &&
7035      (M == CodeModel::Small || M == CodeModel::Kernel))
7036    WrapperKind = X86ISD::WrapperRIP;
7037  else if (Subtarget->isPICStyleGOT())
7038    OpFlag = X86II::MO_GOTOFF;
7039  else if (Subtarget->isPICStyleStubPIC())
7040    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7041
7042  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7043                                             CP->getAlignment(),
7044                                             CP->getOffset(), OpFlag);
7045  DebugLoc DL = CP->getDebugLoc();
7046  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7047  // With PIC, the address is actually $g + Offset.
7048  if (OpFlag) {
7049    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7050                         DAG.getNode(X86ISD::GlobalBaseReg,
7051                                     DebugLoc(), getPointerTy()),
7052                         Result);
7053  }
7054
7055  return Result;
7056}
7057
7058SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7059  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7060
7061  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7062  // global base reg.
7063  unsigned char OpFlag = 0;
7064  unsigned WrapperKind = X86ISD::Wrapper;
7065  CodeModel::Model M = getTargetMachine().getCodeModel();
7066
7067  if (Subtarget->isPICStyleRIPRel() &&
7068      (M == CodeModel::Small || M == CodeModel::Kernel))
7069    WrapperKind = X86ISD::WrapperRIP;
7070  else if (Subtarget->isPICStyleGOT())
7071    OpFlag = X86II::MO_GOTOFF;
7072  else if (Subtarget->isPICStyleStubPIC())
7073    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7074
7075  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7076                                          OpFlag);
7077  DebugLoc DL = JT->getDebugLoc();
7078  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7079
7080  // With PIC, the address is actually $g + Offset.
7081  if (OpFlag)
7082    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7083                         DAG.getNode(X86ISD::GlobalBaseReg,
7084                                     DebugLoc(), getPointerTy()),
7085                         Result);
7086
7087  return Result;
7088}
7089
7090SDValue
7091X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7092  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7093
7094  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7095  // global base reg.
7096  unsigned char OpFlag = 0;
7097  unsigned WrapperKind = X86ISD::Wrapper;
7098  CodeModel::Model M = getTargetMachine().getCodeModel();
7099
7100  if (Subtarget->isPICStyleRIPRel() &&
7101      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7102    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7103      OpFlag = X86II::MO_GOTPCREL;
7104    WrapperKind = X86ISD::WrapperRIP;
7105  } else if (Subtarget->isPICStyleGOT()) {
7106    OpFlag = X86II::MO_GOT;
7107  } else if (Subtarget->isPICStyleStubPIC()) {
7108    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7109  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7110    OpFlag = X86II::MO_DARWIN_NONLAZY;
7111  }
7112
7113  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7114
7115  DebugLoc DL = Op.getDebugLoc();
7116  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7117
7118
7119  // With PIC, the address is actually $g + Offset.
7120  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7121      !Subtarget->is64Bit()) {
7122    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7123                         DAG.getNode(X86ISD::GlobalBaseReg,
7124                                     DebugLoc(), getPointerTy()),
7125                         Result);
7126  }
7127
7128  // For symbols that require a load from a stub to get the address, emit the
7129  // load.
7130  if (isGlobalStubReference(OpFlag))
7131    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7132                         MachinePointerInfo::getGOT(), false, false, false, 0);
7133
7134  return Result;
7135}
7136
7137SDValue
7138X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7139  // Create the TargetBlockAddressAddress node.
7140  unsigned char OpFlags =
7141    Subtarget->ClassifyBlockAddressReference();
7142  CodeModel::Model M = getTargetMachine().getCodeModel();
7143  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7144  DebugLoc dl = Op.getDebugLoc();
7145  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
7146                                       /*isTarget=*/true, OpFlags);
7147
7148  if (Subtarget->isPICStyleRIPRel() &&
7149      (M == CodeModel::Small || M == CodeModel::Kernel))
7150    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7151  else
7152    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7153
7154  // With PIC, the address is actually $g + Offset.
7155  if (isGlobalRelativeToPICBase(OpFlags)) {
7156    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7157                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7158                         Result);
7159  }
7160
7161  return Result;
7162}
7163
7164SDValue
7165X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7166                                      int64_t Offset,
7167                                      SelectionDAG &DAG) const {
7168  // Create the TargetGlobalAddress node, folding in the constant
7169  // offset if it is legal.
7170  unsigned char OpFlags =
7171    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7172  CodeModel::Model M = getTargetMachine().getCodeModel();
7173  SDValue Result;
7174  if (OpFlags == X86II::MO_NO_FLAG &&
7175      X86::isOffsetSuitableForCodeModel(Offset, M)) {
7176    // A direct static reference to a global.
7177    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7178    Offset = 0;
7179  } else {
7180    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7181  }
7182
7183  if (Subtarget->isPICStyleRIPRel() &&
7184      (M == CodeModel::Small || M == CodeModel::Kernel))
7185    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7186  else
7187    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7188
7189  // With PIC, the address is actually $g + Offset.
7190  if (isGlobalRelativeToPICBase(OpFlags)) {
7191    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7192                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7193                         Result);
7194  }
7195
7196  // For globals that require a load from a stub to get the address, emit the
7197  // load.
7198  if (isGlobalStubReference(OpFlags))
7199    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7200                         MachinePointerInfo::getGOT(), false, false, false, 0);
7201
7202  // If there was a non-zero offset that we didn't fold, create an explicit
7203  // addition for it.
7204  if (Offset != 0)
7205    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7206                         DAG.getConstant(Offset, getPointerTy()));
7207
7208  return Result;
7209}
7210
7211SDValue
7212X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7213  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7214  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7215  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7216}
7217
7218static SDValue
7219GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7220           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7221           unsigned char OperandFlags) {
7222  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7223  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7224  DebugLoc dl = GA->getDebugLoc();
7225  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7226                                           GA->getValueType(0),
7227                                           GA->getOffset(),
7228                                           OperandFlags);
7229  if (InFlag) {
7230    SDValue Ops[] = { Chain,  TGA, *InFlag };
7231    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
7232  } else {
7233    SDValue Ops[]  = { Chain, TGA };
7234    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
7235  }
7236
7237  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7238  MFI->setAdjustsStack(true);
7239
7240  SDValue Flag = Chain.getValue(1);
7241  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7242}
7243
7244// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7245static SDValue
7246LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7247                                const EVT PtrVT) {
7248  SDValue InFlag;
7249  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
7250  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7251                                     DAG.getNode(X86ISD::GlobalBaseReg,
7252                                                 DebugLoc(), PtrVT), InFlag);
7253  InFlag = Chain.getValue(1);
7254
7255  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7256}
7257
7258// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7259static SDValue
7260LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7261                                const EVT PtrVT) {
7262  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7263                    X86::RAX, X86II::MO_TLSGD);
7264}
7265
7266// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
7267// "local exec" model.
7268static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7269                                   const EVT PtrVT, TLSModel::Model model,
7270                                   bool is64Bit) {
7271  DebugLoc dl = GA->getDebugLoc();
7272
7273  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7274  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7275                                                         is64Bit ? 257 : 256));
7276
7277  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7278                                      DAG.getIntPtrConstant(0),
7279                                      MachinePointerInfo(Ptr),
7280                                      false, false, false, 0);
7281
7282  unsigned char OperandFlags = 0;
7283  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7284  // initialexec.
7285  unsigned WrapperKind = X86ISD::Wrapper;
7286  if (model == TLSModel::LocalExec) {
7287    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7288  } else if (is64Bit) {
7289    assert(model == TLSModel::InitialExec);
7290    OperandFlags = X86II::MO_GOTTPOFF;
7291    WrapperKind = X86ISD::WrapperRIP;
7292  } else {
7293    assert(model == TLSModel::InitialExec);
7294    OperandFlags = X86II::MO_INDNTPOFF;
7295  }
7296
7297  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
7298  // exec)
7299  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7300                                           GA->getValueType(0),
7301                                           GA->getOffset(), OperandFlags);
7302  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7303
7304  if (model == TLSModel::InitialExec)
7305    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7306                         MachinePointerInfo::getGOT(), false, false, false, 0);
7307
7308  // The address of the thread local variable is the add of the thread
7309  // pointer with the offset of the variable.
7310  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7311}
7312
7313SDValue
7314X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7315
7316  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7317  const GlobalValue *GV = GA->getGlobal();
7318
7319  if (Subtarget->isTargetELF()) {
7320    // TODO: implement the "local dynamic" model
7321    // TODO: implement the "initial exec"model for pic executables
7322
7323    // If GV is an alias then use the aliasee for determining
7324    // thread-localness.
7325    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7326      GV = GA->resolveAliasedGlobal(false);
7327
7328    TLSModel::Model model = getTargetMachine().getTLSModel(GV);
7329
7330    switch (model) {
7331      case TLSModel::GeneralDynamic:
7332      case TLSModel::LocalDynamic: // not implemented
7333        if (Subtarget->is64Bit())
7334          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7335        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7336
7337      case TLSModel::InitialExec:
7338      case TLSModel::LocalExec:
7339        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7340                                   Subtarget->is64Bit());
7341    }
7342  } else if (Subtarget->isTargetDarwin()) {
7343    // Darwin only has one model of TLS.  Lower to that.
7344    unsigned char OpFlag = 0;
7345    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7346                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7347
7348    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7349    // global base reg.
7350    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7351                  !Subtarget->is64Bit();
7352    if (PIC32)
7353      OpFlag = X86II::MO_TLVP_PIC_BASE;
7354    else
7355      OpFlag = X86II::MO_TLVP;
7356    DebugLoc DL = Op.getDebugLoc();
7357    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7358                                                GA->getValueType(0),
7359                                                GA->getOffset(), OpFlag);
7360    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7361
7362    // With PIC32, the address is actually $g + Offset.
7363    if (PIC32)
7364      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7365                           DAG.getNode(X86ISD::GlobalBaseReg,
7366                                       DebugLoc(), getPointerTy()),
7367                           Offset);
7368
7369    // Lowering the machine isd will make sure everything is in the right
7370    // location.
7371    SDValue Chain = DAG.getEntryNode();
7372    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7373    SDValue Args[] = { Chain, Offset };
7374    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7375
7376    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7377    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7378    MFI->setAdjustsStack(true);
7379
7380    // And our return value (tls address) is in the standard call return value
7381    // location.
7382    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7383    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
7384                              Chain.getValue(1));
7385  } else if (Subtarget->isTargetWindows()) {
7386    // Just use the implicit TLS architecture
7387    // Need to generate someting similar to:
7388    //   mov     rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage
7389    //                                  ; from TEB
7390    //   mov     ecx, dword [rel _tls_index]: Load index (from C runtime)
7391    //   mov     rcx, qword [rdx+rcx*8]
7392    //   mov     eax, .tls$:tlsvar
7393    //   [rax+rcx] contains the address
7394    // Windows 64bit: gs:0x58
7395    // Windows 32bit: fs:__tls_array
7396
7397    // If GV is an alias then use the aliasee for determining
7398    // thread-localness.
7399    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7400      GV = GA->resolveAliasedGlobal(false);
7401    DebugLoc dl = GA->getDebugLoc();
7402    SDValue Chain = DAG.getEntryNode();
7403
7404    // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
7405    // %gs:0x58 (64-bit).
7406    Value *Ptr = Constant::getNullValue(Subtarget->is64Bit()
7407                                        ? Type::getInt8PtrTy(*DAG.getContext(),
7408                                                             256)
7409                                        : Type::getInt32PtrTy(*DAG.getContext(),
7410                                                              257));
7411
7412    SDValue ThreadPointer = DAG.getLoad(getPointerTy(), dl, Chain,
7413                                        Subtarget->is64Bit()
7414                                        ? DAG.getIntPtrConstant(0x58)
7415                                        : DAG.getExternalSymbol("_tls_array",
7416                                                                getPointerTy()),
7417                                        MachinePointerInfo(Ptr),
7418                                        false, false, false, 0);
7419
7420    // Load the _tls_index variable
7421    SDValue IDX = DAG.getExternalSymbol("_tls_index", getPointerTy());
7422    if (Subtarget->is64Bit())
7423      IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, getPointerTy(), Chain,
7424                           IDX, MachinePointerInfo(), MVT::i32,
7425                           false, false, 0);
7426    else
7427      IDX = DAG.getLoad(getPointerTy(), dl, Chain, IDX, MachinePointerInfo(),
7428                        false, false, false, 0);
7429
7430    SDValue Scale = DAG.getConstant(Log2_64_Ceil(TD->getPointerSize()),
7431		                            getPointerTy());
7432    IDX = DAG.getNode(ISD::SHL, dl, getPointerTy(), IDX, Scale);
7433
7434    SDValue res = DAG.getNode(ISD::ADD, dl, getPointerTy(), ThreadPointer, IDX);
7435    res = DAG.getLoad(getPointerTy(), dl, Chain, res, MachinePointerInfo(),
7436                      false, false, false, 0);
7437
7438    // Get the offset of start of .tls section
7439    SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7440                                             GA->getValueType(0),
7441                                             GA->getOffset(), X86II::MO_SECREL);
7442    SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), TGA);
7443
7444    // The address of the thread local variable is the add of the thread
7445    // pointer with the offset of the variable.
7446    return DAG.getNode(ISD::ADD, dl, getPointerTy(), res, Offset);
7447  }
7448
7449  llvm_unreachable("TLS not implemented for this target.");
7450}
7451
7452
7453/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
7454/// and take a 2 x i32 value to shift plus a shift amount.
7455SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{
7456  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7457  EVT VT = Op.getValueType();
7458  unsigned VTBits = VT.getSizeInBits();
7459  DebugLoc dl = Op.getDebugLoc();
7460  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7461  SDValue ShOpLo = Op.getOperand(0);
7462  SDValue ShOpHi = Op.getOperand(1);
7463  SDValue ShAmt  = Op.getOperand(2);
7464  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7465                                     DAG.getConstant(VTBits - 1, MVT::i8))
7466                       : DAG.getConstant(0, VT);
7467
7468  SDValue Tmp2, Tmp3;
7469  if (Op.getOpcode() == ISD::SHL_PARTS) {
7470    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7471    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7472  } else {
7473    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7474    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7475  }
7476
7477  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7478                                DAG.getConstant(VTBits, MVT::i8));
7479  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7480                             AndNode, DAG.getConstant(0, MVT::i8));
7481
7482  SDValue Hi, Lo;
7483  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7484  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7485  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7486
7487  if (Op.getOpcode() == ISD::SHL_PARTS) {
7488    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7489    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7490  } else {
7491    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7492    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7493  }
7494
7495  SDValue Ops[2] = { Lo, Hi };
7496  return DAG.getMergeValues(Ops, 2, dl);
7497}
7498
7499SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7500                                           SelectionDAG &DAG) const {
7501  EVT SrcVT = Op.getOperand(0).getValueType();
7502
7503  if (SrcVT.isVector())
7504    return SDValue();
7505
7506  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7507         "Unknown SINT_TO_FP to lower!");
7508
7509  // These are really Legal; return the operand so the caller accepts it as
7510  // Legal.
7511  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7512    return Op;
7513  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7514      Subtarget->is64Bit()) {
7515    return Op;
7516  }
7517
7518  DebugLoc dl = Op.getDebugLoc();
7519  unsigned Size = SrcVT.getSizeInBits()/8;
7520  MachineFunction &MF = DAG.getMachineFunction();
7521  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7522  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7523  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7524                               StackSlot,
7525                               MachinePointerInfo::getFixedStack(SSFI),
7526                               false, false, 0);
7527  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7528}
7529
7530SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7531                                     SDValue StackSlot,
7532                                     SelectionDAG &DAG) const {
7533  // Build the FILD
7534  DebugLoc DL = Op.getDebugLoc();
7535  SDVTList Tys;
7536  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7537  if (useSSE)
7538    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7539  else
7540    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7541
7542  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7543
7544  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7545  MachineMemOperand *MMO;
7546  if (FI) {
7547    int SSFI = FI->getIndex();
7548    MMO =
7549      DAG.getMachineFunction()
7550      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7551                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7552  } else {
7553    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7554    StackSlot = StackSlot.getOperand(1);
7555  }
7556  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7557  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7558                                           X86ISD::FILD, DL,
7559                                           Tys, Ops, array_lengthof(Ops),
7560                                           SrcVT, MMO);
7561
7562  if (useSSE) {
7563    Chain = Result.getValue(1);
7564    SDValue InFlag = Result.getValue(2);
7565
7566    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7567    // shouldn't be necessary except that RFP cannot be live across
7568    // multiple blocks. When stackifier is fixed, they can be uncoupled.
7569    MachineFunction &MF = DAG.getMachineFunction();
7570    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7571    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7572    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7573    Tys = DAG.getVTList(MVT::Other);
7574    SDValue Ops[] = {
7575      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7576    };
7577    MachineMemOperand *MMO =
7578      DAG.getMachineFunction()
7579      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7580                            MachineMemOperand::MOStore, SSFISize, SSFISize);
7581
7582    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7583                                    Ops, array_lengthof(Ops),
7584                                    Op.getValueType(), MMO);
7585    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7586                         MachinePointerInfo::getFixedStack(SSFI),
7587                         false, false, false, 0);
7588  }
7589
7590  return Result;
7591}
7592
7593// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7594SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7595                                               SelectionDAG &DAG) const {
7596  // This algorithm is not obvious. Here it is what we're trying to output:
7597  /*
7598     movq       %rax,  %xmm0
7599     punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
7600     subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
7601     #ifdef __SSE3__
7602       haddpd   %xmm0, %xmm0
7603     #else
7604       pshufd   $0x4e, %xmm0, %xmm1
7605       addpd    %xmm1, %xmm0
7606     #endif
7607  */
7608
7609  DebugLoc dl = Op.getDebugLoc();
7610  LLVMContext *Context = DAG.getContext();
7611
7612  // Build some magic constants.
7613  const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
7614  Constant *C0 = ConstantDataVector::get(*Context, CV0);
7615  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7616
7617  SmallVector<Constant*,2> CV1;
7618  CV1.push_back(
7619        ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7620  CV1.push_back(
7621        ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7622  Constant *C1 = ConstantVector::get(CV1);
7623  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7624
7625  // Load the 64-bit value into an XMM register.
7626  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
7627                            Op.getOperand(0));
7628  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7629                              MachinePointerInfo::getConstantPool(),
7630                              false, false, false, 16);
7631  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
7632                              DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
7633                              CLod0);
7634
7635  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7636                              MachinePointerInfo::getConstantPool(),
7637                              false, false, false, 16);
7638  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
7639  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7640  SDValue Result;
7641
7642  if (Subtarget->hasSSE3()) {
7643    // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
7644    Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
7645  } else {
7646    SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
7647    SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
7648                                           S2F, 0x4E, DAG);
7649    Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
7650                         DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
7651                         Sub);
7652  }
7653
7654  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
7655                     DAG.getIntPtrConstant(0));
7656}
7657
7658// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
7659SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7660                                               SelectionDAG &DAG) const {
7661  DebugLoc dl = Op.getDebugLoc();
7662  // FP constant to bias correct the final result.
7663  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7664                                   MVT::f64);
7665
7666  // Load the 32-bit value into an XMM register.
7667  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7668                             Op.getOperand(0));
7669
7670  // Zero out the upper parts of the register.
7671  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
7672
7673  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7674                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7675                     DAG.getIntPtrConstant(0));
7676
7677  // Or the load with the bias.
7678  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7679                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7680                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7681                                                   MVT::v2f64, Load)),
7682                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7683                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7684                                                   MVT::v2f64, Bias)));
7685  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7686                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7687                   DAG.getIntPtrConstant(0));
7688
7689  // Subtract the bias.
7690  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7691
7692  // Handle final rounding.
7693  EVT DestVT = Op.getValueType();
7694
7695  if (DestVT.bitsLT(MVT::f64)) {
7696    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7697                       DAG.getIntPtrConstant(0));
7698  } else if (DestVT.bitsGT(MVT::f64)) {
7699    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7700  }
7701
7702  // Handle final rounding.
7703  return Sub;
7704}
7705
7706SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
7707                                           SelectionDAG &DAG) const {
7708  SDValue N0 = Op.getOperand(0);
7709  DebugLoc dl = Op.getDebugLoc();
7710
7711  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
7712  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
7713  // the optimization here.
7714  if (DAG.SignBitIsZero(N0))
7715    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
7716
7717  EVT SrcVT = N0.getValueType();
7718  EVT DstVT = Op.getValueType();
7719  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
7720    return LowerUINT_TO_FP_i64(Op, DAG);
7721  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
7722    return LowerUINT_TO_FP_i32(Op, DAG);
7723  else if (Subtarget->is64Bit() &&
7724           SrcVT == MVT::i64 && DstVT == MVT::f32)
7725    return SDValue();
7726
7727  // Make a 64-bit buffer, and use it to build an FILD.
7728  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
7729  if (SrcVT == MVT::i32) {
7730    SDValue WordOff = DAG.getConstant(4, getPointerTy());
7731    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
7732                                     getPointerTy(), StackSlot, WordOff);
7733    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7734                                  StackSlot, MachinePointerInfo(),
7735                                  false, false, 0);
7736    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
7737                                  OffsetSlot, MachinePointerInfo(),
7738                                  false, false, 0);
7739    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
7740    return Fild;
7741  }
7742
7743  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
7744  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7745                               StackSlot, MachinePointerInfo(),
7746                               false, false, 0);
7747  // For i64 source, we need to add the appropriate power of 2 if the input
7748  // was negative.  This is the same as the optimization in
7749  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
7750  // we must be careful to do the computation in x87 extended precision, not
7751  // in SSE. (The generic code can't know it's OK to do this, or how to.)
7752  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
7753  MachineMemOperand *MMO =
7754    DAG.getMachineFunction()
7755    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7756                          MachineMemOperand::MOLoad, 8, 8);
7757
7758  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
7759  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
7760  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
7761                                         MVT::i64, MMO);
7762
7763  APInt FF(32, 0x5F800000ULL);
7764
7765  // Check whether the sign bit is set.
7766  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
7767                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
7768                                 ISD::SETLT);
7769
7770  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
7771  SDValue FudgePtr = DAG.getConstantPool(
7772                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
7773                                         getPointerTy());
7774
7775  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
7776  SDValue Zero = DAG.getIntPtrConstant(0);
7777  SDValue Four = DAG.getIntPtrConstant(4);
7778  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
7779                               Zero, Four);
7780  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
7781
7782  // Load the value out, extending it from f32 to f80.
7783  // FIXME: Avoid the extend by constructing the right constant pool?
7784  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
7785                                 FudgePtr, MachinePointerInfo::getConstantPool(),
7786                                 MVT::f32, false, false, 4);
7787  // Extend everything to 80 bits to force it to be done on x87.
7788  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
7789  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
7790}
7791
7792std::pair<SDValue,SDValue> X86TargetLowering::
7793FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned, bool IsReplace) const {
7794  DebugLoc DL = Op.getDebugLoc();
7795
7796  EVT DstTy = Op.getValueType();
7797
7798  if (!IsSigned && !isIntegerTypeFTOL(DstTy)) {
7799    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
7800    DstTy = MVT::i64;
7801  }
7802
7803  assert(DstTy.getSimpleVT() <= MVT::i64 &&
7804         DstTy.getSimpleVT() >= MVT::i16 &&
7805         "Unknown FP_TO_INT to lower!");
7806
7807  // These are really Legal.
7808  if (DstTy == MVT::i32 &&
7809      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7810    return std::make_pair(SDValue(), SDValue());
7811  if (Subtarget->is64Bit() &&
7812      DstTy == MVT::i64 &&
7813      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7814    return std::make_pair(SDValue(), SDValue());
7815
7816  // We lower FP->int64 either into FISTP64 followed by a load from a temporary
7817  // stack slot, or into the FTOL runtime function.
7818  MachineFunction &MF = DAG.getMachineFunction();
7819  unsigned MemSize = DstTy.getSizeInBits()/8;
7820  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7821  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7822
7823  unsigned Opc;
7824  if (!IsSigned && isIntegerTypeFTOL(DstTy))
7825    Opc = X86ISD::WIN_FTOL;
7826  else
7827    switch (DstTy.getSimpleVT().SimpleTy) {
7828    default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
7829    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
7830    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
7831    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
7832    }
7833
7834  SDValue Chain = DAG.getEntryNode();
7835  SDValue Value = Op.getOperand(0);
7836  EVT TheVT = Op.getOperand(0).getValueType();
7837  // FIXME This causes a redundant load/store if the SSE-class value is already
7838  // in memory, such as if it is on the callstack.
7839  if (isScalarFPTypeInSSEReg(TheVT)) {
7840    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
7841    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
7842                         MachinePointerInfo::getFixedStack(SSFI),
7843                         false, false, 0);
7844    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
7845    SDValue Ops[] = {
7846      Chain, StackSlot, DAG.getValueType(TheVT)
7847    };
7848
7849    MachineMemOperand *MMO =
7850      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7851                              MachineMemOperand::MOLoad, MemSize, MemSize);
7852    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
7853                                    DstTy, MMO);
7854    Chain = Value.getValue(1);
7855    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7856    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7857  }
7858
7859  MachineMemOperand *MMO =
7860    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7861                            MachineMemOperand::MOStore, MemSize, MemSize);
7862
7863  if (Opc != X86ISD::WIN_FTOL) {
7864    // Build the FP_TO_INT*_IN_MEM
7865    SDValue Ops[] = { Chain, Value, StackSlot };
7866    SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
7867                                           Ops, 3, DstTy, MMO);
7868    return std::make_pair(FIST, StackSlot);
7869  } else {
7870    SDValue ftol = DAG.getNode(X86ISD::WIN_FTOL, DL,
7871      DAG.getVTList(MVT::Other, MVT::Glue),
7872      Chain, Value);
7873    SDValue eax = DAG.getCopyFromReg(ftol, DL, X86::EAX,
7874      MVT::i32, ftol.getValue(1));
7875    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), DL, X86::EDX,
7876      MVT::i32, eax.getValue(2));
7877    SDValue Ops[] = { eax, edx };
7878    SDValue pair = IsReplace
7879      ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops, 2)
7880      : DAG.getMergeValues(Ops, 2, DL);
7881    return std::make_pair(pair, SDValue());
7882  }
7883}
7884
7885SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
7886                                           SelectionDAG &DAG) const {
7887  if (Op.getValueType().isVector())
7888    return SDValue();
7889
7890  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
7891    /*IsSigned=*/ true, /*IsReplace=*/ false);
7892  SDValue FIST = Vals.first, StackSlot = Vals.second;
7893  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
7894  if (FIST.getNode() == 0) return Op;
7895
7896  if (StackSlot.getNode())
7897    // Load the result.
7898    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7899                       FIST, StackSlot, MachinePointerInfo(),
7900                       false, false, false, 0);
7901  else
7902    // The node is the result.
7903    return FIST;
7904}
7905
7906SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
7907                                           SelectionDAG &DAG) const {
7908  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
7909    /*IsSigned=*/ false, /*IsReplace=*/ false);
7910  SDValue FIST = Vals.first, StackSlot = Vals.second;
7911  assert(FIST.getNode() && "Unexpected failure");
7912
7913  if (StackSlot.getNode())
7914    // Load the result.
7915    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7916                       FIST, StackSlot, MachinePointerInfo(),
7917                       false, false, false, 0);
7918  else
7919    // The node is the result.
7920    return FIST;
7921}
7922
7923SDValue X86TargetLowering::LowerFABS(SDValue Op,
7924                                     SelectionDAG &DAG) const {
7925  LLVMContext *Context = DAG.getContext();
7926  DebugLoc dl = Op.getDebugLoc();
7927  EVT VT = Op.getValueType();
7928  EVT EltVT = VT;
7929  if (VT.isVector())
7930    EltVT = VT.getVectorElementType();
7931  Constant *C;
7932  if (EltVT == MVT::f64) {
7933    C = ConstantVector::getSplat(2,
7934                ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
7935  } else {
7936    C = ConstantVector::getSplat(4,
7937               ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
7938  }
7939  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7940  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7941                             MachinePointerInfo::getConstantPool(),
7942                             false, false, false, 16);
7943  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
7944}
7945
7946SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
7947  LLVMContext *Context = DAG.getContext();
7948  DebugLoc dl = Op.getDebugLoc();
7949  EVT VT = Op.getValueType();
7950  EVT EltVT = VT;
7951  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
7952  if (VT.isVector()) {
7953    EltVT = VT.getVectorElementType();
7954    NumElts = VT.getVectorNumElements();
7955  }
7956  Constant *C;
7957  if (EltVT == MVT::f64)
7958    C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
7959  else
7960    C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
7961  C = ConstantVector::getSplat(NumElts, C);
7962  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7963  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7964                             MachinePointerInfo::getConstantPool(),
7965                             false, false, false, 16);
7966  if (VT.isVector()) {
7967    MVT XORVT = VT.getSizeInBits() == 128 ? MVT::v2i64 : MVT::v4i64;
7968    return DAG.getNode(ISD::BITCAST, dl, VT,
7969                       DAG.getNode(ISD::XOR, dl, XORVT,
7970                    DAG.getNode(ISD::BITCAST, dl, XORVT,
7971                                Op.getOperand(0)),
7972                    DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
7973  } else {
7974    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
7975  }
7976}
7977
7978SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
7979  LLVMContext *Context = DAG.getContext();
7980  SDValue Op0 = Op.getOperand(0);
7981  SDValue Op1 = Op.getOperand(1);
7982  DebugLoc dl = Op.getDebugLoc();
7983  EVT VT = Op.getValueType();
7984  EVT SrcVT = Op1.getValueType();
7985
7986  // If second operand is smaller, extend it first.
7987  if (SrcVT.bitsLT(VT)) {
7988    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
7989    SrcVT = VT;
7990  }
7991  // And if it is bigger, shrink it first.
7992  if (SrcVT.bitsGT(VT)) {
7993    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
7994    SrcVT = VT;
7995  }
7996
7997  // At this point the operands and the result should have the same
7998  // type, and that won't be f80 since that is not custom lowered.
7999
8000  // First get the sign bit of second operand.
8001  SmallVector<Constant*,4> CV;
8002  if (SrcVT == MVT::f64) {
8003    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
8004    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8005  } else {
8006    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
8007    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8008    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8009    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8010  }
8011  Constant *C = ConstantVector::get(CV);
8012  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8013  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
8014                              MachinePointerInfo::getConstantPool(),
8015                              false, false, false, 16);
8016  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
8017
8018  // Shift sign bit right or left if the two operands have different types.
8019  if (SrcVT.bitsGT(VT)) {
8020    // Op0 is MVT::f32, Op1 is MVT::f64.
8021    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
8022    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
8023                          DAG.getConstant(32, MVT::i32));
8024    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
8025    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
8026                          DAG.getIntPtrConstant(0));
8027  }
8028
8029  // Clear first operand sign bit.
8030  CV.clear();
8031  if (VT == MVT::f64) {
8032    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
8033    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8034  } else {
8035    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
8036    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8037    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8038    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8039  }
8040  C = ConstantVector::get(CV);
8041  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8042  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8043                              MachinePointerInfo::getConstantPool(),
8044                              false, false, false, 16);
8045  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
8046
8047  // Or the value with the sign bit.
8048  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
8049}
8050
8051SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
8052  SDValue N0 = Op.getOperand(0);
8053  DebugLoc dl = Op.getDebugLoc();
8054  EVT VT = Op.getValueType();
8055
8056  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
8057  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
8058                                  DAG.getConstant(1, VT));
8059  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
8060}
8061
8062/// Emit nodes that will be selected as "test Op0,Op0", or something
8063/// equivalent.
8064SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
8065                                    SelectionDAG &DAG) const {
8066  DebugLoc dl = Op.getDebugLoc();
8067
8068  // CF and OF aren't always set the way we want. Determine which
8069  // of these we need.
8070  bool NeedCF = false;
8071  bool NeedOF = false;
8072  switch (X86CC) {
8073  default: break;
8074  case X86::COND_A: case X86::COND_AE:
8075  case X86::COND_B: case X86::COND_BE:
8076    NeedCF = true;
8077    break;
8078  case X86::COND_G: case X86::COND_GE:
8079  case X86::COND_L: case X86::COND_LE:
8080  case X86::COND_O: case X86::COND_NO:
8081    NeedOF = true;
8082    break;
8083  }
8084
8085  // See if we can use the EFLAGS value from the operand instead of
8086  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8087  // we prove that the arithmetic won't overflow, we can't use OF or CF.
8088  if (Op.getResNo() != 0 || NeedOF || NeedCF)
8089    // Emit a CMP with 0, which is the TEST pattern.
8090    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8091                       DAG.getConstant(0, Op.getValueType()));
8092
8093  unsigned Opcode = 0;
8094  unsigned NumOperands = 0;
8095  switch (Op.getNode()->getOpcode()) {
8096  case ISD::ADD:
8097    // Due to an isel shortcoming, be conservative if this add is likely to be
8098    // selected as part of a load-modify-store instruction. When the root node
8099    // in a match is a store, isel doesn't know how to remap non-chain non-flag
8100    // uses of other nodes in the match, such as the ADD in this case. This
8101    // leads to the ADD being left around and reselected, with the result being
8102    // two adds in the output.  Alas, even if none our users are stores, that
8103    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
8104    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
8105    // climbing the DAG back to the root, and it doesn't seem to be worth the
8106    // effort.
8107    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8108         UE = Op.getNode()->use_end(); UI != UE; ++UI)
8109      if (UI->getOpcode() != ISD::CopyToReg &&
8110          UI->getOpcode() != ISD::SETCC &&
8111          UI->getOpcode() != ISD::STORE)
8112        goto default_case;
8113
8114    if (ConstantSDNode *C =
8115        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
8116      // An add of one will be selected as an INC.
8117      if (C->getAPIntValue() == 1) {
8118        Opcode = X86ISD::INC;
8119        NumOperands = 1;
8120        break;
8121      }
8122
8123      // An add of negative one (subtract of one) will be selected as a DEC.
8124      if (C->getAPIntValue().isAllOnesValue()) {
8125        Opcode = X86ISD::DEC;
8126        NumOperands = 1;
8127        break;
8128      }
8129    }
8130
8131    // Otherwise use a regular EFLAGS-setting add.
8132    Opcode = X86ISD::ADD;
8133    NumOperands = 2;
8134    break;
8135  case ISD::AND: {
8136    // If the primary and result isn't used, don't bother using X86ISD::AND,
8137    // because a TEST instruction will be better.
8138    bool NonFlagUse = false;
8139    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8140           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8141      SDNode *User = *UI;
8142      unsigned UOpNo = UI.getOperandNo();
8143      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8144        // Look pass truncate.
8145        UOpNo = User->use_begin().getOperandNo();
8146        User = *User->use_begin();
8147      }
8148
8149      if (User->getOpcode() != ISD::BRCOND &&
8150          User->getOpcode() != ISD::SETCC &&
8151          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
8152        NonFlagUse = true;
8153        break;
8154      }
8155    }
8156
8157    if (!NonFlagUse)
8158      break;
8159  }
8160    // FALL THROUGH
8161  case ISD::SUB:
8162  case ISD::OR:
8163  case ISD::XOR:
8164    // Due to the ISEL shortcoming noted above, be conservative if this op is
8165    // likely to be selected as part of a load-modify-store instruction.
8166    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8167           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8168      if (UI->getOpcode() == ISD::STORE)
8169        goto default_case;
8170
8171    // Otherwise use a regular EFLAGS-setting instruction.
8172    switch (Op.getNode()->getOpcode()) {
8173    default: llvm_unreachable("unexpected operator!");
8174    case ISD::SUB: Opcode = X86ISD::SUB; break;
8175    case ISD::OR:  Opcode = X86ISD::OR;  break;
8176    case ISD::XOR: Opcode = X86ISD::XOR; break;
8177    case ISD::AND: Opcode = X86ISD::AND; break;
8178    }
8179
8180    NumOperands = 2;
8181    break;
8182  case X86ISD::ADD:
8183  case X86ISD::SUB:
8184  case X86ISD::INC:
8185  case X86ISD::DEC:
8186  case X86ISD::OR:
8187  case X86ISD::XOR:
8188  case X86ISD::AND:
8189    return SDValue(Op.getNode(), 1);
8190  default:
8191  default_case:
8192    break;
8193  }
8194
8195  if (Opcode == 0)
8196    // Emit a CMP with 0, which is the TEST pattern.
8197    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8198                       DAG.getConstant(0, Op.getValueType()));
8199
8200  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
8201  SmallVector<SDValue, 4> Ops;
8202  for (unsigned i = 0; i != NumOperands; ++i)
8203    Ops.push_back(Op.getOperand(i));
8204
8205  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
8206  DAG.ReplaceAllUsesWith(Op, New);
8207  return SDValue(New.getNode(), 1);
8208}
8209
8210/// Emit nodes that will be selected as "cmp Op0,Op1", or something
8211/// equivalent.
8212SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
8213                                   SelectionDAG &DAG) const {
8214  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
8215    if (C->getAPIntValue() == 0)
8216      return EmitTest(Op0, X86CC, DAG);
8217
8218  DebugLoc dl = Op0.getDebugLoc();
8219  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
8220}
8221
8222/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
8223/// if it's possible.
8224SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
8225                                     DebugLoc dl, SelectionDAG &DAG) const {
8226  SDValue Op0 = And.getOperand(0);
8227  SDValue Op1 = And.getOperand(1);
8228  if (Op0.getOpcode() == ISD::TRUNCATE)
8229    Op0 = Op0.getOperand(0);
8230  if (Op1.getOpcode() == ISD::TRUNCATE)
8231    Op1 = Op1.getOperand(0);
8232
8233  SDValue LHS, RHS;
8234  if (Op1.getOpcode() == ISD::SHL)
8235    std::swap(Op0, Op1);
8236  if (Op0.getOpcode() == ISD::SHL) {
8237    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
8238      if (And00C->getZExtValue() == 1) {
8239        // If we looked past a truncate, check that it's only truncating away
8240        // known zeros.
8241        unsigned BitWidth = Op0.getValueSizeInBits();
8242        unsigned AndBitWidth = And.getValueSizeInBits();
8243        if (BitWidth > AndBitWidth) {
8244          APInt Zeros, Ones;
8245          DAG.ComputeMaskedBits(Op0, Zeros, Ones);
8246          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
8247            return SDValue();
8248        }
8249        LHS = Op1;
8250        RHS = Op0.getOperand(1);
8251      }
8252  } else if (Op1.getOpcode() == ISD::Constant) {
8253    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
8254    uint64_t AndRHSVal = AndRHS->getZExtValue();
8255    SDValue AndLHS = Op0;
8256
8257    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
8258      LHS = AndLHS.getOperand(0);
8259      RHS = AndLHS.getOperand(1);
8260    }
8261
8262    // Use BT if the immediate can't be encoded in a TEST instruction.
8263    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
8264      LHS = AndLHS;
8265      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
8266    }
8267  }
8268
8269  if (LHS.getNode()) {
8270    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
8271    // instruction.  Since the shift amount is in-range-or-undefined, we know
8272    // that doing a bittest on the i32 value is ok.  We extend to i32 because
8273    // the encoding for the i16 version is larger than the i32 version.
8274    // Also promote i16 to i32 for performance / code size reason.
8275    if (LHS.getValueType() == MVT::i8 ||
8276        LHS.getValueType() == MVT::i16)
8277      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
8278
8279    // If the operand types disagree, extend the shift amount to match.  Since
8280    // BT ignores high bits (like shifts) we can use anyextend.
8281    if (LHS.getValueType() != RHS.getValueType())
8282      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
8283
8284    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
8285    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
8286    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8287                       DAG.getConstant(Cond, MVT::i8), BT);
8288  }
8289
8290  return SDValue();
8291}
8292
8293SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
8294
8295  if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
8296
8297  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
8298  SDValue Op0 = Op.getOperand(0);
8299  SDValue Op1 = Op.getOperand(1);
8300  DebugLoc dl = Op.getDebugLoc();
8301  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8302
8303  // Optimize to BT if possible.
8304  // Lower (X & (1 << N)) == 0 to BT(X, N).
8305  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
8306  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
8307  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
8308      Op1.getOpcode() == ISD::Constant &&
8309      cast<ConstantSDNode>(Op1)->isNullValue() &&
8310      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8311    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
8312    if (NewSetCC.getNode())
8313      return NewSetCC;
8314  }
8315
8316  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
8317  // these.
8318  if (Op1.getOpcode() == ISD::Constant &&
8319      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
8320       cast<ConstantSDNode>(Op1)->isNullValue()) &&
8321      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8322
8323    // If the input is a setcc, then reuse the input setcc or use a new one with
8324    // the inverted condition.
8325    if (Op0.getOpcode() == X86ISD::SETCC) {
8326      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
8327      bool Invert = (CC == ISD::SETNE) ^
8328        cast<ConstantSDNode>(Op1)->isNullValue();
8329      if (!Invert) return Op0;
8330
8331      CCode = X86::GetOppositeBranchCondition(CCode);
8332      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8333                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
8334    }
8335  }
8336
8337  bool isFP = Op1.getValueType().isFloatingPoint();
8338  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
8339  if (X86CC == X86::COND_INVALID)
8340    return SDValue();
8341
8342  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
8343  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8344                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
8345}
8346
8347// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
8348// ones, and then concatenate the result back.
8349static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
8350  EVT VT = Op.getValueType();
8351
8352  assert(VT.getSizeInBits() == 256 && Op.getOpcode() == ISD::SETCC &&
8353         "Unsupported value type for operation");
8354
8355  int NumElems = VT.getVectorNumElements();
8356  DebugLoc dl = Op.getDebugLoc();
8357  SDValue CC = Op.getOperand(2);
8358  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
8359  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
8360
8361  // Extract the LHS vectors
8362  SDValue LHS = Op.getOperand(0);
8363  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
8364  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
8365
8366  // Extract the RHS vectors
8367  SDValue RHS = Op.getOperand(1);
8368  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
8369  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
8370
8371  // Issue the operation on the smaller types and concatenate the result back
8372  MVT EltVT = VT.getVectorElementType().getSimpleVT();
8373  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
8374  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8375                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
8376                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
8377}
8378
8379
8380SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
8381  SDValue Cond;
8382  SDValue Op0 = Op.getOperand(0);
8383  SDValue Op1 = Op.getOperand(1);
8384  SDValue CC = Op.getOperand(2);
8385  EVT VT = Op.getValueType();
8386  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
8387  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
8388  DebugLoc dl = Op.getDebugLoc();
8389
8390  if (isFP) {
8391    unsigned SSECC = 8;
8392    EVT EltVT = Op0.getValueType().getVectorElementType();
8393    assert(EltVT == MVT::f32 || EltVT == MVT::f64); (void)EltVT;
8394
8395    bool Swap = false;
8396
8397    // SSE Condition code mapping:
8398    //  0 - EQ
8399    //  1 - LT
8400    //  2 - LE
8401    //  3 - UNORD
8402    //  4 - NEQ
8403    //  5 - NLT
8404    //  6 - NLE
8405    //  7 - ORD
8406    switch (SetCCOpcode) {
8407    default: break;
8408    case ISD::SETOEQ:
8409    case ISD::SETEQ:  SSECC = 0; break;
8410    case ISD::SETOGT:
8411    case ISD::SETGT: Swap = true; // Fallthrough
8412    case ISD::SETLT:
8413    case ISD::SETOLT: SSECC = 1; break;
8414    case ISD::SETOGE:
8415    case ISD::SETGE: Swap = true; // Fallthrough
8416    case ISD::SETLE:
8417    case ISD::SETOLE: SSECC = 2; break;
8418    case ISD::SETUO:  SSECC = 3; break;
8419    case ISD::SETUNE:
8420    case ISD::SETNE:  SSECC = 4; break;
8421    case ISD::SETULE: Swap = true;
8422    case ISD::SETUGE: SSECC = 5; break;
8423    case ISD::SETULT: Swap = true;
8424    case ISD::SETUGT: SSECC = 6; break;
8425    case ISD::SETO:   SSECC = 7; break;
8426    }
8427    if (Swap)
8428      std::swap(Op0, Op1);
8429
8430    // In the two special cases we can't handle, emit two comparisons.
8431    if (SSECC == 8) {
8432      if (SetCCOpcode == ISD::SETUEQ) {
8433        SDValue UNORD, EQ;
8434        UNORD = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8435                            DAG.getConstant(3, MVT::i8));
8436        EQ = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8437                         DAG.getConstant(0, MVT::i8));
8438        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
8439      } else if (SetCCOpcode == ISD::SETONE) {
8440        SDValue ORD, NEQ;
8441        ORD = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8442                          DAG.getConstant(7, MVT::i8));
8443        NEQ = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8444                          DAG.getConstant(4, MVT::i8));
8445        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
8446      }
8447      llvm_unreachable("Illegal FP comparison");
8448    }
8449    // Handle all other FP comparisons here.
8450    return DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8451                       DAG.getConstant(SSECC, MVT::i8));
8452  }
8453
8454  // Break 256-bit integer vector compare into smaller ones.
8455  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
8456    return Lower256IntVSETCC(Op, DAG);
8457
8458  // We are handling one of the integer comparisons here.  Since SSE only has
8459  // GT and EQ comparisons for integer, swapping operands and multiple
8460  // operations may be required for some comparisons.
8461  unsigned Opc = 0;
8462  bool Swap = false, Invert = false, FlipSigns = false;
8463
8464  switch (SetCCOpcode) {
8465  default: break;
8466  case ISD::SETNE:  Invert = true;
8467  case ISD::SETEQ:  Opc = X86ISD::PCMPEQ; break;
8468  case ISD::SETLT:  Swap = true;
8469  case ISD::SETGT:  Opc = X86ISD::PCMPGT; break;
8470  case ISD::SETGE:  Swap = true;
8471  case ISD::SETLE:  Opc = X86ISD::PCMPGT; Invert = true; break;
8472  case ISD::SETULT: Swap = true;
8473  case ISD::SETUGT: Opc = X86ISD::PCMPGT; FlipSigns = true; break;
8474  case ISD::SETUGE: Swap = true;
8475  case ISD::SETULE: Opc = X86ISD::PCMPGT; FlipSigns = true; Invert = true; break;
8476  }
8477  if (Swap)
8478    std::swap(Op0, Op1);
8479
8480  // Check that the operation in question is available (most are plain SSE2,
8481  // but PCMPGTQ and PCMPEQQ have different requirements).
8482  if (Opc == X86ISD::PCMPGT && VT == MVT::v2i64 && !Subtarget->hasSSE42())
8483    return SDValue();
8484  if (Opc == X86ISD::PCMPEQ && VT == MVT::v2i64 && !Subtarget->hasSSE41())
8485    return SDValue();
8486
8487  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
8488  // bits of the inputs before performing those operations.
8489  if (FlipSigns) {
8490    EVT EltVT = VT.getVectorElementType();
8491    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
8492                                      EltVT);
8493    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
8494    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
8495                                    SignBits.size());
8496    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
8497    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
8498  }
8499
8500  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
8501
8502  // If the logical-not of the result is required, perform that now.
8503  if (Invert)
8504    Result = DAG.getNOT(dl, Result, VT);
8505
8506  return Result;
8507}
8508
8509// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
8510static bool isX86LogicalCmp(SDValue Op) {
8511  unsigned Opc = Op.getNode()->getOpcode();
8512  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
8513    return true;
8514  if (Op.getResNo() == 1 &&
8515      (Opc == X86ISD::ADD ||
8516       Opc == X86ISD::SUB ||
8517       Opc == X86ISD::ADC ||
8518       Opc == X86ISD::SBB ||
8519       Opc == X86ISD::SMUL ||
8520       Opc == X86ISD::UMUL ||
8521       Opc == X86ISD::INC ||
8522       Opc == X86ISD::DEC ||
8523       Opc == X86ISD::OR ||
8524       Opc == X86ISD::XOR ||
8525       Opc == X86ISD::AND))
8526    return true;
8527
8528  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
8529    return true;
8530
8531  return false;
8532}
8533
8534static bool isZero(SDValue V) {
8535  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8536  return C && C->isNullValue();
8537}
8538
8539static bool isAllOnes(SDValue V) {
8540  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8541  return C && C->isAllOnesValue();
8542}
8543
8544SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8545  bool addTest = true;
8546  SDValue Cond  = Op.getOperand(0);
8547  SDValue Op1 = Op.getOperand(1);
8548  SDValue Op2 = Op.getOperand(2);
8549  DebugLoc DL = Op.getDebugLoc();
8550  SDValue CC;
8551
8552  if (Cond.getOpcode() == ISD::SETCC) {
8553    SDValue NewCond = LowerSETCC(Cond, DAG);
8554    if (NewCond.getNode())
8555      Cond = NewCond;
8556  }
8557
8558  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
8559  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
8560  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
8561  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
8562  if (Cond.getOpcode() == X86ISD::SETCC &&
8563      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
8564      isZero(Cond.getOperand(1).getOperand(1))) {
8565    SDValue Cmp = Cond.getOperand(1);
8566
8567    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
8568
8569    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
8570        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
8571      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
8572
8573      SDValue CmpOp0 = Cmp.getOperand(0);
8574      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
8575                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
8576
8577      SDValue Res =   // Res = 0 or -1.
8578        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8579                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
8580
8581      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
8582        Res = DAG.getNOT(DL, Res, Res.getValueType());
8583
8584      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
8585      if (N2C == 0 || !N2C->isNullValue())
8586        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
8587      return Res;
8588    }
8589  }
8590
8591  // Look past (and (setcc_carry (cmp ...)), 1).
8592  if (Cond.getOpcode() == ISD::AND &&
8593      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8594    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8595    if (C && C->getAPIntValue() == 1)
8596      Cond = Cond.getOperand(0);
8597  }
8598
8599  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8600  // setting operand in place of the X86ISD::SETCC.
8601  unsigned CondOpcode = Cond.getOpcode();
8602  if (CondOpcode == X86ISD::SETCC ||
8603      CondOpcode == X86ISD::SETCC_CARRY) {
8604    CC = Cond.getOperand(0);
8605
8606    SDValue Cmp = Cond.getOperand(1);
8607    unsigned Opc = Cmp.getOpcode();
8608    EVT VT = Op.getValueType();
8609
8610    bool IllegalFPCMov = false;
8611    if (VT.isFloatingPoint() && !VT.isVector() &&
8612        !isScalarFPTypeInSSEReg(VT))  // FPStack?
8613      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
8614
8615    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
8616        Opc == X86ISD::BT) { // FIXME
8617      Cond = Cmp;
8618      addTest = false;
8619    }
8620  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8621             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8622             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8623              Cond.getOperand(0).getValueType() != MVT::i8)) {
8624    SDValue LHS = Cond.getOperand(0);
8625    SDValue RHS = Cond.getOperand(1);
8626    unsigned X86Opcode;
8627    unsigned X86Cond;
8628    SDVTList VTs;
8629    switch (CondOpcode) {
8630    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8631    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8632    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8633    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8634    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8635    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8636    default: llvm_unreachable("unexpected overflowing operator");
8637    }
8638    if (CondOpcode == ISD::UMULO)
8639      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8640                          MVT::i32);
8641    else
8642      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8643
8644    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
8645
8646    if (CondOpcode == ISD::UMULO)
8647      Cond = X86Op.getValue(2);
8648    else
8649      Cond = X86Op.getValue(1);
8650
8651    CC = DAG.getConstant(X86Cond, MVT::i8);
8652    addTest = false;
8653  }
8654
8655  if (addTest) {
8656    // Look pass the truncate.
8657    if (Cond.getOpcode() == ISD::TRUNCATE)
8658      Cond = Cond.getOperand(0);
8659
8660    // We know the result of AND is compared against zero. Try to match
8661    // it to BT.
8662    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8663      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
8664      if (NewSetCC.getNode()) {
8665        CC = NewSetCC.getOperand(0);
8666        Cond = NewSetCC.getOperand(1);
8667        addTest = false;
8668      }
8669    }
8670  }
8671
8672  if (addTest) {
8673    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8674    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8675  }
8676
8677  // a <  b ? -1 :  0 -> RES = ~setcc_carry
8678  // a <  b ?  0 : -1 -> RES = setcc_carry
8679  // a >= b ? -1 :  0 -> RES = setcc_carry
8680  // a >= b ?  0 : -1 -> RES = ~setcc_carry
8681  if (Cond.getOpcode() == X86ISD::CMP) {
8682    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
8683
8684    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
8685        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
8686      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8687                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
8688      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
8689        return DAG.getNOT(DL, Res, Res.getValueType());
8690      return Res;
8691    }
8692  }
8693
8694  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
8695  // condition is true.
8696  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
8697  SDValue Ops[] = { Op2, Op1, CC, Cond };
8698  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
8699}
8700
8701// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
8702// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
8703// from the AND / OR.
8704static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
8705  Opc = Op.getOpcode();
8706  if (Opc != ISD::OR && Opc != ISD::AND)
8707    return false;
8708  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8709          Op.getOperand(0).hasOneUse() &&
8710          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
8711          Op.getOperand(1).hasOneUse());
8712}
8713
8714// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
8715// 1 and that the SETCC node has a single use.
8716static bool isXor1OfSetCC(SDValue Op) {
8717  if (Op.getOpcode() != ISD::XOR)
8718    return false;
8719  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8720  if (N1C && N1C->getAPIntValue() == 1) {
8721    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8722      Op.getOperand(0).hasOneUse();
8723  }
8724  return false;
8725}
8726
8727SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
8728  bool addTest = true;
8729  SDValue Chain = Op.getOperand(0);
8730  SDValue Cond  = Op.getOperand(1);
8731  SDValue Dest  = Op.getOperand(2);
8732  DebugLoc dl = Op.getDebugLoc();
8733  SDValue CC;
8734  bool Inverted = false;
8735
8736  if (Cond.getOpcode() == ISD::SETCC) {
8737    // Check for setcc([su]{add,sub,mul}o == 0).
8738    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
8739        isa<ConstantSDNode>(Cond.getOperand(1)) &&
8740        cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
8741        Cond.getOperand(0).getResNo() == 1 &&
8742        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
8743         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
8744         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
8745         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
8746         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
8747         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
8748      Inverted = true;
8749      Cond = Cond.getOperand(0);
8750    } else {
8751      SDValue NewCond = LowerSETCC(Cond, DAG);
8752      if (NewCond.getNode())
8753        Cond = NewCond;
8754    }
8755  }
8756#if 0
8757  // FIXME: LowerXALUO doesn't handle these!!
8758  else if (Cond.getOpcode() == X86ISD::ADD  ||
8759           Cond.getOpcode() == X86ISD::SUB  ||
8760           Cond.getOpcode() == X86ISD::SMUL ||
8761           Cond.getOpcode() == X86ISD::UMUL)
8762    Cond = LowerXALUO(Cond, DAG);
8763#endif
8764
8765  // Look pass (and (setcc_carry (cmp ...)), 1).
8766  if (Cond.getOpcode() == ISD::AND &&
8767      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8768    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8769    if (C && C->getAPIntValue() == 1)
8770      Cond = Cond.getOperand(0);
8771  }
8772
8773  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8774  // setting operand in place of the X86ISD::SETCC.
8775  unsigned CondOpcode = Cond.getOpcode();
8776  if (CondOpcode == X86ISD::SETCC ||
8777      CondOpcode == X86ISD::SETCC_CARRY) {
8778    CC = Cond.getOperand(0);
8779
8780    SDValue Cmp = Cond.getOperand(1);
8781    unsigned Opc = Cmp.getOpcode();
8782    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
8783    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
8784      Cond = Cmp;
8785      addTest = false;
8786    } else {
8787      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
8788      default: break;
8789      case X86::COND_O:
8790      case X86::COND_B:
8791        // These can only come from an arithmetic instruction with overflow,
8792        // e.g. SADDO, UADDO.
8793        Cond = Cond.getNode()->getOperand(1);
8794        addTest = false;
8795        break;
8796      }
8797    }
8798  }
8799  CondOpcode = Cond.getOpcode();
8800  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8801      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8802      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8803       Cond.getOperand(0).getValueType() != MVT::i8)) {
8804    SDValue LHS = Cond.getOperand(0);
8805    SDValue RHS = Cond.getOperand(1);
8806    unsigned X86Opcode;
8807    unsigned X86Cond;
8808    SDVTList VTs;
8809    switch (CondOpcode) {
8810    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8811    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8812    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8813    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8814    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8815    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8816    default: llvm_unreachable("unexpected overflowing operator");
8817    }
8818    if (Inverted)
8819      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
8820    if (CondOpcode == ISD::UMULO)
8821      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8822                          MVT::i32);
8823    else
8824      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8825
8826    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
8827
8828    if (CondOpcode == ISD::UMULO)
8829      Cond = X86Op.getValue(2);
8830    else
8831      Cond = X86Op.getValue(1);
8832
8833    CC = DAG.getConstant(X86Cond, MVT::i8);
8834    addTest = false;
8835  } else {
8836    unsigned CondOpc;
8837    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
8838      SDValue Cmp = Cond.getOperand(0).getOperand(1);
8839      if (CondOpc == ISD::OR) {
8840        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
8841        // two branches instead of an explicit OR instruction with a
8842        // separate test.
8843        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8844            isX86LogicalCmp(Cmp)) {
8845          CC = Cond.getOperand(0).getOperand(0);
8846          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8847                              Chain, Dest, CC, Cmp);
8848          CC = Cond.getOperand(1).getOperand(0);
8849          Cond = Cmp;
8850          addTest = false;
8851        }
8852      } else { // ISD::AND
8853        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
8854        // two branches instead of an explicit AND instruction with a
8855        // separate test. However, we only do this if this block doesn't
8856        // have a fall-through edge, because this requires an explicit
8857        // jmp when the condition is false.
8858        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8859            isX86LogicalCmp(Cmp) &&
8860            Op.getNode()->hasOneUse()) {
8861          X86::CondCode CCode =
8862            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8863          CCode = X86::GetOppositeBranchCondition(CCode);
8864          CC = DAG.getConstant(CCode, MVT::i8);
8865          SDNode *User = *Op.getNode()->use_begin();
8866          // Look for an unconditional branch following this conditional branch.
8867          // We need this because we need to reverse the successors in order
8868          // to implement FCMP_OEQ.
8869          if (User->getOpcode() == ISD::BR) {
8870            SDValue FalseBB = User->getOperand(1);
8871            SDNode *NewBR =
8872              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8873            assert(NewBR == User);
8874            (void)NewBR;
8875            Dest = FalseBB;
8876
8877            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8878                                Chain, Dest, CC, Cmp);
8879            X86::CondCode CCode =
8880              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
8881            CCode = X86::GetOppositeBranchCondition(CCode);
8882            CC = DAG.getConstant(CCode, MVT::i8);
8883            Cond = Cmp;
8884            addTest = false;
8885          }
8886        }
8887      }
8888    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
8889      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
8890      // It should be transformed during dag combiner except when the condition
8891      // is set by a arithmetics with overflow node.
8892      X86::CondCode CCode =
8893        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8894      CCode = X86::GetOppositeBranchCondition(CCode);
8895      CC = DAG.getConstant(CCode, MVT::i8);
8896      Cond = Cond.getOperand(0).getOperand(1);
8897      addTest = false;
8898    } else if (Cond.getOpcode() == ISD::SETCC &&
8899               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
8900      // For FCMP_OEQ, we can emit
8901      // two branches instead of an explicit AND instruction with a
8902      // separate test. However, we only do this if this block doesn't
8903      // have a fall-through edge, because this requires an explicit
8904      // jmp when the condition is false.
8905      if (Op.getNode()->hasOneUse()) {
8906        SDNode *User = *Op.getNode()->use_begin();
8907        // Look for an unconditional branch following this conditional branch.
8908        // We need this because we need to reverse the successors in order
8909        // to implement FCMP_OEQ.
8910        if (User->getOpcode() == ISD::BR) {
8911          SDValue FalseBB = User->getOperand(1);
8912          SDNode *NewBR =
8913            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8914          assert(NewBR == User);
8915          (void)NewBR;
8916          Dest = FalseBB;
8917
8918          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
8919                                    Cond.getOperand(0), Cond.getOperand(1));
8920          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8921          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8922                              Chain, Dest, CC, Cmp);
8923          CC = DAG.getConstant(X86::COND_P, MVT::i8);
8924          Cond = Cmp;
8925          addTest = false;
8926        }
8927      }
8928    } else if (Cond.getOpcode() == ISD::SETCC &&
8929               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
8930      // For FCMP_UNE, we can emit
8931      // two branches instead of an explicit AND instruction with a
8932      // separate test. However, we only do this if this block doesn't
8933      // have a fall-through edge, because this requires an explicit
8934      // jmp when the condition is false.
8935      if (Op.getNode()->hasOneUse()) {
8936        SDNode *User = *Op.getNode()->use_begin();
8937        // Look for an unconditional branch following this conditional branch.
8938        // We need this because we need to reverse the successors in order
8939        // to implement FCMP_UNE.
8940        if (User->getOpcode() == ISD::BR) {
8941          SDValue FalseBB = User->getOperand(1);
8942          SDNode *NewBR =
8943            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8944          assert(NewBR == User);
8945          (void)NewBR;
8946
8947          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
8948                                    Cond.getOperand(0), Cond.getOperand(1));
8949          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8950          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8951                              Chain, Dest, CC, Cmp);
8952          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
8953          Cond = Cmp;
8954          addTest = false;
8955          Dest = FalseBB;
8956        }
8957      }
8958    }
8959  }
8960
8961  if (addTest) {
8962    // Look pass the truncate.
8963    if (Cond.getOpcode() == ISD::TRUNCATE)
8964      Cond = Cond.getOperand(0);
8965
8966    // We know the result of AND is compared against zero. Try to match
8967    // it to BT.
8968    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8969      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
8970      if (NewSetCC.getNode()) {
8971        CC = NewSetCC.getOperand(0);
8972        Cond = NewSetCC.getOperand(1);
8973        addTest = false;
8974      }
8975    }
8976  }
8977
8978  if (addTest) {
8979    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8980    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8981  }
8982  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8983                     Chain, Dest, CC, Cond);
8984}
8985
8986
8987// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
8988// Calls to _alloca is needed to probe the stack when allocating more than 4k
8989// bytes in one go. Touching the stack at 4K increments is necessary to ensure
8990// that the guard pages used by the OS virtual memory manager are allocated in
8991// correct sequence.
8992SDValue
8993X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
8994                                           SelectionDAG &DAG) const {
8995  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
8996          getTargetMachine().Options.EnableSegmentedStacks) &&
8997         "This should be used only on Windows targets or when segmented stacks "
8998         "are being used");
8999  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
9000  DebugLoc dl = Op.getDebugLoc();
9001
9002  // Get the inputs.
9003  SDValue Chain = Op.getOperand(0);
9004  SDValue Size  = Op.getOperand(1);
9005  // FIXME: Ensure alignment here
9006
9007  bool Is64Bit = Subtarget->is64Bit();
9008  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
9009
9010  if (getTargetMachine().Options.EnableSegmentedStacks) {
9011    MachineFunction &MF = DAG.getMachineFunction();
9012    MachineRegisterInfo &MRI = MF.getRegInfo();
9013
9014    if (Is64Bit) {
9015      // The 64 bit implementation of segmented stacks needs to clobber both r10
9016      // r11. This makes it impossible to use it along with nested parameters.
9017      const Function *F = MF.getFunction();
9018
9019      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
9020           I != E; I++)
9021        if (I->hasNestAttr())
9022          report_fatal_error("Cannot use segmented stacks with functions that "
9023                             "have nested arguments.");
9024    }
9025
9026    const TargetRegisterClass *AddrRegClass =
9027      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
9028    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
9029    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
9030    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
9031                                DAG.getRegister(Vreg, SPTy));
9032    SDValue Ops1[2] = { Value, Chain };
9033    return DAG.getMergeValues(Ops1, 2, dl);
9034  } else {
9035    SDValue Flag;
9036    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
9037
9038    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
9039    Flag = Chain.getValue(1);
9040    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9041
9042    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
9043    Flag = Chain.getValue(1);
9044
9045    Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
9046
9047    SDValue Ops1[2] = { Chain.getValue(0), Chain };
9048    return DAG.getMergeValues(Ops1, 2, dl);
9049  }
9050}
9051
9052SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
9053  MachineFunction &MF = DAG.getMachineFunction();
9054  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
9055
9056  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9057  DebugLoc DL = Op.getDebugLoc();
9058
9059  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
9060    // vastart just stores the address of the VarArgsFrameIndex slot into the
9061    // memory location argument.
9062    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9063                                   getPointerTy());
9064    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
9065                        MachinePointerInfo(SV), false, false, 0);
9066  }
9067
9068  // __va_list_tag:
9069  //   gp_offset         (0 - 6 * 8)
9070  //   fp_offset         (48 - 48 + 8 * 16)
9071  //   overflow_arg_area (point to parameters coming in memory).
9072  //   reg_save_area
9073  SmallVector<SDValue, 8> MemOps;
9074  SDValue FIN = Op.getOperand(1);
9075  // Store gp_offset
9076  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
9077                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
9078                                               MVT::i32),
9079                               FIN, MachinePointerInfo(SV), false, false, 0);
9080  MemOps.push_back(Store);
9081
9082  // Store fp_offset
9083  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9084                    FIN, DAG.getIntPtrConstant(4));
9085  Store = DAG.getStore(Op.getOperand(0), DL,
9086                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
9087                                       MVT::i32),
9088                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
9089  MemOps.push_back(Store);
9090
9091  // Store ptr to overflow_arg_area
9092  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9093                    FIN, DAG.getIntPtrConstant(4));
9094  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9095                                    getPointerTy());
9096  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
9097                       MachinePointerInfo(SV, 8),
9098                       false, false, 0);
9099  MemOps.push_back(Store);
9100
9101  // Store ptr to reg_save_area.
9102  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9103                    FIN, DAG.getIntPtrConstant(8));
9104  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
9105                                    getPointerTy());
9106  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
9107                       MachinePointerInfo(SV, 16), false, false, 0);
9108  MemOps.push_back(Store);
9109  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
9110                     &MemOps[0], MemOps.size());
9111}
9112
9113SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
9114  assert(Subtarget->is64Bit() &&
9115         "LowerVAARG only handles 64-bit va_arg!");
9116  assert((Subtarget->isTargetLinux() ||
9117          Subtarget->isTargetDarwin()) &&
9118          "Unhandled target in LowerVAARG");
9119  assert(Op.getNode()->getNumOperands() == 4);
9120  SDValue Chain = Op.getOperand(0);
9121  SDValue SrcPtr = Op.getOperand(1);
9122  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9123  unsigned Align = Op.getConstantOperandVal(3);
9124  DebugLoc dl = Op.getDebugLoc();
9125
9126  EVT ArgVT = Op.getNode()->getValueType(0);
9127  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9128  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
9129  uint8_t ArgMode;
9130
9131  // Decide which area this value should be read from.
9132  // TODO: Implement the AMD64 ABI in its entirety. This simple
9133  // selection mechanism works only for the basic types.
9134  if (ArgVT == MVT::f80) {
9135    llvm_unreachable("va_arg for f80 not yet implemented");
9136  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
9137    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
9138  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
9139    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
9140  } else {
9141    llvm_unreachable("Unhandled argument type in LowerVAARG");
9142  }
9143
9144  if (ArgMode == 2) {
9145    // Sanity Check: Make sure using fp_offset makes sense.
9146    assert(!getTargetMachine().Options.UseSoftFloat &&
9147           !(DAG.getMachineFunction()
9148                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
9149           Subtarget->hasSSE1());
9150  }
9151
9152  // Insert VAARG_64 node into the DAG
9153  // VAARG_64 returns two values: Variable Argument Address, Chain
9154  SmallVector<SDValue, 11> InstOps;
9155  InstOps.push_back(Chain);
9156  InstOps.push_back(SrcPtr);
9157  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
9158  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
9159  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
9160  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
9161  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
9162                                          VTs, &InstOps[0], InstOps.size(),
9163                                          MVT::i64,
9164                                          MachinePointerInfo(SV),
9165                                          /*Align=*/0,
9166                                          /*Volatile=*/false,
9167                                          /*ReadMem=*/true,
9168                                          /*WriteMem=*/true);
9169  Chain = VAARG.getValue(1);
9170
9171  // Load the next argument and return it
9172  return DAG.getLoad(ArgVT, dl,
9173                     Chain,
9174                     VAARG,
9175                     MachinePointerInfo(),
9176                     false, false, false, 0);
9177}
9178
9179SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
9180  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
9181  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
9182  SDValue Chain = Op.getOperand(0);
9183  SDValue DstPtr = Op.getOperand(1);
9184  SDValue SrcPtr = Op.getOperand(2);
9185  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
9186  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9187  DebugLoc DL = Op.getDebugLoc();
9188
9189  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
9190                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
9191                       false,
9192                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
9193}
9194
9195// getTargetVShiftNOde - Handle vector element shifts where the shift amount
9196// may or may not be a constant. Takes immediate version of shift as input.
9197static SDValue getTargetVShiftNode(unsigned Opc, DebugLoc dl, EVT VT,
9198                                   SDValue SrcOp, SDValue ShAmt,
9199                                   SelectionDAG &DAG) {
9200  assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32");
9201
9202  if (isa<ConstantSDNode>(ShAmt)) {
9203    switch (Opc) {
9204      default: llvm_unreachable("Unknown target vector shift node");
9205      case X86ISD::VSHLI:
9206      case X86ISD::VSRLI:
9207      case X86ISD::VSRAI:
9208        return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
9209    }
9210  }
9211
9212  // Change opcode to non-immediate version
9213  switch (Opc) {
9214    default: llvm_unreachable("Unknown target vector shift node");
9215    case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
9216    case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
9217    case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
9218  }
9219
9220  // Need to build a vector containing shift amount
9221  // Shift amount is 32-bits, but SSE instructions read 64-bit, so fill with 0
9222  SDValue ShOps[4];
9223  ShOps[0] = ShAmt;
9224  ShOps[1] = DAG.getConstant(0, MVT::i32);
9225  ShOps[2] = DAG.getUNDEF(MVT::i32);
9226  ShOps[3] = DAG.getUNDEF(MVT::i32);
9227  ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &ShOps[0], 4);
9228  ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9229  return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
9230}
9231
9232SDValue
9233X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
9234  DebugLoc dl = Op.getDebugLoc();
9235  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9236  switch (IntNo) {
9237  default: return SDValue();    // Don't custom lower most intrinsics.
9238  // Comparison intrinsics.
9239  case Intrinsic::x86_sse_comieq_ss:
9240  case Intrinsic::x86_sse_comilt_ss:
9241  case Intrinsic::x86_sse_comile_ss:
9242  case Intrinsic::x86_sse_comigt_ss:
9243  case Intrinsic::x86_sse_comige_ss:
9244  case Intrinsic::x86_sse_comineq_ss:
9245  case Intrinsic::x86_sse_ucomieq_ss:
9246  case Intrinsic::x86_sse_ucomilt_ss:
9247  case Intrinsic::x86_sse_ucomile_ss:
9248  case Intrinsic::x86_sse_ucomigt_ss:
9249  case Intrinsic::x86_sse_ucomige_ss:
9250  case Intrinsic::x86_sse_ucomineq_ss:
9251  case Intrinsic::x86_sse2_comieq_sd:
9252  case Intrinsic::x86_sse2_comilt_sd:
9253  case Intrinsic::x86_sse2_comile_sd:
9254  case Intrinsic::x86_sse2_comigt_sd:
9255  case Intrinsic::x86_sse2_comige_sd:
9256  case Intrinsic::x86_sse2_comineq_sd:
9257  case Intrinsic::x86_sse2_ucomieq_sd:
9258  case Intrinsic::x86_sse2_ucomilt_sd:
9259  case Intrinsic::x86_sse2_ucomile_sd:
9260  case Intrinsic::x86_sse2_ucomigt_sd:
9261  case Intrinsic::x86_sse2_ucomige_sd:
9262  case Intrinsic::x86_sse2_ucomineq_sd: {
9263    unsigned Opc = 0;
9264    ISD::CondCode CC = ISD::SETCC_INVALID;
9265    switch (IntNo) {
9266    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9267    case Intrinsic::x86_sse_comieq_ss:
9268    case Intrinsic::x86_sse2_comieq_sd:
9269      Opc = X86ISD::COMI;
9270      CC = ISD::SETEQ;
9271      break;
9272    case Intrinsic::x86_sse_comilt_ss:
9273    case Intrinsic::x86_sse2_comilt_sd:
9274      Opc = X86ISD::COMI;
9275      CC = ISD::SETLT;
9276      break;
9277    case Intrinsic::x86_sse_comile_ss:
9278    case Intrinsic::x86_sse2_comile_sd:
9279      Opc = X86ISD::COMI;
9280      CC = ISD::SETLE;
9281      break;
9282    case Intrinsic::x86_sse_comigt_ss:
9283    case Intrinsic::x86_sse2_comigt_sd:
9284      Opc = X86ISD::COMI;
9285      CC = ISD::SETGT;
9286      break;
9287    case Intrinsic::x86_sse_comige_ss:
9288    case Intrinsic::x86_sse2_comige_sd:
9289      Opc = X86ISD::COMI;
9290      CC = ISD::SETGE;
9291      break;
9292    case Intrinsic::x86_sse_comineq_ss:
9293    case Intrinsic::x86_sse2_comineq_sd:
9294      Opc = X86ISD::COMI;
9295      CC = ISD::SETNE;
9296      break;
9297    case Intrinsic::x86_sse_ucomieq_ss:
9298    case Intrinsic::x86_sse2_ucomieq_sd:
9299      Opc = X86ISD::UCOMI;
9300      CC = ISD::SETEQ;
9301      break;
9302    case Intrinsic::x86_sse_ucomilt_ss:
9303    case Intrinsic::x86_sse2_ucomilt_sd:
9304      Opc = X86ISD::UCOMI;
9305      CC = ISD::SETLT;
9306      break;
9307    case Intrinsic::x86_sse_ucomile_ss:
9308    case Intrinsic::x86_sse2_ucomile_sd:
9309      Opc = X86ISD::UCOMI;
9310      CC = ISD::SETLE;
9311      break;
9312    case Intrinsic::x86_sse_ucomigt_ss:
9313    case Intrinsic::x86_sse2_ucomigt_sd:
9314      Opc = X86ISD::UCOMI;
9315      CC = ISD::SETGT;
9316      break;
9317    case Intrinsic::x86_sse_ucomige_ss:
9318    case Intrinsic::x86_sse2_ucomige_sd:
9319      Opc = X86ISD::UCOMI;
9320      CC = ISD::SETGE;
9321      break;
9322    case Intrinsic::x86_sse_ucomineq_ss:
9323    case Intrinsic::x86_sse2_ucomineq_sd:
9324      Opc = X86ISD::UCOMI;
9325      CC = ISD::SETNE;
9326      break;
9327    }
9328
9329    SDValue LHS = Op.getOperand(1);
9330    SDValue RHS = Op.getOperand(2);
9331    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
9332    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
9333    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
9334    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9335                                DAG.getConstant(X86CC, MVT::i8), Cond);
9336    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9337  }
9338  // XOP comparison intrinsics
9339  case Intrinsic::x86_xop_vpcomltb:
9340  case Intrinsic::x86_xop_vpcomltw:
9341  case Intrinsic::x86_xop_vpcomltd:
9342  case Intrinsic::x86_xop_vpcomltq:
9343  case Intrinsic::x86_xop_vpcomltub:
9344  case Intrinsic::x86_xop_vpcomltuw:
9345  case Intrinsic::x86_xop_vpcomltud:
9346  case Intrinsic::x86_xop_vpcomltuq:
9347  case Intrinsic::x86_xop_vpcomleb:
9348  case Intrinsic::x86_xop_vpcomlew:
9349  case Intrinsic::x86_xop_vpcomled:
9350  case Intrinsic::x86_xop_vpcomleq:
9351  case Intrinsic::x86_xop_vpcomleub:
9352  case Intrinsic::x86_xop_vpcomleuw:
9353  case Intrinsic::x86_xop_vpcomleud:
9354  case Intrinsic::x86_xop_vpcomleuq:
9355  case Intrinsic::x86_xop_vpcomgtb:
9356  case Intrinsic::x86_xop_vpcomgtw:
9357  case Intrinsic::x86_xop_vpcomgtd:
9358  case Intrinsic::x86_xop_vpcomgtq:
9359  case Intrinsic::x86_xop_vpcomgtub:
9360  case Intrinsic::x86_xop_vpcomgtuw:
9361  case Intrinsic::x86_xop_vpcomgtud:
9362  case Intrinsic::x86_xop_vpcomgtuq:
9363  case Intrinsic::x86_xop_vpcomgeb:
9364  case Intrinsic::x86_xop_vpcomgew:
9365  case Intrinsic::x86_xop_vpcomged:
9366  case Intrinsic::x86_xop_vpcomgeq:
9367  case Intrinsic::x86_xop_vpcomgeub:
9368  case Intrinsic::x86_xop_vpcomgeuw:
9369  case Intrinsic::x86_xop_vpcomgeud:
9370  case Intrinsic::x86_xop_vpcomgeuq:
9371  case Intrinsic::x86_xop_vpcomeqb:
9372  case Intrinsic::x86_xop_vpcomeqw:
9373  case Intrinsic::x86_xop_vpcomeqd:
9374  case Intrinsic::x86_xop_vpcomeqq:
9375  case Intrinsic::x86_xop_vpcomequb:
9376  case Intrinsic::x86_xop_vpcomequw:
9377  case Intrinsic::x86_xop_vpcomequd:
9378  case Intrinsic::x86_xop_vpcomequq:
9379  case Intrinsic::x86_xop_vpcomneb:
9380  case Intrinsic::x86_xop_vpcomnew:
9381  case Intrinsic::x86_xop_vpcomned:
9382  case Intrinsic::x86_xop_vpcomneq:
9383  case Intrinsic::x86_xop_vpcomneub:
9384  case Intrinsic::x86_xop_vpcomneuw:
9385  case Intrinsic::x86_xop_vpcomneud:
9386  case Intrinsic::x86_xop_vpcomneuq:
9387  case Intrinsic::x86_xop_vpcomfalseb:
9388  case Intrinsic::x86_xop_vpcomfalsew:
9389  case Intrinsic::x86_xop_vpcomfalsed:
9390  case Intrinsic::x86_xop_vpcomfalseq:
9391  case Intrinsic::x86_xop_vpcomfalseub:
9392  case Intrinsic::x86_xop_vpcomfalseuw:
9393  case Intrinsic::x86_xop_vpcomfalseud:
9394  case Intrinsic::x86_xop_vpcomfalseuq:
9395  case Intrinsic::x86_xop_vpcomtrueb:
9396  case Intrinsic::x86_xop_vpcomtruew:
9397  case Intrinsic::x86_xop_vpcomtrued:
9398  case Intrinsic::x86_xop_vpcomtrueq:
9399  case Intrinsic::x86_xop_vpcomtrueub:
9400  case Intrinsic::x86_xop_vpcomtrueuw:
9401  case Intrinsic::x86_xop_vpcomtrueud:
9402  case Intrinsic::x86_xop_vpcomtrueuq: {
9403    unsigned CC = 0;
9404    unsigned Opc = 0;
9405
9406    switch (IntNo) {
9407    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9408    case Intrinsic::x86_xop_vpcomltb:
9409    case Intrinsic::x86_xop_vpcomltw:
9410    case Intrinsic::x86_xop_vpcomltd:
9411    case Intrinsic::x86_xop_vpcomltq:
9412      CC = 0;
9413      Opc = X86ISD::VPCOM;
9414      break;
9415    case Intrinsic::x86_xop_vpcomltub:
9416    case Intrinsic::x86_xop_vpcomltuw:
9417    case Intrinsic::x86_xop_vpcomltud:
9418    case Intrinsic::x86_xop_vpcomltuq:
9419      CC = 0;
9420      Opc = X86ISD::VPCOMU;
9421      break;
9422    case Intrinsic::x86_xop_vpcomleb:
9423    case Intrinsic::x86_xop_vpcomlew:
9424    case Intrinsic::x86_xop_vpcomled:
9425    case Intrinsic::x86_xop_vpcomleq:
9426      CC = 1;
9427      Opc = X86ISD::VPCOM;
9428      break;
9429    case Intrinsic::x86_xop_vpcomleub:
9430    case Intrinsic::x86_xop_vpcomleuw:
9431    case Intrinsic::x86_xop_vpcomleud:
9432    case Intrinsic::x86_xop_vpcomleuq:
9433      CC = 1;
9434      Opc = X86ISD::VPCOMU;
9435      break;
9436    case Intrinsic::x86_xop_vpcomgtb:
9437    case Intrinsic::x86_xop_vpcomgtw:
9438    case Intrinsic::x86_xop_vpcomgtd:
9439    case Intrinsic::x86_xop_vpcomgtq:
9440      CC = 2;
9441      Opc = X86ISD::VPCOM;
9442      break;
9443    case Intrinsic::x86_xop_vpcomgtub:
9444    case Intrinsic::x86_xop_vpcomgtuw:
9445    case Intrinsic::x86_xop_vpcomgtud:
9446    case Intrinsic::x86_xop_vpcomgtuq:
9447      CC = 2;
9448      Opc = X86ISD::VPCOMU;
9449      break;
9450    case Intrinsic::x86_xop_vpcomgeb:
9451    case Intrinsic::x86_xop_vpcomgew:
9452    case Intrinsic::x86_xop_vpcomged:
9453    case Intrinsic::x86_xop_vpcomgeq:
9454      CC = 3;
9455      Opc = X86ISD::VPCOM;
9456      break;
9457    case Intrinsic::x86_xop_vpcomgeub:
9458    case Intrinsic::x86_xop_vpcomgeuw:
9459    case Intrinsic::x86_xop_vpcomgeud:
9460    case Intrinsic::x86_xop_vpcomgeuq:
9461      CC = 3;
9462      Opc = X86ISD::VPCOMU;
9463      break;
9464    case Intrinsic::x86_xop_vpcomeqb:
9465    case Intrinsic::x86_xop_vpcomeqw:
9466    case Intrinsic::x86_xop_vpcomeqd:
9467    case Intrinsic::x86_xop_vpcomeqq:
9468      CC = 4;
9469      Opc = X86ISD::VPCOM;
9470      break;
9471    case Intrinsic::x86_xop_vpcomequb:
9472    case Intrinsic::x86_xop_vpcomequw:
9473    case Intrinsic::x86_xop_vpcomequd:
9474    case Intrinsic::x86_xop_vpcomequq:
9475      CC = 4;
9476      Opc = X86ISD::VPCOMU;
9477      break;
9478    case Intrinsic::x86_xop_vpcomneb:
9479    case Intrinsic::x86_xop_vpcomnew:
9480    case Intrinsic::x86_xop_vpcomned:
9481    case Intrinsic::x86_xop_vpcomneq:
9482      CC = 5;
9483      Opc = X86ISD::VPCOM;
9484      break;
9485    case Intrinsic::x86_xop_vpcomneub:
9486    case Intrinsic::x86_xop_vpcomneuw:
9487    case Intrinsic::x86_xop_vpcomneud:
9488    case Intrinsic::x86_xop_vpcomneuq:
9489      CC = 5;
9490      Opc = X86ISD::VPCOMU;
9491      break;
9492    case Intrinsic::x86_xop_vpcomfalseb:
9493    case Intrinsic::x86_xop_vpcomfalsew:
9494    case Intrinsic::x86_xop_vpcomfalsed:
9495    case Intrinsic::x86_xop_vpcomfalseq:
9496      CC = 6;
9497      Opc = X86ISD::VPCOM;
9498      break;
9499    case Intrinsic::x86_xop_vpcomfalseub:
9500    case Intrinsic::x86_xop_vpcomfalseuw:
9501    case Intrinsic::x86_xop_vpcomfalseud:
9502    case Intrinsic::x86_xop_vpcomfalseuq:
9503      CC = 6;
9504      Opc = X86ISD::VPCOMU;
9505      break;
9506    case Intrinsic::x86_xop_vpcomtrueb:
9507    case Intrinsic::x86_xop_vpcomtruew:
9508    case Intrinsic::x86_xop_vpcomtrued:
9509    case Intrinsic::x86_xop_vpcomtrueq:
9510      CC = 7;
9511      Opc = X86ISD::VPCOM;
9512      break;
9513    case Intrinsic::x86_xop_vpcomtrueub:
9514    case Intrinsic::x86_xop_vpcomtrueuw:
9515    case Intrinsic::x86_xop_vpcomtrueud:
9516    case Intrinsic::x86_xop_vpcomtrueuq:
9517      CC = 7;
9518      Opc = X86ISD::VPCOMU;
9519      break;
9520    }
9521
9522    SDValue LHS = Op.getOperand(1);
9523    SDValue RHS = Op.getOperand(2);
9524    return DAG.getNode(Opc, dl, Op.getValueType(), LHS, RHS,
9525                       DAG.getConstant(CC, MVT::i8));
9526  }
9527
9528  // Arithmetic intrinsics.
9529  case Intrinsic::x86_sse2_pmulu_dq:
9530  case Intrinsic::x86_avx2_pmulu_dq:
9531    return DAG.getNode(X86ISD::PMULUDQ, dl, Op.getValueType(),
9532                       Op.getOperand(1), Op.getOperand(2));
9533  case Intrinsic::x86_sse3_hadd_ps:
9534  case Intrinsic::x86_sse3_hadd_pd:
9535  case Intrinsic::x86_avx_hadd_ps_256:
9536  case Intrinsic::x86_avx_hadd_pd_256:
9537    return DAG.getNode(X86ISD::FHADD, dl, Op.getValueType(),
9538                       Op.getOperand(1), Op.getOperand(2));
9539  case Intrinsic::x86_sse3_hsub_ps:
9540  case Intrinsic::x86_sse3_hsub_pd:
9541  case Intrinsic::x86_avx_hsub_ps_256:
9542  case Intrinsic::x86_avx_hsub_pd_256:
9543    return DAG.getNode(X86ISD::FHSUB, dl, Op.getValueType(),
9544                       Op.getOperand(1), Op.getOperand(2));
9545  case Intrinsic::x86_ssse3_phadd_w_128:
9546  case Intrinsic::x86_ssse3_phadd_d_128:
9547  case Intrinsic::x86_avx2_phadd_w:
9548  case Intrinsic::x86_avx2_phadd_d:
9549    return DAG.getNode(X86ISD::HADD, dl, Op.getValueType(),
9550                       Op.getOperand(1), Op.getOperand(2));
9551  case Intrinsic::x86_ssse3_phsub_w_128:
9552  case Intrinsic::x86_ssse3_phsub_d_128:
9553  case Intrinsic::x86_avx2_phsub_w:
9554  case Intrinsic::x86_avx2_phsub_d:
9555    return DAG.getNode(X86ISD::HSUB, dl, Op.getValueType(),
9556                       Op.getOperand(1), Op.getOperand(2));
9557  case Intrinsic::x86_avx2_psllv_d:
9558  case Intrinsic::x86_avx2_psllv_q:
9559  case Intrinsic::x86_avx2_psllv_d_256:
9560  case Intrinsic::x86_avx2_psllv_q_256:
9561    return DAG.getNode(ISD::SHL, dl, Op.getValueType(),
9562                      Op.getOperand(1), Op.getOperand(2));
9563  case Intrinsic::x86_avx2_psrlv_d:
9564  case Intrinsic::x86_avx2_psrlv_q:
9565  case Intrinsic::x86_avx2_psrlv_d_256:
9566  case Intrinsic::x86_avx2_psrlv_q_256:
9567    return DAG.getNode(ISD::SRL, dl, Op.getValueType(),
9568                      Op.getOperand(1), Op.getOperand(2));
9569  case Intrinsic::x86_avx2_psrav_d:
9570  case Intrinsic::x86_avx2_psrav_d_256:
9571    return DAG.getNode(ISD::SRA, dl, Op.getValueType(),
9572                      Op.getOperand(1), Op.getOperand(2));
9573  case Intrinsic::x86_ssse3_pshuf_b_128:
9574  case Intrinsic::x86_avx2_pshuf_b:
9575    return DAG.getNode(X86ISD::PSHUFB, dl, Op.getValueType(),
9576                       Op.getOperand(1), Op.getOperand(2));
9577  case Intrinsic::x86_ssse3_psign_b_128:
9578  case Intrinsic::x86_ssse3_psign_w_128:
9579  case Intrinsic::x86_ssse3_psign_d_128:
9580  case Intrinsic::x86_avx2_psign_b:
9581  case Intrinsic::x86_avx2_psign_w:
9582  case Intrinsic::x86_avx2_psign_d:
9583    return DAG.getNode(X86ISD::PSIGN, dl, Op.getValueType(),
9584                       Op.getOperand(1), Op.getOperand(2));
9585  case Intrinsic::x86_sse41_insertps:
9586    return DAG.getNode(X86ISD::INSERTPS, dl, Op.getValueType(),
9587                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
9588  case Intrinsic::x86_avx_vperm2f128_ps_256:
9589  case Intrinsic::x86_avx_vperm2f128_pd_256:
9590  case Intrinsic::x86_avx_vperm2f128_si_256:
9591  case Intrinsic::x86_avx2_vperm2i128:
9592    return DAG.getNode(X86ISD::VPERM2X128, dl, Op.getValueType(),
9593                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
9594  case Intrinsic::x86_avx_vpermil_ps:
9595  case Intrinsic::x86_avx_vpermil_pd:
9596  case Intrinsic::x86_avx_vpermil_ps_256:
9597  case Intrinsic::x86_avx_vpermil_pd_256:
9598    return DAG.getNode(X86ISD::VPERMILP, dl, Op.getValueType(),
9599                       Op.getOperand(1), Op.getOperand(2));
9600  case Intrinsic::x86_avx2_permd:
9601  case Intrinsic::x86_avx2_permps:
9602    // Operands intentionally swapped. Mask is last operand to intrinsic,
9603    // but second operand for node/intruction.
9604    return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(),
9605                       Op.getOperand(2), Op.getOperand(1));
9606
9607  // ptest and testp intrinsics. The intrinsic these come from are designed to
9608  // return an integer value, not just an instruction so lower it to the ptest
9609  // or testp pattern and a setcc for the result.
9610  case Intrinsic::x86_sse41_ptestz:
9611  case Intrinsic::x86_sse41_ptestc:
9612  case Intrinsic::x86_sse41_ptestnzc:
9613  case Intrinsic::x86_avx_ptestz_256:
9614  case Intrinsic::x86_avx_ptestc_256:
9615  case Intrinsic::x86_avx_ptestnzc_256:
9616  case Intrinsic::x86_avx_vtestz_ps:
9617  case Intrinsic::x86_avx_vtestc_ps:
9618  case Intrinsic::x86_avx_vtestnzc_ps:
9619  case Intrinsic::x86_avx_vtestz_pd:
9620  case Intrinsic::x86_avx_vtestc_pd:
9621  case Intrinsic::x86_avx_vtestnzc_pd:
9622  case Intrinsic::x86_avx_vtestz_ps_256:
9623  case Intrinsic::x86_avx_vtestc_ps_256:
9624  case Intrinsic::x86_avx_vtestnzc_ps_256:
9625  case Intrinsic::x86_avx_vtestz_pd_256:
9626  case Intrinsic::x86_avx_vtestc_pd_256:
9627  case Intrinsic::x86_avx_vtestnzc_pd_256: {
9628    bool IsTestPacked = false;
9629    unsigned X86CC = 0;
9630    switch (IntNo) {
9631    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
9632    case Intrinsic::x86_avx_vtestz_ps:
9633    case Intrinsic::x86_avx_vtestz_pd:
9634    case Intrinsic::x86_avx_vtestz_ps_256:
9635    case Intrinsic::x86_avx_vtestz_pd_256:
9636      IsTestPacked = true; // Fallthrough
9637    case Intrinsic::x86_sse41_ptestz:
9638    case Intrinsic::x86_avx_ptestz_256:
9639      // ZF = 1
9640      X86CC = X86::COND_E;
9641      break;
9642    case Intrinsic::x86_avx_vtestc_ps:
9643    case Intrinsic::x86_avx_vtestc_pd:
9644    case Intrinsic::x86_avx_vtestc_ps_256:
9645    case Intrinsic::x86_avx_vtestc_pd_256:
9646      IsTestPacked = true; // Fallthrough
9647    case Intrinsic::x86_sse41_ptestc:
9648    case Intrinsic::x86_avx_ptestc_256:
9649      // CF = 1
9650      X86CC = X86::COND_B;
9651      break;
9652    case Intrinsic::x86_avx_vtestnzc_ps:
9653    case Intrinsic::x86_avx_vtestnzc_pd:
9654    case Intrinsic::x86_avx_vtestnzc_ps_256:
9655    case Intrinsic::x86_avx_vtestnzc_pd_256:
9656      IsTestPacked = true; // Fallthrough
9657    case Intrinsic::x86_sse41_ptestnzc:
9658    case Intrinsic::x86_avx_ptestnzc_256:
9659      // ZF and CF = 0
9660      X86CC = X86::COND_A;
9661      break;
9662    }
9663
9664    SDValue LHS = Op.getOperand(1);
9665    SDValue RHS = Op.getOperand(2);
9666    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
9667    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
9668    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
9669    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
9670    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9671  }
9672
9673  // SSE/AVX shift intrinsics
9674  case Intrinsic::x86_sse2_psll_w:
9675  case Intrinsic::x86_sse2_psll_d:
9676  case Intrinsic::x86_sse2_psll_q:
9677  case Intrinsic::x86_avx2_psll_w:
9678  case Intrinsic::x86_avx2_psll_d:
9679  case Intrinsic::x86_avx2_psll_q:
9680    return DAG.getNode(X86ISD::VSHL, dl, Op.getValueType(),
9681                       Op.getOperand(1), Op.getOperand(2));
9682  case Intrinsic::x86_sse2_psrl_w:
9683  case Intrinsic::x86_sse2_psrl_d:
9684  case Intrinsic::x86_sse2_psrl_q:
9685  case Intrinsic::x86_avx2_psrl_w:
9686  case Intrinsic::x86_avx2_psrl_d:
9687  case Intrinsic::x86_avx2_psrl_q:
9688    return DAG.getNode(X86ISD::VSRL, dl, Op.getValueType(),
9689                       Op.getOperand(1), Op.getOperand(2));
9690  case Intrinsic::x86_sse2_psra_w:
9691  case Intrinsic::x86_sse2_psra_d:
9692  case Intrinsic::x86_avx2_psra_w:
9693  case Intrinsic::x86_avx2_psra_d:
9694    return DAG.getNode(X86ISD::VSRA, dl, Op.getValueType(),
9695                       Op.getOperand(1), Op.getOperand(2));
9696  case Intrinsic::x86_sse2_pslli_w:
9697  case Intrinsic::x86_sse2_pslli_d:
9698  case Intrinsic::x86_sse2_pslli_q:
9699  case Intrinsic::x86_avx2_pslli_w:
9700  case Intrinsic::x86_avx2_pslli_d:
9701  case Intrinsic::x86_avx2_pslli_q:
9702    return getTargetVShiftNode(X86ISD::VSHLI, dl, Op.getValueType(),
9703                               Op.getOperand(1), Op.getOperand(2), DAG);
9704  case Intrinsic::x86_sse2_psrli_w:
9705  case Intrinsic::x86_sse2_psrli_d:
9706  case Intrinsic::x86_sse2_psrli_q:
9707  case Intrinsic::x86_avx2_psrli_w:
9708  case Intrinsic::x86_avx2_psrli_d:
9709  case Intrinsic::x86_avx2_psrli_q:
9710    return getTargetVShiftNode(X86ISD::VSRLI, dl, Op.getValueType(),
9711                               Op.getOperand(1), Op.getOperand(2), DAG);
9712  case Intrinsic::x86_sse2_psrai_w:
9713  case Intrinsic::x86_sse2_psrai_d:
9714  case Intrinsic::x86_avx2_psrai_w:
9715  case Intrinsic::x86_avx2_psrai_d:
9716    return getTargetVShiftNode(X86ISD::VSRAI, dl, Op.getValueType(),
9717                               Op.getOperand(1), Op.getOperand(2), DAG);
9718  // Fix vector shift instructions where the last operand is a non-immediate
9719  // i32 value.
9720  case Intrinsic::x86_mmx_pslli_w:
9721  case Intrinsic::x86_mmx_pslli_d:
9722  case Intrinsic::x86_mmx_pslli_q:
9723  case Intrinsic::x86_mmx_psrli_w:
9724  case Intrinsic::x86_mmx_psrli_d:
9725  case Intrinsic::x86_mmx_psrli_q:
9726  case Intrinsic::x86_mmx_psrai_w:
9727  case Intrinsic::x86_mmx_psrai_d: {
9728    SDValue ShAmt = Op.getOperand(2);
9729    if (isa<ConstantSDNode>(ShAmt))
9730      return SDValue();
9731
9732    unsigned NewIntNo = 0;
9733    switch (IntNo) {
9734    case Intrinsic::x86_mmx_pslli_w:
9735      NewIntNo = Intrinsic::x86_mmx_psll_w;
9736      break;
9737    case Intrinsic::x86_mmx_pslli_d:
9738      NewIntNo = Intrinsic::x86_mmx_psll_d;
9739      break;
9740    case Intrinsic::x86_mmx_pslli_q:
9741      NewIntNo = Intrinsic::x86_mmx_psll_q;
9742      break;
9743    case Intrinsic::x86_mmx_psrli_w:
9744      NewIntNo = Intrinsic::x86_mmx_psrl_w;
9745      break;
9746    case Intrinsic::x86_mmx_psrli_d:
9747      NewIntNo = Intrinsic::x86_mmx_psrl_d;
9748      break;
9749    case Intrinsic::x86_mmx_psrli_q:
9750      NewIntNo = Intrinsic::x86_mmx_psrl_q;
9751      break;
9752    case Intrinsic::x86_mmx_psrai_w:
9753      NewIntNo = Intrinsic::x86_mmx_psra_w;
9754      break;
9755    case Intrinsic::x86_mmx_psrai_d:
9756      NewIntNo = Intrinsic::x86_mmx_psra_d;
9757      break;
9758    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9759    }
9760
9761    // The vector shift intrinsics with scalars uses 32b shift amounts but
9762    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
9763    // to be zero.
9764    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, ShAmt,
9765                         DAG.getConstant(0, MVT::i32));
9766// FIXME this must be lowered to get rid of the invalid type.
9767
9768    EVT VT = Op.getValueType();
9769    ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9770    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9771                       DAG.getConstant(NewIntNo, MVT::i32),
9772                       Op.getOperand(1), ShAmt);
9773  }
9774  }
9775}
9776
9777SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
9778                                           SelectionDAG &DAG) const {
9779  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9780  MFI->setReturnAddressIsTaken(true);
9781
9782  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9783  DebugLoc dl = Op.getDebugLoc();
9784
9785  if (Depth > 0) {
9786    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
9787    SDValue Offset =
9788      DAG.getConstant(TD->getPointerSize(),
9789                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
9790    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9791                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
9792                                   FrameAddr, Offset),
9793                       MachinePointerInfo(), false, false, false, 0);
9794  }
9795
9796  // Just load the return address.
9797  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
9798  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9799                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
9800}
9801
9802SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
9803  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9804  MFI->setFrameAddressIsTaken(true);
9805
9806  EVT VT = Op.getValueType();
9807  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
9808  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9809  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
9810  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
9811  while (Depth--)
9812    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
9813                            MachinePointerInfo(),
9814                            false, false, false, 0);
9815  return FrameAddr;
9816}
9817
9818SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
9819                                                     SelectionDAG &DAG) const {
9820  return DAG.getIntPtrConstant(2*TD->getPointerSize());
9821}
9822
9823SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
9824  MachineFunction &MF = DAG.getMachineFunction();
9825  SDValue Chain     = Op.getOperand(0);
9826  SDValue Offset    = Op.getOperand(1);
9827  SDValue Handler   = Op.getOperand(2);
9828  DebugLoc dl       = Op.getDebugLoc();
9829
9830  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
9831                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
9832                                     getPointerTy());
9833  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
9834
9835  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
9836                                  DAG.getIntPtrConstant(TD->getPointerSize()));
9837  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
9838  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
9839                       false, false, 0);
9840  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
9841  MF.getRegInfo().addLiveOut(StoreAddrReg);
9842
9843  return DAG.getNode(X86ISD::EH_RETURN, dl,
9844                     MVT::Other,
9845                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
9846}
9847
9848SDValue X86TargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
9849                                                  SelectionDAG &DAG) const {
9850  return Op.getOperand(0);
9851}
9852
9853SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
9854                                                SelectionDAG &DAG) const {
9855  SDValue Root = Op.getOperand(0);
9856  SDValue Trmp = Op.getOperand(1); // trampoline
9857  SDValue FPtr = Op.getOperand(2); // nested function
9858  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
9859  DebugLoc dl  = Op.getDebugLoc();
9860
9861  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9862
9863  if (Subtarget->is64Bit()) {
9864    SDValue OutChains[6];
9865
9866    // Large code-model.
9867    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
9868    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
9869
9870    const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
9871    const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
9872
9873    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
9874
9875    // Load the pointer to the nested function into R11.
9876    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
9877    SDValue Addr = Trmp;
9878    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9879                                Addr, MachinePointerInfo(TrmpAddr),
9880                                false, false, 0);
9881
9882    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9883                       DAG.getConstant(2, MVT::i64));
9884    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
9885                                MachinePointerInfo(TrmpAddr, 2),
9886                                false, false, 2);
9887
9888    // Load the 'nest' parameter value into R10.
9889    // R10 is specified in X86CallingConv.td
9890    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
9891    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9892                       DAG.getConstant(10, MVT::i64));
9893    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9894                                Addr, MachinePointerInfo(TrmpAddr, 10),
9895                                false, false, 0);
9896
9897    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9898                       DAG.getConstant(12, MVT::i64));
9899    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
9900                                MachinePointerInfo(TrmpAddr, 12),
9901                                false, false, 2);
9902
9903    // Jump to the nested function.
9904    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
9905    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9906                       DAG.getConstant(20, MVT::i64));
9907    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9908                                Addr, MachinePointerInfo(TrmpAddr, 20),
9909                                false, false, 0);
9910
9911    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
9912    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9913                       DAG.getConstant(22, MVT::i64));
9914    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
9915                                MachinePointerInfo(TrmpAddr, 22),
9916                                false, false, 0);
9917
9918    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
9919  } else {
9920    const Function *Func =
9921      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
9922    CallingConv::ID CC = Func->getCallingConv();
9923    unsigned NestReg;
9924
9925    switch (CC) {
9926    default:
9927      llvm_unreachable("Unsupported calling convention");
9928    case CallingConv::C:
9929    case CallingConv::X86_StdCall: {
9930      // Pass 'nest' parameter in ECX.
9931      // Must be kept in sync with X86CallingConv.td
9932      NestReg = X86::ECX;
9933
9934      // Check that ECX wasn't needed by an 'inreg' parameter.
9935      FunctionType *FTy = Func->getFunctionType();
9936      const AttrListPtr &Attrs = Func->getAttributes();
9937
9938      if (!Attrs.isEmpty() && !Func->isVarArg()) {
9939        unsigned InRegCount = 0;
9940        unsigned Idx = 1;
9941
9942        for (FunctionType::param_iterator I = FTy->param_begin(),
9943             E = FTy->param_end(); I != E; ++I, ++Idx)
9944          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
9945            // FIXME: should only count parameters that are lowered to integers.
9946            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
9947
9948        if (InRegCount > 2) {
9949          report_fatal_error("Nest register in use - reduce number of inreg"
9950                             " parameters!");
9951        }
9952      }
9953      break;
9954    }
9955    case CallingConv::X86_FastCall:
9956    case CallingConv::X86_ThisCall:
9957    case CallingConv::Fast:
9958      // Pass 'nest' parameter in EAX.
9959      // Must be kept in sync with X86CallingConv.td
9960      NestReg = X86::EAX;
9961      break;
9962    }
9963
9964    SDValue OutChains[4];
9965    SDValue Addr, Disp;
9966
9967    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9968                       DAG.getConstant(10, MVT::i32));
9969    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
9970
9971    // This is storing the opcode for MOV32ri.
9972    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
9973    const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
9974    OutChains[0] = DAG.getStore(Root, dl,
9975                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
9976                                Trmp, MachinePointerInfo(TrmpAddr),
9977                                false, false, 0);
9978
9979    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9980                       DAG.getConstant(1, MVT::i32));
9981    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
9982                                MachinePointerInfo(TrmpAddr, 1),
9983                                false, false, 1);
9984
9985    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
9986    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9987                       DAG.getConstant(5, MVT::i32));
9988    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
9989                                MachinePointerInfo(TrmpAddr, 5),
9990                                false, false, 1);
9991
9992    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9993                       DAG.getConstant(6, MVT::i32));
9994    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
9995                                MachinePointerInfo(TrmpAddr, 6),
9996                                false, false, 1);
9997
9998    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
9999  }
10000}
10001
10002SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
10003                                            SelectionDAG &DAG) const {
10004  /*
10005   The rounding mode is in bits 11:10 of FPSR, and has the following
10006   settings:
10007     00 Round to nearest
10008     01 Round to -inf
10009     10 Round to +inf
10010     11 Round to 0
10011
10012  FLT_ROUNDS, on the other hand, expects the following:
10013    -1 Undefined
10014     0 Round to 0
10015     1 Round to nearest
10016     2 Round to +inf
10017     3 Round to -inf
10018
10019  To perform the conversion, we do:
10020    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
10021  */
10022
10023  MachineFunction &MF = DAG.getMachineFunction();
10024  const TargetMachine &TM = MF.getTarget();
10025  const TargetFrameLowering &TFI = *TM.getFrameLowering();
10026  unsigned StackAlignment = TFI.getStackAlignment();
10027  EVT VT = Op.getValueType();
10028  DebugLoc DL = Op.getDebugLoc();
10029
10030  // Save FP Control Word to stack slot
10031  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
10032  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
10033
10034
10035  MachineMemOperand *MMO =
10036   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
10037                           MachineMemOperand::MOStore, 2, 2);
10038
10039  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
10040  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
10041                                          DAG.getVTList(MVT::Other),
10042                                          Ops, 2, MVT::i16, MMO);
10043
10044  // Load FP Control Word from stack slot
10045  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
10046                            MachinePointerInfo(), false, false, false, 0);
10047
10048  // Transform as necessary
10049  SDValue CWD1 =
10050    DAG.getNode(ISD::SRL, DL, MVT::i16,
10051                DAG.getNode(ISD::AND, DL, MVT::i16,
10052                            CWD, DAG.getConstant(0x800, MVT::i16)),
10053                DAG.getConstant(11, MVT::i8));
10054  SDValue CWD2 =
10055    DAG.getNode(ISD::SRL, DL, MVT::i16,
10056                DAG.getNode(ISD::AND, DL, MVT::i16,
10057                            CWD, DAG.getConstant(0x400, MVT::i16)),
10058                DAG.getConstant(9, MVT::i8));
10059
10060  SDValue RetVal =
10061    DAG.getNode(ISD::AND, DL, MVT::i16,
10062                DAG.getNode(ISD::ADD, DL, MVT::i16,
10063                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
10064                            DAG.getConstant(1, MVT::i16)),
10065                DAG.getConstant(3, MVT::i16));
10066
10067
10068  return DAG.getNode((VT.getSizeInBits() < 16 ?
10069                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
10070}
10071
10072SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
10073  EVT VT = Op.getValueType();
10074  EVT OpVT = VT;
10075  unsigned NumBits = VT.getSizeInBits();
10076  DebugLoc dl = Op.getDebugLoc();
10077
10078  Op = Op.getOperand(0);
10079  if (VT == MVT::i8) {
10080    // Zero extend to i32 since there is not an i8 bsr.
10081    OpVT = MVT::i32;
10082    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
10083  }
10084
10085  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
10086  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10087  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
10088
10089  // If src is zero (i.e. bsr sets ZF), returns NumBits.
10090  SDValue Ops[] = {
10091    Op,
10092    DAG.getConstant(NumBits+NumBits-1, OpVT),
10093    DAG.getConstant(X86::COND_E, MVT::i8),
10094    Op.getValue(1)
10095  };
10096  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
10097
10098  // Finally xor with NumBits-1.
10099  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
10100
10101  if (VT == MVT::i8)
10102    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10103  return Op;
10104}
10105
10106SDValue X86TargetLowering::LowerCTLZ_ZERO_UNDEF(SDValue Op,
10107                                                SelectionDAG &DAG) const {
10108  EVT VT = Op.getValueType();
10109  EVT OpVT = VT;
10110  unsigned NumBits = VT.getSizeInBits();
10111  DebugLoc dl = Op.getDebugLoc();
10112
10113  Op = Op.getOperand(0);
10114  if (VT == MVT::i8) {
10115    // Zero extend to i32 since there is not an i8 bsr.
10116    OpVT = MVT::i32;
10117    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
10118  }
10119
10120  // Issue a bsr (scan bits in reverse).
10121  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10122  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
10123
10124  // And xor with NumBits-1.
10125  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
10126
10127  if (VT == MVT::i8)
10128    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10129  return Op;
10130}
10131
10132SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
10133  EVT VT = Op.getValueType();
10134  unsigned NumBits = VT.getSizeInBits();
10135  DebugLoc dl = Op.getDebugLoc();
10136  Op = Op.getOperand(0);
10137
10138  // Issue a bsf (scan bits forward) which also sets EFLAGS.
10139  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10140  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
10141
10142  // If src is zero (i.e. bsf sets ZF), returns NumBits.
10143  SDValue Ops[] = {
10144    Op,
10145    DAG.getConstant(NumBits, VT),
10146    DAG.getConstant(X86::COND_E, MVT::i8),
10147    Op.getValue(1)
10148  };
10149  return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops));
10150}
10151
10152// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
10153// ones, and then concatenate the result back.
10154static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
10155  EVT VT = Op.getValueType();
10156
10157  assert(VT.getSizeInBits() == 256 && VT.isInteger() &&
10158         "Unsupported value type for operation");
10159
10160  int NumElems = VT.getVectorNumElements();
10161  DebugLoc dl = Op.getDebugLoc();
10162  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
10163  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
10164
10165  // Extract the LHS vectors
10166  SDValue LHS = Op.getOperand(0);
10167  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
10168  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
10169
10170  // Extract the RHS vectors
10171  SDValue RHS = Op.getOperand(1);
10172  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
10173  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
10174
10175  MVT EltVT = VT.getVectorElementType().getSimpleVT();
10176  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10177
10178  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
10179                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
10180                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
10181}
10182
10183SDValue X86TargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
10184  assert(Op.getValueType().getSizeInBits() == 256 &&
10185         Op.getValueType().isInteger() &&
10186         "Only handle AVX 256-bit vector integer operation");
10187  return Lower256IntArith(Op, DAG);
10188}
10189
10190SDValue X86TargetLowering::LowerSUB(SDValue Op, SelectionDAG &DAG) const {
10191  assert(Op.getValueType().getSizeInBits() == 256 &&
10192         Op.getValueType().isInteger() &&
10193         "Only handle AVX 256-bit vector integer operation");
10194  return Lower256IntArith(Op, DAG);
10195}
10196
10197SDValue X86TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10198  EVT VT = Op.getValueType();
10199
10200  // Decompose 256-bit ops into smaller 128-bit ops.
10201  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
10202    return Lower256IntArith(Op, DAG);
10203
10204  assert((VT == MVT::v2i64 || VT == MVT::v4i64) &&
10205         "Only know how to lower V2I64/V4I64 multiply");
10206
10207  DebugLoc dl = Op.getDebugLoc();
10208
10209  //  Ahi = psrlqi(a, 32);
10210  //  Bhi = psrlqi(b, 32);
10211  //
10212  //  AloBlo = pmuludq(a, b);
10213  //  AloBhi = pmuludq(a, Bhi);
10214  //  AhiBlo = pmuludq(Ahi, b);
10215
10216  //  AloBhi = psllqi(AloBhi, 32);
10217  //  AhiBlo = psllqi(AhiBlo, 32);
10218  //  return AloBlo + AloBhi + AhiBlo;
10219
10220  SDValue A = Op.getOperand(0);
10221  SDValue B = Op.getOperand(1);
10222
10223  SDValue ShAmt = DAG.getConstant(32, MVT::i32);
10224
10225  SDValue Ahi = DAG.getNode(X86ISD::VSRLI, dl, VT, A, ShAmt);
10226  SDValue Bhi = DAG.getNode(X86ISD::VSRLI, dl, VT, B, ShAmt);
10227
10228  // Bit cast to 32-bit vectors for MULUDQ
10229  EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 : MVT::v8i32;
10230  A = DAG.getNode(ISD::BITCAST, dl, MulVT, A);
10231  B = DAG.getNode(ISD::BITCAST, dl, MulVT, B);
10232  Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi);
10233  Bhi = DAG.getNode(ISD::BITCAST, dl, MulVT, Bhi);
10234
10235  SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
10236  SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
10237  SDValue AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
10238
10239  AloBhi = DAG.getNode(X86ISD::VSHLI, dl, VT, AloBhi, ShAmt);
10240  AhiBlo = DAG.getNode(X86ISD::VSHLI, dl, VT, AhiBlo, ShAmt);
10241
10242  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
10243  return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
10244}
10245
10246SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
10247
10248  EVT VT = Op.getValueType();
10249  DebugLoc dl = Op.getDebugLoc();
10250  SDValue R = Op.getOperand(0);
10251  SDValue Amt = Op.getOperand(1);
10252  LLVMContext *Context = DAG.getContext();
10253
10254  if (!Subtarget->hasSSE2())
10255    return SDValue();
10256
10257  // Optimize shl/srl/sra with constant shift amount.
10258  if (isSplatVector(Amt.getNode())) {
10259    SDValue SclrAmt = Amt->getOperand(0);
10260    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
10261      uint64_t ShiftAmt = C->getZExtValue();
10262
10263      if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
10264          (Subtarget->hasAVX2() &&
10265           (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16))) {
10266        if (Op.getOpcode() == ISD::SHL)
10267          return DAG.getNode(X86ISD::VSHLI, dl, VT, R,
10268                             DAG.getConstant(ShiftAmt, MVT::i32));
10269        if (Op.getOpcode() == ISD::SRL)
10270          return DAG.getNode(X86ISD::VSRLI, dl, VT, R,
10271                             DAG.getConstant(ShiftAmt, MVT::i32));
10272        if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64)
10273          return DAG.getNode(X86ISD::VSRAI, dl, VT, R,
10274                             DAG.getConstant(ShiftAmt, MVT::i32));
10275      }
10276
10277      if (VT == MVT::v16i8) {
10278        if (Op.getOpcode() == ISD::SHL) {
10279          // Make a large shift.
10280          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, R,
10281                                    DAG.getConstant(ShiftAmt, MVT::i32));
10282          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
10283          // Zero out the rightmost bits.
10284          SmallVector<SDValue, 16> V(16,
10285                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
10286                                                     MVT::i8));
10287          return DAG.getNode(ISD::AND, dl, VT, SHL,
10288                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10289        }
10290        if (Op.getOpcode() == ISD::SRL) {
10291          // Make a large shift.
10292          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v8i16, R,
10293                                    DAG.getConstant(ShiftAmt, MVT::i32));
10294          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
10295          // Zero out the leftmost bits.
10296          SmallVector<SDValue, 16> V(16,
10297                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10298                                                     MVT::i8));
10299          return DAG.getNode(ISD::AND, dl, VT, SRL,
10300                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10301        }
10302        if (Op.getOpcode() == ISD::SRA) {
10303          if (ShiftAmt == 7) {
10304            // R s>> 7  ===  R s< 0
10305            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
10306            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
10307          }
10308
10309          // R s>> a === ((R u>> a) ^ m) - m
10310          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10311          SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
10312                                                         MVT::i8));
10313          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
10314          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10315          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10316          return Res;
10317        }
10318      }
10319
10320      if (Subtarget->hasAVX2() && VT == MVT::v32i8) {
10321        if (Op.getOpcode() == ISD::SHL) {
10322          // Make a large shift.
10323          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v16i16, R,
10324                                    DAG.getConstant(ShiftAmt, MVT::i32));
10325          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
10326          // Zero out the rightmost bits.
10327          SmallVector<SDValue, 32> V(32,
10328                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
10329                                                     MVT::i8));
10330          return DAG.getNode(ISD::AND, dl, VT, SHL,
10331                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10332        }
10333        if (Op.getOpcode() == ISD::SRL) {
10334          // Make a large shift.
10335          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v16i16, R,
10336                                    DAG.getConstant(ShiftAmt, MVT::i32));
10337          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
10338          // Zero out the leftmost bits.
10339          SmallVector<SDValue, 32> V(32,
10340                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10341                                                     MVT::i8));
10342          return DAG.getNode(ISD::AND, dl, VT, SRL,
10343                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10344        }
10345        if (Op.getOpcode() == ISD::SRA) {
10346          if (ShiftAmt == 7) {
10347            // R s>> 7  ===  R s< 0
10348            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
10349            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
10350          }
10351
10352          // R s>> a === ((R u>> a) ^ m) - m
10353          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10354          SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
10355                                                         MVT::i8));
10356          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
10357          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10358          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10359          return Res;
10360        }
10361      }
10362    }
10363  }
10364
10365  // Lower SHL with variable shift amount.
10366  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
10367    Op = DAG.getNode(X86ISD::VSHLI, dl, VT, Op.getOperand(1),
10368                     DAG.getConstant(23, MVT::i32));
10369
10370    const uint32_t CV[] = { 0x3f800000U, 0x3f800000U, 0x3f800000U, 0x3f800000U};
10371    Constant *C = ConstantDataVector::get(*Context, CV);
10372    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10373    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10374                                 MachinePointerInfo::getConstantPool(),
10375                                 false, false, false, 16);
10376
10377    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
10378    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
10379    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
10380    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
10381  }
10382  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
10383    assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
10384
10385    // a = a << 5;
10386    Op = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, Op.getOperand(1),
10387                     DAG.getConstant(5, MVT::i32));
10388    Op = DAG.getNode(ISD::BITCAST, dl, VT, Op);
10389
10390    // Turn 'a' into a mask suitable for VSELECT
10391    SDValue VSelM = DAG.getConstant(0x80, VT);
10392    SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10393    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10394
10395    SDValue CM1 = DAG.getConstant(0x0f, VT);
10396    SDValue CM2 = DAG.getConstant(0x3f, VT);
10397
10398    // r = VSELECT(r, psllw(r & (char16)15, 4), a);
10399    SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
10400    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
10401                            DAG.getConstant(4, MVT::i32), DAG);
10402    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
10403    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10404
10405    // a += a
10406    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10407    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10408    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10409
10410    // r = VSELECT(r, psllw(r & (char16)63, 2), a);
10411    M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
10412    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
10413                            DAG.getConstant(2, MVT::i32), DAG);
10414    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
10415    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10416
10417    // a += a
10418    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10419    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10420    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10421
10422    // return VSELECT(r, r+r, a);
10423    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
10424                    DAG.getNode(ISD::ADD, dl, VT, R, R), R);
10425    return R;
10426  }
10427
10428  // Decompose 256-bit shifts into smaller 128-bit shifts.
10429  if (VT.getSizeInBits() == 256) {
10430    unsigned NumElems = VT.getVectorNumElements();
10431    MVT EltVT = VT.getVectorElementType().getSimpleVT();
10432    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10433
10434    // Extract the two vectors
10435    SDValue V1 = Extract128BitVector(R, DAG.getConstant(0, MVT::i32), DAG, dl);
10436    SDValue V2 = Extract128BitVector(R, DAG.getConstant(NumElems/2, MVT::i32),
10437                                     DAG, dl);
10438
10439    // Recreate the shift amount vectors
10440    SDValue Amt1, Amt2;
10441    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
10442      // Constant shift amount
10443      SmallVector<SDValue, 4> Amt1Csts;
10444      SmallVector<SDValue, 4> Amt2Csts;
10445      for (unsigned i = 0; i != NumElems/2; ++i)
10446        Amt1Csts.push_back(Amt->getOperand(i));
10447      for (unsigned i = NumElems/2; i != NumElems; ++i)
10448        Amt2Csts.push_back(Amt->getOperand(i));
10449
10450      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10451                                 &Amt1Csts[0], NumElems/2);
10452      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10453                                 &Amt2Csts[0], NumElems/2);
10454    } else {
10455      // Variable shift amount
10456      Amt1 = Extract128BitVector(Amt, DAG.getConstant(0, MVT::i32), DAG, dl);
10457      Amt2 = Extract128BitVector(Amt, DAG.getConstant(NumElems/2, MVT::i32),
10458                                 DAG, dl);
10459    }
10460
10461    // Issue new vector shifts for the smaller types
10462    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
10463    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
10464
10465    // Concatenate the result back
10466    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
10467  }
10468
10469  return SDValue();
10470}
10471
10472SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
10473  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
10474  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
10475  // looks for this combo and may remove the "setcc" instruction if the "setcc"
10476  // has only one use.
10477  SDNode *N = Op.getNode();
10478  SDValue LHS = N->getOperand(0);
10479  SDValue RHS = N->getOperand(1);
10480  unsigned BaseOp = 0;
10481  unsigned Cond = 0;
10482  DebugLoc DL = Op.getDebugLoc();
10483  switch (Op.getOpcode()) {
10484  default: llvm_unreachable("Unknown ovf instruction!");
10485  case ISD::SADDO:
10486    // A subtract of one will be selected as a INC. Note that INC doesn't
10487    // set CF, so we can't do this for UADDO.
10488    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10489      if (C->isOne()) {
10490        BaseOp = X86ISD::INC;
10491        Cond = X86::COND_O;
10492        break;
10493      }
10494    BaseOp = X86ISD::ADD;
10495    Cond = X86::COND_O;
10496    break;
10497  case ISD::UADDO:
10498    BaseOp = X86ISD::ADD;
10499    Cond = X86::COND_B;
10500    break;
10501  case ISD::SSUBO:
10502    // A subtract of one will be selected as a DEC. Note that DEC doesn't
10503    // set CF, so we can't do this for USUBO.
10504    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10505      if (C->isOne()) {
10506        BaseOp = X86ISD::DEC;
10507        Cond = X86::COND_O;
10508        break;
10509      }
10510    BaseOp = X86ISD::SUB;
10511    Cond = X86::COND_O;
10512    break;
10513  case ISD::USUBO:
10514    BaseOp = X86ISD::SUB;
10515    Cond = X86::COND_B;
10516    break;
10517  case ISD::SMULO:
10518    BaseOp = X86ISD::SMUL;
10519    Cond = X86::COND_O;
10520    break;
10521  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
10522    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
10523                                 MVT::i32);
10524    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
10525
10526    SDValue SetCC =
10527      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10528                  DAG.getConstant(X86::COND_O, MVT::i32),
10529                  SDValue(Sum.getNode(), 2));
10530
10531    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10532  }
10533  }
10534
10535  // Also sets EFLAGS.
10536  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
10537  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
10538
10539  SDValue SetCC =
10540    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
10541                DAG.getConstant(Cond, MVT::i32),
10542                SDValue(Sum.getNode(), 1));
10543
10544  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10545}
10546
10547SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
10548                                                  SelectionDAG &DAG) const {
10549  DebugLoc dl = Op.getDebugLoc();
10550  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
10551  EVT VT = Op.getValueType();
10552
10553  if (!Subtarget->hasSSE2() || !VT.isVector())
10554    return SDValue();
10555
10556  unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
10557                      ExtraVT.getScalarType().getSizeInBits();
10558  SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
10559
10560  switch (VT.getSimpleVT().SimpleTy) {
10561    default: return SDValue();
10562    case MVT::v8i32:
10563    case MVT::v16i16:
10564      if (!Subtarget->hasAVX())
10565        return SDValue();
10566      if (!Subtarget->hasAVX2()) {
10567        // needs to be split
10568        int NumElems = VT.getVectorNumElements();
10569        SDValue Idx0 = DAG.getConstant(0, MVT::i32);
10570        SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
10571
10572        // Extract the LHS vectors
10573        SDValue LHS = Op.getOperand(0);
10574        SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
10575        SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
10576
10577        MVT EltVT = VT.getVectorElementType().getSimpleVT();
10578        EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10579
10580        EVT ExtraEltVT = ExtraVT.getVectorElementType();
10581        int ExtraNumElems = ExtraVT.getVectorNumElements();
10582        ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
10583                                   ExtraNumElems/2);
10584        SDValue Extra = DAG.getValueType(ExtraVT);
10585
10586        LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
10587        LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
10588
10589        return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);;
10590      }
10591      // fall through
10592    case MVT::v4i32:
10593    case MVT::v8i16: {
10594      SDValue Tmp1 = getTargetVShiftNode(X86ISD::VSHLI, dl, VT,
10595                                         Op.getOperand(0), ShAmt, DAG);
10596      return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, Tmp1, ShAmt, DAG);
10597    }
10598  }
10599}
10600
10601
10602SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
10603  DebugLoc dl = Op.getDebugLoc();
10604
10605  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
10606  // There isn't any reason to disable it if the target processor supports it.
10607  if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) {
10608    SDValue Chain = Op.getOperand(0);
10609    SDValue Zero = DAG.getConstant(0, MVT::i32);
10610    SDValue Ops[] = {
10611      DAG.getRegister(X86::ESP, MVT::i32), // Base
10612      DAG.getTargetConstant(1, MVT::i8),   // Scale
10613      DAG.getRegister(0, MVT::i32),        // Index
10614      DAG.getTargetConstant(0, MVT::i32),  // Disp
10615      DAG.getRegister(0, MVT::i32),        // Segment.
10616      Zero,
10617      Chain
10618    };
10619    SDNode *Res =
10620      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10621                          array_lengthof(Ops));
10622    return SDValue(Res, 0);
10623  }
10624
10625  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
10626  if (!isDev)
10627    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10628
10629  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10630  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
10631  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
10632  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
10633
10634  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
10635  if (!Op1 && !Op2 && !Op3 && Op4)
10636    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
10637
10638  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
10639  if (Op1 && !Op2 && !Op3 && !Op4)
10640    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
10641
10642  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
10643  //           (MFENCE)>;
10644  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10645}
10646
10647SDValue X86TargetLowering::LowerATOMIC_FENCE(SDValue Op,
10648                                             SelectionDAG &DAG) const {
10649  DebugLoc dl = Op.getDebugLoc();
10650  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
10651    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
10652  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
10653    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
10654
10655  // The only fence that needs an instruction is a sequentially-consistent
10656  // cross-thread fence.
10657  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
10658    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
10659    // no-sse2). There isn't any reason to disable it if the target processor
10660    // supports it.
10661    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
10662      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10663
10664    SDValue Chain = Op.getOperand(0);
10665    SDValue Zero = DAG.getConstant(0, MVT::i32);
10666    SDValue Ops[] = {
10667      DAG.getRegister(X86::ESP, MVT::i32), // Base
10668      DAG.getTargetConstant(1, MVT::i8),   // Scale
10669      DAG.getRegister(0, MVT::i32),        // Index
10670      DAG.getTargetConstant(0, MVT::i32),  // Disp
10671      DAG.getRegister(0, MVT::i32),        // Segment.
10672      Zero,
10673      Chain
10674    };
10675    SDNode *Res =
10676      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10677                         array_lengthof(Ops));
10678    return SDValue(Res, 0);
10679  }
10680
10681  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
10682  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10683}
10684
10685
10686SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
10687  EVT T = Op.getValueType();
10688  DebugLoc DL = Op.getDebugLoc();
10689  unsigned Reg = 0;
10690  unsigned size = 0;
10691  switch(T.getSimpleVT().SimpleTy) {
10692  default: llvm_unreachable("Invalid value type!");
10693  case MVT::i8:  Reg = X86::AL;  size = 1; break;
10694  case MVT::i16: Reg = X86::AX;  size = 2; break;
10695  case MVT::i32: Reg = X86::EAX; size = 4; break;
10696  case MVT::i64:
10697    assert(Subtarget->is64Bit() && "Node not type legal!");
10698    Reg = X86::RAX; size = 8;
10699    break;
10700  }
10701  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
10702                                    Op.getOperand(2), SDValue());
10703  SDValue Ops[] = { cpIn.getValue(0),
10704                    Op.getOperand(1),
10705                    Op.getOperand(3),
10706                    DAG.getTargetConstant(size, MVT::i8),
10707                    cpIn.getValue(1) };
10708  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10709  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
10710  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
10711                                           Ops, 5, T, MMO);
10712  SDValue cpOut =
10713    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
10714  return cpOut;
10715}
10716
10717SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
10718                                                 SelectionDAG &DAG) const {
10719  assert(Subtarget->is64Bit() && "Result not type legalized?");
10720  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10721  SDValue TheChain = Op.getOperand(0);
10722  DebugLoc dl = Op.getDebugLoc();
10723  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10724  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
10725  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
10726                                   rax.getValue(2));
10727  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
10728                            DAG.getConstant(32, MVT::i8));
10729  SDValue Ops[] = {
10730    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
10731    rdx.getValue(1)
10732  };
10733  return DAG.getMergeValues(Ops, 2, dl);
10734}
10735
10736SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
10737                                            SelectionDAG &DAG) const {
10738  EVT SrcVT = Op.getOperand(0).getValueType();
10739  EVT DstVT = Op.getValueType();
10740  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
10741         Subtarget->hasMMX() && "Unexpected custom BITCAST");
10742  assert((DstVT == MVT::i64 ||
10743          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
10744         "Unexpected custom BITCAST");
10745  // i64 <=> MMX conversions are Legal.
10746  if (SrcVT==MVT::i64 && DstVT.isVector())
10747    return Op;
10748  if (DstVT==MVT::i64 && SrcVT.isVector())
10749    return Op;
10750  // MMX <=> MMX conversions are Legal.
10751  if (SrcVT.isVector() && DstVT.isVector())
10752    return Op;
10753  // All other conversions need to be expanded.
10754  return SDValue();
10755}
10756
10757SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
10758  SDNode *Node = Op.getNode();
10759  DebugLoc dl = Node->getDebugLoc();
10760  EVT T = Node->getValueType(0);
10761  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
10762                              DAG.getConstant(0, T), Node->getOperand(2));
10763  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
10764                       cast<AtomicSDNode>(Node)->getMemoryVT(),
10765                       Node->getOperand(0),
10766                       Node->getOperand(1), negOp,
10767                       cast<AtomicSDNode>(Node)->getSrcValue(),
10768                       cast<AtomicSDNode>(Node)->getAlignment(),
10769                       cast<AtomicSDNode>(Node)->getOrdering(),
10770                       cast<AtomicSDNode>(Node)->getSynchScope());
10771}
10772
10773static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
10774  SDNode *Node = Op.getNode();
10775  DebugLoc dl = Node->getDebugLoc();
10776  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10777
10778  // Convert seq_cst store -> xchg
10779  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
10780  // FIXME: On 32-bit, store -> fist or movq would be more efficient
10781  //        (The only way to get a 16-byte store is cmpxchg16b)
10782  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
10783  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
10784      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
10785    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
10786                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
10787                                 Node->getOperand(0),
10788                                 Node->getOperand(1), Node->getOperand(2),
10789                                 cast<AtomicSDNode>(Node)->getMemOperand(),
10790                                 cast<AtomicSDNode>(Node)->getOrdering(),
10791                                 cast<AtomicSDNode>(Node)->getSynchScope());
10792    return Swap.getValue(1);
10793  }
10794  // Other atomic stores have a simple pattern.
10795  return Op;
10796}
10797
10798static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
10799  EVT VT = Op.getNode()->getValueType(0);
10800
10801  // Let legalize expand this if it isn't a legal type yet.
10802  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
10803    return SDValue();
10804
10805  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10806
10807  unsigned Opc;
10808  bool ExtraOp = false;
10809  switch (Op.getOpcode()) {
10810  default: llvm_unreachable("Invalid code");
10811  case ISD::ADDC: Opc = X86ISD::ADD; break;
10812  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
10813  case ISD::SUBC: Opc = X86ISD::SUB; break;
10814  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
10815  }
10816
10817  if (!ExtraOp)
10818    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10819                       Op.getOperand(1));
10820  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10821                     Op.getOperand(1), Op.getOperand(2));
10822}
10823
10824/// LowerOperation - Provide custom lowering hooks for some operations.
10825///
10826SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10827  switch (Op.getOpcode()) {
10828  default: llvm_unreachable("Should not custom lower this!");
10829  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
10830  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
10831  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op,DAG);
10832  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
10833  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
10834  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
10835  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10836  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
10837  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10838  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
10839  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10840  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
10841  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
10842  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10843  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10844  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10845  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10846  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
10847  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10848  case ISD::SHL_PARTS:
10849  case ISD::SRA_PARTS:
10850  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
10851  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
10852  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
10853  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
10854  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
10855  case ISD::FABS:               return LowerFABS(Op, DAG);
10856  case ISD::FNEG:               return LowerFNEG(Op, DAG);
10857  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
10858  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
10859  case ISD::SETCC:              return LowerSETCC(Op, DAG);
10860  case ISD::SELECT:             return LowerSELECT(Op, DAG);
10861  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
10862  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10863  case ISD::VASTART:            return LowerVASTART(Op, DAG);
10864  case ISD::VAARG:              return LowerVAARG(Op, DAG);
10865  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10866  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10867  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10868  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10869  case ISD::FRAME_TO_ARGS_OFFSET:
10870                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
10871  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10872  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
10873  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10874  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10875  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10876  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
10877  case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ_ZERO_UNDEF(Op, DAG);
10878  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
10879  case ISD::MUL:                return LowerMUL(Op, DAG);
10880  case ISD::SRA:
10881  case ISD::SRL:
10882  case ISD::SHL:                return LowerShift(Op, DAG);
10883  case ISD::SADDO:
10884  case ISD::UADDO:
10885  case ISD::SSUBO:
10886  case ISD::USUBO:
10887  case ISD::SMULO:
10888  case ISD::UMULO:              return LowerXALUO(Op, DAG);
10889  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
10890  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10891  case ISD::ADDC:
10892  case ISD::ADDE:
10893  case ISD::SUBC:
10894  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
10895  case ISD::ADD:                return LowerADD(Op, DAG);
10896  case ISD::SUB:                return LowerSUB(Op, DAG);
10897  }
10898}
10899
10900static void ReplaceATOMIC_LOAD(SDNode *Node,
10901                                  SmallVectorImpl<SDValue> &Results,
10902                                  SelectionDAG &DAG) {
10903  DebugLoc dl = Node->getDebugLoc();
10904  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10905
10906  // Convert wide load -> cmpxchg8b/cmpxchg16b
10907  // FIXME: On 32-bit, load -> fild or movq would be more efficient
10908  //        (The only way to get a 16-byte load is cmpxchg16b)
10909  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
10910  SDValue Zero = DAG.getConstant(0, VT);
10911  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
10912                               Node->getOperand(0),
10913                               Node->getOperand(1), Zero, Zero,
10914                               cast<AtomicSDNode>(Node)->getMemOperand(),
10915                               cast<AtomicSDNode>(Node)->getOrdering(),
10916                               cast<AtomicSDNode>(Node)->getSynchScope());
10917  Results.push_back(Swap.getValue(0));
10918  Results.push_back(Swap.getValue(1));
10919}
10920
10921void X86TargetLowering::
10922ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
10923                        SelectionDAG &DAG, unsigned NewOp) const {
10924  DebugLoc dl = Node->getDebugLoc();
10925  assert (Node->getValueType(0) == MVT::i64 &&
10926          "Only know how to expand i64 atomics");
10927
10928  SDValue Chain = Node->getOperand(0);
10929  SDValue In1 = Node->getOperand(1);
10930  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10931                             Node->getOperand(2), DAG.getIntPtrConstant(0));
10932  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10933                             Node->getOperand(2), DAG.getIntPtrConstant(1));
10934  SDValue Ops[] = { Chain, In1, In2L, In2H };
10935  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10936  SDValue Result =
10937    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
10938                            cast<MemSDNode>(Node)->getMemOperand());
10939  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
10940  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
10941  Results.push_back(Result.getValue(2));
10942}
10943
10944/// ReplaceNodeResults - Replace a node with an illegal result type
10945/// with a new node built out of custom code.
10946void X86TargetLowering::ReplaceNodeResults(SDNode *N,
10947                                           SmallVectorImpl<SDValue>&Results,
10948                                           SelectionDAG &DAG) const {
10949  DebugLoc dl = N->getDebugLoc();
10950  switch (N->getOpcode()) {
10951  default:
10952    llvm_unreachable("Do not know how to custom type legalize this operation!");
10953  case ISD::SIGN_EXTEND_INREG:
10954  case ISD::ADDC:
10955  case ISD::ADDE:
10956  case ISD::SUBC:
10957  case ISD::SUBE:
10958    // We don't want to expand or promote these.
10959    return;
10960  case ISD::FP_TO_SINT:
10961  case ISD::FP_TO_UINT: {
10962    bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
10963
10964    if (!IsSigned && !isIntegerTypeFTOL(SDValue(N, 0).getValueType()))
10965      return;
10966
10967    std::pair<SDValue,SDValue> Vals =
10968        FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true);
10969    SDValue FIST = Vals.first, StackSlot = Vals.second;
10970    if (FIST.getNode() != 0) {
10971      EVT VT = N->getValueType(0);
10972      // Return a load from the stack slot.
10973      if (StackSlot.getNode() != 0)
10974        Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
10975                                      MachinePointerInfo(),
10976                                      false, false, false, 0));
10977      else
10978        Results.push_back(FIST);
10979    }
10980    return;
10981  }
10982  case ISD::READCYCLECOUNTER: {
10983    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10984    SDValue TheChain = N->getOperand(0);
10985    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10986    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
10987                                     rd.getValue(1));
10988    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
10989                                     eax.getValue(2));
10990    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
10991    SDValue Ops[] = { eax, edx };
10992    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
10993    Results.push_back(edx.getValue(1));
10994    return;
10995  }
10996  case ISD::ATOMIC_CMP_SWAP: {
10997    EVT T = N->getValueType(0);
10998    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
10999    bool Regs64bit = T == MVT::i128;
11000    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
11001    SDValue cpInL, cpInH;
11002    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
11003                        DAG.getConstant(0, HalfT));
11004    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
11005                        DAG.getConstant(1, HalfT));
11006    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
11007                             Regs64bit ? X86::RAX : X86::EAX,
11008                             cpInL, SDValue());
11009    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
11010                             Regs64bit ? X86::RDX : X86::EDX,
11011                             cpInH, cpInL.getValue(1));
11012    SDValue swapInL, swapInH;
11013    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
11014                          DAG.getConstant(0, HalfT));
11015    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
11016                          DAG.getConstant(1, HalfT));
11017    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
11018                               Regs64bit ? X86::RBX : X86::EBX,
11019                               swapInL, cpInH.getValue(1));
11020    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
11021                               Regs64bit ? X86::RCX : X86::ECX,
11022                               swapInH, swapInL.getValue(1));
11023    SDValue Ops[] = { swapInH.getValue(0),
11024                      N->getOperand(1),
11025                      swapInH.getValue(1) };
11026    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11027    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
11028    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
11029                                  X86ISD::LCMPXCHG8_DAG;
11030    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
11031                                             Ops, 3, T, MMO);
11032    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
11033                                        Regs64bit ? X86::RAX : X86::EAX,
11034                                        HalfT, Result.getValue(1));
11035    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
11036                                        Regs64bit ? X86::RDX : X86::EDX,
11037                                        HalfT, cpOutL.getValue(2));
11038    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
11039    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
11040    Results.push_back(cpOutH.getValue(1));
11041    return;
11042  }
11043  case ISD::ATOMIC_LOAD_ADD:
11044    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
11045    return;
11046  case ISD::ATOMIC_LOAD_AND:
11047    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
11048    return;
11049  case ISD::ATOMIC_LOAD_NAND:
11050    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
11051    return;
11052  case ISD::ATOMIC_LOAD_OR:
11053    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
11054    return;
11055  case ISD::ATOMIC_LOAD_SUB:
11056    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
11057    return;
11058  case ISD::ATOMIC_LOAD_XOR:
11059    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
11060    return;
11061  case ISD::ATOMIC_SWAP:
11062    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
11063    return;
11064  case ISD::ATOMIC_LOAD:
11065    ReplaceATOMIC_LOAD(N, Results, DAG);
11066  }
11067}
11068
11069const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
11070  switch (Opcode) {
11071  default: return NULL;
11072  case X86ISD::BSF:                return "X86ISD::BSF";
11073  case X86ISD::BSR:                return "X86ISD::BSR";
11074  case X86ISD::SHLD:               return "X86ISD::SHLD";
11075  case X86ISD::SHRD:               return "X86ISD::SHRD";
11076  case X86ISD::FAND:               return "X86ISD::FAND";
11077  case X86ISD::FOR:                return "X86ISD::FOR";
11078  case X86ISD::FXOR:               return "X86ISD::FXOR";
11079  case X86ISD::FSRL:               return "X86ISD::FSRL";
11080  case X86ISD::FILD:               return "X86ISD::FILD";
11081  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
11082  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
11083  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
11084  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
11085  case X86ISD::FLD:                return "X86ISD::FLD";
11086  case X86ISD::FST:                return "X86ISD::FST";
11087  case X86ISD::CALL:               return "X86ISD::CALL";
11088  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
11089  case X86ISD::BT:                 return "X86ISD::BT";
11090  case X86ISD::CMP:                return "X86ISD::CMP";
11091  case X86ISD::COMI:               return "X86ISD::COMI";
11092  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
11093  case X86ISD::SETCC:              return "X86ISD::SETCC";
11094  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
11095  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
11096  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
11097  case X86ISD::CMOV:               return "X86ISD::CMOV";
11098  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
11099  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
11100  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
11101  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
11102  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
11103  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
11104  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
11105  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
11106  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
11107  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
11108  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
11109  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
11110  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
11111  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
11112  case X86ISD::PSIGN:              return "X86ISD::PSIGN";
11113  case X86ISD::BLENDV:             return "X86ISD::BLENDV";
11114  case X86ISD::BLENDPW:            return "X86ISD::BLENDPW";
11115  case X86ISD::BLENDPS:            return "X86ISD::BLENDPS";
11116  case X86ISD::BLENDPD:            return "X86ISD::BLENDPD";
11117  case X86ISD::HADD:               return "X86ISD::HADD";
11118  case X86ISD::HSUB:               return "X86ISD::HSUB";
11119  case X86ISD::FHADD:              return "X86ISD::FHADD";
11120  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
11121  case X86ISD::FMAX:               return "X86ISD::FMAX";
11122  case X86ISD::FMIN:               return "X86ISD::FMIN";
11123  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
11124  case X86ISD::FRCP:               return "X86ISD::FRCP";
11125  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
11126  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
11127  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
11128  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
11129  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
11130  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
11131  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
11132  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
11133  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
11134  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
11135  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
11136  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
11137  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
11138  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
11139  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
11140  case X86ISD::VSHLDQ:             return "X86ISD::VSHLDQ";
11141  case X86ISD::VSRLDQ:             return "X86ISD::VSRLDQ";
11142  case X86ISD::VSHL:               return "X86ISD::VSHL";
11143  case X86ISD::VSRL:               return "X86ISD::VSRL";
11144  case X86ISD::VSRA:               return "X86ISD::VSRA";
11145  case X86ISD::VSHLI:              return "X86ISD::VSHLI";
11146  case X86ISD::VSRLI:              return "X86ISD::VSRLI";
11147  case X86ISD::VSRAI:              return "X86ISD::VSRAI";
11148  case X86ISD::CMPP:               return "X86ISD::CMPP";
11149  case X86ISD::PCMPEQ:             return "X86ISD::PCMPEQ";
11150  case X86ISD::PCMPGT:             return "X86ISD::PCMPGT";
11151  case X86ISD::ADD:                return "X86ISD::ADD";
11152  case X86ISD::SUB:                return "X86ISD::SUB";
11153  case X86ISD::ADC:                return "X86ISD::ADC";
11154  case X86ISD::SBB:                return "X86ISD::SBB";
11155  case X86ISD::SMUL:               return "X86ISD::SMUL";
11156  case X86ISD::UMUL:               return "X86ISD::UMUL";
11157  case X86ISD::INC:                return "X86ISD::INC";
11158  case X86ISD::DEC:                return "X86ISD::DEC";
11159  case X86ISD::OR:                 return "X86ISD::OR";
11160  case X86ISD::XOR:                return "X86ISD::XOR";
11161  case X86ISD::AND:                return "X86ISD::AND";
11162  case X86ISD::ANDN:               return "X86ISD::ANDN";
11163  case X86ISD::BLSI:               return "X86ISD::BLSI";
11164  case X86ISD::BLSMSK:             return "X86ISD::BLSMSK";
11165  case X86ISD::BLSR:               return "X86ISD::BLSR";
11166  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
11167  case X86ISD::PTEST:              return "X86ISD::PTEST";
11168  case X86ISD::TESTP:              return "X86ISD::TESTP";
11169  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
11170  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
11171  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
11172  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
11173  case X86ISD::SHUFP:              return "X86ISD::SHUFP";
11174  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
11175  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
11176  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
11177  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
11178  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
11179  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
11180  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
11181  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
11182  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
11183  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
11184  case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
11185  case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
11186  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
11187  case X86ISD::VPERMILP:           return "X86ISD::VPERMILP";
11188  case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
11189  case X86ISD::VPERMV:             return "X86ISD::VPERMV";
11190  case X86ISD::VPERMI:             return "X86ISD::VPERMI";
11191  case X86ISD::PMULUDQ:            return "X86ISD::PMULUDQ";
11192  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
11193  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
11194  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
11195  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
11196  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
11197  case X86ISD::WIN_FTOL:           return "X86ISD::WIN_FTOL";
11198  }
11199}
11200
11201// isLegalAddressingMode - Return true if the addressing mode represented
11202// by AM is legal for this target, for a load/store of the specified type.
11203bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
11204                                              Type *Ty) const {
11205  // X86 supports extremely general addressing modes.
11206  CodeModel::Model M = getTargetMachine().getCodeModel();
11207  Reloc::Model R = getTargetMachine().getRelocationModel();
11208
11209  // X86 allows a sign-extended 32-bit immediate field as a displacement.
11210  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
11211    return false;
11212
11213  if (AM.BaseGV) {
11214    unsigned GVFlags =
11215      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
11216
11217    // If a reference to this global requires an extra load, we can't fold it.
11218    if (isGlobalStubReference(GVFlags))
11219      return false;
11220
11221    // If BaseGV requires a register for the PIC base, we cannot also have a
11222    // BaseReg specified.
11223    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
11224      return false;
11225
11226    // If lower 4G is not available, then we must use rip-relative addressing.
11227    if ((M != CodeModel::Small || R != Reloc::Static) &&
11228        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
11229      return false;
11230  }
11231
11232  switch (AM.Scale) {
11233  case 0:
11234  case 1:
11235  case 2:
11236  case 4:
11237  case 8:
11238    // These scales always work.
11239    break;
11240  case 3:
11241  case 5:
11242  case 9:
11243    // These scales are formed with basereg+scalereg.  Only accept if there is
11244    // no basereg yet.
11245    if (AM.HasBaseReg)
11246      return false;
11247    break;
11248  default:  // Other stuff never works.
11249    return false;
11250  }
11251
11252  return true;
11253}
11254
11255
11256bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
11257  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
11258    return false;
11259  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
11260  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
11261  if (NumBits1 <= NumBits2)
11262    return false;
11263  return true;
11264}
11265
11266bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
11267  if (!VT1.isInteger() || !VT2.isInteger())
11268    return false;
11269  unsigned NumBits1 = VT1.getSizeInBits();
11270  unsigned NumBits2 = VT2.getSizeInBits();
11271  if (NumBits1 <= NumBits2)
11272    return false;
11273  return true;
11274}
11275
11276bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
11277  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11278  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
11279}
11280
11281bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
11282  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11283  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
11284}
11285
11286bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
11287  // i16 instructions are longer (0x66 prefix) and potentially slower.
11288  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
11289}
11290
11291/// isShuffleMaskLegal - Targets can use this to indicate that they only
11292/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
11293/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
11294/// are assumed to be legal.
11295bool
11296X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
11297                                      EVT VT) const {
11298  // Very little shuffling can be done for 64-bit vectors right now.
11299  if (VT.getSizeInBits() == 64)
11300    return false;
11301
11302  // FIXME: pshufb, blends, shifts.
11303  return (VT.getVectorNumElements() == 2 ||
11304          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
11305          isMOVLMask(M, VT) ||
11306          isSHUFPMask(M, VT, Subtarget->hasAVX()) ||
11307          isPSHUFDMask(M, VT) ||
11308          isPSHUFHWMask(M, VT) ||
11309          isPSHUFLWMask(M, VT) ||
11310          isPALIGNRMask(M, VT, Subtarget) ||
11311          isUNPCKLMask(M, VT, Subtarget->hasAVX2()) ||
11312          isUNPCKHMask(M, VT, Subtarget->hasAVX2()) ||
11313          isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasAVX2()) ||
11314          isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasAVX2()));
11315}
11316
11317bool
11318X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
11319                                          EVT VT) const {
11320  unsigned NumElts = VT.getVectorNumElements();
11321  // FIXME: This collection of masks seems suspect.
11322  if (NumElts == 2)
11323    return true;
11324  if (NumElts == 4 && VT.getSizeInBits() == 128) {
11325    return (isMOVLMask(Mask, VT)  ||
11326            isCommutedMOVLMask(Mask, VT, true) ||
11327            isSHUFPMask(Mask, VT, Subtarget->hasAVX()) ||
11328            isSHUFPMask(Mask, VT, Subtarget->hasAVX(), /* Commuted */ true));
11329  }
11330  return false;
11331}
11332
11333//===----------------------------------------------------------------------===//
11334//                           X86 Scheduler Hooks
11335//===----------------------------------------------------------------------===//
11336
11337// private utility function
11338MachineBasicBlock *
11339X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
11340                                                       MachineBasicBlock *MBB,
11341                                                       unsigned regOpc,
11342                                                       unsigned immOpc,
11343                                                       unsigned LoadOpc,
11344                                                       unsigned CXchgOpc,
11345                                                       unsigned notOpc,
11346                                                       unsigned EAXreg,
11347                                                 const TargetRegisterClass *RC,
11348                                                       bool Invert) const {
11349  // For the atomic bitwise operator, we generate
11350  //   thisMBB:
11351  //   newMBB:
11352  //     ld  t1 = [bitinstr.addr]
11353  //     op  t2 = t1, [bitinstr.val]
11354  //     not t3 = t2  (if Invert)
11355  //     mov EAX = t1
11356  //     lcs dest = [bitinstr.addr], t3  [EAX is implicit]
11357  //     bz  newMBB
11358  //     fallthrough -->nextMBB
11359  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11360  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11361  MachineFunction::iterator MBBIter = MBB;
11362  ++MBBIter;
11363
11364  /// First build the CFG
11365  MachineFunction *F = MBB->getParent();
11366  MachineBasicBlock *thisMBB = MBB;
11367  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11368  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11369  F->insert(MBBIter, newMBB);
11370  F->insert(MBBIter, nextMBB);
11371
11372  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11373  nextMBB->splice(nextMBB->begin(), thisMBB,
11374                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11375                  thisMBB->end());
11376  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11377
11378  // Update thisMBB to fall through to newMBB
11379  thisMBB->addSuccessor(newMBB);
11380
11381  // newMBB jumps to itself and fall through to nextMBB
11382  newMBB->addSuccessor(nextMBB);
11383  newMBB->addSuccessor(newMBB);
11384
11385  // Insert instructions into newMBB based on incoming instruction
11386  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11387         "unexpected number of operands");
11388  DebugLoc dl = bInstr->getDebugLoc();
11389  MachineOperand& destOper = bInstr->getOperand(0);
11390  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11391  int numArgs = bInstr->getNumOperands() - 1;
11392  for (int i=0; i < numArgs; ++i)
11393    argOpers[i] = &bInstr->getOperand(i+1);
11394
11395  // x86 address has 4 operands: base, index, scale, and displacement
11396  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11397  int valArgIndx = lastAddrIndx + 1;
11398
11399  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11400  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
11401  for (int i=0; i <= lastAddrIndx; ++i)
11402    (*MIB).addOperand(*argOpers[i]);
11403
11404  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11405  assert((argOpers[valArgIndx]->isReg() ||
11406          argOpers[valArgIndx]->isImm()) &&
11407         "invalid operand");
11408  if (argOpers[valArgIndx]->isReg())
11409    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
11410  else
11411    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
11412  MIB.addReg(t1);
11413  (*MIB).addOperand(*argOpers[valArgIndx]);
11414
11415  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
11416  if (Invert) {
11417    MIB = BuildMI(newMBB, dl, TII->get(notOpc), t3).addReg(t2);
11418  }
11419  else
11420    t3 = t2;
11421
11422  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
11423  MIB.addReg(t1);
11424
11425  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
11426  for (int i=0; i <= lastAddrIndx; ++i)
11427    (*MIB).addOperand(*argOpers[i]);
11428  MIB.addReg(t3);
11429  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11430  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11431                    bInstr->memoperands_end());
11432
11433  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11434  MIB.addReg(EAXreg);
11435
11436  // insert branch
11437  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11438
11439  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11440  return nextMBB;
11441}
11442
11443// private utility function:  64 bit atomics on 32 bit host.
11444MachineBasicBlock *
11445X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
11446                                                       MachineBasicBlock *MBB,
11447                                                       unsigned regOpcL,
11448                                                       unsigned regOpcH,
11449                                                       unsigned immOpcL,
11450                                                       unsigned immOpcH,
11451                                                       bool Invert) const {
11452  // For the atomic bitwise operator, we generate
11453  //   thisMBB (instructions are in pairs, except cmpxchg8b)
11454  //     ld t1,t2 = [bitinstr.addr]
11455  //   newMBB:
11456  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
11457  //     op  t5, t6 <- out1, out2, [bitinstr.val]
11458  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
11459  //     neg t7, t8 < t5, t6  (if Invert)
11460  //     mov ECX, EBX <- t5, t6
11461  //     mov EAX, EDX <- t1, t2
11462  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
11463  //     mov t3, t4 <- EAX, EDX
11464  //     bz  newMBB
11465  //     result in out1, out2
11466  //     fallthrough -->nextMBB
11467
11468  const TargetRegisterClass *RC = X86::GR32RegisterClass;
11469  const unsigned LoadOpc = X86::MOV32rm;
11470  const unsigned NotOpc = X86::NOT32r;
11471  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11472  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11473  MachineFunction::iterator MBBIter = MBB;
11474  ++MBBIter;
11475
11476  /// First build the CFG
11477  MachineFunction *F = MBB->getParent();
11478  MachineBasicBlock *thisMBB = MBB;
11479  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11480  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11481  F->insert(MBBIter, newMBB);
11482  F->insert(MBBIter, nextMBB);
11483
11484  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11485  nextMBB->splice(nextMBB->begin(), thisMBB,
11486                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11487                  thisMBB->end());
11488  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11489
11490  // Update thisMBB to fall through to newMBB
11491  thisMBB->addSuccessor(newMBB);
11492
11493  // newMBB jumps to itself and fall through to nextMBB
11494  newMBB->addSuccessor(nextMBB);
11495  newMBB->addSuccessor(newMBB);
11496
11497  DebugLoc dl = bInstr->getDebugLoc();
11498  // Insert instructions into newMBB based on incoming instruction
11499  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
11500  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
11501         "unexpected number of operands");
11502  MachineOperand& dest1Oper = bInstr->getOperand(0);
11503  MachineOperand& dest2Oper = bInstr->getOperand(1);
11504  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11505  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
11506    argOpers[i] = &bInstr->getOperand(i+2);
11507
11508    // We use some of the operands multiple times, so conservatively just
11509    // clear any kill flags that might be present.
11510    if (argOpers[i]->isReg() && argOpers[i]->isUse())
11511      argOpers[i]->setIsKill(false);
11512  }
11513
11514  // x86 address has 5 operands: base, index, scale, displacement, and segment.
11515  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11516
11517  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11518  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
11519  for (int i=0; i <= lastAddrIndx; ++i)
11520    (*MIB).addOperand(*argOpers[i]);
11521  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11522  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
11523  // add 4 to displacement.
11524  for (int i=0; i <= lastAddrIndx-2; ++i)
11525    (*MIB).addOperand(*argOpers[i]);
11526  MachineOperand newOp3 = *(argOpers[3]);
11527  if (newOp3.isImm())
11528    newOp3.setImm(newOp3.getImm()+4);
11529  else
11530    newOp3.setOffset(newOp3.getOffset()+4);
11531  (*MIB).addOperand(newOp3);
11532  (*MIB).addOperand(*argOpers[lastAddrIndx]);
11533
11534  // t3/4 are defined later, at the bottom of the loop
11535  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
11536  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
11537  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
11538    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
11539  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
11540    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
11541
11542  // The subsequent operations should be using the destination registers of
11543  // the PHI instructions.
11544  t1 = dest1Oper.getReg();
11545  t2 = dest2Oper.getReg();
11546
11547  int valArgIndx = lastAddrIndx + 1;
11548  assert((argOpers[valArgIndx]->isReg() ||
11549          argOpers[valArgIndx]->isImm()) &&
11550         "invalid operand");
11551  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
11552  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
11553  if (argOpers[valArgIndx]->isReg())
11554    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
11555  else
11556    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
11557  if (regOpcL != X86::MOV32rr)
11558    MIB.addReg(t1);
11559  (*MIB).addOperand(*argOpers[valArgIndx]);
11560  assert(argOpers[valArgIndx + 1]->isReg() ==
11561         argOpers[valArgIndx]->isReg());
11562  assert(argOpers[valArgIndx + 1]->isImm() ==
11563         argOpers[valArgIndx]->isImm());
11564  if (argOpers[valArgIndx + 1]->isReg())
11565    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
11566  else
11567    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
11568  if (regOpcH != X86::MOV32rr)
11569    MIB.addReg(t2);
11570  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
11571
11572  unsigned t7, t8;
11573  if (Invert) {
11574    t7 = F->getRegInfo().createVirtualRegister(RC);
11575    t8 = F->getRegInfo().createVirtualRegister(RC);
11576    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t7).addReg(t5);
11577    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t8).addReg(t6);
11578  } else {
11579    t7 = t5;
11580    t8 = t6;
11581  }
11582
11583  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11584  MIB.addReg(t1);
11585  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
11586  MIB.addReg(t2);
11587
11588  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
11589  MIB.addReg(t7);
11590  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
11591  MIB.addReg(t8);
11592
11593  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
11594  for (int i=0; i <= lastAddrIndx; ++i)
11595    (*MIB).addOperand(*argOpers[i]);
11596
11597  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11598  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11599                    bInstr->memoperands_end());
11600
11601  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
11602  MIB.addReg(X86::EAX);
11603  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
11604  MIB.addReg(X86::EDX);
11605
11606  // insert branch
11607  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11608
11609  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11610  return nextMBB;
11611}
11612
11613// private utility function
11614MachineBasicBlock *
11615X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
11616                                                      MachineBasicBlock *MBB,
11617                                                      unsigned cmovOpc) const {
11618  // For the atomic min/max operator, we generate
11619  //   thisMBB:
11620  //   newMBB:
11621  //     ld t1 = [min/max.addr]
11622  //     mov t2 = [min/max.val]
11623  //     cmp  t1, t2
11624  //     cmov[cond] t2 = t1
11625  //     mov EAX = t1
11626  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11627  //     bz   newMBB
11628  //     fallthrough -->nextMBB
11629  //
11630  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11631  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11632  MachineFunction::iterator MBBIter = MBB;
11633  ++MBBIter;
11634
11635  /// First build the CFG
11636  MachineFunction *F = MBB->getParent();
11637  MachineBasicBlock *thisMBB = MBB;
11638  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11639  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11640  F->insert(MBBIter, newMBB);
11641  F->insert(MBBIter, nextMBB);
11642
11643  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11644  nextMBB->splice(nextMBB->begin(), thisMBB,
11645                  llvm::next(MachineBasicBlock::iterator(mInstr)),
11646                  thisMBB->end());
11647  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11648
11649  // Update thisMBB to fall through to newMBB
11650  thisMBB->addSuccessor(newMBB);
11651
11652  // newMBB jumps to newMBB and fall through to nextMBB
11653  newMBB->addSuccessor(nextMBB);
11654  newMBB->addSuccessor(newMBB);
11655
11656  DebugLoc dl = mInstr->getDebugLoc();
11657  // Insert instructions into newMBB based on incoming instruction
11658  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11659         "unexpected number of operands");
11660  MachineOperand& destOper = mInstr->getOperand(0);
11661  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11662  int numArgs = mInstr->getNumOperands() - 1;
11663  for (int i=0; i < numArgs; ++i)
11664    argOpers[i] = &mInstr->getOperand(i+1);
11665
11666  // x86 address has 4 operands: base, index, scale, and displacement
11667  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11668  int valArgIndx = lastAddrIndx + 1;
11669
11670  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11671  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
11672  for (int i=0; i <= lastAddrIndx; ++i)
11673    (*MIB).addOperand(*argOpers[i]);
11674
11675  // We only support register and immediate values
11676  assert((argOpers[valArgIndx]->isReg() ||
11677          argOpers[valArgIndx]->isImm()) &&
11678         "invalid operand");
11679
11680  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11681  if (argOpers[valArgIndx]->isReg())
11682    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
11683  else
11684    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
11685  (*MIB).addOperand(*argOpers[valArgIndx]);
11686
11687  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11688  MIB.addReg(t1);
11689
11690  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
11691  MIB.addReg(t1);
11692  MIB.addReg(t2);
11693
11694  // Generate movc
11695  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11696  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
11697  MIB.addReg(t2);
11698  MIB.addReg(t1);
11699
11700  // Cmp and exchange if none has modified the memory location
11701  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
11702  for (int i=0; i <= lastAddrIndx; ++i)
11703    (*MIB).addOperand(*argOpers[i]);
11704  MIB.addReg(t3);
11705  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11706  (*MIB).setMemRefs(mInstr->memoperands_begin(),
11707                    mInstr->memoperands_end());
11708
11709  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11710  MIB.addReg(X86::EAX);
11711
11712  // insert branch
11713  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11714
11715  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
11716  return nextMBB;
11717}
11718
11719// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
11720// or XMM0_V32I8 in AVX all of this code can be replaced with that
11721// in the .td file.
11722MachineBasicBlock *
11723X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
11724                            unsigned numArgs, bool memArg) const {
11725  assert(Subtarget->hasSSE42() &&
11726         "Target must have SSE4.2 or AVX features enabled");
11727
11728  DebugLoc dl = MI->getDebugLoc();
11729  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11730  unsigned Opc;
11731  if (!Subtarget->hasAVX()) {
11732    if (memArg)
11733      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
11734    else
11735      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
11736  } else {
11737    if (memArg)
11738      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
11739    else
11740      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
11741  }
11742
11743  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
11744  for (unsigned i = 0; i < numArgs; ++i) {
11745    MachineOperand &Op = MI->getOperand(i+1);
11746    if (!(Op.isReg() && Op.isImplicit()))
11747      MIB.addOperand(Op);
11748  }
11749  BuildMI(*BB, MI, dl,
11750    TII->get(Subtarget->hasAVX() ? X86::VMOVAPSrr : X86::MOVAPSrr),
11751             MI->getOperand(0).getReg())
11752    .addReg(X86::XMM0);
11753
11754  MI->eraseFromParent();
11755  return BB;
11756}
11757
11758MachineBasicBlock *
11759X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
11760  DebugLoc dl = MI->getDebugLoc();
11761  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11762
11763  // Address into RAX/EAX, other two args into ECX, EDX.
11764  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
11765  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
11766  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
11767  for (int i = 0; i < X86::AddrNumOperands; ++i)
11768    MIB.addOperand(MI->getOperand(i));
11769
11770  unsigned ValOps = X86::AddrNumOperands;
11771  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11772    .addReg(MI->getOperand(ValOps).getReg());
11773  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
11774    .addReg(MI->getOperand(ValOps+1).getReg());
11775
11776  // The instruction doesn't actually take any operands though.
11777  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
11778
11779  MI->eraseFromParent(); // The pseudo is gone now.
11780  return BB;
11781}
11782
11783MachineBasicBlock *
11784X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
11785  DebugLoc dl = MI->getDebugLoc();
11786  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11787
11788  // First arg in ECX, the second in EAX.
11789  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11790    .addReg(MI->getOperand(0).getReg());
11791  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
11792    .addReg(MI->getOperand(1).getReg());
11793
11794  // The instruction doesn't actually take any operands though.
11795  BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
11796
11797  MI->eraseFromParent(); // The pseudo is gone now.
11798  return BB;
11799}
11800
11801MachineBasicBlock *
11802X86TargetLowering::EmitVAARG64WithCustomInserter(
11803                   MachineInstr *MI,
11804                   MachineBasicBlock *MBB) const {
11805  // Emit va_arg instruction on X86-64.
11806
11807  // Operands to this pseudo-instruction:
11808  // 0  ) Output        : destination address (reg)
11809  // 1-5) Input         : va_list address (addr, i64mem)
11810  // 6  ) ArgSize       : Size (in bytes) of vararg type
11811  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
11812  // 8  ) Align         : Alignment of type
11813  // 9  ) EFLAGS (implicit-def)
11814
11815  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
11816  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
11817
11818  unsigned DestReg = MI->getOperand(0).getReg();
11819  MachineOperand &Base = MI->getOperand(1);
11820  MachineOperand &Scale = MI->getOperand(2);
11821  MachineOperand &Index = MI->getOperand(3);
11822  MachineOperand &Disp = MI->getOperand(4);
11823  MachineOperand &Segment = MI->getOperand(5);
11824  unsigned ArgSize = MI->getOperand(6).getImm();
11825  unsigned ArgMode = MI->getOperand(7).getImm();
11826  unsigned Align = MI->getOperand(8).getImm();
11827
11828  // Memory Reference
11829  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
11830  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
11831  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
11832
11833  // Machine Information
11834  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11835  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
11836  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
11837  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
11838  DebugLoc DL = MI->getDebugLoc();
11839
11840  // struct va_list {
11841  //   i32   gp_offset
11842  //   i32   fp_offset
11843  //   i64   overflow_area (address)
11844  //   i64   reg_save_area (address)
11845  // }
11846  // sizeof(va_list) = 24
11847  // alignment(va_list) = 8
11848
11849  unsigned TotalNumIntRegs = 6;
11850  unsigned TotalNumXMMRegs = 8;
11851  bool UseGPOffset = (ArgMode == 1);
11852  bool UseFPOffset = (ArgMode == 2);
11853  unsigned MaxOffset = TotalNumIntRegs * 8 +
11854                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
11855
11856  /* Align ArgSize to a multiple of 8 */
11857  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
11858  bool NeedsAlign = (Align > 8);
11859
11860  MachineBasicBlock *thisMBB = MBB;
11861  MachineBasicBlock *overflowMBB;
11862  MachineBasicBlock *offsetMBB;
11863  MachineBasicBlock *endMBB;
11864
11865  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
11866  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
11867  unsigned OffsetReg = 0;
11868
11869  if (!UseGPOffset && !UseFPOffset) {
11870    // If we only pull from the overflow region, we don't create a branch.
11871    // We don't need to alter control flow.
11872    OffsetDestReg = 0; // unused
11873    OverflowDestReg = DestReg;
11874
11875    offsetMBB = NULL;
11876    overflowMBB = thisMBB;
11877    endMBB = thisMBB;
11878  } else {
11879    // First emit code to check if gp_offset (or fp_offset) is below the bound.
11880    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
11881    // If not, pull from overflow_area. (branch to overflowMBB)
11882    //
11883    //       thisMBB
11884    //         |     .
11885    //         |        .
11886    //     offsetMBB   overflowMBB
11887    //         |        .
11888    //         |     .
11889    //        endMBB
11890
11891    // Registers for the PHI in endMBB
11892    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
11893    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
11894
11895    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11896    MachineFunction *MF = MBB->getParent();
11897    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11898    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11899    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11900
11901    MachineFunction::iterator MBBIter = MBB;
11902    ++MBBIter;
11903
11904    // Insert the new basic blocks
11905    MF->insert(MBBIter, offsetMBB);
11906    MF->insert(MBBIter, overflowMBB);
11907    MF->insert(MBBIter, endMBB);
11908
11909    // Transfer the remainder of MBB and its successor edges to endMBB.
11910    endMBB->splice(endMBB->begin(), thisMBB,
11911                    llvm::next(MachineBasicBlock::iterator(MI)),
11912                    thisMBB->end());
11913    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11914
11915    // Make offsetMBB and overflowMBB successors of thisMBB
11916    thisMBB->addSuccessor(offsetMBB);
11917    thisMBB->addSuccessor(overflowMBB);
11918
11919    // endMBB is a successor of both offsetMBB and overflowMBB
11920    offsetMBB->addSuccessor(endMBB);
11921    overflowMBB->addSuccessor(endMBB);
11922
11923    // Load the offset value into a register
11924    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11925    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
11926      .addOperand(Base)
11927      .addOperand(Scale)
11928      .addOperand(Index)
11929      .addDisp(Disp, UseFPOffset ? 4 : 0)
11930      .addOperand(Segment)
11931      .setMemRefs(MMOBegin, MMOEnd);
11932
11933    // Check if there is enough room left to pull this argument.
11934    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
11935      .addReg(OffsetReg)
11936      .addImm(MaxOffset + 8 - ArgSizeA8);
11937
11938    // Branch to "overflowMBB" if offset >= max
11939    // Fall through to "offsetMBB" otherwise
11940    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
11941      .addMBB(overflowMBB);
11942  }
11943
11944  // In offsetMBB, emit code to use the reg_save_area.
11945  if (offsetMBB) {
11946    assert(OffsetReg != 0);
11947
11948    // Read the reg_save_area address.
11949    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
11950    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
11951      .addOperand(Base)
11952      .addOperand(Scale)
11953      .addOperand(Index)
11954      .addDisp(Disp, 16)
11955      .addOperand(Segment)
11956      .setMemRefs(MMOBegin, MMOEnd);
11957
11958    // Zero-extend the offset
11959    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
11960      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
11961        .addImm(0)
11962        .addReg(OffsetReg)
11963        .addImm(X86::sub_32bit);
11964
11965    // Add the offset to the reg_save_area to get the final address.
11966    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
11967      .addReg(OffsetReg64)
11968      .addReg(RegSaveReg);
11969
11970    // Compute the offset for the next argument
11971    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11972    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
11973      .addReg(OffsetReg)
11974      .addImm(UseFPOffset ? 16 : 8);
11975
11976    // Store it back into the va_list.
11977    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
11978      .addOperand(Base)
11979      .addOperand(Scale)
11980      .addOperand(Index)
11981      .addDisp(Disp, UseFPOffset ? 4 : 0)
11982      .addOperand(Segment)
11983      .addReg(NextOffsetReg)
11984      .setMemRefs(MMOBegin, MMOEnd);
11985
11986    // Jump to endMBB
11987    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
11988      .addMBB(endMBB);
11989  }
11990
11991  //
11992  // Emit code to use overflow area
11993  //
11994
11995  // Load the overflow_area address into a register.
11996  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
11997  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
11998    .addOperand(Base)
11999    .addOperand(Scale)
12000    .addOperand(Index)
12001    .addDisp(Disp, 8)
12002    .addOperand(Segment)
12003    .setMemRefs(MMOBegin, MMOEnd);
12004
12005  // If we need to align it, do so. Otherwise, just copy the address
12006  // to OverflowDestReg.
12007  if (NeedsAlign) {
12008    // Align the overflow address
12009    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
12010    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
12011
12012    // aligned_addr = (addr + (align-1)) & ~(align-1)
12013    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
12014      .addReg(OverflowAddrReg)
12015      .addImm(Align-1);
12016
12017    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
12018      .addReg(TmpReg)
12019      .addImm(~(uint64_t)(Align-1));
12020  } else {
12021    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
12022      .addReg(OverflowAddrReg);
12023  }
12024
12025  // Compute the next overflow address after this argument.
12026  // (the overflow address should be kept 8-byte aligned)
12027  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
12028  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
12029    .addReg(OverflowDestReg)
12030    .addImm(ArgSizeA8);
12031
12032  // Store the new overflow address.
12033  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
12034    .addOperand(Base)
12035    .addOperand(Scale)
12036    .addOperand(Index)
12037    .addDisp(Disp, 8)
12038    .addOperand(Segment)
12039    .addReg(NextAddrReg)
12040    .setMemRefs(MMOBegin, MMOEnd);
12041
12042  // If we branched, emit the PHI to the front of endMBB.
12043  if (offsetMBB) {
12044    BuildMI(*endMBB, endMBB->begin(), DL,
12045            TII->get(X86::PHI), DestReg)
12046      .addReg(OffsetDestReg).addMBB(offsetMBB)
12047      .addReg(OverflowDestReg).addMBB(overflowMBB);
12048  }
12049
12050  // Erase the pseudo instruction
12051  MI->eraseFromParent();
12052
12053  return endMBB;
12054}
12055
12056MachineBasicBlock *
12057X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
12058                                                 MachineInstr *MI,
12059                                                 MachineBasicBlock *MBB) const {
12060  // Emit code to save XMM registers to the stack. The ABI says that the
12061  // number of registers to save is given in %al, so it's theoretically
12062  // possible to do an indirect jump trick to avoid saving all of them,
12063  // however this code takes a simpler approach and just executes all
12064  // of the stores if %al is non-zero. It's less code, and it's probably
12065  // easier on the hardware branch predictor, and stores aren't all that
12066  // expensive anyway.
12067
12068  // Create the new basic blocks. One block contains all the XMM stores,
12069  // and one block is the final destination regardless of whether any
12070  // stores were performed.
12071  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
12072  MachineFunction *F = MBB->getParent();
12073  MachineFunction::iterator MBBIter = MBB;
12074  ++MBBIter;
12075  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
12076  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
12077  F->insert(MBBIter, XMMSaveMBB);
12078  F->insert(MBBIter, EndMBB);
12079
12080  // Transfer the remainder of MBB and its successor edges to EndMBB.
12081  EndMBB->splice(EndMBB->begin(), MBB,
12082                 llvm::next(MachineBasicBlock::iterator(MI)),
12083                 MBB->end());
12084  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
12085
12086  // The original block will now fall through to the XMM save block.
12087  MBB->addSuccessor(XMMSaveMBB);
12088  // The XMMSaveMBB will fall through to the end block.
12089  XMMSaveMBB->addSuccessor(EndMBB);
12090
12091  // Now add the instructions.
12092  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12093  DebugLoc DL = MI->getDebugLoc();
12094
12095  unsigned CountReg = MI->getOperand(0).getReg();
12096  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
12097  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
12098
12099  if (!Subtarget->isTargetWin64()) {
12100    // If %al is 0, branch around the XMM save block.
12101    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
12102    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
12103    MBB->addSuccessor(EndMBB);
12104  }
12105
12106  unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
12107  // In the XMM save block, save all the XMM argument registers.
12108  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
12109    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
12110    MachineMemOperand *MMO =
12111      F->getMachineMemOperand(
12112          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
12113        MachineMemOperand::MOStore,
12114        /*Size=*/16, /*Align=*/16);
12115    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
12116      .addFrameIndex(RegSaveFrameIndex)
12117      .addImm(/*Scale=*/1)
12118      .addReg(/*IndexReg=*/0)
12119      .addImm(/*Disp=*/Offset)
12120      .addReg(/*Segment=*/0)
12121      .addReg(MI->getOperand(i).getReg())
12122      .addMemOperand(MMO);
12123  }
12124
12125  MI->eraseFromParent();   // The pseudo instruction is gone now.
12126
12127  return EndMBB;
12128}
12129
12130// The EFLAGS operand of SelectItr might be missing a kill marker
12131// because there were multiple uses of EFLAGS, and ISel didn't know
12132// which to mark. Figure out whether SelectItr should have had a
12133// kill marker, and set it if it should. Returns the correct kill
12134// marker value.
12135static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
12136                                     MachineBasicBlock* BB,
12137                                     const TargetRegisterInfo* TRI) {
12138  // Scan forward through BB for a use/def of EFLAGS.
12139  MachineBasicBlock::iterator miI(llvm::next(SelectItr));
12140  for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
12141    const MachineInstr& mi = *miI;
12142    if (mi.readsRegister(X86::EFLAGS))
12143      return false;
12144    if (mi.definesRegister(X86::EFLAGS))
12145      break; // Should have kill-flag - update below.
12146  }
12147
12148  // If we hit the end of the block, check whether EFLAGS is live into a
12149  // successor.
12150  if (miI == BB->end()) {
12151    for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
12152                                          sEnd = BB->succ_end();
12153         sItr != sEnd; ++sItr) {
12154      MachineBasicBlock* succ = *sItr;
12155      if (succ->isLiveIn(X86::EFLAGS))
12156        return false;
12157    }
12158  }
12159
12160  // We found a def, or hit the end of the basic block and EFLAGS wasn't live
12161  // out. SelectMI should have a kill flag on EFLAGS.
12162  SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
12163  return true;
12164}
12165
12166MachineBasicBlock *
12167X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
12168                                     MachineBasicBlock *BB) const {
12169  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12170  DebugLoc DL = MI->getDebugLoc();
12171
12172  // To "insert" a SELECT_CC instruction, we actually have to insert the
12173  // diamond control-flow pattern.  The incoming instruction knows the
12174  // destination vreg to set, the condition code register to branch on, the
12175  // true/false values to select between, and a branch opcode to use.
12176  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12177  MachineFunction::iterator It = BB;
12178  ++It;
12179
12180  //  thisMBB:
12181  //  ...
12182  //   TrueVal = ...
12183  //   cmpTY ccX, r1, r2
12184  //   bCC copy1MBB
12185  //   fallthrough --> copy0MBB
12186  MachineBasicBlock *thisMBB = BB;
12187  MachineFunction *F = BB->getParent();
12188  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
12189  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
12190  F->insert(It, copy0MBB);
12191  F->insert(It, sinkMBB);
12192
12193  // If the EFLAGS register isn't dead in the terminator, then claim that it's
12194  // live into the sink and copy blocks.
12195  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
12196  if (!MI->killsRegister(X86::EFLAGS) &&
12197      !checkAndUpdateEFLAGSKill(MI, BB, TRI)) {
12198    copy0MBB->addLiveIn(X86::EFLAGS);
12199    sinkMBB->addLiveIn(X86::EFLAGS);
12200  }
12201
12202  // Transfer the remainder of BB and its successor edges to sinkMBB.
12203  sinkMBB->splice(sinkMBB->begin(), BB,
12204                  llvm::next(MachineBasicBlock::iterator(MI)),
12205                  BB->end());
12206  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12207
12208  // Add the true and fallthrough blocks as its successors.
12209  BB->addSuccessor(copy0MBB);
12210  BB->addSuccessor(sinkMBB);
12211
12212  // Create the conditional branch instruction.
12213  unsigned Opc =
12214    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
12215  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
12216
12217  //  copy0MBB:
12218  //   %FalseValue = ...
12219  //   # fallthrough to sinkMBB
12220  copy0MBB->addSuccessor(sinkMBB);
12221
12222  //  sinkMBB:
12223  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
12224  //  ...
12225  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12226          TII->get(X86::PHI), MI->getOperand(0).getReg())
12227    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
12228    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
12229
12230  MI->eraseFromParent();   // The pseudo instruction is gone now.
12231  return sinkMBB;
12232}
12233
12234MachineBasicBlock *
12235X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
12236                                        bool Is64Bit) const {
12237  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12238  DebugLoc DL = MI->getDebugLoc();
12239  MachineFunction *MF = BB->getParent();
12240  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12241
12242  assert(getTargetMachine().Options.EnableSegmentedStacks);
12243
12244  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
12245  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
12246
12247  // BB:
12248  //  ... [Till the alloca]
12249  // If stacklet is not large enough, jump to mallocMBB
12250  //
12251  // bumpMBB:
12252  //  Allocate by subtracting from RSP
12253  //  Jump to continueMBB
12254  //
12255  // mallocMBB:
12256  //  Allocate by call to runtime
12257  //
12258  // continueMBB:
12259  //  ...
12260  //  [rest of original BB]
12261  //
12262
12263  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12264  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12265  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12266
12267  MachineRegisterInfo &MRI = MF->getRegInfo();
12268  const TargetRegisterClass *AddrRegClass =
12269    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
12270
12271  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12272    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12273    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
12274    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
12275    sizeVReg = MI->getOperand(1).getReg(),
12276    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
12277
12278  MachineFunction::iterator MBBIter = BB;
12279  ++MBBIter;
12280
12281  MF->insert(MBBIter, bumpMBB);
12282  MF->insert(MBBIter, mallocMBB);
12283  MF->insert(MBBIter, continueMBB);
12284
12285  continueMBB->splice(continueMBB->begin(), BB, llvm::next
12286                      (MachineBasicBlock::iterator(MI)), BB->end());
12287  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
12288
12289  // Add code to the main basic block to check if the stack limit has been hit,
12290  // and if so, jump to mallocMBB otherwise to bumpMBB.
12291  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
12292  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
12293    .addReg(tmpSPVReg).addReg(sizeVReg);
12294  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
12295    .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
12296    .addReg(SPLimitVReg);
12297  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
12298
12299  // bumpMBB simply decreases the stack pointer, since we know the current
12300  // stacklet has enough space.
12301  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
12302    .addReg(SPLimitVReg);
12303  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
12304    .addReg(SPLimitVReg);
12305  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12306
12307  // Calls into a routine in libgcc to allocate more space from the heap.
12308  const uint32_t *RegMask =
12309    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
12310  if (Is64Bit) {
12311    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
12312      .addReg(sizeVReg);
12313    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
12314      .addExternalSymbol("__morestack_allocate_stack_space").addReg(X86::RDI)
12315      .addRegMask(RegMask)
12316      .addReg(X86::RAX, RegState::ImplicitDefine);
12317  } else {
12318    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
12319      .addImm(12);
12320    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
12321    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
12322      .addExternalSymbol("__morestack_allocate_stack_space")
12323      .addRegMask(RegMask)
12324      .addReg(X86::EAX, RegState::ImplicitDefine);
12325  }
12326
12327  if (!Is64Bit)
12328    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
12329      .addImm(16);
12330
12331  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
12332    .addReg(Is64Bit ? X86::RAX : X86::EAX);
12333  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12334
12335  // Set up the CFG correctly.
12336  BB->addSuccessor(bumpMBB);
12337  BB->addSuccessor(mallocMBB);
12338  mallocMBB->addSuccessor(continueMBB);
12339  bumpMBB->addSuccessor(continueMBB);
12340
12341  // Take care of the PHI nodes.
12342  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
12343          MI->getOperand(0).getReg())
12344    .addReg(mallocPtrVReg).addMBB(mallocMBB)
12345    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
12346
12347  // Delete the original pseudo instruction.
12348  MI->eraseFromParent();
12349
12350  // And we're done.
12351  return continueMBB;
12352}
12353
12354MachineBasicBlock *
12355X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
12356                                          MachineBasicBlock *BB) const {
12357  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12358  DebugLoc DL = MI->getDebugLoc();
12359
12360  assert(!Subtarget->isTargetEnvMacho());
12361
12362  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
12363  // non-trivial part is impdef of ESP.
12364
12365  if (Subtarget->isTargetWin64()) {
12366    if (Subtarget->isTargetCygMing()) {
12367      // ___chkstk(Mingw64):
12368      // Clobbers R10, R11, RAX and EFLAGS.
12369      // Updates RSP.
12370      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12371        .addExternalSymbol("___chkstk")
12372        .addReg(X86::RAX, RegState::Implicit)
12373        .addReg(X86::RSP, RegState::Implicit)
12374        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
12375        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
12376        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12377    } else {
12378      // __chkstk(MSVCRT): does not update stack pointer.
12379      // Clobbers R10, R11 and EFLAGS.
12380      // FIXME: RAX(allocated size) might be reused and not killed.
12381      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12382        .addExternalSymbol("__chkstk")
12383        .addReg(X86::RAX, RegState::Implicit)
12384        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12385      // RAX has the offset to subtracted from RSP.
12386      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
12387        .addReg(X86::RSP)
12388        .addReg(X86::RAX);
12389    }
12390  } else {
12391    const char *StackProbeSymbol =
12392      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
12393
12394    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
12395      .addExternalSymbol(StackProbeSymbol)
12396      .addReg(X86::EAX, RegState::Implicit)
12397      .addReg(X86::ESP, RegState::Implicit)
12398      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
12399      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
12400      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12401  }
12402
12403  MI->eraseFromParent();   // The pseudo instruction is gone now.
12404  return BB;
12405}
12406
12407MachineBasicBlock *
12408X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
12409                                      MachineBasicBlock *BB) const {
12410  // This is pretty easy.  We're taking the value that we received from
12411  // our load from the relocation, sticking it in either RDI (x86-64)
12412  // or EAX and doing an indirect call.  The return value will then
12413  // be in the normal return register.
12414  const X86InstrInfo *TII
12415    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
12416  DebugLoc DL = MI->getDebugLoc();
12417  MachineFunction *F = BB->getParent();
12418
12419  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
12420  assert(MI->getOperand(3).isGlobal() && "This should be a global");
12421
12422  // Get a register mask for the lowered call.
12423  // FIXME: The 32-bit calls have non-standard calling conventions. Use a
12424  // proper register mask.
12425  const uint32_t *RegMask =
12426    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
12427  if (Subtarget->is64Bit()) {
12428    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12429                                      TII->get(X86::MOV64rm), X86::RDI)
12430    .addReg(X86::RIP)
12431    .addImm(0).addReg(0)
12432    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12433                      MI->getOperand(3).getTargetFlags())
12434    .addReg(0);
12435    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
12436    addDirectMem(MIB, X86::RDI);
12437    MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask);
12438  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
12439    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12440                                      TII->get(X86::MOV32rm), X86::EAX)
12441    .addReg(0)
12442    .addImm(0).addReg(0)
12443    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12444                      MI->getOperand(3).getTargetFlags())
12445    .addReg(0);
12446    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12447    addDirectMem(MIB, X86::EAX);
12448    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
12449  } else {
12450    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12451                                      TII->get(X86::MOV32rm), X86::EAX)
12452    .addReg(TII->getGlobalBaseReg(F))
12453    .addImm(0).addReg(0)
12454    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12455                      MI->getOperand(3).getTargetFlags())
12456    .addReg(0);
12457    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12458    addDirectMem(MIB, X86::EAX);
12459    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
12460  }
12461
12462  MI->eraseFromParent(); // The pseudo instruction is gone now.
12463  return BB;
12464}
12465
12466MachineBasicBlock *
12467X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
12468                                               MachineBasicBlock *BB) const {
12469  switch (MI->getOpcode()) {
12470  default: llvm_unreachable("Unexpected instr type to insert");
12471  case X86::TAILJMPd64:
12472  case X86::TAILJMPr64:
12473  case X86::TAILJMPm64:
12474    llvm_unreachable("TAILJMP64 would not be touched here.");
12475  case X86::TCRETURNdi64:
12476  case X86::TCRETURNri64:
12477  case X86::TCRETURNmi64:
12478    return BB;
12479  case X86::WIN_ALLOCA:
12480    return EmitLoweredWinAlloca(MI, BB);
12481  case X86::SEG_ALLOCA_32:
12482    return EmitLoweredSegAlloca(MI, BB, false);
12483  case X86::SEG_ALLOCA_64:
12484    return EmitLoweredSegAlloca(MI, BB, true);
12485  case X86::TLSCall_32:
12486  case X86::TLSCall_64:
12487    return EmitLoweredTLSCall(MI, BB);
12488  case X86::CMOV_GR8:
12489  case X86::CMOV_FR32:
12490  case X86::CMOV_FR64:
12491  case X86::CMOV_V4F32:
12492  case X86::CMOV_V2F64:
12493  case X86::CMOV_V2I64:
12494  case X86::CMOV_V8F32:
12495  case X86::CMOV_V4F64:
12496  case X86::CMOV_V4I64:
12497  case X86::CMOV_GR16:
12498  case X86::CMOV_GR32:
12499  case X86::CMOV_RFP32:
12500  case X86::CMOV_RFP64:
12501  case X86::CMOV_RFP80:
12502    return EmitLoweredSelect(MI, BB);
12503
12504  case X86::FP32_TO_INT16_IN_MEM:
12505  case X86::FP32_TO_INT32_IN_MEM:
12506  case X86::FP32_TO_INT64_IN_MEM:
12507  case X86::FP64_TO_INT16_IN_MEM:
12508  case X86::FP64_TO_INT32_IN_MEM:
12509  case X86::FP64_TO_INT64_IN_MEM:
12510  case X86::FP80_TO_INT16_IN_MEM:
12511  case X86::FP80_TO_INT32_IN_MEM:
12512  case X86::FP80_TO_INT64_IN_MEM: {
12513    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12514    DebugLoc DL = MI->getDebugLoc();
12515
12516    // Change the floating point control register to use "round towards zero"
12517    // mode when truncating to an integer value.
12518    MachineFunction *F = BB->getParent();
12519    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
12520    addFrameReference(BuildMI(*BB, MI, DL,
12521                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
12522
12523    // Load the old value of the high byte of the control word...
12524    unsigned OldCW =
12525      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
12526    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
12527                      CWFrameIdx);
12528
12529    // Set the high part to be round to zero...
12530    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
12531      .addImm(0xC7F);
12532
12533    // Reload the modified control word now...
12534    addFrameReference(BuildMI(*BB, MI, DL,
12535                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12536
12537    // Restore the memory image of control word to original value
12538    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
12539      .addReg(OldCW);
12540
12541    // Get the X86 opcode to use.
12542    unsigned Opc;
12543    switch (MI->getOpcode()) {
12544    default: llvm_unreachable("illegal opcode!");
12545    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
12546    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
12547    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
12548    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
12549    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
12550    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
12551    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
12552    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
12553    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
12554    }
12555
12556    X86AddressMode AM;
12557    MachineOperand &Op = MI->getOperand(0);
12558    if (Op.isReg()) {
12559      AM.BaseType = X86AddressMode::RegBase;
12560      AM.Base.Reg = Op.getReg();
12561    } else {
12562      AM.BaseType = X86AddressMode::FrameIndexBase;
12563      AM.Base.FrameIndex = Op.getIndex();
12564    }
12565    Op = MI->getOperand(1);
12566    if (Op.isImm())
12567      AM.Scale = Op.getImm();
12568    Op = MI->getOperand(2);
12569    if (Op.isImm())
12570      AM.IndexReg = Op.getImm();
12571    Op = MI->getOperand(3);
12572    if (Op.isGlobal()) {
12573      AM.GV = Op.getGlobal();
12574    } else {
12575      AM.Disp = Op.getImm();
12576    }
12577    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
12578                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
12579
12580    // Reload the original control word now.
12581    addFrameReference(BuildMI(*BB, MI, DL,
12582                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12583
12584    MI->eraseFromParent();   // The pseudo instruction is gone now.
12585    return BB;
12586  }
12587    // String/text processing lowering.
12588  case X86::PCMPISTRM128REG:
12589  case X86::VPCMPISTRM128REG:
12590    return EmitPCMP(MI, BB, 3, false /* in-mem */);
12591  case X86::PCMPISTRM128MEM:
12592  case X86::VPCMPISTRM128MEM:
12593    return EmitPCMP(MI, BB, 3, true /* in-mem */);
12594  case X86::PCMPESTRM128REG:
12595  case X86::VPCMPESTRM128REG:
12596    return EmitPCMP(MI, BB, 5, false /* in mem */);
12597  case X86::PCMPESTRM128MEM:
12598  case X86::VPCMPESTRM128MEM:
12599    return EmitPCMP(MI, BB, 5, true /* in mem */);
12600
12601    // Thread synchronization.
12602  case X86::MONITOR:
12603    return EmitMonitor(MI, BB);
12604  case X86::MWAIT:
12605    return EmitMwait(MI, BB);
12606
12607    // Atomic Lowering.
12608  case X86::ATOMAND32:
12609    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12610                                               X86::AND32ri, X86::MOV32rm,
12611                                               X86::LCMPXCHG32,
12612                                               X86::NOT32r, X86::EAX,
12613                                               X86::GR32RegisterClass);
12614  case X86::ATOMOR32:
12615    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
12616                                               X86::OR32ri, X86::MOV32rm,
12617                                               X86::LCMPXCHG32,
12618                                               X86::NOT32r, X86::EAX,
12619                                               X86::GR32RegisterClass);
12620  case X86::ATOMXOR32:
12621    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
12622                                               X86::XOR32ri, X86::MOV32rm,
12623                                               X86::LCMPXCHG32,
12624                                               X86::NOT32r, X86::EAX,
12625                                               X86::GR32RegisterClass);
12626  case X86::ATOMNAND32:
12627    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12628                                               X86::AND32ri, X86::MOV32rm,
12629                                               X86::LCMPXCHG32,
12630                                               X86::NOT32r, X86::EAX,
12631                                               X86::GR32RegisterClass, true);
12632  case X86::ATOMMIN32:
12633    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
12634  case X86::ATOMMAX32:
12635    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
12636  case X86::ATOMUMIN32:
12637    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
12638  case X86::ATOMUMAX32:
12639    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
12640
12641  case X86::ATOMAND16:
12642    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12643                                               X86::AND16ri, X86::MOV16rm,
12644                                               X86::LCMPXCHG16,
12645                                               X86::NOT16r, X86::AX,
12646                                               X86::GR16RegisterClass);
12647  case X86::ATOMOR16:
12648    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
12649                                               X86::OR16ri, X86::MOV16rm,
12650                                               X86::LCMPXCHG16,
12651                                               X86::NOT16r, X86::AX,
12652                                               X86::GR16RegisterClass);
12653  case X86::ATOMXOR16:
12654    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
12655                                               X86::XOR16ri, X86::MOV16rm,
12656                                               X86::LCMPXCHG16,
12657                                               X86::NOT16r, X86::AX,
12658                                               X86::GR16RegisterClass);
12659  case X86::ATOMNAND16:
12660    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12661                                               X86::AND16ri, X86::MOV16rm,
12662                                               X86::LCMPXCHG16,
12663                                               X86::NOT16r, X86::AX,
12664                                               X86::GR16RegisterClass, true);
12665  case X86::ATOMMIN16:
12666    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
12667  case X86::ATOMMAX16:
12668    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
12669  case X86::ATOMUMIN16:
12670    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
12671  case X86::ATOMUMAX16:
12672    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
12673
12674  case X86::ATOMAND8:
12675    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12676                                               X86::AND8ri, X86::MOV8rm,
12677                                               X86::LCMPXCHG8,
12678                                               X86::NOT8r, X86::AL,
12679                                               X86::GR8RegisterClass);
12680  case X86::ATOMOR8:
12681    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
12682                                               X86::OR8ri, X86::MOV8rm,
12683                                               X86::LCMPXCHG8,
12684                                               X86::NOT8r, X86::AL,
12685                                               X86::GR8RegisterClass);
12686  case X86::ATOMXOR8:
12687    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
12688                                               X86::XOR8ri, X86::MOV8rm,
12689                                               X86::LCMPXCHG8,
12690                                               X86::NOT8r, X86::AL,
12691                                               X86::GR8RegisterClass);
12692  case X86::ATOMNAND8:
12693    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12694                                               X86::AND8ri, X86::MOV8rm,
12695                                               X86::LCMPXCHG8,
12696                                               X86::NOT8r, X86::AL,
12697                                               X86::GR8RegisterClass, true);
12698  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
12699  // This group is for 64-bit host.
12700  case X86::ATOMAND64:
12701    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12702                                               X86::AND64ri32, X86::MOV64rm,
12703                                               X86::LCMPXCHG64,
12704                                               X86::NOT64r, X86::RAX,
12705                                               X86::GR64RegisterClass);
12706  case X86::ATOMOR64:
12707    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
12708                                               X86::OR64ri32, X86::MOV64rm,
12709                                               X86::LCMPXCHG64,
12710                                               X86::NOT64r, X86::RAX,
12711                                               X86::GR64RegisterClass);
12712  case X86::ATOMXOR64:
12713    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
12714                                               X86::XOR64ri32, X86::MOV64rm,
12715                                               X86::LCMPXCHG64,
12716                                               X86::NOT64r, X86::RAX,
12717                                               X86::GR64RegisterClass);
12718  case X86::ATOMNAND64:
12719    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12720                                               X86::AND64ri32, X86::MOV64rm,
12721                                               X86::LCMPXCHG64,
12722                                               X86::NOT64r, X86::RAX,
12723                                               X86::GR64RegisterClass, true);
12724  case X86::ATOMMIN64:
12725    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
12726  case X86::ATOMMAX64:
12727    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
12728  case X86::ATOMUMIN64:
12729    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
12730  case X86::ATOMUMAX64:
12731    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
12732
12733  // This group does 64-bit operations on a 32-bit host.
12734  case X86::ATOMAND6432:
12735    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12736                                               X86::AND32rr, X86::AND32rr,
12737                                               X86::AND32ri, X86::AND32ri,
12738                                               false);
12739  case X86::ATOMOR6432:
12740    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12741                                               X86::OR32rr, X86::OR32rr,
12742                                               X86::OR32ri, X86::OR32ri,
12743                                               false);
12744  case X86::ATOMXOR6432:
12745    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12746                                               X86::XOR32rr, X86::XOR32rr,
12747                                               X86::XOR32ri, X86::XOR32ri,
12748                                               false);
12749  case X86::ATOMNAND6432:
12750    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12751                                               X86::AND32rr, X86::AND32rr,
12752                                               X86::AND32ri, X86::AND32ri,
12753                                               true);
12754  case X86::ATOMADD6432:
12755    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12756                                               X86::ADD32rr, X86::ADC32rr,
12757                                               X86::ADD32ri, X86::ADC32ri,
12758                                               false);
12759  case X86::ATOMSUB6432:
12760    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12761                                               X86::SUB32rr, X86::SBB32rr,
12762                                               X86::SUB32ri, X86::SBB32ri,
12763                                               false);
12764  case X86::ATOMSWAP6432:
12765    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12766                                               X86::MOV32rr, X86::MOV32rr,
12767                                               X86::MOV32ri, X86::MOV32ri,
12768                                               false);
12769  case X86::VASTART_SAVE_XMM_REGS:
12770    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
12771
12772  case X86::VAARG_64:
12773    return EmitVAARG64WithCustomInserter(MI, BB);
12774  }
12775}
12776
12777//===----------------------------------------------------------------------===//
12778//                           X86 Optimization Hooks
12779//===----------------------------------------------------------------------===//
12780
12781void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
12782                                                       APInt &KnownZero,
12783                                                       APInt &KnownOne,
12784                                                       const SelectionDAG &DAG,
12785                                                       unsigned Depth) const {
12786  unsigned BitWidth = KnownZero.getBitWidth();
12787  unsigned Opc = Op.getOpcode();
12788  assert((Opc >= ISD::BUILTIN_OP_END ||
12789          Opc == ISD::INTRINSIC_WO_CHAIN ||
12790          Opc == ISD::INTRINSIC_W_CHAIN ||
12791          Opc == ISD::INTRINSIC_VOID) &&
12792         "Should use MaskedValueIsZero if you don't know whether Op"
12793         " is a target node!");
12794
12795  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
12796  switch (Opc) {
12797  default: break;
12798  case X86ISD::ADD:
12799  case X86ISD::SUB:
12800  case X86ISD::ADC:
12801  case X86ISD::SBB:
12802  case X86ISD::SMUL:
12803  case X86ISD::UMUL:
12804  case X86ISD::INC:
12805  case X86ISD::DEC:
12806  case X86ISD::OR:
12807  case X86ISD::XOR:
12808  case X86ISD::AND:
12809    // These nodes' second result is a boolean.
12810    if (Op.getResNo() == 0)
12811      break;
12812    // Fallthrough
12813  case X86ISD::SETCC:
12814    KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
12815    break;
12816  case ISD::INTRINSIC_WO_CHAIN: {
12817    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
12818    unsigned NumLoBits = 0;
12819    switch (IntId) {
12820    default: break;
12821    case Intrinsic::x86_sse_movmsk_ps:
12822    case Intrinsic::x86_avx_movmsk_ps_256:
12823    case Intrinsic::x86_sse2_movmsk_pd:
12824    case Intrinsic::x86_avx_movmsk_pd_256:
12825    case Intrinsic::x86_mmx_pmovmskb:
12826    case Intrinsic::x86_sse2_pmovmskb_128:
12827    case Intrinsic::x86_avx2_pmovmskb: {
12828      // High bits of movmskp{s|d}, pmovmskb are known zero.
12829      switch (IntId) {
12830        default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
12831        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
12832        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
12833        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
12834        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
12835        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
12836        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
12837        case Intrinsic::x86_avx2_pmovmskb:      NumLoBits = 32; break;
12838      }
12839      KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits);
12840      break;
12841    }
12842    }
12843    break;
12844  }
12845  }
12846}
12847
12848unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
12849                                                         unsigned Depth) const {
12850  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
12851  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
12852    return Op.getValueType().getScalarType().getSizeInBits();
12853
12854  // Fallback case.
12855  return 1;
12856}
12857
12858/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
12859/// node is a GlobalAddress + offset.
12860bool X86TargetLowering::isGAPlusOffset(SDNode *N,
12861                                       const GlobalValue* &GA,
12862                                       int64_t &Offset) const {
12863  if (N->getOpcode() == X86ISD::Wrapper) {
12864    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
12865      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
12866      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
12867      return true;
12868    }
12869  }
12870  return TargetLowering::isGAPlusOffset(N, GA, Offset);
12871}
12872
12873/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
12874/// same as extracting the high 128-bit part of 256-bit vector and then
12875/// inserting the result into the low part of a new 256-bit vector
12876static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
12877  EVT VT = SVOp->getValueType(0);
12878  int NumElems = VT.getVectorNumElements();
12879
12880  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12881  for (int i = 0, j = NumElems/2; i < NumElems/2; ++i, ++j)
12882    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12883        SVOp->getMaskElt(j) >= 0)
12884      return false;
12885
12886  return true;
12887}
12888
12889/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
12890/// same as extracting the low 128-bit part of 256-bit vector and then
12891/// inserting the result into the high part of a new 256-bit vector
12892static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
12893  EVT VT = SVOp->getValueType(0);
12894  int NumElems = VT.getVectorNumElements();
12895
12896  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12897  for (int i = NumElems/2, j = 0; i < NumElems; ++i, ++j)
12898    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12899        SVOp->getMaskElt(j) >= 0)
12900      return false;
12901
12902  return true;
12903}
12904
12905/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
12906static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
12907                                        TargetLowering::DAGCombinerInfo &DCI,
12908                                        const X86Subtarget* Subtarget) {
12909  DebugLoc dl = N->getDebugLoc();
12910  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
12911  SDValue V1 = SVOp->getOperand(0);
12912  SDValue V2 = SVOp->getOperand(1);
12913  EVT VT = SVOp->getValueType(0);
12914  int NumElems = VT.getVectorNumElements();
12915
12916  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
12917      V2.getOpcode() == ISD::CONCAT_VECTORS) {
12918    //
12919    //                   0,0,0,...
12920    //                      |
12921    //    V      UNDEF    BUILD_VECTOR    UNDEF
12922    //     \      /           \           /
12923    //  CONCAT_VECTOR         CONCAT_VECTOR
12924    //         \                  /
12925    //          \                /
12926    //          RESULT: V + zero extended
12927    //
12928    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
12929        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
12930        V1.getOperand(1).getOpcode() != ISD::UNDEF)
12931      return SDValue();
12932
12933    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
12934      return SDValue();
12935
12936    // To match the shuffle mask, the first half of the mask should
12937    // be exactly the first vector, and all the rest a splat with the
12938    // first element of the second one.
12939    for (int i = 0; i < NumElems/2; ++i)
12940      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
12941          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
12942        return SDValue();
12943
12944    // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
12945    if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
12946      SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
12947      SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
12948      SDValue ResNode =
12949        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2,
12950                                Ld->getMemoryVT(),
12951                                Ld->getPointerInfo(),
12952                                Ld->getAlignment(),
12953                                false/*isVolatile*/, true/*ReadMem*/,
12954                                false/*WriteMem*/);
12955      return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
12956    }
12957
12958    // Emit a zeroed vector and insert the desired subvector on its
12959    // first half.
12960    SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
12961    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0),
12962                         DAG.getConstant(0, MVT::i32), DAG, dl);
12963    return DCI.CombineTo(N, InsV);
12964  }
12965
12966  //===--------------------------------------------------------------------===//
12967  // Combine some shuffles into subvector extracts and inserts:
12968  //
12969
12970  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12971  if (isShuffleHigh128VectorInsertLow(SVOp)) {
12972    SDValue V = Extract128BitVector(V1, DAG.getConstant(NumElems/2, MVT::i32),
12973                                    DAG, dl);
12974    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12975                                      V, DAG.getConstant(0, MVT::i32), DAG, dl);
12976    return DCI.CombineTo(N, InsV);
12977  }
12978
12979  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12980  if (isShuffleLow128VectorInsertHigh(SVOp)) {
12981    SDValue V = Extract128BitVector(V1, DAG.getConstant(0, MVT::i32), DAG, dl);
12982    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12983                             V, DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
12984    return DCI.CombineTo(N, InsV);
12985  }
12986
12987  return SDValue();
12988}
12989
12990/// PerformShuffleCombine - Performs several different shuffle combines.
12991static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
12992                                     TargetLowering::DAGCombinerInfo &DCI,
12993                                     const X86Subtarget *Subtarget) {
12994  DebugLoc dl = N->getDebugLoc();
12995  EVT VT = N->getValueType(0);
12996
12997  // Don't create instructions with illegal types after legalize types has run.
12998  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12999  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
13000    return SDValue();
13001
13002  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
13003  if (Subtarget->hasAVX() && VT.getSizeInBits() == 256 &&
13004      N->getOpcode() == ISD::VECTOR_SHUFFLE)
13005    return PerformShuffleCombine256(N, DAG, DCI, Subtarget);
13006
13007  // Only handle 128 wide vector from here on.
13008  if (VT.getSizeInBits() != 128)
13009    return SDValue();
13010
13011  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
13012  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
13013  // consecutive, non-overlapping, and in the right order.
13014  SmallVector<SDValue, 16> Elts;
13015  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
13016    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
13017
13018  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
13019}
13020
13021
13022/// PerformTruncateCombine - Converts truncate operation to
13023/// a sequence of vector shuffle operations.
13024/// It is possible when we truncate 256-bit vector to 128-bit vector
13025
13026SDValue X86TargetLowering::PerformTruncateCombine(SDNode *N, SelectionDAG &DAG,
13027                                                  DAGCombinerInfo &DCI) const {
13028  if (!DCI.isBeforeLegalizeOps())
13029    return SDValue();
13030
13031  if (!Subtarget->hasAVX()) return SDValue();
13032
13033  EVT VT = N->getValueType(0);
13034  SDValue Op = N->getOperand(0);
13035  EVT OpVT = Op.getValueType();
13036  DebugLoc dl = N->getDebugLoc();
13037
13038  if ((VT == MVT::v4i32) && (OpVT == MVT::v4i64)) {
13039
13040    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
13041                          DAG.getIntPtrConstant(0));
13042
13043    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
13044                          DAG.getIntPtrConstant(2));
13045
13046    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
13047    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
13048
13049    // PSHUFD
13050    int ShufMask1[] = {0, 2, 0, 0};
13051
13052    OpLo = DAG.getVectorShuffle(VT, dl, OpLo, DAG.getUNDEF(VT),
13053                                ShufMask1);
13054    OpHi = DAG.getVectorShuffle(VT, dl, OpHi, DAG.getUNDEF(VT),
13055                                ShufMask1);
13056
13057    // MOVLHPS
13058    int ShufMask2[] = {0, 1, 4, 5};
13059
13060    return DAG.getVectorShuffle(VT, dl, OpLo, OpHi, ShufMask2);
13061  }
13062  if ((VT == MVT::v8i16) && (OpVT == MVT::v8i32)) {
13063
13064    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
13065                          DAG.getIntPtrConstant(0));
13066
13067    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
13068                          DAG.getIntPtrConstant(4));
13069
13070    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLo);
13071    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpHi);
13072
13073    // PSHUFB
13074    int ShufMask1[] = {0,  1,  4,  5,  8,  9, 12, 13,
13075                      -1, -1, -1, -1, -1, -1, -1, -1};
13076
13077    OpLo = DAG.getVectorShuffle(MVT::v16i8, dl, OpLo,
13078                                DAG.getUNDEF(MVT::v16i8),
13079                                ShufMask1);
13080    OpHi = DAG.getVectorShuffle(MVT::v16i8, dl, OpHi,
13081                                DAG.getUNDEF(MVT::v16i8),
13082                                ShufMask1);
13083
13084    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
13085    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
13086
13087    // MOVLHPS
13088    int ShufMask2[] = {0, 1, 4, 5};
13089
13090    SDValue res = DAG.getVectorShuffle(MVT::v4i32, dl, OpLo, OpHi, ShufMask2);
13091    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, res);
13092  }
13093
13094  return SDValue();
13095}
13096
13097/// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target
13098/// specific shuffle of a load can be folded into a single element load.
13099/// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but
13100/// shuffles have been customed lowered so we need to handle those here.
13101static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
13102                                         TargetLowering::DAGCombinerInfo &DCI) {
13103  if (DCI.isBeforeLegalizeOps())
13104    return SDValue();
13105
13106  SDValue InVec = N->getOperand(0);
13107  SDValue EltNo = N->getOperand(1);
13108
13109  if (!isa<ConstantSDNode>(EltNo))
13110    return SDValue();
13111
13112  EVT VT = InVec.getValueType();
13113
13114  bool HasShuffleIntoBitcast = false;
13115  if (InVec.getOpcode() == ISD::BITCAST) {
13116    // Don't duplicate a load with other uses.
13117    if (!InVec.hasOneUse())
13118      return SDValue();
13119    EVT BCVT = InVec.getOperand(0).getValueType();
13120    if (BCVT.getVectorNumElements() != VT.getVectorNumElements())
13121      return SDValue();
13122    InVec = InVec.getOperand(0);
13123    HasShuffleIntoBitcast = true;
13124  }
13125
13126  if (!isTargetShuffle(InVec.getOpcode()))
13127    return SDValue();
13128
13129  // Don't duplicate a load with other uses.
13130  if (!InVec.hasOneUse())
13131    return SDValue();
13132
13133  SmallVector<int, 16> ShuffleMask;
13134  bool UnaryShuffle;
13135  if (!getTargetShuffleMask(InVec.getNode(), VT, ShuffleMask, UnaryShuffle))
13136    return SDValue();
13137
13138  // Select the input vector, guarding against out of range extract vector.
13139  unsigned NumElems = VT.getVectorNumElements();
13140  int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
13141  int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt];
13142  SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0)
13143                                         : InVec.getOperand(1);
13144
13145  // If inputs to shuffle are the same for both ops, then allow 2 uses
13146  unsigned AllowedUses = InVec.getOperand(0) == InVec.getOperand(1) ? 2 : 1;
13147
13148  if (LdNode.getOpcode() == ISD::BITCAST) {
13149    // Don't duplicate a load with other uses.
13150    if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0))
13151      return SDValue();
13152
13153    AllowedUses = 1; // only allow 1 load use if we have a bitcast
13154    LdNode = LdNode.getOperand(0);
13155  }
13156
13157  if (!ISD::isNormalLoad(LdNode.getNode()))
13158    return SDValue();
13159
13160  LoadSDNode *LN0 = cast<LoadSDNode>(LdNode);
13161
13162  if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile())
13163    return SDValue();
13164
13165  if (HasShuffleIntoBitcast) {
13166    // If there's a bitcast before the shuffle, check if the load type and
13167    // alignment is valid.
13168    unsigned Align = LN0->getAlignment();
13169    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13170    unsigned NewAlign = TLI.getTargetData()->
13171      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
13172
13173    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
13174      return SDValue();
13175  }
13176
13177  // All checks match so transform back to vector_shuffle so that DAG combiner
13178  // can finish the job
13179  DebugLoc dl = N->getDebugLoc();
13180
13181  // Create shuffle node taking into account the case that its a unary shuffle
13182  SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(VT) : InVec.getOperand(1);
13183  Shuffle = DAG.getVectorShuffle(InVec.getValueType(), dl,
13184                                 InVec.getOperand(0), Shuffle,
13185                                 &ShuffleMask[0]);
13186  Shuffle = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
13187  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle,
13188                     EltNo);
13189}
13190
13191/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
13192/// generation and convert it from being a bunch of shuffles and extracts
13193/// to a simple store and scalar loads to extract the elements.
13194static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
13195                                         TargetLowering::DAGCombinerInfo &DCI) {
13196  SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI);
13197  if (NewOp.getNode())
13198    return NewOp;
13199
13200  SDValue InputVector = N->getOperand(0);
13201
13202  // Only operate on vectors of 4 elements, where the alternative shuffling
13203  // gets to be more expensive.
13204  if (InputVector.getValueType() != MVT::v4i32)
13205    return SDValue();
13206
13207  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
13208  // single use which is a sign-extend or zero-extend, and all elements are
13209  // used.
13210  SmallVector<SDNode *, 4> Uses;
13211  unsigned ExtractedElements = 0;
13212  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
13213       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
13214    if (UI.getUse().getResNo() != InputVector.getResNo())
13215      return SDValue();
13216
13217    SDNode *Extract = *UI;
13218    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13219      return SDValue();
13220
13221    if (Extract->getValueType(0) != MVT::i32)
13222      return SDValue();
13223    if (!Extract->hasOneUse())
13224      return SDValue();
13225    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
13226        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
13227      return SDValue();
13228    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
13229      return SDValue();
13230
13231    // Record which element was extracted.
13232    ExtractedElements |=
13233      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
13234
13235    Uses.push_back(Extract);
13236  }
13237
13238  // If not all the elements were used, this may not be worthwhile.
13239  if (ExtractedElements != 15)
13240    return SDValue();
13241
13242  // Ok, we've now decided to do the transformation.
13243  DebugLoc dl = InputVector.getDebugLoc();
13244
13245  // Store the value to a temporary stack slot.
13246  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
13247  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
13248                            MachinePointerInfo(), false, false, 0);
13249
13250  // Replace each use (extract) with a load of the appropriate element.
13251  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
13252       UE = Uses.end(); UI != UE; ++UI) {
13253    SDNode *Extract = *UI;
13254
13255    // cOMpute the element's address.
13256    SDValue Idx = Extract->getOperand(1);
13257    unsigned EltSize =
13258        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
13259    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
13260    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13261    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
13262
13263    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
13264                                     StackPtr, OffsetVal);
13265
13266    // Load the scalar.
13267    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
13268                                     ScalarAddr, MachinePointerInfo(),
13269                                     false, false, false, 0);
13270
13271    // Replace the exact with the load.
13272    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
13273  }
13274
13275  // The replacement was made in place; don't return anything.
13276  return SDValue();
13277}
13278
13279/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
13280/// nodes.
13281static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
13282                                    TargetLowering::DAGCombinerInfo &DCI,
13283                                    const X86Subtarget *Subtarget) {
13284
13285
13286  DebugLoc DL = N->getDebugLoc();
13287  SDValue Cond = N->getOperand(0);
13288  // Get the LHS/RHS of the select.
13289  SDValue LHS = N->getOperand(1);
13290  SDValue RHS = N->getOperand(2);
13291  EVT VT = LHS.getValueType();
13292
13293  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
13294  // instructions match the semantics of the common C idiom x<y?x:y but not
13295  // x<=y?x:y, because of how they handle negative zero (which can be
13296  // ignored in unsafe-math mode).
13297  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
13298      VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
13299      (Subtarget->hasSSE2() ||
13300       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
13301    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13302
13303    unsigned Opcode = 0;
13304    // Check for x CC y ? x : y.
13305    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
13306        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
13307      switch (CC) {
13308      default: break;
13309      case ISD::SETULT:
13310        // Converting this to a min would handle NaNs incorrectly, and swapping
13311        // the operands would cause it to handle comparisons between positive
13312        // and negative zero incorrectly.
13313        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
13314          if (!DAG.getTarget().Options.UnsafeFPMath &&
13315              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
13316            break;
13317          std::swap(LHS, RHS);
13318        }
13319        Opcode = X86ISD::FMIN;
13320        break;
13321      case ISD::SETOLE:
13322        // Converting this to a min would handle comparisons between positive
13323        // and negative zero incorrectly.
13324        if (!DAG.getTarget().Options.UnsafeFPMath &&
13325            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
13326          break;
13327        Opcode = X86ISD::FMIN;
13328        break;
13329      case ISD::SETULE:
13330        // Converting this to a min would handle both negative zeros and NaNs
13331        // incorrectly, but we can swap the operands to fix both.
13332        std::swap(LHS, RHS);
13333      case ISD::SETOLT:
13334      case ISD::SETLT:
13335      case ISD::SETLE:
13336        Opcode = X86ISD::FMIN;
13337        break;
13338
13339      case ISD::SETOGE:
13340        // Converting this to a max would handle comparisons between positive
13341        // and negative zero incorrectly.
13342        if (!DAG.getTarget().Options.UnsafeFPMath &&
13343            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
13344          break;
13345        Opcode = X86ISD::FMAX;
13346        break;
13347      case ISD::SETUGT:
13348        // Converting this to a max would handle NaNs incorrectly, and swapping
13349        // the operands would cause it to handle comparisons between positive
13350        // and negative zero incorrectly.
13351        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
13352          if (!DAG.getTarget().Options.UnsafeFPMath &&
13353              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
13354            break;
13355          std::swap(LHS, RHS);
13356        }
13357        Opcode = X86ISD::FMAX;
13358        break;
13359      case ISD::SETUGE:
13360        // Converting this to a max would handle both negative zeros and NaNs
13361        // incorrectly, but we can swap the operands to fix both.
13362        std::swap(LHS, RHS);
13363      case ISD::SETOGT:
13364      case ISD::SETGT:
13365      case ISD::SETGE:
13366        Opcode = X86ISD::FMAX;
13367        break;
13368      }
13369    // Check for x CC y ? y : x -- a min/max with reversed arms.
13370    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
13371               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
13372      switch (CC) {
13373      default: break;
13374      case ISD::SETOGE:
13375        // Converting this to a min would handle comparisons between positive
13376        // and negative zero incorrectly, and swapping the operands would
13377        // cause it to handle NaNs incorrectly.
13378        if (!DAG.getTarget().Options.UnsafeFPMath &&
13379            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
13380          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13381            break;
13382          std::swap(LHS, RHS);
13383        }
13384        Opcode = X86ISD::FMIN;
13385        break;
13386      case ISD::SETUGT:
13387        // Converting this to a min would handle NaNs incorrectly.
13388        if (!DAG.getTarget().Options.UnsafeFPMath &&
13389            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
13390          break;
13391        Opcode = X86ISD::FMIN;
13392        break;
13393      case ISD::SETUGE:
13394        // Converting this to a min would handle both negative zeros and NaNs
13395        // incorrectly, but we can swap the operands to fix both.
13396        std::swap(LHS, RHS);
13397      case ISD::SETOGT:
13398      case ISD::SETGT:
13399      case ISD::SETGE:
13400        Opcode = X86ISD::FMIN;
13401        break;
13402
13403      case ISD::SETULT:
13404        // Converting this to a max would handle NaNs incorrectly.
13405        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13406          break;
13407        Opcode = X86ISD::FMAX;
13408        break;
13409      case ISD::SETOLE:
13410        // Converting this to a max would handle comparisons between positive
13411        // and negative zero incorrectly, and swapping the operands would
13412        // cause it to handle NaNs incorrectly.
13413        if (!DAG.getTarget().Options.UnsafeFPMath &&
13414            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
13415          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13416            break;
13417          std::swap(LHS, RHS);
13418        }
13419        Opcode = X86ISD::FMAX;
13420        break;
13421      case ISD::SETULE:
13422        // Converting this to a max would handle both negative zeros and NaNs
13423        // incorrectly, but we can swap the operands to fix both.
13424        std::swap(LHS, RHS);
13425      case ISD::SETOLT:
13426      case ISD::SETLT:
13427      case ISD::SETLE:
13428        Opcode = X86ISD::FMAX;
13429        break;
13430      }
13431    }
13432
13433    if (Opcode)
13434      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
13435  }
13436
13437  // If this is a select between two integer constants, try to do some
13438  // optimizations.
13439  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
13440    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
13441      // Don't do this for crazy integer types.
13442      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
13443        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
13444        // so that TrueC (the true value) is larger than FalseC.
13445        bool NeedsCondInvert = false;
13446
13447        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
13448            // Efficiently invertible.
13449            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
13450             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
13451              isa<ConstantSDNode>(Cond.getOperand(1))))) {
13452          NeedsCondInvert = true;
13453          std::swap(TrueC, FalseC);
13454        }
13455
13456        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
13457        if (FalseC->getAPIntValue() == 0 &&
13458            TrueC->getAPIntValue().isPowerOf2()) {
13459          if (NeedsCondInvert) // Invert the condition if needed.
13460            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13461                               DAG.getConstant(1, Cond.getValueType()));
13462
13463          // Zero extend the condition if needed.
13464          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
13465
13466          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13467          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
13468                             DAG.getConstant(ShAmt, MVT::i8));
13469        }
13470
13471        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
13472        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13473          if (NeedsCondInvert) // Invert the condition if needed.
13474            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13475                               DAG.getConstant(1, Cond.getValueType()));
13476
13477          // Zero extend the condition if needed.
13478          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13479                             FalseC->getValueType(0), Cond);
13480          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13481                             SDValue(FalseC, 0));
13482        }
13483
13484        // Optimize cases that will turn into an LEA instruction.  This requires
13485        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13486        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13487          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13488          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13489
13490          bool isFastMultiplier = false;
13491          if (Diff < 10) {
13492            switch ((unsigned char)Diff) {
13493              default: break;
13494              case 1:  // result = add base, cond
13495              case 2:  // result = lea base(    , cond*2)
13496              case 3:  // result = lea base(cond, cond*2)
13497              case 4:  // result = lea base(    , cond*4)
13498              case 5:  // result = lea base(cond, cond*4)
13499              case 8:  // result = lea base(    , cond*8)
13500              case 9:  // result = lea base(cond, cond*8)
13501                isFastMultiplier = true;
13502                break;
13503            }
13504          }
13505
13506          if (isFastMultiplier) {
13507            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13508            if (NeedsCondInvert) // Invert the condition if needed.
13509              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13510                                 DAG.getConstant(1, Cond.getValueType()));
13511
13512            // Zero extend the condition if needed.
13513            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13514                               Cond);
13515            // Scale the condition by the difference.
13516            if (Diff != 1)
13517              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13518                                 DAG.getConstant(Diff, Cond.getValueType()));
13519
13520            // Add the base if non-zero.
13521            if (FalseC->getAPIntValue() != 0)
13522              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13523                                 SDValue(FalseC, 0));
13524            return Cond;
13525          }
13526        }
13527      }
13528  }
13529
13530  // Canonicalize max and min:
13531  // (x > y) ? x : y -> (x >= y) ? x : y
13532  // (x < y) ? x : y -> (x <= y) ? x : y
13533  // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
13534  // the need for an extra compare
13535  // against zero. e.g.
13536  // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
13537  // subl   %esi, %edi
13538  // testl  %edi, %edi
13539  // movl   $0, %eax
13540  // cmovgl %edi, %eax
13541  // =>
13542  // xorl   %eax, %eax
13543  // subl   %esi, $edi
13544  // cmovsl %eax, %edi
13545  if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
13546      DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
13547      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
13548    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13549    switch (CC) {
13550    default: break;
13551    case ISD::SETLT:
13552    case ISD::SETGT: {
13553      ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
13554      Cond = DAG.getSetCC(Cond.getDebugLoc(), Cond.getValueType(),
13555                          Cond.getOperand(0), Cond.getOperand(1), NewCC);
13556      return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
13557    }
13558    }
13559  }
13560
13561  // If we know that this node is legal then we know that it is going to be
13562  // matched by one of the SSE/AVX BLEND instructions. These instructions only
13563  // depend on the highest bit in each word. Try to use SimplifyDemandedBits
13564  // to simplify previous instructions.
13565  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13566  if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
13567      !DCI.isBeforeLegalize() &&
13568      TLI.isOperationLegal(ISD::VSELECT, VT)) {
13569    unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
13570    assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
13571    APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
13572
13573    APInt KnownZero, KnownOne;
13574    TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
13575                                          DCI.isBeforeLegalizeOps());
13576    if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
13577        TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO))
13578      DCI.CommitTargetLoweringOpt(TLO);
13579  }
13580
13581  return SDValue();
13582}
13583
13584/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
13585static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
13586                                  TargetLowering::DAGCombinerInfo &DCI) {
13587  DebugLoc DL = N->getDebugLoc();
13588
13589  // If the flag operand isn't dead, don't touch this CMOV.
13590  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
13591    return SDValue();
13592
13593  SDValue FalseOp = N->getOperand(0);
13594  SDValue TrueOp = N->getOperand(1);
13595  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
13596  SDValue Cond = N->getOperand(3);
13597  if (CC == X86::COND_E || CC == X86::COND_NE) {
13598    switch (Cond.getOpcode()) {
13599    default: break;
13600    case X86ISD::BSR:
13601    case X86ISD::BSF:
13602      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
13603      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
13604        return (CC == X86::COND_E) ? FalseOp : TrueOp;
13605    }
13606  }
13607
13608  // If this is a select between two integer constants, try to do some
13609  // optimizations.  Note that the operands are ordered the opposite of SELECT
13610  // operands.
13611  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
13612    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
13613      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
13614      // larger than FalseC (the false value).
13615      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
13616        CC = X86::GetOppositeBranchCondition(CC);
13617        std::swap(TrueC, FalseC);
13618      }
13619
13620      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
13621      // This is efficient for any integer data type (including i8/i16) and
13622      // shift amount.
13623      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
13624        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13625                           DAG.getConstant(CC, MVT::i8), Cond);
13626
13627        // Zero extend the condition if needed.
13628        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
13629
13630        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13631        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
13632                           DAG.getConstant(ShAmt, MVT::i8));
13633        if (N->getNumValues() == 2)  // Dead flag value?
13634          return DCI.CombineTo(N, Cond, SDValue());
13635        return Cond;
13636      }
13637
13638      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
13639      // for any integer data type, including i8/i16.
13640      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13641        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13642                           DAG.getConstant(CC, MVT::i8), Cond);
13643
13644        // Zero extend the condition if needed.
13645        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13646                           FalseC->getValueType(0), Cond);
13647        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13648                           SDValue(FalseC, 0));
13649
13650        if (N->getNumValues() == 2)  // Dead flag value?
13651          return DCI.CombineTo(N, Cond, SDValue());
13652        return Cond;
13653      }
13654
13655      // Optimize cases that will turn into an LEA instruction.  This requires
13656      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13657      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13658        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13659        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13660
13661        bool isFastMultiplier = false;
13662        if (Diff < 10) {
13663          switch ((unsigned char)Diff) {
13664          default: break;
13665          case 1:  // result = add base, cond
13666          case 2:  // result = lea base(    , cond*2)
13667          case 3:  // result = lea base(cond, cond*2)
13668          case 4:  // result = lea base(    , cond*4)
13669          case 5:  // result = lea base(cond, cond*4)
13670          case 8:  // result = lea base(    , cond*8)
13671          case 9:  // result = lea base(cond, cond*8)
13672            isFastMultiplier = true;
13673            break;
13674          }
13675        }
13676
13677        if (isFastMultiplier) {
13678          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13679          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13680                             DAG.getConstant(CC, MVT::i8), Cond);
13681          // Zero extend the condition if needed.
13682          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13683                             Cond);
13684          // Scale the condition by the difference.
13685          if (Diff != 1)
13686            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13687                               DAG.getConstant(Diff, Cond.getValueType()));
13688
13689          // Add the base if non-zero.
13690          if (FalseC->getAPIntValue() != 0)
13691            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13692                               SDValue(FalseC, 0));
13693          if (N->getNumValues() == 2)  // Dead flag value?
13694            return DCI.CombineTo(N, Cond, SDValue());
13695          return Cond;
13696        }
13697      }
13698    }
13699  }
13700  return SDValue();
13701}
13702
13703
13704/// PerformMulCombine - Optimize a single multiply with constant into two
13705/// in order to implement it with two cheaper instructions, e.g.
13706/// LEA + SHL, LEA + LEA.
13707static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
13708                                 TargetLowering::DAGCombinerInfo &DCI) {
13709  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
13710    return SDValue();
13711
13712  EVT VT = N->getValueType(0);
13713  if (VT != MVT::i64)
13714    return SDValue();
13715
13716  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
13717  if (!C)
13718    return SDValue();
13719  uint64_t MulAmt = C->getZExtValue();
13720  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
13721    return SDValue();
13722
13723  uint64_t MulAmt1 = 0;
13724  uint64_t MulAmt2 = 0;
13725  if ((MulAmt % 9) == 0) {
13726    MulAmt1 = 9;
13727    MulAmt2 = MulAmt / 9;
13728  } else if ((MulAmt % 5) == 0) {
13729    MulAmt1 = 5;
13730    MulAmt2 = MulAmt / 5;
13731  } else if ((MulAmt % 3) == 0) {
13732    MulAmt1 = 3;
13733    MulAmt2 = MulAmt / 3;
13734  }
13735  if (MulAmt2 &&
13736      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
13737    DebugLoc DL = N->getDebugLoc();
13738
13739    if (isPowerOf2_64(MulAmt2) &&
13740        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
13741      // If second multiplifer is pow2, issue it first. We want the multiply by
13742      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
13743      // is an add.
13744      std::swap(MulAmt1, MulAmt2);
13745
13746    SDValue NewMul;
13747    if (isPowerOf2_64(MulAmt1))
13748      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
13749                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
13750    else
13751      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
13752                           DAG.getConstant(MulAmt1, VT));
13753
13754    if (isPowerOf2_64(MulAmt2))
13755      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
13756                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
13757    else
13758      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
13759                           DAG.getConstant(MulAmt2, VT));
13760
13761    // Do not add new nodes to DAG combiner worklist.
13762    DCI.CombineTo(N, NewMul, false);
13763  }
13764  return SDValue();
13765}
13766
13767static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
13768  SDValue N0 = N->getOperand(0);
13769  SDValue N1 = N->getOperand(1);
13770  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
13771  EVT VT = N0.getValueType();
13772
13773  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
13774  // since the result of setcc_c is all zero's or all ones.
13775  if (VT.isInteger() && !VT.isVector() &&
13776      N1C && N0.getOpcode() == ISD::AND &&
13777      N0.getOperand(1).getOpcode() == ISD::Constant) {
13778    SDValue N00 = N0.getOperand(0);
13779    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
13780        ((N00.getOpcode() == ISD::ANY_EXTEND ||
13781          N00.getOpcode() == ISD::ZERO_EXTEND) &&
13782         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
13783      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
13784      APInt ShAmt = N1C->getAPIntValue();
13785      Mask = Mask.shl(ShAmt);
13786      if (Mask != 0)
13787        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
13788                           N00, DAG.getConstant(Mask, VT));
13789    }
13790  }
13791
13792
13793  // Hardware support for vector shifts is sparse which makes us scalarize the
13794  // vector operations in many cases. Also, on sandybridge ADD is faster than
13795  // shl.
13796  // (shl V, 1) -> add V,V
13797  if (isSplatVector(N1.getNode())) {
13798    assert(N0.getValueType().isVector() && "Invalid vector shift type");
13799    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
13800    // We shift all of the values by one. In many cases we do not have
13801    // hardware support for this operation. This is better expressed as an ADD
13802    // of two values.
13803    if (N1C && (1 == N1C->getZExtValue())) {
13804      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0);
13805    }
13806  }
13807
13808  return SDValue();
13809}
13810
13811/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
13812///                       when possible.
13813static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
13814                                   TargetLowering::DAGCombinerInfo &DCI,
13815                                   const X86Subtarget *Subtarget) {
13816  EVT VT = N->getValueType(0);
13817  if (N->getOpcode() == ISD::SHL) {
13818    SDValue V = PerformSHLCombine(N, DAG);
13819    if (V.getNode()) return V;
13820  }
13821
13822  // On X86 with SSE2 support, we can transform this to a vector shift if
13823  // all elements are shifted by the same amount.  We can't do this in legalize
13824  // because the a constant vector is typically transformed to a constant pool
13825  // so we have no knowledge of the shift amount.
13826  if (!Subtarget->hasSSE2())
13827    return SDValue();
13828
13829  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
13830      (!Subtarget->hasAVX2() ||
13831       (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
13832    return SDValue();
13833
13834  SDValue ShAmtOp = N->getOperand(1);
13835  EVT EltVT = VT.getVectorElementType();
13836  DebugLoc DL = N->getDebugLoc();
13837  SDValue BaseShAmt = SDValue();
13838  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
13839    unsigned NumElts = VT.getVectorNumElements();
13840    unsigned i = 0;
13841    for (; i != NumElts; ++i) {
13842      SDValue Arg = ShAmtOp.getOperand(i);
13843      if (Arg.getOpcode() == ISD::UNDEF) continue;
13844      BaseShAmt = Arg;
13845      break;
13846    }
13847    // Handle the case where the build_vector is all undef
13848    // FIXME: Should DAG allow this?
13849    if (i == NumElts)
13850      return SDValue();
13851
13852    for (; i != NumElts; ++i) {
13853      SDValue Arg = ShAmtOp.getOperand(i);
13854      if (Arg.getOpcode() == ISD::UNDEF) continue;
13855      if (Arg != BaseShAmt) {
13856        return SDValue();
13857      }
13858    }
13859  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
13860             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
13861    SDValue InVec = ShAmtOp.getOperand(0);
13862    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
13863      unsigned NumElts = InVec.getValueType().getVectorNumElements();
13864      unsigned i = 0;
13865      for (; i != NumElts; ++i) {
13866        SDValue Arg = InVec.getOperand(i);
13867        if (Arg.getOpcode() == ISD::UNDEF) continue;
13868        BaseShAmt = Arg;
13869        break;
13870      }
13871    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
13872       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
13873         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
13874         if (C->getZExtValue() == SplatIdx)
13875           BaseShAmt = InVec.getOperand(1);
13876       }
13877    }
13878    if (BaseShAmt.getNode() == 0) {
13879      // Don't create instructions with illegal types after legalize
13880      // types has run.
13881      if (!DAG.getTargetLoweringInfo().isTypeLegal(EltVT) &&
13882          !DCI.isBeforeLegalize())
13883        return SDValue();
13884
13885      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
13886                              DAG.getIntPtrConstant(0));
13887    }
13888  } else
13889    return SDValue();
13890
13891  // The shift amount is an i32.
13892  if (EltVT.bitsGT(MVT::i32))
13893    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
13894  else if (EltVT.bitsLT(MVT::i32))
13895    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
13896
13897  // The shift amount is identical so we can do a vector shift.
13898  SDValue  ValOp = N->getOperand(0);
13899  switch (N->getOpcode()) {
13900  default:
13901    llvm_unreachable("Unknown shift opcode!");
13902  case ISD::SHL:
13903    switch (VT.getSimpleVT().SimpleTy) {
13904    default: return SDValue();
13905    case MVT::v2i64:
13906    case MVT::v4i32:
13907    case MVT::v8i16:
13908    case MVT::v4i64:
13909    case MVT::v8i32:
13910    case MVT::v16i16:
13911      return getTargetVShiftNode(X86ISD::VSHLI, DL, VT, ValOp, BaseShAmt, DAG);
13912    }
13913  case ISD::SRA:
13914    switch (VT.getSimpleVT().SimpleTy) {
13915    default: return SDValue();
13916    case MVT::v4i32:
13917    case MVT::v8i16:
13918    case MVT::v8i32:
13919    case MVT::v16i16:
13920      return getTargetVShiftNode(X86ISD::VSRAI, DL, VT, ValOp, BaseShAmt, DAG);
13921    }
13922  case ISD::SRL:
13923    switch (VT.getSimpleVT().SimpleTy) {
13924    default: return SDValue();
13925    case MVT::v2i64:
13926    case MVT::v4i32:
13927    case MVT::v8i16:
13928    case MVT::v4i64:
13929    case MVT::v8i32:
13930    case MVT::v16i16:
13931      return getTargetVShiftNode(X86ISD::VSRLI, DL, VT, ValOp, BaseShAmt, DAG);
13932    }
13933  }
13934}
13935
13936
13937// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
13938// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
13939// and friends.  Likewise for OR -> CMPNEQSS.
13940static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
13941                            TargetLowering::DAGCombinerInfo &DCI,
13942                            const X86Subtarget *Subtarget) {
13943  unsigned opcode;
13944
13945  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
13946  // we're requiring SSE2 for both.
13947  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
13948    SDValue N0 = N->getOperand(0);
13949    SDValue N1 = N->getOperand(1);
13950    SDValue CMP0 = N0->getOperand(1);
13951    SDValue CMP1 = N1->getOperand(1);
13952    DebugLoc DL = N->getDebugLoc();
13953
13954    // The SETCCs should both refer to the same CMP.
13955    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
13956      return SDValue();
13957
13958    SDValue CMP00 = CMP0->getOperand(0);
13959    SDValue CMP01 = CMP0->getOperand(1);
13960    EVT     VT    = CMP00.getValueType();
13961
13962    if (VT == MVT::f32 || VT == MVT::f64) {
13963      bool ExpectingFlags = false;
13964      // Check for any users that want flags:
13965      for (SDNode::use_iterator UI = N->use_begin(),
13966             UE = N->use_end();
13967           !ExpectingFlags && UI != UE; ++UI)
13968        switch (UI->getOpcode()) {
13969        default:
13970        case ISD::BR_CC:
13971        case ISD::BRCOND:
13972        case ISD::SELECT:
13973          ExpectingFlags = true;
13974          break;
13975        case ISD::CopyToReg:
13976        case ISD::SIGN_EXTEND:
13977        case ISD::ZERO_EXTEND:
13978        case ISD::ANY_EXTEND:
13979          break;
13980        }
13981
13982      if (!ExpectingFlags) {
13983        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
13984        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
13985
13986        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
13987          X86::CondCode tmp = cc0;
13988          cc0 = cc1;
13989          cc1 = tmp;
13990        }
13991
13992        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
13993            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
13994          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
13995          X86ISD::NodeType NTOperator = is64BitFP ?
13996            X86ISD::FSETCCsd : X86ISD::FSETCCss;
13997          // FIXME: need symbolic constants for these magic numbers.
13998          // See X86ATTInstPrinter.cpp:printSSECC().
13999          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
14000          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
14001                                              DAG.getConstant(x86cc, MVT::i8));
14002          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
14003                                              OnesOrZeroesF);
14004          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
14005                                      DAG.getConstant(1, MVT::i32));
14006          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
14007          return OneBitOfTruth;
14008        }
14009      }
14010    }
14011  }
14012  return SDValue();
14013}
14014
14015/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
14016/// so it can be folded inside ANDNP.
14017static bool CanFoldXORWithAllOnes(const SDNode *N) {
14018  EVT VT = N->getValueType(0);
14019
14020  // Match direct AllOnes for 128 and 256-bit vectors
14021  if (ISD::isBuildVectorAllOnes(N))
14022    return true;
14023
14024  // Look through a bit convert.
14025  if (N->getOpcode() == ISD::BITCAST)
14026    N = N->getOperand(0).getNode();
14027
14028  // Sometimes the operand may come from a insert_subvector building a 256-bit
14029  // allones vector
14030  if (VT.getSizeInBits() == 256 &&
14031      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
14032    SDValue V1 = N->getOperand(0);
14033    SDValue V2 = N->getOperand(1);
14034
14035    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
14036        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
14037        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
14038        ISD::isBuildVectorAllOnes(V2.getNode()))
14039      return true;
14040  }
14041
14042  return false;
14043}
14044
14045static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
14046                                 TargetLowering::DAGCombinerInfo &DCI,
14047                                 const X86Subtarget *Subtarget) {
14048  if (DCI.isBeforeLegalizeOps())
14049    return SDValue();
14050
14051  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
14052  if (R.getNode())
14053    return R;
14054
14055  EVT VT = N->getValueType(0);
14056
14057  // Create ANDN, BLSI, and BLSR instructions
14058  // BLSI is X & (-X)
14059  // BLSR is X & (X-1)
14060  if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
14061    SDValue N0 = N->getOperand(0);
14062    SDValue N1 = N->getOperand(1);
14063    DebugLoc DL = N->getDebugLoc();
14064
14065    // Check LHS for not
14066    if (N0.getOpcode() == ISD::XOR && isAllOnes(N0.getOperand(1)))
14067      return DAG.getNode(X86ISD::ANDN, DL, VT, N0.getOperand(0), N1);
14068    // Check RHS for not
14069    if (N1.getOpcode() == ISD::XOR && isAllOnes(N1.getOperand(1)))
14070      return DAG.getNode(X86ISD::ANDN, DL, VT, N1.getOperand(0), N0);
14071
14072    // Check LHS for neg
14073    if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
14074        isZero(N0.getOperand(0)))
14075      return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
14076
14077    // Check RHS for neg
14078    if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
14079        isZero(N1.getOperand(0)))
14080      return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
14081
14082    // Check LHS for X-1
14083    if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
14084        isAllOnes(N0.getOperand(1)))
14085      return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
14086
14087    // Check RHS for X-1
14088    if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
14089        isAllOnes(N1.getOperand(1)))
14090      return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
14091
14092    return SDValue();
14093  }
14094
14095  // Want to form ANDNP nodes:
14096  // 1) In the hopes of then easily combining them with OR and AND nodes
14097  //    to form PBLEND/PSIGN.
14098  // 2) To match ANDN packed intrinsics
14099  if (VT != MVT::v2i64 && VT != MVT::v4i64)
14100    return SDValue();
14101
14102  SDValue N0 = N->getOperand(0);
14103  SDValue N1 = N->getOperand(1);
14104  DebugLoc DL = N->getDebugLoc();
14105
14106  // Check LHS for vnot
14107  if (N0.getOpcode() == ISD::XOR &&
14108      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
14109      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
14110    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
14111
14112  // Check RHS for vnot
14113  if (N1.getOpcode() == ISD::XOR &&
14114      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
14115      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
14116    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
14117
14118  return SDValue();
14119}
14120
14121static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
14122                                TargetLowering::DAGCombinerInfo &DCI,
14123                                const X86Subtarget *Subtarget) {
14124  if (DCI.isBeforeLegalizeOps())
14125    return SDValue();
14126
14127  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
14128  if (R.getNode())
14129    return R;
14130
14131  EVT VT = N->getValueType(0);
14132
14133  SDValue N0 = N->getOperand(0);
14134  SDValue N1 = N->getOperand(1);
14135
14136  // look for psign/blend
14137  if (VT == MVT::v2i64 || VT == MVT::v4i64) {
14138    if (!Subtarget->hasSSSE3() ||
14139        (VT == MVT::v4i64 && !Subtarget->hasAVX2()))
14140      return SDValue();
14141
14142    // Canonicalize pandn to RHS
14143    if (N0.getOpcode() == X86ISD::ANDNP)
14144      std::swap(N0, N1);
14145    // or (and (m, y), (pandn m, x))
14146    if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
14147      SDValue Mask = N1.getOperand(0);
14148      SDValue X    = N1.getOperand(1);
14149      SDValue Y;
14150      if (N0.getOperand(0) == Mask)
14151        Y = N0.getOperand(1);
14152      if (N0.getOperand(1) == Mask)
14153        Y = N0.getOperand(0);
14154
14155      // Check to see if the mask appeared in both the AND and ANDNP and
14156      if (!Y.getNode())
14157        return SDValue();
14158
14159      // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
14160      // Look through mask bitcast.
14161      if (Mask.getOpcode() == ISD::BITCAST)
14162        Mask = Mask.getOperand(0);
14163      if (X.getOpcode() == ISD::BITCAST)
14164        X = X.getOperand(0);
14165      if (Y.getOpcode() == ISD::BITCAST)
14166        Y = Y.getOperand(0);
14167
14168      EVT MaskVT = Mask.getValueType();
14169
14170      // Validate that the Mask operand is a vector sra node.
14171      // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
14172      // there is no psrai.b
14173      if (Mask.getOpcode() != X86ISD::VSRAI)
14174        return SDValue();
14175
14176      // Check that the SRA is all signbits.
14177      SDValue SraC = Mask.getOperand(1);
14178      unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
14179      unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
14180      if ((SraAmt + 1) != EltBits)
14181        return SDValue();
14182
14183      DebugLoc DL = N->getDebugLoc();
14184
14185      // Now we know we at least have a plendvb with the mask val.  See if
14186      // we can form a psignb/w/d.
14187      // psign = x.type == y.type == mask.type && y = sub(0, x);
14188      if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
14189          ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
14190          X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
14191        assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
14192               "Unsupported VT for PSIGN");
14193        Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0));
14194        return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
14195      }
14196      // PBLENDVB only available on SSE 4.1
14197      if (!Subtarget->hasSSE41())
14198        return SDValue();
14199
14200      EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
14201
14202      X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
14203      Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
14204      Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
14205      Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
14206      return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
14207    }
14208  }
14209
14210  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
14211    return SDValue();
14212
14213  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
14214  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
14215    std::swap(N0, N1);
14216  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
14217    return SDValue();
14218  if (!N0.hasOneUse() || !N1.hasOneUse())
14219    return SDValue();
14220
14221  SDValue ShAmt0 = N0.getOperand(1);
14222  if (ShAmt0.getValueType() != MVT::i8)
14223    return SDValue();
14224  SDValue ShAmt1 = N1.getOperand(1);
14225  if (ShAmt1.getValueType() != MVT::i8)
14226    return SDValue();
14227  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
14228    ShAmt0 = ShAmt0.getOperand(0);
14229  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
14230    ShAmt1 = ShAmt1.getOperand(0);
14231
14232  DebugLoc DL = N->getDebugLoc();
14233  unsigned Opc = X86ISD::SHLD;
14234  SDValue Op0 = N0.getOperand(0);
14235  SDValue Op1 = N1.getOperand(0);
14236  if (ShAmt0.getOpcode() == ISD::SUB) {
14237    Opc = X86ISD::SHRD;
14238    std::swap(Op0, Op1);
14239    std::swap(ShAmt0, ShAmt1);
14240  }
14241
14242  unsigned Bits = VT.getSizeInBits();
14243  if (ShAmt1.getOpcode() == ISD::SUB) {
14244    SDValue Sum = ShAmt1.getOperand(0);
14245    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
14246      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
14247      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
14248        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
14249      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
14250        return DAG.getNode(Opc, DL, VT,
14251                           Op0, Op1,
14252                           DAG.getNode(ISD::TRUNCATE, DL,
14253                                       MVT::i8, ShAmt0));
14254    }
14255  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
14256    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
14257    if (ShAmt0C &&
14258        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
14259      return DAG.getNode(Opc, DL, VT,
14260                         N0.getOperand(0), N1.getOperand(0),
14261                         DAG.getNode(ISD::TRUNCATE, DL,
14262                                       MVT::i8, ShAmt0));
14263  }
14264
14265  return SDValue();
14266}
14267
14268// PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
14269static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
14270                                 TargetLowering::DAGCombinerInfo &DCI,
14271                                 const X86Subtarget *Subtarget) {
14272  if (DCI.isBeforeLegalizeOps())
14273    return SDValue();
14274
14275  EVT VT = N->getValueType(0);
14276
14277  if (VT != MVT::i32 && VT != MVT::i64)
14278    return SDValue();
14279
14280  assert(Subtarget->hasBMI() && "Creating BLSMSK requires BMI instructions");
14281
14282  // Create BLSMSK instructions by finding X ^ (X-1)
14283  SDValue N0 = N->getOperand(0);
14284  SDValue N1 = N->getOperand(1);
14285  DebugLoc DL = N->getDebugLoc();
14286
14287  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
14288      isAllOnes(N0.getOperand(1)))
14289    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
14290
14291  if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
14292      isAllOnes(N1.getOperand(1)))
14293    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
14294
14295  return SDValue();
14296}
14297
14298/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
14299static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
14300                                   const X86Subtarget *Subtarget) {
14301  LoadSDNode *Ld = cast<LoadSDNode>(N);
14302  EVT RegVT = Ld->getValueType(0);
14303  EVT MemVT = Ld->getMemoryVT();
14304  DebugLoc dl = Ld->getDebugLoc();
14305  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14306
14307  ISD::LoadExtType Ext = Ld->getExtensionType();
14308
14309  // If this is a vector EXT Load then attempt to optimize it using a
14310  // shuffle. We need SSE4 for the shuffles.
14311  // TODO: It is possible to support ZExt by zeroing the undef values
14312  // during the shuffle phase or after the shuffle.
14313  if (RegVT.isVector() && RegVT.isInteger() &&
14314      Ext == ISD::EXTLOAD && Subtarget->hasSSE41()) {
14315    assert(MemVT != RegVT && "Cannot extend to the same type");
14316    assert(MemVT.isVector() && "Must load a vector from memory");
14317
14318    unsigned NumElems = RegVT.getVectorNumElements();
14319    unsigned RegSz = RegVT.getSizeInBits();
14320    unsigned MemSz = MemVT.getSizeInBits();
14321    assert(RegSz > MemSz && "Register size must be greater than the mem size");
14322    // All sizes must be a power of two
14323    if (!isPowerOf2_32(RegSz * MemSz * NumElems)) return SDValue();
14324
14325    // Attempt to load the original value using a single load op.
14326    // Find a scalar type which is equal to the loaded word size.
14327    MVT SclrLoadTy = MVT::i8;
14328    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14329         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14330      MVT Tp = (MVT::SimpleValueType)tp;
14331      if (TLI.isTypeLegal(Tp) &&  Tp.getSizeInBits() == MemSz) {
14332        SclrLoadTy = Tp;
14333        break;
14334      }
14335    }
14336
14337    // Proceed if a load word is found.
14338    if (SclrLoadTy.getSizeInBits() != MemSz) return SDValue();
14339
14340    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
14341      RegSz/SclrLoadTy.getSizeInBits());
14342
14343    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
14344                                  RegSz/MemVT.getScalarType().getSizeInBits());
14345    // Can't shuffle using an illegal type.
14346    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
14347
14348    // Perform a single load.
14349    SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
14350                                  Ld->getBasePtr(),
14351                                  Ld->getPointerInfo(), Ld->isVolatile(),
14352                                  Ld->isNonTemporal(), Ld->isInvariant(),
14353                                  Ld->getAlignment());
14354
14355    // Insert the word loaded into a vector.
14356    SDValue ScalarInVector = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
14357      LoadUnitVecVT, ScalarLoad);
14358
14359    // Bitcast the loaded value to a vector of the original element type, in
14360    // the size of the target vector type.
14361    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT,
14362                                    ScalarInVector);
14363    unsigned SizeRatio = RegSz/MemSz;
14364
14365    // Redistribute the loaded elements into the different locations.
14366    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14367    for (unsigned i = 0; i < NumElems; i++) ShuffleVec[i*SizeRatio] = i;
14368
14369    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
14370                                DAG.getUNDEF(SlicedVec.getValueType()),
14371                                ShuffleVec.data());
14372
14373    // Bitcast to the requested type.
14374    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
14375    // Replace the original load with the new sequence
14376    // and return the new chain.
14377    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Shuff);
14378    return SDValue(ScalarLoad.getNode(), 1);
14379  }
14380
14381  return SDValue();
14382}
14383
14384/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
14385static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
14386                                   const X86Subtarget *Subtarget) {
14387  StoreSDNode *St = cast<StoreSDNode>(N);
14388  EVT VT = St->getValue().getValueType();
14389  EVT StVT = St->getMemoryVT();
14390  DebugLoc dl = St->getDebugLoc();
14391  SDValue StoredVal = St->getOperand(1);
14392  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14393
14394  // If we are saving a concatenation of two XMM registers, perform two stores.
14395  // This is better in Sandy Bridge cause one 256-bit mem op is done via two
14396  // 128-bit ones. If in the future the cost becomes only one memory access the
14397  // first version would be better.
14398  if (VT.getSizeInBits() == 256 &&
14399    StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
14400    StoredVal.getNumOperands() == 2) {
14401
14402    SDValue Value0 = StoredVal.getOperand(0);
14403    SDValue Value1 = StoredVal.getOperand(1);
14404
14405    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
14406    SDValue Ptr0 = St->getBasePtr();
14407    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
14408
14409    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
14410                                St->getPointerInfo(), St->isVolatile(),
14411                                St->isNonTemporal(), St->getAlignment());
14412    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
14413                                St->getPointerInfo(), St->isVolatile(),
14414                                St->isNonTemporal(), St->getAlignment());
14415    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
14416  }
14417
14418  // Optimize trunc store (of multiple scalars) to shuffle and store.
14419  // First, pack all of the elements in one place. Next, store to memory
14420  // in fewer chunks.
14421  if (St->isTruncatingStore() && VT.isVector()) {
14422    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14423    unsigned NumElems = VT.getVectorNumElements();
14424    assert(StVT != VT && "Cannot truncate to the same type");
14425    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
14426    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
14427
14428    // From, To sizes and ElemCount must be pow of two
14429    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
14430    // We are going to use the original vector elt for storing.
14431    // Accumulated smaller vector elements must be a multiple of the store size.
14432    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
14433
14434    unsigned SizeRatio  = FromSz / ToSz;
14435
14436    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
14437
14438    // Create a type on which we perform the shuffle
14439    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
14440            StVT.getScalarType(), NumElems*SizeRatio);
14441
14442    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
14443
14444    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
14445    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14446    for (unsigned i = 0; i < NumElems; i++ ) ShuffleVec[i] = i * SizeRatio;
14447
14448    // Can't shuffle using an illegal type
14449    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
14450
14451    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
14452                                DAG.getUNDEF(WideVec.getValueType()),
14453                                ShuffleVec.data());
14454    // At this point all of the data is stored at the bottom of the
14455    // register. We now need to save it to mem.
14456
14457    // Find the largest store unit
14458    MVT StoreType = MVT::i8;
14459    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14460         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14461      MVT Tp = (MVT::SimpleValueType)tp;
14462      if (TLI.isTypeLegal(Tp) && StoreType.getSizeInBits() < NumElems * ToSz)
14463        StoreType = Tp;
14464    }
14465
14466    // Bitcast the original vector into a vector of store-size units
14467    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
14468            StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
14469    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
14470    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
14471    SmallVector<SDValue, 8> Chains;
14472    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
14473                                        TLI.getPointerTy());
14474    SDValue Ptr = St->getBasePtr();
14475
14476    // Perform one or more big stores into memory.
14477    for (unsigned i = 0; i < (ToSz*NumElems)/StoreType.getSizeInBits() ; i++) {
14478      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
14479                                   StoreType, ShuffWide,
14480                                   DAG.getIntPtrConstant(i));
14481      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
14482                                St->getPointerInfo(), St->isVolatile(),
14483                                St->isNonTemporal(), St->getAlignment());
14484      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14485      Chains.push_back(Ch);
14486    }
14487
14488    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
14489                               Chains.size());
14490  }
14491
14492
14493  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
14494  // the FP state in cases where an emms may be missing.
14495  // A preferable solution to the general problem is to figure out the right
14496  // places to insert EMMS.  This qualifies as a quick hack.
14497
14498  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
14499  if (VT.getSizeInBits() != 64)
14500    return SDValue();
14501
14502  const Function *F = DAG.getMachineFunction().getFunction();
14503  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
14504  bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
14505                     && Subtarget->hasSSE2();
14506  if ((VT.isVector() ||
14507       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
14508      isa<LoadSDNode>(St->getValue()) &&
14509      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
14510      St->getChain().hasOneUse() && !St->isVolatile()) {
14511    SDNode* LdVal = St->getValue().getNode();
14512    LoadSDNode *Ld = 0;
14513    int TokenFactorIndex = -1;
14514    SmallVector<SDValue, 8> Ops;
14515    SDNode* ChainVal = St->getChain().getNode();
14516    // Must be a store of a load.  We currently handle two cases:  the load
14517    // is a direct child, and it's under an intervening TokenFactor.  It is
14518    // possible to dig deeper under nested TokenFactors.
14519    if (ChainVal == LdVal)
14520      Ld = cast<LoadSDNode>(St->getChain());
14521    else if (St->getValue().hasOneUse() &&
14522             ChainVal->getOpcode() == ISD::TokenFactor) {
14523      for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) {
14524        if (ChainVal->getOperand(i).getNode() == LdVal) {
14525          TokenFactorIndex = i;
14526          Ld = cast<LoadSDNode>(St->getValue());
14527        } else
14528          Ops.push_back(ChainVal->getOperand(i));
14529      }
14530    }
14531
14532    if (!Ld || !ISD::isNormalLoad(Ld))
14533      return SDValue();
14534
14535    // If this is not the MMX case, i.e. we are just turning i64 load/store
14536    // into f64 load/store, avoid the transformation if there are multiple
14537    // uses of the loaded value.
14538    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
14539      return SDValue();
14540
14541    DebugLoc LdDL = Ld->getDebugLoc();
14542    DebugLoc StDL = N->getDebugLoc();
14543    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
14544    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
14545    // pair instead.
14546    if (Subtarget->is64Bit() || F64IsLegal) {
14547      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
14548      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
14549                                  Ld->getPointerInfo(), Ld->isVolatile(),
14550                                  Ld->isNonTemporal(), Ld->isInvariant(),
14551                                  Ld->getAlignment());
14552      SDValue NewChain = NewLd.getValue(1);
14553      if (TokenFactorIndex != -1) {
14554        Ops.push_back(NewChain);
14555        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14556                               Ops.size());
14557      }
14558      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
14559                          St->getPointerInfo(),
14560                          St->isVolatile(), St->isNonTemporal(),
14561                          St->getAlignment());
14562    }
14563
14564    // Otherwise, lower to two pairs of 32-bit loads / stores.
14565    SDValue LoAddr = Ld->getBasePtr();
14566    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
14567                                 DAG.getConstant(4, MVT::i32));
14568
14569    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
14570                               Ld->getPointerInfo(),
14571                               Ld->isVolatile(), Ld->isNonTemporal(),
14572                               Ld->isInvariant(), Ld->getAlignment());
14573    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
14574                               Ld->getPointerInfo().getWithOffset(4),
14575                               Ld->isVolatile(), Ld->isNonTemporal(),
14576                               Ld->isInvariant(),
14577                               MinAlign(Ld->getAlignment(), 4));
14578
14579    SDValue NewChain = LoLd.getValue(1);
14580    if (TokenFactorIndex != -1) {
14581      Ops.push_back(LoLd);
14582      Ops.push_back(HiLd);
14583      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14584                             Ops.size());
14585    }
14586
14587    LoAddr = St->getBasePtr();
14588    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
14589                         DAG.getConstant(4, MVT::i32));
14590
14591    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
14592                                St->getPointerInfo(),
14593                                St->isVolatile(), St->isNonTemporal(),
14594                                St->getAlignment());
14595    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
14596                                St->getPointerInfo().getWithOffset(4),
14597                                St->isVolatile(),
14598                                St->isNonTemporal(),
14599                                MinAlign(St->getAlignment(), 4));
14600    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
14601  }
14602  return SDValue();
14603}
14604
14605/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
14606/// and return the operands for the horizontal operation in LHS and RHS.  A
14607/// horizontal operation performs the binary operation on successive elements
14608/// of its first operand, then on successive elements of its second operand,
14609/// returning the resulting values in a vector.  For example, if
14610///   A = < float a0, float a1, float a2, float a3 >
14611/// and
14612///   B = < float b0, float b1, float b2, float b3 >
14613/// then the result of doing a horizontal operation on A and B is
14614///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
14615/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
14616/// A horizontal-op B, for some already available A and B, and if so then LHS is
14617/// set to A, RHS to B, and the routine returns 'true'.
14618/// Note that the binary operation should have the property that if one of the
14619/// operands is UNDEF then the result is UNDEF.
14620static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
14621  // Look for the following pattern: if
14622  //   A = < float a0, float a1, float a2, float a3 >
14623  //   B = < float b0, float b1, float b2, float b3 >
14624  // and
14625  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
14626  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
14627  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
14628  // which is A horizontal-op B.
14629
14630  // At least one of the operands should be a vector shuffle.
14631  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
14632      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
14633    return false;
14634
14635  EVT VT = LHS.getValueType();
14636
14637  assert((VT.is128BitVector() || VT.is256BitVector()) &&
14638         "Unsupported vector type for horizontal add/sub");
14639
14640  // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
14641  // operate independently on 128-bit lanes.
14642  unsigned NumElts = VT.getVectorNumElements();
14643  unsigned NumLanes = VT.getSizeInBits()/128;
14644  unsigned NumLaneElts = NumElts / NumLanes;
14645  assert((NumLaneElts % 2 == 0) &&
14646         "Vector type should have an even number of elements in each lane");
14647  unsigned HalfLaneElts = NumLaneElts/2;
14648
14649  // View LHS in the form
14650  //   LHS = VECTOR_SHUFFLE A, B, LMask
14651  // If LHS is not a shuffle then pretend it is the shuffle
14652  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
14653  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
14654  // type VT.
14655  SDValue A, B;
14656  SmallVector<int, 16> LMask(NumElts);
14657  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14658    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
14659      A = LHS.getOperand(0);
14660    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
14661      B = LHS.getOperand(1);
14662    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
14663    std::copy(Mask.begin(), Mask.end(), LMask.begin());
14664  } else {
14665    if (LHS.getOpcode() != ISD::UNDEF)
14666      A = LHS;
14667    for (unsigned i = 0; i != NumElts; ++i)
14668      LMask[i] = i;
14669  }
14670
14671  // Likewise, view RHS in the form
14672  //   RHS = VECTOR_SHUFFLE C, D, RMask
14673  SDValue C, D;
14674  SmallVector<int, 16> RMask(NumElts);
14675  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14676    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
14677      C = RHS.getOperand(0);
14678    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
14679      D = RHS.getOperand(1);
14680    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
14681    std::copy(Mask.begin(), Mask.end(), RMask.begin());
14682  } else {
14683    if (RHS.getOpcode() != ISD::UNDEF)
14684      C = RHS;
14685    for (unsigned i = 0; i != NumElts; ++i)
14686      RMask[i] = i;
14687  }
14688
14689  // Check that the shuffles are both shuffling the same vectors.
14690  if (!(A == C && B == D) && !(A == D && B == C))
14691    return false;
14692
14693  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
14694  if (!A.getNode() && !B.getNode())
14695    return false;
14696
14697  // If A and B occur in reverse order in RHS, then "swap" them (which means
14698  // rewriting the mask).
14699  if (A != C)
14700    CommuteVectorShuffleMask(RMask, NumElts);
14701
14702  // At this point LHS and RHS are equivalent to
14703  //   LHS = VECTOR_SHUFFLE A, B, LMask
14704  //   RHS = VECTOR_SHUFFLE A, B, RMask
14705  // Check that the masks correspond to performing a horizontal operation.
14706  for (unsigned i = 0; i != NumElts; ++i) {
14707    int LIdx = LMask[i], RIdx = RMask[i];
14708
14709    // Ignore any UNDEF components.
14710    if (LIdx < 0 || RIdx < 0 ||
14711        (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
14712        (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
14713      continue;
14714
14715    // Check that successive elements are being operated on.  If not, this is
14716    // not a horizontal operation.
14717    unsigned Src = (i/HalfLaneElts) % 2; // each lane is split between srcs
14718    unsigned LaneStart = (i/NumLaneElts) * NumLaneElts;
14719    int Index = 2*(i%HalfLaneElts) + NumElts*Src + LaneStart;
14720    if (!(LIdx == Index && RIdx == Index + 1) &&
14721        !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
14722      return false;
14723  }
14724
14725  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
14726  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
14727  return true;
14728}
14729
14730/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
14731static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
14732                                  const X86Subtarget *Subtarget) {
14733  EVT VT = N->getValueType(0);
14734  SDValue LHS = N->getOperand(0);
14735  SDValue RHS = N->getOperand(1);
14736
14737  // Try to synthesize horizontal adds from adds of shuffles.
14738  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14739       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14740      isHorizontalBinOp(LHS, RHS, true))
14741    return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
14742  return SDValue();
14743}
14744
14745/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
14746static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
14747                                  const X86Subtarget *Subtarget) {
14748  EVT VT = N->getValueType(0);
14749  SDValue LHS = N->getOperand(0);
14750  SDValue RHS = N->getOperand(1);
14751
14752  // Try to synthesize horizontal subs from subs of shuffles.
14753  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14754       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14755      isHorizontalBinOp(LHS, RHS, false))
14756    return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
14757  return SDValue();
14758}
14759
14760/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
14761/// X86ISD::FXOR nodes.
14762static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
14763  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
14764  // F[X]OR(0.0, x) -> x
14765  // F[X]OR(x, 0.0) -> x
14766  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14767    if (C->getValueAPF().isPosZero())
14768      return N->getOperand(1);
14769  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14770    if (C->getValueAPF().isPosZero())
14771      return N->getOperand(0);
14772  return SDValue();
14773}
14774
14775/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
14776static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
14777  // FAND(0.0, x) -> 0.0
14778  // FAND(x, 0.0) -> 0.0
14779  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14780    if (C->getValueAPF().isPosZero())
14781      return N->getOperand(0);
14782  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14783    if (C->getValueAPF().isPosZero())
14784      return N->getOperand(1);
14785  return SDValue();
14786}
14787
14788static SDValue PerformBTCombine(SDNode *N,
14789                                SelectionDAG &DAG,
14790                                TargetLowering::DAGCombinerInfo &DCI) {
14791  // BT ignores high bits in the bit index operand.
14792  SDValue Op1 = N->getOperand(1);
14793  if (Op1.hasOneUse()) {
14794    unsigned BitWidth = Op1.getValueSizeInBits();
14795    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
14796    APInt KnownZero, KnownOne;
14797    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
14798                                          !DCI.isBeforeLegalizeOps());
14799    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14800    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
14801        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
14802      DCI.CommitTargetLoweringOpt(TLO);
14803  }
14804  return SDValue();
14805}
14806
14807static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
14808  SDValue Op = N->getOperand(0);
14809  if (Op.getOpcode() == ISD::BITCAST)
14810    Op = Op.getOperand(0);
14811  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
14812  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
14813      VT.getVectorElementType().getSizeInBits() ==
14814      OpVT.getVectorElementType().getSizeInBits()) {
14815    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
14816  }
14817  return SDValue();
14818}
14819
14820static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG,
14821                                  TargetLowering::DAGCombinerInfo &DCI,
14822                                  const X86Subtarget *Subtarget) {
14823  if (!DCI.isBeforeLegalizeOps())
14824    return SDValue();
14825
14826  if (!Subtarget->hasAVX())
14827    return SDValue();
14828
14829  // Optimize vectors in AVX mode
14830  // Sign extend  v8i16 to v8i32 and
14831  //              v4i32 to v4i64
14832  //
14833  // Divide input vector into two parts
14834  // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1}
14835  // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
14836  // concat the vectors to original VT
14837
14838  EVT VT = N->getValueType(0);
14839  SDValue Op = N->getOperand(0);
14840  EVT OpVT = Op.getValueType();
14841  DebugLoc dl = N->getDebugLoc();
14842
14843  if ((VT == MVT::v4i64 && OpVT == MVT::v4i32) ||
14844      (VT == MVT::v8i32 && OpVT == MVT::v8i16)) {
14845
14846    unsigned NumElems = OpVT.getVectorNumElements();
14847    SmallVector<int,8> ShufMask1(NumElems, -1);
14848    for (unsigned i = 0; i < NumElems/2; i++) ShufMask1[i] = i;
14849
14850    SDValue OpLo = DAG.getVectorShuffle(OpVT, dl, Op, DAG.getUNDEF(OpVT),
14851                                        ShufMask1.data());
14852
14853    SmallVector<int,8> ShufMask2(NumElems, -1);
14854    for (unsigned i = 0; i < NumElems/2; i++) ShufMask2[i] = i + NumElems/2;
14855
14856    SDValue OpHi = DAG.getVectorShuffle(OpVT, dl, Op, DAG.getUNDEF(OpVT),
14857                                        ShufMask2.data());
14858
14859    EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
14860                                  VT.getVectorNumElements()/2);
14861
14862    OpLo = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpLo);
14863    OpHi = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpHi);
14864
14865    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
14866  }
14867  return SDValue();
14868}
14869
14870static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
14871                                  const X86Subtarget *Subtarget) {
14872  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
14873  //           (and (i32 x86isd::setcc_carry), 1)
14874  // This eliminates the zext. This transformation is necessary because
14875  // ISD::SETCC is always legalized to i8.
14876  DebugLoc dl = N->getDebugLoc();
14877  SDValue N0 = N->getOperand(0);
14878  EVT VT = N->getValueType(0);
14879  EVT OpVT = N0.getValueType();
14880
14881  if (N0.getOpcode() == ISD::AND &&
14882      N0.hasOneUse() &&
14883      N0.getOperand(0).hasOneUse()) {
14884    SDValue N00 = N0.getOperand(0);
14885    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
14886      return SDValue();
14887    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
14888    if (!C || C->getZExtValue() != 1)
14889      return SDValue();
14890    return DAG.getNode(ISD::AND, dl, VT,
14891                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
14892                                   N00.getOperand(0), N00.getOperand(1)),
14893                       DAG.getConstant(1, VT));
14894  }
14895  // Optimize vectors in AVX mode:
14896  //
14897  //   v8i16 -> v8i32
14898  //   Use vpunpcklwd for 4 lower elements  v8i16 -> v4i32.
14899  //   Use vpunpckhwd for 4 upper elements  v8i16 -> v4i32.
14900  //   Concat upper and lower parts.
14901  //
14902  //   v4i32 -> v4i64
14903  //   Use vpunpckldq for 4 lower elements  v4i32 -> v2i64.
14904  //   Use vpunpckhdq for 4 upper elements  v4i32 -> v2i64.
14905  //   Concat upper and lower parts.
14906  //
14907  if (Subtarget->hasAVX()) {
14908
14909    if (((VT == MVT::v8i32) && (OpVT == MVT::v8i16))  ||
14910      ((VT == MVT::v4i64) && (OpVT == MVT::v4i32)))  {
14911
14912      SDValue ZeroVec = getZeroVector(OpVT, Subtarget, DAG, dl);
14913      SDValue OpLo = getTargetShuffleNode(X86ISD::UNPCKL, dl, OpVT, N0, ZeroVec, DAG);
14914      SDValue OpHi = getTargetShuffleNode(X86ISD::UNPCKH, dl, OpVT, N0, ZeroVec, DAG);
14915
14916      EVT HVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
14917        VT.getVectorNumElements()/2);
14918
14919      OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo);
14920      OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi);
14921
14922      return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
14923    }
14924  }
14925
14926
14927  return SDValue();
14928}
14929
14930// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
14931static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
14932  unsigned X86CC = N->getConstantOperandVal(0);
14933  SDValue EFLAG = N->getOperand(1);
14934  DebugLoc DL = N->getDebugLoc();
14935
14936  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
14937  // a zext and produces an all-ones bit which is more useful than 0/1 in some
14938  // cases.
14939  if (X86CC == X86::COND_B)
14940    return DAG.getNode(ISD::AND, DL, MVT::i8,
14941                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
14942                                   DAG.getConstant(X86CC, MVT::i8), EFLAG),
14943                       DAG.getConstant(1, MVT::i8));
14944
14945  return SDValue();
14946}
14947
14948static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
14949                                        const X86TargetLowering *XTLI) {
14950  SDValue Op0 = N->getOperand(0);
14951  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
14952  // a 32-bit target where SSE doesn't support i64->FP operations.
14953  if (Op0.getOpcode() == ISD::LOAD) {
14954    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
14955    EVT VT = Ld->getValueType(0);
14956    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
14957        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
14958        !XTLI->getSubtarget()->is64Bit() &&
14959        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
14960      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
14961                                          Ld->getChain(), Op0, DAG);
14962      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
14963      return FILDChain;
14964    }
14965  }
14966  return SDValue();
14967}
14968
14969// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
14970static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
14971                                 X86TargetLowering::DAGCombinerInfo &DCI) {
14972  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
14973  // the result is either zero or one (depending on the input carry bit).
14974  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
14975  if (X86::isZeroNode(N->getOperand(0)) &&
14976      X86::isZeroNode(N->getOperand(1)) &&
14977      // We don't have a good way to replace an EFLAGS use, so only do this when
14978      // dead right now.
14979      SDValue(N, 1).use_empty()) {
14980    DebugLoc DL = N->getDebugLoc();
14981    EVT VT = N->getValueType(0);
14982    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
14983    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
14984                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
14985                                           DAG.getConstant(X86::COND_B,MVT::i8),
14986                                           N->getOperand(2)),
14987                               DAG.getConstant(1, VT));
14988    return DCI.CombineTo(N, Res1, CarryOut);
14989  }
14990
14991  return SDValue();
14992}
14993
14994// fold (add Y, (sete  X, 0)) -> adc  0, Y
14995//      (add Y, (setne X, 0)) -> sbb -1, Y
14996//      (sub (sete  X, 0), Y) -> sbb  0, Y
14997//      (sub (setne X, 0), Y) -> adc -1, Y
14998static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
14999  DebugLoc DL = N->getDebugLoc();
15000
15001  // Look through ZExts.
15002  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
15003  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
15004    return SDValue();
15005
15006  SDValue SetCC = Ext.getOperand(0);
15007  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
15008    return SDValue();
15009
15010  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
15011  if (CC != X86::COND_E && CC != X86::COND_NE)
15012    return SDValue();
15013
15014  SDValue Cmp = SetCC.getOperand(1);
15015  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
15016      !X86::isZeroNode(Cmp.getOperand(1)) ||
15017      !Cmp.getOperand(0).getValueType().isInteger())
15018    return SDValue();
15019
15020  SDValue CmpOp0 = Cmp.getOperand(0);
15021  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
15022                               DAG.getConstant(1, CmpOp0.getValueType()));
15023
15024  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
15025  if (CC == X86::COND_NE)
15026    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
15027                       DL, OtherVal.getValueType(), OtherVal,
15028                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
15029  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
15030                     DL, OtherVal.getValueType(), OtherVal,
15031                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
15032}
15033
15034/// PerformADDCombine - Do target-specific dag combines on integer adds.
15035static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
15036                                 const X86Subtarget *Subtarget) {
15037  EVT VT = N->getValueType(0);
15038  SDValue Op0 = N->getOperand(0);
15039  SDValue Op1 = N->getOperand(1);
15040
15041  // Try to synthesize horizontal adds from adds of shuffles.
15042  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
15043       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
15044      isHorizontalBinOp(Op0, Op1, true))
15045    return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1);
15046
15047  return OptimizeConditionalInDecrement(N, DAG);
15048}
15049
15050static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
15051                                 const X86Subtarget *Subtarget) {
15052  SDValue Op0 = N->getOperand(0);
15053  SDValue Op1 = N->getOperand(1);
15054
15055  // X86 can't encode an immediate LHS of a sub. See if we can push the
15056  // negation into a preceding instruction.
15057  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
15058    // If the RHS of the sub is a XOR with one use and a constant, invert the
15059    // immediate. Then add one to the LHS of the sub so we can turn
15060    // X-Y -> X+~Y+1, saving one register.
15061    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
15062        isa<ConstantSDNode>(Op1.getOperand(1))) {
15063      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
15064      EVT VT = Op0.getValueType();
15065      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
15066                                   Op1.getOperand(0),
15067                                   DAG.getConstant(~XorC, VT));
15068      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
15069                         DAG.getConstant(C->getAPIntValue()+1, VT));
15070    }
15071  }
15072
15073  // Try to synthesize horizontal adds from adds of shuffles.
15074  EVT VT = N->getValueType(0);
15075  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
15076       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
15077      isHorizontalBinOp(Op0, Op1, true))
15078    return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1);
15079
15080  return OptimizeConditionalInDecrement(N, DAG);
15081}
15082
15083SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
15084                                             DAGCombinerInfo &DCI) const {
15085  SelectionDAG &DAG = DCI.DAG;
15086  switch (N->getOpcode()) {
15087  default: break;
15088  case ISD::EXTRACT_VECTOR_ELT:
15089    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI);
15090  case ISD::VSELECT:
15091  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, DCI, Subtarget);
15092  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
15093  case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
15094  case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
15095  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
15096  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
15097  case ISD::SHL:
15098  case ISD::SRA:
15099  case ISD::SRL:            return PerformShiftCombine(N, DAG, DCI, Subtarget);
15100  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
15101  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
15102  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
15103  case ISD::LOAD:           return PerformLOADCombine(N, DAG, Subtarget);
15104  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
15105  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
15106  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
15107  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
15108  case X86ISD::FXOR:
15109  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
15110  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
15111  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
15112  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
15113  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG, Subtarget);
15114  case ISD::SIGN_EXTEND:    return PerformSExtCombine(N, DAG, DCI, Subtarget);
15115  case ISD::TRUNCATE:       return PerformTruncateCombine(N, DAG, DCI);
15116  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
15117  case X86ISD::SHUFP:       // Handle all target specific shuffles
15118  case X86ISD::PALIGN:
15119  case X86ISD::UNPCKH:
15120  case X86ISD::UNPCKL:
15121  case X86ISD::MOVHLPS:
15122  case X86ISD::MOVLHPS:
15123  case X86ISD::PSHUFD:
15124  case X86ISD::PSHUFHW:
15125  case X86ISD::PSHUFLW:
15126  case X86ISD::MOVSS:
15127  case X86ISD::MOVSD:
15128  case X86ISD::VPERMILP:
15129  case X86ISD::VPERM2X128:
15130  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
15131  }
15132
15133  return SDValue();
15134}
15135
15136/// isTypeDesirableForOp - Return true if the target has native support for
15137/// the specified value type and it is 'desirable' to use the type for the
15138/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
15139/// instruction encodings are longer and some i16 instructions are slow.
15140bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
15141  if (!isTypeLegal(VT))
15142    return false;
15143  if (VT != MVT::i16)
15144    return true;
15145
15146  switch (Opc) {
15147  default:
15148    return true;
15149  case ISD::LOAD:
15150  case ISD::SIGN_EXTEND:
15151  case ISD::ZERO_EXTEND:
15152  case ISD::ANY_EXTEND:
15153  case ISD::SHL:
15154  case ISD::SRL:
15155  case ISD::SUB:
15156  case ISD::ADD:
15157  case ISD::MUL:
15158  case ISD::AND:
15159  case ISD::OR:
15160  case ISD::XOR:
15161    return false;
15162  }
15163}
15164
15165/// IsDesirableToPromoteOp - This method query the target whether it is
15166/// beneficial for dag combiner to promote the specified node. If true, it
15167/// should return the desired promotion type by reference.
15168bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
15169  EVT VT = Op.getValueType();
15170  if (VT != MVT::i16)
15171    return false;
15172
15173  bool Promote = false;
15174  bool Commute = false;
15175  switch (Op.getOpcode()) {
15176  default: break;
15177  case ISD::LOAD: {
15178    LoadSDNode *LD = cast<LoadSDNode>(Op);
15179    // If the non-extending load has a single use and it's not live out, then it
15180    // might be folded.
15181    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
15182                                                     Op.hasOneUse()*/) {
15183      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
15184             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
15185        // The only case where we'd want to promote LOAD (rather then it being
15186        // promoted as an operand is when it's only use is liveout.
15187        if (UI->getOpcode() != ISD::CopyToReg)
15188          return false;
15189      }
15190    }
15191    Promote = true;
15192    break;
15193  }
15194  case ISD::SIGN_EXTEND:
15195  case ISD::ZERO_EXTEND:
15196  case ISD::ANY_EXTEND:
15197    Promote = true;
15198    break;
15199  case ISD::SHL:
15200  case ISD::SRL: {
15201    SDValue N0 = Op.getOperand(0);
15202    // Look out for (store (shl (load), x)).
15203    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
15204      return false;
15205    Promote = true;
15206    break;
15207  }
15208  case ISD::ADD:
15209  case ISD::MUL:
15210  case ISD::AND:
15211  case ISD::OR:
15212  case ISD::XOR:
15213    Commute = true;
15214    // fallthrough
15215  case ISD::SUB: {
15216    SDValue N0 = Op.getOperand(0);
15217    SDValue N1 = Op.getOperand(1);
15218    if (!Commute && MayFoldLoad(N1))
15219      return false;
15220    // Avoid disabling potential load folding opportunities.
15221    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
15222      return false;
15223    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
15224      return false;
15225    Promote = true;
15226  }
15227  }
15228
15229  PVT = MVT::i32;
15230  return Promote;
15231}
15232
15233//===----------------------------------------------------------------------===//
15234//                           X86 Inline Assembly Support
15235//===----------------------------------------------------------------------===//
15236
15237namespace {
15238  // Helper to match a string separated by whitespace.
15239  bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
15240    s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
15241
15242    for (unsigned i = 0, e = args.size(); i != e; ++i) {
15243      StringRef piece(*args[i]);
15244      if (!s.startswith(piece)) // Check if the piece matches.
15245        return false;
15246
15247      s = s.substr(piece.size());
15248      StringRef::size_type pos = s.find_first_not_of(" \t");
15249      if (pos == 0) // We matched a prefix.
15250        return false;
15251
15252      s = s.substr(pos);
15253    }
15254
15255    return s.empty();
15256  }
15257  const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
15258}
15259
15260bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
15261  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
15262
15263  std::string AsmStr = IA->getAsmString();
15264
15265  IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
15266  if (!Ty || Ty->getBitWidth() % 16 != 0)
15267    return false;
15268
15269  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
15270  SmallVector<StringRef, 4> AsmPieces;
15271  SplitString(AsmStr, AsmPieces, ";\n");
15272
15273  switch (AsmPieces.size()) {
15274  default: return false;
15275  case 1:
15276    // FIXME: this should verify that we are targeting a 486 or better.  If not,
15277    // we will turn this bswap into something that will be lowered to logical
15278    // ops instead of emitting the bswap asm.  For now, we don't support 486 or
15279    // lower so don't worry about this.
15280    // bswap $0
15281    if (matchAsm(AsmPieces[0], "bswap", "$0") ||
15282        matchAsm(AsmPieces[0], "bswapl", "$0") ||
15283        matchAsm(AsmPieces[0], "bswapq", "$0") ||
15284        matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
15285        matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
15286        matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
15287      // No need to check constraints, nothing other than the equivalent of
15288      // "=r,0" would be valid here.
15289      return IntrinsicLowering::LowerToByteSwap(CI);
15290    }
15291
15292    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
15293    if (CI->getType()->isIntegerTy(16) &&
15294        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
15295        (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
15296         matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
15297      AsmPieces.clear();
15298      const std::string &ConstraintsStr = IA->getConstraintString();
15299      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
15300      std::sort(AsmPieces.begin(), AsmPieces.end());
15301      if (AsmPieces.size() == 4 &&
15302          AsmPieces[0] == "~{cc}" &&
15303          AsmPieces[1] == "~{dirflag}" &&
15304          AsmPieces[2] == "~{flags}" &&
15305          AsmPieces[3] == "~{fpsr}")
15306      return IntrinsicLowering::LowerToByteSwap(CI);
15307    }
15308    break;
15309  case 3:
15310    if (CI->getType()->isIntegerTy(32) &&
15311        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
15312        matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
15313        matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
15314        matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
15315      AsmPieces.clear();
15316      const std::string &ConstraintsStr = IA->getConstraintString();
15317      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
15318      std::sort(AsmPieces.begin(), AsmPieces.end());
15319      if (AsmPieces.size() == 4 &&
15320          AsmPieces[0] == "~{cc}" &&
15321          AsmPieces[1] == "~{dirflag}" &&
15322          AsmPieces[2] == "~{flags}" &&
15323          AsmPieces[3] == "~{fpsr}")
15324        return IntrinsicLowering::LowerToByteSwap(CI);
15325    }
15326
15327    if (CI->getType()->isIntegerTy(64)) {
15328      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
15329      if (Constraints.size() >= 2 &&
15330          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
15331          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
15332        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
15333        if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
15334            matchAsm(AsmPieces[1], "bswap", "%edx") &&
15335            matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
15336          return IntrinsicLowering::LowerToByteSwap(CI);
15337      }
15338    }
15339    break;
15340  }
15341  return false;
15342}
15343
15344
15345
15346/// getConstraintType - Given a constraint letter, return the type of
15347/// constraint it is for this target.
15348X86TargetLowering::ConstraintType
15349X86TargetLowering::getConstraintType(const std::string &Constraint) const {
15350  if (Constraint.size() == 1) {
15351    switch (Constraint[0]) {
15352    case 'R':
15353    case 'q':
15354    case 'Q':
15355    case 'f':
15356    case 't':
15357    case 'u':
15358    case 'y':
15359    case 'x':
15360    case 'Y':
15361    case 'l':
15362      return C_RegisterClass;
15363    case 'a':
15364    case 'b':
15365    case 'c':
15366    case 'd':
15367    case 'S':
15368    case 'D':
15369    case 'A':
15370      return C_Register;
15371    case 'I':
15372    case 'J':
15373    case 'K':
15374    case 'L':
15375    case 'M':
15376    case 'N':
15377    case 'G':
15378    case 'C':
15379    case 'e':
15380    case 'Z':
15381      return C_Other;
15382    default:
15383      break;
15384    }
15385  }
15386  return TargetLowering::getConstraintType(Constraint);
15387}
15388
15389/// Examine constraint type and operand type and determine a weight value.
15390/// This object must already have been set up with the operand type
15391/// and the current alternative constraint selected.
15392TargetLowering::ConstraintWeight
15393  X86TargetLowering::getSingleConstraintMatchWeight(
15394    AsmOperandInfo &info, const char *constraint) const {
15395  ConstraintWeight weight = CW_Invalid;
15396  Value *CallOperandVal = info.CallOperandVal;
15397    // If we don't have a value, we can't do a match,
15398    // but allow it at the lowest weight.
15399  if (CallOperandVal == NULL)
15400    return CW_Default;
15401  Type *type = CallOperandVal->getType();
15402  // Look at the constraint type.
15403  switch (*constraint) {
15404  default:
15405    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
15406  case 'R':
15407  case 'q':
15408  case 'Q':
15409  case 'a':
15410  case 'b':
15411  case 'c':
15412  case 'd':
15413  case 'S':
15414  case 'D':
15415  case 'A':
15416    if (CallOperandVal->getType()->isIntegerTy())
15417      weight = CW_SpecificReg;
15418    break;
15419  case 'f':
15420  case 't':
15421  case 'u':
15422      if (type->isFloatingPointTy())
15423        weight = CW_SpecificReg;
15424      break;
15425  case 'y':
15426      if (type->isX86_MMXTy() && Subtarget->hasMMX())
15427        weight = CW_SpecificReg;
15428      break;
15429  case 'x':
15430  case 'Y':
15431    if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
15432        ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasAVX()))
15433      weight = CW_Register;
15434    break;
15435  case 'I':
15436    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
15437      if (C->getZExtValue() <= 31)
15438        weight = CW_Constant;
15439    }
15440    break;
15441  case 'J':
15442    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15443      if (C->getZExtValue() <= 63)
15444        weight = CW_Constant;
15445    }
15446    break;
15447  case 'K':
15448    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15449      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
15450        weight = CW_Constant;
15451    }
15452    break;
15453  case 'L':
15454    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15455      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
15456        weight = CW_Constant;
15457    }
15458    break;
15459  case 'M':
15460    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15461      if (C->getZExtValue() <= 3)
15462        weight = CW_Constant;
15463    }
15464    break;
15465  case 'N':
15466    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15467      if (C->getZExtValue() <= 0xff)
15468        weight = CW_Constant;
15469    }
15470    break;
15471  case 'G':
15472  case 'C':
15473    if (dyn_cast<ConstantFP>(CallOperandVal)) {
15474      weight = CW_Constant;
15475    }
15476    break;
15477  case 'e':
15478    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15479      if ((C->getSExtValue() >= -0x80000000LL) &&
15480          (C->getSExtValue() <= 0x7fffffffLL))
15481        weight = CW_Constant;
15482    }
15483    break;
15484  case 'Z':
15485    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15486      if (C->getZExtValue() <= 0xffffffff)
15487        weight = CW_Constant;
15488    }
15489    break;
15490  }
15491  return weight;
15492}
15493
15494/// LowerXConstraint - try to replace an X constraint, which matches anything,
15495/// with another that has more specific requirements based on the type of the
15496/// corresponding operand.
15497const char *X86TargetLowering::
15498LowerXConstraint(EVT ConstraintVT) const {
15499  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
15500  // 'f' like normal targets.
15501  if (ConstraintVT.isFloatingPoint()) {
15502    if (Subtarget->hasSSE2())
15503      return "Y";
15504    if (Subtarget->hasSSE1())
15505      return "x";
15506  }
15507
15508  return TargetLowering::LowerXConstraint(ConstraintVT);
15509}
15510
15511/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15512/// vector.  If it is invalid, don't add anything to Ops.
15513void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
15514                                                     std::string &Constraint,
15515                                                     std::vector<SDValue>&Ops,
15516                                                     SelectionDAG &DAG) const {
15517  SDValue Result(0, 0);
15518
15519  // Only support length 1 constraints for now.
15520  if (Constraint.length() > 1) return;
15521
15522  char ConstraintLetter = Constraint[0];
15523  switch (ConstraintLetter) {
15524  default: break;
15525  case 'I':
15526    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15527      if (C->getZExtValue() <= 31) {
15528        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15529        break;
15530      }
15531    }
15532    return;
15533  case 'J':
15534    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15535      if (C->getZExtValue() <= 63) {
15536        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15537        break;
15538      }
15539    }
15540    return;
15541  case 'K':
15542    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15543      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
15544        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15545        break;
15546      }
15547    }
15548    return;
15549  case 'N':
15550    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15551      if (C->getZExtValue() <= 255) {
15552        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15553        break;
15554      }
15555    }
15556    return;
15557  case 'e': {
15558    // 32-bit signed value
15559    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15560      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15561                                           C->getSExtValue())) {
15562        // Widen to 64 bits here to get it sign extended.
15563        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
15564        break;
15565      }
15566    // FIXME gcc accepts some relocatable values here too, but only in certain
15567    // memory models; it's complicated.
15568    }
15569    return;
15570  }
15571  case 'Z': {
15572    // 32-bit unsigned value
15573    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15574      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15575                                           C->getZExtValue())) {
15576        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15577        break;
15578      }
15579    }
15580    // FIXME gcc accepts some relocatable values here too, but only in certain
15581    // memory models; it's complicated.
15582    return;
15583  }
15584  case 'i': {
15585    // Literal immediates are always ok.
15586    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
15587      // Widen to 64 bits here to get it sign extended.
15588      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
15589      break;
15590    }
15591
15592    // In any sort of PIC mode addresses need to be computed at runtime by
15593    // adding in a register or some sort of table lookup.  These can't
15594    // be used as immediates.
15595    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
15596      return;
15597
15598    // If we are in non-pic codegen mode, we allow the address of a global (with
15599    // an optional displacement) to be used with 'i'.
15600    GlobalAddressSDNode *GA = 0;
15601    int64_t Offset = 0;
15602
15603    // Match either (GA), (GA+C), (GA+C1+C2), etc.
15604    while (1) {
15605      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
15606        Offset += GA->getOffset();
15607        break;
15608      } else if (Op.getOpcode() == ISD::ADD) {
15609        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15610          Offset += C->getZExtValue();
15611          Op = Op.getOperand(0);
15612          continue;
15613        }
15614      } else if (Op.getOpcode() == ISD::SUB) {
15615        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15616          Offset += -C->getZExtValue();
15617          Op = Op.getOperand(0);
15618          continue;
15619        }
15620      }
15621
15622      // Otherwise, this isn't something we can handle, reject it.
15623      return;
15624    }
15625
15626    const GlobalValue *GV = GA->getGlobal();
15627    // If we require an extra load to get this address, as in PIC mode, we
15628    // can't accept it.
15629    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
15630                                                        getTargetMachine())))
15631      return;
15632
15633    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
15634                                        GA->getValueType(0), Offset);
15635    break;
15636  }
15637  }
15638
15639  if (Result.getNode()) {
15640    Ops.push_back(Result);
15641    return;
15642  }
15643  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
15644}
15645
15646std::pair<unsigned, const TargetRegisterClass*>
15647X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
15648                                                EVT VT) const {
15649  // First, see if this is a constraint that directly corresponds to an LLVM
15650  // register class.
15651  if (Constraint.size() == 1) {
15652    // GCC Constraint Letters
15653    switch (Constraint[0]) {
15654    default: break;
15655      // TODO: Slight differences here in allocation order and leaving
15656      // RIP in the class. Do they matter any more here than they do
15657      // in the normal allocation?
15658    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
15659      if (Subtarget->is64Bit()) {
15660	if (VT == MVT::i32 || VT == MVT::f32)
15661	  return std::make_pair(0U, X86::GR32RegisterClass);
15662	else if (VT == MVT::i16)
15663	  return std::make_pair(0U, X86::GR16RegisterClass);
15664	else if (VT == MVT::i8 || VT == MVT::i1)
15665	  return std::make_pair(0U, X86::GR8RegisterClass);
15666	else if (VT == MVT::i64 || VT == MVT::f64)
15667	  return std::make_pair(0U, X86::GR64RegisterClass);
15668	break;
15669      }
15670      // 32-bit fallthrough
15671    case 'Q':   // Q_REGS
15672      if (VT == MVT::i32 || VT == MVT::f32)
15673	return std::make_pair(0U, X86::GR32_ABCDRegisterClass);
15674      else if (VT == MVT::i16)
15675	return std::make_pair(0U, X86::GR16_ABCDRegisterClass);
15676      else if (VT == MVT::i8 || VT == MVT::i1)
15677	return std::make_pair(0U, X86::GR8_ABCD_LRegisterClass);
15678      else if (VT == MVT::i64)
15679	return std::make_pair(0U, X86::GR64_ABCDRegisterClass);
15680      break;
15681    case 'r':   // GENERAL_REGS
15682    case 'l':   // INDEX_REGS
15683      if (VT == MVT::i8 || VT == MVT::i1)
15684        return std::make_pair(0U, X86::GR8RegisterClass);
15685      if (VT == MVT::i16)
15686        return std::make_pair(0U, X86::GR16RegisterClass);
15687      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
15688        return std::make_pair(0U, X86::GR32RegisterClass);
15689      return std::make_pair(0U, X86::GR64RegisterClass);
15690    case 'R':   // LEGACY_REGS
15691      if (VT == MVT::i8 || VT == MVT::i1)
15692        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
15693      if (VT == MVT::i16)
15694        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
15695      if (VT == MVT::i32 || !Subtarget->is64Bit())
15696        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
15697      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
15698    case 'f':  // FP Stack registers.
15699      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
15700      // value to the correct fpstack register class.
15701      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
15702        return std::make_pair(0U, X86::RFP32RegisterClass);
15703      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
15704        return std::make_pair(0U, X86::RFP64RegisterClass);
15705      return std::make_pair(0U, X86::RFP80RegisterClass);
15706    case 'y':   // MMX_REGS if MMX allowed.
15707      if (!Subtarget->hasMMX()) break;
15708      return std::make_pair(0U, X86::VR64RegisterClass);
15709    case 'Y':   // SSE_REGS if SSE2 allowed
15710      if (!Subtarget->hasSSE2()) break;
15711      // FALL THROUGH.
15712    case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
15713      if (!Subtarget->hasSSE1()) break;
15714
15715      switch (VT.getSimpleVT().SimpleTy) {
15716      default: break;
15717      // Scalar SSE types.
15718      case MVT::f32:
15719      case MVT::i32:
15720        return std::make_pair(0U, X86::FR32RegisterClass);
15721      case MVT::f64:
15722      case MVT::i64:
15723        return std::make_pair(0U, X86::FR64RegisterClass);
15724      // Vector types.
15725      case MVT::v16i8:
15726      case MVT::v8i16:
15727      case MVT::v4i32:
15728      case MVT::v2i64:
15729      case MVT::v4f32:
15730      case MVT::v2f64:
15731        return std::make_pair(0U, X86::VR128RegisterClass);
15732      // AVX types.
15733      case MVT::v32i8:
15734      case MVT::v16i16:
15735      case MVT::v8i32:
15736      case MVT::v4i64:
15737      case MVT::v8f32:
15738      case MVT::v4f64:
15739        return std::make_pair(0U, X86::VR256RegisterClass);
15740
15741      }
15742      break;
15743    }
15744  }
15745
15746  // Use the default implementation in TargetLowering to convert the register
15747  // constraint into a member of a register class.
15748  std::pair<unsigned, const TargetRegisterClass*> Res;
15749  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
15750
15751  // Not found as a standard register?
15752  if (Res.second == 0) {
15753    // Map st(0) -> st(7) -> ST0
15754    if (Constraint.size() == 7 && Constraint[0] == '{' &&
15755        tolower(Constraint[1]) == 's' &&
15756        tolower(Constraint[2]) == 't' &&
15757        Constraint[3] == '(' &&
15758        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
15759        Constraint[5] == ')' &&
15760        Constraint[6] == '}') {
15761
15762      Res.first = X86::ST0+Constraint[4]-'0';
15763      Res.second = X86::RFP80RegisterClass;
15764      return Res;
15765    }
15766
15767    // GCC allows "st(0)" to be called just plain "st".
15768    if (StringRef("{st}").equals_lower(Constraint)) {
15769      Res.first = X86::ST0;
15770      Res.second = X86::RFP80RegisterClass;
15771      return Res;
15772    }
15773
15774    // flags -> EFLAGS
15775    if (StringRef("{flags}").equals_lower(Constraint)) {
15776      Res.first = X86::EFLAGS;
15777      Res.second = X86::CCRRegisterClass;
15778      return Res;
15779    }
15780
15781    // 'A' means EAX + EDX.
15782    if (Constraint == "A") {
15783      Res.first = X86::EAX;
15784      Res.second = X86::GR32_ADRegisterClass;
15785      return Res;
15786    }
15787    return Res;
15788  }
15789
15790  // Otherwise, check to see if this is a register class of the wrong value
15791  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
15792  // turn into {ax},{dx}.
15793  if (Res.second->hasType(VT))
15794    return Res;   // Correct type already, nothing to do.
15795
15796  // All of the single-register GCC register classes map their values onto
15797  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
15798  // really want an 8-bit or 32-bit register, map to the appropriate register
15799  // class and return the appropriate register.
15800  if (Res.second == X86::GR16RegisterClass) {
15801    if (VT == MVT::i8) {
15802      unsigned DestReg = 0;
15803      switch (Res.first) {
15804      default: break;
15805      case X86::AX: DestReg = X86::AL; break;
15806      case X86::DX: DestReg = X86::DL; break;
15807      case X86::CX: DestReg = X86::CL; break;
15808      case X86::BX: DestReg = X86::BL; break;
15809      }
15810      if (DestReg) {
15811        Res.first = DestReg;
15812        Res.second = X86::GR8RegisterClass;
15813      }
15814    } else if (VT == MVT::i32) {
15815      unsigned DestReg = 0;
15816      switch (Res.first) {
15817      default: break;
15818      case X86::AX: DestReg = X86::EAX; break;
15819      case X86::DX: DestReg = X86::EDX; break;
15820      case X86::CX: DestReg = X86::ECX; break;
15821      case X86::BX: DestReg = X86::EBX; break;
15822      case X86::SI: DestReg = X86::ESI; break;
15823      case X86::DI: DestReg = X86::EDI; break;
15824      case X86::BP: DestReg = X86::EBP; break;
15825      case X86::SP: DestReg = X86::ESP; break;
15826      }
15827      if (DestReg) {
15828        Res.first = DestReg;
15829        Res.second = X86::GR32RegisterClass;
15830      }
15831    } else if (VT == MVT::i64) {
15832      unsigned DestReg = 0;
15833      switch (Res.first) {
15834      default: break;
15835      case X86::AX: DestReg = X86::RAX; break;
15836      case X86::DX: DestReg = X86::RDX; break;
15837      case X86::CX: DestReg = X86::RCX; break;
15838      case X86::BX: DestReg = X86::RBX; break;
15839      case X86::SI: DestReg = X86::RSI; break;
15840      case X86::DI: DestReg = X86::RDI; break;
15841      case X86::BP: DestReg = X86::RBP; break;
15842      case X86::SP: DestReg = X86::RSP; break;
15843      }
15844      if (DestReg) {
15845        Res.first = DestReg;
15846        Res.second = X86::GR64RegisterClass;
15847      }
15848    }
15849  } else if (Res.second == X86::FR32RegisterClass ||
15850             Res.second == X86::FR64RegisterClass ||
15851             Res.second == X86::VR128RegisterClass) {
15852    // Handle references to XMM physical registers that got mapped into the
15853    // wrong class.  This can happen with constraints like {xmm0} where the
15854    // target independent register mapper will just pick the first match it can
15855    // find, ignoring the required type.
15856    if (VT == MVT::f32)
15857      Res.second = X86::FR32RegisterClass;
15858    else if (VT == MVT::f64)
15859      Res.second = X86::FR64RegisterClass;
15860    else if (X86::VR128RegisterClass->hasType(VT))
15861      Res.second = X86::VR128RegisterClass;
15862  }
15863
15864  return Res;
15865}
15866