X86ISelLowering.cpp revision 2d496897934adfc0e3e1563dd64d9a7122971e22
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/MC/MCAsmInfo.h"
39#include "llvm/MC/MCContext.h"
40#include "llvm/MC/MCExpr.h"
41#include "llvm/MC/MCSymbol.h"
42#include "llvm/ADT/BitVector.h"
43#include "llvm/ADT/SmallSet.h"
44#include "llvm/ADT/Statistic.h"
45#include "llvm/ADT/StringExtras.h"
46#include "llvm/ADT/VectorExtras.h"
47#include "llvm/Support/CallSite.h"
48#include "llvm/Support/Debug.h"
49#include "llvm/Support/Dwarf.h"
50#include "llvm/Support/ErrorHandling.h"
51#include "llvm/Support/MathExtras.h"
52#include "llvm/Support/raw_ostream.h"
53#include "llvm/Target/TargetOptions.h"
54using namespace llvm;
55using namespace dwarf;
56
57STATISTIC(NumTailCalls, "Number of tail calls");
58
59// Forward declarations.
60static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
61                       SDValue V2);
62
63static SDValue Insert128BitVector(SDValue Result,
64                                  SDValue Vec,
65                                  SDValue Idx,
66                                  SelectionDAG &DAG,
67                                  DebugLoc dl);
68
69static SDValue Extract128BitVector(SDValue Vec,
70                                   SDValue Idx,
71                                   SelectionDAG &DAG,
72                                   DebugLoc dl);
73
74/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
75/// sets things up to match to an AVX VEXTRACTF128 instruction or a
76/// simple subregister reference.  Idx is an index in the 128 bits we
77/// want.  It need not be aligned to a 128-bit bounday.  That makes
78/// lowering EXTRACT_VECTOR_ELT operations easier.
79static SDValue Extract128BitVector(SDValue Vec,
80                                   SDValue Idx,
81                                   SelectionDAG &DAG,
82                                   DebugLoc dl) {
83  EVT VT = Vec.getValueType();
84  assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
85  EVT ElVT = VT.getVectorElementType();
86  int Factor = VT.getSizeInBits()/128;
87  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
88                                  VT.getVectorNumElements()/Factor);
89
90  // Extract from UNDEF is UNDEF.
91  if (Vec.getOpcode() == ISD::UNDEF)
92    return DAG.getNode(ISD::UNDEF, dl, ResultVT);
93
94  if (isa<ConstantSDNode>(Idx)) {
95    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
96
97    // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
98    // we can match to VEXTRACTF128.
99    unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
100
101    // This is the index of the first element of the 128-bit chunk
102    // we want.
103    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
104                                 * ElemsPerChunk);
105
106    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
107    SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
108                                 VecIdx);
109
110    return Result;
111  }
112
113  return SDValue();
114}
115
116/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
117/// sets things up to match to an AVX VINSERTF128 instruction or a
118/// simple superregister reference.  Idx is an index in the 128 bits
119/// we want.  It need not be aligned to a 128-bit bounday.  That makes
120/// lowering INSERT_VECTOR_ELT operations easier.
121static SDValue Insert128BitVector(SDValue Result,
122                                  SDValue Vec,
123                                  SDValue Idx,
124                                  SelectionDAG &DAG,
125                                  DebugLoc dl) {
126  if (isa<ConstantSDNode>(Idx)) {
127    EVT VT = Vec.getValueType();
128    assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
129
130    EVT ElVT = VT.getVectorElementType();
131    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
132    EVT ResultVT = Result.getValueType();
133
134    // Insert the relevant 128 bits.
135    unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
136
137    // This is the index of the first element of the 128-bit chunk
138    // we want.
139    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
140                                 * ElemsPerChunk);
141
142    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
143    Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
144                         VecIdx);
145    return Result;
146  }
147
148  return SDValue();
149}
150
151static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
152  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
153  bool is64Bit = Subtarget->is64Bit();
154
155  if (Subtarget->isTargetEnvMacho()) {
156    if (is64Bit)
157      return new X8664_MachoTargetObjectFile();
158    return new TargetLoweringObjectFileMachO();
159  }
160
161  if (Subtarget->isTargetELF())
162    return new TargetLoweringObjectFileELF();
163  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
164    return new TargetLoweringObjectFileCOFF();
165  llvm_unreachable("unknown subtarget type");
166}
167
168X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
169  : TargetLowering(TM, createTLOF(TM)) {
170  Subtarget = &TM.getSubtarget<X86Subtarget>();
171  X86ScalarSSEf64 = Subtarget->hasXMMInt();
172  X86ScalarSSEf32 = Subtarget->hasXMM();
173  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
174
175  RegInfo = TM.getRegisterInfo();
176  TD = getTargetData();
177
178  // Set up the TargetLowering object.
179  static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
180
181  // X86 is weird, it always uses i8 for shift amounts and setcc results.
182  setBooleanContents(ZeroOrOneBooleanContent);
183  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
184  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
185
186  // For 64-bit since we have so many registers use the ILP scheduler, for
187  // 32-bit code use the register pressure specific scheduling.
188  if (Subtarget->is64Bit())
189    setSchedulingPreference(Sched::ILP);
190  else
191    setSchedulingPreference(Sched::RegPressure);
192  setStackPointerRegisterToSaveRestore(X86StackPtr);
193
194  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
195    // Setup Windows compiler runtime calls.
196    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
197    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
198    setLibcallName(RTLIB::SREM_I64, "_allrem");
199    setLibcallName(RTLIB::UREM_I64, "_aullrem");
200    setLibcallName(RTLIB::MUL_I64, "_allmul");
201    setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2");
202    setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2");
203    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
204    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
205    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
206    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
207    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
208    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C);
209    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C);
210  }
211
212  if (Subtarget->isTargetDarwin()) {
213    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
214    setUseUnderscoreSetJmp(false);
215    setUseUnderscoreLongJmp(false);
216  } else if (Subtarget->isTargetMingw()) {
217    // MS runtime is weird: it exports _setjmp, but longjmp!
218    setUseUnderscoreSetJmp(true);
219    setUseUnderscoreLongJmp(false);
220  } else {
221    setUseUnderscoreSetJmp(true);
222    setUseUnderscoreLongJmp(true);
223  }
224
225  // Set up the register classes.
226  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
227  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
228  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
229  if (Subtarget->is64Bit())
230    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
231
232  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
233
234  // We don't accept any truncstore of integer registers.
235  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
236  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
237  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
238  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
239  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
240  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
241
242  // SETOEQ and SETUNE require checking two conditions.
243  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
244  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
245  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
246  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
247  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
248  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
249
250  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
251  // operation.
252  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
253  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
254  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
255
256  if (Subtarget->is64Bit()) {
257    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
258    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
259  } else if (!UseSoftFloat) {
260    // We have an algorithm for SSE2->double, and we turn this into a
261    // 64-bit FILD followed by conditional FADD for other targets.
262    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
263    // We have an algorithm for SSE2, and we turn this into a 64-bit
264    // FILD for other targets.
265    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
266  }
267
268  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
269  // this operation.
270  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
271  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
272
273  if (!UseSoftFloat) {
274    // SSE has no i16 to fp conversion, only i32
275    if (X86ScalarSSEf32) {
276      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
277      // f32 and f64 cases are Legal, f80 case is not
278      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
279    } else {
280      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
281      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
282    }
283  } else {
284    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
285    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
286  }
287
288  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
289  // are Legal, f80 is custom lowered.
290  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
291  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
292
293  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
294  // this operation.
295  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
296  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
297
298  if (X86ScalarSSEf32) {
299    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
300    // f32 and f64 cases are Legal, f80 case is not
301    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
302  } else {
303    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
304    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
305  }
306
307  // Handle FP_TO_UINT by promoting the destination to a larger signed
308  // conversion.
309  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
310  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
311  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
312
313  if (Subtarget->is64Bit()) {
314    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
315    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
316  } else if (!UseSoftFloat) {
317    // Since AVX is a superset of SSE3, only check for SSE here.
318    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
319      // Expand FP_TO_UINT into a select.
320      // FIXME: We would like to use a Custom expander here eventually to do
321      // the optimal thing for SSE vs. the default expansion in the legalizer.
322      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
323    else
324      // With SSE3 we can use fisttpll to convert to a signed i64; without
325      // SSE, we're stuck with a fistpll.
326      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
327  }
328
329  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
330  if (!X86ScalarSSEf64) {
331    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
332    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
333    if (Subtarget->is64Bit()) {
334      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
335      // Without SSE, i64->f64 goes through memory.
336      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
337    }
338  }
339
340  // Scalar integer divide and remainder are lowered to use operations that
341  // produce two results, to match the available instructions. This exposes
342  // the two-result form to trivial CSE, which is able to combine x/y and x%y
343  // into a single instruction.
344  //
345  // Scalar integer multiply-high is also lowered to use two-result
346  // operations, to match the available instructions. However, plain multiply
347  // (low) operations are left as Legal, as there are single-result
348  // instructions for this in x86. Using the two-result multiply instructions
349  // when both high and low results are needed must be arranged by dagcombine.
350  for (unsigned i = 0, e = 4; i != e; ++i) {
351    MVT VT = IntVTs[i];
352    setOperationAction(ISD::MULHS, VT, Expand);
353    setOperationAction(ISD::MULHU, VT, Expand);
354    setOperationAction(ISD::SDIV, VT, Expand);
355    setOperationAction(ISD::UDIV, VT, Expand);
356    setOperationAction(ISD::SREM, VT, Expand);
357    setOperationAction(ISD::UREM, VT, Expand);
358
359    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
360    setOperationAction(ISD::ADDC, VT, Custom);
361    setOperationAction(ISD::ADDE, VT, Custom);
362    setOperationAction(ISD::SUBC, VT, Custom);
363    setOperationAction(ISD::SUBE, VT, Custom);
364  }
365
366  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
367  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
368  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
369  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
370  if (Subtarget->is64Bit())
371    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
372  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
373  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
374  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
375  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
376  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
377  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
378  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
379  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
380
381  if (Subtarget->hasBMI()) {
382    setOperationAction(ISD::CTTZ           , MVT::i8   , Promote);
383  } else {
384    setOperationAction(ISD::CTTZ           , MVT::i8   , Custom);
385    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
386    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
387    if (Subtarget->is64Bit())
388      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
389  }
390
391  if (Subtarget->hasLZCNT()) {
392    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
393  } else {
394    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
395    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
396    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
397    if (Subtarget->is64Bit())
398      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
399  }
400
401  if (Subtarget->hasPOPCNT()) {
402    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
403  } else {
404    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
405    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
406    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
407    if (Subtarget->is64Bit())
408      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
409  }
410
411  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
412  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
413
414  // These should be promoted to a larger select which is supported.
415  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
416  // X86 wants to expand cmov itself.
417  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
418  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
419  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
420  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
421  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
422  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
423  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
424  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
425  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
426  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
427  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
428  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
429  if (Subtarget->is64Bit()) {
430    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
431    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
432  }
433  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
434
435  // Darwin ABI issue.
436  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
437  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
438  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
439  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
440  if (Subtarget->is64Bit())
441    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
442  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
443  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
444  if (Subtarget->is64Bit()) {
445    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
446    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
447    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
448    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
449    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
450  }
451  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
452  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
453  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
454  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
455  if (Subtarget->is64Bit()) {
456    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
457    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
458    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
459  }
460
461  if (Subtarget->hasXMM())
462    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
463
464  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
465  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
466
467  // On X86 and X86-64, atomic operations are lowered to locked instructions.
468  // Locked instructions, in turn, have implicit fence semantics (all memory
469  // operations are flushed before issuing the locked instruction, and they
470  // are not buffered), so we can fold away the common pattern of
471  // fence-atomic-fence.
472  setShouldFoldAtomicFences(true);
473
474  // Expand certain atomics
475  for (unsigned i = 0, e = 4; i != e; ++i) {
476    MVT VT = IntVTs[i];
477    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
478    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
479    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
480  }
481
482  if (!Subtarget->is64Bit()) {
483    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
484    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
485    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
486    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
487    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
488    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
489    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
490    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
491  }
492
493  if (Subtarget->hasCmpxchg16b()) {
494    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
495  }
496
497  // FIXME - use subtarget debug flags
498  if (!Subtarget->isTargetDarwin() &&
499      !Subtarget->isTargetELF() &&
500      !Subtarget->isTargetCygMing()) {
501    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
502  }
503
504  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
505  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
506  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
507  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
508  if (Subtarget->is64Bit()) {
509    setExceptionPointerRegister(X86::RAX);
510    setExceptionSelectorRegister(X86::RDX);
511  } else {
512    setExceptionPointerRegister(X86::EAX);
513    setExceptionSelectorRegister(X86::EDX);
514  }
515  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
516  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
517
518  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
519  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
520
521  setOperationAction(ISD::TRAP, MVT::Other, Legal);
522
523  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
524  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
525  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
526  if (Subtarget->is64Bit()) {
527    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
528    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
529  } else {
530    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
531    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
532  }
533
534  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
535  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
536
537  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
538    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
539                       MVT::i64 : MVT::i32, Custom);
540  else if (EnableSegmentedStacks)
541    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
542                       MVT::i64 : MVT::i32, Custom);
543  else
544    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
545                       MVT::i64 : MVT::i32, Expand);
546
547  if (!UseSoftFloat && X86ScalarSSEf64) {
548    // f32 and f64 use SSE.
549    // Set up the FP register classes.
550    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
551    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
552
553    // Use ANDPD to simulate FABS.
554    setOperationAction(ISD::FABS , MVT::f64, Custom);
555    setOperationAction(ISD::FABS , MVT::f32, Custom);
556
557    // Use XORP to simulate FNEG.
558    setOperationAction(ISD::FNEG , MVT::f64, Custom);
559    setOperationAction(ISD::FNEG , MVT::f32, Custom);
560
561    // Use ANDPD and ORPD to simulate FCOPYSIGN.
562    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
563    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
564
565    // Lower this to FGETSIGNx86 plus an AND.
566    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
567    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
568
569    // We don't support sin/cos/fmod
570    setOperationAction(ISD::FSIN , MVT::f64, Expand);
571    setOperationAction(ISD::FCOS , MVT::f64, Expand);
572    setOperationAction(ISD::FSIN , MVT::f32, Expand);
573    setOperationAction(ISD::FCOS , MVT::f32, Expand);
574
575    // Expand FP immediates into loads from the stack, except for the special
576    // cases we handle.
577    addLegalFPImmediate(APFloat(+0.0)); // xorpd
578    addLegalFPImmediate(APFloat(+0.0f)); // xorps
579  } else if (!UseSoftFloat && X86ScalarSSEf32) {
580    // Use SSE for f32, x87 for f64.
581    // Set up the FP register classes.
582    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
583    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
584
585    // Use ANDPS to simulate FABS.
586    setOperationAction(ISD::FABS , MVT::f32, Custom);
587
588    // Use XORP to simulate FNEG.
589    setOperationAction(ISD::FNEG , MVT::f32, Custom);
590
591    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
592
593    // Use ANDPS and ORPS to simulate FCOPYSIGN.
594    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
595    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
596
597    // We don't support sin/cos/fmod
598    setOperationAction(ISD::FSIN , MVT::f32, Expand);
599    setOperationAction(ISD::FCOS , MVT::f32, Expand);
600
601    // Special cases we handle for FP constants.
602    addLegalFPImmediate(APFloat(+0.0f)); // xorps
603    addLegalFPImmediate(APFloat(+0.0)); // FLD0
604    addLegalFPImmediate(APFloat(+1.0)); // FLD1
605    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
606    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
607
608    if (!UnsafeFPMath) {
609      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
610      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
611    }
612  } else if (!UseSoftFloat) {
613    // f32 and f64 in x87.
614    // Set up the FP register classes.
615    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
616    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
617
618    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
619    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
620    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
621    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
622
623    if (!UnsafeFPMath) {
624      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
625      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
626    }
627    addLegalFPImmediate(APFloat(+0.0)); // FLD0
628    addLegalFPImmediate(APFloat(+1.0)); // FLD1
629    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
630    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
631    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
632    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
633    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
634    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
635  }
636
637  // We don't support FMA.
638  setOperationAction(ISD::FMA, MVT::f64, Expand);
639  setOperationAction(ISD::FMA, MVT::f32, Expand);
640
641  // Long double always uses X87.
642  if (!UseSoftFloat) {
643    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
644    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
645    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
646    {
647      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
648      addLegalFPImmediate(TmpFlt);  // FLD0
649      TmpFlt.changeSign();
650      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
651
652      bool ignored;
653      APFloat TmpFlt2(+1.0);
654      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
655                      &ignored);
656      addLegalFPImmediate(TmpFlt2);  // FLD1
657      TmpFlt2.changeSign();
658      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
659    }
660
661    if (!UnsafeFPMath) {
662      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
663      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
664    }
665
666    setOperationAction(ISD::FMA, MVT::f80, Expand);
667  }
668
669  // Always use a library call for pow.
670  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
671  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
672  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
673
674  setOperationAction(ISD::FLOG, MVT::f80, Expand);
675  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
676  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
677  setOperationAction(ISD::FEXP, MVT::f80, Expand);
678  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
679
680  // First set operation action for all vector types to either promote
681  // (for widening) or expand (for scalarization). Then we will selectively
682  // turn on ones that can be effectively codegen'd.
683  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
684       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
685    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
686    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
687    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
688    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
689    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
690    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
691    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
692    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
693    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
694    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
695    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
696    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
697    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
698    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
699    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
700    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
701    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
702    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
703    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
704    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
705    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
706    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
707    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
708    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
709    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
710    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
711    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
712    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
713    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
714    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
715    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
716    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
717    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
718    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
719    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
720    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
721    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
722    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
723    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
724    setOperationAction(ISD::SETCC, (MVT::SimpleValueType)VT, Expand);
725    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
726    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
727    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
728    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
729    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
730    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
731    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
732    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
733    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
734    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
735    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
736    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
737    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
738    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
739    setOperationAction(ISD::VSELECT,  (MVT::SimpleValueType)VT, Expand);
740    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
741         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
742      setTruncStoreAction((MVT::SimpleValueType)VT,
743                          (MVT::SimpleValueType)InnerVT, Expand);
744    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
745    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
746    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
747  }
748
749  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
750  // with -msoft-float, disable use of MMX as well.
751  if (!UseSoftFloat && Subtarget->hasMMX()) {
752    addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
753    // No operations on x86mmx supported, everything uses intrinsics.
754  }
755
756  // MMX-sized vectors (other than x86mmx) are expected to be expanded
757  // into smaller operations.
758  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
759  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
760  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
761  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
762  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
763  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
764  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
765  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
766  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
767  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
768  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
769  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
770  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
771  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
772  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
773  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
774  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
775  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
776  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
777  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
778  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
779  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
780  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
781  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
782  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
783  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
784  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
785  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
786  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
787
788  if (!UseSoftFloat && Subtarget->hasXMM()) {
789    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
790
791    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
792    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
793    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
794    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
795    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
796    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
797    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
798    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
799    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
800    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
801    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
802    setOperationAction(ISD::SETCC,              MVT::v4f32, Custom);
803  }
804
805  if (!UseSoftFloat && Subtarget->hasXMMInt()) {
806    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
807
808    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
809    // registers cannot be used even for integer operations.
810    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
811    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
812    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
813    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
814
815    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
816    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
817    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
818    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
819    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
820    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
821    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
822    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
823    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
824    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
825    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
826    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
827    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
828    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
829    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
830    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
831
832    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
833    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
834    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
835    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
836
837    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
838    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
839    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
840    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
841    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
842
843    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
844    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
845    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
846    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
847    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
848
849    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
850    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
851      EVT VT = (MVT::SimpleValueType)i;
852      // Do not attempt to custom lower non-power-of-2 vectors
853      if (!isPowerOf2_32(VT.getVectorNumElements()))
854        continue;
855      // Do not attempt to custom lower non-128-bit vectors
856      if (!VT.is128BitVector())
857        continue;
858      setOperationAction(ISD::BUILD_VECTOR,
859                         VT.getSimpleVT().SimpleTy, Custom);
860      setOperationAction(ISD::VECTOR_SHUFFLE,
861                         VT.getSimpleVT().SimpleTy, Custom);
862      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
863                         VT.getSimpleVT().SimpleTy, Custom);
864    }
865
866    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
867    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
868    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
869    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
870    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
871    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
872
873    if (Subtarget->is64Bit()) {
874      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
875      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
876    }
877
878    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
879    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
880      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
881      EVT VT = SVT;
882
883      // Do not attempt to promote non-128-bit vectors
884      if (!VT.is128BitVector())
885        continue;
886
887      setOperationAction(ISD::AND,    SVT, Promote);
888      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
889      setOperationAction(ISD::OR,     SVT, Promote);
890      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
891      setOperationAction(ISD::XOR,    SVT, Promote);
892      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
893      setOperationAction(ISD::LOAD,   SVT, Promote);
894      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
895      setOperationAction(ISD::SELECT, SVT, Promote);
896      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
897    }
898
899    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
900
901    // Custom lower v2i64 and v2f64 selects.
902    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
903    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
904    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
905    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
906
907    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
908    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
909  }
910
911  if (Subtarget->hasSSE41() || Subtarget->hasAVX()) {
912    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
913    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
914    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
915    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
916    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
917    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
918    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
919    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
920    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
921    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
922
923    // FIXME: Do we need to handle scalar-to-vector here?
924    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
925
926    setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
927    setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
928    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
929    setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
930    setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
931
932    // i8 and i16 vectors are custom , because the source register and source
933    // source memory operand types are not the same width.  f32 vectors are
934    // custom since the immediate controlling the insert encodes additional
935    // information.
936    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
937    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
938    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
939    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
940
941    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
942    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
943    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
944    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
945
946    // FIXME: these should be Legal but thats only for the case where
947    // the index is constant.  For now custom expand to deal with that
948    if (Subtarget->is64Bit()) {
949      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
950      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
951    }
952  }
953
954  if (Subtarget->hasXMMInt()) {
955    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
956    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
957
958    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
959    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
960
961    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
962    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
963
964    if (Subtarget->hasAVX2()) {
965      setOperationAction(ISD::SRL,             MVT::v2i64, Legal);
966      setOperationAction(ISD::SRL,             MVT::v4i32, Legal);
967
968      setOperationAction(ISD::SHL,             MVT::v2i64, Legal);
969      setOperationAction(ISD::SHL,             MVT::v4i32, Legal);
970
971      setOperationAction(ISD::SRA,             MVT::v4i32, Legal);
972    } else {
973      setOperationAction(ISD::SRL,             MVT::v2i64, Custom);
974      setOperationAction(ISD::SRL,             MVT::v4i32, Custom);
975
976      setOperationAction(ISD::SHL,             MVT::v2i64, Custom);
977      setOperationAction(ISD::SHL,             MVT::v4i32, Custom);
978
979      setOperationAction(ISD::SRA,             MVT::v4i32, Custom);
980    }
981  }
982
983  if (Subtarget->hasSSE42() || Subtarget->hasAVX())
984    setOperationAction(ISD::SETCC,             MVT::v2i64, Custom);
985
986  if (!UseSoftFloat && Subtarget->hasAVX()) {
987    addRegisterClass(MVT::v32i8,  X86::VR256RegisterClass);
988    addRegisterClass(MVT::v16i16, X86::VR256RegisterClass);
989    addRegisterClass(MVT::v8i32,  X86::VR256RegisterClass);
990    addRegisterClass(MVT::v8f32,  X86::VR256RegisterClass);
991    addRegisterClass(MVT::v4i64,  X86::VR256RegisterClass);
992    addRegisterClass(MVT::v4f64,  X86::VR256RegisterClass);
993
994    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
995    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
996    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
997
998    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
999    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1000    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1001    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1002    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1003    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1004
1005    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1006    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1007    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1008    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1009    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1010    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1011
1012    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1013    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1014    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1015
1016    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4f64,  Custom);
1017    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i64,  Custom);
1018    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f32,  Custom);
1019    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i32,  Custom);
1020    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v32i8,  Custom);
1021    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i16, Custom);
1022
1023    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1024    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1025
1026    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1027    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1028
1029    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1030    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1031
1032    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1033    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1034    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1035    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1036
1037    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1038    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1039    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1040
1041    setOperationAction(ISD::VSELECT,           MVT::v4f64, Legal);
1042    setOperationAction(ISD::VSELECT,           MVT::v4i64, Legal);
1043    setOperationAction(ISD::VSELECT,           MVT::v8i32, Legal);
1044    setOperationAction(ISD::VSELECT,           MVT::v8f32, Legal);
1045
1046    if (Subtarget->hasAVX2()) {
1047      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1048      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1049      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1050      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1051
1052      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1053      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1054      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1055      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1056
1057      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1058      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1059      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1060      // Don't lower v32i8 because there is no 128-bit byte mul
1061
1062      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1063
1064      setOperationAction(ISD::SRL,             MVT::v4i64, Legal);
1065      setOperationAction(ISD::SRL,             MVT::v8i32, Legal);
1066
1067      setOperationAction(ISD::SHL,             MVT::v4i64, Legal);
1068      setOperationAction(ISD::SHL,             MVT::v8i32, Legal);
1069
1070      setOperationAction(ISD::SRA,             MVT::v8i32, Legal);
1071    } else {
1072      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1073      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1074      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1075      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1076
1077      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1078      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1079      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1080      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1081
1082      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1083      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1084      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1085      // Don't lower v32i8 because there is no 128-bit byte mul
1086
1087      setOperationAction(ISD::SRL,             MVT::v4i64, Custom);
1088      setOperationAction(ISD::SRL,             MVT::v8i32, Custom);
1089
1090      setOperationAction(ISD::SHL,             MVT::v4i64, Custom);
1091      setOperationAction(ISD::SHL,             MVT::v8i32, Custom);
1092
1093      setOperationAction(ISD::SRA,             MVT::v8i32, Custom);
1094    }
1095
1096    // Custom lower several nodes for 256-bit types.
1097    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1098                  i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1099      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1100      EVT VT = SVT;
1101
1102      // Extract subvector is special because the value type
1103      // (result) is 128-bit but the source is 256-bit wide.
1104      if (VT.is128BitVector())
1105        setOperationAction(ISD::EXTRACT_SUBVECTOR, SVT, Custom);
1106
1107      // Do not attempt to custom lower other non-256-bit vectors
1108      if (!VT.is256BitVector())
1109        continue;
1110
1111      setOperationAction(ISD::BUILD_VECTOR,       SVT, Custom);
1112      setOperationAction(ISD::VECTOR_SHUFFLE,     SVT, Custom);
1113      setOperationAction(ISD::INSERT_VECTOR_ELT,  SVT, Custom);
1114      setOperationAction(ISD::EXTRACT_VECTOR_ELT, SVT, Custom);
1115      setOperationAction(ISD::SCALAR_TO_VECTOR,   SVT, Custom);
1116      setOperationAction(ISD::INSERT_SUBVECTOR,   SVT, Custom);
1117    }
1118
1119    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1120    for (unsigned i = (unsigned)MVT::v32i8; i != (unsigned)MVT::v4i64; ++i) {
1121      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1122      EVT VT = SVT;
1123
1124      // Do not attempt to promote non-256-bit vectors
1125      if (!VT.is256BitVector())
1126        continue;
1127
1128      setOperationAction(ISD::AND,    SVT, Promote);
1129      AddPromotedToType (ISD::AND,    SVT, MVT::v4i64);
1130      setOperationAction(ISD::OR,     SVT, Promote);
1131      AddPromotedToType (ISD::OR,     SVT, MVT::v4i64);
1132      setOperationAction(ISD::XOR,    SVT, Promote);
1133      AddPromotedToType (ISD::XOR,    SVT, MVT::v4i64);
1134      setOperationAction(ISD::LOAD,   SVT, Promote);
1135      AddPromotedToType (ISD::LOAD,   SVT, MVT::v4i64);
1136      setOperationAction(ISD::SELECT, SVT, Promote);
1137      AddPromotedToType (ISD::SELECT, SVT, MVT::v4i64);
1138    }
1139  }
1140
1141  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1142  // of this type with custom code.
1143  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1144         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; VT++) {
1145    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT, Custom);
1146  }
1147
1148  // We want to custom lower some of our intrinsics.
1149  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1150
1151
1152  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1153  // handle type legalization for these operations here.
1154  //
1155  // FIXME: We really should do custom legalization for addition and
1156  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1157  // than generic legalization for 64-bit multiplication-with-overflow, though.
1158  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1159    // Add/Sub/Mul with overflow operations are custom lowered.
1160    MVT VT = IntVTs[i];
1161    setOperationAction(ISD::SADDO, VT, Custom);
1162    setOperationAction(ISD::UADDO, VT, Custom);
1163    setOperationAction(ISD::SSUBO, VT, Custom);
1164    setOperationAction(ISD::USUBO, VT, Custom);
1165    setOperationAction(ISD::SMULO, VT, Custom);
1166    setOperationAction(ISD::UMULO, VT, Custom);
1167  }
1168
1169  // There are no 8-bit 3-address imul/mul instructions
1170  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1171  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1172
1173  if (!Subtarget->is64Bit()) {
1174    // These libcalls are not available in 32-bit.
1175    setLibcallName(RTLIB::SHL_I128, 0);
1176    setLibcallName(RTLIB::SRL_I128, 0);
1177    setLibcallName(RTLIB::SRA_I128, 0);
1178  }
1179
1180  // We have target-specific dag combine patterns for the following nodes:
1181  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1182  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1183  setTargetDAGCombine(ISD::BUILD_VECTOR);
1184  setTargetDAGCombine(ISD::VSELECT);
1185  setTargetDAGCombine(ISD::SELECT);
1186  setTargetDAGCombine(ISD::SHL);
1187  setTargetDAGCombine(ISD::SRA);
1188  setTargetDAGCombine(ISD::SRL);
1189  setTargetDAGCombine(ISD::OR);
1190  setTargetDAGCombine(ISD::AND);
1191  setTargetDAGCombine(ISD::ADD);
1192  setTargetDAGCombine(ISD::FADD);
1193  setTargetDAGCombine(ISD::FSUB);
1194  setTargetDAGCombine(ISD::SUB);
1195  setTargetDAGCombine(ISD::LOAD);
1196  setTargetDAGCombine(ISD::STORE);
1197  setTargetDAGCombine(ISD::ZERO_EXTEND);
1198  setTargetDAGCombine(ISD::SINT_TO_FP);
1199  if (Subtarget->is64Bit())
1200    setTargetDAGCombine(ISD::MUL);
1201  if (Subtarget->hasBMI())
1202    setTargetDAGCombine(ISD::XOR);
1203
1204  computeRegisterProperties();
1205
1206  // On Darwin, -Os means optimize for size without hurting performance,
1207  // do not reduce the limit.
1208  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1209  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1210  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1211  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1212  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1213  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1214  setPrefLoopAlignment(16);
1215  benefitFromCodePlacementOpt = true;
1216
1217  setPrefFunctionAlignment(4);
1218}
1219
1220
1221EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1222  if (!VT.isVector()) return MVT::i8;
1223  return VT.changeVectorElementTypeToInteger();
1224}
1225
1226
1227/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1228/// the desired ByVal argument alignment.
1229static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1230  if (MaxAlign == 16)
1231    return;
1232  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1233    if (VTy->getBitWidth() == 128)
1234      MaxAlign = 16;
1235  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1236    unsigned EltAlign = 0;
1237    getMaxByValAlign(ATy->getElementType(), EltAlign);
1238    if (EltAlign > MaxAlign)
1239      MaxAlign = EltAlign;
1240  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1241    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1242      unsigned EltAlign = 0;
1243      getMaxByValAlign(STy->getElementType(i), EltAlign);
1244      if (EltAlign > MaxAlign)
1245        MaxAlign = EltAlign;
1246      if (MaxAlign == 16)
1247        break;
1248    }
1249  }
1250  return;
1251}
1252
1253/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1254/// function arguments in the caller parameter area. For X86, aggregates
1255/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1256/// are at 4-byte boundaries.
1257unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1258  if (Subtarget->is64Bit()) {
1259    // Max of 8 and alignment of type.
1260    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1261    if (TyAlign > 8)
1262      return TyAlign;
1263    return 8;
1264  }
1265
1266  unsigned Align = 4;
1267  if (Subtarget->hasXMM())
1268    getMaxByValAlign(Ty, Align);
1269  return Align;
1270}
1271
1272/// getOptimalMemOpType - Returns the target specific optimal type for load
1273/// and store operations as a result of memset, memcpy, and memmove
1274/// lowering. If DstAlign is zero that means it's safe to destination
1275/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1276/// means there isn't a need to check it against alignment requirement,
1277/// probably because the source does not need to be loaded. If
1278/// 'IsZeroVal' is true, that means it's safe to return a
1279/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1280/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1281/// constant so it does not need to be loaded.
1282/// It returns EVT::Other if the type should be determined using generic
1283/// target-independent logic.
1284EVT
1285X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1286                                       unsigned DstAlign, unsigned SrcAlign,
1287                                       bool IsZeroVal,
1288                                       bool MemcpyStrSrc,
1289                                       MachineFunction &MF) const {
1290  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1291  // linux.  This is because the stack realignment code can't handle certain
1292  // cases like PR2962.  This should be removed when PR2962 is fixed.
1293  const Function *F = MF.getFunction();
1294  if (IsZeroVal &&
1295      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1296    if (Size >= 16 &&
1297        (Subtarget->isUnalignedMemAccessFast() ||
1298         ((DstAlign == 0 || DstAlign >= 16) &&
1299          (SrcAlign == 0 || SrcAlign >= 16))) &&
1300        Subtarget->getStackAlignment() >= 16) {
1301      if (Subtarget->hasAVX() &&
1302          Subtarget->getStackAlignment() >= 32)
1303        return MVT::v8f32;
1304      if (Subtarget->hasXMMInt())
1305        return MVT::v4i32;
1306      if (Subtarget->hasXMM())
1307        return MVT::v4f32;
1308    } else if (!MemcpyStrSrc && Size >= 8 &&
1309               !Subtarget->is64Bit() &&
1310               Subtarget->getStackAlignment() >= 8 &&
1311               Subtarget->hasXMMInt()) {
1312      // Do not use f64 to lower memcpy if source is string constant. It's
1313      // better to use i32 to avoid the loads.
1314      return MVT::f64;
1315    }
1316  }
1317  if (Subtarget->is64Bit() && Size >= 8)
1318    return MVT::i64;
1319  return MVT::i32;
1320}
1321
1322/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1323/// current function.  The returned value is a member of the
1324/// MachineJumpTableInfo::JTEntryKind enum.
1325unsigned X86TargetLowering::getJumpTableEncoding() const {
1326  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1327  // symbol.
1328  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1329      Subtarget->isPICStyleGOT())
1330    return MachineJumpTableInfo::EK_Custom32;
1331
1332  // Otherwise, use the normal jump table encoding heuristics.
1333  return TargetLowering::getJumpTableEncoding();
1334}
1335
1336const MCExpr *
1337X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1338                                             const MachineBasicBlock *MBB,
1339                                             unsigned uid,MCContext &Ctx) const{
1340  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1341         Subtarget->isPICStyleGOT());
1342  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1343  // entries.
1344  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1345                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1346}
1347
1348/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1349/// jumptable.
1350SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1351                                                    SelectionDAG &DAG) const {
1352  if (!Subtarget->is64Bit())
1353    // This doesn't have DebugLoc associated with it, but is not really the
1354    // same as a Register.
1355    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1356  return Table;
1357}
1358
1359/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1360/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1361/// MCExpr.
1362const MCExpr *X86TargetLowering::
1363getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1364                             MCContext &Ctx) const {
1365  // X86-64 uses RIP relative addressing based on the jump table label.
1366  if (Subtarget->isPICStyleRIPRel())
1367    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1368
1369  // Otherwise, the reference is relative to the PIC base.
1370  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1371}
1372
1373// FIXME: Why this routine is here? Move to RegInfo!
1374std::pair<const TargetRegisterClass*, uint8_t>
1375X86TargetLowering::findRepresentativeClass(EVT VT) const{
1376  const TargetRegisterClass *RRC = 0;
1377  uint8_t Cost = 1;
1378  switch (VT.getSimpleVT().SimpleTy) {
1379  default:
1380    return TargetLowering::findRepresentativeClass(VT);
1381  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1382    RRC = (Subtarget->is64Bit()
1383           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1384    break;
1385  case MVT::x86mmx:
1386    RRC = X86::VR64RegisterClass;
1387    break;
1388  case MVT::f32: case MVT::f64:
1389  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1390  case MVT::v4f32: case MVT::v2f64:
1391  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1392  case MVT::v4f64:
1393    RRC = X86::VR128RegisterClass;
1394    break;
1395  }
1396  return std::make_pair(RRC, Cost);
1397}
1398
1399bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1400                                               unsigned &Offset) const {
1401  if (!Subtarget->isTargetLinux())
1402    return false;
1403
1404  if (Subtarget->is64Bit()) {
1405    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1406    Offset = 0x28;
1407    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1408      AddressSpace = 256;
1409    else
1410      AddressSpace = 257;
1411  } else {
1412    // %gs:0x14 on i386
1413    Offset = 0x14;
1414    AddressSpace = 256;
1415  }
1416  return true;
1417}
1418
1419
1420//===----------------------------------------------------------------------===//
1421//               Return Value Calling Convention Implementation
1422//===----------------------------------------------------------------------===//
1423
1424#include "X86GenCallingConv.inc"
1425
1426bool
1427X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1428				  MachineFunction &MF, bool isVarArg,
1429                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1430                        LLVMContext &Context) const {
1431  SmallVector<CCValAssign, 16> RVLocs;
1432  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1433                 RVLocs, Context);
1434  return CCInfo.CheckReturn(Outs, RetCC_X86);
1435}
1436
1437SDValue
1438X86TargetLowering::LowerReturn(SDValue Chain,
1439                               CallingConv::ID CallConv, bool isVarArg,
1440                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1441                               const SmallVectorImpl<SDValue> &OutVals,
1442                               DebugLoc dl, SelectionDAG &DAG) const {
1443  MachineFunction &MF = DAG.getMachineFunction();
1444  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1445
1446  SmallVector<CCValAssign, 16> RVLocs;
1447  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1448                 RVLocs, *DAG.getContext());
1449  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1450
1451  // Add the regs to the liveout set for the function.
1452  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1453  for (unsigned i = 0; i != RVLocs.size(); ++i)
1454    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1455      MRI.addLiveOut(RVLocs[i].getLocReg());
1456
1457  SDValue Flag;
1458
1459  SmallVector<SDValue, 6> RetOps;
1460  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1461  // Operand #1 = Bytes To Pop
1462  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1463                   MVT::i16));
1464
1465  // Copy the result values into the output registers.
1466  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1467    CCValAssign &VA = RVLocs[i];
1468    assert(VA.isRegLoc() && "Can only return in registers!");
1469    SDValue ValToCopy = OutVals[i];
1470    EVT ValVT = ValToCopy.getValueType();
1471
1472    // If this is x86-64, and we disabled SSE, we can't return FP values,
1473    // or SSE or MMX vectors.
1474    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1475         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1476          (Subtarget->is64Bit() && !Subtarget->hasXMM())) {
1477      report_fatal_error("SSE register return with SSE disabled");
1478    }
1479    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1480    // llvm-gcc has never done it right and no one has noticed, so this
1481    // should be OK for now.
1482    if (ValVT == MVT::f64 &&
1483        (Subtarget->is64Bit() && !Subtarget->hasXMMInt()))
1484      report_fatal_error("SSE2 register return with SSE2 disabled");
1485
1486    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1487    // the RET instruction and handled by the FP Stackifier.
1488    if (VA.getLocReg() == X86::ST0 ||
1489        VA.getLocReg() == X86::ST1) {
1490      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1491      // change the value to the FP stack register class.
1492      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1493        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1494      RetOps.push_back(ValToCopy);
1495      // Don't emit a copytoreg.
1496      continue;
1497    }
1498
1499    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1500    // which is returned in RAX / RDX.
1501    if (Subtarget->is64Bit()) {
1502      if (ValVT == MVT::x86mmx) {
1503        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1504          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1505          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1506                                  ValToCopy);
1507          // If we don't have SSE2 available, convert to v4f32 so the generated
1508          // register is legal.
1509          if (!Subtarget->hasXMMInt())
1510            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1511        }
1512      }
1513    }
1514
1515    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1516    Flag = Chain.getValue(1);
1517  }
1518
1519  // The x86-64 ABI for returning structs by value requires that we copy
1520  // the sret argument into %rax for the return. We saved the argument into
1521  // a virtual register in the entry block, so now we copy the value out
1522  // and into %rax.
1523  if (Subtarget->is64Bit() &&
1524      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1525    MachineFunction &MF = DAG.getMachineFunction();
1526    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1527    unsigned Reg = FuncInfo->getSRetReturnReg();
1528    assert(Reg &&
1529           "SRetReturnReg should have been set in LowerFormalArguments().");
1530    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1531
1532    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1533    Flag = Chain.getValue(1);
1534
1535    // RAX now acts like a return value.
1536    MRI.addLiveOut(X86::RAX);
1537  }
1538
1539  RetOps[0] = Chain;  // Update chain.
1540
1541  // Add the flag if we have it.
1542  if (Flag.getNode())
1543    RetOps.push_back(Flag);
1544
1545  return DAG.getNode(X86ISD::RET_FLAG, dl,
1546                     MVT::Other, &RetOps[0], RetOps.size());
1547}
1548
1549bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const {
1550  if (N->getNumValues() != 1)
1551    return false;
1552  if (!N->hasNUsesOfValue(1, 0))
1553    return false;
1554
1555  SDNode *Copy = *N->use_begin();
1556  if (Copy->getOpcode() != ISD::CopyToReg &&
1557      Copy->getOpcode() != ISD::FP_EXTEND)
1558    return false;
1559
1560  bool HasRet = false;
1561  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1562       UI != UE; ++UI) {
1563    if (UI->getOpcode() != X86ISD::RET_FLAG)
1564      return false;
1565    HasRet = true;
1566  }
1567
1568  return HasRet;
1569}
1570
1571EVT
1572X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1573                                            ISD::NodeType ExtendKind) const {
1574  MVT ReturnMVT;
1575  // TODO: Is this also valid on 32-bit?
1576  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1577    ReturnMVT = MVT::i8;
1578  else
1579    ReturnMVT = MVT::i32;
1580
1581  EVT MinVT = getRegisterType(Context, ReturnMVT);
1582  return VT.bitsLT(MinVT) ? MinVT : VT;
1583}
1584
1585/// LowerCallResult - Lower the result values of a call into the
1586/// appropriate copies out of appropriate physical registers.
1587///
1588SDValue
1589X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1590                                   CallingConv::ID CallConv, bool isVarArg,
1591                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1592                                   DebugLoc dl, SelectionDAG &DAG,
1593                                   SmallVectorImpl<SDValue> &InVals) const {
1594
1595  // Assign locations to each value returned by this call.
1596  SmallVector<CCValAssign, 16> RVLocs;
1597  bool Is64Bit = Subtarget->is64Bit();
1598  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1599		 getTargetMachine(), RVLocs, *DAG.getContext());
1600  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1601
1602  // Copy all of the result registers out of their specified physreg.
1603  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1604    CCValAssign &VA = RVLocs[i];
1605    EVT CopyVT = VA.getValVT();
1606
1607    // If this is x86-64, and we disabled SSE, we can't return FP values
1608    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1609        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasXMM())) {
1610      report_fatal_error("SSE register return with SSE disabled");
1611    }
1612
1613    SDValue Val;
1614
1615    // If this is a call to a function that returns an fp value on the floating
1616    // point stack, we must guarantee the the value is popped from the stack, so
1617    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1618    // if the return value is not used. We use the FpPOP_RETVAL instruction
1619    // instead.
1620    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1621      // If we prefer to use the value in xmm registers, copy it out as f80 and
1622      // use a truncate to move it from fp stack reg to xmm reg.
1623      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1624      SDValue Ops[] = { Chain, InFlag };
1625      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1626                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1627      Val = Chain.getValue(0);
1628
1629      // Round the f80 to the right size, which also moves it to the appropriate
1630      // xmm register.
1631      if (CopyVT != VA.getValVT())
1632        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1633                          // This truncation won't change the value.
1634                          DAG.getIntPtrConstant(1));
1635    } else {
1636      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1637                                 CopyVT, InFlag).getValue(1);
1638      Val = Chain.getValue(0);
1639    }
1640    InFlag = Chain.getValue(2);
1641    InVals.push_back(Val);
1642  }
1643
1644  return Chain;
1645}
1646
1647
1648//===----------------------------------------------------------------------===//
1649//                C & StdCall & Fast Calling Convention implementation
1650//===----------------------------------------------------------------------===//
1651//  StdCall calling convention seems to be standard for many Windows' API
1652//  routines and around. It differs from C calling convention just a little:
1653//  callee should clean up the stack, not caller. Symbols should be also
1654//  decorated in some fancy way :) It doesn't support any vector arguments.
1655//  For info on fast calling convention see Fast Calling Convention (tail call)
1656//  implementation LowerX86_32FastCCCallTo.
1657
1658/// CallIsStructReturn - Determines whether a call uses struct return
1659/// semantics.
1660static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1661  if (Outs.empty())
1662    return false;
1663
1664  return Outs[0].Flags.isSRet();
1665}
1666
1667/// ArgsAreStructReturn - Determines whether a function uses struct
1668/// return semantics.
1669static bool
1670ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1671  if (Ins.empty())
1672    return false;
1673
1674  return Ins[0].Flags.isSRet();
1675}
1676
1677/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1678/// by "Src" to address "Dst" with size and alignment information specified by
1679/// the specific parameter attribute. The copy will be passed as a byval
1680/// function parameter.
1681static SDValue
1682CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1683                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1684                          DebugLoc dl) {
1685  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1686
1687  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1688                       /*isVolatile*/false, /*AlwaysInline=*/true,
1689                       MachinePointerInfo(), MachinePointerInfo());
1690}
1691
1692/// IsTailCallConvention - Return true if the calling convention is one that
1693/// supports tail call optimization.
1694static bool IsTailCallConvention(CallingConv::ID CC) {
1695  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1696}
1697
1698bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1699  if (!CI->isTailCall())
1700    return false;
1701
1702  CallSite CS(CI);
1703  CallingConv::ID CalleeCC = CS.getCallingConv();
1704  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1705    return false;
1706
1707  return true;
1708}
1709
1710/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1711/// a tailcall target by changing its ABI.
1712static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1713  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1714}
1715
1716SDValue
1717X86TargetLowering::LowerMemArgument(SDValue Chain,
1718                                    CallingConv::ID CallConv,
1719                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1720                                    DebugLoc dl, SelectionDAG &DAG,
1721                                    const CCValAssign &VA,
1722                                    MachineFrameInfo *MFI,
1723                                    unsigned i) const {
1724  // Create the nodes corresponding to a load from this parameter slot.
1725  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1726  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1727  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1728  EVT ValVT;
1729
1730  // If value is passed by pointer we have address passed instead of the value
1731  // itself.
1732  if (VA.getLocInfo() == CCValAssign::Indirect)
1733    ValVT = VA.getLocVT();
1734  else
1735    ValVT = VA.getValVT();
1736
1737  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1738  // changed with more analysis.
1739  // In case of tail call optimization mark all arguments mutable. Since they
1740  // could be overwritten by lowering of arguments in case of a tail call.
1741  if (Flags.isByVal()) {
1742    unsigned Bytes = Flags.getByValSize();
1743    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1744    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1745    return DAG.getFrameIndex(FI, getPointerTy());
1746  } else {
1747    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1748                                    VA.getLocMemOffset(), isImmutable);
1749    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1750    return DAG.getLoad(ValVT, dl, Chain, FIN,
1751                       MachinePointerInfo::getFixedStack(FI),
1752                       false, false, false, 0);
1753  }
1754}
1755
1756SDValue
1757X86TargetLowering::LowerFormalArguments(SDValue Chain,
1758                                        CallingConv::ID CallConv,
1759                                        bool isVarArg,
1760                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1761                                        DebugLoc dl,
1762                                        SelectionDAG &DAG,
1763                                        SmallVectorImpl<SDValue> &InVals)
1764                                          const {
1765  MachineFunction &MF = DAG.getMachineFunction();
1766  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1767
1768  const Function* Fn = MF.getFunction();
1769  if (Fn->hasExternalLinkage() &&
1770      Subtarget->isTargetCygMing() &&
1771      Fn->getName() == "main")
1772    FuncInfo->setForceFramePointer(true);
1773
1774  MachineFrameInfo *MFI = MF.getFrameInfo();
1775  bool Is64Bit = Subtarget->is64Bit();
1776  bool IsWin64 = Subtarget->isTargetWin64();
1777
1778  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1779         "Var args not supported with calling convention fastcc or ghc");
1780
1781  // Assign locations to all of the incoming arguments.
1782  SmallVector<CCValAssign, 16> ArgLocs;
1783  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1784                 ArgLocs, *DAG.getContext());
1785
1786  // Allocate shadow area for Win64
1787  if (IsWin64) {
1788    CCInfo.AllocateStack(32, 8);
1789  }
1790
1791  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1792
1793  unsigned LastVal = ~0U;
1794  SDValue ArgValue;
1795  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1796    CCValAssign &VA = ArgLocs[i];
1797    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1798    // places.
1799    assert(VA.getValNo() != LastVal &&
1800           "Don't support value assigned to multiple locs yet");
1801    (void)LastVal;
1802    LastVal = VA.getValNo();
1803
1804    if (VA.isRegLoc()) {
1805      EVT RegVT = VA.getLocVT();
1806      TargetRegisterClass *RC = NULL;
1807      if (RegVT == MVT::i32)
1808        RC = X86::GR32RegisterClass;
1809      else if (Is64Bit && RegVT == MVT::i64)
1810        RC = X86::GR64RegisterClass;
1811      else if (RegVT == MVT::f32)
1812        RC = X86::FR32RegisterClass;
1813      else if (RegVT == MVT::f64)
1814        RC = X86::FR64RegisterClass;
1815      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1816        RC = X86::VR256RegisterClass;
1817      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1818        RC = X86::VR128RegisterClass;
1819      else if (RegVT == MVT::x86mmx)
1820        RC = X86::VR64RegisterClass;
1821      else
1822        llvm_unreachable("Unknown argument type!");
1823
1824      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1825      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1826
1827      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1828      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1829      // right size.
1830      if (VA.getLocInfo() == CCValAssign::SExt)
1831        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1832                               DAG.getValueType(VA.getValVT()));
1833      else if (VA.getLocInfo() == CCValAssign::ZExt)
1834        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1835                               DAG.getValueType(VA.getValVT()));
1836      else if (VA.getLocInfo() == CCValAssign::BCvt)
1837        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1838
1839      if (VA.isExtInLoc()) {
1840        // Handle MMX values passed in XMM regs.
1841        if (RegVT.isVector()) {
1842          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1843                                 ArgValue);
1844        } else
1845          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1846      }
1847    } else {
1848      assert(VA.isMemLoc());
1849      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1850    }
1851
1852    // If value is passed via pointer - do a load.
1853    if (VA.getLocInfo() == CCValAssign::Indirect)
1854      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1855                             MachinePointerInfo(), false, false, false, 0);
1856
1857    InVals.push_back(ArgValue);
1858  }
1859
1860  // The x86-64 ABI for returning structs by value requires that we copy
1861  // the sret argument into %rax for the return. Save the argument into
1862  // a virtual register so that we can access it from the return points.
1863  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1864    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1865    unsigned Reg = FuncInfo->getSRetReturnReg();
1866    if (!Reg) {
1867      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1868      FuncInfo->setSRetReturnReg(Reg);
1869    }
1870    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1871    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1872  }
1873
1874  unsigned StackSize = CCInfo.getNextStackOffset();
1875  // Align stack specially for tail calls.
1876  if (FuncIsMadeTailCallSafe(CallConv))
1877    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1878
1879  // If the function takes variable number of arguments, make a frame index for
1880  // the start of the first vararg value... for expansion of llvm.va_start.
1881  if (isVarArg) {
1882    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1883                    CallConv != CallingConv::X86_ThisCall)) {
1884      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1885    }
1886    if (Is64Bit) {
1887      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1888
1889      // FIXME: We should really autogenerate these arrays
1890      static const unsigned GPR64ArgRegsWin64[] = {
1891        X86::RCX, X86::RDX, X86::R8,  X86::R9
1892      };
1893      static const unsigned GPR64ArgRegs64Bit[] = {
1894        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1895      };
1896      static const unsigned XMMArgRegs64Bit[] = {
1897        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1898        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1899      };
1900      const unsigned *GPR64ArgRegs;
1901      unsigned NumXMMRegs = 0;
1902
1903      if (IsWin64) {
1904        // The XMM registers which might contain var arg parameters are shadowed
1905        // in their paired GPR.  So we only need to save the GPR to their home
1906        // slots.
1907        TotalNumIntRegs = 4;
1908        GPR64ArgRegs = GPR64ArgRegsWin64;
1909      } else {
1910        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1911        GPR64ArgRegs = GPR64ArgRegs64Bit;
1912
1913        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit, TotalNumXMMRegs);
1914      }
1915      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1916                                                       TotalNumIntRegs);
1917
1918      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1919      assert(!(NumXMMRegs && !Subtarget->hasXMM()) &&
1920             "SSE register cannot be used when SSE is disabled!");
1921      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1922             "SSE register cannot be used when SSE is disabled!");
1923      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasXMM())
1924        // Kernel mode asks for SSE to be disabled, so don't push them
1925        // on the stack.
1926        TotalNumXMMRegs = 0;
1927
1928      if (IsWin64) {
1929        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1930        // Get to the caller-allocated home save location.  Add 8 to account
1931        // for the return address.
1932        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1933        FuncInfo->setRegSaveFrameIndex(
1934          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1935        // Fixup to set vararg frame on shadow area (4 x i64).
1936        if (NumIntRegs < 4)
1937          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1938      } else {
1939        // For X86-64, if there are vararg parameters that are passed via
1940        // registers, then we must store them to their spots on the stack so they
1941        // may be loaded by deferencing the result of va_next.
1942        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1943        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1944        FuncInfo->setRegSaveFrameIndex(
1945          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1946                               false));
1947      }
1948
1949      // Store the integer parameter registers.
1950      SmallVector<SDValue, 8> MemOps;
1951      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1952                                        getPointerTy());
1953      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1954      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1955        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1956                                  DAG.getIntPtrConstant(Offset));
1957        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1958                                     X86::GR64RegisterClass);
1959        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1960        SDValue Store =
1961          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1962                       MachinePointerInfo::getFixedStack(
1963                         FuncInfo->getRegSaveFrameIndex(), Offset),
1964                       false, false, 0);
1965        MemOps.push_back(Store);
1966        Offset += 8;
1967      }
1968
1969      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1970        // Now store the XMM (fp + vector) parameter registers.
1971        SmallVector<SDValue, 11> SaveXMMOps;
1972        SaveXMMOps.push_back(Chain);
1973
1974        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1975        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1976        SaveXMMOps.push_back(ALVal);
1977
1978        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1979                               FuncInfo->getRegSaveFrameIndex()));
1980        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1981                               FuncInfo->getVarArgsFPOffset()));
1982
1983        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1984          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
1985                                       X86::VR128RegisterClass);
1986          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1987          SaveXMMOps.push_back(Val);
1988        }
1989        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1990                                     MVT::Other,
1991                                     &SaveXMMOps[0], SaveXMMOps.size()));
1992      }
1993
1994      if (!MemOps.empty())
1995        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1996                            &MemOps[0], MemOps.size());
1997    }
1998  }
1999
2000  // Some CCs need callee pop.
2001  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, GuaranteedTailCallOpt)) {
2002    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2003  } else {
2004    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2005    // If this is an sret function, the return should pop the hidden pointer.
2006    if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
2007      FuncInfo->setBytesToPopOnReturn(4);
2008  }
2009
2010  if (!Is64Bit) {
2011    // RegSaveFrameIndex is X86-64 only.
2012    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2013    if (CallConv == CallingConv::X86_FastCall ||
2014        CallConv == CallingConv::X86_ThisCall)
2015      // fastcc functions can't have varargs.
2016      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2017  }
2018
2019  FuncInfo->setArgumentStackSize(StackSize);
2020
2021  return Chain;
2022}
2023
2024SDValue
2025X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2026                                    SDValue StackPtr, SDValue Arg,
2027                                    DebugLoc dl, SelectionDAG &DAG,
2028                                    const CCValAssign &VA,
2029                                    ISD::ArgFlagsTy Flags) const {
2030  unsigned LocMemOffset = VA.getLocMemOffset();
2031  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2032  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2033  if (Flags.isByVal())
2034    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2035
2036  return DAG.getStore(Chain, dl, Arg, PtrOff,
2037                      MachinePointerInfo::getStack(LocMemOffset),
2038                      false, false, 0);
2039}
2040
2041/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2042/// optimization is performed and it is required.
2043SDValue
2044X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2045                                           SDValue &OutRetAddr, SDValue Chain,
2046                                           bool IsTailCall, bool Is64Bit,
2047                                           int FPDiff, DebugLoc dl) const {
2048  // Adjust the Return address stack slot.
2049  EVT VT = getPointerTy();
2050  OutRetAddr = getReturnAddressFrameIndex(DAG);
2051
2052  // Load the "old" Return address.
2053  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2054                           false, false, false, 0);
2055  return SDValue(OutRetAddr.getNode(), 1);
2056}
2057
2058/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2059/// optimization is performed and it is required (FPDiff!=0).
2060static SDValue
2061EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2062                         SDValue Chain, SDValue RetAddrFrIdx,
2063                         bool Is64Bit, int FPDiff, DebugLoc dl) {
2064  // Store the return address to the appropriate stack slot.
2065  if (!FPDiff) return Chain;
2066  // Calculate the new stack slot for the return address.
2067  int SlotSize = Is64Bit ? 8 : 4;
2068  int NewReturnAddrFI =
2069    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2070  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2071  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
2072  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2073                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2074                       false, false, 0);
2075  return Chain;
2076}
2077
2078SDValue
2079X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2080                             CallingConv::ID CallConv, bool isVarArg,
2081                             bool &isTailCall,
2082                             const SmallVectorImpl<ISD::OutputArg> &Outs,
2083                             const SmallVectorImpl<SDValue> &OutVals,
2084                             const SmallVectorImpl<ISD::InputArg> &Ins,
2085                             DebugLoc dl, SelectionDAG &DAG,
2086                             SmallVectorImpl<SDValue> &InVals) const {
2087  MachineFunction &MF = DAG.getMachineFunction();
2088  bool Is64Bit        = Subtarget->is64Bit();
2089  bool IsWin64        = Subtarget->isTargetWin64();
2090  bool IsStructRet    = CallIsStructReturn(Outs);
2091  bool IsSibcall      = false;
2092
2093  if (isTailCall) {
2094    // Check if it's really possible to do a tail call.
2095    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2096                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
2097                                                   Outs, OutVals, Ins, DAG);
2098
2099    // Sibcalls are automatically detected tailcalls which do not require
2100    // ABI changes.
2101    if (!GuaranteedTailCallOpt && isTailCall)
2102      IsSibcall = true;
2103
2104    if (isTailCall)
2105      ++NumTailCalls;
2106  }
2107
2108  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2109         "Var args not supported with calling convention fastcc or ghc");
2110
2111  // Analyze operands of the call, assigning locations to each operand.
2112  SmallVector<CCValAssign, 16> ArgLocs;
2113  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2114                 ArgLocs, *DAG.getContext());
2115
2116  // Allocate shadow area for Win64
2117  if (IsWin64) {
2118    CCInfo.AllocateStack(32, 8);
2119  }
2120
2121  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2122
2123  // Get a count of how many bytes are to be pushed on the stack.
2124  unsigned NumBytes = CCInfo.getNextStackOffset();
2125  if (IsSibcall)
2126    // This is a sibcall. The memory operands are available in caller's
2127    // own caller's stack.
2128    NumBytes = 0;
2129  else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
2130    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2131
2132  int FPDiff = 0;
2133  if (isTailCall && !IsSibcall) {
2134    // Lower arguments at fp - stackoffset + fpdiff.
2135    unsigned NumBytesCallerPushed =
2136      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2137    FPDiff = NumBytesCallerPushed - NumBytes;
2138
2139    // Set the delta of movement of the returnaddr stackslot.
2140    // But only set if delta is greater than previous delta.
2141    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2142      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2143  }
2144
2145  if (!IsSibcall)
2146    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2147
2148  SDValue RetAddrFrIdx;
2149  // Load return address for tail calls.
2150  if (isTailCall && FPDiff)
2151    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2152                                    Is64Bit, FPDiff, dl);
2153
2154  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2155  SmallVector<SDValue, 8> MemOpChains;
2156  SDValue StackPtr;
2157
2158  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2159  // of tail call optimization arguments are handle later.
2160  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2161    CCValAssign &VA = ArgLocs[i];
2162    EVT RegVT = VA.getLocVT();
2163    SDValue Arg = OutVals[i];
2164    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2165    bool isByVal = Flags.isByVal();
2166
2167    // Promote the value if needed.
2168    switch (VA.getLocInfo()) {
2169    default: llvm_unreachable("Unknown loc info!");
2170    case CCValAssign::Full: break;
2171    case CCValAssign::SExt:
2172      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2173      break;
2174    case CCValAssign::ZExt:
2175      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2176      break;
2177    case CCValAssign::AExt:
2178      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2179        // Special case: passing MMX values in XMM registers.
2180        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2181        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2182        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2183      } else
2184        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2185      break;
2186    case CCValAssign::BCvt:
2187      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2188      break;
2189    case CCValAssign::Indirect: {
2190      // Store the argument.
2191      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2192      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2193      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2194                           MachinePointerInfo::getFixedStack(FI),
2195                           false, false, 0);
2196      Arg = SpillSlot;
2197      break;
2198    }
2199    }
2200
2201    if (VA.isRegLoc()) {
2202      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2203      if (isVarArg && IsWin64) {
2204        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2205        // shadow reg if callee is a varargs function.
2206        unsigned ShadowReg = 0;
2207        switch (VA.getLocReg()) {
2208        case X86::XMM0: ShadowReg = X86::RCX; break;
2209        case X86::XMM1: ShadowReg = X86::RDX; break;
2210        case X86::XMM2: ShadowReg = X86::R8; break;
2211        case X86::XMM3: ShadowReg = X86::R9; break;
2212        }
2213        if (ShadowReg)
2214          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2215      }
2216    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2217      assert(VA.isMemLoc());
2218      if (StackPtr.getNode() == 0)
2219        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2220      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2221                                             dl, DAG, VA, Flags));
2222    }
2223  }
2224
2225  if (!MemOpChains.empty())
2226    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2227                        &MemOpChains[0], MemOpChains.size());
2228
2229  // Build a sequence of copy-to-reg nodes chained together with token chain
2230  // and flag operands which copy the outgoing args into registers.
2231  SDValue InFlag;
2232  // Tail call byval lowering might overwrite argument registers so in case of
2233  // tail call optimization the copies to registers are lowered later.
2234  if (!isTailCall)
2235    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2236      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2237                               RegsToPass[i].second, InFlag);
2238      InFlag = Chain.getValue(1);
2239    }
2240
2241  if (Subtarget->isPICStyleGOT()) {
2242    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2243    // GOT pointer.
2244    if (!isTailCall) {
2245      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2246                               DAG.getNode(X86ISD::GlobalBaseReg,
2247                                           DebugLoc(), getPointerTy()),
2248                               InFlag);
2249      InFlag = Chain.getValue(1);
2250    } else {
2251      // If we are tail calling and generating PIC/GOT style code load the
2252      // address of the callee into ECX. The value in ecx is used as target of
2253      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2254      // for tail calls on PIC/GOT architectures. Normally we would just put the
2255      // address of GOT into ebx and then call target@PLT. But for tail calls
2256      // ebx would be restored (since ebx is callee saved) before jumping to the
2257      // target@PLT.
2258
2259      // Note: The actual moving to ECX is done further down.
2260      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2261      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2262          !G->getGlobal()->hasProtectedVisibility())
2263        Callee = LowerGlobalAddress(Callee, DAG);
2264      else if (isa<ExternalSymbolSDNode>(Callee))
2265        Callee = LowerExternalSymbol(Callee, DAG);
2266    }
2267  }
2268
2269  if (Is64Bit && isVarArg && !IsWin64) {
2270    // From AMD64 ABI document:
2271    // For calls that may call functions that use varargs or stdargs
2272    // (prototype-less calls or calls to functions containing ellipsis (...) in
2273    // the declaration) %al is used as hidden argument to specify the number
2274    // of SSE registers used. The contents of %al do not need to match exactly
2275    // the number of registers, but must be an ubound on the number of SSE
2276    // registers used and is in the range 0 - 8 inclusive.
2277
2278    // Count the number of XMM registers allocated.
2279    static const unsigned XMMArgRegs[] = {
2280      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2281      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2282    };
2283    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2284    assert((Subtarget->hasXMM() || !NumXMMRegs)
2285           && "SSE registers cannot be used when SSE is disabled");
2286
2287    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2288                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2289    InFlag = Chain.getValue(1);
2290  }
2291
2292
2293  // For tail calls lower the arguments to the 'real' stack slot.
2294  if (isTailCall) {
2295    // Force all the incoming stack arguments to be loaded from the stack
2296    // before any new outgoing arguments are stored to the stack, because the
2297    // outgoing stack slots may alias the incoming argument stack slots, and
2298    // the alias isn't otherwise explicit. This is slightly more conservative
2299    // than necessary, because it means that each store effectively depends
2300    // on every argument instead of just those arguments it would clobber.
2301    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2302
2303    SmallVector<SDValue, 8> MemOpChains2;
2304    SDValue FIN;
2305    int FI = 0;
2306    // Do not flag preceding copytoreg stuff together with the following stuff.
2307    InFlag = SDValue();
2308    if (GuaranteedTailCallOpt) {
2309      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2310        CCValAssign &VA = ArgLocs[i];
2311        if (VA.isRegLoc())
2312          continue;
2313        assert(VA.isMemLoc());
2314        SDValue Arg = OutVals[i];
2315        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2316        // Create frame index.
2317        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2318        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2319        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2320        FIN = DAG.getFrameIndex(FI, getPointerTy());
2321
2322        if (Flags.isByVal()) {
2323          // Copy relative to framepointer.
2324          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2325          if (StackPtr.getNode() == 0)
2326            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2327                                          getPointerTy());
2328          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2329
2330          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2331                                                           ArgChain,
2332                                                           Flags, DAG, dl));
2333        } else {
2334          // Store relative to framepointer.
2335          MemOpChains2.push_back(
2336            DAG.getStore(ArgChain, dl, Arg, FIN,
2337                         MachinePointerInfo::getFixedStack(FI),
2338                         false, false, 0));
2339        }
2340      }
2341    }
2342
2343    if (!MemOpChains2.empty())
2344      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2345                          &MemOpChains2[0], MemOpChains2.size());
2346
2347    // Copy arguments to their registers.
2348    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2349      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2350                               RegsToPass[i].second, InFlag);
2351      InFlag = Chain.getValue(1);
2352    }
2353    InFlag =SDValue();
2354
2355    // Store the return address to the appropriate stack slot.
2356    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2357                                     FPDiff, dl);
2358  }
2359
2360  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2361    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2362    // In the 64-bit large code model, we have to make all calls
2363    // through a register, since the call instruction's 32-bit
2364    // pc-relative offset may not be large enough to hold the whole
2365    // address.
2366  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2367    // If the callee is a GlobalAddress node (quite common, every direct call
2368    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2369    // it.
2370
2371    // We should use extra load for direct calls to dllimported functions in
2372    // non-JIT mode.
2373    const GlobalValue *GV = G->getGlobal();
2374    if (!GV->hasDLLImportLinkage()) {
2375      unsigned char OpFlags = 0;
2376      bool ExtraLoad = false;
2377      unsigned WrapperKind = ISD::DELETED_NODE;
2378
2379      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2380      // external symbols most go through the PLT in PIC mode.  If the symbol
2381      // has hidden or protected visibility, or if it is static or local, then
2382      // we don't need to use the PLT - we can directly call it.
2383      if (Subtarget->isTargetELF() &&
2384          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2385          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2386        OpFlags = X86II::MO_PLT;
2387      } else if (Subtarget->isPICStyleStubAny() &&
2388                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2389                 (!Subtarget->getTargetTriple().isMacOSX() ||
2390                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2391        // PC-relative references to external symbols should go through $stub,
2392        // unless we're building with the leopard linker or later, which
2393        // automatically synthesizes these stubs.
2394        OpFlags = X86II::MO_DARWIN_STUB;
2395      } else if (Subtarget->isPICStyleRIPRel() &&
2396                 isa<Function>(GV) &&
2397                 cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
2398        // If the function is marked as non-lazy, generate an indirect call
2399        // which loads from the GOT directly. This avoids runtime overhead
2400        // at the cost of eager binding (and one extra byte of encoding).
2401        OpFlags = X86II::MO_GOTPCREL;
2402        WrapperKind = X86ISD::WrapperRIP;
2403        ExtraLoad = true;
2404      }
2405
2406      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2407                                          G->getOffset(), OpFlags);
2408
2409      // Add a wrapper if needed.
2410      if (WrapperKind != ISD::DELETED_NODE)
2411        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2412      // Add extra indirection if needed.
2413      if (ExtraLoad)
2414        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2415                             MachinePointerInfo::getGOT(),
2416                             false, false, false, 0);
2417    }
2418  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2419    unsigned char OpFlags = 0;
2420
2421    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2422    // external symbols should go through the PLT.
2423    if (Subtarget->isTargetELF() &&
2424        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2425      OpFlags = X86II::MO_PLT;
2426    } else if (Subtarget->isPICStyleStubAny() &&
2427               (!Subtarget->getTargetTriple().isMacOSX() ||
2428                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2429      // PC-relative references to external symbols should go through $stub,
2430      // unless we're building with the leopard linker or later, which
2431      // automatically synthesizes these stubs.
2432      OpFlags = X86II::MO_DARWIN_STUB;
2433    }
2434
2435    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2436                                         OpFlags);
2437  }
2438
2439  // Returns a chain & a flag for retval copy to use.
2440  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2441  SmallVector<SDValue, 8> Ops;
2442
2443  if (!IsSibcall && isTailCall) {
2444    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2445                           DAG.getIntPtrConstant(0, true), InFlag);
2446    InFlag = Chain.getValue(1);
2447  }
2448
2449  Ops.push_back(Chain);
2450  Ops.push_back(Callee);
2451
2452  if (isTailCall)
2453    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2454
2455  // Add argument registers to the end of the list so that they are known live
2456  // into the call.
2457  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2458    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2459                                  RegsToPass[i].second.getValueType()));
2460
2461  // Add an implicit use GOT pointer in EBX.
2462  if (!isTailCall && Subtarget->isPICStyleGOT())
2463    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2464
2465  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2466  if (Is64Bit && isVarArg && !IsWin64)
2467    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2468
2469  if (InFlag.getNode())
2470    Ops.push_back(InFlag);
2471
2472  if (isTailCall) {
2473    // We used to do:
2474    //// If this is the first return lowered for this function, add the regs
2475    //// to the liveout set for the function.
2476    // This isn't right, although it's probably harmless on x86; liveouts
2477    // should be computed from returns not tail calls.  Consider a void
2478    // function making a tail call to a function returning int.
2479    return DAG.getNode(X86ISD::TC_RETURN, dl,
2480                       NodeTys, &Ops[0], Ops.size());
2481  }
2482
2483  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2484  InFlag = Chain.getValue(1);
2485
2486  // Create the CALLSEQ_END node.
2487  unsigned NumBytesForCalleeToPush;
2488  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, GuaranteedTailCallOpt))
2489    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2490  else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2491    // If this is a call to a struct-return function, the callee
2492    // pops the hidden struct pointer, so we have to push it back.
2493    // This is common for Darwin/X86, Linux & Mingw32 targets.
2494    NumBytesForCalleeToPush = 4;
2495  else
2496    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2497
2498  // Returns a flag for retval copy to use.
2499  if (!IsSibcall) {
2500    Chain = DAG.getCALLSEQ_END(Chain,
2501                               DAG.getIntPtrConstant(NumBytes, true),
2502                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2503                                                     true),
2504                               InFlag);
2505    InFlag = Chain.getValue(1);
2506  }
2507
2508  // Handle result values, copying them out of physregs into vregs that we
2509  // return.
2510  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2511                         Ins, dl, DAG, InVals);
2512}
2513
2514
2515//===----------------------------------------------------------------------===//
2516//                Fast Calling Convention (tail call) implementation
2517//===----------------------------------------------------------------------===//
2518
2519//  Like std call, callee cleans arguments, convention except that ECX is
2520//  reserved for storing the tail called function address. Only 2 registers are
2521//  free for argument passing (inreg). Tail call optimization is performed
2522//  provided:
2523//                * tailcallopt is enabled
2524//                * caller/callee are fastcc
2525//  On X86_64 architecture with GOT-style position independent code only local
2526//  (within module) calls are supported at the moment.
2527//  To keep the stack aligned according to platform abi the function
2528//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2529//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2530//  If a tail called function callee has more arguments than the caller the
2531//  caller needs to make sure that there is room to move the RETADDR to. This is
2532//  achieved by reserving an area the size of the argument delta right after the
2533//  original REtADDR, but before the saved framepointer or the spilled registers
2534//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2535//  stack layout:
2536//    arg1
2537//    arg2
2538//    RETADDR
2539//    [ new RETADDR
2540//      move area ]
2541//    (possible EBP)
2542//    ESI
2543//    EDI
2544//    local1 ..
2545
2546/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2547/// for a 16 byte align requirement.
2548unsigned
2549X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2550                                               SelectionDAG& DAG) const {
2551  MachineFunction &MF = DAG.getMachineFunction();
2552  const TargetMachine &TM = MF.getTarget();
2553  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2554  unsigned StackAlignment = TFI.getStackAlignment();
2555  uint64_t AlignMask = StackAlignment - 1;
2556  int64_t Offset = StackSize;
2557  uint64_t SlotSize = TD->getPointerSize();
2558  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2559    // Number smaller than 12 so just add the difference.
2560    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2561  } else {
2562    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2563    Offset = ((~AlignMask) & Offset) + StackAlignment +
2564      (StackAlignment-SlotSize);
2565  }
2566  return Offset;
2567}
2568
2569/// MatchingStackOffset - Return true if the given stack call argument is
2570/// already available in the same position (relatively) of the caller's
2571/// incoming argument stack.
2572static
2573bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2574                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2575                         const X86InstrInfo *TII) {
2576  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2577  int FI = INT_MAX;
2578  if (Arg.getOpcode() == ISD::CopyFromReg) {
2579    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2580    if (!TargetRegisterInfo::isVirtualRegister(VR))
2581      return false;
2582    MachineInstr *Def = MRI->getVRegDef(VR);
2583    if (!Def)
2584      return false;
2585    if (!Flags.isByVal()) {
2586      if (!TII->isLoadFromStackSlot(Def, FI))
2587        return false;
2588    } else {
2589      unsigned Opcode = Def->getOpcode();
2590      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2591          Def->getOperand(1).isFI()) {
2592        FI = Def->getOperand(1).getIndex();
2593        Bytes = Flags.getByValSize();
2594      } else
2595        return false;
2596    }
2597  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2598    if (Flags.isByVal())
2599      // ByVal argument is passed in as a pointer but it's now being
2600      // dereferenced. e.g.
2601      // define @foo(%struct.X* %A) {
2602      //   tail call @bar(%struct.X* byval %A)
2603      // }
2604      return false;
2605    SDValue Ptr = Ld->getBasePtr();
2606    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2607    if (!FINode)
2608      return false;
2609    FI = FINode->getIndex();
2610  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2611    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2612    FI = FINode->getIndex();
2613    Bytes = Flags.getByValSize();
2614  } else
2615    return false;
2616
2617  assert(FI != INT_MAX);
2618  if (!MFI->isFixedObjectIndex(FI))
2619    return false;
2620  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2621}
2622
2623/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2624/// for tail call optimization. Targets which want to do tail call
2625/// optimization should implement this function.
2626bool
2627X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2628                                                     CallingConv::ID CalleeCC,
2629                                                     bool isVarArg,
2630                                                     bool isCalleeStructRet,
2631                                                     bool isCallerStructRet,
2632                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2633                                    const SmallVectorImpl<SDValue> &OutVals,
2634                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2635                                                     SelectionDAG& DAG) const {
2636  if (!IsTailCallConvention(CalleeCC) &&
2637      CalleeCC != CallingConv::C)
2638    return false;
2639
2640  // If -tailcallopt is specified, make fastcc functions tail-callable.
2641  const MachineFunction &MF = DAG.getMachineFunction();
2642  const Function *CallerF = DAG.getMachineFunction().getFunction();
2643  CallingConv::ID CallerCC = CallerF->getCallingConv();
2644  bool CCMatch = CallerCC == CalleeCC;
2645
2646  if (GuaranteedTailCallOpt) {
2647    if (IsTailCallConvention(CalleeCC) && CCMatch)
2648      return true;
2649    return false;
2650  }
2651
2652  // Look for obvious safe cases to perform tail call optimization that do not
2653  // require ABI changes. This is what gcc calls sibcall.
2654
2655  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2656  // emit a special epilogue.
2657  if (RegInfo->needsStackRealignment(MF))
2658    return false;
2659
2660  // Also avoid sibcall optimization if either caller or callee uses struct
2661  // return semantics.
2662  if (isCalleeStructRet || isCallerStructRet)
2663    return false;
2664
2665  // An stdcall caller is expected to clean up its arguments; the callee
2666  // isn't going to do that.
2667  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2668    return false;
2669
2670  // Do not sibcall optimize vararg calls unless all arguments are passed via
2671  // registers.
2672  if (isVarArg && !Outs.empty()) {
2673
2674    // Optimizing for varargs on Win64 is unlikely to be safe without
2675    // additional testing.
2676    if (Subtarget->isTargetWin64())
2677      return false;
2678
2679    SmallVector<CCValAssign, 16> ArgLocs;
2680    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2681		   getTargetMachine(), ArgLocs, *DAG.getContext());
2682
2683    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2684    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2685      if (!ArgLocs[i].isRegLoc())
2686        return false;
2687  }
2688
2689  // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2690  // Therefore if it's not used by the call it is not safe to optimize this into
2691  // a sibcall.
2692  bool Unused = false;
2693  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2694    if (!Ins[i].Used) {
2695      Unused = true;
2696      break;
2697    }
2698  }
2699  if (Unused) {
2700    SmallVector<CCValAssign, 16> RVLocs;
2701    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2702		   getTargetMachine(), RVLocs, *DAG.getContext());
2703    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2704    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2705      CCValAssign &VA = RVLocs[i];
2706      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2707        return false;
2708    }
2709  }
2710
2711  // If the calling conventions do not match, then we'd better make sure the
2712  // results are returned in the same way as what the caller expects.
2713  if (!CCMatch) {
2714    SmallVector<CCValAssign, 16> RVLocs1;
2715    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2716		    getTargetMachine(), RVLocs1, *DAG.getContext());
2717    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2718
2719    SmallVector<CCValAssign, 16> RVLocs2;
2720    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2721		    getTargetMachine(), RVLocs2, *DAG.getContext());
2722    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2723
2724    if (RVLocs1.size() != RVLocs2.size())
2725      return false;
2726    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2727      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2728        return false;
2729      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2730        return false;
2731      if (RVLocs1[i].isRegLoc()) {
2732        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2733          return false;
2734      } else {
2735        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2736          return false;
2737      }
2738    }
2739  }
2740
2741  // If the callee takes no arguments then go on to check the results of the
2742  // call.
2743  if (!Outs.empty()) {
2744    // Check if stack adjustment is needed. For now, do not do this if any
2745    // argument is passed on the stack.
2746    SmallVector<CCValAssign, 16> ArgLocs;
2747    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2748		   getTargetMachine(), ArgLocs, *DAG.getContext());
2749
2750    // Allocate shadow area for Win64
2751    if (Subtarget->isTargetWin64()) {
2752      CCInfo.AllocateStack(32, 8);
2753    }
2754
2755    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2756    if (CCInfo.getNextStackOffset()) {
2757      MachineFunction &MF = DAG.getMachineFunction();
2758      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2759        return false;
2760
2761      // Check if the arguments are already laid out in the right way as
2762      // the caller's fixed stack objects.
2763      MachineFrameInfo *MFI = MF.getFrameInfo();
2764      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2765      const X86InstrInfo *TII =
2766        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2767      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2768        CCValAssign &VA = ArgLocs[i];
2769        SDValue Arg = OutVals[i];
2770        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2771        if (VA.getLocInfo() == CCValAssign::Indirect)
2772          return false;
2773        if (!VA.isRegLoc()) {
2774          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2775                                   MFI, MRI, TII))
2776            return false;
2777        }
2778      }
2779    }
2780
2781    // If the tailcall address may be in a register, then make sure it's
2782    // possible to register allocate for it. In 32-bit, the call address can
2783    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2784    // callee-saved registers are restored. These happen to be the same
2785    // registers used to pass 'inreg' arguments so watch out for those.
2786    if (!Subtarget->is64Bit() &&
2787        !isa<GlobalAddressSDNode>(Callee) &&
2788        !isa<ExternalSymbolSDNode>(Callee)) {
2789      unsigned NumInRegs = 0;
2790      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2791        CCValAssign &VA = ArgLocs[i];
2792        if (!VA.isRegLoc())
2793          continue;
2794        unsigned Reg = VA.getLocReg();
2795        switch (Reg) {
2796        default: break;
2797        case X86::EAX: case X86::EDX: case X86::ECX:
2798          if (++NumInRegs == 3)
2799            return false;
2800          break;
2801        }
2802      }
2803    }
2804  }
2805
2806  return true;
2807}
2808
2809FastISel *
2810X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2811  return X86::createFastISel(funcInfo);
2812}
2813
2814
2815//===----------------------------------------------------------------------===//
2816//                           Other Lowering Hooks
2817//===----------------------------------------------------------------------===//
2818
2819static bool MayFoldLoad(SDValue Op) {
2820  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2821}
2822
2823static bool MayFoldIntoStore(SDValue Op) {
2824  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2825}
2826
2827static bool isTargetShuffle(unsigned Opcode) {
2828  switch(Opcode) {
2829  default: return false;
2830  case X86ISD::PSHUFD:
2831  case X86ISD::PSHUFHW:
2832  case X86ISD::PSHUFLW:
2833  case X86ISD::SHUFPD:
2834  case X86ISD::PALIGN:
2835  case X86ISD::SHUFPS:
2836  case X86ISD::MOVLHPS:
2837  case X86ISD::MOVLHPD:
2838  case X86ISD::MOVHLPS:
2839  case X86ISD::MOVLPS:
2840  case X86ISD::MOVLPD:
2841  case X86ISD::MOVSHDUP:
2842  case X86ISD::MOVSLDUP:
2843  case X86ISD::MOVDDUP:
2844  case X86ISD::MOVSS:
2845  case X86ISD::MOVSD:
2846  case X86ISD::UNPCKLPS:
2847  case X86ISD::UNPCKLPD:
2848  case X86ISD::VUNPCKLPSY:
2849  case X86ISD::VUNPCKLPDY:
2850  case X86ISD::PUNPCKLWD:
2851  case X86ISD::PUNPCKLBW:
2852  case X86ISD::PUNPCKLDQ:
2853  case X86ISD::PUNPCKLQDQ:
2854  case X86ISD::UNPCKHPS:
2855  case X86ISD::UNPCKHPD:
2856  case X86ISD::VUNPCKHPSY:
2857  case X86ISD::VUNPCKHPDY:
2858  case X86ISD::PUNPCKHWD:
2859  case X86ISD::PUNPCKHBW:
2860  case X86ISD::PUNPCKHDQ:
2861  case X86ISD::PUNPCKHQDQ:
2862  case X86ISD::VPERMILPS:
2863  case X86ISD::VPERMILPSY:
2864  case X86ISD::VPERMILPD:
2865  case X86ISD::VPERMILPDY:
2866  case X86ISD::VPERM2F128:
2867    return true;
2868  }
2869  return false;
2870}
2871
2872static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2873                                               SDValue V1, SelectionDAG &DAG) {
2874  switch(Opc) {
2875  default: llvm_unreachable("Unknown x86 shuffle node");
2876  case X86ISD::MOVSHDUP:
2877  case X86ISD::MOVSLDUP:
2878  case X86ISD::MOVDDUP:
2879    return DAG.getNode(Opc, dl, VT, V1);
2880  }
2881
2882  return SDValue();
2883}
2884
2885static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2886                          SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2887  switch(Opc) {
2888  default: llvm_unreachable("Unknown x86 shuffle node");
2889  case X86ISD::PSHUFD:
2890  case X86ISD::PSHUFHW:
2891  case X86ISD::PSHUFLW:
2892  case X86ISD::VPERMILPS:
2893  case X86ISD::VPERMILPSY:
2894  case X86ISD::VPERMILPD:
2895  case X86ISD::VPERMILPDY:
2896    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2897  }
2898
2899  return SDValue();
2900}
2901
2902static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2903               SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2904  switch(Opc) {
2905  default: llvm_unreachable("Unknown x86 shuffle node");
2906  case X86ISD::PALIGN:
2907  case X86ISD::SHUFPD:
2908  case X86ISD::SHUFPS:
2909  case X86ISD::VPERM2F128:
2910    return DAG.getNode(Opc, dl, VT, V1, V2,
2911                       DAG.getConstant(TargetMask, MVT::i8));
2912  }
2913  return SDValue();
2914}
2915
2916static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2917                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2918  switch(Opc) {
2919  default: llvm_unreachable("Unknown x86 shuffle node");
2920  case X86ISD::MOVLHPS:
2921  case X86ISD::MOVLHPD:
2922  case X86ISD::MOVHLPS:
2923  case X86ISD::MOVLPS:
2924  case X86ISD::MOVLPD:
2925  case X86ISD::MOVSS:
2926  case X86ISD::MOVSD:
2927  case X86ISD::UNPCKLPS:
2928  case X86ISD::UNPCKLPD:
2929  case X86ISD::VUNPCKLPSY:
2930  case X86ISD::VUNPCKLPDY:
2931  case X86ISD::PUNPCKLWD:
2932  case X86ISD::PUNPCKLBW:
2933  case X86ISD::PUNPCKLDQ:
2934  case X86ISD::PUNPCKLQDQ:
2935  case X86ISD::UNPCKHPS:
2936  case X86ISD::UNPCKHPD:
2937  case X86ISD::VUNPCKHPSY:
2938  case X86ISD::VUNPCKHPDY:
2939  case X86ISD::PUNPCKHWD:
2940  case X86ISD::PUNPCKHBW:
2941  case X86ISD::PUNPCKHDQ:
2942  case X86ISD::PUNPCKHQDQ:
2943    return DAG.getNode(Opc, dl, VT, V1, V2);
2944  }
2945  return SDValue();
2946}
2947
2948SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2949  MachineFunction &MF = DAG.getMachineFunction();
2950  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2951  int ReturnAddrIndex = FuncInfo->getRAIndex();
2952
2953  if (ReturnAddrIndex == 0) {
2954    // Set up a frame object for the return address.
2955    uint64_t SlotSize = TD->getPointerSize();
2956    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2957                                                           false);
2958    FuncInfo->setRAIndex(ReturnAddrIndex);
2959  }
2960
2961  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2962}
2963
2964
2965bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2966                                       bool hasSymbolicDisplacement) {
2967  // Offset should fit into 32 bit immediate field.
2968  if (!isInt<32>(Offset))
2969    return false;
2970
2971  // If we don't have a symbolic displacement - we don't have any extra
2972  // restrictions.
2973  if (!hasSymbolicDisplacement)
2974    return true;
2975
2976  // FIXME: Some tweaks might be needed for medium code model.
2977  if (M != CodeModel::Small && M != CodeModel::Kernel)
2978    return false;
2979
2980  // For small code model we assume that latest object is 16MB before end of 31
2981  // bits boundary. We may also accept pretty large negative constants knowing
2982  // that all objects are in the positive half of address space.
2983  if (M == CodeModel::Small && Offset < 16*1024*1024)
2984    return true;
2985
2986  // For kernel code model we know that all object resist in the negative half
2987  // of 32bits address space. We may not accept negative offsets, since they may
2988  // be just off and we may accept pretty large positive ones.
2989  if (M == CodeModel::Kernel && Offset > 0)
2990    return true;
2991
2992  return false;
2993}
2994
2995/// isCalleePop - Determines whether the callee is required to pop its
2996/// own arguments. Callee pop is necessary to support tail calls.
2997bool X86::isCalleePop(CallingConv::ID CallingConv,
2998                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
2999  if (IsVarArg)
3000    return false;
3001
3002  switch (CallingConv) {
3003  default:
3004    return false;
3005  case CallingConv::X86_StdCall:
3006    return !is64Bit;
3007  case CallingConv::X86_FastCall:
3008    return !is64Bit;
3009  case CallingConv::X86_ThisCall:
3010    return !is64Bit;
3011  case CallingConv::Fast:
3012    return TailCallOpt;
3013  case CallingConv::GHC:
3014    return TailCallOpt;
3015  }
3016}
3017
3018/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3019/// specific condition code, returning the condition code and the LHS/RHS of the
3020/// comparison to make.
3021static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3022                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3023  if (!isFP) {
3024    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3025      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3026        // X > -1   -> X == 0, jump !sign.
3027        RHS = DAG.getConstant(0, RHS.getValueType());
3028        return X86::COND_NS;
3029      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3030        // X < 0   -> X == 0, jump on sign.
3031        return X86::COND_S;
3032      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3033        // X < 1   -> X <= 0
3034        RHS = DAG.getConstant(0, RHS.getValueType());
3035        return X86::COND_LE;
3036      }
3037    }
3038
3039    switch (SetCCOpcode) {
3040    default: llvm_unreachable("Invalid integer condition!");
3041    case ISD::SETEQ:  return X86::COND_E;
3042    case ISD::SETGT:  return X86::COND_G;
3043    case ISD::SETGE:  return X86::COND_GE;
3044    case ISD::SETLT:  return X86::COND_L;
3045    case ISD::SETLE:  return X86::COND_LE;
3046    case ISD::SETNE:  return X86::COND_NE;
3047    case ISD::SETULT: return X86::COND_B;
3048    case ISD::SETUGT: return X86::COND_A;
3049    case ISD::SETULE: return X86::COND_BE;
3050    case ISD::SETUGE: return X86::COND_AE;
3051    }
3052  }
3053
3054  // First determine if it is required or is profitable to flip the operands.
3055
3056  // If LHS is a foldable load, but RHS is not, flip the condition.
3057  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3058      !ISD::isNON_EXTLoad(RHS.getNode())) {
3059    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3060    std::swap(LHS, RHS);
3061  }
3062
3063  switch (SetCCOpcode) {
3064  default: break;
3065  case ISD::SETOLT:
3066  case ISD::SETOLE:
3067  case ISD::SETUGT:
3068  case ISD::SETUGE:
3069    std::swap(LHS, RHS);
3070    break;
3071  }
3072
3073  // On a floating point condition, the flags are set as follows:
3074  // ZF  PF  CF   op
3075  //  0 | 0 | 0 | X > Y
3076  //  0 | 0 | 1 | X < Y
3077  //  1 | 0 | 0 | X == Y
3078  //  1 | 1 | 1 | unordered
3079  switch (SetCCOpcode) {
3080  default: llvm_unreachable("Condcode should be pre-legalized away");
3081  case ISD::SETUEQ:
3082  case ISD::SETEQ:   return X86::COND_E;
3083  case ISD::SETOLT:              // flipped
3084  case ISD::SETOGT:
3085  case ISD::SETGT:   return X86::COND_A;
3086  case ISD::SETOLE:              // flipped
3087  case ISD::SETOGE:
3088  case ISD::SETGE:   return X86::COND_AE;
3089  case ISD::SETUGT:              // flipped
3090  case ISD::SETULT:
3091  case ISD::SETLT:   return X86::COND_B;
3092  case ISD::SETUGE:              // flipped
3093  case ISD::SETULE:
3094  case ISD::SETLE:   return X86::COND_BE;
3095  case ISD::SETONE:
3096  case ISD::SETNE:   return X86::COND_NE;
3097  case ISD::SETUO:   return X86::COND_P;
3098  case ISD::SETO:    return X86::COND_NP;
3099  case ISD::SETOEQ:
3100  case ISD::SETUNE:  return X86::COND_INVALID;
3101  }
3102}
3103
3104/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3105/// code. Current x86 isa includes the following FP cmov instructions:
3106/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3107static bool hasFPCMov(unsigned X86CC) {
3108  switch (X86CC) {
3109  default:
3110    return false;
3111  case X86::COND_B:
3112  case X86::COND_BE:
3113  case X86::COND_E:
3114  case X86::COND_P:
3115  case X86::COND_A:
3116  case X86::COND_AE:
3117  case X86::COND_NE:
3118  case X86::COND_NP:
3119    return true;
3120  }
3121}
3122
3123/// isFPImmLegal - Returns true if the target can instruction select the
3124/// specified FP immediate natively. If false, the legalizer will
3125/// materialize the FP immediate as a load from a constant pool.
3126bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3127  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3128    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3129      return true;
3130  }
3131  return false;
3132}
3133
3134/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3135/// the specified range (L, H].
3136static bool isUndefOrInRange(int Val, int Low, int Hi) {
3137  return (Val < 0) || (Val >= Low && Val < Hi);
3138}
3139
3140/// isUndefOrInRange - Return true if every element in Mask, begining
3141/// from position Pos and ending in Pos+Size, falls within the specified
3142/// range (L, L+Pos]. or is undef.
3143static bool isUndefOrInRange(const SmallVectorImpl<int> &Mask,
3144                             int Pos, int Size, int Low, int Hi) {
3145  for (int i = Pos, e = Pos+Size; i != e; ++i)
3146    if (!isUndefOrInRange(Mask[i], Low, Hi))
3147      return false;
3148  return true;
3149}
3150
3151/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3152/// specified value.
3153static bool isUndefOrEqual(int Val, int CmpVal) {
3154  if (Val < 0 || Val == CmpVal)
3155    return true;
3156  return false;
3157}
3158
3159/// isSequentialOrUndefInRange - Return true if every element in Mask, begining
3160/// from position Pos and ending in Pos+Size, falls within the specified
3161/// sequential range (L, L+Pos]. or is undef.
3162static bool isSequentialOrUndefInRange(const SmallVectorImpl<int> &Mask,
3163                                       int Pos, int Size, int Low) {
3164  for (int i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3165    if (!isUndefOrEqual(Mask[i], Low))
3166      return false;
3167  return true;
3168}
3169
3170/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3171/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3172/// the second operand.
3173static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3174  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3175    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3176  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3177    return (Mask[0] < 2 && Mask[1] < 2);
3178  return false;
3179}
3180
3181bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
3182  SmallVector<int, 8> M;
3183  N->getMask(M);
3184  return ::isPSHUFDMask(M, N->getValueType(0));
3185}
3186
3187/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3188/// is suitable for input to PSHUFHW.
3189static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3190  if (VT != MVT::v8i16)
3191    return false;
3192
3193  // Lower quadword copied in order or undef.
3194  for (int i = 0; i != 4; ++i)
3195    if (Mask[i] >= 0 && Mask[i] != i)
3196      return false;
3197
3198  // Upper quadword shuffled.
3199  for (int i = 4; i != 8; ++i)
3200    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
3201      return false;
3202
3203  return true;
3204}
3205
3206bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
3207  SmallVector<int, 8> M;
3208  N->getMask(M);
3209  return ::isPSHUFHWMask(M, N->getValueType(0));
3210}
3211
3212/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3213/// is suitable for input to PSHUFLW.
3214static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3215  if (VT != MVT::v8i16)
3216    return false;
3217
3218  // Upper quadword copied in order.
3219  for (int i = 4; i != 8; ++i)
3220    if (Mask[i] >= 0 && Mask[i] != i)
3221      return false;
3222
3223  // Lower quadword shuffled.
3224  for (int i = 0; i != 4; ++i)
3225    if (Mask[i] >= 4)
3226      return false;
3227
3228  return true;
3229}
3230
3231bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
3232  SmallVector<int, 8> M;
3233  N->getMask(M);
3234  return ::isPSHUFLWMask(M, N->getValueType(0));
3235}
3236
3237/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3238/// is suitable for input to PALIGNR.
3239static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
3240                          bool hasSSSE3OrAVX) {
3241  int i, e = VT.getVectorNumElements();
3242  if (VT.getSizeInBits() != 128 && VT.getSizeInBits() != 64)
3243    return false;
3244
3245  // Do not handle v2i64 / v2f64 shuffles with palignr.
3246  if (e < 4 || !hasSSSE3OrAVX)
3247    return false;
3248
3249  for (i = 0; i != e; ++i)
3250    if (Mask[i] >= 0)
3251      break;
3252
3253  // All undef, not a palignr.
3254  if (i == e)
3255    return false;
3256
3257  // Make sure we're shifting in the right direction.
3258  if (Mask[i] <= i)
3259    return false;
3260
3261  int s = Mask[i] - i;
3262
3263  // Check the rest of the elements to see if they are consecutive.
3264  for (++i; i != e; ++i) {
3265    int m = Mask[i];
3266    if (m >= 0 && m != s+i)
3267      return false;
3268  }
3269  return true;
3270}
3271
3272/// isVSHUFPSYMask - Return true if the specified VECTOR_SHUFFLE operand
3273/// specifies a shuffle of elements that is suitable for input to 256-bit
3274/// VSHUFPSY.
3275static bool isVSHUFPSYMask(const SmallVectorImpl<int> &Mask, EVT VT,
3276                          const X86Subtarget *Subtarget) {
3277  int NumElems = VT.getVectorNumElements();
3278
3279  if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256)
3280    return false;
3281
3282  if (NumElems != 8)
3283    return false;
3284
3285  // VSHUFPSY divides the resulting vector into 4 chunks.
3286  // The sources are also splitted into 4 chunks, and each destination
3287  // chunk must come from a different source chunk.
3288  //
3289  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3290  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3291  //
3292  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3293  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3294  //
3295  int QuarterSize = NumElems/4;
3296  int HalfSize = QuarterSize*2;
3297  for (int i = 0; i < QuarterSize; ++i)
3298    if (!isUndefOrInRange(Mask[i], 0, HalfSize))
3299      return false;
3300  for (int i = QuarterSize; i < QuarterSize*2; ++i)
3301    if (!isUndefOrInRange(Mask[i], NumElems, NumElems+HalfSize))
3302      return false;
3303
3304  // The mask of the second half must be the same as the first but with
3305  // the appropriate offsets. This works in the same way as VPERMILPS
3306  // works with masks.
3307  for (int i = QuarterSize*2; i < QuarterSize*3; ++i) {
3308    if (!isUndefOrInRange(Mask[i], HalfSize, NumElems))
3309      return false;
3310    int FstHalfIdx = i-HalfSize;
3311    if (Mask[FstHalfIdx] < 0)
3312      continue;
3313    if (!isUndefOrEqual(Mask[i], Mask[FstHalfIdx]+HalfSize))
3314      return false;
3315  }
3316  for (int i = QuarterSize*3; i < NumElems; ++i) {
3317    if (!isUndefOrInRange(Mask[i], NumElems+HalfSize, NumElems*2))
3318      return false;
3319    int FstHalfIdx = i-HalfSize;
3320    if (Mask[FstHalfIdx] < 0)
3321      continue;
3322    if (!isUndefOrEqual(Mask[i], Mask[FstHalfIdx]+HalfSize))
3323      return false;
3324
3325  }
3326
3327  return true;
3328}
3329
3330/// getShuffleVSHUFPSYImmediate - Return the appropriate immediate to shuffle
3331/// the specified VECTOR_MASK mask with VSHUFPSY instruction.
3332static unsigned getShuffleVSHUFPSYImmediate(SDNode *N) {
3333  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3334  EVT VT = SVOp->getValueType(0);
3335  int NumElems = VT.getVectorNumElements();
3336
3337  assert(NumElems == 8 && VT.getSizeInBits() == 256 &&
3338         "Only supports v8i32 and v8f32 types");
3339
3340  int HalfSize = NumElems/2;
3341  unsigned Mask = 0;
3342  for (int i = 0; i != NumElems ; ++i) {
3343    if (SVOp->getMaskElt(i) < 0)
3344      continue;
3345    // The mask of the first half must be equal to the second one.
3346    unsigned Shamt = (i%HalfSize)*2;
3347    unsigned Elt = SVOp->getMaskElt(i) % HalfSize;
3348    Mask |= Elt << Shamt;
3349  }
3350
3351  return Mask;
3352}
3353
3354/// isVSHUFPDYMask - Return true if the specified VECTOR_SHUFFLE operand
3355/// specifies a shuffle of elements that is suitable for input to 256-bit
3356/// VSHUFPDY. This shuffle doesn't have the same restriction as the PS
3357/// version and the mask of the second half isn't binded with the first
3358/// one.
3359static bool isVSHUFPDYMask(const SmallVectorImpl<int> &Mask, EVT VT,
3360                           const X86Subtarget *Subtarget) {
3361  int NumElems = VT.getVectorNumElements();
3362
3363  if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256)
3364    return false;
3365
3366  if (NumElems != 4)
3367    return false;
3368
3369  // VSHUFPSY divides the resulting vector into 4 chunks.
3370  // The sources are also splitted into 4 chunks, and each destination
3371  // chunk must come from a different source chunk.
3372  //
3373  //  SRC1 =>      X3       X2       X1       X0
3374  //  SRC2 =>      Y3       Y2       Y1       Y0
3375  //
3376  //  DST  =>  Y2..Y3,  X2..X3,  Y1..Y0,  X1..X0
3377  //
3378  int QuarterSize = NumElems/4;
3379  int HalfSize = QuarterSize*2;
3380  for (int i = 0; i < QuarterSize; ++i)
3381    if (!isUndefOrInRange(Mask[i], 0, HalfSize))
3382      return false;
3383  for (int i = QuarterSize; i < QuarterSize*2; ++i)
3384    if (!isUndefOrInRange(Mask[i], NumElems, NumElems+HalfSize))
3385      return false;
3386  for (int i = QuarterSize*2; i < QuarterSize*3; ++i)
3387    if (!isUndefOrInRange(Mask[i], HalfSize, NumElems))
3388      return false;
3389  for (int i = QuarterSize*3; i < NumElems; ++i)
3390    if (!isUndefOrInRange(Mask[i], NumElems+HalfSize, NumElems*2))
3391      return false;
3392
3393  return true;
3394}
3395
3396/// getShuffleVSHUFPDYImmediate - Return the appropriate immediate to shuffle
3397/// the specified VECTOR_MASK mask with VSHUFPDY instruction.
3398static unsigned getShuffleVSHUFPDYImmediate(SDNode *N) {
3399  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3400  EVT VT = SVOp->getValueType(0);
3401  int NumElems = VT.getVectorNumElements();
3402
3403  assert(NumElems == 4 && VT.getSizeInBits() == 256 &&
3404         "Only supports v4i64 and v4f64 types");
3405
3406  int HalfSize = NumElems/2;
3407  unsigned Mask = 0;
3408  for (int i = 0; i != NumElems ; ++i) {
3409    if (SVOp->getMaskElt(i) < 0)
3410      continue;
3411    int Elt = SVOp->getMaskElt(i) % HalfSize;
3412    Mask |= Elt << i;
3413  }
3414
3415  return Mask;
3416}
3417
3418/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3419/// specifies a shuffle of elements that is suitable for input to 128-bit
3420/// SHUFPS and SHUFPD.
3421static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3422  int NumElems = VT.getVectorNumElements();
3423
3424  if (VT.getSizeInBits() != 128)
3425    return false;
3426
3427  if (NumElems != 2 && NumElems != 4)
3428    return false;
3429
3430  int Half = NumElems / 2;
3431  for (int i = 0; i < Half; ++i)
3432    if (!isUndefOrInRange(Mask[i], 0, NumElems))
3433      return false;
3434  for (int i = Half; i < NumElems; ++i)
3435    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3436      return false;
3437
3438  return true;
3439}
3440
3441bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
3442  SmallVector<int, 8> M;
3443  N->getMask(M);
3444  return ::isSHUFPMask(M, N->getValueType(0));
3445}
3446
3447/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
3448/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
3449/// half elements to come from vector 1 (which would equal the dest.) and
3450/// the upper half to come from vector 2.
3451static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3452  int NumElems = VT.getVectorNumElements();
3453
3454  if (NumElems != 2 && NumElems != 4)
3455    return false;
3456
3457  int Half = NumElems / 2;
3458  for (int i = 0; i < Half; ++i)
3459    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3460      return false;
3461  for (int i = Half; i < NumElems; ++i)
3462    if (!isUndefOrInRange(Mask[i], 0, NumElems))
3463      return false;
3464  return true;
3465}
3466
3467static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
3468  SmallVector<int, 8> M;
3469  N->getMask(M);
3470  return isCommutedSHUFPMask(M, N->getValueType(0));
3471}
3472
3473/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3474/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3475bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
3476  EVT VT = N->getValueType(0);
3477  unsigned NumElems = VT.getVectorNumElements();
3478
3479  if (VT.getSizeInBits() != 128)
3480    return false;
3481
3482  if (NumElems != 4)
3483    return false;
3484
3485  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3486  return isUndefOrEqual(N->getMaskElt(0), 6) &&
3487         isUndefOrEqual(N->getMaskElt(1), 7) &&
3488         isUndefOrEqual(N->getMaskElt(2), 2) &&
3489         isUndefOrEqual(N->getMaskElt(3), 3);
3490}
3491
3492/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3493/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3494/// <2, 3, 2, 3>
3495bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
3496  EVT VT = N->getValueType(0);
3497  unsigned NumElems = VT.getVectorNumElements();
3498
3499  if (VT.getSizeInBits() != 128)
3500    return false;
3501
3502  if (NumElems != 4)
3503    return false;
3504
3505  return isUndefOrEqual(N->getMaskElt(0), 2) &&
3506         isUndefOrEqual(N->getMaskElt(1), 3) &&
3507         isUndefOrEqual(N->getMaskElt(2), 2) &&
3508         isUndefOrEqual(N->getMaskElt(3), 3);
3509}
3510
3511/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3512/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3513bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
3514  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3515
3516  if (NumElems != 2 && NumElems != 4)
3517    return false;
3518
3519  for (unsigned i = 0; i < NumElems/2; ++i)
3520    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
3521      return false;
3522
3523  for (unsigned i = NumElems/2; i < NumElems; ++i)
3524    if (!isUndefOrEqual(N->getMaskElt(i), i))
3525      return false;
3526
3527  return true;
3528}
3529
3530/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3531/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3532bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
3533  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3534
3535  if ((NumElems != 2 && NumElems != 4)
3536      || N->getValueType(0).getSizeInBits() > 128)
3537    return false;
3538
3539  for (unsigned i = 0; i < NumElems/2; ++i)
3540    if (!isUndefOrEqual(N->getMaskElt(i), i))
3541      return false;
3542
3543  for (unsigned i = 0; i < NumElems/2; ++i)
3544    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3545      return false;
3546
3547  return true;
3548}
3549
3550/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3551/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3552static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3553                         bool V2IsSplat = false) {
3554  int NumElts = VT.getVectorNumElements();
3555
3556  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3557         "Unsupported vector type for unpckh");
3558
3559  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8)
3560    return false;
3561
3562  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3563  // independently on 128-bit lanes.
3564  unsigned NumLanes = VT.getSizeInBits()/128;
3565  unsigned NumLaneElts = NumElts/NumLanes;
3566
3567  unsigned Start = 0;
3568  unsigned End = NumLaneElts;
3569  for (unsigned s = 0; s < NumLanes; ++s) {
3570    for (unsigned i = Start, j = s * NumLaneElts;
3571         i != End;
3572         i += 2, ++j) {
3573      int BitI  = Mask[i];
3574      int BitI1 = Mask[i+1];
3575      if (!isUndefOrEqual(BitI, j))
3576        return false;
3577      if (V2IsSplat) {
3578        if (!isUndefOrEqual(BitI1, NumElts))
3579          return false;
3580      } else {
3581        if (!isUndefOrEqual(BitI1, j + NumElts))
3582          return false;
3583      }
3584    }
3585    // Process the next 128 bits.
3586    Start += NumLaneElts;
3587    End += NumLaneElts;
3588  }
3589
3590  return true;
3591}
3592
3593bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3594  SmallVector<int, 8> M;
3595  N->getMask(M);
3596  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
3597}
3598
3599/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3600/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3601static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
3602                         bool V2IsSplat = false) {
3603  int NumElts = VT.getVectorNumElements();
3604
3605  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3606         "Unsupported vector type for unpckh");
3607
3608  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8)
3609    return false;
3610
3611  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3612  // independently on 128-bit lanes.
3613  unsigned NumLanes = VT.getSizeInBits()/128;
3614  unsigned NumLaneElts = NumElts/NumLanes;
3615
3616  unsigned Start = 0;
3617  unsigned End = NumLaneElts;
3618  for (unsigned l = 0; l != NumLanes; ++l) {
3619    for (unsigned i = Start, j = (l*NumLaneElts)+NumLaneElts/2;
3620                             i != End; i += 2, ++j) {
3621      int BitI  = Mask[i];
3622      int BitI1 = Mask[i+1];
3623      if (!isUndefOrEqual(BitI, j))
3624        return false;
3625      if (V2IsSplat) {
3626        if (isUndefOrEqual(BitI1, NumElts))
3627          return false;
3628      } else {
3629        if (!isUndefOrEqual(BitI1, j+NumElts))
3630          return false;
3631      }
3632    }
3633    // Process the next 128 bits.
3634    Start += NumLaneElts;
3635    End += NumLaneElts;
3636  }
3637  return true;
3638}
3639
3640bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3641  SmallVector<int, 8> M;
3642  N->getMask(M);
3643  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
3644}
3645
3646/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3647/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3648/// <0, 0, 1, 1>
3649static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3650  int NumElems = VT.getVectorNumElements();
3651  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3652    return false;
3653
3654  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3655  // FIXME: Need a better way to get rid of this, there's no latency difference
3656  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3657  // the former later. We should also remove the "_undef" special mask.
3658  if (NumElems == 4 && VT.getSizeInBits() == 256)
3659    return false;
3660
3661  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3662  // independently on 128-bit lanes.
3663  unsigned NumLanes = VT.getSizeInBits() / 128;
3664  unsigned NumLaneElts = NumElems / NumLanes;
3665
3666  for (unsigned s = 0; s < NumLanes; ++s) {
3667    for (unsigned i = s * NumLaneElts, j = s * NumLaneElts;
3668         i != NumLaneElts * (s + 1);
3669         i += 2, ++j) {
3670      int BitI  = Mask[i];
3671      int BitI1 = Mask[i+1];
3672
3673      if (!isUndefOrEqual(BitI, j))
3674        return false;
3675      if (!isUndefOrEqual(BitI1, j))
3676        return false;
3677    }
3678  }
3679
3680  return true;
3681}
3682
3683bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
3684  SmallVector<int, 8> M;
3685  N->getMask(M);
3686  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
3687}
3688
3689/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3690/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3691/// <2, 2, 3, 3>
3692static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3693  int NumElems = VT.getVectorNumElements();
3694  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3695    return false;
3696
3697  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
3698    int BitI  = Mask[i];
3699    int BitI1 = Mask[i+1];
3700    if (!isUndefOrEqual(BitI, j))
3701      return false;
3702    if (!isUndefOrEqual(BitI1, j))
3703      return false;
3704  }
3705  return true;
3706}
3707
3708bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
3709  SmallVector<int, 8> M;
3710  N->getMask(M);
3711  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
3712}
3713
3714/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3715/// specifies a shuffle of elements that is suitable for input to MOVSS,
3716/// MOVSD, and MOVD, i.e. setting the lowest element.
3717static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3718  if (VT.getVectorElementType().getSizeInBits() < 32)
3719    return false;
3720
3721  int NumElts = VT.getVectorNumElements();
3722
3723  if (!isUndefOrEqual(Mask[0], NumElts))
3724    return false;
3725
3726  for (int i = 1; i < NumElts; ++i)
3727    if (!isUndefOrEqual(Mask[i], i))
3728      return false;
3729
3730  return true;
3731}
3732
3733bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3734  SmallVector<int, 8> M;
3735  N->getMask(M);
3736  return ::isMOVLMask(M, N->getValueType(0));
3737}
3738
3739/// isVPERM2F128Mask - Match 256-bit shuffles where the elements are considered
3740/// as permutations between 128-bit chunks or halves. As an example: this
3741/// shuffle bellow:
3742///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3743/// The first half comes from the second half of V1 and the second half from the
3744/// the second half of V2.
3745static bool isVPERM2F128Mask(const SmallVectorImpl<int> &Mask, EVT VT,
3746                             const X86Subtarget *Subtarget) {
3747  if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256)
3748    return false;
3749
3750  // The shuffle result is divided into half A and half B. In total the two
3751  // sources have 4 halves, namely: C, D, E, F. The final values of A and
3752  // B must come from C, D, E or F.
3753  int HalfSize = VT.getVectorNumElements()/2;
3754  bool MatchA = false, MatchB = false;
3755
3756  // Check if A comes from one of C, D, E, F.
3757  for (int Half = 0; Half < 4; ++Half) {
3758    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3759      MatchA = true;
3760      break;
3761    }
3762  }
3763
3764  // Check if B comes from one of C, D, E, F.
3765  for (int Half = 0; Half < 4; ++Half) {
3766    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3767      MatchB = true;
3768      break;
3769    }
3770  }
3771
3772  return MatchA && MatchB;
3773}
3774
3775/// getShuffleVPERM2F128Immediate - Return the appropriate immediate to shuffle
3776/// the specified VECTOR_MASK mask with VPERM2F128 instructions.
3777static unsigned getShuffleVPERM2F128Immediate(SDNode *N) {
3778  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3779  EVT VT = SVOp->getValueType(0);
3780
3781  int HalfSize = VT.getVectorNumElements()/2;
3782
3783  int FstHalf = 0, SndHalf = 0;
3784  for (int i = 0; i < HalfSize; ++i) {
3785    if (SVOp->getMaskElt(i) > 0) {
3786      FstHalf = SVOp->getMaskElt(i)/HalfSize;
3787      break;
3788    }
3789  }
3790  for (int i = HalfSize; i < HalfSize*2; ++i) {
3791    if (SVOp->getMaskElt(i) > 0) {
3792      SndHalf = SVOp->getMaskElt(i)/HalfSize;
3793      break;
3794    }
3795  }
3796
3797  return (FstHalf | (SndHalf << 4));
3798}
3799
3800/// isVPERMILPDMask - Return true if the specified VECTOR_SHUFFLE operand
3801/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3802/// Note that VPERMIL mask matching is different depending whether theunderlying
3803/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3804/// to the same elements of the low, but to the higher half of the source.
3805/// In VPERMILPD the two lanes could be shuffled independently of each other
3806/// with the same restriction that lanes can't be crossed.
3807static bool isVPERMILPDMask(const SmallVectorImpl<int> &Mask, EVT VT,
3808                            const X86Subtarget *Subtarget) {
3809  int NumElts = VT.getVectorNumElements();
3810  int NumLanes = VT.getSizeInBits()/128;
3811
3812  if (!Subtarget->hasAVX())
3813    return false;
3814
3815  // Only match 256-bit with 64-bit types
3816  if (VT.getSizeInBits() != 256 || NumElts != 4)
3817    return false;
3818
3819  // The mask on the high lane is independent of the low. Both can match
3820  // any element in inside its own lane, but can't cross.
3821  int LaneSize = NumElts/NumLanes;
3822  for (int l = 0; l < NumLanes; ++l)
3823    for (int i = l*LaneSize; i < LaneSize*(l+1); ++i) {
3824      int LaneStart = l*LaneSize;
3825      if (!isUndefOrInRange(Mask[i], LaneStart, LaneStart+LaneSize))
3826        return false;
3827    }
3828
3829  return true;
3830}
3831
3832/// isVPERMILPSMask - Return true if the specified VECTOR_SHUFFLE operand
3833/// specifies a shuffle of elements that is suitable for input to VPERMILPS*.
3834/// Note that VPERMIL mask matching is different depending whether theunderlying
3835/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3836/// to the same elements of the low, but to the higher half of the source.
3837/// In VPERMILPD the two lanes could be shuffled independently of each other
3838/// with the same restriction that lanes can't be crossed.
3839static bool isVPERMILPSMask(const SmallVectorImpl<int> &Mask, EVT VT,
3840                            const X86Subtarget *Subtarget) {
3841  unsigned NumElts = VT.getVectorNumElements();
3842  unsigned NumLanes = VT.getSizeInBits()/128;
3843
3844  if (!Subtarget->hasAVX())
3845    return false;
3846
3847  // Only match 256-bit with 32-bit types
3848  if (VT.getSizeInBits() != 256 || NumElts != 8)
3849    return false;
3850
3851  // The mask on the high lane should be the same as the low. Actually,
3852  // they can differ if any of the corresponding index in a lane is undef
3853  // and the other stays in range.
3854  int LaneSize = NumElts/NumLanes;
3855  for (int i = 0; i < LaneSize; ++i) {
3856    int HighElt = i+LaneSize;
3857    bool HighValid = isUndefOrInRange(Mask[HighElt], LaneSize, NumElts);
3858    bool LowValid = isUndefOrInRange(Mask[i], 0, LaneSize);
3859
3860    if (!HighValid || !LowValid)
3861      return false;
3862    if (Mask[i] < 0 || Mask[HighElt] < 0)
3863      continue;
3864    if (Mask[HighElt]-Mask[i] != LaneSize)
3865      return false;
3866  }
3867
3868  return true;
3869}
3870
3871/// getShuffleVPERMILPSImmediate - Return the appropriate immediate to shuffle
3872/// the specified VECTOR_MASK mask with VPERMILPS* instructions.
3873static unsigned getShuffleVPERMILPSImmediate(SDNode *N) {
3874  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3875  EVT VT = SVOp->getValueType(0);
3876
3877  int NumElts = VT.getVectorNumElements();
3878  int NumLanes = VT.getSizeInBits()/128;
3879  int LaneSize = NumElts/NumLanes;
3880
3881  // Although the mask is equal for both lanes do it twice to get the cases
3882  // where a mask will match because the same mask element is undef on the
3883  // first half but valid on the second. This would get pathological cases
3884  // such as: shuffle <u, 0, 1, 2, 4, 4, 5, 6>, which is completely valid.
3885  unsigned Mask = 0;
3886  for (int l = 0; l < NumLanes; ++l) {
3887    for (int i = 0; i < LaneSize; ++i) {
3888      int MaskElt = SVOp->getMaskElt(i+(l*LaneSize));
3889      if (MaskElt < 0)
3890        continue;
3891      if (MaskElt >= LaneSize)
3892        MaskElt -= LaneSize;
3893      Mask |= MaskElt << (i*2);
3894    }
3895  }
3896
3897  return Mask;
3898}
3899
3900/// getShuffleVPERMILPDImmediate - Return the appropriate immediate to shuffle
3901/// the specified VECTOR_MASK mask with VPERMILPD* instructions.
3902static unsigned getShuffleVPERMILPDImmediate(SDNode *N) {
3903  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3904  EVT VT = SVOp->getValueType(0);
3905
3906  int NumElts = VT.getVectorNumElements();
3907  int NumLanes = VT.getSizeInBits()/128;
3908
3909  unsigned Mask = 0;
3910  int LaneSize = NumElts/NumLanes;
3911  for (int l = 0; l < NumLanes; ++l)
3912    for (int i = l*LaneSize; i < LaneSize*(l+1); ++i) {
3913      int MaskElt = SVOp->getMaskElt(i);
3914      if (MaskElt < 0)
3915        continue;
3916      Mask |= (MaskElt-l*LaneSize) << i;
3917    }
3918
3919  return Mask;
3920}
3921
3922/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3923/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3924/// element of vector 2 and the other elements to come from vector 1 in order.
3925static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3926                               bool V2IsSplat = false, bool V2IsUndef = false) {
3927  int NumOps = VT.getVectorNumElements();
3928  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3929    return false;
3930
3931  if (!isUndefOrEqual(Mask[0], 0))
3932    return false;
3933
3934  for (int i = 1; i < NumOps; ++i)
3935    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3936          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3937          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3938      return false;
3939
3940  return true;
3941}
3942
3943static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3944                           bool V2IsUndef = false) {
3945  SmallVector<int, 8> M;
3946  N->getMask(M);
3947  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
3948}
3949
3950/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3951/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3952/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3953bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N,
3954                         const X86Subtarget *Subtarget) {
3955  if (!Subtarget->hasSSE3() && !Subtarget->hasAVX())
3956    return false;
3957
3958  // The second vector must be undef
3959  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3960    return false;
3961
3962  EVT VT = N->getValueType(0);
3963  unsigned NumElems = VT.getVectorNumElements();
3964
3965  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3966      (VT.getSizeInBits() == 256 && NumElems != 8))
3967    return false;
3968
3969  // "i+1" is the value the indexed mask element must have
3970  for (unsigned i = 0; i < NumElems; i += 2)
3971    if (!isUndefOrEqual(N->getMaskElt(i), i+1) ||
3972        !isUndefOrEqual(N->getMaskElt(i+1), i+1))
3973      return false;
3974
3975  return true;
3976}
3977
3978/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3979/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3980/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3981bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N,
3982                         const X86Subtarget *Subtarget) {
3983  if (!Subtarget->hasSSE3() && !Subtarget->hasAVX())
3984    return false;
3985
3986  // The second vector must be undef
3987  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3988    return false;
3989
3990  EVT VT = N->getValueType(0);
3991  unsigned NumElems = VT.getVectorNumElements();
3992
3993  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3994      (VT.getSizeInBits() == 256 && NumElems != 8))
3995    return false;
3996
3997  // "i" is the value the indexed mask element must have
3998  for (unsigned i = 0; i < NumElems; i += 2)
3999    if (!isUndefOrEqual(N->getMaskElt(i), i) ||
4000        !isUndefOrEqual(N->getMaskElt(i+1), i))
4001      return false;
4002
4003  return true;
4004}
4005
4006/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
4007/// specifies a shuffle of elements that is suitable for input to 256-bit
4008/// version of MOVDDUP.
4009static bool isMOVDDUPYMask(ShuffleVectorSDNode *N,
4010                           const X86Subtarget *Subtarget) {
4011  EVT VT = N->getValueType(0);
4012  int NumElts = VT.getVectorNumElements();
4013  bool V2IsUndef = N->getOperand(1).getOpcode() == ISD::UNDEF;
4014
4015  if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256 ||
4016      !V2IsUndef || NumElts != 4)
4017    return false;
4018
4019  for (int i = 0; i != NumElts/2; ++i)
4020    if (!isUndefOrEqual(N->getMaskElt(i), 0))
4021      return false;
4022  for (int i = NumElts/2; i != NumElts; ++i)
4023    if (!isUndefOrEqual(N->getMaskElt(i), NumElts/2))
4024      return false;
4025  return true;
4026}
4027
4028/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
4029/// specifies a shuffle of elements that is suitable for input to 128-bit
4030/// version of MOVDDUP.
4031bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
4032  EVT VT = N->getValueType(0);
4033
4034  if (VT.getSizeInBits() != 128)
4035    return false;
4036
4037  int e = VT.getVectorNumElements() / 2;
4038  for (int i = 0; i < e; ++i)
4039    if (!isUndefOrEqual(N->getMaskElt(i), i))
4040      return false;
4041  for (int i = 0; i < e; ++i)
4042    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
4043      return false;
4044  return true;
4045}
4046
4047/// isVEXTRACTF128Index - Return true if the specified
4048/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
4049/// suitable for input to VEXTRACTF128.
4050bool X86::isVEXTRACTF128Index(SDNode *N) {
4051  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4052    return false;
4053
4054  // The index should be aligned on a 128-bit boundary.
4055  uint64_t Index =
4056    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4057
4058  unsigned VL = N->getValueType(0).getVectorNumElements();
4059  unsigned VBits = N->getValueType(0).getSizeInBits();
4060  unsigned ElSize = VBits / VL;
4061  bool Result = (Index * ElSize) % 128 == 0;
4062
4063  return Result;
4064}
4065
4066/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
4067/// operand specifies a subvector insert that is suitable for input to
4068/// VINSERTF128.
4069bool X86::isVINSERTF128Index(SDNode *N) {
4070  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4071    return false;
4072
4073  // The index should be aligned on a 128-bit boundary.
4074  uint64_t Index =
4075    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4076
4077  unsigned VL = N->getValueType(0).getVectorNumElements();
4078  unsigned VBits = N->getValueType(0).getSizeInBits();
4079  unsigned ElSize = VBits / VL;
4080  bool Result = (Index * ElSize) % 128 == 0;
4081
4082  return Result;
4083}
4084
4085/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
4086/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
4087unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
4088  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4089  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
4090
4091  unsigned Shift = (NumOperands == 4) ? 2 : 1;
4092  unsigned Mask = 0;
4093  for (int i = 0; i < NumOperands; ++i) {
4094    int Val = SVOp->getMaskElt(NumOperands-i-1);
4095    if (Val < 0) Val = 0;
4096    if (Val >= NumOperands) Val -= NumOperands;
4097    Mask |= Val;
4098    if (i != NumOperands - 1)
4099      Mask <<= Shift;
4100  }
4101  return Mask;
4102}
4103
4104/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
4105/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
4106unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
4107  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4108  unsigned Mask = 0;
4109  // 8 nodes, but we only care about the last 4.
4110  for (unsigned i = 7; i >= 4; --i) {
4111    int Val = SVOp->getMaskElt(i);
4112    if (Val >= 0)
4113      Mask |= (Val - 4);
4114    if (i != 4)
4115      Mask <<= 2;
4116  }
4117  return Mask;
4118}
4119
4120/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
4121/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
4122unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
4123  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4124  unsigned Mask = 0;
4125  // 8 nodes, but we only care about the first 4.
4126  for (int i = 3; i >= 0; --i) {
4127    int Val = SVOp->getMaskElt(i);
4128    if (Val >= 0)
4129      Mask |= Val;
4130    if (i != 0)
4131      Mask <<= 2;
4132  }
4133  return Mask;
4134}
4135
4136/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
4137/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
4138unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
4139  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4140  EVT VVT = N->getValueType(0);
4141  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
4142  int Val = 0;
4143
4144  unsigned i, e;
4145  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
4146    Val = SVOp->getMaskElt(i);
4147    if (Val >= 0)
4148      break;
4149  }
4150  assert(Val - i > 0 && "PALIGNR imm should be positive");
4151  return (Val - i) * EltSize;
4152}
4153
4154/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
4155/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
4156/// instructions.
4157unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
4158  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4159    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
4160
4161  uint64_t Index =
4162    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4163
4164  EVT VecVT = N->getOperand(0).getValueType();
4165  EVT ElVT = VecVT.getVectorElementType();
4166
4167  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4168  return Index / NumElemsPerChunk;
4169}
4170
4171/// getInsertVINSERTF128Immediate - Return the appropriate immediate
4172/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4173/// instructions.
4174unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
4175  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4176    llvm_unreachable("Illegal insert subvector for VINSERTF128");
4177
4178  uint64_t Index =
4179    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4180
4181  EVT VecVT = N->getValueType(0);
4182  EVT ElVT = VecVT.getVectorElementType();
4183
4184  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4185  return Index / NumElemsPerChunk;
4186}
4187
4188/// isZeroNode - Returns true if Elt is a constant zero or a floating point
4189/// constant +0.0.
4190bool X86::isZeroNode(SDValue Elt) {
4191  return ((isa<ConstantSDNode>(Elt) &&
4192           cast<ConstantSDNode>(Elt)->isNullValue()) ||
4193          (isa<ConstantFPSDNode>(Elt) &&
4194           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
4195}
4196
4197/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4198/// their permute mask.
4199static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4200                                    SelectionDAG &DAG) {
4201  EVT VT = SVOp->getValueType(0);
4202  unsigned NumElems = VT.getVectorNumElements();
4203  SmallVector<int, 8> MaskVec;
4204
4205  for (unsigned i = 0; i != NumElems; ++i) {
4206    int idx = SVOp->getMaskElt(i);
4207    if (idx < 0)
4208      MaskVec.push_back(idx);
4209    else if (idx < (int)NumElems)
4210      MaskVec.push_back(idx + NumElems);
4211    else
4212      MaskVec.push_back(idx - NumElems);
4213  }
4214  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4215                              SVOp->getOperand(0), &MaskVec[0]);
4216}
4217
4218/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
4219/// the two vector operands have swapped position.
4220static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
4221  unsigned NumElems = VT.getVectorNumElements();
4222  for (unsigned i = 0; i != NumElems; ++i) {
4223    int idx = Mask[i];
4224    if (idx < 0)
4225      continue;
4226    else if (idx < (int)NumElems)
4227      Mask[i] = idx + NumElems;
4228    else
4229      Mask[i] = idx - NumElems;
4230  }
4231}
4232
4233/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4234/// match movhlps. The lower half elements should come from upper half of
4235/// V1 (and in order), and the upper half elements should come from the upper
4236/// half of V2 (and in order).
4237static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
4238  EVT VT = Op->getValueType(0);
4239  if (VT.getSizeInBits() != 128)
4240    return false;
4241  if (VT.getVectorNumElements() != 4)
4242    return false;
4243  for (unsigned i = 0, e = 2; i != e; ++i)
4244    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
4245      return false;
4246  for (unsigned i = 2; i != 4; ++i)
4247    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
4248      return false;
4249  return true;
4250}
4251
4252/// isScalarLoadToVector - Returns true if the node is a scalar load that
4253/// is promoted to a vector. It also returns the LoadSDNode by reference if
4254/// required.
4255static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4256  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4257    return false;
4258  N = N->getOperand(0).getNode();
4259  if (!ISD::isNON_EXTLoad(N))
4260    return false;
4261  if (LD)
4262    *LD = cast<LoadSDNode>(N);
4263  return true;
4264}
4265
4266// Test whether the given value is a vector value which will be legalized
4267// into a load.
4268static bool WillBeConstantPoolLoad(SDNode *N) {
4269  if (N->getOpcode() != ISD::BUILD_VECTOR)
4270    return false;
4271
4272  // Check for any non-constant elements.
4273  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4274    switch (N->getOperand(i).getNode()->getOpcode()) {
4275    case ISD::UNDEF:
4276    case ISD::ConstantFP:
4277    case ISD::Constant:
4278      break;
4279    default:
4280      return false;
4281    }
4282
4283  // Vectors of all-zeros and all-ones are materialized with special
4284  // instructions rather than being loaded.
4285  return !ISD::isBuildVectorAllZeros(N) &&
4286         !ISD::isBuildVectorAllOnes(N);
4287}
4288
4289/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4290/// match movlp{s|d}. The lower half elements should come from lower half of
4291/// V1 (and in order), and the upper half elements should come from the upper
4292/// half of V2 (and in order). And since V1 will become the source of the
4293/// MOVLP, it must be either a vector load or a scalar load to vector.
4294static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4295                               ShuffleVectorSDNode *Op) {
4296  EVT VT = Op->getValueType(0);
4297  if (VT.getSizeInBits() != 128)
4298    return false;
4299
4300  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4301    return false;
4302  // Is V2 is a vector load, don't do this transformation. We will try to use
4303  // load folding shufps op.
4304  if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4305    return false;
4306
4307  unsigned NumElems = VT.getVectorNumElements();
4308
4309  if (NumElems != 2 && NumElems != 4)
4310    return false;
4311  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4312    if (!isUndefOrEqual(Op->getMaskElt(i), i))
4313      return false;
4314  for (unsigned i = NumElems/2; i != NumElems; ++i)
4315    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
4316      return false;
4317  return true;
4318}
4319
4320/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4321/// all the same.
4322static bool isSplatVector(SDNode *N) {
4323  if (N->getOpcode() != ISD::BUILD_VECTOR)
4324    return false;
4325
4326  SDValue SplatValue = N->getOperand(0);
4327  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4328    if (N->getOperand(i) != SplatValue)
4329      return false;
4330  return true;
4331}
4332
4333/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4334/// to an zero vector.
4335/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4336static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4337  SDValue V1 = N->getOperand(0);
4338  SDValue V2 = N->getOperand(1);
4339  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4340  for (unsigned i = 0; i != NumElems; ++i) {
4341    int Idx = N->getMaskElt(i);
4342    if (Idx >= (int)NumElems) {
4343      unsigned Opc = V2.getOpcode();
4344      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4345        continue;
4346      if (Opc != ISD::BUILD_VECTOR ||
4347          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4348        return false;
4349    } else if (Idx >= 0) {
4350      unsigned Opc = V1.getOpcode();
4351      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4352        continue;
4353      if (Opc != ISD::BUILD_VECTOR ||
4354          !X86::isZeroNode(V1.getOperand(Idx)))
4355        return false;
4356    }
4357  }
4358  return true;
4359}
4360
4361/// getZeroVector - Returns a vector of specified type with all zero elements.
4362///
4363static SDValue getZeroVector(EVT VT, bool HasXMMInt, SelectionDAG &DAG,
4364                             DebugLoc dl) {
4365  assert(VT.isVector() && "Expected a vector type");
4366
4367  // Always build SSE zero vectors as <4 x i32> bitcasted
4368  // to their dest type. This ensures they get CSE'd.
4369  SDValue Vec;
4370  if (VT.getSizeInBits() == 128) {  // SSE
4371    if (HasXMMInt) {  // SSE2
4372      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4373      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4374    } else { // SSE1
4375      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4376      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4377    }
4378  } else if (VT.getSizeInBits() == 256) { // AVX
4379    // 256-bit logic and arithmetic instructions in AVX are
4380    // all floating-point, no support for integer ops. Default
4381    // to emitting fp zeroed vectors then.
4382    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4383    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4384    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4385  }
4386  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4387}
4388
4389/// getOnesVector - Returns a vector of specified type with all bits set.
4390/// Always build ones vectors as <4 x i32>. For 256-bit types, use two
4391/// <4 x i32> inserted in a <8 x i32> appropriately. Then bitcast to their
4392/// original type, ensuring they get CSE'd.
4393static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
4394  assert(VT.isVector() && "Expected a vector type");
4395  assert((VT.is128BitVector() || VT.is256BitVector())
4396         && "Expected a 128-bit or 256-bit vector type");
4397
4398  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4399  SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
4400                            Cst, Cst, Cst, Cst);
4401
4402  if (VT.is256BitVector()) {
4403    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, MVT::v8i32),
4404                              Vec, DAG.getConstant(0, MVT::i32), DAG, dl);
4405    Vec = Insert128BitVector(InsV, Vec,
4406                  DAG.getConstant(4 /* NumElems/2 */, MVT::i32), DAG, dl);
4407  }
4408
4409  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4410}
4411
4412/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4413/// that point to V2 points to its first element.
4414static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4415  EVT VT = SVOp->getValueType(0);
4416  unsigned NumElems = VT.getVectorNumElements();
4417
4418  bool Changed = false;
4419  SmallVector<int, 8> MaskVec;
4420  SVOp->getMask(MaskVec);
4421
4422  for (unsigned i = 0; i != NumElems; ++i) {
4423    if (MaskVec[i] > (int)NumElems) {
4424      MaskVec[i] = NumElems;
4425      Changed = true;
4426    }
4427  }
4428  if (Changed)
4429    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
4430                                SVOp->getOperand(1), &MaskVec[0]);
4431  return SDValue(SVOp, 0);
4432}
4433
4434/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4435/// operation of specified width.
4436static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4437                       SDValue V2) {
4438  unsigned NumElems = VT.getVectorNumElements();
4439  SmallVector<int, 8> Mask;
4440  Mask.push_back(NumElems);
4441  for (unsigned i = 1; i != NumElems; ++i)
4442    Mask.push_back(i);
4443  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4444}
4445
4446/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4447static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4448                          SDValue V2) {
4449  unsigned NumElems = VT.getVectorNumElements();
4450  SmallVector<int, 8> Mask;
4451  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4452    Mask.push_back(i);
4453    Mask.push_back(i + NumElems);
4454  }
4455  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4456}
4457
4458/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4459static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4460                          SDValue V2) {
4461  unsigned NumElems = VT.getVectorNumElements();
4462  unsigned Half = NumElems/2;
4463  SmallVector<int, 8> Mask;
4464  for (unsigned i = 0; i != Half; ++i) {
4465    Mask.push_back(i + Half);
4466    Mask.push_back(i + NumElems + Half);
4467  }
4468  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4469}
4470
4471// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4472// a generic shuffle instruction because the target has no such instructions.
4473// Generate shuffles which repeat i16 and i8 several times until they can be
4474// represented by v4f32 and then be manipulated by target suported shuffles.
4475static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4476  EVT VT = V.getValueType();
4477  int NumElems = VT.getVectorNumElements();
4478  DebugLoc dl = V.getDebugLoc();
4479
4480  while (NumElems > 4) {
4481    if (EltNo < NumElems/2) {
4482      V = getUnpackl(DAG, dl, VT, V, V);
4483    } else {
4484      V = getUnpackh(DAG, dl, VT, V, V);
4485      EltNo -= NumElems/2;
4486    }
4487    NumElems >>= 1;
4488  }
4489  return V;
4490}
4491
4492/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4493static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4494  EVT VT = V.getValueType();
4495  DebugLoc dl = V.getDebugLoc();
4496  assert((VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256)
4497         && "Vector size not supported");
4498
4499  if (VT.getSizeInBits() == 128) {
4500    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4501    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4502    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4503                             &SplatMask[0]);
4504  } else {
4505    // To use VPERMILPS to splat scalars, the second half of indicies must
4506    // refer to the higher part, which is a duplication of the lower one,
4507    // because VPERMILPS can only handle in-lane permutations.
4508    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4509                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4510
4511    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4512    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4513                             &SplatMask[0]);
4514  }
4515
4516  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4517}
4518
4519/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4520static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4521  EVT SrcVT = SV->getValueType(0);
4522  SDValue V1 = SV->getOperand(0);
4523  DebugLoc dl = SV->getDebugLoc();
4524
4525  int EltNo = SV->getSplatIndex();
4526  int NumElems = SrcVT.getVectorNumElements();
4527  unsigned Size = SrcVT.getSizeInBits();
4528
4529  assert(((Size == 128 && NumElems > 4) || Size == 256) &&
4530          "Unknown how to promote splat for type");
4531
4532  // Extract the 128-bit part containing the splat element and update
4533  // the splat element index when it refers to the higher register.
4534  if (Size == 256) {
4535    unsigned Idx = (EltNo > NumElems/2) ? NumElems/2 : 0;
4536    V1 = Extract128BitVector(V1, DAG.getConstant(Idx, MVT::i32), DAG, dl);
4537    if (Idx > 0)
4538      EltNo -= NumElems/2;
4539  }
4540
4541  // All i16 and i8 vector types can't be used directly by a generic shuffle
4542  // instruction because the target has no such instruction. Generate shuffles
4543  // which repeat i16 and i8 several times until they fit in i32, and then can
4544  // be manipulated by target suported shuffles.
4545  EVT EltVT = SrcVT.getVectorElementType();
4546  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4547    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4548
4549  // Recreate the 256-bit vector and place the same 128-bit vector
4550  // into the low and high part. This is necessary because we want
4551  // to use VPERM* to shuffle the vectors
4552  if (Size == 256) {
4553    SDValue InsV = Insert128BitVector(DAG.getUNDEF(SrcVT), V1,
4554                         DAG.getConstant(0, MVT::i32), DAG, dl);
4555    V1 = Insert128BitVector(InsV, V1,
4556               DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
4557  }
4558
4559  return getLegalSplat(DAG, V1, EltNo);
4560}
4561
4562/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4563/// vector of zero or undef vector.  This produces a shuffle where the low
4564/// element of V2 is swizzled into the zero/undef vector, landing at element
4565/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4566static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4567                                           bool isZero, bool HasXMMInt,
4568                                           SelectionDAG &DAG) {
4569  EVT VT = V2.getValueType();
4570  SDValue V1 = isZero
4571    ? getZeroVector(VT, HasXMMInt, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4572  unsigned NumElems = VT.getVectorNumElements();
4573  SmallVector<int, 16> MaskVec;
4574  for (unsigned i = 0; i != NumElems; ++i)
4575    // If this is the insertion idx, put the low elt of V2 here.
4576    MaskVec.push_back(i == Idx ? NumElems : i);
4577  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4578}
4579
4580/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4581/// element of the result of the vector shuffle.
4582static SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
4583                                   unsigned Depth) {
4584  if (Depth == 6)
4585    return SDValue();  // Limit search depth.
4586
4587  SDValue V = SDValue(N, 0);
4588  EVT VT = V.getValueType();
4589  unsigned Opcode = V.getOpcode();
4590
4591  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4592  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4593    Index = SV->getMaskElt(Index);
4594
4595    if (Index < 0)
4596      return DAG.getUNDEF(VT.getVectorElementType());
4597
4598    int NumElems = VT.getVectorNumElements();
4599    SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
4600    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
4601  }
4602
4603  // Recurse into target specific vector shuffles to find scalars.
4604  if (isTargetShuffle(Opcode)) {
4605    int NumElems = VT.getVectorNumElements();
4606    SmallVector<unsigned, 16> ShuffleMask;
4607    SDValue ImmN;
4608
4609    switch(Opcode) {
4610    case X86ISD::SHUFPS:
4611    case X86ISD::SHUFPD:
4612      ImmN = N->getOperand(N->getNumOperands()-1);
4613      DecodeSHUFPSMask(NumElems,
4614                       cast<ConstantSDNode>(ImmN)->getZExtValue(),
4615                       ShuffleMask);
4616      break;
4617    case X86ISD::PUNPCKHBW:
4618    case X86ISD::PUNPCKHWD:
4619    case X86ISD::PUNPCKHDQ:
4620    case X86ISD::PUNPCKHQDQ:
4621      DecodePUNPCKHMask(NumElems, ShuffleMask);
4622      break;
4623    case X86ISD::UNPCKHPS:
4624    case X86ISD::UNPCKHPD:
4625    case X86ISD::VUNPCKHPSY:
4626    case X86ISD::VUNPCKHPDY:
4627      DecodeUNPCKHPMask(NumElems, ShuffleMask);
4628      break;
4629    case X86ISD::PUNPCKLBW:
4630    case X86ISD::PUNPCKLWD:
4631    case X86ISD::PUNPCKLDQ:
4632    case X86ISD::PUNPCKLQDQ:
4633      DecodePUNPCKLMask(VT, ShuffleMask);
4634      break;
4635    case X86ISD::UNPCKLPS:
4636    case X86ISD::UNPCKLPD:
4637    case X86ISD::VUNPCKLPSY:
4638    case X86ISD::VUNPCKLPDY:
4639      DecodeUNPCKLPMask(VT, ShuffleMask);
4640      break;
4641    case X86ISD::MOVHLPS:
4642      DecodeMOVHLPSMask(NumElems, ShuffleMask);
4643      break;
4644    case X86ISD::MOVLHPS:
4645      DecodeMOVLHPSMask(NumElems, ShuffleMask);
4646      break;
4647    case X86ISD::PSHUFD:
4648      ImmN = N->getOperand(N->getNumOperands()-1);
4649      DecodePSHUFMask(NumElems,
4650                      cast<ConstantSDNode>(ImmN)->getZExtValue(),
4651                      ShuffleMask);
4652      break;
4653    case X86ISD::PSHUFHW:
4654      ImmN = N->getOperand(N->getNumOperands()-1);
4655      DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4656                        ShuffleMask);
4657      break;
4658    case X86ISD::PSHUFLW:
4659      ImmN = N->getOperand(N->getNumOperands()-1);
4660      DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4661                        ShuffleMask);
4662      break;
4663    case X86ISD::MOVSS:
4664    case X86ISD::MOVSD: {
4665      // The index 0 always comes from the first element of the second source,
4666      // this is why MOVSS and MOVSD are used in the first place. The other
4667      // elements come from the other positions of the first source vector.
4668      unsigned OpNum = (Index == 0) ? 1 : 0;
4669      return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
4670                                 Depth+1);
4671    }
4672    case X86ISD::VPERMILPS:
4673      ImmN = N->getOperand(N->getNumOperands()-1);
4674      DecodeVPERMILPSMask(4, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4675                        ShuffleMask);
4676      break;
4677    case X86ISD::VPERMILPSY:
4678      ImmN = N->getOperand(N->getNumOperands()-1);
4679      DecodeVPERMILPSMask(8, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4680                        ShuffleMask);
4681      break;
4682    case X86ISD::VPERMILPD:
4683      ImmN = N->getOperand(N->getNumOperands()-1);
4684      DecodeVPERMILPDMask(2, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4685                        ShuffleMask);
4686      break;
4687    case X86ISD::VPERMILPDY:
4688      ImmN = N->getOperand(N->getNumOperands()-1);
4689      DecodeVPERMILPDMask(4, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4690                        ShuffleMask);
4691      break;
4692    case X86ISD::VPERM2F128:
4693      ImmN = N->getOperand(N->getNumOperands()-1);
4694      DecodeVPERM2F128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4695                           ShuffleMask);
4696      break;
4697    case X86ISD::MOVDDUP:
4698    case X86ISD::MOVLHPD:
4699    case X86ISD::MOVLPD:
4700    case X86ISD::MOVLPS:
4701    case X86ISD::MOVSHDUP:
4702    case X86ISD::MOVSLDUP:
4703    case X86ISD::PALIGN:
4704      return SDValue(); // Not yet implemented.
4705    default:
4706      assert(0 && "unknown target shuffle node");
4707      return SDValue();
4708    }
4709
4710    Index = ShuffleMask[Index];
4711    if (Index < 0)
4712      return DAG.getUNDEF(VT.getVectorElementType());
4713
4714    SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
4715    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
4716                               Depth+1);
4717  }
4718
4719  // Actual nodes that may contain scalar elements
4720  if (Opcode == ISD::BITCAST) {
4721    V = V.getOperand(0);
4722    EVT SrcVT = V.getValueType();
4723    unsigned NumElems = VT.getVectorNumElements();
4724
4725    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4726      return SDValue();
4727  }
4728
4729  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4730    return (Index == 0) ? V.getOperand(0)
4731                          : DAG.getUNDEF(VT.getVectorElementType());
4732
4733  if (V.getOpcode() == ISD::BUILD_VECTOR)
4734    return V.getOperand(Index);
4735
4736  return SDValue();
4737}
4738
4739/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4740/// shuffle operation which come from a consecutively from a zero. The
4741/// search can start in two different directions, from left or right.
4742static
4743unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
4744                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4745  int i = 0;
4746
4747  while (i < NumElems) {
4748    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4749    SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
4750    if (!(Elt.getNode() &&
4751         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4752      break;
4753    ++i;
4754  }
4755
4756  return i;
4757}
4758
4759/// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
4760/// MaskE correspond consecutively to elements from one of the vector operands,
4761/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4762static
4763bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
4764                              int OpIdx, int NumElems, unsigned &OpNum) {
4765  bool SeenV1 = false;
4766  bool SeenV2 = false;
4767
4768  for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
4769    int Idx = SVOp->getMaskElt(i);
4770    // Ignore undef indicies
4771    if (Idx < 0)
4772      continue;
4773
4774    if (Idx < NumElems)
4775      SeenV1 = true;
4776    else
4777      SeenV2 = true;
4778
4779    // Only accept consecutive elements from the same vector
4780    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4781      return false;
4782  }
4783
4784  OpNum = SeenV1 ? 0 : 1;
4785  return true;
4786}
4787
4788/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4789/// logical left shift of a vector.
4790static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4791                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4792  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4793  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4794              false /* check zeros from right */, DAG);
4795  unsigned OpSrc;
4796
4797  if (!NumZeros)
4798    return false;
4799
4800  // Considering the elements in the mask that are not consecutive zeros,
4801  // check if they consecutively come from only one of the source vectors.
4802  //
4803  //               V1 = {X, A, B, C}     0
4804  //                         \  \  \    /
4805  //   vector_shuffle V1, V2 <1, 2, 3, X>
4806  //
4807  if (!isShuffleMaskConsecutive(SVOp,
4808            0,                   // Mask Start Index
4809            NumElems-NumZeros-1, // Mask End Index
4810            NumZeros,            // Where to start looking in the src vector
4811            NumElems,            // Number of elements in vector
4812            OpSrc))              // Which source operand ?
4813    return false;
4814
4815  isLeft = false;
4816  ShAmt = NumZeros;
4817  ShVal = SVOp->getOperand(OpSrc);
4818  return true;
4819}
4820
4821/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4822/// logical left shift of a vector.
4823static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4824                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4825  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4826  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4827              true /* check zeros from left */, DAG);
4828  unsigned OpSrc;
4829
4830  if (!NumZeros)
4831    return false;
4832
4833  // Considering the elements in the mask that are not consecutive zeros,
4834  // check if they consecutively come from only one of the source vectors.
4835  //
4836  //                           0    { A, B, X, X } = V2
4837  //                          / \    /  /
4838  //   vector_shuffle V1, V2 <X, X, 4, 5>
4839  //
4840  if (!isShuffleMaskConsecutive(SVOp,
4841            NumZeros,     // Mask Start Index
4842            NumElems-1,   // Mask End Index
4843            0,            // Where to start looking in the src vector
4844            NumElems,     // Number of elements in vector
4845            OpSrc))       // Which source operand ?
4846    return false;
4847
4848  isLeft = true;
4849  ShAmt = NumZeros;
4850  ShVal = SVOp->getOperand(OpSrc);
4851  return true;
4852}
4853
4854/// isVectorShift - Returns true if the shuffle can be implemented as a
4855/// logical left or right shift of a vector.
4856static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4857                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4858  // Although the logic below support any bitwidth size, there are no
4859  // shift instructions which handle more than 128-bit vectors.
4860  if (SVOp->getValueType(0).getSizeInBits() > 128)
4861    return false;
4862
4863  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4864      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4865    return true;
4866
4867  return false;
4868}
4869
4870/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4871///
4872static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4873                                       unsigned NumNonZero, unsigned NumZero,
4874                                       SelectionDAG &DAG,
4875                                       const TargetLowering &TLI) {
4876  if (NumNonZero > 8)
4877    return SDValue();
4878
4879  DebugLoc dl = Op.getDebugLoc();
4880  SDValue V(0, 0);
4881  bool First = true;
4882  for (unsigned i = 0; i < 16; ++i) {
4883    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4884    if (ThisIsNonZero && First) {
4885      if (NumZero)
4886        V = getZeroVector(MVT::v8i16, true, DAG, dl);
4887      else
4888        V = DAG.getUNDEF(MVT::v8i16);
4889      First = false;
4890    }
4891
4892    if ((i & 1) != 0) {
4893      SDValue ThisElt(0, 0), LastElt(0, 0);
4894      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4895      if (LastIsNonZero) {
4896        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4897                              MVT::i16, Op.getOperand(i-1));
4898      }
4899      if (ThisIsNonZero) {
4900        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4901        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4902                              ThisElt, DAG.getConstant(8, MVT::i8));
4903        if (LastIsNonZero)
4904          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4905      } else
4906        ThisElt = LastElt;
4907
4908      if (ThisElt.getNode())
4909        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4910                        DAG.getIntPtrConstant(i/2));
4911    }
4912  }
4913
4914  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4915}
4916
4917/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4918///
4919static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4920                                     unsigned NumNonZero, unsigned NumZero,
4921                                     SelectionDAG &DAG,
4922                                     const TargetLowering &TLI) {
4923  if (NumNonZero > 4)
4924    return SDValue();
4925
4926  DebugLoc dl = Op.getDebugLoc();
4927  SDValue V(0, 0);
4928  bool First = true;
4929  for (unsigned i = 0; i < 8; ++i) {
4930    bool isNonZero = (NonZeros & (1 << i)) != 0;
4931    if (isNonZero) {
4932      if (First) {
4933        if (NumZero)
4934          V = getZeroVector(MVT::v8i16, true, DAG, dl);
4935        else
4936          V = DAG.getUNDEF(MVT::v8i16);
4937        First = false;
4938      }
4939      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4940                      MVT::v8i16, V, Op.getOperand(i),
4941                      DAG.getIntPtrConstant(i));
4942    }
4943  }
4944
4945  return V;
4946}
4947
4948/// getVShift - Return a vector logical shift node.
4949///
4950static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4951                         unsigned NumBits, SelectionDAG &DAG,
4952                         const TargetLowering &TLI, DebugLoc dl) {
4953  assert(VT.getSizeInBits() == 128 && "Unknown type for VShift");
4954  EVT ShVT = MVT::v2i64;
4955  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
4956  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4957  return DAG.getNode(ISD::BITCAST, dl, VT,
4958                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4959                             DAG.getConstant(NumBits,
4960                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4961}
4962
4963SDValue
4964X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4965                                          SelectionDAG &DAG) const {
4966
4967  // Check if the scalar load can be widened into a vector load. And if
4968  // the address is "base + cst" see if the cst can be "absorbed" into
4969  // the shuffle mask.
4970  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4971    SDValue Ptr = LD->getBasePtr();
4972    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4973      return SDValue();
4974    EVT PVT = LD->getValueType(0);
4975    if (PVT != MVT::i32 && PVT != MVT::f32)
4976      return SDValue();
4977
4978    int FI = -1;
4979    int64_t Offset = 0;
4980    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4981      FI = FINode->getIndex();
4982      Offset = 0;
4983    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4984               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4985      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4986      Offset = Ptr.getConstantOperandVal(1);
4987      Ptr = Ptr.getOperand(0);
4988    } else {
4989      return SDValue();
4990    }
4991
4992    // FIXME: 256-bit vector instructions don't require a strict alignment,
4993    // improve this code to support it better.
4994    unsigned RequiredAlign = VT.getSizeInBits()/8;
4995    SDValue Chain = LD->getChain();
4996    // Make sure the stack object alignment is at least 16 or 32.
4997    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4998    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4999      if (MFI->isFixedObjectIndex(FI)) {
5000        // Can't change the alignment. FIXME: It's possible to compute
5001        // the exact stack offset and reference FI + adjust offset instead.
5002        // If someone *really* cares about this. That's the way to implement it.
5003        return SDValue();
5004      } else {
5005        MFI->setObjectAlignment(FI, RequiredAlign);
5006      }
5007    }
5008
5009    // (Offset % 16 or 32) must be multiple of 4. Then address is then
5010    // Ptr + (Offset & ~15).
5011    if (Offset < 0)
5012      return SDValue();
5013    if ((Offset % RequiredAlign) & 3)
5014      return SDValue();
5015    int64_t StartOffset = Offset & ~(RequiredAlign-1);
5016    if (StartOffset)
5017      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
5018                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
5019
5020    int EltNo = (Offset - StartOffset) >> 2;
5021    int NumElems = VT.getVectorNumElements();
5022
5023    EVT CanonVT = VT.getSizeInBits() == 128 ? MVT::v4i32 : MVT::v8i32;
5024    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
5025    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
5026                             LD->getPointerInfo().getWithOffset(StartOffset),
5027                             false, false, false, 0);
5028
5029    // Canonicalize it to a v4i32 or v8i32 shuffle.
5030    SmallVector<int, 8> Mask;
5031    for (int i = 0; i < NumElems; ++i)
5032      Mask.push_back(EltNo);
5033
5034    V1 = DAG.getNode(ISD::BITCAST, dl, CanonVT, V1);
5035    return DAG.getNode(ISD::BITCAST, dl, NVT,
5036                       DAG.getVectorShuffle(CanonVT, dl, V1,
5037                                            DAG.getUNDEF(CanonVT),&Mask[0]));
5038  }
5039
5040  return SDValue();
5041}
5042
5043/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
5044/// vector of type 'VT', see if the elements can be replaced by a single large
5045/// load which has the same value as a build_vector whose operands are 'elts'.
5046///
5047/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
5048///
5049/// FIXME: we'd also like to handle the case where the last elements are zero
5050/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
5051/// There's even a handy isZeroNode for that purpose.
5052static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
5053                                        DebugLoc &DL, SelectionDAG &DAG) {
5054  EVT EltVT = VT.getVectorElementType();
5055  unsigned NumElems = Elts.size();
5056
5057  LoadSDNode *LDBase = NULL;
5058  unsigned LastLoadedElt = -1U;
5059
5060  // For each element in the initializer, see if we've found a load or an undef.
5061  // If we don't find an initial load element, or later load elements are
5062  // non-consecutive, bail out.
5063  for (unsigned i = 0; i < NumElems; ++i) {
5064    SDValue Elt = Elts[i];
5065
5066    if (!Elt.getNode() ||
5067        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
5068      return SDValue();
5069    if (!LDBase) {
5070      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
5071        return SDValue();
5072      LDBase = cast<LoadSDNode>(Elt.getNode());
5073      LastLoadedElt = i;
5074      continue;
5075    }
5076    if (Elt.getOpcode() == ISD::UNDEF)
5077      continue;
5078
5079    LoadSDNode *LD = cast<LoadSDNode>(Elt);
5080    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
5081      return SDValue();
5082    LastLoadedElt = i;
5083  }
5084
5085  // If we have found an entire vector of loads and undefs, then return a large
5086  // load of the entire vector width starting at the base pointer.  If we found
5087  // consecutive loads for the low half, generate a vzext_load node.
5088  if (LastLoadedElt == NumElems - 1) {
5089    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
5090      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5091                         LDBase->getPointerInfo(),
5092                         LDBase->isVolatile(), LDBase->isNonTemporal(),
5093                         LDBase->isInvariant(), 0);
5094    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5095                       LDBase->getPointerInfo(),
5096                       LDBase->isVolatile(), LDBase->isNonTemporal(),
5097                       LDBase->isInvariant(), LDBase->getAlignment());
5098  } else if (NumElems == 4 && LastLoadedElt == 1 &&
5099             DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
5100    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
5101    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
5102    SDValue ResNode =
5103        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
5104                                LDBase->getPointerInfo(),
5105                                LDBase->getAlignment(),
5106                                false/*isVolatile*/, true/*ReadMem*/,
5107                                false/*WriteMem*/);
5108    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
5109  }
5110  return SDValue();
5111}
5112
5113SDValue
5114X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5115  DebugLoc dl = Op.getDebugLoc();
5116
5117  EVT VT = Op.getValueType();
5118  EVT ExtVT = VT.getVectorElementType();
5119  unsigned NumElems = Op.getNumOperands();
5120
5121  // Vectors containing all zeros can be matched by pxor and xorps later
5122  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5123    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5124    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5125    if (Op.getValueType() == MVT::v4i32 ||
5126        Op.getValueType() == MVT::v8i32)
5127      return Op;
5128
5129    return getZeroVector(Op.getValueType(), Subtarget->hasXMMInt(), DAG, dl);
5130  }
5131
5132  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5133  // vectors or broken into v4i32 operations on 256-bit vectors.
5134  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5135    if (Op.getValueType() == MVT::v4i32)
5136      return Op;
5137
5138    return getOnesVector(Op.getValueType(), DAG, dl);
5139  }
5140
5141  unsigned EVTBits = ExtVT.getSizeInBits();
5142
5143  unsigned NumZero  = 0;
5144  unsigned NumNonZero = 0;
5145  unsigned NonZeros = 0;
5146  bool IsAllConstants = true;
5147  SmallSet<SDValue, 8> Values;
5148  for (unsigned i = 0; i < NumElems; ++i) {
5149    SDValue Elt = Op.getOperand(i);
5150    if (Elt.getOpcode() == ISD::UNDEF)
5151      continue;
5152    Values.insert(Elt);
5153    if (Elt.getOpcode() != ISD::Constant &&
5154        Elt.getOpcode() != ISD::ConstantFP)
5155      IsAllConstants = false;
5156    if (X86::isZeroNode(Elt))
5157      NumZero++;
5158    else {
5159      NonZeros |= (1 << i);
5160      NumNonZero++;
5161    }
5162  }
5163
5164  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5165  if (NumNonZero == 0)
5166    return DAG.getUNDEF(VT);
5167
5168  // Special case for single non-zero, non-undef, element.
5169  if (NumNonZero == 1) {
5170    unsigned Idx = CountTrailingZeros_32(NonZeros);
5171    SDValue Item = Op.getOperand(Idx);
5172
5173    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5174    // the value are obviously zero, truncate the value to i32 and do the
5175    // insertion that way.  Only do this if the value is non-constant or if the
5176    // value is a constant being inserted into element 0.  It is cheaper to do
5177    // a constant pool load than it is to do a movd + shuffle.
5178    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5179        (!IsAllConstants || Idx == 0)) {
5180      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5181        // Handle SSE only.
5182        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5183        EVT VecVT = MVT::v4i32;
5184        unsigned VecElts = 4;
5185
5186        // Truncate the value (which may itself be a constant) to i32, and
5187        // convert it to a vector with movd (S2V+shuffle to zero extend).
5188        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5189        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5190        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
5191                                           Subtarget->hasXMMInt(), DAG);
5192
5193        // Now we have our 32-bit value zero extended in the low element of
5194        // a vector.  If Idx != 0, swizzle it into place.
5195        if (Idx != 0) {
5196          SmallVector<int, 4> Mask;
5197          Mask.push_back(Idx);
5198          for (unsigned i = 1; i != VecElts; ++i)
5199            Mask.push_back(i);
5200          Item = DAG.getVectorShuffle(VecVT, dl, Item,
5201                                      DAG.getUNDEF(Item.getValueType()),
5202                                      &Mask[0]);
5203        }
5204        return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Item);
5205      }
5206    }
5207
5208    // If we have a constant or non-constant insertion into the low element of
5209    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5210    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5211    // depending on what the source datatype is.
5212    if (Idx == 0) {
5213      if (NumZero == 0) {
5214        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5215      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5216          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5217        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5218        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5219        return getShuffleVectorZeroOrUndef(Item, 0, true,Subtarget->hasXMMInt(),
5220                                           DAG);
5221      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5222        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5223        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5224        EVT MiddleVT = MVT::v4i32;
5225        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
5226        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
5227                                           Subtarget->hasXMMInt(), DAG);
5228        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5229      }
5230    }
5231
5232    // Is it a vector logical left shift?
5233    if (NumElems == 2 && Idx == 1 &&
5234        X86::isZeroNode(Op.getOperand(0)) &&
5235        !X86::isZeroNode(Op.getOperand(1))) {
5236      unsigned NumBits = VT.getSizeInBits();
5237      return getVShift(true, VT,
5238                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5239                                   VT, Op.getOperand(1)),
5240                       NumBits/2, DAG, *this, dl);
5241    }
5242
5243    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5244      return SDValue();
5245
5246    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5247    // is a non-constant being inserted into an element other than the low one,
5248    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5249    // movd/movss) to move this into the low element, then shuffle it into
5250    // place.
5251    if (EVTBits == 32) {
5252      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5253
5254      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5255      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
5256                                         Subtarget->hasXMMInt(), DAG);
5257      SmallVector<int, 8> MaskVec;
5258      for (unsigned i = 0; i < NumElems; i++)
5259        MaskVec.push_back(i == Idx ? 0 : 1);
5260      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5261    }
5262  }
5263
5264  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5265  if (Values.size() == 1) {
5266    if (EVTBits == 32) {
5267      // Instead of a shuffle like this:
5268      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5269      // Check if it's possible to issue this instead.
5270      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5271      unsigned Idx = CountTrailingZeros_32(NonZeros);
5272      SDValue Item = Op.getOperand(Idx);
5273      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5274        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5275    }
5276    return SDValue();
5277  }
5278
5279  // A vector full of immediates; various special cases are already
5280  // handled, so this is best done with a single constant-pool load.
5281  if (IsAllConstants)
5282    return SDValue();
5283
5284  // For AVX-length vectors, build the individual 128-bit pieces and use
5285  // shuffles to put them in place.
5286  if (VT.getSizeInBits() == 256 && !ISD::isBuildVectorAllZeros(Op.getNode())) {
5287    SmallVector<SDValue, 32> V;
5288    for (unsigned i = 0; i < NumElems; ++i)
5289      V.push_back(Op.getOperand(i));
5290
5291    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5292
5293    // Build both the lower and upper subvector.
5294    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5295    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5296                                NumElems/2);
5297
5298    // Recreate the wider vector with the lower and upper part.
5299    SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Lower,
5300                                DAG.getConstant(0, MVT::i32), DAG, dl);
5301    return Insert128BitVector(Vec, Upper, DAG.getConstant(NumElems/2, MVT::i32),
5302                              DAG, dl);
5303  }
5304
5305  // Let legalizer expand 2-wide build_vectors.
5306  if (EVTBits == 64) {
5307    if (NumNonZero == 1) {
5308      // One half is zero or undef.
5309      unsigned Idx = CountTrailingZeros_32(NonZeros);
5310      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5311                                 Op.getOperand(Idx));
5312      return getShuffleVectorZeroOrUndef(V2, Idx, true,
5313                                         Subtarget->hasXMMInt(), DAG);
5314    }
5315    return SDValue();
5316  }
5317
5318  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5319  if (EVTBits == 8 && NumElems == 16) {
5320    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5321                                        *this);
5322    if (V.getNode()) return V;
5323  }
5324
5325  if (EVTBits == 16 && NumElems == 8) {
5326    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5327                                      *this);
5328    if (V.getNode()) return V;
5329  }
5330
5331  // If element VT is == 32 bits, turn it into a number of shuffles.
5332  SmallVector<SDValue, 8> V;
5333  V.resize(NumElems);
5334  if (NumElems == 4 && NumZero > 0) {
5335    for (unsigned i = 0; i < 4; ++i) {
5336      bool isZero = !(NonZeros & (1 << i));
5337      if (isZero)
5338        V[i] = getZeroVector(VT, Subtarget->hasXMMInt(), DAG, dl);
5339      else
5340        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5341    }
5342
5343    for (unsigned i = 0; i < 2; ++i) {
5344      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5345        default: break;
5346        case 0:
5347          V[i] = V[i*2];  // Must be a zero vector.
5348          break;
5349        case 1:
5350          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5351          break;
5352        case 2:
5353          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5354          break;
5355        case 3:
5356          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5357          break;
5358      }
5359    }
5360
5361    SmallVector<int, 8> MaskVec;
5362    bool Reverse = (NonZeros & 0x3) == 2;
5363    for (unsigned i = 0; i < 2; ++i)
5364      MaskVec.push_back(Reverse ? 1-i : i);
5365    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5366    for (unsigned i = 0; i < 2; ++i)
5367      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
5368    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5369  }
5370
5371  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
5372    // Check for a build vector of consecutive loads.
5373    for (unsigned i = 0; i < NumElems; ++i)
5374      V[i] = Op.getOperand(i);
5375
5376    // Check for elements which are consecutive loads.
5377    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5378    if (LD.getNode())
5379      return LD;
5380
5381    // For SSE 4.1, use insertps to put the high elements into the low element.
5382    if (getSubtarget()->hasSSE41() || getSubtarget()->hasAVX()) {
5383      SDValue Result;
5384      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5385        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5386      else
5387        Result = DAG.getUNDEF(VT);
5388
5389      for (unsigned i = 1; i < NumElems; ++i) {
5390        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5391        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5392                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5393      }
5394      return Result;
5395    }
5396
5397    // Otherwise, expand into a number of unpckl*, start by extending each of
5398    // our (non-undef) elements to the full vector width with the element in the
5399    // bottom slot of the vector (which generates no code for SSE).
5400    for (unsigned i = 0; i < NumElems; ++i) {
5401      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5402        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5403      else
5404        V[i] = DAG.getUNDEF(VT);
5405    }
5406
5407    // Next, we iteratively mix elements, e.g. for v4f32:
5408    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5409    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5410    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5411    unsigned EltStride = NumElems >> 1;
5412    while (EltStride != 0) {
5413      for (unsigned i = 0; i < EltStride; ++i) {
5414        // If V[i+EltStride] is undef and this is the first round of mixing,
5415        // then it is safe to just drop this shuffle: V[i] is already in the
5416        // right place, the one element (since it's the first round) being
5417        // inserted as undef can be dropped.  This isn't safe for successive
5418        // rounds because they will permute elements within both vectors.
5419        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5420            EltStride == NumElems/2)
5421          continue;
5422
5423        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5424      }
5425      EltStride >>= 1;
5426    }
5427    return V[0];
5428  }
5429  return SDValue();
5430}
5431
5432// LowerMMXCONCAT_VECTORS - We support concatenate two MMX registers and place
5433// them in a MMX register.  This is better than doing a stack convert.
5434static SDValue LowerMMXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5435  DebugLoc dl = Op.getDebugLoc();
5436  EVT ResVT = Op.getValueType();
5437
5438  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
5439         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
5440  int Mask[2];
5441  SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
5442  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5443  InVec = Op.getOperand(1);
5444  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5445    unsigned NumElts = ResVT.getVectorNumElements();
5446    VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5447    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
5448                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
5449  } else {
5450    InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
5451    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5452    Mask[0] = 0; Mask[1] = 2;
5453    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
5454  }
5455  return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5456}
5457
5458// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5459// to create 256-bit vectors from two other 128-bit ones.
5460static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5461  DebugLoc dl = Op.getDebugLoc();
5462  EVT ResVT = Op.getValueType();
5463
5464  assert(ResVT.getSizeInBits() == 256 && "Value type must be 256-bit wide");
5465
5466  SDValue V1 = Op.getOperand(0);
5467  SDValue V2 = Op.getOperand(1);
5468  unsigned NumElems = ResVT.getVectorNumElements();
5469
5470  SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, ResVT), V1,
5471                                 DAG.getConstant(0, MVT::i32), DAG, dl);
5472  return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
5473                            DAG, dl);
5474}
5475
5476SDValue
5477X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
5478  EVT ResVT = Op.getValueType();
5479
5480  assert(Op.getNumOperands() == 2);
5481  assert((ResVT.getSizeInBits() == 128 || ResVT.getSizeInBits() == 256) &&
5482         "Unsupported CONCAT_VECTORS for value type");
5483
5484  // We support concatenate two MMX registers and place them in a MMX register.
5485  // This is better than doing a stack convert.
5486  if (ResVT.is128BitVector())
5487    return LowerMMXCONCAT_VECTORS(Op, DAG);
5488
5489  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5490  // from two other 128-bit ones.
5491  return LowerAVXCONCAT_VECTORS(Op, DAG);
5492}
5493
5494// v8i16 shuffles - Prefer shuffles in the following order:
5495// 1. [all]   pshuflw, pshufhw, optional move
5496// 2. [ssse3] 1 x pshufb
5497// 3. [ssse3] 2 x pshufb + 1 x por
5498// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5499SDValue
5500X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
5501                                            SelectionDAG &DAG) const {
5502  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5503  SDValue V1 = SVOp->getOperand(0);
5504  SDValue V2 = SVOp->getOperand(1);
5505  DebugLoc dl = SVOp->getDebugLoc();
5506  SmallVector<int, 8> MaskVals;
5507
5508  // Determine if more than 1 of the words in each of the low and high quadwords
5509  // of the result come from the same quadword of one of the two inputs.  Undef
5510  // mask values count as coming from any quadword, for better codegen.
5511  unsigned LoQuad[] = { 0, 0, 0, 0 };
5512  unsigned HiQuad[] = { 0, 0, 0, 0 };
5513  BitVector InputQuads(4);
5514  for (unsigned i = 0; i < 8; ++i) {
5515    unsigned *Quad = i < 4 ? LoQuad : HiQuad;
5516    int EltIdx = SVOp->getMaskElt(i);
5517    MaskVals.push_back(EltIdx);
5518    if (EltIdx < 0) {
5519      ++Quad[0];
5520      ++Quad[1];
5521      ++Quad[2];
5522      ++Quad[3];
5523      continue;
5524    }
5525    ++Quad[EltIdx / 4];
5526    InputQuads.set(EltIdx / 4);
5527  }
5528
5529  int BestLoQuad = -1;
5530  unsigned MaxQuad = 1;
5531  for (unsigned i = 0; i < 4; ++i) {
5532    if (LoQuad[i] > MaxQuad) {
5533      BestLoQuad = i;
5534      MaxQuad = LoQuad[i];
5535    }
5536  }
5537
5538  int BestHiQuad = -1;
5539  MaxQuad = 1;
5540  for (unsigned i = 0; i < 4; ++i) {
5541    if (HiQuad[i] > MaxQuad) {
5542      BestHiQuad = i;
5543      MaxQuad = HiQuad[i];
5544    }
5545  }
5546
5547  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5548  // of the two input vectors, shuffle them into one input vector so only a
5549  // single pshufb instruction is necessary. If There are more than 2 input
5550  // quads, disable the next transformation since it does not help SSSE3.
5551  bool V1Used = InputQuads[0] || InputQuads[1];
5552  bool V2Used = InputQuads[2] || InputQuads[3];
5553  if (Subtarget->hasSSSE3() || Subtarget->hasAVX()) {
5554    if (InputQuads.count() == 2 && V1Used && V2Used) {
5555      BestLoQuad = InputQuads.find_first();
5556      BestHiQuad = InputQuads.find_next(BestLoQuad);
5557    }
5558    if (InputQuads.count() > 2) {
5559      BestLoQuad = -1;
5560      BestHiQuad = -1;
5561    }
5562  }
5563
5564  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5565  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5566  // words from all 4 input quadwords.
5567  SDValue NewV;
5568  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5569    SmallVector<int, 8> MaskV;
5570    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
5571    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
5572    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5573                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5574                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5575    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5576
5577    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5578    // source words for the shuffle, to aid later transformations.
5579    bool AllWordsInNewV = true;
5580    bool InOrder[2] = { true, true };
5581    for (unsigned i = 0; i != 8; ++i) {
5582      int idx = MaskVals[i];
5583      if (idx != (int)i)
5584        InOrder[i/4] = false;
5585      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5586        continue;
5587      AllWordsInNewV = false;
5588      break;
5589    }
5590
5591    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5592    if (AllWordsInNewV) {
5593      for (int i = 0; i != 8; ++i) {
5594        int idx = MaskVals[i];
5595        if (idx < 0)
5596          continue;
5597        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5598        if ((idx != i) && idx < 4)
5599          pshufhw = false;
5600        if ((idx != i) && idx > 3)
5601          pshuflw = false;
5602      }
5603      V1 = NewV;
5604      V2Used = false;
5605      BestLoQuad = 0;
5606      BestHiQuad = 1;
5607    }
5608
5609    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5610    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5611    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5612      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5613      unsigned TargetMask = 0;
5614      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5615                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5616      TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
5617                             X86::getShufflePSHUFLWImmediate(NewV.getNode());
5618      V1 = NewV.getOperand(0);
5619      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5620    }
5621  }
5622
5623  // If we have SSSE3, and all words of the result are from 1 input vector,
5624  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5625  // is present, fall back to case 4.
5626  if (Subtarget->hasSSSE3() || Subtarget->hasAVX()) {
5627    SmallVector<SDValue,16> pshufbMask;
5628
5629    // If we have elements from both input vectors, set the high bit of the
5630    // shuffle mask element to zero out elements that come from V2 in the V1
5631    // mask, and elements that come from V1 in the V2 mask, so that the two
5632    // results can be OR'd together.
5633    bool TwoInputs = V1Used && V2Used;
5634    for (unsigned i = 0; i != 8; ++i) {
5635      int EltIdx = MaskVals[i] * 2;
5636      if (TwoInputs && (EltIdx >= 16)) {
5637        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5638        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5639        continue;
5640      }
5641      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
5642      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
5643    }
5644    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5645    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5646                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5647                                 MVT::v16i8, &pshufbMask[0], 16));
5648    if (!TwoInputs)
5649      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5650
5651    // Calculate the shuffle mask for the second input, shuffle it, and
5652    // OR it with the first shuffled input.
5653    pshufbMask.clear();
5654    for (unsigned i = 0; i != 8; ++i) {
5655      int EltIdx = MaskVals[i] * 2;
5656      if (EltIdx < 16) {
5657        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5658        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5659        continue;
5660      }
5661      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5662      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
5663    }
5664    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5665    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5666                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5667                                 MVT::v16i8, &pshufbMask[0], 16));
5668    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5669    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5670  }
5671
5672  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5673  // and update MaskVals with new element order.
5674  BitVector InOrder(8);
5675  if (BestLoQuad >= 0) {
5676    SmallVector<int, 8> MaskV;
5677    for (int i = 0; i != 4; ++i) {
5678      int idx = MaskVals[i];
5679      if (idx < 0) {
5680        MaskV.push_back(-1);
5681        InOrder.set(i);
5682      } else if ((idx / 4) == BestLoQuad) {
5683        MaskV.push_back(idx & 3);
5684        InOrder.set(i);
5685      } else {
5686        MaskV.push_back(-1);
5687      }
5688    }
5689    for (unsigned i = 4; i != 8; ++i)
5690      MaskV.push_back(i);
5691    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5692                                &MaskV[0]);
5693
5694    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE &&
5695        (Subtarget->hasSSSE3() || Subtarget->hasAVX()))
5696      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5697                               NewV.getOperand(0),
5698                               X86::getShufflePSHUFLWImmediate(NewV.getNode()),
5699                               DAG);
5700  }
5701
5702  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5703  // and update MaskVals with the new element order.
5704  if (BestHiQuad >= 0) {
5705    SmallVector<int, 8> MaskV;
5706    for (unsigned i = 0; i != 4; ++i)
5707      MaskV.push_back(i);
5708    for (unsigned i = 4; i != 8; ++i) {
5709      int idx = MaskVals[i];
5710      if (idx < 0) {
5711        MaskV.push_back(-1);
5712        InOrder.set(i);
5713      } else if ((idx / 4) == BestHiQuad) {
5714        MaskV.push_back((idx & 3) + 4);
5715        InOrder.set(i);
5716      } else {
5717        MaskV.push_back(-1);
5718      }
5719    }
5720    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5721                                &MaskV[0]);
5722
5723    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE &&
5724        (Subtarget->hasSSSE3() || Subtarget->hasAVX()))
5725      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5726                              NewV.getOperand(0),
5727                              X86::getShufflePSHUFHWImmediate(NewV.getNode()),
5728                              DAG);
5729  }
5730
5731  // In case BestHi & BestLo were both -1, which means each quadword has a word
5732  // from each of the four input quadwords, calculate the InOrder bitvector now
5733  // before falling through to the insert/extract cleanup.
5734  if (BestLoQuad == -1 && BestHiQuad == -1) {
5735    NewV = V1;
5736    for (int i = 0; i != 8; ++i)
5737      if (MaskVals[i] < 0 || MaskVals[i] == i)
5738        InOrder.set(i);
5739  }
5740
5741  // The other elements are put in the right place using pextrw and pinsrw.
5742  for (unsigned i = 0; i != 8; ++i) {
5743    if (InOrder[i])
5744      continue;
5745    int EltIdx = MaskVals[i];
5746    if (EltIdx < 0)
5747      continue;
5748    SDValue ExtOp = (EltIdx < 8)
5749    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5750                  DAG.getIntPtrConstant(EltIdx))
5751    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5752                  DAG.getIntPtrConstant(EltIdx - 8));
5753    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5754                       DAG.getIntPtrConstant(i));
5755  }
5756  return NewV;
5757}
5758
5759// v16i8 shuffles - Prefer shuffles in the following order:
5760// 1. [ssse3] 1 x pshufb
5761// 2. [ssse3] 2 x pshufb + 1 x por
5762// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5763static
5764SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5765                                 SelectionDAG &DAG,
5766                                 const X86TargetLowering &TLI) {
5767  SDValue V1 = SVOp->getOperand(0);
5768  SDValue V2 = SVOp->getOperand(1);
5769  DebugLoc dl = SVOp->getDebugLoc();
5770  SmallVector<int, 16> MaskVals;
5771  SVOp->getMask(MaskVals);
5772
5773  // If we have SSSE3, case 1 is generated when all result bytes come from
5774  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5775  // present, fall back to case 3.
5776  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
5777  bool V1Only = true;
5778  bool V2Only = true;
5779  for (unsigned i = 0; i < 16; ++i) {
5780    int EltIdx = MaskVals[i];
5781    if (EltIdx < 0)
5782      continue;
5783    if (EltIdx < 16)
5784      V2Only = false;
5785    else
5786      V1Only = false;
5787  }
5788
5789  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5790  if (TLI.getSubtarget()->hasSSSE3() || TLI.getSubtarget()->hasAVX()) {
5791    SmallVector<SDValue,16> pshufbMask;
5792
5793    // If all result elements are from one input vector, then only translate
5794    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5795    //
5796    // Otherwise, we have elements from both input vectors, and must zero out
5797    // elements that come from V2 in the first mask, and V1 in the second mask
5798    // so that we can OR them together.
5799    bool TwoInputs = !(V1Only || V2Only);
5800    for (unsigned i = 0; i != 16; ++i) {
5801      int EltIdx = MaskVals[i];
5802      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
5803        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5804        continue;
5805      }
5806      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5807    }
5808    // If all the elements are from V2, assign it to V1 and return after
5809    // building the first pshufb.
5810    if (V2Only)
5811      V1 = V2;
5812    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5813                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5814                                 MVT::v16i8, &pshufbMask[0], 16));
5815    if (!TwoInputs)
5816      return V1;
5817
5818    // Calculate the shuffle mask for the second input, shuffle it, and
5819    // OR it with the first shuffled input.
5820    pshufbMask.clear();
5821    for (unsigned i = 0; i != 16; ++i) {
5822      int EltIdx = MaskVals[i];
5823      if (EltIdx < 16) {
5824        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5825        continue;
5826      }
5827      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5828    }
5829    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5830                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5831                                 MVT::v16i8, &pshufbMask[0], 16));
5832    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5833  }
5834
5835  // No SSSE3 - Calculate in place words and then fix all out of place words
5836  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5837  // the 16 different words that comprise the two doublequadword input vectors.
5838  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5839  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5840  SDValue NewV = V2Only ? V2 : V1;
5841  for (int i = 0; i != 8; ++i) {
5842    int Elt0 = MaskVals[i*2];
5843    int Elt1 = MaskVals[i*2+1];
5844
5845    // This word of the result is all undef, skip it.
5846    if (Elt0 < 0 && Elt1 < 0)
5847      continue;
5848
5849    // This word of the result is already in the correct place, skip it.
5850    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
5851      continue;
5852    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
5853      continue;
5854
5855    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5856    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5857    SDValue InsElt;
5858
5859    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5860    // using a single extract together, load it and store it.
5861    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5862      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5863                           DAG.getIntPtrConstant(Elt1 / 2));
5864      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5865                        DAG.getIntPtrConstant(i));
5866      continue;
5867    }
5868
5869    // If Elt1 is defined, extract it from the appropriate source.  If the
5870    // source byte is not also odd, shift the extracted word left 8 bits
5871    // otherwise clear the bottom 8 bits if we need to do an or.
5872    if (Elt1 >= 0) {
5873      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5874                           DAG.getIntPtrConstant(Elt1 / 2));
5875      if ((Elt1 & 1) == 0)
5876        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5877                             DAG.getConstant(8,
5878                                  TLI.getShiftAmountTy(InsElt.getValueType())));
5879      else if (Elt0 >= 0)
5880        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5881                             DAG.getConstant(0xFF00, MVT::i16));
5882    }
5883    // If Elt0 is defined, extract it from the appropriate source.  If the
5884    // source byte is not also even, shift the extracted word right 8 bits. If
5885    // Elt1 was also defined, OR the extracted values together before
5886    // inserting them in the result.
5887    if (Elt0 >= 0) {
5888      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5889                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5890      if ((Elt0 & 1) != 0)
5891        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5892                              DAG.getConstant(8,
5893                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
5894      else if (Elt1 >= 0)
5895        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5896                             DAG.getConstant(0x00FF, MVT::i16));
5897      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5898                         : InsElt0;
5899    }
5900    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5901                       DAG.getIntPtrConstant(i));
5902  }
5903  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5904}
5905
5906/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5907/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5908/// done when every pair / quad of shuffle mask elements point to elements in
5909/// the right sequence. e.g.
5910/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5911static
5912SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5913                                 SelectionDAG &DAG, DebugLoc dl) {
5914  EVT VT = SVOp->getValueType(0);
5915  SDValue V1 = SVOp->getOperand(0);
5916  SDValue V2 = SVOp->getOperand(1);
5917  unsigned NumElems = VT.getVectorNumElements();
5918  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
5919  EVT NewVT;
5920  switch (VT.getSimpleVT().SimpleTy) {
5921  default: assert(false && "Unexpected!");
5922  case MVT::v4f32: NewVT = MVT::v2f64; break;
5923  case MVT::v4i32: NewVT = MVT::v2i64; break;
5924  case MVT::v8i16: NewVT = MVT::v4i32; break;
5925  case MVT::v16i8: NewVT = MVT::v4i32; break;
5926  }
5927
5928  int Scale = NumElems / NewWidth;
5929  SmallVector<int, 8> MaskVec;
5930  for (unsigned i = 0; i < NumElems; i += Scale) {
5931    int StartIdx = -1;
5932    for (int j = 0; j < Scale; ++j) {
5933      int EltIdx = SVOp->getMaskElt(i+j);
5934      if (EltIdx < 0)
5935        continue;
5936      if (StartIdx == -1)
5937        StartIdx = EltIdx - (EltIdx % Scale);
5938      if (EltIdx != StartIdx + j)
5939        return SDValue();
5940    }
5941    if (StartIdx == -1)
5942      MaskVec.push_back(-1);
5943    else
5944      MaskVec.push_back(StartIdx / Scale);
5945  }
5946
5947  V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
5948  V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
5949  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
5950}
5951
5952/// getVZextMovL - Return a zero-extending vector move low node.
5953///
5954static SDValue getVZextMovL(EVT VT, EVT OpVT,
5955                            SDValue SrcOp, SelectionDAG &DAG,
5956                            const X86Subtarget *Subtarget, DebugLoc dl) {
5957  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
5958    LoadSDNode *LD = NULL;
5959    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
5960      LD = dyn_cast<LoadSDNode>(SrcOp);
5961    if (!LD) {
5962      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
5963      // instead.
5964      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
5965      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
5966          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5967          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
5968          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
5969        // PR2108
5970        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
5971        return DAG.getNode(ISD::BITCAST, dl, VT,
5972                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5973                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5974                                                   OpVT,
5975                                                   SrcOp.getOperand(0)
5976                                                          .getOperand(0))));
5977      }
5978    }
5979  }
5980
5981  return DAG.getNode(ISD::BITCAST, dl, VT,
5982                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5983                                 DAG.getNode(ISD::BITCAST, dl,
5984                                             OpVT, SrcOp)));
5985}
5986
5987/// areShuffleHalvesWithinDisjointLanes - Check whether each half of a vector
5988/// shuffle node referes to only one lane in the sources.
5989static bool areShuffleHalvesWithinDisjointLanes(ShuffleVectorSDNode *SVOp) {
5990  EVT VT = SVOp->getValueType(0);
5991  int NumElems = VT.getVectorNumElements();
5992  int HalfSize = NumElems/2;
5993  SmallVector<int, 16> M;
5994  SVOp->getMask(M);
5995  bool MatchA = false, MatchB = false;
5996
5997  for (int l = 0; l < NumElems*2; l += HalfSize) {
5998    if (isUndefOrInRange(M, 0, HalfSize, l, l+HalfSize)) {
5999      MatchA = true;
6000      break;
6001    }
6002  }
6003
6004  for (int l = 0; l < NumElems*2; l += HalfSize) {
6005    if (isUndefOrInRange(M, HalfSize, HalfSize, l, l+HalfSize)) {
6006      MatchB = true;
6007      break;
6008    }
6009  }
6010
6011  return MatchA && MatchB;
6012}
6013
6014/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
6015/// which could not be matched by any known target speficic shuffle
6016static SDValue
6017LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6018  if (areShuffleHalvesWithinDisjointLanes(SVOp)) {
6019    // If each half of a vector shuffle node referes to only one lane in the
6020    // source vectors, extract each used 128-bit lane and shuffle them using
6021    // 128-bit shuffles. Then, concatenate the results. Otherwise leave
6022    // the work to the legalizer.
6023    DebugLoc dl = SVOp->getDebugLoc();
6024    EVT VT = SVOp->getValueType(0);
6025    int NumElems = VT.getVectorNumElements();
6026    int HalfSize = NumElems/2;
6027
6028    // Extract the reference for each half
6029    int FstVecExtractIdx = 0, SndVecExtractIdx = 0;
6030    int FstVecOpNum = 0, SndVecOpNum = 0;
6031    for (int i = 0; i < HalfSize; ++i) {
6032      int Elt = SVOp->getMaskElt(i);
6033      if (SVOp->getMaskElt(i) < 0)
6034        continue;
6035      FstVecOpNum = Elt/NumElems;
6036      FstVecExtractIdx = Elt % NumElems < HalfSize ? 0 : HalfSize;
6037      break;
6038    }
6039    for (int i = HalfSize; i < NumElems; ++i) {
6040      int Elt = SVOp->getMaskElt(i);
6041      if (SVOp->getMaskElt(i) < 0)
6042        continue;
6043      SndVecOpNum = Elt/NumElems;
6044      SndVecExtractIdx = Elt % NumElems < HalfSize ? 0 : HalfSize;
6045      break;
6046    }
6047
6048    // Extract the subvectors
6049    SDValue V1 = Extract128BitVector(SVOp->getOperand(FstVecOpNum),
6050                      DAG.getConstant(FstVecExtractIdx, MVT::i32), DAG, dl);
6051    SDValue V2 = Extract128BitVector(SVOp->getOperand(SndVecOpNum),
6052                      DAG.getConstant(SndVecExtractIdx, MVT::i32), DAG, dl);
6053
6054    // Generate 128-bit shuffles
6055    SmallVector<int, 16> MaskV1, MaskV2;
6056    for (int i = 0; i < HalfSize; ++i) {
6057      int Elt = SVOp->getMaskElt(i);
6058      MaskV1.push_back(Elt < 0 ? Elt : Elt % HalfSize);
6059    }
6060    for (int i = HalfSize; i < NumElems; ++i) {
6061      int Elt = SVOp->getMaskElt(i);
6062      MaskV2.push_back(Elt < 0 ? Elt : Elt % HalfSize);
6063    }
6064
6065    EVT NVT = V1.getValueType();
6066    V1 = DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &MaskV1[0]);
6067    V2 = DAG.getVectorShuffle(NVT, dl, V2, DAG.getUNDEF(NVT), &MaskV2[0]);
6068
6069    // Concatenate the result back
6070    SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), V1,
6071                                   DAG.getConstant(0, MVT::i32), DAG, dl);
6072    return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
6073                              DAG, dl);
6074  }
6075
6076  return SDValue();
6077}
6078
6079/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6080/// 4 elements, and match them with several different shuffle types.
6081static SDValue
6082LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6083  SDValue V1 = SVOp->getOperand(0);
6084  SDValue V2 = SVOp->getOperand(1);
6085  DebugLoc dl = SVOp->getDebugLoc();
6086  EVT VT = SVOp->getValueType(0);
6087
6088  assert(VT.getSizeInBits() == 128 && "Unsupported vector size");
6089
6090  SmallVector<std::pair<int, int>, 8> Locs;
6091  Locs.resize(4);
6092  SmallVector<int, 8> Mask1(4U, -1);
6093  SmallVector<int, 8> PermMask;
6094  SVOp->getMask(PermMask);
6095
6096  unsigned NumHi = 0;
6097  unsigned NumLo = 0;
6098  for (unsigned i = 0; i != 4; ++i) {
6099    int Idx = PermMask[i];
6100    if (Idx < 0) {
6101      Locs[i] = std::make_pair(-1, -1);
6102    } else {
6103      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6104      if (Idx < 4) {
6105        Locs[i] = std::make_pair(0, NumLo);
6106        Mask1[NumLo] = Idx;
6107        NumLo++;
6108      } else {
6109        Locs[i] = std::make_pair(1, NumHi);
6110        if (2+NumHi < 4)
6111          Mask1[2+NumHi] = Idx;
6112        NumHi++;
6113      }
6114    }
6115  }
6116
6117  if (NumLo <= 2 && NumHi <= 2) {
6118    // If no more than two elements come from either vector. This can be
6119    // implemented with two shuffles. First shuffle gather the elements.
6120    // The second shuffle, which takes the first shuffle as both of its
6121    // vector operands, put the elements into the right order.
6122    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6123
6124    SmallVector<int, 8> Mask2(4U, -1);
6125
6126    for (unsigned i = 0; i != 4; ++i) {
6127      if (Locs[i].first == -1)
6128        continue;
6129      else {
6130        unsigned Idx = (i < 2) ? 0 : 4;
6131        Idx += Locs[i].first * 2 + Locs[i].second;
6132        Mask2[i] = Idx;
6133      }
6134    }
6135
6136    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6137  } else if (NumLo == 3 || NumHi == 3) {
6138    // Otherwise, we must have three elements from one vector, call it X, and
6139    // one element from the other, call it Y.  First, use a shufps to build an
6140    // intermediate vector with the one element from Y and the element from X
6141    // that will be in the same half in the final destination (the indexes don't
6142    // matter). Then, use a shufps to build the final vector, taking the half
6143    // containing the element from Y from the intermediate, and the other half
6144    // from X.
6145    if (NumHi == 3) {
6146      // Normalize it so the 3 elements come from V1.
6147      CommuteVectorShuffleMask(PermMask, VT);
6148      std::swap(V1, V2);
6149    }
6150
6151    // Find the element from V2.
6152    unsigned HiIndex;
6153    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6154      int Val = PermMask[HiIndex];
6155      if (Val < 0)
6156        continue;
6157      if (Val >= 4)
6158        break;
6159    }
6160
6161    Mask1[0] = PermMask[HiIndex];
6162    Mask1[1] = -1;
6163    Mask1[2] = PermMask[HiIndex^1];
6164    Mask1[3] = -1;
6165    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6166
6167    if (HiIndex >= 2) {
6168      Mask1[0] = PermMask[0];
6169      Mask1[1] = PermMask[1];
6170      Mask1[2] = HiIndex & 1 ? 6 : 4;
6171      Mask1[3] = HiIndex & 1 ? 4 : 6;
6172      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6173    } else {
6174      Mask1[0] = HiIndex & 1 ? 2 : 0;
6175      Mask1[1] = HiIndex & 1 ? 0 : 2;
6176      Mask1[2] = PermMask[2];
6177      Mask1[3] = PermMask[3];
6178      if (Mask1[2] >= 0)
6179        Mask1[2] += 4;
6180      if (Mask1[3] >= 0)
6181        Mask1[3] += 4;
6182      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6183    }
6184  }
6185
6186  // Break it into (shuffle shuffle_hi, shuffle_lo).
6187  Locs.clear();
6188  Locs.resize(4);
6189  SmallVector<int,8> LoMask(4U, -1);
6190  SmallVector<int,8> HiMask(4U, -1);
6191
6192  SmallVector<int,8> *MaskPtr = &LoMask;
6193  unsigned MaskIdx = 0;
6194  unsigned LoIdx = 0;
6195  unsigned HiIdx = 2;
6196  for (unsigned i = 0; i != 4; ++i) {
6197    if (i == 2) {
6198      MaskPtr = &HiMask;
6199      MaskIdx = 1;
6200      LoIdx = 0;
6201      HiIdx = 2;
6202    }
6203    int Idx = PermMask[i];
6204    if (Idx < 0) {
6205      Locs[i] = std::make_pair(-1, -1);
6206    } else if (Idx < 4) {
6207      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6208      (*MaskPtr)[LoIdx] = Idx;
6209      LoIdx++;
6210    } else {
6211      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6212      (*MaskPtr)[HiIdx] = Idx;
6213      HiIdx++;
6214    }
6215  }
6216
6217  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6218  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6219  SmallVector<int, 8> MaskOps;
6220  for (unsigned i = 0; i != 4; ++i) {
6221    if (Locs[i].first == -1) {
6222      MaskOps.push_back(-1);
6223    } else {
6224      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
6225      MaskOps.push_back(Idx);
6226    }
6227  }
6228  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6229}
6230
6231static bool MayFoldVectorLoad(SDValue V) {
6232  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6233    V = V.getOperand(0);
6234  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6235    V = V.getOperand(0);
6236  if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
6237      V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
6238    // BUILD_VECTOR (load), undef
6239    V = V.getOperand(0);
6240  if (MayFoldLoad(V))
6241    return true;
6242  return false;
6243}
6244
6245// FIXME: the version above should always be used. Since there's
6246// a bug where several vector shuffles can't be folded because the
6247// DAG is not updated during lowering and a node claims to have two
6248// uses while it only has one, use this version, and let isel match
6249// another instruction if the load really happens to have more than
6250// one use. Remove this version after this bug get fixed.
6251// rdar://8434668, PR8156
6252static bool RelaxedMayFoldVectorLoad(SDValue V) {
6253  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6254    V = V.getOperand(0);
6255  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6256    V = V.getOperand(0);
6257  if (ISD::isNormalLoad(V.getNode()))
6258    return true;
6259  return false;
6260}
6261
6262/// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
6263/// a vector extract, and if both can be later optimized into a single load.
6264/// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
6265/// here because otherwise a target specific shuffle node is going to be
6266/// emitted for this shuffle, and the optimization not done.
6267/// FIXME: This is probably not the best approach, but fix the problem
6268/// until the right path is decided.
6269static
6270bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
6271                                         const TargetLowering &TLI) {
6272  EVT VT = V.getValueType();
6273  ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
6274
6275  // Be sure that the vector shuffle is present in a pattern like this:
6276  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
6277  if (!V.hasOneUse())
6278    return false;
6279
6280  SDNode *N = *V.getNode()->use_begin();
6281  if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
6282    return false;
6283
6284  SDValue EltNo = N->getOperand(1);
6285  if (!isa<ConstantSDNode>(EltNo))
6286    return false;
6287
6288  // If the bit convert changed the number of elements, it is unsafe
6289  // to examine the mask.
6290  bool HasShuffleIntoBitcast = false;
6291  if (V.getOpcode() == ISD::BITCAST) {
6292    EVT SrcVT = V.getOperand(0).getValueType();
6293    if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
6294      return false;
6295    V = V.getOperand(0);
6296    HasShuffleIntoBitcast = true;
6297  }
6298
6299  // Select the input vector, guarding against out of range extract vector.
6300  unsigned NumElems = VT.getVectorNumElements();
6301  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
6302  int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
6303  V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
6304
6305  // Skip one more bit_convert if necessary
6306  if (V.getOpcode() == ISD::BITCAST)
6307    V = V.getOperand(0);
6308
6309  if (ISD::isNormalLoad(V.getNode())) {
6310    // Is the original load suitable?
6311    LoadSDNode *LN0 = cast<LoadSDNode>(V);
6312
6313    // FIXME: avoid the multi-use bug that is preventing lots of
6314    // of foldings to be detected, this is still wrong of course, but
6315    // give the temporary desired behavior, and if it happens that
6316    // the load has real more uses, during isel it will not fold, and
6317    // will generate poor code.
6318    if (!LN0 || LN0->isVolatile()) // || !LN0->hasOneUse()
6319      return false;
6320
6321    if (!HasShuffleIntoBitcast)
6322      return true;
6323
6324    // If there's a bitcast before the shuffle, check if the load type and
6325    // alignment is valid.
6326    unsigned Align = LN0->getAlignment();
6327    unsigned NewAlign =
6328      TLI.getTargetData()->getABITypeAlignment(
6329                                    VT.getTypeForEVT(*DAG.getContext()));
6330
6331    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
6332      return false;
6333  }
6334
6335  return true;
6336}
6337
6338static
6339SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6340  EVT VT = Op.getValueType();
6341
6342  // Canonizalize to v2f64.
6343  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6344  return DAG.getNode(ISD::BITCAST, dl, VT,
6345                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6346                                          V1, DAG));
6347}
6348
6349static
6350SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6351                        bool HasXMMInt) {
6352  SDValue V1 = Op.getOperand(0);
6353  SDValue V2 = Op.getOperand(1);
6354  EVT VT = Op.getValueType();
6355
6356  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6357
6358  if (HasXMMInt && VT == MVT::v2f64)
6359    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6360
6361  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6362  return DAG.getNode(ISD::BITCAST, dl, VT,
6363                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6364                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6365                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6366}
6367
6368static
6369SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6370  SDValue V1 = Op.getOperand(0);
6371  SDValue V2 = Op.getOperand(1);
6372  EVT VT = Op.getValueType();
6373
6374  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6375         "unsupported shuffle type");
6376
6377  if (V2.getOpcode() == ISD::UNDEF)
6378    V2 = V1;
6379
6380  // v4i32 or v4f32
6381  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6382}
6383
6384static inline unsigned getSHUFPOpcode(EVT VT) {
6385  switch(VT.getSimpleVT().SimpleTy) {
6386  case MVT::v8i32: // Use fp unit for int unpack.
6387  case MVT::v8f32:
6388  case MVT::v4i32: // Use fp unit for int unpack.
6389  case MVT::v4f32: return X86ISD::SHUFPS;
6390  case MVT::v4i64: // Use fp unit for int unpack.
6391  case MVT::v4f64:
6392  case MVT::v2i64: // Use fp unit for int unpack.
6393  case MVT::v2f64: return X86ISD::SHUFPD;
6394  default:
6395    llvm_unreachable("Unknown type for shufp*");
6396  }
6397  return 0;
6398}
6399
6400static
6401SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasXMMInt) {
6402  SDValue V1 = Op.getOperand(0);
6403  SDValue V2 = Op.getOperand(1);
6404  EVT VT = Op.getValueType();
6405  unsigned NumElems = VT.getVectorNumElements();
6406
6407  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6408  // operand of these instructions is only memory, so check if there's a
6409  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6410  // same masks.
6411  bool CanFoldLoad = false;
6412
6413  // Trivial case, when V2 comes from a load.
6414  if (MayFoldVectorLoad(V2))
6415    CanFoldLoad = true;
6416
6417  // When V1 is a load, it can be folded later into a store in isel, example:
6418  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6419  //    turns into:
6420  //  (MOVLPSmr addr:$src1, VR128:$src2)
6421  // So, recognize this potential and also use MOVLPS or MOVLPD
6422  else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6423    CanFoldLoad = true;
6424
6425  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6426  if (CanFoldLoad) {
6427    if (HasXMMInt && NumElems == 2)
6428      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6429
6430    if (NumElems == 4)
6431      // If we don't care about the second element, procede to use movss.
6432      if (SVOp->getMaskElt(1) != -1)
6433        return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6434  }
6435
6436  // movl and movlp will both match v2i64, but v2i64 is never matched by
6437  // movl earlier because we make it strict to avoid messing with the movlp load
6438  // folding logic (see the code above getMOVLP call). Match it here then,
6439  // this is horrible, but will stay like this until we move all shuffle
6440  // matching to x86 specific nodes. Note that for the 1st condition all
6441  // types are matched with movsd.
6442  if (HasXMMInt) {
6443    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6444    // as to remove this logic from here, as much as possible
6445    if (NumElems == 2 || !X86::isMOVLMask(SVOp))
6446      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6447    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6448  }
6449
6450  assert(VT != MVT::v4i32 && "unsupported shuffle type");
6451
6452  // Invert the operand order and use SHUFPS to match it.
6453  return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V2, V1,
6454                              X86::getShuffleSHUFImmediate(SVOp), DAG);
6455}
6456
6457static inline unsigned getUNPCKLOpcode(EVT VT) {
6458  switch(VT.getSimpleVT().SimpleTy) {
6459  case MVT::v4i32: return X86ISD::PUNPCKLDQ;
6460  case MVT::v2i64: return X86ISD::PUNPCKLQDQ;
6461  case MVT::v4f32: return X86ISD::UNPCKLPS;
6462  case MVT::v2f64: return X86ISD::UNPCKLPD;
6463  case MVT::v8i32: // Use fp unit for int unpack.
6464  case MVT::v8f32: return X86ISD::VUNPCKLPSY;
6465  case MVT::v4i64: // Use fp unit for int unpack.
6466  case MVT::v4f64: return X86ISD::VUNPCKLPDY;
6467  case MVT::v16i8: return X86ISD::PUNPCKLBW;
6468  case MVT::v8i16: return X86ISD::PUNPCKLWD;
6469  default:
6470    llvm_unreachable("Unknown type for unpckl");
6471  }
6472  return 0;
6473}
6474
6475static inline unsigned getUNPCKHOpcode(EVT VT) {
6476  switch(VT.getSimpleVT().SimpleTy) {
6477  case MVT::v4i32: return X86ISD::PUNPCKHDQ;
6478  case MVT::v2i64: return X86ISD::PUNPCKHQDQ;
6479  case MVT::v4f32: return X86ISD::UNPCKHPS;
6480  case MVT::v2f64: return X86ISD::UNPCKHPD;
6481  case MVT::v8i32: // Use fp unit for int unpack.
6482  case MVT::v8f32: return X86ISD::VUNPCKHPSY;
6483  case MVT::v4i64: // Use fp unit for int unpack.
6484  case MVT::v4f64: return X86ISD::VUNPCKHPDY;
6485  case MVT::v16i8: return X86ISD::PUNPCKHBW;
6486  case MVT::v8i16: return X86ISD::PUNPCKHWD;
6487  default:
6488    llvm_unreachable("Unknown type for unpckh");
6489  }
6490  return 0;
6491}
6492
6493static inline unsigned getVPERMILOpcode(EVT VT) {
6494  switch(VT.getSimpleVT().SimpleTy) {
6495  case MVT::v4i32:
6496  case MVT::v4f32: return X86ISD::VPERMILPS;
6497  case MVT::v2i64:
6498  case MVT::v2f64: return X86ISD::VPERMILPD;
6499  case MVT::v8i32:
6500  case MVT::v8f32: return X86ISD::VPERMILPSY;
6501  case MVT::v4i64:
6502  case MVT::v4f64: return X86ISD::VPERMILPDY;
6503  default:
6504    llvm_unreachable("Unknown type for vpermil");
6505  }
6506  return 0;
6507}
6508
6509/// isVectorBroadcast - Check if the node chain is suitable to be xformed to
6510/// a vbroadcast node. The nodes are suitable whenever we can fold a load coming
6511/// from a 32 or 64 bit scalar. Update Op to the desired load to be folded.
6512static bool isVectorBroadcast(SDValue &Op) {
6513  EVT VT = Op.getValueType();
6514  bool Is256 = VT.getSizeInBits() == 256;
6515
6516  assert((VT.getSizeInBits() == 128 || Is256) &&
6517         "Unsupported type for vbroadcast node");
6518
6519  SDValue V = Op;
6520  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6521    V = V.getOperand(0);
6522
6523  if (Is256 && !(V.hasOneUse() &&
6524                 V.getOpcode() == ISD::INSERT_SUBVECTOR &&
6525                 V.getOperand(0).getOpcode() == ISD::UNDEF))
6526    return false;
6527
6528  if (Is256)
6529    V = V.getOperand(1);
6530
6531  if (!V.hasOneUse())
6532    return false;
6533
6534  // Check the source scalar_to_vector type. 256-bit broadcasts are
6535  // supported for 32/64-bit sizes, while 128-bit ones are only supported
6536  // for 32-bit scalars.
6537  if (V.getOpcode() != ISD::SCALAR_TO_VECTOR)
6538    return false;
6539
6540  unsigned ScalarSize = V.getOperand(0).getValueType().getSizeInBits();
6541  if (ScalarSize != 32 && ScalarSize != 64)
6542    return false;
6543  if (!Is256 && ScalarSize == 64)
6544    return false;
6545
6546  V = V.getOperand(0);
6547  if (!MayFoldLoad(V))
6548    return false;
6549
6550  // Return the load node
6551  Op = V;
6552  return true;
6553}
6554
6555static
6556SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
6557                               const TargetLowering &TLI,
6558                               const X86Subtarget *Subtarget) {
6559  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6560  EVT VT = Op.getValueType();
6561  DebugLoc dl = Op.getDebugLoc();
6562  SDValue V1 = Op.getOperand(0);
6563  SDValue V2 = Op.getOperand(1);
6564
6565  if (isZeroShuffle(SVOp))
6566    return getZeroVector(VT, Subtarget->hasXMMInt(), DAG, dl);
6567
6568  // Handle splat operations
6569  if (SVOp->isSplat()) {
6570    unsigned NumElem = VT.getVectorNumElements();
6571    int Size = VT.getSizeInBits();
6572    // Special case, this is the only place now where it's allowed to return
6573    // a vector_shuffle operation without using a target specific node, because
6574    // *hopefully* it will be optimized away by the dag combiner. FIXME: should
6575    // this be moved to DAGCombine instead?
6576    if (NumElem <= 4 && CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
6577      return Op;
6578
6579    // Use vbroadcast whenever the splat comes from a foldable load
6580    if (Subtarget->hasAVX() && isVectorBroadcast(V1))
6581      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, V1);
6582
6583    // Handle splats by matching through known shuffle masks
6584    if ((Size == 128 && NumElem <= 4) ||
6585        (Size == 256 && NumElem < 8))
6586      return SDValue();
6587
6588    // All remaning splats are promoted to target supported vector shuffles.
6589    return PromoteSplat(SVOp, DAG);
6590  }
6591
6592  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6593  // do it!
6594  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
6595    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6596    if (NewOp.getNode())
6597      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6598  } else if ((VT == MVT::v4i32 ||
6599             (VT == MVT::v4f32 && Subtarget->hasXMMInt()))) {
6600    // FIXME: Figure out a cleaner way to do this.
6601    // Try to make use of movq to zero out the top part.
6602    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6603      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6604      if (NewOp.getNode()) {
6605        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
6606          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
6607                              DAG, Subtarget, dl);
6608      }
6609    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6610      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6611      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
6612        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
6613                            DAG, Subtarget, dl);
6614    }
6615  }
6616  return SDValue();
6617}
6618
6619SDValue
6620X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6621  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6622  SDValue V1 = Op.getOperand(0);
6623  SDValue V2 = Op.getOperand(1);
6624  EVT VT = Op.getValueType();
6625  DebugLoc dl = Op.getDebugLoc();
6626  unsigned NumElems = VT.getVectorNumElements();
6627  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6628  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6629  bool V1IsSplat = false;
6630  bool V2IsSplat = false;
6631  bool HasXMMInt = Subtarget->hasXMMInt();
6632  MachineFunction &MF = DAG.getMachineFunction();
6633  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
6634
6635  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
6636
6637  // Vector shuffle lowering takes 3 steps:
6638  //
6639  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6640  //    narrowing and commutation of operands should be handled.
6641  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6642  //    shuffle nodes.
6643  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6644  //    so the shuffle can be broken into other shuffles and the legalizer can
6645  //    try the lowering again.
6646  //
6647  // The general idea is that no vector_shuffle operation should be left to
6648  // be matched during isel, all of them must be converted to a target specific
6649  // node here.
6650
6651  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6652  // narrowing and commutation of operands should be handled. The actual code
6653  // doesn't include all of those, work in progress...
6654  SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
6655  if (NewOp.getNode())
6656    return NewOp;
6657
6658  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6659  // unpckh_undef). Only use pshufd if speed is more important than size.
6660  if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp))
6661    return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
6662  if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp))
6663    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
6664
6665  if (X86::isMOVDDUPMask(SVOp) &&
6666      (Subtarget->hasSSE3() || Subtarget->hasAVX()) &&
6667      V2IsUndef && RelaxedMayFoldVectorLoad(V1))
6668    return getMOVDDup(Op, dl, V1, DAG);
6669
6670  if (X86::isMOVHLPS_v_undef_Mask(SVOp))
6671    return getMOVHighToLow(Op, dl, DAG);
6672
6673  // Use to match splats
6674  if (HasXMMInt && X86::isUNPCKHMask(SVOp) && V2IsUndef &&
6675      (VT == MVT::v2f64 || VT == MVT::v2i64))
6676    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
6677
6678  if (X86::isPSHUFDMask(SVOp)) {
6679    // The actual implementation will match the mask in the if above and then
6680    // during isel it can match several different instructions, not only pshufd
6681    // as its name says, sad but true, emulate the behavior for now...
6682    if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6683        return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6684
6685    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
6686
6687    if (HasXMMInt && (VT == MVT::v4f32 || VT == MVT::v4i32))
6688      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6689
6690    return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V1,
6691                                TargetMask, DAG);
6692  }
6693
6694  // Check if this can be converted into a logical shift.
6695  bool isLeft = false;
6696  unsigned ShAmt = 0;
6697  SDValue ShVal;
6698  bool isShift = getSubtarget()->hasXMMInt() &&
6699                 isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6700  if (isShift && ShVal.hasOneUse()) {
6701    // If the shifted value has multiple uses, it may be cheaper to use
6702    // v_set0 + movlhps or movhlps, etc.
6703    EVT EltVT = VT.getVectorElementType();
6704    ShAmt *= EltVT.getSizeInBits();
6705    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6706  }
6707
6708  if (X86::isMOVLMask(SVOp)) {
6709    if (V1IsUndef)
6710      return V2;
6711    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6712      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6713    if (!X86::isMOVLPMask(SVOp)) {
6714      if (HasXMMInt && (VT == MVT::v2i64 || VT == MVT::v2f64))
6715        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6716
6717      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6718        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6719    }
6720  }
6721
6722  // FIXME: fold these into legal mask.
6723  if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp))
6724    return getMOVLowToHigh(Op, dl, DAG, HasXMMInt);
6725
6726  if (X86::isMOVHLPSMask(SVOp))
6727    return getMOVHighToLow(Op, dl, DAG);
6728
6729  if (X86::isMOVSHDUPMask(SVOp, Subtarget))
6730    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6731
6732  if (X86::isMOVSLDUPMask(SVOp, Subtarget))
6733    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6734
6735  if (X86::isMOVLPMask(SVOp))
6736    return getMOVLP(Op, dl, DAG, HasXMMInt);
6737
6738  if (ShouldXformToMOVHLPS(SVOp) ||
6739      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
6740    return CommuteVectorShuffle(SVOp, DAG);
6741
6742  if (isShift) {
6743    // No better options. Use a vshl / vsrl.
6744    EVT EltVT = VT.getVectorElementType();
6745    ShAmt *= EltVT.getSizeInBits();
6746    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6747  }
6748
6749  bool Commuted = false;
6750  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6751  // 1,1,1,1 -> v8i16 though.
6752  V1IsSplat = isSplatVector(V1.getNode());
6753  V2IsSplat = isSplatVector(V2.getNode());
6754
6755  // Canonicalize the splat or undef, if present, to be on the RHS.
6756  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
6757    Op = CommuteVectorShuffle(SVOp, DAG);
6758    SVOp = cast<ShuffleVectorSDNode>(Op);
6759    V1 = SVOp->getOperand(0);
6760    V2 = SVOp->getOperand(1);
6761    std::swap(V1IsSplat, V2IsSplat);
6762    std::swap(V1IsUndef, V2IsUndef);
6763    Commuted = true;
6764  }
6765
6766  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
6767    // Shuffling low element of v1 into undef, just return v1.
6768    if (V2IsUndef)
6769      return V1;
6770    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6771    // the instruction selector will not match, so get a canonical MOVL with
6772    // swapped operands to undo the commute.
6773    return getMOVL(DAG, dl, VT, V2, V1);
6774  }
6775
6776  if (X86::isUNPCKLMask(SVOp))
6777    return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V2, DAG);
6778
6779  if (X86::isUNPCKHMask(SVOp))
6780    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V2, DAG);
6781
6782  if (V2IsSplat) {
6783    // Normalize mask so all entries that point to V2 points to its first
6784    // element then try to match unpck{h|l} again. If match, return a
6785    // new vector_shuffle with the corrected mask.
6786    SDValue NewMask = NormalizeMask(SVOp, DAG);
6787    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
6788    if (NSVOp != SVOp) {
6789      if (X86::isUNPCKLMask(NSVOp, true)) {
6790        return NewMask;
6791      } else if (X86::isUNPCKHMask(NSVOp, true)) {
6792        return NewMask;
6793      }
6794    }
6795  }
6796
6797  if (Commuted) {
6798    // Commute is back and try unpck* again.
6799    // FIXME: this seems wrong.
6800    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
6801    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
6802
6803    if (X86::isUNPCKLMask(NewSVOp))
6804      return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V2, V1, DAG);
6805
6806    if (X86::isUNPCKHMask(NewSVOp))
6807      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V2, V1, DAG);
6808  }
6809
6810  // Normalize the node to match x86 shuffle ops if needed
6811  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
6812    return CommuteVectorShuffle(SVOp, DAG);
6813
6814  // The checks below are all present in isShuffleMaskLegal, but they are
6815  // inlined here right now to enable us to directly emit target specific
6816  // nodes, and remove one by one until they don't return Op anymore.
6817  SmallVector<int, 16> M;
6818  SVOp->getMask(M);
6819
6820  if (isPALIGNRMask(M, VT, Subtarget->hasSSSE3() || Subtarget->hasAVX()))
6821    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6822                                X86::getShufflePALIGNRImmediate(SVOp),
6823                                DAG);
6824
6825  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6826      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6827    if (VT == MVT::v2f64)
6828      return getTargetShuffleNode(X86ISD::UNPCKLPD, dl, VT, V1, V1, DAG);
6829    if (VT == MVT::v2i64)
6830      return getTargetShuffleNode(X86ISD::PUNPCKLQDQ, dl, VT, V1, V1, DAG);
6831  }
6832
6833  if (isPSHUFHWMask(M, VT))
6834    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6835                                X86::getShufflePSHUFHWImmediate(SVOp),
6836                                DAG);
6837
6838  if (isPSHUFLWMask(M, VT))
6839    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6840                                X86::getShufflePSHUFLWImmediate(SVOp),
6841                                DAG);
6842
6843  if (isSHUFPMask(M, VT))
6844    return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
6845                                X86::getShuffleSHUFImmediate(SVOp), DAG);
6846
6847  if (X86::isUNPCKL_v_undef_Mask(SVOp))
6848    return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
6849  if (X86::isUNPCKH_v_undef_Mask(SVOp))
6850    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
6851
6852  //===--------------------------------------------------------------------===//
6853  // Generate target specific nodes for 128 or 256-bit shuffles only
6854  // supported in the AVX instruction set.
6855  //
6856
6857  // Handle VMOVDDUPY permutations
6858  if (isMOVDDUPYMask(SVOp, Subtarget))
6859    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
6860
6861  // Handle VPERMILPS* permutations
6862  if (isVPERMILPSMask(M, VT, Subtarget))
6863    return getTargetShuffleNode(getVPERMILOpcode(VT), dl, VT, V1,
6864                                getShuffleVPERMILPSImmediate(SVOp), DAG);
6865
6866  // Handle VPERMILPD* permutations
6867  if (isVPERMILPDMask(M, VT, Subtarget))
6868    return getTargetShuffleNode(getVPERMILOpcode(VT), dl, VT, V1,
6869                                getShuffleVPERMILPDImmediate(SVOp), DAG);
6870
6871  // Handle VPERM2F128 permutations
6872  if (isVPERM2F128Mask(M, VT, Subtarget))
6873    return getTargetShuffleNode(X86ISD::VPERM2F128, dl, VT, V1, V2,
6874                                getShuffleVPERM2F128Immediate(SVOp), DAG);
6875
6876  // Handle VSHUFPSY permutations
6877  if (isVSHUFPSYMask(M, VT, Subtarget))
6878    return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
6879                                getShuffleVSHUFPSYImmediate(SVOp), DAG);
6880
6881  // Handle VSHUFPDY permutations
6882  if (isVSHUFPDYMask(M, VT, Subtarget))
6883    return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
6884                                getShuffleVSHUFPDYImmediate(SVOp), DAG);
6885
6886  //===--------------------------------------------------------------------===//
6887  // Since no target specific shuffle was selected for this generic one,
6888  // lower it into other known shuffles. FIXME: this isn't true yet, but
6889  // this is the plan.
6890  //
6891
6892  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6893  if (VT == MVT::v8i16) {
6894    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
6895    if (NewOp.getNode())
6896      return NewOp;
6897  }
6898
6899  if (VT == MVT::v16i8) {
6900    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6901    if (NewOp.getNode())
6902      return NewOp;
6903  }
6904
6905  // Handle all 128-bit wide vectors with 4 elements, and match them with
6906  // several different shuffle types.
6907  if (NumElems == 4 && VT.getSizeInBits() == 128)
6908    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6909
6910  // Handle general 256-bit shuffles
6911  if (VT.is256BitVector())
6912    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6913
6914  return SDValue();
6915}
6916
6917SDValue
6918X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6919                                                SelectionDAG &DAG) const {
6920  EVT VT = Op.getValueType();
6921  DebugLoc dl = Op.getDebugLoc();
6922
6923  if (Op.getOperand(0).getValueType().getSizeInBits() != 128)
6924    return SDValue();
6925
6926  if (VT.getSizeInBits() == 8) {
6927    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6928                                    Op.getOperand(0), Op.getOperand(1));
6929    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6930                                    DAG.getValueType(VT));
6931    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6932  } else if (VT.getSizeInBits() == 16) {
6933    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6934    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6935    if (Idx == 0)
6936      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6937                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6938                                     DAG.getNode(ISD::BITCAST, dl,
6939                                                 MVT::v4i32,
6940                                                 Op.getOperand(0)),
6941                                     Op.getOperand(1)));
6942    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6943                                    Op.getOperand(0), Op.getOperand(1));
6944    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6945                                    DAG.getValueType(VT));
6946    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6947  } else if (VT == MVT::f32) {
6948    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6949    // the result back to FR32 register. It's only worth matching if the
6950    // result has a single use which is a store or a bitcast to i32.  And in
6951    // the case of a store, it's not worth it if the index is a constant 0,
6952    // because a MOVSSmr can be used instead, which is smaller and faster.
6953    if (!Op.hasOneUse())
6954      return SDValue();
6955    SDNode *User = *Op.getNode()->use_begin();
6956    if ((User->getOpcode() != ISD::STORE ||
6957         (isa<ConstantSDNode>(Op.getOperand(1)) &&
6958          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6959        (User->getOpcode() != ISD::BITCAST ||
6960         User->getValueType(0) != MVT::i32))
6961      return SDValue();
6962    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6963                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
6964                                              Op.getOperand(0)),
6965                                              Op.getOperand(1));
6966    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
6967  } else if (VT == MVT::i32 || VT == MVT::i64) {
6968    // ExtractPS/pextrq works with constant index.
6969    if (isa<ConstantSDNode>(Op.getOperand(1)))
6970      return Op;
6971  }
6972  return SDValue();
6973}
6974
6975
6976SDValue
6977X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6978                                           SelectionDAG &DAG) const {
6979  if (!isa<ConstantSDNode>(Op.getOperand(1)))
6980    return SDValue();
6981
6982  SDValue Vec = Op.getOperand(0);
6983  EVT VecVT = Vec.getValueType();
6984
6985  // If this is a 256-bit vector result, first extract the 128-bit vector and
6986  // then extract the element from the 128-bit vector.
6987  if (VecVT.getSizeInBits() == 256) {
6988    DebugLoc dl = Op.getNode()->getDebugLoc();
6989    unsigned NumElems = VecVT.getVectorNumElements();
6990    SDValue Idx = Op.getOperand(1);
6991    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6992
6993    // Get the 128-bit vector.
6994    bool Upper = IdxVal >= NumElems/2;
6995    Vec = Extract128BitVector(Vec,
6996                    DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32), DAG, dl);
6997
6998    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6999                    Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : Idx);
7000  }
7001
7002  assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
7003
7004  if (Subtarget->hasSSE41() || Subtarget->hasAVX()) {
7005    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
7006    if (Res.getNode())
7007      return Res;
7008  }
7009
7010  EVT VT = Op.getValueType();
7011  DebugLoc dl = Op.getDebugLoc();
7012  // TODO: handle v16i8.
7013  if (VT.getSizeInBits() == 16) {
7014    SDValue Vec = Op.getOperand(0);
7015    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7016    if (Idx == 0)
7017      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
7018                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7019                                     DAG.getNode(ISD::BITCAST, dl,
7020                                                 MVT::v4i32, Vec),
7021                                     Op.getOperand(1)));
7022    // Transform it so it match pextrw which produces a 32-bit result.
7023    EVT EltVT = MVT::i32;
7024    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
7025                                    Op.getOperand(0), Op.getOperand(1));
7026    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
7027                                    DAG.getValueType(VT));
7028    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
7029  } else if (VT.getSizeInBits() == 32) {
7030    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7031    if (Idx == 0)
7032      return Op;
7033
7034    // SHUFPS the element to the lowest double word, then movss.
7035    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
7036    EVT VVT = Op.getOperand(0).getValueType();
7037    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
7038                                       DAG.getUNDEF(VVT), Mask);
7039    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
7040                       DAG.getIntPtrConstant(0));
7041  } else if (VT.getSizeInBits() == 64) {
7042    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
7043    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
7044    //        to match extract_elt for f64.
7045    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7046    if (Idx == 0)
7047      return Op;
7048
7049    // UNPCKHPD the element to the lowest double word, then movsd.
7050    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
7051    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
7052    int Mask[2] = { 1, -1 };
7053    EVT VVT = Op.getOperand(0).getValueType();
7054    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
7055                                       DAG.getUNDEF(VVT), Mask);
7056    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
7057                       DAG.getIntPtrConstant(0));
7058  }
7059
7060  return SDValue();
7061}
7062
7063SDValue
7064X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
7065                                               SelectionDAG &DAG) const {
7066  EVT VT = Op.getValueType();
7067  EVT EltVT = VT.getVectorElementType();
7068  DebugLoc dl = Op.getDebugLoc();
7069
7070  SDValue N0 = Op.getOperand(0);
7071  SDValue N1 = Op.getOperand(1);
7072  SDValue N2 = Op.getOperand(2);
7073
7074  if (VT.getSizeInBits() == 256)
7075    return SDValue();
7076
7077  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
7078      isa<ConstantSDNode>(N2)) {
7079    unsigned Opc;
7080    if (VT == MVT::v8i16)
7081      Opc = X86ISD::PINSRW;
7082    else if (VT == MVT::v16i8)
7083      Opc = X86ISD::PINSRB;
7084    else
7085      Opc = X86ISD::PINSRB;
7086
7087    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
7088    // argument.
7089    if (N1.getValueType() != MVT::i32)
7090      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7091    if (N2.getValueType() != MVT::i32)
7092      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7093    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
7094  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
7095    // Bits [7:6] of the constant are the source select.  This will always be
7096    //  zero here.  The DAG Combiner may combine an extract_elt index into these
7097    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
7098    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
7099    // Bits [5:4] of the constant are the destination select.  This is the
7100    //  value of the incoming immediate.
7101    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
7102    //   combine either bitwise AND or insert of float 0.0 to set these bits.
7103    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
7104    // Create this as a scalar to vector..
7105    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
7106    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
7107  } else if ((EltVT == MVT::i32 || EltVT == MVT::i64) &&
7108             isa<ConstantSDNode>(N2)) {
7109    // PINSR* works with constant index.
7110    return Op;
7111  }
7112  return SDValue();
7113}
7114
7115SDValue
7116X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
7117  EVT VT = Op.getValueType();
7118  EVT EltVT = VT.getVectorElementType();
7119
7120  DebugLoc dl = Op.getDebugLoc();
7121  SDValue N0 = Op.getOperand(0);
7122  SDValue N1 = Op.getOperand(1);
7123  SDValue N2 = Op.getOperand(2);
7124
7125  // If this is a 256-bit vector result, first extract the 128-bit vector,
7126  // insert the element into the extracted half and then place it back.
7127  if (VT.getSizeInBits() == 256) {
7128    if (!isa<ConstantSDNode>(N2))
7129      return SDValue();
7130
7131    // Get the desired 128-bit vector half.
7132    unsigned NumElems = VT.getVectorNumElements();
7133    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
7134    bool Upper = IdxVal >= NumElems/2;
7135    SDValue Ins128Idx = DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32);
7136    SDValue V = Extract128BitVector(N0, Ins128Idx, DAG, dl);
7137
7138    // Insert the element into the desired half.
7139    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V,
7140                 N1, Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : N2);
7141
7142    // Insert the changed part back to the 256-bit vector
7143    return Insert128BitVector(N0, V, Ins128Idx, DAG, dl);
7144  }
7145
7146  if (Subtarget->hasSSE41() || Subtarget->hasAVX())
7147    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
7148
7149  if (EltVT == MVT::i8)
7150    return SDValue();
7151
7152  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
7153    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
7154    // as its second argument.
7155    if (N1.getValueType() != MVT::i32)
7156      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7157    if (N2.getValueType() != MVT::i32)
7158      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7159    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
7160  }
7161  return SDValue();
7162}
7163
7164SDValue
7165X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
7166  LLVMContext *Context = DAG.getContext();
7167  DebugLoc dl = Op.getDebugLoc();
7168  EVT OpVT = Op.getValueType();
7169
7170  // If this is a 256-bit vector result, first insert into a 128-bit
7171  // vector and then insert into the 256-bit vector.
7172  if (OpVT.getSizeInBits() > 128) {
7173    // Insert into a 128-bit vector.
7174    EVT VT128 = EVT::getVectorVT(*Context,
7175                                 OpVT.getVectorElementType(),
7176                                 OpVT.getVectorNumElements() / 2);
7177
7178    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
7179
7180    // Insert the 128-bit vector.
7181    return Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, OpVT), Op,
7182                              DAG.getConstant(0, MVT::i32),
7183                              DAG, dl);
7184  }
7185
7186  if (Op.getValueType() == MVT::v1i64 &&
7187      Op.getOperand(0).getValueType() == MVT::i64)
7188    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
7189
7190  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
7191  assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
7192         "Expected an SSE type!");
7193  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
7194                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
7195}
7196
7197// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
7198// a simple subregister reference or explicit instructions to grab
7199// upper bits of a vector.
7200SDValue
7201X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7202  if (Subtarget->hasAVX()) {
7203    DebugLoc dl = Op.getNode()->getDebugLoc();
7204    SDValue Vec = Op.getNode()->getOperand(0);
7205    SDValue Idx = Op.getNode()->getOperand(1);
7206
7207    if (Op.getNode()->getValueType(0).getSizeInBits() == 128
7208        && Vec.getNode()->getValueType(0).getSizeInBits() == 256) {
7209        return Extract128BitVector(Vec, Idx, DAG, dl);
7210    }
7211  }
7212  return SDValue();
7213}
7214
7215// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
7216// simple superregister reference or explicit instructions to insert
7217// the upper bits of a vector.
7218SDValue
7219X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7220  if (Subtarget->hasAVX()) {
7221    DebugLoc dl = Op.getNode()->getDebugLoc();
7222    SDValue Vec = Op.getNode()->getOperand(0);
7223    SDValue SubVec = Op.getNode()->getOperand(1);
7224    SDValue Idx = Op.getNode()->getOperand(2);
7225
7226    if (Op.getNode()->getValueType(0).getSizeInBits() == 256
7227        && SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
7228      return Insert128BitVector(Vec, SubVec, Idx, DAG, dl);
7229    }
7230  }
7231  return SDValue();
7232}
7233
7234// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7235// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7236// one of the above mentioned nodes. It has to be wrapped because otherwise
7237// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7238// be used to form addressing mode. These wrapped nodes will be selected
7239// into MOV32ri.
7240SDValue
7241X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7242  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7243
7244  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7245  // global base reg.
7246  unsigned char OpFlag = 0;
7247  unsigned WrapperKind = X86ISD::Wrapper;
7248  CodeModel::Model M = getTargetMachine().getCodeModel();
7249
7250  if (Subtarget->isPICStyleRIPRel() &&
7251      (M == CodeModel::Small || M == CodeModel::Kernel))
7252    WrapperKind = X86ISD::WrapperRIP;
7253  else if (Subtarget->isPICStyleGOT())
7254    OpFlag = X86II::MO_GOTOFF;
7255  else if (Subtarget->isPICStyleStubPIC())
7256    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7257
7258  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7259                                             CP->getAlignment(),
7260                                             CP->getOffset(), OpFlag);
7261  DebugLoc DL = CP->getDebugLoc();
7262  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7263  // With PIC, the address is actually $g + Offset.
7264  if (OpFlag) {
7265    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7266                         DAG.getNode(X86ISD::GlobalBaseReg,
7267                                     DebugLoc(), getPointerTy()),
7268                         Result);
7269  }
7270
7271  return Result;
7272}
7273
7274SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7275  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7276
7277  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7278  // global base reg.
7279  unsigned char OpFlag = 0;
7280  unsigned WrapperKind = X86ISD::Wrapper;
7281  CodeModel::Model M = getTargetMachine().getCodeModel();
7282
7283  if (Subtarget->isPICStyleRIPRel() &&
7284      (M == CodeModel::Small || M == CodeModel::Kernel))
7285    WrapperKind = X86ISD::WrapperRIP;
7286  else if (Subtarget->isPICStyleGOT())
7287    OpFlag = X86II::MO_GOTOFF;
7288  else if (Subtarget->isPICStyleStubPIC())
7289    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7290
7291  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7292                                          OpFlag);
7293  DebugLoc DL = JT->getDebugLoc();
7294  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7295
7296  // With PIC, the address is actually $g + Offset.
7297  if (OpFlag)
7298    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7299                         DAG.getNode(X86ISD::GlobalBaseReg,
7300                                     DebugLoc(), getPointerTy()),
7301                         Result);
7302
7303  return Result;
7304}
7305
7306SDValue
7307X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7308  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7309
7310  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7311  // global base reg.
7312  unsigned char OpFlag = 0;
7313  unsigned WrapperKind = X86ISD::Wrapper;
7314  CodeModel::Model M = getTargetMachine().getCodeModel();
7315
7316  if (Subtarget->isPICStyleRIPRel() &&
7317      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7318    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7319      OpFlag = X86II::MO_GOTPCREL;
7320    WrapperKind = X86ISD::WrapperRIP;
7321  } else if (Subtarget->isPICStyleGOT()) {
7322    OpFlag = X86II::MO_GOT;
7323  } else if (Subtarget->isPICStyleStubPIC()) {
7324    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7325  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7326    OpFlag = X86II::MO_DARWIN_NONLAZY;
7327  }
7328
7329  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7330
7331  DebugLoc DL = Op.getDebugLoc();
7332  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7333
7334
7335  // With PIC, the address is actually $g + Offset.
7336  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7337      !Subtarget->is64Bit()) {
7338    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7339                         DAG.getNode(X86ISD::GlobalBaseReg,
7340                                     DebugLoc(), getPointerTy()),
7341                         Result);
7342  }
7343
7344  // For symbols that require a load from a stub to get the address, emit the
7345  // load.
7346  if (isGlobalStubReference(OpFlag))
7347    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7348                         MachinePointerInfo::getGOT(), false, false, false, 0);
7349
7350  return Result;
7351}
7352
7353SDValue
7354X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7355  // Create the TargetBlockAddressAddress node.
7356  unsigned char OpFlags =
7357    Subtarget->ClassifyBlockAddressReference();
7358  CodeModel::Model M = getTargetMachine().getCodeModel();
7359  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7360  DebugLoc dl = Op.getDebugLoc();
7361  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
7362                                       /*isTarget=*/true, OpFlags);
7363
7364  if (Subtarget->isPICStyleRIPRel() &&
7365      (M == CodeModel::Small || M == CodeModel::Kernel))
7366    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7367  else
7368    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7369
7370  // With PIC, the address is actually $g + Offset.
7371  if (isGlobalRelativeToPICBase(OpFlags)) {
7372    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7373                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7374                         Result);
7375  }
7376
7377  return Result;
7378}
7379
7380SDValue
7381X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7382                                      int64_t Offset,
7383                                      SelectionDAG &DAG) const {
7384  // Create the TargetGlobalAddress node, folding in the constant
7385  // offset if it is legal.
7386  unsigned char OpFlags =
7387    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7388  CodeModel::Model M = getTargetMachine().getCodeModel();
7389  SDValue Result;
7390  if (OpFlags == X86II::MO_NO_FLAG &&
7391      X86::isOffsetSuitableForCodeModel(Offset, M)) {
7392    // A direct static reference to a global.
7393    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7394    Offset = 0;
7395  } else {
7396    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7397  }
7398
7399  if (Subtarget->isPICStyleRIPRel() &&
7400      (M == CodeModel::Small || M == CodeModel::Kernel))
7401    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7402  else
7403    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7404
7405  // With PIC, the address is actually $g + Offset.
7406  if (isGlobalRelativeToPICBase(OpFlags)) {
7407    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7408                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7409                         Result);
7410  }
7411
7412  // For globals that require a load from a stub to get the address, emit the
7413  // load.
7414  if (isGlobalStubReference(OpFlags))
7415    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7416                         MachinePointerInfo::getGOT(), false, false, false, 0);
7417
7418  // If there was a non-zero offset that we didn't fold, create an explicit
7419  // addition for it.
7420  if (Offset != 0)
7421    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7422                         DAG.getConstant(Offset, getPointerTy()));
7423
7424  return Result;
7425}
7426
7427SDValue
7428X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7429  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7430  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7431  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7432}
7433
7434static SDValue
7435GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7436           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7437           unsigned char OperandFlags) {
7438  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7439  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7440  DebugLoc dl = GA->getDebugLoc();
7441  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7442                                           GA->getValueType(0),
7443                                           GA->getOffset(),
7444                                           OperandFlags);
7445  if (InFlag) {
7446    SDValue Ops[] = { Chain,  TGA, *InFlag };
7447    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
7448  } else {
7449    SDValue Ops[]  = { Chain, TGA };
7450    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
7451  }
7452
7453  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7454  MFI->setAdjustsStack(true);
7455
7456  SDValue Flag = Chain.getValue(1);
7457  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7458}
7459
7460// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7461static SDValue
7462LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7463                                const EVT PtrVT) {
7464  SDValue InFlag;
7465  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
7466  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7467                                     DAG.getNode(X86ISD::GlobalBaseReg,
7468                                                 DebugLoc(), PtrVT), InFlag);
7469  InFlag = Chain.getValue(1);
7470
7471  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7472}
7473
7474// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7475static SDValue
7476LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7477                                const EVT PtrVT) {
7478  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7479                    X86::RAX, X86II::MO_TLSGD);
7480}
7481
7482// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
7483// "local exec" model.
7484static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7485                                   const EVT PtrVT, TLSModel::Model model,
7486                                   bool is64Bit) {
7487  DebugLoc dl = GA->getDebugLoc();
7488
7489  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7490  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7491                                                         is64Bit ? 257 : 256));
7492
7493  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7494                                      DAG.getIntPtrConstant(0),
7495                                      MachinePointerInfo(Ptr),
7496                                      false, false, false, 0);
7497
7498  unsigned char OperandFlags = 0;
7499  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7500  // initialexec.
7501  unsigned WrapperKind = X86ISD::Wrapper;
7502  if (model == TLSModel::LocalExec) {
7503    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7504  } else if (is64Bit) {
7505    assert(model == TLSModel::InitialExec);
7506    OperandFlags = X86II::MO_GOTTPOFF;
7507    WrapperKind = X86ISD::WrapperRIP;
7508  } else {
7509    assert(model == TLSModel::InitialExec);
7510    OperandFlags = X86II::MO_INDNTPOFF;
7511  }
7512
7513  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
7514  // exec)
7515  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7516                                           GA->getValueType(0),
7517                                           GA->getOffset(), OperandFlags);
7518  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7519
7520  if (model == TLSModel::InitialExec)
7521    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7522                         MachinePointerInfo::getGOT(), false, false, false, 0);
7523
7524  // The address of the thread local variable is the add of the thread
7525  // pointer with the offset of the variable.
7526  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7527}
7528
7529SDValue
7530X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7531
7532  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7533  const GlobalValue *GV = GA->getGlobal();
7534
7535  if (Subtarget->isTargetELF()) {
7536    // TODO: implement the "local dynamic" model
7537    // TODO: implement the "initial exec"model for pic executables
7538
7539    // If GV is an alias then use the aliasee for determining
7540    // thread-localness.
7541    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7542      GV = GA->resolveAliasedGlobal(false);
7543
7544    TLSModel::Model model
7545      = getTLSModel(GV, getTargetMachine().getRelocationModel());
7546
7547    switch (model) {
7548      case TLSModel::GeneralDynamic:
7549      case TLSModel::LocalDynamic: // not implemented
7550        if (Subtarget->is64Bit())
7551          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7552        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7553
7554      case TLSModel::InitialExec:
7555      case TLSModel::LocalExec:
7556        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7557                                   Subtarget->is64Bit());
7558    }
7559  } else if (Subtarget->isTargetDarwin()) {
7560    // Darwin only has one model of TLS.  Lower to that.
7561    unsigned char OpFlag = 0;
7562    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7563                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7564
7565    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7566    // global base reg.
7567    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7568                  !Subtarget->is64Bit();
7569    if (PIC32)
7570      OpFlag = X86II::MO_TLVP_PIC_BASE;
7571    else
7572      OpFlag = X86II::MO_TLVP;
7573    DebugLoc DL = Op.getDebugLoc();
7574    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7575                                                GA->getValueType(0),
7576                                                GA->getOffset(), OpFlag);
7577    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7578
7579    // With PIC32, the address is actually $g + Offset.
7580    if (PIC32)
7581      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7582                           DAG.getNode(X86ISD::GlobalBaseReg,
7583                                       DebugLoc(), getPointerTy()),
7584                           Offset);
7585
7586    // Lowering the machine isd will make sure everything is in the right
7587    // location.
7588    SDValue Chain = DAG.getEntryNode();
7589    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7590    SDValue Args[] = { Chain, Offset };
7591    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7592
7593    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7594    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7595    MFI->setAdjustsStack(true);
7596
7597    // And our return value (tls address) is in the standard call return value
7598    // location.
7599    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7600    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
7601                              Chain.getValue(1));
7602  }
7603
7604  assert(false &&
7605         "TLS not implemented for this target.");
7606
7607  llvm_unreachable("Unreachable");
7608  return SDValue();
7609}
7610
7611
7612/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values and
7613/// take a 2 x i32 value to shift plus a shift amount.
7614SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const {
7615  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7616  EVT VT = Op.getValueType();
7617  unsigned VTBits = VT.getSizeInBits();
7618  DebugLoc dl = Op.getDebugLoc();
7619  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7620  SDValue ShOpLo = Op.getOperand(0);
7621  SDValue ShOpHi = Op.getOperand(1);
7622  SDValue ShAmt  = Op.getOperand(2);
7623  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7624                                     DAG.getConstant(VTBits - 1, MVT::i8))
7625                       : DAG.getConstant(0, VT);
7626
7627  SDValue Tmp2, Tmp3;
7628  if (Op.getOpcode() == ISD::SHL_PARTS) {
7629    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7630    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7631  } else {
7632    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7633    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7634  }
7635
7636  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7637                                DAG.getConstant(VTBits, MVT::i8));
7638  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7639                             AndNode, DAG.getConstant(0, MVT::i8));
7640
7641  SDValue Hi, Lo;
7642  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7643  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7644  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7645
7646  if (Op.getOpcode() == ISD::SHL_PARTS) {
7647    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7648    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7649  } else {
7650    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7651    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7652  }
7653
7654  SDValue Ops[2] = { Lo, Hi };
7655  return DAG.getMergeValues(Ops, 2, dl);
7656}
7657
7658SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7659                                           SelectionDAG &DAG) const {
7660  EVT SrcVT = Op.getOperand(0).getValueType();
7661
7662  if (SrcVT.isVector())
7663    return SDValue();
7664
7665  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7666         "Unknown SINT_TO_FP to lower!");
7667
7668  // These are really Legal; return the operand so the caller accepts it as
7669  // Legal.
7670  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7671    return Op;
7672  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7673      Subtarget->is64Bit()) {
7674    return Op;
7675  }
7676
7677  DebugLoc dl = Op.getDebugLoc();
7678  unsigned Size = SrcVT.getSizeInBits()/8;
7679  MachineFunction &MF = DAG.getMachineFunction();
7680  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7681  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7682  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7683                               StackSlot,
7684                               MachinePointerInfo::getFixedStack(SSFI),
7685                               false, false, 0);
7686  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7687}
7688
7689SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7690                                     SDValue StackSlot,
7691                                     SelectionDAG &DAG) const {
7692  // Build the FILD
7693  DebugLoc DL = Op.getDebugLoc();
7694  SDVTList Tys;
7695  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7696  if (useSSE)
7697    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7698  else
7699    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7700
7701  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7702
7703  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7704  MachineMemOperand *MMO;
7705  if (FI) {
7706    int SSFI = FI->getIndex();
7707    MMO =
7708      DAG.getMachineFunction()
7709      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7710                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7711  } else {
7712    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7713    StackSlot = StackSlot.getOperand(1);
7714  }
7715  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7716  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7717                                           X86ISD::FILD, DL,
7718                                           Tys, Ops, array_lengthof(Ops),
7719                                           SrcVT, MMO);
7720
7721  if (useSSE) {
7722    Chain = Result.getValue(1);
7723    SDValue InFlag = Result.getValue(2);
7724
7725    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7726    // shouldn't be necessary except that RFP cannot be live across
7727    // multiple blocks. When stackifier is fixed, they can be uncoupled.
7728    MachineFunction &MF = DAG.getMachineFunction();
7729    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7730    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7731    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7732    Tys = DAG.getVTList(MVT::Other);
7733    SDValue Ops[] = {
7734      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7735    };
7736    MachineMemOperand *MMO =
7737      DAG.getMachineFunction()
7738      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7739                            MachineMemOperand::MOStore, SSFISize, SSFISize);
7740
7741    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7742                                    Ops, array_lengthof(Ops),
7743                                    Op.getValueType(), MMO);
7744    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7745                         MachinePointerInfo::getFixedStack(SSFI),
7746                         false, false, false, 0);
7747  }
7748
7749  return Result;
7750}
7751
7752// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7753SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7754                                               SelectionDAG &DAG) const {
7755  // This algorithm is not obvious. Here it is in C code, more or less:
7756  /*
7757    double uint64_to_double( uint32_t hi, uint32_t lo ) {
7758      static const __m128i exp = { 0x4330000045300000ULL, 0 };
7759      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
7760
7761      // Copy ints to xmm registers.
7762      __m128i xh = _mm_cvtsi32_si128( hi );
7763      __m128i xl = _mm_cvtsi32_si128( lo );
7764
7765      // Combine into low half of a single xmm register.
7766      __m128i x = _mm_unpacklo_epi32( xh, xl );
7767      __m128d d;
7768      double sd;
7769
7770      // Merge in appropriate exponents to give the integer bits the right
7771      // magnitude.
7772      x = _mm_unpacklo_epi32( x, exp );
7773
7774      // Subtract away the biases to deal with the IEEE-754 double precision
7775      // implicit 1.
7776      d = _mm_sub_pd( (__m128d) x, bias );
7777
7778      // All conversions up to here are exact. The correctly rounded result is
7779      // calculated using the current rounding mode using the following
7780      // horizontal add.
7781      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
7782      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
7783                                // store doesn't really need to be here (except
7784                                // maybe to zero the other double)
7785      return sd;
7786    }
7787  */
7788
7789  DebugLoc dl = Op.getDebugLoc();
7790  LLVMContext *Context = DAG.getContext();
7791
7792  // Build some magic constants.
7793  std::vector<Constant*> CV0;
7794  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
7795  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
7796  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7797  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7798  Constant *C0 = ConstantVector::get(CV0);
7799  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7800
7801  std::vector<Constant*> CV1;
7802  CV1.push_back(
7803    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7804  CV1.push_back(
7805    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7806  Constant *C1 = ConstantVector::get(CV1);
7807  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7808
7809  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7810                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7811                                        Op.getOperand(0),
7812                                        DAG.getIntPtrConstant(1)));
7813  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7814                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7815                                        Op.getOperand(0),
7816                                        DAG.getIntPtrConstant(0)));
7817  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
7818  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7819                              MachinePointerInfo::getConstantPool(),
7820                              false, false, false, 16);
7821  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
7822  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck2);
7823  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7824                              MachinePointerInfo::getConstantPool(),
7825                              false, false, false, 16);
7826  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7827
7828  // Add the halves; easiest way is to swap them into another reg first.
7829  int ShufMask[2] = { 1, -1 };
7830  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
7831                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
7832  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
7833  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
7834                     DAG.getIntPtrConstant(0));
7835}
7836
7837// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
7838SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7839                                               SelectionDAG &DAG) const {
7840  DebugLoc dl = Op.getDebugLoc();
7841  // FP constant to bias correct the final result.
7842  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7843                                   MVT::f64);
7844
7845  // Load the 32-bit value into an XMM register.
7846  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7847                             Op.getOperand(0));
7848
7849  // Zero out the upper parts of the register.
7850  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget->hasXMMInt(),
7851                                     DAG);
7852
7853  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7854                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7855                     DAG.getIntPtrConstant(0));
7856
7857  // Or the load with the bias.
7858  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7859                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7860                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7861                                                   MVT::v2f64, Load)),
7862                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7863                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7864                                                   MVT::v2f64, Bias)));
7865  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7866                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7867                   DAG.getIntPtrConstant(0));
7868
7869  // Subtract the bias.
7870  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7871
7872  // Handle final rounding.
7873  EVT DestVT = Op.getValueType();
7874
7875  if (DestVT.bitsLT(MVT::f64)) {
7876    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7877                       DAG.getIntPtrConstant(0));
7878  } else if (DestVT.bitsGT(MVT::f64)) {
7879    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7880  }
7881
7882  // Handle final rounding.
7883  return Sub;
7884}
7885
7886SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
7887                                           SelectionDAG &DAG) const {
7888  SDValue N0 = Op.getOperand(0);
7889  DebugLoc dl = Op.getDebugLoc();
7890
7891  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
7892  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
7893  // the optimization here.
7894  if (DAG.SignBitIsZero(N0))
7895    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
7896
7897  EVT SrcVT = N0.getValueType();
7898  EVT DstVT = Op.getValueType();
7899  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
7900    return LowerUINT_TO_FP_i64(Op, DAG);
7901  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
7902    return LowerUINT_TO_FP_i32(Op, DAG);
7903
7904  // Make a 64-bit buffer, and use it to build an FILD.
7905  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
7906  if (SrcVT == MVT::i32) {
7907    SDValue WordOff = DAG.getConstant(4, getPointerTy());
7908    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
7909                                     getPointerTy(), StackSlot, WordOff);
7910    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7911                                  StackSlot, MachinePointerInfo(),
7912                                  false, false, 0);
7913    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
7914                                  OffsetSlot, MachinePointerInfo(),
7915                                  false, false, 0);
7916    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
7917    return Fild;
7918  }
7919
7920  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
7921  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7922                                StackSlot, MachinePointerInfo(),
7923                               false, false, 0);
7924  // For i64 source, we need to add the appropriate power of 2 if the input
7925  // was negative.  This is the same as the optimization in
7926  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
7927  // we must be careful to do the computation in x87 extended precision, not
7928  // in SSE. (The generic code can't know it's OK to do this, or how to.)
7929  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
7930  MachineMemOperand *MMO =
7931    DAG.getMachineFunction()
7932    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7933                          MachineMemOperand::MOLoad, 8, 8);
7934
7935  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
7936  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
7937  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
7938                                         MVT::i64, MMO);
7939
7940  APInt FF(32, 0x5F800000ULL);
7941
7942  // Check whether the sign bit is set.
7943  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
7944                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
7945                                 ISD::SETLT);
7946
7947  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
7948  SDValue FudgePtr = DAG.getConstantPool(
7949                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
7950                                         getPointerTy());
7951
7952  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
7953  SDValue Zero = DAG.getIntPtrConstant(0);
7954  SDValue Four = DAG.getIntPtrConstant(4);
7955  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
7956                               Zero, Four);
7957  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
7958
7959  // Load the value out, extending it from f32 to f80.
7960  // FIXME: Avoid the extend by constructing the right constant pool?
7961  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
7962                                 FudgePtr, MachinePointerInfo::getConstantPool(),
7963                                 MVT::f32, false, false, 4);
7964  // Extend everything to 80 bits to force it to be done on x87.
7965  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
7966  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
7967}
7968
7969std::pair<SDValue,SDValue> X86TargetLowering::
7970FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
7971  DebugLoc DL = Op.getDebugLoc();
7972
7973  EVT DstTy = Op.getValueType();
7974
7975  if (!IsSigned) {
7976    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
7977    DstTy = MVT::i64;
7978  }
7979
7980  assert(DstTy.getSimpleVT() <= MVT::i64 &&
7981         DstTy.getSimpleVT() >= MVT::i16 &&
7982         "Unknown FP_TO_SINT to lower!");
7983
7984  // These are really Legal.
7985  if (DstTy == MVT::i32 &&
7986      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7987    return std::make_pair(SDValue(), SDValue());
7988  if (Subtarget->is64Bit() &&
7989      DstTy == MVT::i64 &&
7990      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7991    return std::make_pair(SDValue(), SDValue());
7992
7993  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
7994  // stack slot.
7995  MachineFunction &MF = DAG.getMachineFunction();
7996  unsigned MemSize = DstTy.getSizeInBits()/8;
7997  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7998  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7999
8000
8001
8002  unsigned Opc;
8003  switch (DstTy.getSimpleVT().SimpleTy) {
8004  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
8005  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
8006  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
8007  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
8008  }
8009
8010  SDValue Chain = DAG.getEntryNode();
8011  SDValue Value = Op.getOperand(0);
8012  EVT TheVT = Op.getOperand(0).getValueType();
8013  if (isScalarFPTypeInSSEReg(TheVT)) {
8014    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
8015    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
8016                         MachinePointerInfo::getFixedStack(SSFI),
8017                         false, false, 0);
8018    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
8019    SDValue Ops[] = {
8020      Chain, StackSlot, DAG.getValueType(TheVT)
8021    };
8022
8023    MachineMemOperand *MMO =
8024      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8025                              MachineMemOperand::MOLoad, MemSize, MemSize);
8026    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
8027                                    DstTy, MMO);
8028    Chain = Value.getValue(1);
8029    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
8030    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8031  }
8032
8033  MachineMemOperand *MMO =
8034    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8035                            MachineMemOperand::MOStore, MemSize, MemSize);
8036
8037  // Build the FP_TO_INT*_IN_MEM
8038  SDValue Ops[] = { Chain, Value, StackSlot };
8039  SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
8040                                         Ops, 3, DstTy, MMO);
8041
8042  return std::make_pair(FIST, StackSlot);
8043}
8044
8045SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
8046                                           SelectionDAG &DAG) const {
8047  if (Op.getValueType().isVector())
8048    return SDValue();
8049
8050  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
8051  SDValue FIST = Vals.first, StackSlot = Vals.second;
8052  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
8053  if (FIST.getNode() == 0) return Op;
8054
8055  // Load the result.
8056  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
8057                     FIST, StackSlot, MachinePointerInfo(),
8058                     false, false, false, 0);
8059}
8060
8061SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
8062                                           SelectionDAG &DAG) const {
8063  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
8064  SDValue FIST = Vals.first, StackSlot = Vals.second;
8065  assert(FIST.getNode() && "Unexpected failure");
8066
8067  // Load the result.
8068  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
8069                     FIST, StackSlot, MachinePointerInfo(),
8070                     false, false, false, 0);
8071}
8072
8073SDValue X86TargetLowering::LowerFABS(SDValue Op,
8074                                     SelectionDAG &DAG) const {
8075  LLVMContext *Context = DAG.getContext();
8076  DebugLoc dl = Op.getDebugLoc();
8077  EVT VT = Op.getValueType();
8078  EVT EltVT = VT;
8079  if (VT.isVector())
8080    EltVT = VT.getVectorElementType();
8081  std::vector<Constant*> CV;
8082  if (EltVT == MVT::f64) {
8083    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
8084    CV.push_back(C);
8085    CV.push_back(C);
8086  } else {
8087    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
8088    CV.push_back(C);
8089    CV.push_back(C);
8090    CV.push_back(C);
8091    CV.push_back(C);
8092  }
8093  Constant *C = ConstantVector::get(CV);
8094  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8095  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8096                             MachinePointerInfo::getConstantPool(),
8097                             false, false, false, 16);
8098  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
8099}
8100
8101SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
8102  LLVMContext *Context = DAG.getContext();
8103  DebugLoc dl = Op.getDebugLoc();
8104  EVT VT = Op.getValueType();
8105  EVT EltVT = VT;
8106  if (VT.isVector())
8107    EltVT = VT.getVectorElementType();
8108  std::vector<Constant*> CV;
8109  if (EltVT == MVT::f64) {
8110    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
8111    CV.push_back(C);
8112    CV.push_back(C);
8113  } else {
8114    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
8115    CV.push_back(C);
8116    CV.push_back(C);
8117    CV.push_back(C);
8118    CV.push_back(C);
8119  }
8120  Constant *C = ConstantVector::get(CV);
8121  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8122  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8123                             MachinePointerInfo::getConstantPool(),
8124                             false, false, false, 16);
8125  if (VT.isVector()) {
8126    return DAG.getNode(ISD::BITCAST, dl, VT,
8127                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
8128                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
8129                                Op.getOperand(0)),
8130                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Mask)));
8131  } else {
8132    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
8133  }
8134}
8135
8136SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
8137  LLVMContext *Context = DAG.getContext();
8138  SDValue Op0 = Op.getOperand(0);
8139  SDValue Op1 = Op.getOperand(1);
8140  DebugLoc dl = Op.getDebugLoc();
8141  EVT VT = Op.getValueType();
8142  EVT SrcVT = Op1.getValueType();
8143
8144  // If second operand is smaller, extend it first.
8145  if (SrcVT.bitsLT(VT)) {
8146    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
8147    SrcVT = VT;
8148  }
8149  // And if it is bigger, shrink it first.
8150  if (SrcVT.bitsGT(VT)) {
8151    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
8152    SrcVT = VT;
8153  }
8154
8155  // At this point the operands and the result should have the same
8156  // type, and that won't be f80 since that is not custom lowered.
8157
8158  // First get the sign bit of second operand.
8159  std::vector<Constant*> CV;
8160  if (SrcVT == MVT::f64) {
8161    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
8162    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8163  } else {
8164    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
8165    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8166    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8167    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8168  }
8169  Constant *C = ConstantVector::get(CV);
8170  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8171  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
8172                              MachinePointerInfo::getConstantPool(),
8173                              false, false, false, 16);
8174  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
8175
8176  // Shift sign bit right or left if the two operands have different types.
8177  if (SrcVT.bitsGT(VT)) {
8178    // Op0 is MVT::f32, Op1 is MVT::f64.
8179    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
8180    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
8181                          DAG.getConstant(32, MVT::i32));
8182    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
8183    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
8184                          DAG.getIntPtrConstant(0));
8185  }
8186
8187  // Clear first operand sign bit.
8188  CV.clear();
8189  if (VT == MVT::f64) {
8190    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
8191    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8192  } else {
8193    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
8194    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8195    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8196    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8197  }
8198  C = ConstantVector::get(CV);
8199  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8200  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8201                              MachinePointerInfo::getConstantPool(),
8202                              false, false, false, 16);
8203  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
8204
8205  // Or the value with the sign bit.
8206  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
8207}
8208
8209SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
8210  SDValue N0 = Op.getOperand(0);
8211  DebugLoc dl = Op.getDebugLoc();
8212  EVT VT = Op.getValueType();
8213
8214  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
8215  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
8216                                  DAG.getConstant(1, VT));
8217  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
8218}
8219
8220/// Emit nodes that will be selected as "test Op0,Op0", or something
8221/// equivalent.
8222SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
8223                                    SelectionDAG &DAG) const {
8224  DebugLoc dl = Op.getDebugLoc();
8225
8226  // CF and OF aren't always set the way we want. Determine which
8227  // of these we need.
8228  bool NeedCF = false;
8229  bool NeedOF = false;
8230  switch (X86CC) {
8231  default: break;
8232  case X86::COND_A: case X86::COND_AE:
8233  case X86::COND_B: case X86::COND_BE:
8234    NeedCF = true;
8235    break;
8236  case X86::COND_G: case X86::COND_GE:
8237  case X86::COND_L: case X86::COND_LE:
8238  case X86::COND_O: case X86::COND_NO:
8239    NeedOF = true;
8240    break;
8241  }
8242
8243  // See if we can use the EFLAGS value from the operand instead of
8244  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8245  // we prove that the arithmetic won't overflow, we can't use OF or CF.
8246  if (Op.getResNo() != 0 || NeedOF || NeedCF)
8247    // Emit a CMP with 0, which is the TEST pattern.
8248    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8249                       DAG.getConstant(0, Op.getValueType()));
8250
8251  unsigned Opcode = 0;
8252  unsigned NumOperands = 0;
8253  switch (Op.getNode()->getOpcode()) {
8254  case ISD::ADD:
8255    // Due to an isel shortcoming, be conservative if this add is likely to be
8256    // selected as part of a load-modify-store instruction. When the root node
8257    // in a match is a store, isel doesn't know how to remap non-chain non-flag
8258    // uses of other nodes in the match, such as the ADD in this case. This
8259    // leads to the ADD being left around and reselected, with the result being
8260    // two adds in the output.  Alas, even if none our users are stores, that
8261    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
8262    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
8263    // climbing the DAG back to the root, and it doesn't seem to be worth the
8264    // effort.
8265    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8266         UE = Op.getNode()->use_end(); UI != UE; ++UI)
8267      if (UI->getOpcode() != ISD::CopyToReg &&
8268          UI->getOpcode() != ISD::SETCC &&
8269          UI->getOpcode() != ISD::STORE)
8270        goto default_case;
8271
8272    if (ConstantSDNode *C =
8273        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
8274      // An add of one will be selected as an INC.
8275      if (C->getAPIntValue() == 1) {
8276        Opcode = X86ISD::INC;
8277        NumOperands = 1;
8278        break;
8279      }
8280
8281      // An add of negative one (subtract of one) will be selected as a DEC.
8282      if (C->getAPIntValue().isAllOnesValue()) {
8283        Opcode = X86ISD::DEC;
8284        NumOperands = 1;
8285        break;
8286      }
8287    }
8288
8289    // Otherwise use a regular EFLAGS-setting add.
8290    Opcode = X86ISD::ADD;
8291    NumOperands = 2;
8292    break;
8293  case ISD::AND: {
8294    // If the primary and result isn't used, don't bother using X86ISD::AND,
8295    // because a TEST instruction will be better.
8296    bool NonFlagUse = false;
8297    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8298           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8299      SDNode *User = *UI;
8300      unsigned UOpNo = UI.getOperandNo();
8301      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8302        // Look pass truncate.
8303        UOpNo = User->use_begin().getOperandNo();
8304        User = *User->use_begin();
8305      }
8306
8307      if (User->getOpcode() != ISD::BRCOND &&
8308          User->getOpcode() != ISD::SETCC &&
8309          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
8310        NonFlagUse = true;
8311        break;
8312      }
8313    }
8314
8315    if (!NonFlagUse)
8316      break;
8317  }
8318    // FALL THROUGH
8319  case ISD::SUB:
8320  case ISD::OR:
8321  case ISD::XOR:
8322    // Due to the ISEL shortcoming noted above, be conservative if this op is
8323    // likely to be selected as part of a load-modify-store instruction.
8324    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8325           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8326      if (UI->getOpcode() == ISD::STORE)
8327        goto default_case;
8328
8329    // Otherwise use a regular EFLAGS-setting instruction.
8330    switch (Op.getNode()->getOpcode()) {
8331    default: llvm_unreachable("unexpected operator!");
8332    case ISD::SUB: Opcode = X86ISD::SUB; break;
8333    case ISD::OR:  Opcode = X86ISD::OR;  break;
8334    case ISD::XOR: Opcode = X86ISD::XOR; break;
8335    case ISD::AND: Opcode = X86ISD::AND; break;
8336    }
8337
8338    NumOperands = 2;
8339    break;
8340  case X86ISD::ADD:
8341  case X86ISD::SUB:
8342  case X86ISD::INC:
8343  case X86ISD::DEC:
8344  case X86ISD::OR:
8345  case X86ISD::XOR:
8346  case X86ISD::AND:
8347    return SDValue(Op.getNode(), 1);
8348  default:
8349  default_case:
8350    break;
8351  }
8352
8353  if (Opcode == 0)
8354    // Emit a CMP with 0, which is the TEST pattern.
8355    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8356                       DAG.getConstant(0, Op.getValueType()));
8357
8358  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
8359  SmallVector<SDValue, 4> Ops;
8360  for (unsigned i = 0; i != NumOperands; ++i)
8361    Ops.push_back(Op.getOperand(i));
8362
8363  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
8364  DAG.ReplaceAllUsesWith(Op, New);
8365  return SDValue(New.getNode(), 1);
8366}
8367
8368/// Emit nodes that will be selected as "cmp Op0,Op1", or something
8369/// equivalent.
8370SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
8371                                   SelectionDAG &DAG) const {
8372  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
8373    if (C->getAPIntValue() == 0)
8374      return EmitTest(Op0, X86CC, DAG);
8375
8376  DebugLoc dl = Op0.getDebugLoc();
8377  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
8378}
8379
8380/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
8381/// if it's possible.
8382SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
8383                                     DebugLoc dl, SelectionDAG &DAG) const {
8384  SDValue Op0 = And.getOperand(0);
8385  SDValue Op1 = And.getOperand(1);
8386  if (Op0.getOpcode() == ISD::TRUNCATE)
8387    Op0 = Op0.getOperand(0);
8388  if (Op1.getOpcode() == ISD::TRUNCATE)
8389    Op1 = Op1.getOperand(0);
8390
8391  SDValue LHS, RHS;
8392  if (Op1.getOpcode() == ISD::SHL)
8393    std::swap(Op0, Op1);
8394  if (Op0.getOpcode() == ISD::SHL) {
8395    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
8396      if (And00C->getZExtValue() == 1) {
8397        // If we looked past a truncate, check that it's only truncating away
8398        // known zeros.
8399        unsigned BitWidth = Op0.getValueSizeInBits();
8400        unsigned AndBitWidth = And.getValueSizeInBits();
8401        if (BitWidth > AndBitWidth) {
8402          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
8403          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
8404          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
8405            return SDValue();
8406        }
8407        LHS = Op1;
8408        RHS = Op0.getOperand(1);
8409      }
8410  } else if (Op1.getOpcode() == ISD::Constant) {
8411    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
8412    SDValue AndLHS = Op0;
8413    if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
8414      LHS = AndLHS.getOperand(0);
8415      RHS = AndLHS.getOperand(1);
8416    }
8417  }
8418
8419  if (LHS.getNode()) {
8420    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
8421    // instruction.  Since the shift amount is in-range-or-undefined, we know
8422    // that doing a bittest on the i32 value is ok.  We extend to i32 because
8423    // the encoding for the i16 version is larger than the i32 version.
8424    // Also promote i16 to i32 for performance / code size reason.
8425    if (LHS.getValueType() == MVT::i8 ||
8426        LHS.getValueType() == MVT::i16)
8427      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
8428
8429    // If the operand types disagree, extend the shift amount to match.  Since
8430    // BT ignores high bits (like shifts) we can use anyextend.
8431    if (LHS.getValueType() != RHS.getValueType())
8432      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
8433
8434    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
8435    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
8436    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8437                       DAG.getConstant(Cond, MVT::i8), BT);
8438  }
8439
8440  return SDValue();
8441}
8442
8443SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
8444
8445  if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
8446
8447  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
8448  SDValue Op0 = Op.getOperand(0);
8449  SDValue Op1 = Op.getOperand(1);
8450  DebugLoc dl = Op.getDebugLoc();
8451  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8452
8453  // Optimize to BT if possible.
8454  // Lower (X & (1 << N)) == 0 to BT(X, N).
8455  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
8456  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
8457  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
8458      Op1.getOpcode() == ISD::Constant &&
8459      cast<ConstantSDNode>(Op1)->isNullValue() &&
8460      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8461    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
8462    if (NewSetCC.getNode())
8463      return NewSetCC;
8464  }
8465
8466  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
8467  // these.
8468  if (Op1.getOpcode() == ISD::Constant &&
8469      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
8470       cast<ConstantSDNode>(Op1)->isNullValue()) &&
8471      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8472
8473    // If the input is a setcc, then reuse the input setcc or use a new one with
8474    // the inverted condition.
8475    if (Op0.getOpcode() == X86ISD::SETCC) {
8476      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
8477      bool Invert = (CC == ISD::SETNE) ^
8478        cast<ConstantSDNode>(Op1)->isNullValue();
8479      if (!Invert) return Op0;
8480
8481      CCode = X86::GetOppositeBranchCondition(CCode);
8482      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8483                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
8484    }
8485  }
8486
8487  bool isFP = Op1.getValueType().isFloatingPoint();
8488  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
8489  if (X86CC == X86::COND_INVALID)
8490    return SDValue();
8491
8492  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
8493  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8494                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
8495}
8496
8497// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
8498// ones, and then concatenate the result back.
8499static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
8500  EVT VT = Op.getValueType();
8501
8502  assert(VT.getSizeInBits() == 256 && Op.getOpcode() == ISD::SETCC &&
8503         "Unsupported value type for operation");
8504
8505  int NumElems = VT.getVectorNumElements();
8506  DebugLoc dl = Op.getDebugLoc();
8507  SDValue CC = Op.getOperand(2);
8508  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
8509  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
8510
8511  // Extract the LHS vectors
8512  SDValue LHS = Op.getOperand(0);
8513  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
8514  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
8515
8516  // Extract the RHS vectors
8517  SDValue RHS = Op.getOperand(1);
8518  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
8519  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
8520
8521  // Issue the operation on the smaller types and concatenate the result back
8522  MVT EltVT = VT.getVectorElementType().getSimpleVT();
8523  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
8524  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8525                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
8526                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
8527}
8528
8529
8530SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
8531  SDValue Cond;
8532  SDValue Op0 = Op.getOperand(0);
8533  SDValue Op1 = Op.getOperand(1);
8534  SDValue CC = Op.getOperand(2);
8535  EVT VT = Op.getValueType();
8536  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
8537  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
8538  DebugLoc dl = Op.getDebugLoc();
8539
8540  if (isFP) {
8541    unsigned SSECC = 8;
8542    EVT EltVT = Op0.getValueType().getVectorElementType();
8543    assert(EltVT == MVT::f32 || EltVT == MVT::f64);
8544
8545    unsigned Opc = EltVT == MVT::f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
8546    bool Swap = false;
8547
8548    // SSE Condition code mapping:
8549    //  0 - EQ
8550    //  1 - LT
8551    //  2 - LE
8552    //  3 - UNORD
8553    //  4 - NEQ
8554    //  5 - NLT
8555    //  6 - NLE
8556    //  7 - ORD
8557    switch (SetCCOpcode) {
8558    default: break;
8559    case ISD::SETOEQ:
8560    case ISD::SETEQ:  SSECC = 0; break;
8561    case ISD::SETOGT:
8562    case ISD::SETGT: Swap = true; // Fallthrough
8563    case ISD::SETLT:
8564    case ISD::SETOLT: SSECC = 1; break;
8565    case ISD::SETOGE:
8566    case ISD::SETGE: Swap = true; // Fallthrough
8567    case ISD::SETLE:
8568    case ISD::SETOLE: SSECC = 2; break;
8569    case ISD::SETUO:  SSECC = 3; break;
8570    case ISD::SETUNE:
8571    case ISD::SETNE:  SSECC = 4; break;
8572    case ISD::SETULE: Swap = true;
8573    case ISD::SETUGE: SSECC = 5; break;
8574    case ISD::SETULT: Swap = true;
8575    case ISD::SETUGT: SSECC = 6; break;
8576    case ISD::SETO:   SSECC = 7; break;
8577    }
8578    if (Swap)
8579      std::swap(Op0, Op1);
8580
8581    // In the two special cases we can't handle, emit two comparisons.
8582    if (SSECC == 8) {
8583      if (SetCCOpcode == ISD::SETUEQ) {
8584        SDValue UNORD, EQ;
8585        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
8586        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
8587        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
8588      } else if (SetCCOpcode == ISD::SETONE) {
8589        SDValue ORD, NEQ;
8590        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
8591        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
8592        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
8593      }
8594      llvm_unreachable("Illegal FP comparison");
8595    }
8596    // Handle all other FP comparisons here.
8597    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
8598  }
8599
8600  // Break 256-bit integer vector compare into smaller ones.
8601  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
8602    return Lower256IntVSETCC(Op, DAG);
8603
8604  // We are handling one of the integer comparisons here.  Since SSE only has
8605  // GT and EQ comparisons for integer, swapping operands and multiple
8606  // operations may be required for some comparisons.
8607  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
8608  bool Swap = false, Invert = false, FlipSigns = false;
8609
8610  switch (VT.getVectorElementType().getSimpleVT().SimpleTy) {
8611  default: break;
8612  case MVT::i8:   EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
8613  case MVT::i16:  EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
8614  case MVT::i32:  EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
8615  case MVT::i64:  EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
8616  }
8617
8618  switch (SetCCOpcode) {
8619  default: break;
8620  case ISD::SETNE:  Invert = true;
8621  case ISD::SETEQ:  Opc = EQOpc; break;
8622  case ISD::SETLT:  Swap = true;
8623  case ISD::SETGT:  Opc = GTOpc; break;
8624  case ISD::SETGE:  Swap = true;
8625  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
8626  case ISD::SETULT: Swap = true;
8627  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
8628  case ISD::SETUGE: Swap = true;
8629  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
8630  }
8631  if (Swap)
8632    std::swap(Op0, Op1);
8633
8634  // Check that the operation in question is available (most are plain SSE2,
8635  // but PCMPGTQ and PCMPEQQ have different requirements).
8636  if (Opc == X86ISD::PCMPGTQ && !Subtarget->hasSSE42() && !Subtarget->hasAVX())
8637    return SDValue();
8638  if (Opc == X86ISD::PCMPEQQ && !Subtarget->hasSSE41() && !Subtarget->hasAVX())
8639    return SDValue();
8640
8641  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
8642  // bits of the inputs before performing those operations.
8643  if (FlipSigns) {
8644    EVT EltVT = VT.getVectorElementType();
8645    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
8646                                      EltVT);
8647    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
8648    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
8649                                    SignBits.size());
8650    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
8651    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
8652  }
8653
8654  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
8655
8656  // If the logical-not of the result is required, perform that now.
8657  if (Invert)
8658    Result = DAG.getNOT(dl, Result, VT);
8659
8660  return Result;
8661}
8662
8663// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
8664static bool isX86LogicalCmp(SDValue Op) {
8665  unsigned Opc = Op.getNode()->getOpcode();
8666  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
8667    return true;
8668  if (Op.getResNo() == 1 &&
8669      (Opc == X86ISD::ADD ||
8670       Opc == X86ISD::SUB ||
8671       Opc == X86ISD::ADC ||
8672       Opc == X86ISD::SBB ||
8673       Opc == X86ISD::SMUL ||
8674       Opc == X86ISD::UMUL ||
8675       Opc == X86ISD::INC ||
8676       Opc == X86ISD::DEC ||
8677       Opc == X86ISD::OR ||
8678       Opc == X86ISD::XOR ||
8679       Opc == X86ISD::AND))
8680    return true;
8681
8682  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
8683    return true;
8684
8685  return false;
8686}
8687
8688static bool isZero(SDValue V) {
8689  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8690  return C && C->isNullValue();
8691}
8692
8693static bool isAllOnes(SDValue V) {
8694  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8695  return C && C->isAllOnesValue();
8696}
8697
8698SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8699  bool addTest = true;
8700  SDValue Cond  = Op.getOperand(0);
8701  SDValue Op1 = Op.getOperand(1);
8702  SDValue Op2 = Op.getOperand(2);
8703  DebugLoc DL = Op.getDebugLoc();
8704  SDValue CC;
8705
8706  if (Cond.getOpcode() == ISD::SETCC) {
8707    SDValue NewCond = LowerSETCC(Cond, DAG);
8708    if (NewCond.getNode())
8709      Cond = NewCond;
8710  }
8711
8712  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
8713  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
8714  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
8715  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
8716  if (Cond.getOpcode() == X86ISD::SETCC &&
8717      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
8718      isZero(Cond.getOperand(1).getOperand(1))) {
8719    SDValue Cmp = Cond.getOperand(1);
8720
8721    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
8722
8723    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
8724        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
8725      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
8726
8727      SDValue CmpOp0 = Cmp.getOperand(0);
8728      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
8729                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
8730
8731      SDValue Res =   // Res = 0 or -1.
8732        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8733                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
8734
8735      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
8736        Res = DAG.getNOT(DL, Res, Res.getValueType());
8737
8738      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
8739      if (N2C == 0 || !N2C->isNullValue())
8740        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
8741      return Res;
8742    }
8743  }
8744
8745  // Look past (and (setcc_carry (cmp ...)), 1).
8746  if (Cond.getOpcode() == ISD::AND &&
8747      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8748    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8749    if (C && C->getAPIntValue() == 1)
8750      Cond = Cond.getOperand(0);
8751  }
8752
8753  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8754  // setting operand in place of the X86ISD::SETCC.
8755  unsigned CondOpcode = Cond.getOpcode();
8756  if (CondOpcode == X86ISD::SETCC ||
8757      CondOpcode == X86ISD::SETCC_CARRY) {
8758    CC = Cond.getOperand(0);
8759
8760    SDValue Cmp = Cond.getOperand(1);
8761    unsigned Opc = Cmp.getOpcode();
8762    EVT VT = Op.getValueType();
8763
8764    bool IllegalFPCMov = false;
8765    if (VT.isFloatingPoint() && !VT.isVector() &&
8766        !isScalarFPTypeInSSEReg(VT))  // FPStack?
8767      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
8768
8769    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
8770        Opc == X86ISD::BT) { // FIXME
8771      Cond = Cmp;
8772      addTest = false;
8773    }
8774  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8775             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8776             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8777              Cond.getOperand(0).getValueType() != MVT::i8)) {
8778    SDValue LHS = Cond.getOperand(0);
8779    SDValue RHS = Cond.getOperand(1);
8780    unsigned X86Opcode;
8781    unsigned X86Cond;
8782    SDVTList VTs;
8783    switch (CondOpcode) {
8784    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8785    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8786    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8787    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8788    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8789    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8790    default: llvm_unreachable("unexpected overflowing operator");
8791    }
8792    if (CondOpcode == ISD::UMULO)
8793      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8794                          MVT::i32);
8795    else
8796      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8797
8798    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
8799
8800    if (CondOpcode == ISD::UMULO)
8801      Cond = X86Op.getValue(2);
8802    else
8803      Cond = X86Op.getValue(1);
8804
8805    CC = DAG.getConstant(X86Cond, MVT::i8);
8806    addTest = false;
8807  }
8808
8809  if (addTest) {
8810    // Look pass the truncate.
8811    if (Cond.getOpcode() == ISD::TRUNCATE)
8812      Cond = Cond.getOperand(0);
8813
8814    // We know the result of AND is compared against zero. Try to match
8815    // it to BT.
8816    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8817      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
8818      if (NewSetCC.getNode()) {
8819        CC = NewSetCC.getOperand(0);
8820        Cond = NewSetCC.getOperand(1);
8821        addTest = false;
8822      }
8823    }
8824  }
8825
8826  if (addTest) {
8827    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8828    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8829  }
8830
8831  // a <  b ? -1 :  0 -> RES = ~setcc_carry
8832  // a <  b ?  0 : -1 -> RES = setcc_carry
8833  // a >= b ? -1 :  0 -> RES = setcc_carry
8834  // a >= b ?  0 : -1 -> RES = ~setcc_carry
8835  if (Cond.getOpcode() == X86ISD::CMP) {
8836    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
8837
8838    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
8839        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
8840      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8841                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
8842      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
8843        return DAG.getNOT(DL, Res, Res.getValueType());
8844      return Res;
8845    }
8846  }
8847
8848  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
8849  // condition is true.
8850  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
8851  SDValue Ops[] = { Op2, Op1, CC, Cond };
8852  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
8853}
8854
8855// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
8856// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
8857// from the AND / OR.
8858static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
8859  Opc = Op.getOpcode();
8860  if (Opc != ISD::OR && Opc != ISD::AND)
8861    return false;
8862  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8863          Op.getOperand(0).hasOneUse() &&
8864          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
8865          Op.getOperand(1).hasOneUse());
8866}
8867
8868// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
8869// 1 and that the SETCC node has a single use.
8870static bool isXor1OfSetCC(SDValue Op) {
8871  if (Op.getOpcode() != ISD::XOR)
8872    return false;
8873  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8874  if (N1C && N1C->getAPIntValue() == 1) {
8875    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8876      Op.getOperand(0).hasOneUse();
8877  }
8878  return false;
8879}
8880
8881SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
8882  bool addTest = true;
8883  SDValue Chain = Op.getOperand(0);
8884  SDValue Cond  = Op.getOperand(1);
8885  SDValue Dest  = Op.getOperand(2);
8886  DebugLoc dl = Op.getDebugLoc();
8887  SDValue CC;
8888  bool Inverted = false;
8889
8890  if (Cond.getOpcode() == ISD::SETCC) {
8891    // Check for setcc([su]{add,sub,mul}o == 0).
8892    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
8893        isa<ConstantSDNode>(Cond.getOperand(1)) &&
8894        cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
8895        Cond.getOperand(0).getResNo() == 1 &&
8896        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
8897         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
8898         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
8899         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
8900         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
8901         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
8902      Inverted = true;
8903      Cond = Cond.getOperand(0);
8904    } else {
8905      SDValue NewCond = LowerSETCC(Cond, DAG);
8906      if (NewCond.getNode())
8907        Cond = NewCond;
8908    }
8909  }
8910#if 0
8911  // FIXME: LowerXALUO doesn't handle these!!
8912  else if (Cond.getOpcode() == X86ISD::ADD  ||
8913           Cond.getOpcode() == X86ISD::SUB  ||
8914           Cond.getOpcode() == X86ISD::SMUL ||
8915           Cond.getOpcode() == X86ISD::UMUL)
8916    Cond = LowerXALUO(Cond, DAG);
8917#endif
8918
8919  // Look pass (and (setcc_carry (cmp ...)), 1).
8920  if (Cond.getOpcode() == ISD::AND &&
8921      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8922    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8923    if (C && C->getAPIntValue() == 1)
8924      Cond = Cond.getOperand(0);
8925  }
8926
8927  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8928  // setting operand in place of the X86ISD::SETCC.
8929  unsigned CondOpcode = Cond.getOpcode();
8930  if (CondOpcode == X86ISD::SETCC ||
8931      CondOpcode == X86ISD::SETCC_CARRY) {
8932    CC = Cond.getOperand(0);
8933
8934    SDValue Cmp = Cond.getOperand(1);
8935    unsigned Opc = Cmp.getOpcode();
8936    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
8937    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
8938      Cond = Cmp;
8939      addTest = false;
8940    } else {
8941      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
8942      default: break;
8943      case X86::COND_O:
8944      case X86::COND_B:
8945        // These can only come from an arithmetic instruction with overflow,
8946        // e.g. SADDO, UADDO.
8947        Cond = Cond.getNode()->getOperand(1);
8948        addTest = false;
8949        break;
8950      }
8951    }
8952  }
8953  CondOpcode = Cond.getOpcode();
8954  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8955      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8956      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8957       Cond.getOperand(0).getValueType() != MVT::i8)) {
8958    SDValue LHS = Cond.getOperand(0);
8959    SDValue RHS = Cond.getOperand(1);
8960    unsigned X86Opcode;
8961    unsigned X86Cond;
8962    SDVTList VTs;
8963    switch (CondOpcode) {
8964    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8965    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8966    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8967    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8968    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8969    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8970    default: llvm_unreachable("unexpected overflowing operator");
8971    }
8972    if (Inverted)
8973      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
8974    if (CondOpcode == ISD::UMULO)
8975      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8976                          MVT::i32);
8977    else
8978      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8979
8980    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
8981
8982    if (CondOpcode == ISD::UMULO)
8983      Cond = X86Op.getValue(2);
8984    else
8985      Cond = X86Op.getValue(1);
8986
8987    CC = DAG.getConstant(X86Cond, MVT::i8);
8988    addTest = false;
8989  } else {
8990    unsigned CondOpc;
8991    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
8992      SDValue Cmp = Cond.getOperand(0).getOperand(1);
8993      if (CondOpc == ISD::OR) {
8994        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
8995        // two branches instead of an explicit OR instruction with a
8996        // separate test.
8997        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8998            isX86LogicalCmp(Cmp)) {
8999          CC = Cond.getOperand(0).getOperand(0);
9000          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9001                              Chain, Dest, CC, Cmp);
9002          CC = Cond.getOperand(1).getOperand(0);
9003          Cond = Cmp;
9004          addTest = false;
9005        }
9006      } else { // ISD::AND
9007        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
9008        // two branches instead of an explicit AND instruction with a
9009        // separate test. However, we only do this if this block doesn't
9010        // have a fall-through edge, because this requires an explicit
9011        // jmp when the condition is false.
9012        if (Cmp == Cond.getOperand(1).getOperand(1) &&
9013            isX86LogicalCmp(Cmp) &&
9014            Op.getNode()->hasOneUse()) {
9015          X86::CondCode CCode =
9016            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
9017          CCode = X86::GetOppositeBranchCondition(CCode);
9018          CC = DAG.getConstant(CCode, MVT::i8);
9019          SDNode *User = *Op.getNode()->use_begin();
9020          // Look for an unconditional branch following this conditional branch.
9021          // We need this because we need to reverse the successors in order
9022          // to implement FCMP_OEQ.
9023          if (User->getOpcode() == ISD::BR) {
9024            SDValue FalseBB = User->getOperand(1);
9025            SDNode *NewBR =
9026              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9027            assert(NewBR == User);
9028            (void)NewBR;
9029            Dest = FalseBB;
9030
9031            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9032                                Chain, Dest, CC, Cmp);
9033            X86::CondCode CCode =
9034              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
9035            CCode = X86::GetOppositeBranchCondition(CCode);
9036            CC = DAG.getConstant(CCode, MVT::i8);
9037            Cond = Cmp;
9038            addTest = false;
9039          }
9040        }
9041      }
9042    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
9043      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
9044      // It should be transformed during dag combiner except when the condition
9045      // is set by a arithmetics with overflow node.
9046      X86::CondCode CCode =
9047        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
9048      CCode = X86::GetOppositeBranchCondition(CCode);
9049      CC = DAG.getConstant(CCode, MVT::i8);
9050      Cond = Cond.getOperand(0).getOperand(1);
9051      addTest = false;
9052    } else if (Cond.getOpcode() == ISD::SETCC &&
9053               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
9054      // For FCMP_OEQ, we can emit
9055      // two branches instead of an explicit AND instruction with a
9056      // separate test. However, we only do this if this block doesn't
9057      // have a fall-through edge, because this requires an explicit
9058      // jmp when the condition is false.
9059      if (Op.getNode()->hasOneUse()) {
9060        SDNode *User = *Op.getNode()->use_begin();
9061        // Look for an unconditional branch following this conditional branch.
9062        // We need this because we need to reverse the successors in order
9063        // to implement FCMP_OEQ.
9064        if (User->getOpcode() == ISD::BR) {
9065          SDValue FalseBB = User->getOperand(1);
9066          SDNode *NewBR =
9067            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9068          assert(NewBR == User);
9069          (void)NewBR;
9070          Dest = FalseBB;
9071
9072          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
9073                                    Cond.getOperand(0), Cond.getOperand(1));
9074          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9075          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9076                              Chain, Dest, CC, Cmp);
9077          CC = DAG.getConstant(X86::COND_P, MVT::i8);
9078          Cond = Cmp;
9079          addTest = false;
9080        }
9081      }
9082    } else if (Cond.getOpcode() == ISD::SETCC &&
9083               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
9084      // For FCMP_UNE, we can emit
9085      // two branches instead of an explicit AND instruction with a
9086      // separate test. However, we only do this if this block doesn't
9087      // have a fall-through edge, because this requires an explicit
9088      // jmp when the condition is false.
9089      if (Op.getNode()->hasOneUse()) {
9090        SDNode *User = *Op.getNode()->use_begin();
9091        // Look for an unconditional branch following this conditional branch.
9092        // We need this because we need to reverse the successors in order
9093        // to implement FCMP_UNE.
9094        if (User->getOpcode() == ISD::BR) {
9095          SDValue FalseBB = User->getOperand(1);
9096          SDNode *NewBR =
9097            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9098          assert(NewBR == User);
9099          (void)NewBR;
9100
9101          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
9102                                    Cond.getOperand(0), Cond.getOperand(1));
9103          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9104          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9105                              Chain, Dest, CC, Cmp);
9106          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
9107          Cond = Cmp;
9108          addTest = false;
9109          Dest = FalseBB;
9110        }
9111      }
9112    }
9113  }
9114
9115  if (addTest) {
9116    // Look pass the truncate.
9117    if (Cond.getOpcode() == ISD::TRUNCATE)
9118      Cond = Cond.getOperand(0);
9119
9120    // We know the result of AND is compared against zero. Try to match
9121    // it to BT.
9122    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
9123      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
9124      if (NewSetCC.getNode()) {
9125        CC = NewSetCC.getOperand(0);
9126        Cond = NewSetCC.getOperand(1);
9127        addTest = false;
9128      }
9129    }
9130  }
9131
9132  if (addTest) {
9133    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9134    Cond = EmitTest(Cond, X86::COND_NE, DAG);
9135  }
9136  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9137                     Chain, Dest, CC, Cond);
9138}
9139
9140
9141// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
9142// Calls to _alloca is needed to probe the stack when allocating more than 4k
9143// bytes in one go. Touching the stack at 4K increments is necessary to ensure
9144// that the guard pages used by the OS virtual memory manager are allocated in
9145// correct sequence.
9146SDValue
9147X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
9148                                           SelectionDAG &DAG) const {
9149  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
9150          EnableSegmentedStacks) &&
9151         "This should be used only on Windows targets or when segmented stacks "
9152         "are being used");
9153  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
9154  DebugLoc dl = Op.getDebugLoc();
9155
9156  // Get the inputs.
9157  SDValue Chain = Op.getOperand(0);
9158  SDValue Size  = Op.getOperand(1);
9159  // FIXME: Ensure alignment here
9160
9161  bool Is64Bit = Subtarget->is64Bit();
9162  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
9163
9164  if (EnableSegmentedStacks) {
9165    MachineFunction &MF = DAG.getMachineFunction();
9166    MachineRegisterInfo &MRI = MF.getRegInfo();
9167
9168    if (Is64Bit) {
9169      // The 64 bit implementation of segmented stacks needs to clobber both r10
9170      // r11. This makes it impossible to use it along with nested parameters.
9171      const Function *F = MF.getFunction();
9172
9173      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
9174           I != E; I++)
9175        if (I->hasNestAttr())
9176          report_fatal_error("Cannot use segmented stacks with functions that "
9177                             "have nested arguments.");
9178    }
9179
9180    const TargetRegisterClass *AddrRegClass =
9181      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
9182    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
9183    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
9184    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
9185                                DAG.getRegister(Vreg, SPTy));
9186    SDValue Ops1[2] = { Value, Chain };
9187    return DAG.getMergeValues(Ops1, 2, dl);
9188  } else {
9189    SDValue Flag;
9190    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
9191
9192    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
9193    Flag = Chain.getValue(1);
9194    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9195
9196    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
9197    Flag = Chain.getValue(1);
9198
9199    Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
9200
9201    SDValue Ops1[2] = { Chain.getValue(0), Chain };
9202    return DAG.getMergeValues(Ops1, 2, dl);
9203  }
9204}
9205
9206SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
9207  MachineFunction &MF = DAG.getMachineFunction();
9208  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
9209
9210  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9211  DebugLoc DL = Op.getDebugLoc();
9212
9213  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
9214    // vastart just stores the address of the VarArgsFrameIndex slot into the
9215    // memory location argument.
9216    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9217                                   getPointerTy());
9218    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
9219                        MachinePointerInfo(SV), false, false, 0);
9220  }
9221
9222  // __va_list_tag:
9223  //   gp_offset         (0 - 6 * 8)
9224  //   fp_offset         (48 - 48 + 8 * 16)
9225  //   overflow_arg_area (point to parameters coming in memory).
9226  //   reg_save_area
9227  SmallVector<SDValue, 8> MemOps;
9228  SDValue FIN = Op.getOperand(1);
9229  // Store gp_offset
9230  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
9231                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
9232                                               MVT::i32),
9233                               FIN, MachinePointerInfo(SV), false, false, 0);
9234  MemOps.push_back(Store);
9235
9236  // Store fp_offset
9237  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9238                    FIN, DAG.getIntPtrConstant(4));
9239  Store = DAG.getStore(Op.getOperand(0), DL,
9240                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
9241                                       MVT::i32),
9242                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
9243  MemOps.push_back(Store);
9244
9245  // Store ptr to overflow_arg_area
9246  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9247                    FIN, DAG.getIntPtrConstant(4));
9248  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9249                                    getPointerTy());
9250  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
9251                       MachinePointerInfo(SV, 8),
9252                       false, false, 0);
9253  MemOps.push_back(Store);
9254
9255  // Store ptr to reg_save_area.
9256  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9257                    FIN, DAG.getIntPtrConstant(8));
9258  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
9259                                    getPointerTy());
9260  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
9261                       MachinePointerInfo(SV, 16), false, false, 0);
9262  MemOps.push_back(Store);
9263  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
9264                     &MemOps[0], MemOps.size());
9265}
9266
9267SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
9268  assert(Subtarget->is64Bit() &&
9269         "LowerVAARG only handles 64-bit va_arg!");
9270  assert((Subtarget->isTargetLinux() ||
9271          Subtarget->isTargetDarwin()) &&
9272          "Unhandled target in LowerVAARG");
9273  assert(Op.getNode()->getNumOperands() == 4);
9274  SDValue Chain = Op.getOperand(0);
9275  SDValue SrcPtr = Op.getOperand(1);
9276  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9277  unsigned Align = Op.getConstantOperandVal(3);
9278  DebugLoc dl = Op.getDebugLoc();
9279
9280  EVT ArgVT = Op.getNode()->getValueType(0);
9281  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9282  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
9283  uint8_t ArgMode;
9284
9285  // Decide which area this value should be read from.
9286  // TODO: Implement the AMD64 ABI in its entirety. This simple
9287  // selection mechanism works only for the basic types.
9288  if (ArgVT == MVT::f80) {
9289    llvm_unreachable("va_arg for f80 not yet implemented");
9290  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
9291    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
9292  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
9293    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
9294  } else {
9295    llvm_unreachable("Unhandled argument type in LowerVAARG");
9296  }
9297
9298  if (ArgMode == 2) {
9299    // Sanity Check: Make sure using fp_offset makes sense.
9300    assert(!UseSoftFloat &&
9301           !(DAG.getMachineFunction()
9302                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
9303           Subtarget->hasXMM());
9304  }
9305
9306  // Insert VAARG_64 node into the DAG
9307  // VAARG_64 returns two values: Variable Argument Address, Chain
9308  SmallVector<SDValue, 11> InstOps;
9309  InstOps.push_back(Chain);
9310  InstOps.push_back(SrcPtr);
9311  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
9312  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
9313  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
9314  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
9315  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
9316                                          VTs, &InstOps[0], InstOps.size(),
9317                                          MVT::i64,
9318                                          MachinePointerInfo(SV),
9319                                          /*Align=*/0,
9320                                          /*Volatile=*/false,
9321                                          /*ReadMem=*/true,
9322                                          /*WriteMem=*/true);
9323  Chain = VAARG.getValue(1);
9324
9325  // Load the next argument and return it
9326  return DAG.getLoad(ArgVT, dl,
9327                     Chain,
9328                     VAARG,
9329                     MachinePointerInfo(),
9330                     false, false, false, 0);
9331}
9332
9333SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
9334  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
9335  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
9336  SDValue Chain = Op.getOperand(0);
9337  SDValue DstPtr = Op.getOperand(1);
9338  SDValue SrcPtr = Op.getOperand(2);
9339  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
9340  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9341  DebugLoc DL = Op.getDebugLoc();
9342
9343  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
9344                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
9345                       false,
9346                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
9347}
9348
9349SDValue
9350X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
9351  DebugLoc dl = Op.getDebugLoc();
9352  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9353  switch (IntNo) {
9354  default: return SDValue();    // Don't custom lower most intrinsics.
9355  // Comparison intrinsics.
9356  case Intrinsic::x86_sse_comieq_ss:
9357  case Intrinsic::x86_sse_comilt_ss:
9358  case Intrinsic::x86_sse_comile_ss:
9359  case Intrinsic::x86_sse_comigt_ss:
9360  case Intrinsic::x86_sse_comige_ss:
9361  case Intrinsic::x86_sse_comineq_ss:
9362  case Intrinsic::x86_sse_ucomieq_ss:
9363  case Intrinsic::x86_sse_ucomilt_ss:
9364  case Intrinsic::x86_sse_ucomile_ss:
9365  case Intrinsic::x86_sse_ucomigt_ss:
9366  case Intrinsic::x86_sse_ucomige_ss:
9367  case Intrinsic::x86_sse_ucomineq_ss:
9368  case Intrinsic::x86_sse2_comieq_sd:
9369  case Intrinsic::x86_sse2_comilt_sd:
9370  case Intrinsic::x86_sse2_comile_sd:
9371  case Intrinsic::x86_sse2_comigt_sd:
9372  case Intrinsic::x86_sse2_comige_sd:
9373  case Intrinsic::x86_sse2_comineq_sd:
9374  case Intrinsic::x86_sse2_ucomieq_sd:
9375  case Intrinsic::x86_sse2_ucomilt_sd:
9376  case Intrinsic::x86_sse2_ucomile_sd:
9377  case Intrinsic::x86_sse2_ucomigt_sd:
9378  case Intrinsic::x86_sse2_ucomige_sd:
9379  case Intrinsic::x86_sse2_ucomineq_sd: {
9380    unsigned Opc = 0;
9381    ISD::CondCode CC = ISD::SETCC_INVALID;
9382    switch (IntNo) {
9383    default: break;
9384    case Intrinsic::x86_sse_comieq_ss:
9385    case Intrinsic::x86_sse2_comieq_sd:
9386      Opc = X86ISD::COMI;
9387      CC = ISD::SETEQ;
9388      break;
9389    case Intrinsic::x86_sse_comilt_ss:
9390    case Intrinsic::x86_sse2_comilt_sd:
9391      Opc = X86ISD::COMI;
9392      CC = ISD::SETLT;
9393      break;
9394    case Intrinsic::x86_sse_comile_ss:
9395    case Intrinsic::x86_sse2_comile_sd:
9396      Opc = X86ISD::COMI;
9397      CC = ISD::SETLE;
9398      break;
9399    case Intrinsic::x86_sse_comigt_ss:
9400    case Intrinsic::x86_sse2_comigt_sd:
9401      Opc = X86ISD::COMI;
9402      CC = ISD::SETGT;
9403      break;
9404    case Intrinsic::x86_sse_comige_ss:
9405    case Intrinsic::x86_sse2_comige_sd:
9406      Opc = X86ISD::COMI;
9407      CC = ISD::SETGE;
9408      break;
9409    case Intrinsic::x86_sse_comineq_ss:
9410    case Intrinsic::x86_sse2_comineq_sd:
9411      Opc = X86ISD::COMI;
9412      CC = ISD::SETNE;
9413      break;
9414    case Intrinsic::x86_sse_ucomieq_ss:
9415    case Intrinsic::x86_sse2_ucomieq_sd:
9416      Opc = X86ISD::UCOMI;
9417      CC = ISD::SETEQ;
9418      break;
9419    case Intrinsic::x86_sse_ucomilt_ss:
9420    case Intrinsic::x86_sse2_ucomilt_sd:
9421      Opc = X86ISD::UCOMI;
9422      CC = ISD::SETLT;
9423      break;
9424    case Intrinsic::x86_sse_ucomile_ss:
9425    case Intrinsic::x86_sse2_ucomile_sd:
9426      Opc = X86ISD::UCOMI;
9427      CC = ISD::SETLE;
9428      break;
9429    case Intrinsic::x86_sse_ucomigt_ss:
9430    case Intrinsic::x86_sse2_ucomigt_sd:
9431      Opc = X86ISD::UCOMI;
9432      CC = ISD::SETGT;
9433      break;
9434    case Intrinsic::x86_sse_ucomige_ss:
9435    case Intrinsic::x86_sse2_ucomige_sd:
9436      Opc = X86ISD::UCOMI;
9437      CC = ISD::SETGE;
9438      break;
9439    case Intrinsic::x86_sse_ucomineq_ss:
9440    case Intrinsic::x86_sse2_ucomineq_sd:
9441      Opc = X86ISD::UCOMI;
9442      CC = ISD::SETNE;
9443      break;
9444    }
9445
9446    SDValue LHS = Op.getOperand(1);
9447    SDValue RHS = Op.getOperand(2);
9448    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
9449    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
9450    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
9451    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9452                                DAG.getConstant(X86CC, MVT::i8), Cond);
9453    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9454  }
9455  // Arithmetic intrinsics.
9456  case Intrinsic::x86_sse3_hadd_ps:
9457  case Intrinsic::x86_sse3_hadd_pd:
9458  case Intrinsic::x86_avx_hadd_ps_256:
9459  case Intrinsic::x86_avx_hadd_pd_256:
9460    return DAG.getNode(X86ISD::FHADD, dl, Op.getValueType(),
9461                       Op.getOperand(1), Op.getOperand(2));
9462  case Intrinsic::x86_sse3_hsub_ps:
9463  case Intrinsic::x86_sse3_hsub_pd:
9464  case Intrinsic::x86_avx_hsub_ps_256:
9465  case Intrinsic::x86_avx_hsub_pd_256:
9466    return DAG.getNode(X86ISD::FHSUB, dl, Op.getValueType(),
9467                       Op.getOperand(1), Op.getOperand(2));
9468  // ptest and testp intrinsics. The intrinsic these come from are designed to
9469  // return an integer value, not just an instruction so lower it to the ptest
9470  // or testp pattern and a setcc for the result.
9471  case Intrinsic::x86_sse41_ptestz:
9472  case Intrinsic::x86_sse41_ptestc:
9473  case Intrinsic::x86_sse41_ptestnzc:
9474  case Intrinsic::x86_avx_ptestz_256:
9475  case Intrinsic::x86_avx_ptestc_256:
9476  case Intrinsic::x86_avx_ptestnzc_256:
9477  case Intrinsic::x86_avx_vtestz_ps:
9478  case Intrinsic::x86_avx_vtestc_ps:
9479  case Intrinsic::x86_avx_vtestnzc_ps:
9480  case Intrinsic::x86_avx_vtestz_pd:
9481  case Intrinsic::x86_avx_vtestc_pd:
9482  case Intrinsic::x86_avx_vtestnzc_pd:
9483  case Intrinsic::x86_avx_vtestz_ps_256:
9484  case Intrinsic::x86_avx_vtestc_ps_256:
9485  case Intrinsic::x86_avx_vtestnzc_ps_256:
9486  case Intrinsic::x86_avx_vtestz_pd_256:
9487  case Intrinsic::x86_avx_vtestc_pd_256:
9488  case Intrinsic::x86_avx_vtestnzc_pd_256: {
9489    bool IsTestPacked = false;
9490    unsigned X86CC = 0;
9491    switch (IntNo) {
9492    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
9493    case Intrinsic::x86_avx_vtestz_ps:
9494    case Intrinsic::x86_avx_vtestz_pd:
9495    case Intrinsic::x86_avx_vtestz_ps_256:
9496    case Intrinsic::x86_avx_vtestz_pd_256:
9497      IsTestPacked = true; // Fallthrough
9498    case Intrinsic::x86_sse41_ptestz:
9499    case Intrinsic::x86_avx_ptestz_256:
9500      // ZF = 1
9501      X86CC = X86::COND_E;
9502      break;
9503    case Intrinsic::x86_avx_vtestc_ps:
9504    case Intrinsic::x86_avx_vtestc_pd:
9505    case Intrinsic::x86_avx_vtestc_ps_256:
9506    case Intrinsic::x86_avx_vtestc_pd_256:
9507      IsTestPacked = true; // Fallthrough
9508    case Intrinsic::x86_sse41_ptestc:
9509    case Intrinsic::x86_avx_ptestc_256:
9510      // CF = 1
9511      X86CC = X86::COND_B;
9512      break;
9513    case Intrinsic::x86_avx_vtestnzc_ps:
9514    case Intrinsic::x86_avx_vtestnzc_pd:
9515    case Intrinsic::x86_avx_vtestnzc_ps_256:
9516    case Intrinsic::x86_avx_vtestnzc_pd_256:
9517      IsTestPacked = true; // Fallthrough
9518    case Intrinsic::x86_sse41_ptestnzc:
9519    case Intrinsic::x86_avx_ptestnzc_256:
9520      // ZF and CF = 0
9521      X86CC = X86::COND_A;
9522      break;
9523    }
9524
9525    SDValue LHS = Op.getOperand(1);
9526    SDValue RHS = Op.getOperand(2);
9527    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
9528    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
9529    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
9530    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
9531    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9532  }
9533
9534  // Fix vector shift instructions where the last operand is a non-immediate
9535  // i32 value.
9536  case Intrinsic::x86_avx2_pslli_w:
9537  case Intrinsic::x86_avx2_pslli_d:
9538  case Intrinsic::x86_avx2_pslli_q:
9539  case Intrinsic::x86_avx2_psrli_w:
9540  case Intrinsic::x86_avx2_psrli_d:
9541  case Intrinsic::x86_avx2_psrli_q:
9542  case Intrinsic::x86_avx2_psrai_w:
9543  case Intrinsic::x86_avx2_psrai_d:
9544  case Intrinsic::x86_sse2_pslli_w:
9545  case Intrinsic::x86_sse2_pslli_d:
9546  case Intrinsic::x86_sse2_pslli_q:
9547  case Intrinsic::x86_sse2_psrli_w:
9548  case Intrinsic::x86_sse2_psrli_d:
9549  case Intrinsic::x86_sse2_psrli_q:
9550  case Intrinsic::x86_sse2_psrai_w:
9551  case Intrinsic::x86_sse2_psrai_d:
9552  case Intrinsic::x86_mmx_pslli_w:
9553  case Intrinsic::x86_mmx_pslli_d:
9554  case Intrinsic::x86_mmx_pslli_q:
9555  case Intrinsic::x86_mmx_psrli_w:
9556  case Intrinsic::x86_mmx_psrli_d:
9557  case Intrinsic::x86_mmx_psrli_q:
9558  case Intrinsic::x86_mmx_psrai_w:
9559  case Intrinsic::x86_mmx_psrai_d: {
9560    SDValue ShAmt = Op.getOperand(2);
9561    if (isa<ConstantSDNode>(ShAmt))
9562      return SDValue();
9563
9564    unsigned NewIntNo = 0;
9565    EVT ShAmtVT = MVT::v4i32;
9566    switch (IntNo) {
9567    case Intrinsic::x86_sse2_pslli_w:
9568      NewIntNo = Intrinsic::x86_sse2_psll_w;
9569      break;
9570    case Intrinsic::x86_sse2_pslli_d:
9571      NewIntNo = Intrinsic::x86_sse2_psll_d;
9572      break;
9573    case Intrinsic::x86_sse2_pslli_q:
9574      NewIntNo = Intrinsic::x86_sse2_psll_q;
9575      break;
9576    case Intrinsic::x86_sse2_psrli_w:
9577      NewIntNo = Intrinsic::x86_sse2_psrl_w;
9578      break;
9579    case Intrinsic::x86_sse2_psrli_d:
9580      NewIntNo = Intrinsic::x86_sse2_psrl_d;
9581      break;
9582    case Intrinsic::x86_sse2_psrli_q:
9583      NewIntNo = Intrinsic::x86_sse2_psrl_q;
9584      break;
9585    case Intrinsic::x86_sse2_psrai_w:
9586      NewIntNo = Intrinsic::x86_sse2_psra_w;
9587      break;
9588    case Intrinsic::x86_sse2_psrai_d:
9589      NewIntNo = Intrinsic::x86_sse2_psra_d;
9590      break;
9591    case Intrinsic::x86_avx2_pslli_w:
9592      NewIntNo = Intrinsic::x86_avx2_psll_w;
9593      break;
9594    case Intrinsic::x86_avx2_pslli_d:
9595      NewIntNo = Intrinsic::x86_avx2_psll_d;
9596      break;
9597    case Intrinsic::x86_avx2_pslli_q:
9598      NewIntNo = Intrinsic::x86_avx2_psll_q;
9599      break;
9600    case Intrinsic::x86_avx2_psrli_w:
9601      NewIntNo = Intrinsic::x86_avx2_psrl_w;
9602      break;
9603    case Intrinsic::x86_avx2_psrli_d:
9604      NewIntNo = Intrinsic::x86_avx2_psrl_d;
9605      break;
9606    case Intrinsic::x86_avx2_psrli_q:
9607      NewIntNo = Intrinsic::x86_avx2_psrl_q;
9608      break;
9609    case Intrinsic::x86_avx2_psrai_w:
9610      NewIntNo = Intrinsic::x86_avx2_psra_w;
9611      break;
9612    case Intrinsic::x86_avx2_psrai_d:
9613      NewIntNo = Intrinsic::x86_avx2_psra_d;
9614      break;
9615    default: {
9616      ShAmtVT = MVT::v2i32;
9617      switch (IntNo) {
9618      case Intrinsic::x86_mmx_pslli_w:
9619        NewIntNo = Intrinsic::x86_mmx_psll_w;
9620        break;
9621      case Intrinsic::x86_mmx_pslli_d:
9622        NewIntNo = Intrinsic::x86_mmx_psll_d;
9623        break;
9624      case Intrinsic::x86_mmx_pslli_q:
9625        NewIntNo = Intrinsic::x86_mmx_psll_q;
9626        break;
9627      case Intrinsic::x86_mmx_psrli_w:
9628        NewIntNo = Intrinsic::x86_mmx_psrl_w;
9629        break;
9630      case Intrinsic::x86_mmx_psrli_d:
9631        NewIntNo = Intrinsic::x86_mmx_psrl_d;
9632        break;
9633      case Intrinsic::x86_mmx_psrli_q:
9634        NewIntNo = Intrinsic::x86_mmx_psrl_q;
9635        break;
9636      case Intrinsic::x86_mmx_psrai_w:
9637        NewIntNo = Intrinsic::x86_mmx_psra_w;
9638        break;
9639      case Intrinsic::x86_mmx_psrai_d:
9640        NewIntNo = Intrinsic::x86_mmx_psra_d;
9641        break;
9642      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9643      }
9644      break;
9645    }
9646    }
9647
9648    // The vector shift intrinsics with scalars uses 32b shift amounts but
9649    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
9650    // to be zero.
9651    SDValue ShOps[4];
9652    ShOps[0] = ShAmt;
9653    ShOps[1] = DAG.getConstant(0, MVT::i32);
9654    if (ShAmtVT == MVT::v4i32) {
9655      ShOps[2] = DAG.getUNDEF(MVT::i32);
9656      ShOps[3] = DAG.getUNDEF(MVT::i32);
9657      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
9658    } else {
9659      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
9660// FIXME this must be lowered to get rid of the invalid type.
9661    }
9662
9663    EVT VT = Op.getValueType();
9664    ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9665    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9666                       DAG.getConstant(NewIntNo, MVT::i32),
9667                       Op.getOperand(1), ShAmt);
9668  }
9669  }
9670}
9671
9672SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
9673                                           SelectionDAG &DAG) const {
9674  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9675  MFI->setReturnAddressIsTaken(true);
9676
9677  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9678  DebugLoc dl = Op.getDebugLoc();
9679
9680  if (Depth > 0) {
9681    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
9682    SDValue Offset =
9683      DAG.getConstant(TD->getPointerSize(),
9684                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
9685    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9686                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
9687                                   FrameAddr, Offset),
9688                       MachinePointerInfo(), false, false, false, 0);
9689  }
9690
9691  // Just load the return address.
9692  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
9693  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9694                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
9695}
9696
9697SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
9698  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9699  MFI->setFrameAddressIsTaken(true);
9700
9701  EVT VT = Op.getValueType();
9702  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
9703  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9704  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
9705  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
9706  while (Depth--)
9707    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
9708                            MachinePointerInfo(),
9709                            false, false, false, 0);
9710  return FrameAddr;
9711}
9712
9713SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
9714                                                     SelectionDAG &DAG) const {
9715  return DAG.getIntPtrConstant(2*TD->getPointerSize());
9716}
9717
9718SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
9719  MachineFunction &MF = DAG.getMachineFunction();
9720  SDValue Chain     = Op.getOperand(0);
9721  SDValue Offset    = Op.getOperand(1);
9722  SDValue Handler   = Op.getOperand(2);
9723  DebugLoc dl       = Op.getDebugLoc();
9724
9725  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
9726                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
9727                                     getPointerTy());
9728  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
9729
9730  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
9731                                  DAG.getIntPtrConstant(TD->getPointerSize()));
9732  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
9733  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
9734                       false, false, 0);
9735  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
9736  MF.getRegInfo().addLiveOut(StoreAddrReg);
9737
9738  return DAG.getNode(X86ISD::EH_RETURN, dl,
9739                     MVT::Other,
9740                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
9741}
9742
9743SDValue X86TargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
9744                                                  SelectionDAG &DAG) const {
9745  return Op.getOperand(0);
9746}
9747
9748SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
9749                                                SelectionDAG &DAG) const {
9750  SDValue Root = Op.getOperand(0);
9751  SDValue Trmp = Op.getOperand(1); // trampoline
9752  SDValue FPtr = Op.getOperand(2); // nested function
9753  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
9754  DebugLoc dl  = Op.getDebugLoc();
9755
9756  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9757
9758  if (Subtarget->is64Bit()) {
9759    SDValue OutChains[6];
9760
9761    // Large code-model.
9762    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
9763    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
9764
9765    const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
9766    const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
9767
9768    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
9769
9770    // Load the pointer to the nested function into R11.
9771    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
9772    SDValue Addr = Trmp;
9773    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9774                                Addr, MachinePointerInfo(TrmpAddr),
9775                                false, false, 0);
9776
9777    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9778                       DAG.getConstant(2, MVT::i64));
9779    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
9780                                MachinePointerInfo(TrmpAddr, 2),
9781                                false, false, 2);
9782
9783    // Load the 'nest' parameter value into R10.
9784    // R10 is specified in X86CallingConv.td
9785    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
9786    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9787                       DAG.getConstant(10, MVT::i64));
9788    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9789                                Addr, MachinePointerInfo(TrmpAddr, 10),
9790                                false, false, 0);
9791
9792    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9793                       DAG.getConstant(12, MVT::i64));
9794    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
9795                                MachinePointerInfo(TrmpAddr, 12),
9796                                false, false, 2);
9797
9798    // Jump to the nested function.
9799    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
9800    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9801                       DAG.getConstant(20, MVT::i64));
9802    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9803                                Addr, MachinePointerInfo(TrmpAddr, 20),
9804                                false, false, 0);
9805
9806    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
9807    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9808                       DAG.getConstant(22, MVT::i64));
9809    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
9810                                MachinePointerInfo(TrmpAddr, 22),
9811                                false, false, 0);
9812
9813    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
9814  } else {
9815    const Function *Func =
9816      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
9817    CallingConv::ID CC = Func->getCallingConv();
9818    unsigned NestReg;
9819
9820    switch (CC) {
9821    default:
9822      llvm_unreachable("Unsupported calling convention");
9823    case CallingConv::C:
9824    case CallingConv::X86_StdCall: {
9825      // Pass 'nest' parameter in ECX.
9826      // Must be kept in sync with X86CallingConv.td
9827      NestReg = X86::ECX;
9828
9829      // Check that ECX wasn't needed by an 'inreg' parameter.
9830      FunctionType *FTy = Func->getFunctionType();
9831      const AttrListPtr &Attrs = Func->getAttributes();
9832
9833      if (!Attrs.isEmpty() && !Func->isVarArg()) {
9834        unsigned InRegCount = 0;
9835        unsigned Idx = 1;
9836
9837        for (FunctionType::param_iterator I = FTy->param_begin(),
9838             E = FTy->param_end(); I != E; ++I, ++Idx)
9839          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
9840            // FIXME: should only count parameters that are lowered to integers.
9841            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
9842
9843        if (InRegCount > 2) {
9844          report_fatal_error("Nest register in use - reduce number of inreg"
9845                             " parameters!");
9846        }
9847      }
9848      break;
9849    }
9850    case CallingConv::X86_FastCall:
9851    case CallingConv::X86_ThisCall:
9852    case CallingConv::Fast:
9853      // Pass 'nest' parameter in EAX.
9854      // Must be kept in sync with X86CallingConv.td
9855      NestReg = X86::EAX;
9856      break;
9857    }
9858
9859    SDValue OutChains[4];
9860    SDValue Addr, Disp;
9861
9862    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9863                       DAG.getConstant(10, MVT::i32));
9864    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
9865
9866    // This is storing the opcode for MOV32ri.
9867    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
9868    const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
9869    OutChains[0] = DAG.getStore(Root, dl,
9870                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
9871                                Trmp, MachinePointerInfo(TrmpAddr),
9872                                false, false, 0);
9873
9874    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9875                       DAG.getConstant(1, MVT::i32));
9876    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
9877                                MachinePointerInfo(TrmpAddr, 1),
9878                                false, false, 1);
9879
9880    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
9881    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9882                       DAG.getConstant(5, MVT::i32));
9883    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
9884                                MachinePointerInfo(TrmpAddr, 5),
9885                                false, false, 1);
9886
9887    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9888                       DAG.getConstant(6, MVT::i32));
9889    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
9890                                MachinePointerInfo(TrmpAddr, 6),
9891                                false, false, 1);
9892
9893    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
9894  }
9895}
9896
9897SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
9898                                            SelectionDAG &DAG) const {
9899  /*
9900   The rounding mode is in bits 11:10 of FPSR, and has the following
9901   settings:
9902     00 Round to nearest
9903     01 Round to -inf
9904     10 Round to +inf
9905     11 Round to 0
9906
9907  FLT_ROUNDS, on the other hand, expects the following:
9908    -1 Undefined
9909     0 Round to 0
9910     1 Round to nearest
9911     2 Round to +inf
9912     3 Round to -inf
9913
9914  To perform the conversion, we do:
9915    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
9916  */
9917
9918  MachineFunction &MF = DAG.getMachineFunction();
9919  const TargetMachine &TM = MF.getTarget();
9920  const TargetFrameLowering &TFI = *TM.getFrameLowering();
9921  unsigned StackAlignment = TFI.getStackAlignment();
9922  EVT VT = Op.getValueType();
9923  DebugLoc DL = Op.getDebugLoc();
9924
9925  // Save FP Control Word to stack slot
9926  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
9927  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
9928
9929
9930  MachineMemOperand *MMO =
9931   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
9932                           MachineMemOperand::MOStore, 2, 2);
9933
9934  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
9935  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
9936                                          DAG.getVTList(MVT::Other),
9937                                          Ops, 2, MVT::i16, MMO);
9938
9939  // Load FP Control Word from stack slot
9940  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
9941                            MachinePointerInfo(), false, false, false, 0);
9942
9943  // Transform as necessary
9944  SDValue CWD1 =
9945    DAG.getNode(ISD::SRL, DL, MVT::i16,
9946                DAG.getNode(ISD::AND, DL, MVT::i16,
9947                            CWD, DAG.getConstant(0x800, MVT::i16)),
9948                DAG.getConstant(11, MVT::i8));
9949  SDValue CWD2 =
9950    DAG.getNode(ISD::SRL, DL, MVT::i16,
9951                DAG.getNode(ISD::AND, DL, MVT::i16,
9952                            CWD, DAG.getConstant(0x400, MVT::i16)),
9953                DAG.getConstant(9, MVT::i8));
9954
9955  SDValue RetVal =
9956    DAG.getNode(ISD::AND, DL, MVT::i16,
9957                DAG.getNode(ISD::ADD, DL, MVT::i16,
9958                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
9959                            DAG.getConstant(1, MVT::i16)),
9960                DAG.getConstant(3, MVT::i16));
9961
9962
9963  return DAG.getNode((VT.getSizeInBits() < 16 ?
9964                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
9965}
9966
9967SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
9968  EVT VT = Op.getValueType();
9969  EVT OpVT = VT;
9970  unsigned NumBits = VT.getSizeInBits();
9971  DebugLoc dl = Op.getDebugLoc();
9972
9973  Op = Op.getOperand(0);
9974  if (VT == MVT::i8) {
9975    // Zero extend to i32 since there is not an i8 bsr.
9976    OpVT = MVT::i32;
9977    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9978  }
9979
9980  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
9981  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9982  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
9983
9984  // If src is zero (i.e. bsr sets ZF), returns NumBits.
9985  SDValue Ops[] = {
9986    Op,
9987    DAG.getConstant(NumBits+NumBits-1, OpVT),
9988    DAG.getConstant(X86::COND_E, MVT::i8),
9989    Op.getValue(1)
9990  };
9991  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
9992
9993  // Finally xor with NumBits-1.
9994  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
9995
9996  if (VT == MVT::i8)
9997    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9998  return Op;
9999}
10000
10001SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
10002  EVT VT = Op.getValueType();
10003  EVT OpVT = VT;
10004  unsigned NumBits = VT.getSizeInBits();
10005  DebugLoc dl = Op.getDebugLoc();
10006
10007  Op = Op.getOperand(0);
10008  if (VT == MVT::i8) {
10009    OpVT = MVT::i32;
10010    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
10011  }
10012
10013  // Issue a bsf (scan bits forward) which also sets EFLAGS.
10014  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10015  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
10016
10017  // If src is zero (i.e. bsf sets ZF), returns NumBits.
10018  SDValue Ops[] = {
10019    Op,
10020    DAG.getConstant(NumBits, OpVT),
10021    DAG.getConstant(X86::COND_E, MVT::i8),
10022    Op.getValue(1)
10023  };
10024  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
10025
10026  if (VT == MVT::i8)
10027    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10028  return Op;
10029}
10030
10031// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
10032// ones, and then concatenate the result back.
10033static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
10034  EVT VT = Op.getValueType();
10035
10036  assert(VT.getSizeInBits() == 256 && VT.isInteger() &&
10037         "Unsupported value type for operation");
10038
10039  int NumElems = VT.getVectorNumElements();
10040  DebugLoc dl = Op.getDebugLoc();
10041  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
10042  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
10043
10044  // Extract the LHS vectors
10045  SDValue LHS = Op.getOperand(0);
10046  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
10047  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
10048
10049  // Extract the RHS vectors
10050  SDValue RHS = Op.getOperand(1);
10051  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
10052  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
10053
10054  MVT EltVT = VT.getVectorElementType().getSimpleVT();
10055  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10056
10057  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
10058                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
10059                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
10060}
10061
10062SDValue X86TargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
10063  assert(Op.getValueType().getSizeInBits() == 256 &&
10064         Op.getValueType().isInteger() &&
10065         "Only handle AVX 256-bit vector integer operation");
10066  return Lower256IntArith(Op, DAG);
10067}
10068
10069SDValue X86TargetLowering::LowerSUB(SDValue Op, SelectionDAG &DAG) const {
10070  assert(Op.getValueType().getSizeInBits() == 256 &&
10071         Op.getValueType().isInteger() &&
10072         "Only handle AVX 256-bit vector integer operation");
10073  return Lower256IntArith(Op, DAG);
10074}
10075
10076SDValue X86TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10077  EVT VT = Op.getValueType();
10078
10079  // Decompose 256-bit ops into smaller 128-bit ops.
10080  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
10081    return Lower256IntArith(Op, DAG);
10082
10083  DebugLoc dl = Op.getDebugLoc();
10084
10085  SDValue A = Op.getOperand(0);
10086  SDValue B = Op.getOperand(1);
10087
10088  if (VT == MVT::v4i64) {
10089    assert(Subtarget->hasAVX2() && "Lowering v4i64 multiply requires AVX2");
10090
10091    //  ulong2 Ahi = __builtin_ia32_psrlqi256( a, 32);
10092    //  ulong2 Bhi = __builtin_ia32_psrlqi256( b, 32);
10093    //  ulong2 AloBlo = __builtin_ia32_pmuludq256( a, b );
10094    //  ulong2 AloBhi = __builtin_ia32_pmuludq256( a, Bhi );
10095    //  ulong2 AhiBlo = __builtin_ia32_pmuludq256( Ahi, b );
10096    //
10097    //  AloBhi = __builtin_ia32_psllqi256( AloBhi, 32 );
10098    //  AhiBlo = __builtin_ia32_psllqi256( AhiBlo, 32 );
10099    //  return AloBlo + AloBhi + AhiBlo;
10100
10101    SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10102                         DAG.getConstant(Intrinsic::x86_avx2_psrli_q, MVT::i32),
10103                         A, DAG.getConstant(32, MVT::i32));
10104    SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10105                         DAG.getConstant(Intrinsic::x86_avx2_psrli_q, MVT::i32),
10106                         B, DAG.getConstant(32, MVT::i32));
10107    SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10108                         DAG.getConstant(Intrinsic::x86_avx2_pmulu_dq, MVT::i32),
10109                         A, B);
10110    SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10111                         DAG.getConstant(Intrinsic::x86_avx2_pmulu_dq, MVT::i32),
10112                         A, Bhi);
10113    SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10114                         DAG.getConstant(Intrinsic::x86_avx2_pmulu_dq, MVT::i32),
10115                         Ahi, B);
10116    AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10117                         DAG.getConstant(Intrinsic::x86_avx2_pslli_q, MVT::i32),
10118                         AloBhi, DAG.getConstant(32, MVT::i32));
10119    AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10120                         DAG.getConstant(Intrinsic::x86_avx2_pslli_q, MVT::i32),
10121                         AhiBlo, DAG.getConstant(32, MVT::i32));
10122    SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
10123    Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
10124    return Res;
10125  }
10126
10127  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
10128
10129  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
10130  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
10131  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
10132  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
10133  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
10134  //
10135  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
10136  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
10137  //  return AloBlo + AloBhi + AhiBlo;
10138
10139  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10140                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
10141                       A, DAG.getConstant(32, MVT::i32));
10142  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10143                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
10144                       B, DAG.getConstant(32, MVT::i32));
10145  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10146                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
10147                       A, B);
10148  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10149                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
10150                       A, Bhi);
10151  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10152                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
10153                       Ahi, B);
10154  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10155                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
10156                       AloBhi, DAG.getConstant(32, MVT::i32));
10157  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10158                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
10159                       AhiBlo, DAG.getConstant(32, MVT::i32));
10160  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
10161  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
10162  return Res;
10163}
10164
10165SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
10166
10167  EVT VT = Op.getValueType();
10168  DebugLoc dl = Op.getDebugLoc();
10169  SDValue R = Op.getOperand(0);
10170  SDValue Amt = Op.getOperand(1);
10171  LLVMContext *Context = DAG.getContext();
10172
10173  if (!Subtarget->hasXMMInt())
10174    return SDValue();
10175
10176  // Optimize shl/srl/sra with constant shift amount.
10177  if (isSplatVector(Amt.getNode())) {
10178    SDValue SclrAmt = Amt->getOperand(0);
10179    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
10180      uint64_t ShiftAmt = C->getZExtValue();
10181
10182      if (VT == MVT::v16i8 && Op.getOpcode() == ISD::SHL) {
10183        // Make a large shift.
10184        SDValue SHL =
10185          DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10186                      DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
10187                      R, DAG.getConstant(ShiftAmt, MVT::i32));
10188        // Zero out the rightmost bits.
10189        SmallVector<SDValue, 16> V(16, DAG.getConstant(uint8_t(-1U << ShiftAmt),
10190                                                       MVT::i8));
10191        return DAG.getNode(ISD::AND, dl, VT, SHL,
10192                           DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10193      }
10194
10195      if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SHL)
10196       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10197                     DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
10198                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10199
10200      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SHL)
10201       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10202                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
10203                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10204
10205      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SHL)
10206       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10207                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
10208                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10209
10210      if (VT == MVT::v16i8 && Op.getOpcode() == ISD::SRL) {
10211        // Make a large shift.
10212        SDValue SRL =
10213          DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10214                      DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
10215                      R, DAG.getConstant(ShiftAmt, MVT::i32));
10216        // Zero out the leftmost bits.
10217        SmallVector<SDValue, 16> V(16, DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10218                                                       MVT::i8));
10219        return DAG.getNode(ISD::AND, dl, VT, SRL,
10220                           DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10221      }
10222
10223      if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SRL)
10224       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10225                     DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
10226                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10227
10228      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRL)
10229       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10230                     DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
10231                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10232
10233      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRL)
10234       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10235                     DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
10236                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10237
10238      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRA)
10239       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10240                     DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
10241                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10242
10243      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRA)
10244       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10245                     DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
10246                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10247
10248      if (VT == MVT::v16i8 && Op.getOpcode() == ISD::SRA) {
10249        if (ShiftAmt == 7) {
10250          // R s>> 7  ===  R s< 0
10251          SDValue Zeros = getZeroVector(VT, true /* HasXMMInt */, DAG, dl);
10252          return DAG.getNode(X86ISD::PCMPGTB, dl, VT, Zeros, R);
10253        }
10254
10255        // R s>> a === ((R u>> a) ^ m) - m
10256        SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10257        SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
10258                                                       MVT::i8));
10259        SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
10260        Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10261        Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10262        return Res;
10263      }
10264
10265      if (Subtarget->hasAVX2()) {
10266        if (VT == MVT::v4i64 && Op.getOpcode() == ISD::SHL)
10267         return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10268                       DAG.getConstant(Intrinsic::x86_avx2_pslli_q, MVT::i32),
10269                       R, DAG.getConstant(ShiftAmt, MVT::i32));
10270
10271        if (VT == MVT::v8i32 && Op.getOpcode() == ISD::SHL)
10272         return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10273                       DAG.getConstant(Intrinsic::x86_avx2_pslli_d, MVT::i32),
10274                       R, DAG.getConstant(ShiftAmt, MVT::i32));
10275
10276        if (VT == MVT::v16i16 && Op.getOpcode() == ISD::SHL)
10277         return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10278                       DAG.getConstant(Intrinsic::x86_avx2_pslli_w, MVT::i32),
10279                       R, DAG.getConstant(ShiftAmt, MVT::i32));
10280
10281        if (VT == MVT::v4i64 && Op.getOpcode() == ISD::SRL)
10282         return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10283                       DAG.getConstant(Intrinsic::x86_avx2_psrli_q, MVT::i32),
10284                       R, DAG.getConstant(ShiftAmt, MVT::i32));
10285
10286        if (VT == MVT::v8i32 && Op.getOpcode() == ISD::SRL)
10287         return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10288                       DAG.getConstant(Intrinsic::x86_avx2_psrli_d, MVT::i32),
10289                       R, DAG.getConstant(ShiftAmt, MVT::i32));
10290
10291        if (VT == MVT::v16i16 && Op.getOpcode() == ISD::SRL)
10292         return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10293                       DAG.getConstant(Intrinsic::x86_avx2_psrli_w, MVT::i32),
10294                       R, DAG.getConstant(ShiftAmt, MVT::i32));
10295
10296        if (VT == MVT::v8i32 && Op.getOpcode() == ISD::SRA)
10297         return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10298                       DAG.getConstant(Intrinsic::x86_avx2_psrai_d, MVT::i32),
10299                       R, DAG.getConstant(ShiftAmt, MVT::i32));
10300
10301        if (VT == MVT::v16i16 && Op.getOpcode() == ISD::SRA)
10302         return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10303                       DAG.getConstant(Intrinsic::x86_avx2_psrai_w, MVT::i32),
10304                       R, DAG.getConstant(ShiftAmt, MVT::i32));
10305        }
10306    }
10307  }
10308
10309  // Lower SHL with variable shift amount.
10310  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
10311    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10312                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
10313                     Op.getOperand(1), DAG.getConstant(23, MVT::i32));
10314
10315    ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
10316
10317    std::vector<Constant*> CV(4, CI);
10318    Constant *C = ConstantVector::get(CV);
10319    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10320    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10321                                 MachinePointerInfo::getConstantPool(),
10322                                 false, false, false, 16);
10323
10324    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
10325    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
10326    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
10327    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
10328  }
10329  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
10330    // a = a << 5;
10331    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10332                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
10333                     Op.getOperand(1), DAG.getConstant(5, MVT::i32));
10334
10335    ConstantInt *CM1 = ConstantInt::get(*Context, APInt(8, 15));
10336    ConstantInt *CM2 = ConstantInt::get(*Context, APInt(8, 63));
10337
10338    std::vector<Constant*> CVM1(16, CM1);
10339    std::vector<Constant*> CVM2(16, CM2);
10340    Constant *C = ConstantVector::get(CVM1);
10341    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10342    SDValue M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10343                            MachinePointerInfo::getConstantPool(),
10344                            false, false, false, 16);
10345
10346    // r = pblendv(r, psllw(r & (char16)15, 4), a);
10347    M = DAG.getNode(ISD::AND, dl, VT, R, M);
10348    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10349                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
10350                    DAG.getConstant(4, MVT::i32));
10351    R = DAG.getNode(ISD::VSELECT, dl, VT, Op, R, M);
10352    // a += a
10353    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10354
10355    C = ConstantVector::get(CVM2);
10356    CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10357    M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10358                    MachinePointerInfo::getConstantPool(),
10359                    false, false, false, 16);
10360
10361    // r = pblendv(r, psllw(r & (char16)63, 2), a);
10362    M = DAG.getNode(ISD::AND, dl, VT, R, M);
10363    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10364                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
10365                    DAG.getConstant(2, MVT::i32));
10366    R = DAG.getNode(ISD::VSELECT, dl, VT, Op, R, M);
10367    // a += a
10368    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10369
10370    // return pblendv(r, r+r, a);
10371    R = DAG.getNode(ISD::VSELECT, dl, VT, Op,
10372                    R, DAG.getNode(ISD::ADD, dl, VT, R, R));
10373    return R;
10374  }
10375
10376  // Decompose 256-bit shifts into smaller 128-bit shifts.
10377  if (VT.getSizeInBits() == 256) {
10378    int NumElems = VT.getVectorNumElements();
10379    MVT EltVT = VT.getVectorElementType().getSimpleVT();
10380    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10381
10382    // Extract the two vectors
10383    SDValue V1 = Extract128BitVector(R, DAG.getConstant(0, MVT::i32), DAG, dl);
10384    SDValue V2 = Extract128BitVector(R, DAG.getConstant(NumElems/2, MVT::i32),
10385                                     DAG, dl);
10386
10387    // Recreate the shift amount vectors
10388    SDValue Amt1, Amt2;
10389    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
10390      // Constant shift amount
10391      SmallVector<SDValue, 4> Amt1Csts;
10392      SmallVector<SDValue, 4> Amt2Csts;
10393      for (int i = 0; i < NumElems/2; ++i)
10394        Amt1Csts.push_back(Amt->getOperand(i));
10395      for (int i = NumElems/2; i < NumElems; ++i)
10396        Amt2Csts.push_back(Amt->getOperand(i));
10397
10398      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10399                                 &Amt1Csts[0], NumElems/2);
10400      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10401                                 &Amt2Csts[0], NumElems/2);
10402    } else {
10403      // Variable shift amount
10404      Amt1 = Extract128BitVector(Amt, DAG.getConstant(0, MVT::i32), DAG, dl);
10405      Amt2 = Extract128BitVector(Amt, DAG.getConstant(NumElems/2, MVT::i32),
10406                                 DAG, dl);
10407    }
10408
10409    // Issue new vector shifts for the smaller types
10410    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
10411    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
10412
10413    // Concatenate the result back
10414    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
10415  }
10416
10417  return SDValue();
10418}
10419
10420SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
10421  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
10422  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
10423  // looks for this combo and may remove the "setcc" instruction if the "setcc"
10424  // has only one use.
10425  SDNode *N = Op.getNode();
10426  SDValue LHS = N->getOperand(0);
10427  SDValue RHS = N->getOperand(1);
10428  unsigned BaseOp = 0;
10429  unsigned Cond = 0;
10430  DebugLoc DL = Op.getDebugLoc();
10431  switch (Op.getOpcode()) {
10432  default: llvm_unreachable("Unknown ovf instruction!");
10433  case ISD::SADDO:
10434    // A subtract of one will be selected as a INC. Note that INC doesn't
10435    // set CF, so we can't do this for UADDO.
10436    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10437      if (C->isOne()) {
10438        BaseOp = X86ISD::INC;
10439        Cond = X86::COND_O;
10440        break;
10441      }
10442    BaseOp = X86ISD::ADD;
10443    Cond = X86::COND_O;
10444    break;
10445  case ISD::UADDO:
10446    BaseOp = X86ISD::ADD;
10447    Cond = X86::COND_B;
10448    break;
10449  case ISD::SSUBO:
10450    // A subtract of one will be selected as a DEC. Note that DEC doesn't
10451    // set CF, so we can't do this for USUBO.
10452    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10453      if (C->isOne()) {
10454        BaseOp = X86ISD::DEC;
10455        Cond = X86::COND_O;
10456        break;
10457      }
10458    BaseOp = X86ISD::SUB;
10459    Cond = X86::COND_O;
10460    break;
10461  case ISD::USUBO:
10462    BaseOp = X86ISD::SUB;
10463    Cond = X86::COND_B;
10464    break;
10465  case ISD::SMULO:
10466    BaseOp = X86ISD::SMUL;
10467    Cond = X86::COND_O;
10468    break;
10469  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
10470    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
10471                                 MVT::i32);
10472    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
10473
10474    SDValue SetCC =
10475      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10476                  DAG.getConstant(X86::COND_O, MVT::i32),
10477                  SDValue(Sum.getNode(), 2));
10478
10479    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10480  }
10481  }
10482
10483  // Also sets EFLAGS.
10484  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
10485  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
10486
10487  SDValue SetCC =
10488    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
10489                DAG.getConstant(Cond, MVT::i32),
10490                SDValue(Sum.getNode(), 1));
10491
10492  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10493}
10494
10495SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const{
10496  DebugLoc dl = Op.getDebugLoc();
10497  SDNode* Node = Op.getNode();
10498  EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
10499  EVT VT = Node->getValueType(0);
10500  if (Subtarget->hasXMMInt() && VT.isVector()) {
10501    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
10502                        ExtraVT.getScalarType().getSizeInBits();
10503    SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
10504
10505    unsigned SHLIntrinsicsID = 0;
10506    unsigned SRAIntrinsicsID = 0;
10507    switch (VT.getSimpleVT().SimpleTy) {
10508      default:
10509        return SDValue();
10510      case MVT::v4i32: {
10511        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_d;
10512        SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_d;
10513        break;
10514      }
10515      case MVT::v8i16: {
10516        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_w;
10517        SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_w;
10518        break;
10519      }
10520    }
10521
10522    SDValue Tmp1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10523                         DAG.getConstant(SHLIntrinsicsID, MVT::i32),
10524                         Node->getOperand(0), ShAmt);
10525
10526    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10527                       DAG.getConstant(SRAIntrinsicsID, MVT::i32),
10528                       Tmp1, ShAmt);
10529  }
10530
10531  return SDValue();
10532}
10533
10534
10535SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
10536  DebugLoc dl = Op.getDebugLoc();
10537
10538  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
10539  // There isn't any reason to disable it if the target processor supports it.
10540  if (!Subtarget->hasXMMInt() && !Subtarget->is64Bit()) {
10541    SDValue Chain = Op.getOperand(0);
10542    SDValue Zero = DAG.getConstant(0, MVT::i32);
10543    SDValue Ops[] = {
10544      DAG.getRegister(X86::ESP, MVT::i32), // Base
10545      DAG.getTargetConstant(1, MVT::i8),   // Scale
10546      DAG.getRegister(0, MVT::i32),        // Index
10547      DAG.getTargetConstant(0, MVT::i32),  // Disp
10548      DAG.getRegister(0, MVT::i32),        // Segment.
10549      Zero,
10550      Chain
10551    };
10552    SDNode *Res =
10553      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10554                          array_lengthof(Ops));
10555    return SDValue(Res, 0);
10556  }
10557
10558  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
10559  if (!isDev)
10560    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10561
10562  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10563  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
10564  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
10565  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
10566
10567  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
10568  if (!Op1 && !Op2 && !Op3 && Op4)
10569    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
10570
10571  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
10572  if (Op1 && !Op2 && !Op3 && !Op4)
10573    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
10574
10575  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
10576  //           (MFENCE)>;
10577  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10578}
10579
10580SDValue X86TargetLowering::LowerATOMIC_FENCE(SDValue Op,
10581                                             SelectionDAG &DAG) const {
10582  DebugLoc dl = Op.getDebugLoc();
10583  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
10584    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
10585  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
10586    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
10587
10588  // The only fence that needs an instruction is a sequentially-consistent
10589  // cross-thread fence.
10590  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
10591    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
10592    // no-sse2). There isn't any reason to disable it if the target processor
10593    // supports it.
10594    if (Subtarget->hasXMMInt() || Subtarget->is64Bit())
10595      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10596
10597    SDValue Chain = Op.getOperand(0);
10598    SDValue Zero = DAG.getConstant(0, MVT::i32);
10599    SDValue Ops[] = {
10600      DAG.getRegister(X86::ESP, MVT::i32), // Base
10601      DAG.getTargetConstant(1, MVT::i8),   // Scale
10602      DAG.getRegister(0, MVT::i32),        // Index
10603      DAG.getTargetConstant(0, MVT::i32),  // Disp
10604      DAG.getRegister(0, MVT::i32),        // Segment.
10605      Zero,
10606      Chain
10607    };
10608    SDNode *Res =
10609      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10610                         array_lengthof(Ops));
10611    return SDValue(Res, 0);
10612  }
10613
10614  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
10615  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10616}
10617
10618
10619SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
10620  EVT T = Op.getValueType();
10621  DebugLoc DL = Op.getDebugLoc();
10622  unsigned Reg = 0;
10623  unsigned size = 0;
10624  switch(T.getSimpleVT().SimpleTy) {
10625  default:
10626    assert(false && "Invalid value type!");
10627  case MVT::i8:  Reg = X86::AL;  size = 1; break;
10628  case MVT::i16: Reg = X86::AX;  size = 2; break;
10629  case MVT::i32: Reg = X86::EAX; size = 4; break;
10630  case MVT::i64:
10631    assert(Subtarget->is64Bit() && "Node not type legal!");
10632    Reg = X86::RAX; size = 8;
10633    break;
10634  }
10635  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
10636                                    Op.getOperand(2), SDValue());
10637  SDValue Ops[] = { cpIn.getValue(0),
10638                    Op.getOperand(1),
10639                    Op.getOperand(3),
10640                    DAG.getTargetConstant(size, MVT::i8),
10641                    cpIn.getValue(1) };
10642  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10643  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
10644  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
10645                                           Ops, 5, T, MMO);
10646  SDValue cpOut =
10647    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
10648  return cpOut;
10649}
10650
10651SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
10652                                                 SelectionDAG &DAG) const {
10653  assert(Subtarget->is64Bit() && "Result not type legalized?");
10654  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10655  SDValue TheChain = Op.getOperand(0);
10656  DebugLoc dl = Op.getDebugLoc();
10657  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10658  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
10659  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
10660                                   rax.getValue(2));
10661  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
10662                            DAG.getConstant(32, MVT::i8));
10663  SDValue Ops[] = {
10664    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
10665    rdx.getValue(1)
10666  };
10667  return DAG.getMergeValues(Ops, 2, dl);
10668}
10669
10670SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
10671                                            SelectionDAG &DAG) const {
10672  EVT SrcVT = Op.getOperand(0).getValueType();
10673  EVT DstVT = Op.getValueType();
10674  assert(Subtarget->is64Bit() && !Subtarget->hasXMMInt() &&
10675         Subtarget->hasMMX() && "Unexpected custom BITCAST");
10676  assert((DstVT == MVT::i64 ||
10677          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
10678         "Unexpected custom BITCAST");
10679  // i64 <=> MMX conversions are Legal.
10680  if (SrcVT==MVT::i64 && DstVT.isVector())
10681    return Op;
10682  if (DstVT==MVT::i64 && SrcVT.isVector())
10683    return Op;
10684  // MMX <=> MMX conversions are Legal.
10685  if (SrcVT.isVector() && DstVT.isVector())
10686    return Op;
10687  // All other conversions need to be expanded.
10688  return SDValue();
10689}
10690
10691SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
10692  SDNode *Node = Op.getNode();
10693  DebugLoc dl = Node->getDebugLoc();
10694  EVT T = Node->getValueType(0);
10695  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
10696                              DAG.getConstant(0, T), Node->getOperand(2));
10697  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
10698                       cast<AtomicSDNode>(Node)->getMemoryVT(),
10699                       Node->getOperand(0),
10700                       Node->getOperand(1), negOp,
10701                       cast<AtomicSDNode>(Node)->getSrcValue(),
10702                       cast<AtomicSDNode>(Node)->getAlignment(),
10703                       cast<AtomicSDNode>(Node)->getOrdering(),
10704                       cast<AtomicSDNode>(Node)->getSynchScope());
10705}
10706
10707static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
10708  SDNode *Node = Op.getNode();
10709  DebugLoc dl = Node->getDebugLoc();
10710  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10711
10712  // Convert seq_cst store -> xchg
10713  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
10714  // FIXME: On 32-bit, store -> fist or movq would be more efficient
10715  //        (The only way to get a 16-byte store is cmpxchg16b)
10716  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
10717  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
10718      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
10719    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
10720                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
10721                                 Node->getOperand(0),
10722                                 Node->getOperand(1), Node->getOperand(2),
10723                                 cast<AtomicSDNode>(Node)->getMemOperand(),
10724                                 cast<AtomicSDNode>(Node)->getOrdering(),
10725                                 cast<AtomicSDNode>(Node)->getSynchScope());
10726    return Swap.getValue(1);
10727  }
10728  // Other atomic stores have a simple pattern.
10729  return Op;
10730}
10731
10732static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
10733  EVT VT = Op.getNode()->getValueType(0);
10734
10735  // Let legalize expand this if it isn't a legal type yet.
10736  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
10737    return SDValue();
10738
10739  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10740
10741  unsigned Opc;
10742  bool ExtraOp = false;
10743  switch (Op.getOpcode()) {
10744  default: assert(0 && "Invalid code");
10745  case ISD::ADDC: Opc = X86ISD::ADD; break;
10746  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
10747  case ISD::SUBC: Opc = X86ISD::SUB; break;
10748  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
10749  }
10750
10751  if (!ExtraOp)
10752    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10753                       Op.getOperand(1));
10754  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10755                     Op.getOperand(1), Op.getOperand(2));
10756}
10757
10758/// LowerOperation - Provide custom lowering hooks for some operations.
10759///
10760SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10761  switch (Op.getOpcode()) {
10762  default: llvm_unreachable("Should not custom lower this!");
10763  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
10764  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
10765  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op,DAG);
10766  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
10767  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
10768  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
10769  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10770  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
10771  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10772  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
10773  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10774  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
10775  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
10776  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10777  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10778  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10779  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10780  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
10781  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10782  case ISD::SHL_PARTS:
10783  case ISD::SRA_PARTS:
10784  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
10785  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
10786  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
10787  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
10788  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
10789  case ISD::FABS:               return LowerFABS(Op, DAG);
10790  case ISD::FNEG:               return LowerFNEG(Op, DAG);
10791  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
10792  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
10793  case ISD::SETCC:              return LowerSETCC(Op, DAG);
10794  case ISD::SELECT:             return LowerSELECT(Op, DAG);
10795  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
10796  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10797  case ISD::VASTART:            return LowerVASTART(Op, DAG);
10798  case ISD::VAARG:              return LowerVAARG(Op, DAG);
10799  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10800  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10801  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10802  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10803  case ISD::FRAME_TO_ARGS_OFFSET:
10804                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
10805  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10806  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
10807  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10808  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10809  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10810  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
10811  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
10812  case ISD::MUL:                return LowerMUL(Op, DAG);
10813  case ISD::SRA:
10814  case ISD::SRL:
10815  case ISD::SHL:                return LowerShift(Op, DAG);
10816  case ISD::SADDO:
10817  case ISD::UADDO:
10818  case ISD::SSUBO:
10819  case ISD::USUBO:
10820  case ISD::SMULO:
10821  case ISD::UMULO:              return LowerXALUO(Op, DAG);
10822  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
10823  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10824  case ISD::ADDC:
10825  case ISD::ADDE:
10826  case ISD::SUBC:
10827  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
10828  case ISD::ADD:                return LowerADD(Op, DAG);
10829  case ISD::SUB:                return LowerSUB(Op, DAG);
10830  }
10831}
10832
10833static void ReplaceATOMIC_LOAD(SDNode *Node,
10834                                  SmallVectorImpl<SDValue> &Results,
10835                                  SelectionDAG &DAG) {
10836  DebugLoc dl = Node->getDebugLoc();
10837  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10838
10839  // Convert wide load -> cmpxchg8b/cmpxchg16b
10840  // FIXME: On 32-bit, load -> fild or movq would be more efficient
10841  //        (The only way to get a 16-byte load is cmpxchg16b)
10842  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
10843  SDValue Zero = DAG.getConstant(0, VT);
10844  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
10845                               Node->getOperand(0),
10846                               Node->getOperand(1), Zero, Zero,
10847                               cast<AtomicSDNode>(Node)->getMemOperand(),
10848                               cast<AtomicSDNode>(Node)->getOrdering(),
10849                               cast<AtomicSDNode>(Node)->getSynchScope());
10850  Results.push_back(Swap.getValue(0));
10851  Results.push_back(Swap.getValue(1));
10852}
10853
10854void X86TargetLowering::
10855ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
10856                        SelectionDAG &DAG, unsigned NewOp) const {
10857  DebugLoc dl = Node->getDebugLoc();
10858  assert (Node->getValueType(0) == MVT::i64 &&
10859          "Only know how to expand i64 atomics");
10860
10861  SDValue Chain = Node->getOperand(0);
10862  SDValue In1 = Node->getOperand(1);
10863  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10864                             Node->getOperand(2), DAG.getIntPtrConstant(0));
10865  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10866                             Node->getOperand(2), DAG.getIntPtrConstant(1));
10867  SDValue Ops[] = { Chain, In1, In2L, In2H };
10868  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10869  SDValue Result =
10870    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
10871                            cast<MemSDNode>(Node)->getMemOperand());
10872  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
10873  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
10874  Results.push_back(Result.getValue(2));
10875}
10876
10877/// ReplaceNodeResults - Replace a node with an illegal result type
10878/// with a new node built out of custom code.
10879void X86TargetLowering::ReplaceNodeResults(SDNode *N,
10880                                           SmallVectorImpl<SDValue>&Results,
10881                                           SelectionDAG &DAG) const {
10882  DebugLoc dl = N->getDebugLoc();
10883  switch (N->getOpcode()) {
10884  default:
10885    assert(false && "Do not know how to custom type legalize this operation!");
10886    return;
10887  case ISD::SIGN_EXTEND_INREG:
10888  case ISD::ADDC:
10889  case ISD::ADDE:
10890  case ISD::SUBC:
10891  case ISD::SUBE:
10892    // We don't want to expand or promote these.
10893    return;
10894  case ISD::FP_TO_SINT: {
10895    std::pair<SDValue,SDValue> Vals =
10896        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
10897    SDValue FIST = Vals.first, StackSlot = Vals.second;
10898    if (FIST.getNode() != 0) {
10899      EVT VT = N->getValueType(0);
10900      // Return a load from the stack slot.
10901      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
10902                                    MachinePointerInfo(),
10903                                    false, false, false, 0));
10904    }
10905    return;
10906  }
10907  case ISD::READCYCLECOUNTER: {
10908    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10909    SDValue TheChain = N->getOperand(0);
10910    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10911    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
10912                                     rd.getValue(1));
10913    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
10914                                     eax.getValue(2));
10915    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
10916    SDValue Ops[] = { eax, edx };
10917    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
10918    Results.push_back(edx.getValue(1));
10919    return;
10920  }
10921  case ISD::ATOMIC_CMP_SWAP: {
10922    EVT T = N->getValueType(0);
10923    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
10924    bool Regs64bit = T == MVT::i128;
10925    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
10926    SDValue cpInL, cpInH;
10927    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10928                        DAG.getConstant(0, HalfT));
10929    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10930                        DAG.getConstant(1, HalfT));
10931    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
10932                             Regs64bit ? X86::RAX : X86::EAX,
10933                             cpInL, SDValue());
10934    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
10935                             Regs64bit ? X86::RDX : X86::EDX,
10936                             cpInH, cpInL.getValue(1));
10937    SDValue swapInL, swapInH;
10938    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10939                          DAG.getConstant(0, HalfT));
10940    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10941                          DAG.getConstant(1, HalfT));
10942    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
10943                               Regs64bit ? X86::RBX : X86::EBX,
10944                               swapInL, cpInH.getValue(1));
10945    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
10946                               Regs64bit ? X86::RCX : X86::ECX,
10947                               swapInH, swapInL.getValue(1));
10948    SDValue Ops[] = { swapInH.getValue(0),
10949                      N->getOperand(1),
10950                      swapInH.getValue(1) };
10951    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10952    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
10953    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
10954                                  X86ISD::LCMPXCHG8_DAG;
10955    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
10956                                             Ops, 3, T, MMO);
10957    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
10958                                        Regs64bit ? X86::RAX : X86::EAX,
10959                                        HalfT, Result.getValue(1));
10960    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
10961                                        Regs64bit ? X86::RDX : X86::EDX,
10962                                        HalfT, cpOutL.getValue(2));
10963    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
10964    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
10965    Results.push_back(cpOutH.getValue(1));
10966    return;
10967  }
10968  case ISD::ATOMIC_LOAD_ADD:
10969    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
10970    return;
10971  case ISD::ATOMIC_LOAD_AND:
10972    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
10973    return;
10974  case ISD::ATOMIC_LOAD_NAND:
10975    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
10976    return;
10977  case ISD::ATOMIC_LOAD_OR:
10978    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
10979    return;
10980  case ISD::ATOMIC_LOAD_SUB:
10981    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
10982    return;
10983  case ISD::ATOMIC_LOAD_XOR:
10984    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
10985    return;
10986  case ISD::ATOMIC_SWAP:
10987    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
10988    return;
10989  case ISD::ATOMIC_LOAD:
10990    ReplaceATOMIC_LOAD(N, Results, DAG);
10991  }
10992}
10993
10994const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
10995  switch (Opcode) {
10996  default: return NULL;
10997  case X86ISD::BSF:                return "X86ISD::BSF";
10998  case X86ISD::BSR:                return "X86ISD::BSR";
10999  case X86ISD::SHLD:               return "X86ISD::SHLD";
11000  case X86ISD::SHRD:               return "X86ISD::SHRD";
11001  case X86ISD::FAND:               return "X86ISD::FAND";
11002  case X86ISD::FOR:                return "X86ISD::FOR";
11003  case X86ISD::FXOR:               return "X86ISD::FXOR";
11004  case X86ISD::FSRL:               return "X86ISD::FSRL";
11005  case X86ISD::FILD:               return "X86ISD::FILD";
11006  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
11007  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
11008  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
11009  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
11010  case X86ISD::FLD:                return "X86ISD::FLD";
11011  case X86ISD::FST:                return "X86ISD::FST";
11012  case X86ISD::CALL:               return "X86ISD::CALL";
11013  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
11014  case X86ISD::BT:                 return "X86ISD::BT";
11015  case X86ISD::CMP:                return "X86ISD::CMP";
11016  case X86ISD::COMI:               return "X86ISD::COMI";
11017  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
11018  case X86ISD::SETCC:              return "X86ISD::SETCC";
11019  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
11020  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
11021  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
11022  case X86ISD::CMOV:               return "X86ISD::CMOV";
11023  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
11024  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
11025  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
11026  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
11027  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
11028  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
11029  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
11030  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
11031  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
11032  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
11033  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
11034  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
11035  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
11036  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
11037  case X86ISD::PSIGNB:             return "X86ISD::PSIGNB";
11038  case X86ISD::PSIGNW:             return "X86ISD::PSIGNW";
11039  case X86ISD::PSIGND:             return "X86ISD::PSIGND";
11040  case X86ISD::BLENDV:             return "X86ISD::BLENDV";
11041  case X86ISD::FHADD:              return "X86ISD::FHADD";
11042  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
11043  case X86ISD::FMAX:               return "X86ISD::FMAX";
11044  case X86ISD::FMIN:               return "X86ISD::FMIN";
11045  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
11046  case X86ISD::FRCP:               return "X86ISD::FRCP";
11047  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
11048  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
11049  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
11050  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
11051  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
11052  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
11053  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
11054  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
11055  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
11056  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
11057  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
11058  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
11059  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
11060  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
11061  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
11062  case X86ISD::VSHL:               return "X86ISD::VSHL";
11063  case X86ISD::VSRL:               return "X86ISD::VSRL";
11064  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
11065  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
11066  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
11067  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
11068  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
11069  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
11070  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
11071  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
11072  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
11073  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
11074  case X86ISD::ADD:                return "X86ISD::ADD";
11075  case X86ISD::SUB:                return "X86ISD::SUB";
11076  case X86ISD::ADC:                return "X86ISD::ADC";
11077  case X86ISD::SBB:                return "X86ISD::SBB";
11078  case X86ISD::SMUL:               return "X86ISD::SMUL";
11079  case X86ISD::UMUL:               return "X86ISD::UMUL";
11080  case X86ISD::INC:                return "X86ISD::INC";
11081  case X86ISD::DEC:                return "X86ISD::DEC";
11082  case X86ISD::OR:                 return "X86ISD::OR";
11083  case X86ISD::XOR:                return "X86ISD::XOR";
11084  case X86ISD::AND:                return "X86ISD::AND";
11085  case X86ISD::ANDN:               return "X86ISD::ANDN";
11086  case X86ISD::BLSI:               return "X86ISD::BLSI";
11087  case X86ISD::BLSMSK:             return "X86ISD::BLSMSK";
11088  case X86ISD::BLSR:               return "X86ISD::BLSR";
11089  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
11090  case X86ISD::PTEST:              return "X86ISD::PTEST";
11091  case X86ISD::TESTP:              return "X86ISD::TESTP";
11092  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
11093  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
11094  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
11095  case X86ISD::PSHUFHW_LD:         return "X86ISD::PSHUFHW_LD";
11096  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
11097  case X86ISD::PSHUFLW_LD:         return "X86ISD::PSHUFLW_LD";
11098  case X86ISD::SHUFPS:             return "X86ISD::SHUFPS";
11099  case X86ISD::SHUFPD:             return "X86ISD::SHUFPD";
11100  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
11101  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
11102  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
11103  case X86ISD::MOVHLPD:            return "X86ISD::MOVHLPD";
11104  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
11105  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
11106  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
11107  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
11108  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
11109  case X86ISD::MOVSHDUP_LD:        return "X86ISD::MOVSHDUP_LD";
11110  case X86ISD::MOVSLDUP_LD:        return "X86ISD::MOVSLDUP_LD";
11111  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
11112  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
11113  case X86ISD::UNPCKLPS:           return "X86ISD::UNPCKLPS";
11114  case X86ISD::UNPCKLPD:           return "X86ISD::UNPCKLPD";
11115  case X86ISD::VUNPCKLPDY:         return "X86ISD::VUNPCKLPDY";
11116  case X86ISD::UNPCKHPS:           return "X86ISD::UNPCKHPS";
11117  case X86ISD::UNPCKHPD:           return "X86ISD::UNPCKHPD";
11118  case X86ISD::PUNPCKLBW:          return "X86ISD::PUNPCKLBW";
11119  case X86ISD::PUNPCKLWD:          return "X86ISD::PUNPCKLWD";
11120  case X86ISD::PUNPCKLDQ:          return "X86ISD::PUNPCKLDQ";
11121  case X86ISD::PUNPCKLQDQ:         return "X86ISD::PUNPCKLQDQ";
11122  case X86ISD::PUNPCKHBW:          return "X86ISD::PUNPCKHBW";
11123  case X86ISD::PUNPCKHWD:          return "X86ISD::PUNPCKHWD";
11124  case X86ISD::PUNPCKHDQ:          return "X86ISD::PUNPCKHDQ";
11125  case X86ISD::PUNPCKHQDQ:         return "X86ISD::PUNPCKHQDQ";
11126  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
11127  case X86ISD::VPERMILPS:          return "X86ISD::VPERMILPS";
11128  case X86ISD::VPERMILPSY:         return "X86ISD::VPERMILPSY";
11129  case X86ISD::VPERMILPD:          return "X86ISD::VPERMILPD";
11130  case X86ISD::VPERMILPDY:         return "X86ISD::VPERMILPDY";
11131  case X86ISD::VPERM2F128:         return "X86ISD::VPERM2F128";
11132  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
11133  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
11134  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
11135  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
11136  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
11137  }
11138}
11139
11140// isLegalAddressingMode - Return true if the addressing mode represented
11141// by AM is legal for this target, for a load/store of the specified type.
11142bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
11143                                              Type *Ty) const {
11144  // X86 supports extremely general addressing modes.
11145  CodeModel::Model M = getTargetMachine().getCodeModel();
11146  Reloc::Model R = getTargetMachine().getRelocationModel();
11147
11148  // X86 allows a sign-extended 32-bit immediate field as a displacement.
11149  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
11150    return false;
11151
11152  if (AM.BaseGV) {
11153    unsigned GVFlags =
11154      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
11155
11156    // If a reference to this global requires an extra load, we can't fold it.
11157    if (isGlobalStubReference(GVFlags))
11158      return false;
11159
11160    // If BaseGV requires a register for the PIC base, we cannot also have a
11161    // BaseReg specified.
11162    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
11163      return false;
11164
11165    // If lower 4G is not available, then we must use rip-relative addressing.
11166    if ((M != CodeModel::Small || R != Reloc::Static) &&
11167        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
11168      return false;
11169  }
11170
11171  switch (AM.Scale) {
11172  case 0:
11173  case 1:
11174  case 2:
11175  case 4:
11176  case 8:
11177    // These scales always work.
11178    break;
11179  case 3:
11180  case 5:
11181  case 9:
11182    // These scales are formed with basereg+scalereg.  Only accept if there is
11183    // no basereg yet.
11184    if (AM.HasBaseReg)
11185      return false;
11186    break;
11187  default:  // Other stuff never works.
11188    return false;
11189  }
11190
11191  return true;
11192}
11193
11194
11195bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
11196  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
11197    return false;
11198  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
11199  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
11200  if (NumBits1 <= NumBits2)
11201    return false;
11202  return true;
11203}
11204
11205bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
11206  if (!VT1.isInteger() || !VT2.isInteger())
11207    return false;
11208  unsigned NumBits1 = VT1.getSizeInBits();
11209  unsigned NumBits2 = VT2.getSizeInBits();
11210  if (NumBits1 <= NumBits2)
11211    return false;
11212  return true;
11213}
11214
11215bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
11216  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11217  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
11218}
11219
11220bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
11221  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11222  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
11223}
11224
11225bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
11226  // i16 instructions are longer (0x66 prefix) and potentially slower.
11227  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
11228}
11229
11230/// isShuffleMaskLegal - Targets can use this to indicate that they only
11231/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
11232/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
11233/// are assumed to be legal.
11234bool
11235X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
11236                                      EVT VT) const {
11237  // Very little shuffling can be done for 64-bit vectors right now.
11238  if (VT.getSizeInBits() == 64)
11239    return isPALIGNRMask(M, VT, Subtarget->hasSSSE3() || Subtarget->hasAVX());
11240
11241  // FIXME: pshufb, blends, shifts.
11242  return (VT.getVectorNumElements() == 2 ||
11243          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
11244          isMOVLMask(M, VT) ||
11245          isSHUFPMask(M, VT) ||
11246          isPSHUFDMask(M, VT) ||
11247          isPSHUFHWMask(M, VT) ||
11248          isPSHUFLWMask(M, VT) ||
11249          isPALIGNRMask(M, VT, Subtarget->hasSSSE3() || Subtarget->hasAVX()) ||
11250          isUNPCKLMask(M, VT) ||
11251          isUNPCKHMask(M, VT) ||
11252          isUNPCKL_v_undef_Mask(M, VT) ||
11253          isUNPCKH_v_undef_Mask(M, VT));
11254}
11255
11256bool
11257X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
11258                                          EVT VT) const {
11259  unsigned NumElts = VT.getVectorNumElements();
11260  // FIXME: This collection of masks seems suspect.
11261  if (NumElts == 2)
11262    return true;
11263  if (NumElts == 4 && VT.getSizeInBits() == 128) {
11264    return (isMOVLMask(Mask, VT)  ||
11265            isCommutedMOVLMask(Mask, VT, true) ||
11266            isSHUFPMask(Mask, VT) ||
11267            isCommutedSHUFPMask(Mask, VT));
11268  }
11269  return false;
11270}
11271
11272//===----------------------------------------------------------------------===//
11273//                           X86 Scheduler Hooks
11274//===----------------------------------------------------------------------===//
11275
11276// private utility function
11277MachineBasicBlock *
11278X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
11279                                                       MachineBasicBlock *MBB,
11280                                                       unsigned regOpc,
11281                                                       unsigned immOpc,
11282                                                       unsigned LoadOpc,
11283                                                       unsigned CXchgOpc,
11284                                                       unsigned notOpc,
11285                                                       unsigned EAXreg,
11286                                                       TargetRegisterClass *RC,
11287                                                       bool invSrc) const {
11288  // For the atomic bitwise operator, we generate
11289  //   thisMBB:
11290  //   newMBB:
11291  //     ld  t1 = [bitinstr.addr]
11292  //     op  t2 = t1, [bitinstr.val]
11293  //     mov EAX = t1
11294  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11295  //     bz  newMBB
11296  //     fallthrough -->nextMBB
11297  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11298  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11299  MachineFunction::iterator MBBIter = MBB;
11300  ++MBBIter;
11301
11302  /// First build the CFG
11303  MachineFunction *F = MBB->getParent();
11304  MachineBasicBlock *thisMBB = MBB;
11305  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11306  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11307  F->insert(MBBIter, newMBB);
11308  F->insert(MBBIter, nextMBB);
11309
11310  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11311  nextMBB->splice(nextMBB->begin(), thisMBB,
11312                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11313                  thisMBB->end());
11314  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11315
11316  // Update thisMBB to fall through to newMBB
11317  thisMBB->addSuccessor(newMBB);
11318
11319  // newMBB jumps to itself and fall through to nextMBB
11320  newMBB->addSuccessor(nextMBB);
11321  newMBB->addSuccessor(newMBB);
11322
11323  // Insert instructions into newMBB based on incoming instruction
11324  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11325         "unexpected number of operands");
11326  DebugLoc dl = bInstr->getDebugLoc();
11327  MachineOperand& destOper = bInstr->getOperand(0);
11328  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11329  int numArgs = bInstr->getNumOperands() - 1;
11330  for (int i=0; i < numArgs; ++i)
11331    argOpers[i] = &bInstr->getOperand(i+1);
11332
11333  // x86 address has 4 operands: base, index, scale, and displacement
11334  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11335  int valArgIndx = lastAddrIndx + 1;
11336
11337  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11338  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
11339  for (int i=0; i <= lastAddrIndx; ++i)
11340    (*MIB).addOperand(*argOpers[i]);
11341
11342  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
11343  if (invSrc) {
11344    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
11345  }
11346  else
11347    tt = t1;
11348
11349  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11350  assert((argOpers[valArgIndx]->isReg() ||
11351          argOpers[valArgIndx]->isImm()) &&
11352         "invalid operand");
11353  if (argOpers[valArgIndx]->isReg())
11354    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
11355  else
11356    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
11357  MIB.addReg(tt);
11358  (*MIB).addOperand(*argOpers[valArgIndx]);
11359
11360  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
11361  MIB.addReg(t1);
11362
11363  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
11364  for (int i=0; i <= lastAddrIndx; ++i)
11365    (*MIB).addOperand(*argOpers[i]);
11366  MIB.addReg(t2);
11367  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11368  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11369                    bInstr->memoperands_end());
11370
11371  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11372  MIB.addReg(EAXreg);
11373
11374  // insert branch
11375  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11376
11377  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11378  return nextMBB;
11379}
11380
11381// private utility function:  64 bit atomics on 32 bit host.
11382MachineBasicBlock *
11383X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
11384                                                       MachineBasicBlock *MBB,
11385                                                       unsigned regOpcL,
11386                                                       unsigned regOpcH,
11387                                                       unsigned immOpcL,
11388                                                       unsigned immOpcH,
11389                                                       bool invSrc) const {
11390  // For the atomic bitwise operator, we generate
11391  //   thisMBB (instructions are in pairs, except cmpxchg8b)
11392  //     ld t1,t2 = [bitinstr.addr]
11393  //   newMBB:
11394  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
11395  //     op  t5, t6 <- out1, out2, [bitinstr.val]
11396  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
11397  //     mov ECX, EBX <- t5, t6
11398  //     mov EAX, EDX <- t1, t2
11399  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
11400  //     mov t3, t4 <- EAX, EDX
11401  //     bz  newMBB
11402  //     result in out1, out2
11403  //     fallthrough -->nextMBB
11404
11405  const TargetRegisterClass *RC = X86::GR32RegisterClass;
11406  const unsigned LoadOpc = X86::MOV32rm;
11407  const unsigned NotOpc = X86::NOT32r;
11408  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11409  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11410  MachineFunction::iterator MBBIter = MBB;
11411  ++MBBIter;
11412
11413  /// First build the CFG
11414  MachineFunction *F = MBB->getParent();
11415  MachineBasicBlock *thisMBB = MBB;
11416  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11417  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11418  F->insert(MBBIter, newMBB);
11419  F->insert(MBBIter, nextMBB);
11420
11421  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11422  nextMBB->splice(nextMBB->begin(), thisMBB,
11423                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11424                  thisMBB->end());
11425  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11426
11427  // Update thisMBB to fall through to newMBB
11428  thisMBB->addSuccessor(newMBB);
11429
11430  // newMBB jumps to itself and fall through to nextMBB
11431  newMBB->addSuccessor(nextMBB);
11432  newMBB->addSuccessor(newMBB);
11433
11434  DebugLoc dl = bInstr->getDebugLoc();
11435  // Insert instructions into newMBB based on incoming instruction
11436  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
11437  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
11438         "unexpected number of operands");
11439  MachineOperand& dest1Oper = bInstr->getOperand(0);
11440  MachineOperand& dest2Oper = bInstr->getOperand(1);
11441  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11442  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
11443    argOpers[i] = &bInstr->getOperand(i+2);
11444
11445    // We use some of the operands multiple times, so conservatively just
11446    // clear any kill flags that might be present.
11447    if (argOpers[i]->isReg() && argOpers[i]->isUse())
11448      argOpers[i]->setIsKill(false);
11449  }
11450
11451  // x86 address has 5 operands: base, index, scale, displacement, and segment.
11452  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11453
11454  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11455  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
11456  for (int i=0; i <= lastAddrIndx; ++i)
11457    (*MIB).addOperand(*argOpers[i]);
11458  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11459  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
11460  // add 4 to displacement.
11461  for (int i=0; i <= lastAddrIndx-2; ++i)
11462    (*MIB).addOperand(*argOpers[i]);
11463  MachineOperand newOp3 = *(argOpers[3]);
11464  if (newOp3.isImm())
11465    newOp3.setImm(newOp3.getImm()+4);
11466  else
11467    newOp3.setOffset(newOp3.getOffset()+4);
11468  (*MIB).addOperand(newOp3);
11469  (*MIB).addOperand(*argOpers[lastAddrIndx]);
11470
11471  // t3/4 are defined later, at the bottom of the loop
11472  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
11473  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
11474  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
11475    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
11476  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
11477    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
11478
11479  // The subsequent operations should be using the destination registers of
11480  //the PHI instructions.
11481  if (invSrc) {
11482    t1 = F->getRegInfo().createVirtualRegister(RC);
11483    t2 = F->getRegInfo().createVirtualRegister(RC);
11484    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
11485    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
11486  } else {
11487    t1 = dest1Oper.getReg();
11488    t2 = dest2Oper.getReg();
11489  }
11490
11491  int valArgIndx = lastAddrIndx + 1;
11492  assert((argOpers[valArgIndx]->isReg() ||
11493          argOpers[valArgIndx]->isImm()) &&
11494         "invalid operand");
11495  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
11496  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
11497  if (argOpers[valArgIndx]->isReg())
11498    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
11499  else
11500    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
11501  if (regOpcL != X86::MOV32rr)
11502    MIB.addReg(t1);
11503  (*MIB).addOperand(*argOpers[valArgIndx]);
11504  assert(argOpers[valArgIndx + 1]->isReg() ==
11505         argOpers[valArgIndx]->isReg());
11506  assert(argOpers[valArgIndx + 1]->isImm() ==
11507         argOpers[valArgIndx]->isImm());
11508  if (argOpers[valArgIndx + 1]->isReg())
11509    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
11510  else
11511    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
11512  if (regOpcH != X86::MOV32rr)
11513    MIB.addReg(t2);
11514  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
11515
11516  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11517  MIB.addReg(t1);
11518  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
11519  MIB.addReg(t2);
11520
11521  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
11522  MIB.addReg(t5);
11523  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
11524  MIB.addReg(t6);
11525
11526  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
11527  for (int i=0; i <= lastAddrIndx; ++i)
11528    (*MIB).addOperand(*argOpers[i]);
11529
11530  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11531  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11532                    bInstr->memoperands_end());
11533
11534  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
11535  MIB.addReg(X86::EAX);
11536  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
11537  MIB.addReg(X86::EDX);
11538
11539  // insert branch
11540  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11541
11542  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11543  return nextMBB;
11544}
11545
11546// private utility function
11547MachineBasicBlock *
11548X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
11549                                                      MachineBasicBlock *MBB,
11550                                                      unsigned cmovOpc) const {
11551  // For the atomic min/max operator, we generate
11552  //   thisMBB:
11553  //   newMBB:
11554  //     ld t1 = [min/max.addr]
11555  //     mov t2 = [min/max.val]
11556  //     cmp  t1, t2
11557  //     cmov[cond] t2 = t1
11558  //     mov EAX = t1
11559  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11560  //     bz   newMBB
11561  //     fallthrough -->nextMBB
11562  //
11563  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11564  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11565  MachineFunction::iterator MBBIter = MBB;
11566  ++MBBIter;
11567
11568  /// First build the CFG
11569  MachineFunction *F = MBB->getParent();
11570  MachineBasicBlock *thisMBB = MBB;
11571  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11572  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11573  F->insert(MBBIter, newMBB);
11574  F->insert(MBBIter, nextMBB);
11575
11576  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11577  nextMBB->splice(nextMBB->begin(), thisMBB,
11578                  llvm::next(MachineBasicBlock::iterator(mInstr)),
11579                  thisMBB->end());
11580  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11581
11582  // Update thisMBB to fall through to newMBB
11583  thisMBB->addSuccessor(newMBB);
11584
11585  // newMBB jumps to newMBB and fall through to nextMBB
11586  newMBB->addSuccessor(nextMBB);
11587  newMBB->addSuccessor(newMBB);
11588
11589  DebugLoc dl = mInstr->getDebugLoc();
11590  // Insert instructions into newMBB based on incoming instruction
11591  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11592         "unexpected number of operands");
11593  MachineOperand& destOper = mInstr->getOperand(0);
11594  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11595  int numArgs = mInstr->getNumOperands() - 1;
11596  for (int i=0; i < numArgs; ++i)
11597    argOpers[i] = &mInstr->getOperand(i+1);
11598
11599  // x86 address has 4 operands: base, index, scale, and displacement
11600  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11601  int valArgIndx = lastAddrIndx + 1;
11602
11603  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11604  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
11605  for (int i=0; i <= lastAddrIndx; ++i)
11606    (*MIB).addOperand(*argOpers[i]);
11607
11608  // We only support register and immediate values
11609  assert((argOpers[valArgIndx]->isReg() ||
11610          argOpers[valArgIndx]->isImm()) &&
11611         "invalid operand");
11612
11613  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11614  if (argOpers[valArgIndx]->isReg())
11615    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
11616  else
11617    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
11618  (*MIB).addOperand(*argOpers[valArgIndx]);
11619
11620  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11621  MIB.addReg(t1);
11622
11623  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
11624  MIB.addReg(t1);
11625  MIB.addReg(t2);
11626
11627  // Generate movc
11628  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11629  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
11630  MIB.addReg(t2);
11631  MIB.addReg(t1);
11632
11633  // Cmp and exchange if none has modified the memory location
11634  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
11635  for (int i=0; i <= lastAddrIndx; ++i)
11636    (*MIB).addOperand(*argOpers[i]);
11637  MIB.addReg(t3);
11638  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11639  (*MIB).setMemRefs(mInstr->memoperands_begin(),
11640                    mInstr->memoperands_end());
11641
11642  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11643  MIB.addReg(X86::EAX);
11644
11645  // insert branch
11646  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11647
11648  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
11649  return nextMBB;
11650}
11651
11652// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
11653// or XMM0_V32I8 in AVX all of this code can be replaced with that
11654// in the .td file.
11655MachineBasicBlock *
11656X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
11657                            unsigned numArgs, bool memArg) const {
11658  assert((Subtarget->hasSSE42() || Subtarget->hasAVX()) &&
11659         "Target must have SSE4.2 or AVX features enabled");
11660
11661  DebugLoc dl = MI->getDebugLoc();
11662  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11663  unsigned Opc;
11664  if (!Subtarget->hasAVX()) {
11665    if (memArg)
11666      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
11667    else
11668      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
11669  } else {
11670    if (memArg)
11671      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
11672    else
11673      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
11674  }
11675
11676  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
11677  for (unsigned i = 0; i < numArgs; ++i) {
11678    MachineOperand &Op = MI->getOperand(i+1);
11679    if (!(Op.isReg() && Op.isImplicit()))
11680      MIB.addOperand(Op);
11681  }
11682  BuildMI(*BB, MI, dl,
11683    TII->get(Subtarget->hasAVX() ? X86::VMOVAPSrr : X86::MOVAPSrr),
11684             MI->getOperand(0).getReg())
11685    .addReg(X86::XMM0);
11686
11687  MI->eraseFromParent();
11688  return BB;
11689}
11690
11691MachineBasicBlock *
11692X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
11693  DebugLoc dl = MI->getDebugLoc();
11694  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11695
11696  // Address into RAX/EAX, other two args into ECX, EDX.
11697  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
11698  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
11699  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
11700  for (int i = 0; i < X86::AddrNumOperands; ++i)
11701    MIB.addOperand(MI->getOperand(i));
11702
11703  unsigned ValOps = X86::AddrNumOperands;
11704  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11705    .addReg(MI->getOperand(ValOps).getReg());
11706  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
11707    .addReg(MI->getOperand(ValOps+1).getReg());
11708
11709  // The instruction doesn't actually take any operands though.
11710  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
11711
11712  MI->eraseFromParent(); // The pseudo is gone now.
11713  return BB;
11714}
11715
11716MachineBasicBlock *
11717X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
11718  DebugLoc dl = MI->getDebugLoc();
11719  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11720
11721  // First arg in ECX, the second in EAX.
11722  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11723    .addReg(MI->getOperand(0).getReg());
11724  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
11725    .addReg(MI->getOperand(1).getReg());
11726
11727  // The instruction doesn't actually take any operands though.
11728  BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
11729
11730  MI->eraseFromParent(); // The pseudo is gone now.
11731  return BB;
11732}
11733
11734MachineBasicBlock *
11735X86TargetLowering::EmitVAARG64WithCustomInserter(
11736                   MachineInstr *MI,
11737                   MachineBasicBlock *MBB) const {
11738  // Emit va_arg instruction on X86-64.
11739
11740  // Operands to this pseudo-instruction:
11741  // 0  ) Output        : destination address (reg)
11742  // 1-5) Input         : va_list address (addr, i64mem)
11743  // 6  ) ArgSize       : Size (in bytes) of vararg type
11744  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
11745  // 8  ) Align         : Alignment of type
11746  // 9  ) EFLAGS (implicit-def)
11747
11748  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
11749  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
11750
11751  unsigned DestReg = MI->getOperand(0).getReg();
11752  MachineOperand &Base = MI->getOperand(1);
11753  MachineOperand &Scale = MI->getOperand(2);
11754  MachineOperand &Index = MI->getOperand(3);
11755  MachineOperand &Disp = MI->getOperand(4);
11756  MachineOperand &Segment = MI->getOperand(5);
11757  unsigned ArgSize = MI->getOperand(6).getImm();
11758  unsigned ArgMode = MI->getOperand(7).getImm();
11759  unsigned Align = MI->getOperand(8).getImm();
11760
11761  // Memory Reference
11762  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
11763  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
11764  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
11765
11766  // Machine Information
11767  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11768  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
11769  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
11770  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
11771  DebugLoc DL = MI->getDebugLoc();
11772
11773  // struct va_list {
11774  //   i32   gp_offset
11775  //   i32   fp_offset
11776  //   i64   overflow_area (address)
11777  //   i64   reg_save_area (address)
11778  // }
11779  // sizeof(va_list) = 24
11780  // alignment(va_list) = 8
11781
11782  unsigned TotalNumIntRegs = 6;
11783  unsigned TotalNumXMMRegs = 8;
11784  bool UseGPOffset = (ArgMode == 1);
11785  bool UseFPOffset = (ArgMode == 2);
11786  unsigned MaxOffset = TotalNumIntRegs * 8 +
11787                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
11788
11789  /* Align ArgSize to a multiple of 8 */
11790  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
11791  bool NeedsAlign = (Align > 8);
11792
11793  MachineBasicBlock *thisMBB = MBB;
11794  MachineBasicBlock *overflowMBB;
11795  MachineBasicBlock *offsetMBB;
11796  MachineBasicBlock *endMBB;
11797
11798  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
11799  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
11800  unsigned OffsetReg = 0;
11801
11802  if (!UseGPOffset && !UseFPOffset) {
11803    // If we only pull from the overflow region, we don't create a branch.
11804    // We don't need to alter control flow.
11805    OffsetDestReg = 0; // unused
11806    OverflowDestReg = DestReg;
11807
11808    offsetMBB = NULL;
11809    overflowMBB = thisMBB;
11810    endMBB = thisMBB;
11811  } else {
11812    // First emit code to check if gp_offset (or fp_offset) is below the bound.
11813    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
11814    // If not, pull from overflow_area. (branch to overflowMBB)
11815    //
11816    //       thisMBB
11817    //         |     .
11818    //         |        .
11819    //     offsetMBB   overflowMBB
11820    //         |        .
11821    //         |     .
11822    //        endMBB
11823
11824    // Registers for the PHI in endMBB
11825    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
11826    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
11827
11828    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11829    MachineFunction *MF = MBB->getParent();
11830    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11831    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11832    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11833
11834    MachineFunction::iterator MBBIter = MBB;
11835    ++MBBIter;
11836
11837    // Insert the new basic blocks
11838    MF->insert(MBBIter, offsetMBB);
11839    MF->insert(MBBIter, overflowMBB);
11840    MF->insert(MBBIter, endMBB);
11841
11842    // Transfer the remainder of MBB and its successor edges to endMBB.
11843    endMBB->splice(endMBB->begin(), thisMBB,
11844                    llvm::next(MachineBasicBlock::iterator(MI)),
11845                    thisMBB->end());
11846    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11847
11848    // Make offsetMBB and overflowMBB successors of thisMBB
11849    thisMBB->addSuccessor(offsetMBB);
11850    thisMBB->addSuccessor(overflowMBB);
11851
11852    // endMBB is a successor of both offsetMBB and overflowMBB
11853    offsetMBB->addSuccessor(endMBB);
11854    overflowMBB->addSuccessor(endMBB);
11855
11856    // Load the offset value into a register
11857    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11858    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
11859      .addOperand(Base)
11860      .addOperand(Scale)
11861      .addOperand(Index)
11862      .addDisp(Disp, UseFPOffset ? 4 : 0)
11863      .addOperand(Segment)
11864      .setMemRefs(MMOBegin, MMOEnd);
11865
11866    // Check if there is enough room left to pull this argument.
11867    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
11868      .addReg(OffsetReg)
11869      .addImm(MaxOffset + 8 - ArgSizeA8);
11870
11871    // Branch to "overflowMBB" if offset >= max
11872    // Fall through to "offsetMBB" otherwise
11873    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
11874      .addMBB(overflowMBB);
11875  }
11876
11877  // In offsetMBB, emit code to use the reg_save_area.
11878  if (offsetMBB) {
11879    assert(OffsetReg != 0);
11880
11881    // Read the reg_save_area address.
11882    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
11883    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
11884      .addOperand(Base)
11885      .addOperand(Scale)
11886      .addOperand(Index)
11887      .addDisp(Disp, 16)
11888      .addOperand(Segment)
11889      .setMemRefs(MMOBegin, MMOEnd);
11890
11891    // Zero-extend the offset
11892    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
11893      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
11894        .addImm(0)
11895        .addReg(OffsetReg)
11896        .addImm(X86::sub_32bit);
11897
11898    // Add the offset to the reg_save_area to get the final address.
11899    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
11900      .addReg(OffsetReg64)
11901      .addReg(RegSaveReg);
11902
11903    // Compute the offset for the next argument
11904    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11905    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
11906      .addReg(OffsetReg)
11907      .addImm(UseFPOffset ? 16 : 8);
11908
11909    // Store it back into the va_list.
11910    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
11911      .addOperand(Base)
11912      .addOperand(Scale)
11913      .addOperand(Index)
11914      .addDisp(Disp, UseFPOffset ? 4 : 0)
11915      .addOperand(Segment)
11916      .addReg(NextOffsetReg)
11917      .setMemRefs(MMOBegin, MMOEnd);
11918
11919    // Jump to endMBB
11920    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
11921      .addMBB(endMBB);
11922  }
11923
11924  //
11925  // Emit code to use overflow area
11926  //
11927
11928  // Load the overflow_area address into a register.
11929  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
11930  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
11931    .addOperand(Base)
11932    .addOperand(Scale)
11933    .addOperand(Index)
11934    .addDisp(Disp, 8)
11935    .addOperand(Segment)
11936    .setMemRefs(MMOBegin, MMOEnd);
11937
11938  // If we need to align it, do so. Otherwise, just copy the address
11939  // to OverflowDestReg.
11940  if (NeedsAlign) {
11941    // Align the overflow address
11942    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
11943    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
11944
11945    // aligned_addr = (addr + (align-1)) & ~(align-1)
11946    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
11947      .addReg(OverflowAddrReg)
11948      .addImm(Align-1);
11949
11950    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
11951      .addReg(TmpReg)
11952      .addImm(~(uint64_t)(Align-1));
11953  } else {
11954    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
11955      .addReg(OverflowAddrReg);
11956  }
11957
11958  // Compute the next overflow address after this argument.
11959  // (the overflow address should be kept 8-byte aligned)
11960  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
11961  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
11962    .addReg(OverflowDestReg)
11963    .addImm(ArgSizeA8);
11964
11965  // Store the new overflow address.
11966  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
11967    .addOperand(Base)
11968    .addOperand(Scale)
11969    .addOperand(Index)
11970    .addDisp(Disp, 8)
11971    .addOperand(Segment)
11972    .addReg(NextAddrReg)
11973    .setMemRefs(MMOBegin, MMOEnd);
11974
11975  // If we branched, emit the PHI to the front of endMBB.
11976  if (offsetMBB) {
11977    BuildMI(*endMBB, endMBB->begin(), DL,
11978            TII->get(X86::PHI), DestReg)
11979      .addReg(OffsetDestReg).addMBB(offsetMBB)
11980      .addReg(OverflowDestReg).addMBB(overflowMBB);
11981  }
11982
11983  // Erase the pseudo instruction
11984  MI->eraseFromParent();
11985
11986  return endMBB;
11987}
11988
11989MachineBasicBlock *
11990X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
11991                                                 MachineInstr *MI,
11992                                                 MachineBasicBlock *MBB) const {
11993  // Emit code to save XMM registers to the stack. The ABI says that the
11994  // number of registers to save is given in %al, so it's theoretically
11995  // possible to do an indirect jump trick to avoid saving all of them,
11996  // however this code takes a simpler approach and just executes all
11997  // of the stores if %al is non-zero. It's less code, and it's probably
11998  // easier on the hardware branch predictor, and stores aren't all that
11999  // expensive anyway.
12000
12001  // Create the new basic blocks. One block contains all the XMM stores,
12002  // and one block is the final destination regardless of whether any
12003  // stores were performed.
12004  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
12005  MachineFunction *F = MBB->getParent();
12006  MachineFunction::iterator MBBIter = MBB;
12007  ++MBBIter;
12008  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
12009  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
12010  F->insert(MBBIter, XMMSaveMBB);
12011  F->insert(MBBIter, EndMBB);
12012
12013  // Transfer the remainder of MBB and its successor edges to EndMBB.
12014  EndMBB->splice(EndMBB->begin(), MBB,
12015                 llvm::next(MachineBasicBlock::iterator(MI)),
12016                 MBB->end());
12017  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
12018
12019  // The original block will now fall through to the XMM save block.
12020  MBB->addSuccessor(XMMSaveMBB);
12021  // The XMMSaveMBB will fall through to the end block.
12022  XMMSaveMBB->addSuccessor(EndMBB);
12023
12024  // Now add the instructions.
12025  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12026  DebugLoc DL = MI->getDebugLoc();
12027
12028  unsigned CountReg = MI->getOperand(0).getReg();
12029  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
12030  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
12031
12032  if (!Subtarget->isTargetWin64()) {
12033    // If %al is 0, branch around the XMM save block.
12034    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
12035    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
12036    MBB->addSuccessor(EndMBB);
12037  }
12038
12039  unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
12040  // In the XMM save block, save all the XMM argument registers.
12041  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
12042    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
12043    MachineMemOperand *MMO =
12044      F->getMachineMemOperand(
12045          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
12046        MachineMemOperand::MOStore,
12047        /*Size=*/16, /*Align=*/16);
12048    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
12049      .addFrameIndex(RegSaveFrameIndex)
12050      .addImm(/*Scale=*/1)
12051      .addReg(/*IndexReg=*/0)
12052      .addImm(/*Disp=*/Offset)
12053      .addReg(/*Segment=*/0)
12054      .addReg(MI->getOperand(i).getReg())
12055      .addMemOperand(MMO);
12056  }
12057
12058  MI->eraseFromParent();   // The pseudo instruction is gone now.
12059
12060  return EndMBB;
12061}
12062
12063MachineBasicBlock *
12064X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
12065                                     MachineBasicBlock *BB) const {
12066  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12067  DebugLoc DL = MI->getDebugLoc();
12068
12069  // To "insert" a SELECT_CC instruction, we actually have to insert the
12070  // diamond control-flow pattern.  The incoming instruction knows the
12071  // destination vreg to set, the condition code register to branch on, the
12072  // true/false values to select between, and a branch opcode to use.
12073  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12074  MachineFunction::iterator It = BB;
12075  ++It;
12076
12077  //  thisMBB:
12078  //  ...
12079  //   TrueVal = ...
12080  //   cmpTY ccX, r1, r2
12081  //   bCC copy1MBB
12082  //   fallthrough --> copy0MBB
12083  MachineBasicBlock *thisMBB = BB;
12084  MachineFunction *F = BB->getParent();
12085  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
12086  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
12087  F->insert(It, copy0MBB);
12088  F->insert(It, sinkMBB);
12089
12090  // If the EFLAGS register isn't dead in the terminator, then claim that it's
12091  // live into the sink and copy blocks.
12092  if (!MI->killsRegister(X86::EFLAGS)) {
12093    copy0MBB->addLiveIn(X86::EFLAGS);
12094    sinkMBB->addLiveIn(X86::EFLAGS);
12095  }
12096
12097  // Transfer the remainder of BB and its successor edges to sinkMBB.
12098  sinkMBB->splice(sinkMBB->begin(), BB,
12099                  llvm::next(MachineBasicBlock::iterator(MI)),
12100                  BB->end());
12101  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12102
12103  // Add the true and fallthrough blocks as its successors.
12104  BB->addSuccessor(copy0MBB);
12105  BB->addSuccessor(sinkMBB);
12106
12107  // Create the conditional branch instruction.
12108  unsigned Opc =
12109    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
12110  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
12111
12112  //  copy0MBB:
12113  //   %FalseValue = ...
12114  //   # fallthrough to sinkMBB
12115  copy0MBB->addSuccessor(sinkMBB);
12116
12117  //  sinkMBB:
12118  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
12119  //  ...
12120  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12121          TII->get(X86::PHI), MI->getOperand(0).getReg())
12122    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
12123    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
12124
12125  MI->eraseFromParent();   // The pseudo instruction is gone now.
12126  return sinkMBB;
12127}
12128
12129MachineBasicBlock *
12130X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
12131                                        bool Is64Bit) const {
12132  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12133  DebugLoc DL = MI->getDebugLoc();
12134  MachineFunction *MF = BB->getParent();
12135  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12136
12137  assert(EnableSegmentedStacks);
12138
12139  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
12140  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
12141
12142  // BB:
12143  //  ... [Till the alloca]
12144  // If stacklet is not large enough, jump to mallocMBB
12145  //
12146  // bumpMBB:
12147  //  Allocate by subtracting from RSP
12148  //  Jump to continueMBB
12149  //
12150  // mallocMBB:
12151  //  Allocate by call to runtime
12152  //
12153  // continueMBB:
12154  //  ...
12155  //  [rest of original BB]
12156  //
12157
12158  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12159  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12160  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12161
12162  MachineRegisterInfo &MRI = MF->getRegInfo();
12163  const TargetRegisterClass *AddrRegClass =
12164    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
12165
12166  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12167    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12168    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
12169    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
12170    sizeVReg = MI->getOperand(1).getReg(),
12171    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
12172
12173  MachineFunction::iterator MBBIter = BB;
12174  ++MBBIter;
12175
12176  MF->insert(MBBIter, bumpMBB);
12177  MF->insert(MBBIter, mallocMBB);
12178  MF->insert(MBBIter, continueMBB);
12179
12180  continueMBB->splice(continueMBB->begin(), BB, llvm::next
12181                      (MachineBasicBlock::iterator(MI)), BB->end());
12182  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
12183
12184  // Add code to the main basic block to check if the stack limit has been hit,
12185  // and if so, jump to mallocMBB otherwise to bumpMBB.
12186  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
12187  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
12188    .addReg(tmpSPVReg).addReg(sizeVReg);
12189  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
12190    .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg)
12191    .addReg(SPLimitVReg);
12192  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
12193
12194  // bumpMBB simply decreases the stack pointer, since we know the current
12195  // stacklet has enough space.
12196  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
12197    .addReg(SPLimitVReg);
12198  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
12199    .addReg(SPLimitVReg);
12200  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12201
12202  // Calls into a routine in libgcc to allocate more space from the heap.
12203  if (Is64Bit) {
12204    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
12205      .addReg(sizeVReg);
12206    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
12207    .addExternalSymbol("__morestack_allocate_stack_space").addReg(X86::RDI);
12208  } else {
12209    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
12210      .addImm(12);
12211    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
12212    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
12213      .addExternalSymbol("__morestack_allocate_stack_space");
12214  }
12215
12216  if (!Is64Bit)
12217    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
12218      .addImm(16);
12219
12220  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
12221    .addReg(Is64Bit ? X86::RAX : X86::EAX);
12222  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12223
12224  // Set up the CFG correctly.
12225  BB->addSuccessor(bumpMBB);
12226  BB->addSuccessor(mallocMBB);
12227  mallocMBB->addSuccessor(continueMBB);
12228  bumpMBB->addSuccessor(continueMBB);
12229
12230  // Take care of the PHI nodes.
12231  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
12232          MI->getOperand(0).getReg())
12233    .addReg(mallocPtrVReg).addMBB(mallocMBB)
12234    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
12235
12236  // Delete the original pseudo instruction.
12237  MI->eraseFromParent();
12238
12239  // And we're done.
12240  return continueMBB;
12241}
12242
12243MachineBasicBlock *
12244X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
12245                                          MachineBasicBlock *BB) const {
12246  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12247  DebugLoc DL = MI->getDebugLoc();
12248
12249  assert(!Subtarget->isTargetEnvMacho());
12250
12251  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
12252  // non-trivial part is impdef of ESP.
12253
12254  if (Subtarget->isTargetWin64()) {
12255    if (Subtarget->isTargetCygMing()) {
12256      // ___chkstk(Mingw64):
12257      // Clobbers R10, R11, RAX and EFLAGS.
12258      // Updates RSP.
12259      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12260        .addExternalSymbol("___chkstk")
12261        .addReg(X86::RAX, RegState::Implicit)
12262        .addReg(X86::RSP, RegState::Implicit)
12263        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
12264        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
12265        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12266    } else {
12267      // __chkstk(MSVCRT): does not update stack pointer.
12268      // Clobbers R10, R11 and EFLAGS.
12269      // FIXME: RAX(allocated size) might be reused and not killed.
12270      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12271        .addExternalSymbol("__chkstk")
12272        .addReg(X86::RAX, RegState::Implicit)
12273        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12274      // RAX has the offset to subtracted from RSP.
12275      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
12276        .addReg(X86::RSP)
12277        .addReg(X86::RAX);
12278    }
12279  } else {
12280    const char *StackProbeSymbol =
12281      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
12282
12283    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
12284      .addExternalSymbol(StackProbeSymbol)
12285      .addReg(X86::EAX, RegState::Implicit)
12286      .addReg(X86::ESP, RegState::Implicit)
12287      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
12288      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
12289      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12290  }
12291
12292  MI->eraseFromParent();   // The pseudo instruction is gone now.
12293  return BB;
12294}
12295
12296MachineBasicBlock *
12297X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
12298                                      MachineBasicBlock *BB) const {
12299  // This is pretty easy.  We're taking the value that we received from
12300  // our load from the relocation, sticking it in either RDI (x86-64)
12301  // or EAX and doing an indirect call.  The return value will then
12302  // be in the normal return register.
12303  const X86InstrInfo *TII
12304    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
12305  DebugLoc DL = MI->getDebugLoc();
12306  MachineFunction *F = BB->getParent();
12307
12308  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
12309  assert(MI->getOperand(3).isGlobal() && "This should be a global");
12310
12311  if (Subtarget->is64Bit()) {
12312    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12313                                      TII->get(X86::MOV64rm), X86::RDI)
12314    .addReg(X86::RIP)
12315    .addImm(0).addReg(0)
12316    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12317                      MI->getOperand(3).getTargetFlags())
12318    .addReg(0);
12319    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
12320    addDirectMem(MIB, X86::RDI);
12321  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
12322    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12323                                      TII->get(X86::MOV32rm), X86::EAX)
12324    .addReg(0)
12325    .addImm(0).addReg(0)
12326    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12327                      MI->getOperand(3).getTargetFlags())
12328    .addReg(0);
12329    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12330    addDirectMem(MIB, X86::EAX);
12331  } else {
12332    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12333                                      TII->get(X86::MOV32rm), X86::EAX)
12334    .addReg(TII->getGlobalBaseReg(F))
12335    .addImm(0).addReg(0)
12336    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12337                      MI->getOperand(3).getTargetFlags())
12338    .addReg(0);
12339    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12340    addDirectMem(MIB, X86::EAX);
12341  }
12342
12343  MI->eraseFromParent(); // The pseudo instruction is gone now.
12344  return BB;
12345}
12346
12347MachineBasicBlock *
12348X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
12349                                               MachineBasicBlock *BB) const {
12350  switch (MI->getOpcode()) {
12351  default: assert(0 && "Unexpected instr type to insert");
12352  case X86::TAILJMPd64:
12353  case X86::TAILJMPr64:
12354  case X86::TAILJMPm64:
12355    assert(0 && "TAILJMP64 would not be touched here.");
12356  case X86::TCRETURNdi64:
12357  case X86::TCRETURNri64:
12358  case X86::TCRETURNmi64:
12359    // Defs of TCRETURNxx64 has Win64's callee-saved registers, as subset.
12360    // On AMD64, additional defs should be added before register allocation.
12361    if (!Subtarget->isTargetWin64()) {
12362      MI->addRegisterDefined(X86::RSI);
12363      MI->addRegisterDefined(X86::RDI);
12364      MI->addRegisterDefined(X86::XMM6);
12365      MI->addRegisterDefined(X86::XMM7);
12366      MI->addRegisterDefined(X86::XMM8);
12367      MI->addRegisterDefined(X86::XMM9);
12368      MI->addRegisterDefined(X86::XMM10);
12369      MI->addRegisterDefined(X86::XMM11);
12370      MI->addRegisterDefined(X86::XMM12);
12371      MI->addRegisterDefined(X86::XMM13);
12372      MI->addRegisterDefined(X86::XMM14);
12373      MI->addRegisterDefined(X86::XMM15);
12374    }
12375    return BB;
12376  case X86::WIN_ALLOCA:
12377    return EmitLoweredWinAlloca(MI, BB);
12378  case X86::SEG_ALLOCA_32:
12379    return EmitLoweredSegAlloca(MI, BB, false);
12380  case X86::SEG_ALLOCA_64:
12381    return EmitLoweredSegAlloca(MI, BB, true);
12382  case X86::TLSCall_32:
12383  case X86::TLSCall_64:
12384    return EmitLoweredTLSCall(MI, BB);
12385  case X86::CMOV_GR8:
12386  case X86::CMOV_FR32:
12387  case X86::CMOV_FR64:
12388  case X86::CMOV_V4F32:
12389  case X86::CMOV_V2F64:
12390  case X86::CMOV_V2I64:
12391  case X86::CMOV_V8F32:
12392  case X86::CMOV_V4F64:
12393  case X86::CMOV_V4I64:
12394  case X86::CMOV_GR16:
12395  case X86::CMOV_GR32:
12396  case X86::CMOV_RFP32:
12397  case X86::CMOV_RFP64:
12398  case X86::CMOV_RFP80:
12399    return EmitLoweredSelect(MI, BB);
12400
12401  case X86::FP32_TO_INT16_IN_MEM:
12402  case X86::FP32_TO_INT32_IN_MEM:
12403  case X86::FP32_TO_INT64_IN_MEM:
12404  case X86::FP64_TO_INT16_IN_MEM:
12405  case X86::FP64_TO_INT32_IN_MEM:
12406  case X86::FP64_TO_INT64_IN_MEM:
12407  case X86::FP80_TO_INT16_IN_MEM:
12408  case X86::FP80_TO_INT32_IN_MEM:
12409  case X86::FP80_TO_INT64_IN_MEM: {
12410    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12411    DebugLoc DL = MI->getDebugLoc();
12412
12413    // Change the floating point control register to use "round towards zero"
12414    // mode when truncating to an integer value.
12415    MachineFunction *F = BB->getParent();
12416    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
12417    addFrameReference(BuildMI(*BB, MI, DL,
12418                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
12419
12420    // Load the old value of the high byte of the control word...
12421    unsigned OldCW =
12422      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
12423    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
12424                      CWFrameIdx);
12425
12426    // Set the high part to be round to zero...
12427    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
12428      .addImm(0xC7F);
12429
12430    // Reload the modified control word now...
12431    addFrameReference(BuildMI(*BB, MI, DL,
12432                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12433
12434    // Restore the memory image of control word to original value
12435    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
12436      .addReg(OldCW);
12437
12438    // Get the X86 opcode to use.
12439    unsigned Opc;
12440    switch (MI->getOpcode()) {
12441    default: llvm_unreachable("illegal opcode!");
12442    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
12443    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
12444    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
12445    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
12446    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
12447    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
12448    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
12449    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
12450    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
12451    }
12452
12453    X86AddressMode AM;
12454    MachineOperand &Op = MI->getOperand(0);
12455    if (Op.isReg()) {
12456      AM.BaseType = X86AddressMode::RegBase;
12457      AM.Base.Reg = Op.getReg();
12458    } else {
12459      AM.BaseType = X86AddressMode::FrameIndexBase;
12460      AM.Base.FrameIndex = Op.getIndex();
12461    }
12462    Op = MI->getOperand(1);
12463    if (Op.isImm())
12464      AM.Scale = Op.getImm();
12465    Op = MI->getOperand(2);
12466    if (Op.isImm())
12467      AM.IndexReg = Op.getImm();
12468    Op = MI->getOperand(3);
12469    if (Op.isGlobal()) {
12470      AM.GV = Op.getGlobal();
12471    } else {
12472      AM.Disp = Op.getImm();
12473    }
12474    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
12475                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
12476
12477    // Reload the original control word now.
12478    addFrameReference(BuildMI(*BB, MI, DL,
12479                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12480
12481    MI->eraseFromParent();   // The pseudo instruction is gone now.
12482    return BB;
12483  }
12484    // String/text processing lowering.
12485  case X86::PCMPISTRM128REG:
12486  case X86::VPCMPISTRM128REG:
12487    return EmitPCMP(MI, BB, 3, false /* in-mem */);
12488  case X86::PCMPISTRM128MEM:
12489  case X86::VPCMPISTRM128MEM:
12490    return EmitPCMP(MI, BB, 3, true /* in-mem */);
12491  case X86::PCMPESTRM128REG:
12492  case X86::VPCMPESTRM128REG:
12493    return EmitPCMP(MI, BB, 5, false /* in mem */);
12494  case X86::PCMPESTRM128MEM:
12495  case X86::VPCMPESTRM128MEM:
12496    return EmitPCMP(MI, BB, 5, true /* in mem */);
12497
12498    // Thread synchronization.
12499  case X86::MONITOR:
12500    return EmitMonitor(MI, BB);
12501  case X86::MWAIT:
12502    return EmitMwait(MI, BB);
12503
12504    // Atomic Lowering.
12505  case X86::ATOMAND32:
12506    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12507                                               X86::AND32ri, X86::MOV32rm,
12508                                               X86::LCMPXCHG32,
12509                                               X86::NOT32r, X86::EAX,
12510                                               X86::GR32RegisterClass);
12511  case X86::ATOMOR32:
12512    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
12513                                               X86::OR32ri, X86::MOV32rm,
12514                                               X86::LCMPXCHG32,
12515                                               X86::NOT32r, X86::EAX,
12516                                               X86::GR32RegisterClass);
12517  case X86::ATOMXOR32:
12518    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
12519                                               X86::XOR32ri, X86::MOV32rm,
12520                                               X86::LCMPXCHG32,
12521                                               X86::NOT32r, X86::EAX,
12522                                               X86::GR32RegisterClass);
12523  case X86::ATOMNAND32:
12524    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12525                                               X86::AND32ri, X86::MOV32rm,
12526                                               X86::LCMPXCHG32,
12527                                               X86::NOT32r, X86::EAX,
12528                                               X86::GR32RegisterClass, true);
12529  case X86::ATOMMIN32:
12530    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
12531  case X86::ATOMMAX32:
12532    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
12533  case X86::ATOMUMIN32:
12534    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
12535  case X86::ATOMUMAX32:
12536    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
12537
12538  case X86::ATOMAND16:
12539    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12540                                               X86::AND16ri, X86::MOV16rm,
12541                                               X86::LCMPXCHG16,
12542                                               X86::NOT16r, X86::AX,
12543                                               X86::GR16RegisterClass);
12544  case X86::ATOMOR16:
12545    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
12546                                               X86::OR16ri, X86::MOV16rm,
12547                                               X86::LCMPXCHG16,
12548                                               X86::NOT16r, X86::AX,
12549                                               X86::GR16RegisterClass);
12550  case X86::ATOMXOR16:
12551    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
12552                                               X86::XOR16ri, X86::MOV16rm,
12553                                               X86::LCMPXCHG16,
12554                                               X86::NOT16r, X86::AX,
12555                                               X86::GR16RegisterClass);
12556  case X86::ATOMNAND16:
12557    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12558                                               X86::AND16ri, X86::MOV16rm,
12559                                               X86::LCMPXCHG16,
12560                                               X86::NOT16r, X86::AX,
12561                                               X86::GR16RegisterClass, true);
12562  case X86::ATOMMIN16:
12563    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
12564  case X86::ATOMMAX16:
12565    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
12566  case X86::ATOMUMIN16:
12567    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
12568  case X86::ATOMUMAX16:
12569    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
12570
12571  case X86::ATOMAND8:
12572    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12573                                               X86::AND8ri, X86::MOV8rm,
12574                                               X86::LCMPXCHG8,
12575                                               X86::NOT8r, X86::AL,
12576                                               X86::GR8RegisterClass);
12577  case X86::ATOMOR8:
12578    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
12579                                               X86::OR8ri, X86::MOV8rm,
12580                                               X86::LCMPXCHG8,
12581                                               X86::NOT8r, X86::AL,
12582                                               X86::GR8RegisterClass);
12583  case X86::ATOMXOR8:
12584    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
12585                                               X86::XOR8ri, X86::MOV8rm,
12586                                               X86::LCMPXCHG8,
12587                                               X86::NOT8r, X86::AL,
12588                                               X86::GR8RegisterClass);
12589  case X86::ATOMNAND8:
12590    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12591                                               X86::AND8ri, X86::MOV8rm,
12592                                               X86::LCMPXCHG8,
12593                                               X86::NOT8r, X86::AL,
12594                                               X86::GR8RegisterClass, true);
12595  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
12596  // This group is for 64-bit host.
12597  case X86::ATOMAND64:
12598    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12599                                               X86::AND64ri32, X86::MOV64rm,
12600                                               X86::LCMPXCHG64,
12601                                               X86::NOT64r, X86::RAX,
12602                                               X86::GR64RegisterClass);
12603  case X86::ATOMOR64:
12604    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
12605                                               X86::OR64ri32, X86::MOV64rm,
12606                                               X86::LCMPXCHG64,
12607                                               X86::NOT64r, X86::RAX,
12608                                               X86::GR64RegisterClass);
12609  case X86::ATOMXOR64:
12610    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
12611                                               X86::XOR64ri32, X86::MOV64rm,
12612                                               X86::LCMPXCHG64,
12613                                               X86::NOT64r, X86::RAX,
12614                                               X86::GR64RegisterClass);
12615  case X86::ATOMNAND64:
12616    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12617                                               X86::AND64ri32, X86::MOV64rm,
12618                                               X86::LCMPXCHG64,
12619                                               X86::NOT64r, X86::RAX,
12620                                               X86::GR64RegisterClass, true);
12621  case X86::ATOMMIN64:
12622    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
12623  case X86::ATOMMAX64:
12624    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
12625  case X86::ATOMUMIN64:
12626    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
12627  case X86::ATOMUMAX64:
12628    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
12629
12630  // This group does 64-bit operations on a 32-bit host.
12631  case X86::ATOMAND6432:
12632    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12633                                               X86::AND32rr, X86::AND32rr,
12634                                               X86::AND32ri, X86::AND32ri,
12635                                               false);
12636  case X86::ATOMOR6432:
12637    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12638                                               X86::OR32rr, X86::OR32rr,
12639                                               X86::OR32ri, X86::OR32ri,
12640                                               false);
12641  case X86::ATOMXOR6432:
12642    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12643                                               X86::XOR32rr, X86::XOR32rr,
12644                                               X86::XOR32ri, X86::XOR32ri,
12645                                               false);
12646  case X86::ATOMNAND6432:
12647    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12648                                               X86::AND32rr, X86::AND32rr,
12649                                               X86::AND32ri, X86::AND32ri,
12650                                               true);
12651  case X86::ATOMADD6432:
12652    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12653                                               X86::ADD32rr, X86::ADC32rr,
12654                                               X86::ADD32ri, X86::ADC32ri,
12655                                               false);
12656  case X86::ATOMSUB6432:
12657    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12658                                               X86::SUB32rr, X86::SBB32rr,
12659                                               X86::SUB32ri, X86::SBB32ri,
12660                                               false);
12661  case X86::ATOMSWAP6432:
12662    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12663                                               X86::MOV32rr, X86::MOV32rr,
12664                                               X86::MOV32ri, X86::MOV32ri,
12665                                               false);
12666  case X86::VASTART_SAVE_XMM_REGS:
12667    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
12668
12669  case X86::VAARG_64:
12670    return EmitVAARG64WithCustomInserter(MI, BB);
12671  }
12672}
12673
12674//===----------------------------------------------------------------------===//
12675//                           X86 Optimization Hooks
12676//===----------------------------------------------------------------------===//
12677
12678void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
12679                                                       const APInt &Mask,
12680                                                       APInt &KnownZero,
12681                                                       APInt &KnownOne,
12682                                                       const SelectionDAG &DAG,
12683                                                       unsigned Depth) const {
12684  unsigned Opc = Op.getOpcode();
12685  assert((Opc >= ISD::BUILTIN_OP_END ||
12686          Opc == ISD::INTRINSIC_WO_CHAIN ||
12687          Opc == ISD::INTRINSIC_W_CHAIN ||
12688          Opc == ISD::INTRINSIC_VOID) &&
12689         "Should use MaskedValueIsZero if you don't know whether Op"
12690         " is a target node!");
12691
12692  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
12693  switch (Opc) {
12694  default: break;
12695  case X86ISD::ADD:
12696  case X86ISD::SUB:
12697  case X86ISD::ADC:
12698  case X86ISD::SBB:
12699  case X86ISD::SMUL:
12700  case X86ISD::UMUL:
12701  case X86ISD::INC:
12702  case X86ISD::DEC:
12703  case X86ISD::OR:
12704  case X86ISD::XOR:
12705  case X86ISD::AND:
12706    // These nodes' second result is a boolean.
12707    if (Op.getResNo() == 0)
12708      break;
12709    // Fallthrough
12710  case X86ISD::SETCC:
12711    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
12712                                       Mask.getBitWidth() - 1);
12713    break;
12714  case ISD::INTRINSIC_WO_CHAIN: {
12715    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
12716    unsigned NumLoBits = 0;
12717    switch (IntId) {
12718    default: break;
12719    case Intrinsic::x86_sse_movmsk_ps:
12720    case Intrinsic::x86_avx_movmsk_ps_256:
12721    case Intrinsic::x86_sse2_movmsk_pd:
12722    case Intrinsic::x86_avx_movmsk_pd_256:
12723    case Intrinsic::x86_mmx_pmovmskb:
12724    case Intrinsic::x86_sse2_pmovmskb_128: {
12725      // High bits of movmskp{s|d}, pmovmskb are known zero.
12726      switch (IntId) {
12727        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
12728        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
12729        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
12730        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
12731        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
12732        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
12733      }
12734      KnownZero = APInt::getHighBitsSet(Mask.getBitWidth(),
12735                                        Mask.getBitWidth() - NumLoBits);
12736      break;
12737    }
12738    }
12739    break;
12740  }
12741  }
12742}
12743
12744unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
12745                                                         unsigned Depth) const {
12746  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
12747  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
12748    return Op.getValueType().getScalarType().getSizeInBits();
12749
12750  // Fallback case.
12751  return 1;
12752}
12753
12754/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
12755/// node is a GlobalAddress + offset.
12756bool X86TargetLowering::isGAPlusOffset(SDNode *N,
12757                                       const GlobalValue* &GA,
12758                                       int64_t &Offset) const {
12759  if (N->getOpcode() == X86ISD::Wrapper) {
12760    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
12761      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
12762      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
12763      return true;
12764    }
12765  }
12766  return TargetLowering::isGAPlusOffset(N, GA, Offset);
12767}
12768
12769/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
12770/// same as extracting the high 128-bit part of 256-bit vector and then
12771/// inserting the result into the low part of a new 256-bit vector
12772static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
12773  EVT VT = SVOp->getValueType(0);
12774  int NumElems = VT.getVectorNumElements();
12775
12776  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12777  for (int i = 0, j = NumElems/2; i < NumElems/2; ++i, ++j)
12778    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12779        SVOp->getMaskElt(j) >= 0)
12780      return false;
12781
12782  return true;
12783}
12784
12785/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
12786/// same as extracting the low 128-bit part of 256-bit vector and then
12787/// inserting the result into the high part of a new 256-bit vector
12788static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
12789  EVT VT = SVOp->getValueType(0);
12790  int NumElems = VT.getVectorNumElements();
12791
12792  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12793  for (int i = NumElems/2, j = 0; i < NumElems; ++i, ++j)
12794    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12795        SVOp->getMaskElt(j) >= 0)
12796      return false;
12797
12798  return true;
12799}
12800
12801/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
12802static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
12803                                        TargetLowering::DAGCombinerInfo &DCI) {
12804  DebugLoc dl = N->getDebugLoc();
12805  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
12806  SDValue V1 = SVOp->getOperand(0);
12807  SDValue V2 = SVOp->getOperand(1);
12808  EVT VT = SVOp->getValueType(0);
12809  int NumElems = VT.getVectorNumElements();
12810
12811  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
12812      V2.getOpcode() == ISD::CONCAT_VECTORS) {
12813    //
12814    //                   0,0,0,...
12815    //                      |
12816    //    V      UNDEF    BUILD_VECTOR    UNDEF
12817    //     \      /           \           /
12818    //  CONCAT_VECTOR         CONCAT_VECTOR
12819    //         \                  /
12820    //          \                /
12821    //          RESULT: V + zero extended
12822    //
12823    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
12824        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
12825        V1.getOperand(1).getOpcode() != ISD::UNDEF)
12826      return SDValue();
12827
12828    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
12829      return SDValue();
12830
12831    // To match the shuffle mask, the first half of the mask should
12832    // be exactly the first vector, and all the rest a splat with the
12833    // first element of the second one.
12834    for (int i = 0; i < NumElems/2; ++i)
12835      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
12836          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
12837        return SDValue();
12838
12839    // Emit a zeroed vector and insert the desired subvector on its
12840    // first half.
12841    SDValue Zeros = getZeroVector(VT, true /* HasXMMInt */, DAG, dl);
12842    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0),
12843                         DAG.getConstant(0, MVT::i32), DAG, dl);
12844    return DCI.CombineTo(N, InsV);
12845  }
12846
12847  //===--------------------------------------------------------------------===//
12848  // Combine some shuffles into subvector extracts and inserts:
12849  //
12850
12851  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12852  if (isShuffleHigh128VectorInsertLow(SVOp)) {
12853    SDValue V = Extract128BitVector(V1, DAG.getConstant(NumElems/2, MVT::i32),
12854                                    DAG, dl);
12855    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12856                                      V, DAG.getConstant(0, MVT::i32), DAG, dl);
12857    return DCI.CombineTo(N, InsV);
12858  }
12859
12860  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12861  if (isShuffleLow128VectorInsertHigh(SVOp)) {
12862    SDValue V = Extract128BitVector(V1, DAG.getConstant(0, MVT::i32), DAG, dl);
12863    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12864                             V, DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
12865    return DCI.CombineTo(N, InsV);
12866  }
12867
12868  return SDValue();
12869}
12870
12871/// PerformShuffleCombine - Performs several different shuffle combines.
12872static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
12873                                     TargetLowering::DAGCombinerInfo &DCI,
12874                                     const X86Subtarget *Subtarget) {
12875  DebugLoc dl = N->getDebugLoc();
12876  EVT VT = N->getValueType(0);
12877
12878  // Don't create instructions with illegal types after legalize types has run.
12879  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12880  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
12881    return SDValue();
12882
12883  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
12884  if (Subtarget->hasAVX() && VT.getSizeInBits() == 256 &&
12885      N->getOpcode() == ISD::VECTOR_SHUFFLE)
12886    return PerformShuffleCombine256(N, DAG, DCI);
12887
12888  // Only handle 128 wide vector from here on.
12889  if (VT.getSizeInBits() != 128)
12890    return SDValue();
12891
12892  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
12893  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
12894  // consecutive, non-overlapping, and in the right order.
12895  SmallVector<SDValue, 16> Elts;
12896  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
12897    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
12898
12899  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
12900}
12901
12902/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
12903/// generation and convert it from being a bunch of shuffles and extracts
12904/// to a simple store and scalar loads to extract the elements.
12905static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
12906                                                const TargetLowering &TLI) {
12907  SDValue InputVector = N->getOperand(0);
12908
12909  // Only operate on vectors of 4 elements, where the alternative shuffling
12910  // gets to be more expensive.
12911  if (InputVector.getValueType() != MVT::v4i32)
12912    return SDValue();
12913
12914  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
12915  // single use which is a sign-extend or zero-extend, and all elements are
12916  // used.
12917  SmallVector<SDNode *, 4> Uses;
12918  unsigned ExtractedElements = 0;
12919  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
12920       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
12921    if (UI.getUse().getResNo() != InputVector.getResNo())
12922      return SDValue();
12923
12924    SDNode *Extract = *UI;
12925    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12926      return SDValue();
12927
12928    if (Extract->getValueType(0) != MVT::i32)
12929      return SDValue();
12930    if (!Extract->hasOneUse())
12931      return SDValue();
12932    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
12933        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
12934      return SDValue();
12935    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
12936      return SDValue();
12937
12938    // Record which element was extracted.
12939    ExtractedElements |=
12940      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
12941
12942    Uses.push_back(Extract);
12943  }
12944
12945  // If not all the elements were used, this may not be worthwhile.
12946  if (ExtractedElements != 15)
12947    return SDValue();
12948
12949  // Ok, we've now decided to do the transformation.
12950  DebugLoc dl = InputVector.getDebugLoc();
12951
12952  // Store the value to a temporary stack slot.
12953  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
12954  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
12955                            MachinePointerInfo(), false, false, 0);
12956
12957  // Replace each use (extract) with a load of the appropriate element.
12958  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
12959       UE = Uses.end(); UI != UE; ++UI) {
12960    SDNode *Extract = *UI;
12961
12962    // cOMpute the element's address.
12963    SDValue Idx = Extract->getOperand(1);
12964    unsigned EltSize =
12965        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
12966    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
12967    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
12968
12969    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
12970                                     StackPtr, OffsetVal);
12971
12972    // Load the scalar.
12973    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
12974                                     ScalarAddr, MachinePointerInfo(),
12975                                     false, false, false, 0);
12976
12977    // Replace the exact with the load.
12978    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
12979  }
12980
12981  // The replacement was made in place; don't return anything.
12982  return SDValue();
12983}
12984
12985/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
12986/// nodes.
12987static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
12988                                    const X86Subtarget *Subtarget) {
12989  DebugLoc DL = N->getDebugLoc();
12990  SDValue Cond = N->getOperand(0);
12991  // Get the LHS/RHS of the select.
12992  SDValue LHS = N->getOperand(1);
12993  SDValue RHS = N->getOperand(2);
12994  EVT VT = LHS.getValueType();
12995
12996  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
12997  // instructions match the semantics of the common C idiom x<y?x:y but not
12998  // x<=y?x:y, because of how they handle negative zero (which can be
12999  // ignored in unsafe-math mode).
13000  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
13001      VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
13002      (Subtarget->hasXMMInt() ||
13003       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
13004    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13005
13006    unsigned Opcode = 0;
13007    // Check for x CC y ? x : y.
13008    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
13009        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
13010      switch (CC) {
13011      default: break;
13012      case ISD::SETULT:
13013        // Converting this to a min would handle NaNs incorrectly, and swapping
13014        // the operands would cause it to handle comparisons between positive
13015        // and negative zero incorrectly.
13016        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
13017          if (!UnsafeFPMath &&
13018              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
13019            break;
13020          std::swap(LHS, RHS);
13021        }
13022        Opcode = X86ISD::FMIN;
13023        break;
13024      case ISD::SETOLE:
13025        // Converting this to a min would handle comparisons between positive
13026        // and negative zero incorrectly.
13027        if (!UnsafeFPMath &&
13028            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
13029          break;
13030        Opcode = X86ISD::FMIN;
13031        break;
13032      case ISD::SETULE:
13033        // Converting this to a min would handle both negative zeros and NaNs
13034        // incorrectly, but we can swap the operands to fix both.
13035        std::swap(LHS, RHS);
13036      case ISD::SETOLT:
13037      case ISD::SETLT:
13038      case ISD::SETLE:
13039        Opcode = X86ISD::FMIN;
13040        break;
13041
13042      case ISD::SETOGE:
13043        // Converting this to a max would handle comparisons between positive
13044        // and negative zero incorrectly.
13045        if (!UnsafeFPMath &&
13046            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
13047          break;
13048        Opcode = X86ISD::FMAX;
13049        break;
13050      case ISD::SETUGT:
13051        // Converting this to a max would handle NaNs incorrectly, and swapping
13052        // the operands would cause it to handle comparisons between positive
13053        // and negative zero incorrectly.
13054        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
13055          if (!UnsafeFPMath &&
13056              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
13057            break;
13058          std::swap(LHS, RHS);
13059        }
13060        Opcode = X86ISD::FMAX;
13061        break;
13062      case ISD::SETUGE:
13063        // Converting this to a max would handle both negative zeros and NaNs
13064        // incorrectly, but we can swap the operands to fix both.
13065        std::swap(LHS, RHS);
13066      case ISD::SETOGT:
13067      case ISD::SETGT:
13068      case ISD::SETGE:
13069        Opcode = X86ISD::FMAX;
13070        break;
13071      }
13072    // Check for x CC y ? y : x -- a min/max with reversed arms.
13073    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
13074               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
13075      switch (CC) {
13076      default: break;
13077      case ISD::SETOGE:
13078        // Converting this to a min would handle comparisons between positive
13079        // and negative zero incorrectly, and swapping the operands would
13080        // cause it to handle NaNs incorrectly.
13081        if (!UnsafeFPMath &&
13082            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
13083          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13084            break;
13085          std::swap(LHS, RHS);
13086        }
13087        Opcode = X86ISD::FMIN;
13088        break;
13089      case ISD::SETUGT:
13090        // Converting this to a min would handle NaNs incorrectly.
13091        if (!UnsafeFPMath &&
13092            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
13093          break;
13094        Opcode = X86ISD::FMIN;
13095        break;
13096      case ISD::SETUGE:
13097        // Converting this to a min would handle both negative zeros and NaNs
13098        // incorrectly, but we can swap the operands to fix both.
13099        std::swap(LHS, RHS);
13100      case ISD::SETOGT:
13101      case ISD::SETGT:
13102      case ISD::SETGE:
13103        Opcode = X86ISD::FMIN;
13104        break;
13105
13106      case ISD::SETULT:
13107        // Converting this to a max would handle NaNs incorrectly.
13108        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13109          break;
13110        Opcode = X86ISD::FMAX;
13111        break;
13112      case ISD::SETOLE:
13113        // Converting this to a max would handle comparisons between positive
13114        // and negative zero incorrectly, and swapping the operands would
13115        // cause it to handle NaNs incorrectly.
13116        if (!UnsafeFPMath &&
13117            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
13118          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13119            break;
13120          std::swap(LHS, RHS);
13121        }
13122        Opcode = X86ISD::FMAX;
13123        break;
13124      case ISD::SETULE:
13125        // Converting this to a max would handle both negative zeros and NaNs
13126        // incorrectly, but we can swap the operands to fix both.
13127        std::swap(LHS, RHS);
13128      case ISD::SETOLT:
13129      case ISD::SETLT:
13130      case ISD::SETLE:
13131        Opcode = X86ISD::FMAX;
13132        break;
13133      }
13134    }
13135
13136    if (Opcode)
13137      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
13138  }
13139
13140  // If this is a select between two integer constants, try to do some
13141  // optimizations.
13142  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
13143    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
13144      // Don't do this for crazy integer types.
13145      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
13146        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
13147        // so that TrueC (the true value) is larger than FalseC.
13148        bool NeedsCondInvert = false;
13149
13150        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
13151            // Efficiently invertible.
13152            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
13153             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
13154              isa<ConstantSDNode>(Cond.getOperand(1))))) {
13155          NeedsCondInvert = true;
13156          std::swap(TrueC, FalseC);
13157        }
13158
13159        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
13160        if (FalseC->getAPIntValue() == 0 &&
13161            TrueC->getAPIntValue().isPowerOf2()) {
13162          if (NeedsCondInvert) // Invert the condition if needed.
13163            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13164                               DAG.getConstant(1, Cond.getValueType()));
13165
13166          // Zero extend the condition if needed.
13167          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
13168
13169          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13170          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
13171                             DAG.getConstant(ShAmt, MVT::i8));
13172        }
13173
13174        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
13175        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13176          if (NeedsCondInvert) // Invert the condition if needed.
13177            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13178                               DAG.getConstant(1, Cond.getValueType()));
13179
13180          // Zero extend the condition if needed.
13181          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13182                             FalseC->getValueType(0), Cond);
13183          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13184                             SDValue(FalseC, 0));
13185        }
13186
13187        // Optimize cases that will turn into an LEA instruction.  This requires
13188        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13189        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13190          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13191          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13192
13193          bool isFastMultiplier = false;
13194          if (Diff < 10) {
13195            switch ((unsigned char)Diff) {
13196              default: break;
13197              case 1:  // result = add base, cond
13198              case 2:  // result = lea base(    , cond*2)
13199              case 3:  // result = lea base(cond, cond*2)
13200              case 4:  // result = lea base(    , cond*4)
13201              case 5:  // result = lea base(cond, cond*4)
13202              case 8:  // result = lea base(    , cond*8)
13203              case 9:  // result = lea base(cond, cond*8)
13204                isFastMultiplier = true;
13205                break;
13206            }
13207          }
13208
13209          if (isFastMultiplier) {
13210            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13211            if (NeedsCondInvert) // Invert the condition if needed.
13212              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13213                                 DAG.getConstant(1, Cond.getValueType()));
13214
13215            // Zero extend the condition if needed.
13216            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13217                               Cond);
13218            // Scale the condition by the difference.
13219            if (Diff != 1)
13220              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13221                                 DAG.getConstant(Diff, Cond.getValueType()));
13222
13223            // Add the base if non-zero.
13224            if (FalseC->getAPIntValue() != 0)
13225              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13226                                 SDValue(FalseC, 0));
13227            return Cond;
13228          }
13229        }
13230      }
13231  }
13232
13233  return SDValue();
13234}
13235
13236/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
13237static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
13238                                  TargetLowering::DAGCombinerInfo &DCI) {
13239  DebugLoc DL = N->getDebugLoc();
13240
13241  // If the flag operand isn't dead, don't touch this CMOV.
13242  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
13243    return SDValue();
13244
13245  SDValue FalseOp = N->getOperand(0);
13246  SDValue TrueOp = N->getOperand(1);
13247  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
13248  SDValue Cond = N->getOperand(3);
13249  if (CC == X86::COND_E || CC == X86::COND_NE) {
13250    switch (Cond.getOpcode()) {
13251    default: break;
13252    case X86ISD::BSR:
13253    case X86ISD::BSF:
13254      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
13255      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
13256        return (CC == X86::COND_E) ? FalseOp : TrueOp;
13257    }
13258  }
13259
13260  // If this is a select between two integer constants, try to do some
13261  // optimizations.  Note that the operands are ordered the opposite of SELECT
13262  // operands.
13263  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
13264    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
13265      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
13266      // larger than FalseC (the false value).
13267      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
13268        CC = X86::GetOppositeBranchCondition(CC);
13269        std::swap(TrueC, FalseC);
13270      }
13271
13272      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
13273      // This is efficient for any integer data type (including i8/i16) and
13274      // shift amount.
13275      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
13276        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13277                           DAG.getConstant(CC, MVT::i8), Cond);
13278
13279        // Zero extend the condition if needed.
13280        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
13281
13282        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13283        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
13284                           DAG.getConstant(ShAmt, MVT::i8));
13285        if (N->getNumValues() == 2)  // Dead flag value?
13286          return DCI.CombineTo(N, Cond, SDValue());
13287        return Cond;
13288      }
13289
13290      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
13291      // for any integer data type, including i8/i16.
13292      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13293        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13294                           DAG.getConstant(CC, MVT::i8), Cond);
13295
13296        // Zero extend the condition if needed.
13297        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13298                           FalseC->getValueType(0), Cond);
13299        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13300                           SDValue(FalseC, 0));
13301
13302        if (N->getNumValues() == 2)  // Dead flag value?
13303          return DCI.CombineTo(N, Cond, SDValue());
13304        return Cond;
13305      }
13306
13307      // Optimize cases that will turn into an LEA instruction.  This requires
13308      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13309      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13310        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13311        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13312
13313        bool isFastMultiplier = false;
13314        if (Diff < 10) {
13315          switch ((unsigned char)Diff) {
13316          default: break;
13317          case 1:  // result = add base, cond
13318          case 2:  // result = lea base(    , cond*2)
13319          case 3:  // result = lea base(cond, cond*2)
13320          case 4:  // result = lea base(    , cond*4)
13321          case 5:  // result = lea base(cond, cond*4)
13322          case 8:  // result = lea base(    , cond*8)
13323          case 9:  // result = lea base(cond, cond*8)
13324            isFastMultiplier = true;
13325            break;
13326          }
13327        }
13328
13329        if (isFastMultiplier) {
13330          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13331          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13332                             DAG.getConstant(CC, MVT::i8), Cond);
13333          // Zero extend the condition if needed.
13334          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13335                             Cond);
13336          // Scale the condition by the difference.
13337          if (Diff != 1)
13338            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13339                               DAG.getConstant(Diff, Cond.getValueType()));
13340
13341          // Add the base if non-zero.
13342          if (FalseC->getAPIntValue() != 0)
13343            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13344                               SDValue(FalseC, 0));
13345          if (N->getNumValues() == 2)  // Dead flag value?
13346            return DCI.CombineTo(N, Cond, SDValue());
13347          return Cond;
13348        }
13349      }
13350    }
13351  }
13352  return SDValue();
13353}
13354
13355
13356/// PerformMulCombine - Optimize a single multiply with constant into two
13357/// in order to implement it with two cheaper instructions, e.g.
13358/// LEA + SHL, LEA + LEA.
13359static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
13360                                 TargetLowering::DAGCombinerInfo &DCI) {
13361  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
13362    return SDValue();
13363
13364  EVT VT = N->getValueType(0);
13365  if (VT != MVT::i64)
13366    return SDValue();
13367
13368  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
13369  if (!C)
13370    return SDValue();
13371  uint64_t MulAmt = C->getZExtValue();
13372  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
13373    return SDValue();
13374
13375  uint64_t MulAmt1 = 0;
13376  uint64_t MulAmt2 = 0;
13377  if ((MulAmt % 9) == 0) {
13378    MulAmt1 = 9;
13379    MulAmt2 = MulAmt / 9;
13380  } else if ((MulAmt % 5) == 0) {
13381    MulAmt1 = 5;
13382    MulAmt2 = MulAmt / 5;
13383  } else if ((MulAmt % 3) == 0) {
13384    MulAmt1 = 3;
13385    MulAmt2 = MulAmt / 3;
13386  }
13387  if (MulAmt2 &&
13388      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
13389    DebugLoc DL = N->getDebugLoc();
13390
13391    if (isPowerOf2_64(MulAmt2) &&
13392        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
13393      // If second multiplifer is pow2, issue it first. We want the multiply by
13394      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
13395      // is an add.
13396      std::swap(MulAmt1, MulAmt2);
13397
13398    SDValue NewMul;
13399    if (isPowerOf2_64(MulAmt1))
13400      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
13401                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
13402    else
13403      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
13404                           DAG.getConstant(MulAmt1, VT));
13405
13406    if (isPowerOf2_64(MulAmt2))
13407      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
13408                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
13409    else
13410      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
13411                           DAG.getConstant(MulAmt2, VT));
13412
13413    // Do not add new nodes to DAG combiner worklist.
13414    DCI.CombineTo(N, NewMul, false);
13415  }
13416  return SDValue();
13417}
13418
13419static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
13420  SDValue N0 = N->getOperand(0);
13421  SDValue N1 = N->getOperand(1);
13422  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
13423  EVT VT = N0.getValueType();
13424
13425  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
13426  // since the result of setcc_c is all zero's or all ones.
13427  if (VT.isInteger() && !VT.isVector() &&
13428      N1C && N0.getOpcode() == ISD::AND &&
13429      N0.getOperand(1).getOpcode() == ISD::Constant) {
13430    SDValue N00 = N0.getOperand(0);
13431    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
13432        ((N00.getOpcode() == ISD::ANY_EXTEND ||
13433          N00.getOpcode() == ISD::ZERO_EXTEND) &&
13434         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
13435      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
13436      APInt ShAmt = N1C->getAPIntValue();
13437      Mask = Mask.shl(ShAmt);
13438      if (Mask != 0)
13439        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
13440                           N00, DAG.getConstant(Mask, VT));
13441    }
13442  }
13443
13444
13445  // Hardware support for vector shifts is sparse which makes us scalarize the
13446  // vector operations in many cases. Also, on sandybridge ADD is faster than
13447  // shl.
13448  // (shl V, 1) -> add V,V
13449  if (isSplatVector(N1.getNode())) {
13450    assert(N0.getValueType().isVector() && "Invalid vector shift type");
13451    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
13452    // We shift all of the values by one. In many cases we do not have
13453    // hardware support for this operation. This is better expressed as an ADD
13454    // of two values.
13455    if (N1C && (1 == N1C->getZExtValue())) {
13456      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0);
13457    }
13458  }
13459
13460  return SDValue();
13461}
13462
13463/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
13464///                       when possible.
13465static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
13466                                   const X86Subtarget *Subtarget) {
13467  EVT VT = N->getValueType(0);
13468  if (N->getOpcode() == ISD::SHL) {
13469    SDValue V = PerformSHLCombine(N, DAG);
13470    if (V.getNode()) return V;
13471  }
13472
13473  // On X86 with SSE2 support, we can transform this to a vector shift if
13474  // all elements are shifted by the same amount.  We can't do this in legalize
13475  // because the a constant vector is typically transformed to a constant pool
13476  // so we have no knowledge of the shift amount.
13477  if (!Subtarget->hasXMMInt())
13478    return SDValue();
13479
13480  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
13481      (!Subtarget->hasAVX2() ||
13482       (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
13483    return SDValue();
13484
13485  SDValue ShAmtOp = N->getOperand(1);
13486  EVT EltVT = VT.getVectorElementType();
13487  DebugLoc DL = N->getDebugLoc();
13488  SDValue BaseShAmt = SDValue();
13489  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
13490    unsigned NumElts = VT.getVectorNumElements();
13491    unsigned i = 0;
13492    for (; i != NumElts; ++i) {
13493      SDValue Arg = ShAmtOp.getOperand(i);
13494      if (Arg.getOpcode() == ISD::UNDEF) continue;
13495      BaseShAmt = Arg;
13496      break;
13497    }
13498    for (; i != NumElts; ++i) {
13499      SDValue Arg = ShAmtOp.getOperand(i);
13500      if (Arg.getOpcode() == ISD::UNDEF) continue;
13501      if (Arg != BaseShAmt) {
13502        return SDValue();
13503      }
13504    }
13505  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
13506             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
13507    SDValue InVec = ShAmtOp.getOperand(0);
13508    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
13509      unsigned NumElts = InVec.getValueType().getVectorNumElements();
13510      unsigned i = 0;
13511      for (; i != NumElts; ++i) {
13512        SDValue Arg = InVec.getOperand(i);
13513        if (Arg.getOpcode() == ISD::UNDEF) continue;
13514        BaseShAmt = Arg;
13515        break;
13516      }
13517    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
13518       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
13519         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
13520         if (C->getZExtValue() == SplatIdx)
13521           BaseShAmt = InVec.getOperand(1);
13522       }
13523    }
13524    if (BaseShAmt.getNode() == 0)
13525      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
13526                              DAG.getIntPtrConstant(0));
13527  } else
13528    return SDValue();
13529
13530  // The shift amount is an i32.
13531  if (EltVT.bitsGT(MVT::i32))
13532    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
13533  else if (EltVT.bitsLT(MVT::i32))
13534    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
13535
13536  // The shift amount is identical so we can do a vector shift.
13537  SDValue  ValOp = N->getOperand(0);
13538  switch (N->getOpcode()) {
13539  default:
13540    llvm_unreachable("Unknown shift opcode!");
13541    break;
13542  case ISD::SHL:
13543    if (VT == MVT::v2i64)
13544      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13545                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
13546                         ValOp, BaseShAmt);
13547    if (VT == MVT::v4i32)
13548      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13549                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
13550                         ValOp, BaseShAmt);
13551    if (VT == MVT::v8i16)
13552      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13553                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
13554                         ValOp, BaseShAmt);
13555    if (VT == MVT::v4i64)
13556      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13557                         DAG.getConstant(Intrinsic::x86_avx2_pslli_q, MVT::i32),
13558                         ValOp, BaseShAmt);
13559    if (VT == MVT::v8i32)
13560      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13561                         DAG.getConstant(Intrinsic::x86_avx2_pslli_d, MVT::i32),
13562                         ValOp, BaseShAmt);
13563    if (VT == MVT::v16i16)
13564      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13565                         DAG.getConstant(Intrinsic::x86_avx2_pslli_w, MVT::i32),
13566                         ValOp, BaseShAmt);
13567    break;
13568  case ISD::SRA:
13569    if (VT == MVT::v4i32)
13570      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13571                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
13572                         ValOp, BaseShAmt);
13573    if (VT == MVT::v8i16)
13574      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13575                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
13576                         ValOp, BaseShAmt);
13577    if (VT == MVT::v8i32)
13578      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13579                         DAG.getConstant(Intrinsic::x86_avx2_psrai_d, MVT::i32),
13580                         ValOp, BaseShAmt);
13581    if (VT == MVT::v16i16)
13582      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13583                         DAG.getConstant(Intrinsic::x86_avx2_psrai_w, MVT::i32),
13584                         ValOp, BaseShAmt);
13585    break;
13586  case ISD::SRL:
13587    if (VT == MVT::v2i64)
13588      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13589                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
13590                         ValOp, BaseShAmt);
13591    if (VT == MVT::v4i32)
13592      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13593                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
13594                         ValOp, BaseShAmt);
13595    if (VT ==  MVT::v8i16)
13596      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13597                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
13598                         ValOp, BaseShAmt);
13599    if (VT == MVT::v4i64)
13600      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13601                         DAG.getConstant(Intrinsic::x86_avx2_psrli_q, MVT::i32),
13602                         ValOp, BaseShAmt);
13603    if (VT == MVT::v8i32)
13604      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13605                         DAG.getConstant(Intrinsic::x86_avx2_psrli_d, MVT::i32),
13606                         ValOp, BaseShAmt);
13607    if (VT ==  MVT::v16i16)
13608      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13609                         DAG.getConstant(Intrinsic::x86_avx2_psrli_w, MVT::i32),
13610                         ValOp, BaseShAmt);
13611    break;
13612  }
13613  return SDValue();
13614}
13615
13616
13617// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
13618// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
13619// and friends.  Likewise for OR -> CMPNEQSS.
13620static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
13621                            TargetLowering::DAGCombinerInfo &DCI,
13622                            const X86Subtarget *Subtarget) {
13623  unsigned opcode;
13624
13625  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
13626  // we're requiring SSE2 for both.
13627  if (Subtarget->hasXMMInt() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
13628    SDValue N0 = N->getOperand(0);
13629    SDValue N1 = N->getOperand(1);
13630    SDValue CMP0 = N0->getOperand(1);
13631    SDValue CMP1 = N1->getOperand(1);
13632    DebugLoc DL = N->getDebugLoc();
13633
13634    // The SETCCs should both refer to the same CMP.
13635    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
13636      return SDValue();
13637
13638    SDValue CMP00 = CMP0->getOperand(0);
13639    SDValue CMP01 = CMP0->getOperand(1);
13640    EVT     VT    = CMP00.getValueType();
13641
13642    if (VT == MVT::f32 || VT == MVT::f64) {
13643      bool ExpectingFlags = false;
13644      // Check for any users that want flags:
13645      for (SDNode::use_iterator UI = N->use_begin(),
13646             UE = N->use_end();
13647           !ExpectingFlags && UI != UE; ++UI)
13648        switch (UI->getOpcode()) {
13649        default:
13650        case ISD::BR_CC:
13651        case ISD::BRCOND:
13652        case ISD::SELECT:
13653          ExpectingFlags = true;
13654          break;
13655        case ISD::CopyToReg:
13656        case ISD::SIGN_EXTEND:
13657        case ISD::ZERO_EXTEND:
13658        case ISD::ANY_EXTEND:
13659          break;
13660        }
13661
13662      if (!ExpectingFlags) {
13663        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
13664        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
13665
13666        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
13667          X86::CondCode tmp = cc0;
13668          cc0 = cc1;
13669          cc1 = tmp;
13670        }
13671
13672        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
13673            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
13674          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
13675          X86ISD::NodeType NTOperator = is64BitFP ?
13676            X86ISD::FSETCCsd : X86ISD::FSETCCss;
13677          // FIXME: need symbolic constants for these magic numbers.
13678          // See X86ATTInstPrinter.cpp:printSSECC().
13679          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
13680          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
13681                                              DAG.getConstant(x86cc, MVT::i8));
13682          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
13683                                              OnesOrZeroesF);
13684          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
13685                                      DAG.getConstant(1, MVT::i32));
13686          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
13687          return OneBitOfTruth;
13688        }
13689      }
13690    }
13691  }
13692  return SDValue();
13693}
13694
13695/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
13696/// so it can be folded inside ANDNP.
13697static bool CanFoldXORWithAllOnes(const SDNode *N) {
13698  EVT VT = N->getValueType(0);
13699
13700  // Match direct AllOnes for 128 and 256-bit vectors
13701  if (ISD::isBuildVectorAllOnes(N))
13702    return true;
13703
13704  // Look through a bit convert.
13705  if (N->getOpcode() == ISD::BITCAST)
13706    N = N->getOperand(0).getNode();
13707
13708  // Sometimes the operand may come from a insert_subvector building a 256-bit
13709  // allones vector
13710  if (VT.getSizeInBits() == 256 &&
13711      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
13712    SDValue V1 = N->getOperand(0);
13713    SDValue V2 = N->getOperand(1);
13714
13715    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
13716        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
13717        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
13718        ISD::isBuildVectorAllOnes(V2.getNode()))
13719      return true;
13720  }
13721
13722  return false;
13723}
13724
13725static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
13726                                 TargetLowering::DAGCombinerInfo &DCI,
13727                                 const X86Subtarget *Subtarget) {
13728  if (DCI.isBeforeLegalizeOps())
13729    return SDValue();
13730
13731  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13732  if (R.getNode())
13733    return R;
13734
13735  EVT VT = N->getValueType(0);
13736
13737  // Create ANDN, BLSI, and BLSR instructions
13738  // BLSI is X & (-X)
13739  // BLSR is X & (X-1)
13740  if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
13741    SDValue N0 = N->getOperand(0);
13742    SDValue N1 = N->getOperand(1);
13743    DebugLoc DL = N->getDebugLoc();
13744
13745    // Check LHS for not
13746    if (N0.getOpcode() == ISD::XOR && isAllOnes(N0.getOperand(1)))
13747      return DAG.getNode(X86ISD::ANDN, DL, VT, N0.getOperand(0), N1);
13748    // Check RHS for not
13749    if (N1.getOpcode() == ISD::XOR && isAllOnes(N1.getOperand(1)))
13750      return DAG.getNode(X86ISD::ANDN, DL, VT, N1.getOperand(0), N0);
13751
13752    // Check LHS for neg
13753    if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
13754        isZero(N0.getOperand(0)))
13755      return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
13756
13757    // Check RHS for neg
13758    if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
13759        isZero(N1.getOperand(0)))
13760      return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
13761
13762    // Check LHS for X-1
13763    if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
13764        isAllOnes(N0.getOperand(1)))
13765      return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
13766
13767    // Check RHS for X-1
13768    if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
13769        isAllOnes(N1.getOperand(1)))
13770      return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
13771
13772    return SDValue();
13773  }
13774
13775  // Want to form ANDNP nodes:
13776  // 1) In the hopes of then easily combining them with OR and AND nodes
13777  //    to form PBLEND/PSIGN.
13778  // 2) To match ANDN packed intrinsics
13779  if (VT != MVT::v2i64 && VT != MVT::v4i64)
13780    return SDValue();
13781
13782  SDValue N0 = N->getOperand(0);
13783  SDValue N1 = N->getOperand(1);
13784  DebugLoc DL = N->getDebugLoc();
13785
13786  // Check LHS for vnot
13787  if (N0.getOpcode() == ISD::XOR &&
13788      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
13789      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
13790    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
13791
13792  // Check RHS for vnot
13793  if (N1.getOpcode() == ISD::XOR &&
13794      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
13795      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
13796    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
13797
13798  return SDValue();
13799}
13800
13801static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
13802                                TargetLowering::DAGCombinerInfo &DCI,
13803                                const X86Subtarget *Subtarget) {
13804  if (DCI.isBeforeLegalizeOps())
13805    return SDValue();
13806
13807  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13808  if (R.getNode())
13809    return R;
13810
13811  EVT VT = N->getValueType(0);
13812  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64 && VT != MVT::v2i64)
13813    return SDValue();
13814
13815  SDValue N0 = N->getOperand(0);
13816  SDValue N1 = N->getOperand(1);
13817
13818  // look for psign/blend
13819  if (Subtarget->hasSSSE3() || Subtarget->hasAVX()) {
13820    if (VT == MVT::v2i64) {
13821      // Canonicalize pandn to RHS
13822      if (N0.getOpcode() == X86ISD::ANDNP)
13823        std::swap(N0, N1);
13824      // or (and (m, x), (pandn m, y))
13825      if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
13826        SDValue Mask = N1.getOperand(0);
13827        SDValue X    = N1.getOperand(1);
13828        SDValue Y;
13829        if (N0.getOperand(0) == Mask)
13830          Y = N0.getOperand(1);
13831        if (N0.getOperand(1) == Mask)
13832          Y = N0.getOperand(0);
13833
13834        // Check to see if the mask appeared in both the AND and ANDNP and
13835        if (!Y.getNode())
13836          return SDValue();
13837
13838        // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
13839        if (Mask.getOpcode() != ISD::BITCAST ||
13840            X.getOpcode() != ISD::BITCAST ||
13841            Y.getOpcode() != ISD::BITCAST)
13842          return SDValue();
13843
13844        // Look through mask bitcast.
13845        Mask = Mask.getOperand(0);
13846        EVT MaskVT = Mask.getValueType();
13847
13848        // Validate that the Mask operand is a vector sra node.  The sra node
13849        // will be an intrinsic.
13850        if (Mask.getOpcode() != ISD::INTRINSIC_WO_CHAIN)
13851          return SDValue();
13852
13853        // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
13854        // there is no psrai.b
13855        switch (cast<ConstantSDNode>(Mask.getOperand(0))->getZExtValue()) {
13856        case Intrinsic::x86_sse2_psrai_w:
13857        case Intrinsic::x86_sse2_psrai_d:
13858          break;
13859        default: return SDValue();
13860        }
13861
13862        // Check that the SRA is all signbits.
13863        SDValue SraC = Mask.getOperand(2);
13864        unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
13865        unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
13866        if ((SraAmt + 1) != EltBits)
13867          return SDValue();
13868
13869        DebugLoc DL = N->getDebugLoc();
13870
13871        // Now we know we at least have a plendvb with the mask val.  See if
13872        // we can form a psignb/w/d.
13873        // psign = x.type == y.type == mask.type && y = sub(0, x);
13874        X = X.getOperand(0);
13875        Y = Y.getOperand(0);
13876        if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
13877            ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
13878            X.getValueType() == MaskVT && X.getValueType() == Y.getValueType()){
13879          unsigned Opc = 0;
13880          switch (EltBits) {
13881          case 8: Opc = X86ISD::PSIGNB; break;
13882          case 16: Opc = X86ISD::PSIGNW; break;
13883          case 32: Opc = X86ISD::PSIGND; break;
13884          default: break;
13885          }
13886          if (Opc) {
13887            SDValue Sign = DAG.getNode(Opc, DL, MaskVT, X, Mask.getOperand(1));
13888            return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Sign);
13889          }
13890        }
13891        // PBLENDVB only available on SSE 4.1
13892        if (!(Subtarget->hasSSE41() || Subtarget->hasAVX()))
13893          return SDValue();
13894
13895        X = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, X);
13896        Y = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Y);
13897        Mask = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Mask);
13898        Mask = DAG.getNode(ISD::VSELECT, DL, MVT::v16i8, Mask, X, Y);
13899        return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Mask);
13900      }
13901    }
13902  }
13903
13904  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
13905  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
13906    std::swap(N0, N1);
13907  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
13908    return SDValue();
13909  if (!N0.hasOneUse() || !N1.hasOneUse())
13910    return SDValue();
13911
13912  SDValue ShAmt0 = N0.getOperand(1);
13913  if (ShAmt0.getValueType() != MVT::i8)
13914    return SDValue();
13915  SDValue ShAmt1 = N1.getOperand(1);
13916  if (ShAmt1.getValueType() != MVT::i8)
13917    return SDValue();
13918  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
13919    ShAmt0 = ShAmt0.getOperand(0);
13920  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
13921    ShAmt1 = ShAmt1.getOperand(0);
13922
13923  DebugLoc DL = N->getDebugLoc();
13924  unsigned Opc = X86ISD::SHLD;
13925  SDValue Op0 = N0.getOperand(0);
13926  SDValue Op1 = N1.getOperand(0);
13927  if (ShAmt0.getOpcode() == ISD::SUB) {
13928    Opc = X86ISD::SHRD;
13929    std::swap(Op0, Op1);
13930    std::swap(ShAmt0, ShAmt1);
13931  }
13932
13933  unsigned Bits = VT.getSizeInBits();
13934  if (ShAmt1.getOpcode() == ISD::SUB) {
13935    SDValue Sum = ShAmt1.getOperand(0);
13936    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
13937      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
13938      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
13939        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
13940      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
13941        return DAG.getNode(Opc, DL, VT,
13942                           Op0, Op1,
13943                           DAG.getNode(ISD::TRUNCATE, DL,
13944                                       MVT::i8, ShAmt0));
13945    }
13946  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
13947    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
13948    if (ShAmt0C &&
13949        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
13950      return DAG.getNode(Opc, DL, VT,
13951                         N0.getOperand(0), N1.getOperand(0),
13952                         DAG.getNode(ISD::TRUNCATE, DL,
13953                                       MVT::i8, ShAmt0));
13954  }
13955
13956  return SDValue();
13957}
13958
13959static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
13960                                 TargetLowering::DAGCombinerInfo &DCI,
13961                                 const X86Subtarget *Subtarget) {
13962  if (DCI.isBeforeLegalizeOps())
13963    return SDValue();
13964
13965  EVT VT = N->getValueType(0);
13966
13967  if (VT != MVT::i32 && VT != MVT::i64)
13968    return SDValue();
13969
13970  // Create BLSMSK instructions by finding X ^ (X-1)
13971  SDValue N0 = N->getOperand(0);
13972  SDValue N1 = N->getOperand(1);
13973  DebugLoc DL = N->getDebugLoc();
13974
13975  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
13976      isAllOnes(N0.getOperand(1)))
13977    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
13978
13979  if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
13980      isAllOnes(N1.getOperand(1)))
13981    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
13982
13983  return SDValue();
13984}
13985
13986/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
13987static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
13988                                   const X86Subtarget *Subtarget) {
13989  LoadSDNode *Ld = cast<LoadSDNode>(N);
13990  EVT RegVT = Ld->getValueType(0);
13991  EVT MemVT = Ld->getMemoryVT();
13992  DebugLoc dl = Ld->getDebugLoc();
13993  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13994
13995  ISD::LoadExtType Ext = Ld->getExtensionType();
13996
13997  // If this is a vector EXT Load then attempt to optimize it using a
13998  // shuffle. We need SSE4 for the shuffles.
13999  // TODO: It is possible to support ZExt by zeroing the undef values
14000  // during the shuffle phase or after the shuffle.
14001  if (RegVT.isVector() && Ext == ISD::EXTLOAD && Subtarget->hasSSE41()) {
14002    assert(MemVT != RegVT && "Cannot extend to the same type");
14003    assert(MemVT.isVector() && "Must load a vector from memory");
14004
14005    unsigned NumElems = RegVT.getVectorNumElements();
14006    unsigned RegSz = RegVT.getSizeInBits();
14007    unsigned MemSz = MemVT.getSizeInBits();
14008    assert(RegSz > MemSz && "Register size must be greater than the mem size");
14009    // All sizes must be a power of two
14010    if (!isPowerOf2_32(RegSz * MemSz * NumElems)) return SDValue();
14011
14012    // Attempt to load the original value using a single load op.
14013    // Find a scalar type which is equal to the loaded word size.
14014    MVT SclrLoadTy = MVT::i8;
14015    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14016         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14017      MVT Tp = (MVT::SimpleValueType)tp;
14018      if (TLI.isTypeLegal(Tp) &&  Tp.getSizeInBits() == MemSz) {
14019        SclrLoadTy = Tp;
14020        break;
14021      }
14022    }
14023
14024    // Proceed if a load word is found.
14025    if (SclrLoadTy.getSizeInBits() != MemSz) return SDValue();
14026
14027    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
14028      RegSz/SclrLoadTy.getSizeInBits());
14029
14030    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
14031                                  RegSz/MemVT.getScalarType().getSizeInBits());
14032    // Can't shuffle using an illegal type.
14033    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
14034
14035    // Perform a single load.
14036    SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
14037                                  Ld->getBasePtr(),
14038                                  Ld->getPointerInfo(), Ld->isVolatile(),
14039                                  Ld->isNonTemporal(), Ld->isInvariant(),
14040                                  Ld->getAlignment());
14041
14042    // Insert the word loaded into a vector.
14043    SDValue ScalarInVector = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
14044      LoadUnitVecVT, ScalarLoad);
14045
14046    // Bitcast the loaded value to a vector of the original element type, in
14047    // the size of the target vector type.
14048    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, ScalarInVector);
14049    unsigned SizeRatio = RegSz/MemSz;
14050
14051    // Redistribute the loaded elements into the different locations.
14052    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14053    for (unsigned i = 0; i < NumElems; i++) ShuffleVec[i*SizeRatio] = i;
14054
14055    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
14056                                DAG.getUNDEF(SlicedVec.getValueType()),
14057                                ShuffleVec.data());
14058
14059    // Bitcast to the requested type.
14060    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
14061    // Replace the original load with the new sequence
14062    // and return the new chain.
14063    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Shuff);
14064    return SDValue(ScalarLoad.getNode(), 1);
14065  }
14066
14067  return SDValue();
14068}
14069
14070/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
14071static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
14072                                   const X86Subtarget *Subtarget) {
14073  StoreSDNode *St = cast<StoreSDNode>(N);
14074  EVT VT = St->getValue().getValueType();
14075  EVT StVT = St->getMemoryVT();
14076  DebugLoc dl = St->getDebugLoc();
14077  SDValue StoredVal = St->getOperand(1);
14078  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14079
14080  // If we are saving a concatination of two XMM registers, perform two stores.
14081  // This is better in Sandy Bridge cause one 256-bit mem op is done via two
14082  // 128-bit ones. If in the future the cost becomes only one memory access the
14083  // first version would be better.
14084  if (VT.getSizeInBits() == 256 &&
14085    StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
14086    StoredVal.getNumOperands() == 2) {
14087
14088    SDValue Value0 = StoredVal.getOperand(0);
14089    SDValue Value1 = StoredVal.getOperand(1);
14090
14091    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
14092    SDValue Ptr0 = St->getBasePtr();
14093    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
14094
14095    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
14096                                St->getPointerInfo(), St->isVolatile(),
14097                                St->isNonTemporal(), St->getAlignment());
14098    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
14099                                St->getPointerInfo(), St->isVolatile(),
14100                                St->isNonTemporal(), St->getAlignment());
14101    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
14102  }
14103
14104  // Optimize trunc store (of multiple scalars) to shuffle and store.
14105  // First, pack all of the elements in one place. Next, store to memory
14106  // in fewer chunks.
14107  if (St->isTruncatingStore() && VT.isVector()) {
14108    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14109    unsigned NumElems = VT.getVectorNumElements();
14110    assert(StVT != VT && "Cannot truncate to the same type");
14111    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
14112    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
14113
14114    // From, To sizes and ElemCount must be pow of two
14115    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
14116    // We are going to use the original vector elt for storing.
14117    // Accumulated smaller vector elements must be a multiple of the store size.
14118    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
14119
14120    unsigned SizeRatio  = FromSz / ToSz;
14121
14122    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
14123
14124    // Create a type on which we perform the shuffle
14125    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
14126            StVT.getScalarType(), NumElems*SizeRatio);
14127
14128    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
14129
14130    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
14131    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14132    for (unsigned i = 0; i < NumElems; i++ ) ShuffleVec[i] = i * SizeRatio;
14133
14134    // Can't shuffle using an illegal type
14135    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
14136
14137    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
14138                                DAG.getUNDEF(WideVec.getValueType()),
14139                                ShuffleVec.data());
14140    // At this point all of the data is stored at the bottom of the
14141    // register. We now need to save it to mem.
14142
14143    // Find the largest store unit
14144    MVT StoreType = MVT::i8;
14145    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14146         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14147      MVT Tp = (MVT::SimpleValueType)tp;
14148      if (TLI.isTypeLegal(Tp) && StoreType.getSizeInBits() < NumElems * ToSz)
14149        StoreType = Tp;
14150    }
14151
14152    // Bitcast the original vector into a vector of store-size units
14153    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
14154            StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
14155    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
14156    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
14157    SmallVector<SDValue, 8> Chains;
14158    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
14159                                        TLI.getPointerTy());
14160    SDValue Ptr = St->getBasePtr();
14161
14162    // Perform one or more big stores into memory.
14163    for (unsigned i = 0; i < (ToSz*NumElems)/StoreType.getSizeInBits() ; i++) {
14164      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
14165                                   StoreType, ShuffWide,
14166                                   DAG.getIntPtrConstant(i));
14167      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
14168                                St->getPointerInfo(), St->isVolatile(),
14169                                St->isNonTemporal(), St->getAlignment());
14170      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14171      Chains.push_back(Ch);
14172    }
14173
14174    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
14175                               Chains.size());
14176  }
14177
14178
14179  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
14180  // the FP state in cases where an emms may be missing.
14181  // A preferable solution to the general problem is to figure out the right
14182  // places to insert EMMS.  This qualifies as a quick hack.
14183
14184  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
14185  if (VT.getSizeInBits() != 64)
14186    return SDValue();
14187
14188  const Function *F = DAG.getMachineFunction().getFunction();
14189  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
14190  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
14191                     && Subtarget->hasXMMInt();
14192  if ((VT.isVector() ||
14193       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
14194      isa<LoadSDNode>(St->getValue()) &&
14195      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
14196      St->getChain().hasOneUse() && !St->isVolatile()) {
14197    SDNode* LdVal = St->getValue().getNode();
14198    LoadSDNode *Ld = 0;
14199    int TokenFactorIndex = -1;
14200    SmallVector<SDValue, 8> Ops;
14201    SDNode* ChainVal = St->getChain().getNode();
14202    // Must be a store of a load.  We currently handle two cases:  the load
14203    // is a direct child, and it's under an intervening TokenFactor.  It is
14204    // possible to dig deeper under nested TokenFactors.
14205    if (ChainVal == LdVal)
14206      Ld = cast<LoadSDNode>(St->getChain());
14207    else if (St->getValue().hasOneUse() &&
14208             ChainVal->getOpcode() == ISD::TokenFactor) {
14209      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
14210        if (ChainVal->getOperand(i).getNode() == LdVal) {
14211          TokenFactorIndex = i;
14212          Ld = cast<LoadSDNode>(St->getValue());
14213        } else
14214          Ops.push_back(ChainVal->getOperand(i));
14215      }
14216    }
14217
14218    if (!Ld || !ISD::isNormalLoad(Ld))
14219      return SDValue();
14220
14221    // If this is not the MMX case, i.e. we are just turning i64 load/store
14222    // into f64 load/store, avoid the transformation if there are multiple
14223    // uses of the loaded value.
14224    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
14225      return SDValue();
14226
14227    DebugLoc LdDL = Ld->getDebugLoc();
14228    DebugLoc StDL = N->getDebugLoc();
14229    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
14230    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
14231    // pair instead.
14232    if (Subtarget->is64Bit() || F64IsLegal) {
14233      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
14234      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
14235                                  Ld->getPointerInfo(), Ld->isVolatile(),
14236                                  Ld->isNonTemporal(), Ld->isInvariant(),
14237                                  Ld->getAlignment());
14238      SDValue NewChain = NewLd.getValue(1);
14239      if (TokenFactorIndex != -1) {
14240        Ops.push_back(NewChain);
14241        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14242                               Ops.size());
14243      }
14244      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
14245                          St->getPointerInfo(),
14246                          St->isVolatile(), St->isNonTemporal(),
14247                          St->getAlignment());
14248    }
14249
14250    // Otherwise, lower to two pairs of 32-bit loads / stores.
14251    SDValue LoAddr = Ld->getBasePtr();
14252    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
14253                                 DAG.getConstant(4, MVT::i32));
14254
14255    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
14256                               Ld->getPointerInfo(),
14257                               Ld->isVolatile(), Ld->isNonTemporal(),
14258                               Ld->isInvariant(), Ld->getAlignment());
14259    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
14260                               Ld->getPointerInfo().getWithOffset(4),
14261                               Ld->isVolatile(), Ld->isNonTemporal(),
14262                               Ld->isInvariant(),
14263                               MinAlign(Ld->getAlignment(), 4));
14264
14265    SDValue NewChain = LoLd.getValue(1);
14266    if (TokenFactorIndex != -1) {
14267      Ops.push_back(LoLd);
14268      Ops.push_back(HiLd);
14269      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14270                             Ops.size());
14271    }
14272
14273    LoAddr = St->getBasePtr();
14274    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
14275                         DAG.getConstant(4, MVT::i32));
14276
14277    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
14278                                St->getPointerInfo(),
14279                                St->isVolatile(), St->isNonTemporal(),
14280                                St->getAlignment());
14281    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
14282                                St->getPointerInfo().getWithOffset(4),
14283                                St->isVolatile(),
14284                                St->isNonTemporal(),
14285                                MinAlign(St->getAlignment(), 4));
14286    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
14287  }
14288  return SDValue();
14289}
14290
14291/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
14292/// and return the operands for the horizontal operation in LHS and RHS.  A
14293/// horizontal operation performs the binary operation on successive elements
14294/// of its first operand, then on successive elements of its second operand,
14295/// returning the resulting values in a vector.  For example, if
14296///   A = < float a0, float a1, float a2, float a3 >
14297/// and
14298///   B = < float b0, float b1, float b2, float b3 >
14299/// then the result of doing a horizontal operation on A and B is
14300///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
14301/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
14302/// A horizontal-op B, for some already available A and B, and if so then LHS is
14303/// set to A, RHS to B, and the routine returns 'true'.
14304/// Note that the binary operation should have the property that if one of the
14305/// operands is UNDEF then the result is UNDEF.
14306static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool isCommutative) {
14307  // Look for the following pattern: if
14308  //   A = < float a0, float a1, float a2, float a3 >
14309  //   B = < float b0, float b1, float b2, float b3 >
14310  // and
14311  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
14312  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
14313  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
14314  // which is A horizontal-op B.
14315
14316  // At least one of the operands should be a vector shuffle.
14317  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
14318      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
14319    return false;
14320
14321  EVT VT = LHS.getValueType();
14322  unsigned N = VT.getVectorNumElements();
14323
14324  // View LHS in the form
14325  //   LHS = VECTOR_SHUFFLE A, B, LMask
14326  // If LHS is not a shuffle then pretend it is the shuffle
14327  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
14328  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
14329  // type VT.
14330  SDValue A, B;
14331  SmallVector<int, 8> LMask(N);
14332  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14333    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
14334      A = LHS.getOperand(0);
14335    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
14336      B = LHS.getOperand(1);
14337    cast<ShuffleVectorSDNode>(LHS.getNode())->getMask(LMask);
14338  } else {
14339    if (LHS.getOpcode() != ISD::UNDEF)
14340      A = LHS;
14341    for (unsigned i = 0; i != N; ++i)
14342      LMask[i] = i;
14343  }
14344
14345  // Likewise, view RHS in the form
14346  //   RHS = VECTOR_SHUFFLE C, D, RMask
14347  SDValue C, D;
14348  SmallVector<int, 8> RMask(N);
14349  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14350    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
14351      C = RHS.getOperand(0);
14352    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
14353      D = RHS.getOperand(1);
14354    cast<ShuffleVectorSDNode>(RHS.getNode())->getMask(RMask);
14355  } else {
14356    if (RHS.getOpcode() != ISD::UNDEF)
14357      C = RHS;
14358    for (unsigned i = 0; i != N; ++i)
14359      RMask[i] = i;
14360  }
14361
14362  // Check that the shuffles are both shuffling the same vectors.
14363  if (!(A == C && B == D) && !(A == D && B == C))
14364    return false;
14365
14366  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
14367  if (!A.getNode() && !B.getNode())
14368    return false;
14369
14370  // If A and B occur in reverse order in RHS, then "swap" them (which means
14371  // rewriting the mask).
14372  if (A != C)
14373    for (unsigned i = 0; i != N; ++i) {
14374      unsigned Idx = RMask[i];
14375      if (Idx < N)
14376        RMask[i] += N;
14377      else if (Idx < 2*N)
14378        RMask[i] -= N;
14379    }
14380
14381  // At this point LHS and RHS are equivalent to
14382  //   LHS = VECTOR_SHUFFLE A, B, LMask
14383  //   RHS = VECTOR_SHUFFLE A, B, RMask
14384  // Check that the masks correspond to performing a horizontal operation.
14385  for (unsigned i = 0; i != N; ++i) {
14386    unsigned LIdx = LMask[i], RIdx = RMask[i];
14387
14388    // Ignore any UNDEF components.
14389    if (LIdx >= 2*N || RIdx >= 2*N || (!A.getNode() && (LIdx < N || RIdx < N))
14390        || (!B.getNode() && (LIdx >= N || RIdx >= N)))
14391      continue;
14392
14393    // Check that successive elements are being operated on.  If not, this is
14394    // not a horizontal operation.
14395    if (!(LIdx == 2*i && RIdx == 2*i + 1) &&
14396        !(isCommutative && LIdx == 2*i + 1 && RIdx == 2*i))
14397      return false;
14398  }
14399
14400  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
14401  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
14402  return true;
14403}
14404
14405/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
14406static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
14407                                  const X86Subtarget *Subtarget) {
14408  EVT VT = N->getValueType(0);
14409  SDValue LHS = N->getOperand(0);
14410  SDValue RHS = N->getOperand(1);
14411
14412  // Try to synthesize horizontal adds from adds of shuffles.
14413  if ((Subtarget->hasSSE3() || Subtarget->hasAVX()) &&
14414      (VT == MVT::v4f32 || VT == MVT::v2f64) &&
14415      isHorizontalBinOp(LHS, RHS, true))
14416    return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
14417  return SDValue();
14418}
14419
14420/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
14421static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
14422                                  const X86Subtarget *Subtarget) {
14423  EVT VT = N->getValueType(0);
14424  SDValue LHS = N->getOperand(0);
14425  SDValue RHS = N->getOperand(1);
14426
14427  // Try to synthesize horizontal subs from subs of shuffles.
14428  if ((Subtarget->hasSSE3() || Subtarget->hasAVX()) &&
14429      (VT == MVT::v4f32 || VT == MVT::v2f64) &&
14430      isHorizontalBinOp(LHS, RHS, false))
14431    return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
14432  return SDValue();
14433}
14434
14435/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
14436/// X86ISD::FXOR nodes.
14437static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
14438  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
14439  // F[X]OR(0.0, x) -> x
14440  // F[X]OR(x, 0.0) -> x
14441  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14442    if (C->getValueAPF().isPosZero())
14443      return N->getOperand(1);
14444  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14445    if (C->getValueAPF().isPosZero())
14446      return N->getOperand(0);
14447  return SDValue();
14448}
14449
14450/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
14451static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
14452  // FAND(0.0, x) -> 0.0
14453  // FAND(x, 0.0) -> 0.0
14454  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14455    if (C->getValueAPF().isPosZero())
14456      return N->getOperand(0);
14457  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14458    if (C->getValueAPF().isPosZero())
14459      return N->getOperand(1);
14460  return SDValue();
14461}
14462
14463static SDValue PerformBTCombine(SDNode *N,
14464                                SelectionDAG &DAG,
14465                                TargetLowering::DAGCombinerInfo &DCI) {
14466  // BT ignores high bits in the bit index operand.
14467  SDValue Op1 = N->getOperand(1);
14468  if (Op1.hasOneUse()) {
14469    unsigned BitWidth = Op1.getValueSizeInBits();
14470    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
14471    APInt KnownZero, KnownOne;
14472    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
14473                                          !DCI.isBeforeLegalizeOps());
14474    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14475    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
14476        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
14477      DCI.CommitTargetLoweringOpt(TLO);
14478  }
14479  return SDValue();
14480}
14481
14482static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
14483  SDValue Op = N->getOperand(0);
14484  if (Op.getOpcode() == ISD::BITCAST)
14485    Op = Op.getOperand(0);
14486  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
14487  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
14488      VT.getVectorElementType().getSizeInBits() ==
14489      OpVT.getVectorElementType().getSizeInBits()) {
14490    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
14491  }
14492  return SDValue();
14493}
14494
14495static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
14496  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
14497  //           (and (i32 x86isd::setcc_carry), 1)
14498  // This eliminates the zext. This transformation is necessary because
14499  // ISD::SETCC is always legalized to i8.
14500  DebugLoc dl = N->getDebugLoc();
14501  SDValue N0 = N->getOperand(0);
14502  EVT VT = N->getValueType(0);
14503  if (N0.getOpcode() == ISD::AND &&
14504      N0.hasOneUse() &&
14505      N0.getOperand(0).hasOneUse()) {
14506    SDValue N00 = N0.getOperand(0);
14507    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
14508      return SDValue();
14509    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
14510    if (!C || C->getZExtValue() != 1)
14511      return SDValue();
14512    return DAG.getNode(ISD::AND, dl, VT,
14513                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
14514                                   N00.getOperand(0), N00.getOperand(1)),
14515                       DAG.getConstant(1, VT));
14516  }
14517
14518  return SDValue();
14519}
14520
14521// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
14522static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
14523  unsigned X86CC = N->getConstantOperandVal(0);
14524  SDValue EFLAG = N->getOperand(1);
14525  DebugLoc DL = N->getDebugLoc();
14526
14527  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
14528  // a zext and produces an all-ones bit which is more useful than 0/1 in some
14529  // cases.
14530  if (X86CC == X86::COND_B)
14531    return DAG.getNode(ISD::AND, DL, MVT::i8,
14532                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
14533                                   DAG.getConstant(X86CC, MVT::i8), EFLAG),
14534                       DAG.getConstant(1, MVT::i8));
14535
14536  return SDValue();
14537}
14538
14539static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
14540                                        const X86TargetLowering *XTLI) {
14541  SDValue Op0 = N->getOperand(0);
14542  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
14543  // a 32-bit target where SSE doesn't support i64->FP operations.
14544  if (Op0.getOpcode() == ISD::LOAD) {
14545    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
14546    EVT VT = Ld->getValueType(0);
14547    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
14548        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
14549        !XTLI->getSubtarget()->is64Bit() &&
14550        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
14551      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
14552                                          Ld->getChain(), Op0, DAG);
14553      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
14554      return FILDChain;
14555    }
14556  }
14557  return SDValue();
14558}
14559
14560// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
14561static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
14562                                 X86TargetLowering::DAGCombinerInfo &DCI) {
14563  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
14564  // the result is either zero or one (depending on the input carry bit).
14565  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
14566  if (X86::isZeroNode(N->getOperand(0)) &&
14567      X86::isZeroNode(N->getOperand(1)) &&
14568      // We don't have a good way to replace an EFLAGS use, so only do this when
14569      // dead right now.
14570      SDValue(N, 1).use_empty()) {
14571    DebugLoc DL = N->getDebugLoc();
14572    EVT VT = N->getValueType(0);
14573    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
14574    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
14575                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
14576                                           DAG.getConstant(X86::COND_B,MVT::i8),
14577                                           N->getOperand(2)),
14578                               DAG.getConstant(1, VT));
14579    return DCI.CombineTo(N, Res1, CarryOut);
14580  }
14581
14582  return SDValue();
14583}
14584
14585// fold (add Y, (sete  X, 0)) -> adc  0, Y
14586//      (add Y, (setne X, 0)) -> sbb -1, Y
14587//      (sub (sete  X, 0), Y) -> sbb  0, Y
14588//      (sub (setne X, 0), Y) -> adc -1, Y
14589static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
14590  DebugLoc DL = N->getDebugLoc();
14591
14592  // Look through ZExts.
14593  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
14594  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
14595    return SDValue();
14596
14597  SDValue SetCC = Ext.getOperand(0);
14598  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
14599    return SDValue();
14600
14601  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
14602  if (CC != X86::COND_E && CC != X86::COND_NE)
14603    return SDValue();
14604
14605  SDValue Cmp = SetCC.getOperand(1);
14606  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
14607      !X86::isZeroNode(Cmp.getOperand(1)) ||
14608      !Cmp.getOperand(0).getValueType().isInteger())
14609    return SDValue();
14610
14611  SDValue CmpOp0 = Cmp.getOperand(0);
14612  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
14613                               DAG.getConstant(1, CmpOp0.getValueType()));
14614
14615  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
14616  if (CC == X86::COND_NE)
14617    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
14618                       DL, OtherVal.getValueType(), OtherVal,
14619                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
14620  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
14621                     DL, OtherVal.getValueType(), OtherVal,
14622                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
14623}
14624
14625static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG) {
14626  SDValue Op0 = N->getOperand(0);
14627  SDValue Op1 = N->getOperand(1);
14628
14629  // X86 can't encode an immediate LHS of a sub. See if we can push the
14630  // negation into a preceding instruction.
14631  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
14632    // If the RHS of the sub is a XOR with one use and a constant, invert the
14633    // immediate. Then add one to the LHS of the sub so we can turn
14634    // X-Y -> X+~Y+1, saving one register.
14635    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
14636        isa<ConstantSDNode>(Op1.getOperand(1))) {
14637      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
14638      EVT VT = Op0.getValueType();
14639      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
14640                                   Op1.getOperand(0),
14641                                   DAG.getConstant(~XorC, VT));
14642      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
14643                         DAG.getConstant(C->getAPIntValue()+1, VT));
14644    }
14645  }
14646
14647  return OptimizeConditionalInDecrement(N, DAG);
14648}
14649
14650SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
14651                                             DAGCombinerInfo &DCI) const {
14652  SelectionDAG &DAG = DCI.DAG;
14653  switch (N->getOpcode()) {
14654  default: break;
14655  case ISD::EXTRACT_VECTOR_ELT:
14656    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
14657  case ISD::VSELECT:
14658  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
14659  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
14660  case ISD::ADD:            return OptimizeConditionalInDecrement(N, DAG);
14661  case ISD::SUB:            return PerformSubCombine(N, DAG);
14662  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
14663  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
14664  case ISD::SHL:
14665  case ISD::SRA:
14666  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
14667  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
14668  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
14669  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
14670  case ISD::LOAD:           return PerformLOADCombine(N, DAG, Subtarget);
14671  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
14672  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
14673  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
14674  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
14675  case X86ISD::FXOR:
14676  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
14677  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
14678  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
14679  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
14680  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
14681  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
14682  case X86ISD::SHUFPS:      // Handle all target specific shuffles
14683  case X86ISD::SHUFPD:
14684  case X86ISD::PALIGN:
14685  case X86ISD::PUNPCKHBW:
14686  case X86ISD::PUNPCKHWD:
14687  case X86ISD::PUNPCKHDQ:
14688  case X86ISD::PUNPCKHQDQ:
14689  case X86ISD::UNPCKHPS:
14690  case X86ISD::UNPCKHPD:
14691  case X86ISD::VUNPCKHPSY:
14692  case X86ISD::VUNPCKHPDY:
14693  case X86ISD::PUNPCKLBW:
14694  case X86ISD::PUNPCKLWD:
14695  case X86ISD::PUNPCKLDQ:
14696  case X86ISD::PUNPCKLQDQ:
14697  case X86ISD::UNPCKLPS:
14698  case X86ISD::UNPCKLPD:
14699  case X86ISD::VUNPCKLPSY:
14700  case X86ISD::VUNPCKLPDY:
14701  case X86ISD::MOVHLPS:
14702  case X86ISD::MOVLHPS:
14703  case X86ISD::PSHUFD:
14704  case X86ISD::PSHUFHW:
14705  case X86ISD::PSHUFLW:
14706  case X86ISD::MOVSS:
14707  case X86ISD::MOVSD:
14708  case X86ISD::VPERMILPS:
14709  case X86ISD::VPERMILPSY:
14710  case X86ISD::VPERMILPD:
14711  case X86ISD::VPERMILPDY:
14712  case X86ISD::VPERM2F128:
14713  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
14714  }
14715
14716  return SDValue();
14717}
14718
14719/// isTypeDesirableForOp - Return true if the target has native support for
14720/// the specified value type and it is 'desirable' to use the type for the
14721/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
14722/// instruction encodings are longer and some i16 instructions are slow.
14723bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
14724  if (!isTypeLegal(VT))
14725    return false;
14726  if (VT != MVT::i16)
14727    return true;
14728
14729  switch (Opc) {
14730  default:
14731    return true;
14732  case ISD::LOAD:
14733  case ISD::SIGN_EXTEND:
14734  case ISD::ZERO_EXTEND:
14735  case ISD::ANY_EXTEND:
14736  case ISD::SHL:
14737  case ISD::SRL:
14738  case ISD::SUB:
14739  case ISD::ADD:
14740  case ISD::MUL:
14741  case ISD::AND:
14742  case ISD::OR:
14743  case ISD::XOR:
14744    return false;
14745  }
14746}
14747
14748/// IsDesirableToPromoteOp - This method query the target whether it is
14749/// beneficial for dag combiner to promote the specified node. If true, it
14750/// should return the desired promotion type by reference.
14751bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
14752  EVT VT = Op.getValueType();
14753  if (VT != MVT::i16)
14754    return false;
14755
14756  bool Promote = false;
14757  bool Commute = false;
14758  switch (Op.getOpcode()) {
14759  default: break;
14760  case ISD::LOAD: {
14761    LoadSDNode *LD = cast<LoadSDNode>(Op);
14762    // If the non-extending load has a single use and it's not live out, then it
14763    // might be folded.
14764    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
14765                                                     Op.hasOneUse()*/) {
14766      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
14767             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
14768        // The only case where we'd want to promote LOAD (rather then it being
14769        // promoted as an operand is when it's only use is liveout.
14770        if (UI->getOpcode() != ISD::CopyToReg)
14771          return false;
14772      }
14773    }
14774    Promote = true;
14775    break;
14776  }
14777  case ISD::SIGN_EXTEND:
14778  case ISD::ZERO_EXTEND:
14779  case ISD::ANY_EXTEND:
14780    Promote = true;
14781    break;
14782  case ISD::SHL:
14783  case ISD::SRL: {
14784    SDValue N0 = Op.getOperand(0);
14785    // Look out for (store (shl (load), x)).
14786    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
14787      return false;
14788    Promote = true;
14789    break;
14790  }
14791  case ISD::ADD:
14792  case ISD::MUL:
14793  case ISD::AND:
14794  case ISD::OR:
14795  case ISD::XOR:
14796    Commute = true;
14797    // fallthrough
14798  case ISD::SUB: {
14799    SDValue N0 = Op.getOperand(0);
14800    SDValue N1 = Op.getOperand(1);
14801    if (!Commute && MayFoldLoad(N1))
14802      return false;
14803    // Avoid disabling potential load folding opportunities.
14804    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
14805      return false;
14806    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
14807      return false;
14808    Promote = true;
14809  }
14810  }
14811
14812  PVT = MVT::i32;
14813  return Promote;
14814}
14815
14816//===----------------------------------------------------------------------===//
14817//                           X86 Inline Assembly Support
14818//===----------------------------------------------------------------------===//
14819
14820bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
14821  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
14822
14823  std::string AsmStr = IA->getAsmString();
14824
14825  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
14826  SmallVector<StringRef, 4> AsmPieces;
14827  SplitString(AsmStr, AsmPieces, ";\n");
14828
14829  switch (AsmPieces.size()) {
14830  default: return false;
14831  case 1:
14832    AsmStr = AsmPieces[0];
14833    AsmPieces.clear();
14834    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
14835
14836    // FIXME: this should verify that we are targeting a 486 or better.  If not,
14837    // we will turn this bswap into something that will be lowered to logical ops
14838    // instead of emitting the bswap asm.  For now, we don't support 486 or lower
14839    // so don't worry about this.
14840    // bswap $0
14841    if (AsmPieces.size() == 2 &&
14842        (AsmPieces[0] == "bswap" ||
14843         AsmPieces[0] == "bswapq" ||
14844         AsmPieces[0] == "bswapl") &&
14845        (AsmPieces[1] == "$0" ||
14846         AsmPieces[1] == "${0:q}")) {
14847      // No need to check constraints, nothing other than the equivalent of
14848      // "=r,0" would be valid here.
14849      IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14850      if (!Ty || Ty->getBitWidth() % 16 != 0)
14851        return false;
14852      return IntrinsicLowering::LowerToByteSwap(CI);
14853    }
14854    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
14855    if (CI->getType()->isIntegerTy(16) &&
14856        AsmPieces.size() == 3 &&
14857        (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
14858        AsmPieces[1] == "$$8," &&
14859        AsmPieces[2] == "${0:w}" &&
14860        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
14861      AsmPieces.clear();
14862      const std::string &ConstraintsStr = IA->getConstraintString();
14863      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
14864      std::sort(AsmPieces.begin(), AsmPieces.end());
14865      if (AsmPieces.size() == 4 &&
14866          AsmPieces[0] == "~{cc}" &&
14867          AsmPieces[1] == "~{dirflag}" &&
14868          AsmPieces[2] == "~{flags}" &&
14869          AsmPieces[3] == "~{fpsr}") {
14870        IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14871        if (!Ty || Ty->getBitWidth() % 16 != 0)
14872          return false;
14873        return IntrinsicLowering::LowerToByteSwap(CI);
14874      }
14875    }
14876    break;
14877  case 3:
14878    if (CI->getType()->isIntegerTy(32) &&
14879        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
14880      SmallVector<StringRef, 4> Words;
14881      SplitString(AsmPieces[0], Words, " \t,");
14882      if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
14883          Words[2] == "${0:w}") {
14884        Words.clear();
14885        SplitString(AsmPieces[1], Words, " \t,");
14886        if (Words.size() == 3 && Words[0] == "rorl" && Words[1] == "$$16" &&
14887            Words[2] == "$0") {
14888          Words.clear();
14889          SplitString(AsmPieces[2], Words, " \t,");
14890          if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
14891              Words[2] == "${0:w}") {
14892            AsmPieces.clear();
14893            const std::string &ConstraintsStr = IA->getConstraintString();
14894            SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
14895            std::sort(AsmPieces.begin(), AsmPieces.end());
14896            if (AsmPieces.size() == 4 &&
14897                AsmPieces[0] == "~{cc}" &&
14898                AsmPieces[1] == "~{dirflag}" &&
14899                AsmPieces[2] == "~{flags}" &&
14900                AsmPieces[3] == "~{fpsr}") {
14901              IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14902              if (!Ty || Ty->getBitWidth() % 16 != 0)
14903                return false;
14904              return IntrinsicLowering::LowerToByteSwap(CI);
14905            }
14906          }
14907        }
14908      }
14909    }
14910
14911    if (CI->getType()->isIntegerTy(64)) {
14912      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
14913      if (Constraints.size() >= 2 &&
14914          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
14915          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
14916        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
14917        SmallVector<StringRef, 4> Words;
14918        SplitString(AsmPieces[0], Words, " \t");
14919        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
14920          Words.clear();
14921          SplitString(AsmPieces[1], Words, " \t");
14922          if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
14923            Words.clear();
14924            SplitString(AsmPieces[2], Words, " \t,");
14925            if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
14926                Words[2] == "%edx") {
14927              IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14928              if (!Ty || Ty->getBitWidth() % 16 != 0)
14929                return false;
14930              return IntrinsicLowering::LowerToByteSwap(CI);
14931            }
14932          }
14933        }
14934      }
14935    }
14936    break;
14937  }
14938  return false;
14939}
14940
14941
14942
14943/// getConstraintType - Given a constraint letter, return the type of
14944/// constraint it is for this target.
14945X86TargetLowering::ConstraintType
14946X86TargetLowering::getConstraintType(const std::string &Constraint) const {
14947  if (Constraint.size() == 1) {
14948    switch (Constraint[0]) {
14949    case 'R':
14950    case 'q':
14951    case 'Q':
14952    case 'f':
14953    case 't':
14954    case 'u':
14955    case 'y':
14956    case 'x':
14957    case 'Y':
14958    case 'l':
14959      return C_RegisterClass;
14960    case 'a':
14961    case 'b':
14962    case 'c':
14963    case 'd':
14964    case 'S':
14965    case 'D':
14966    case 'A':
14967      return C_Register;
14968    case 'I':
14969    case 'J':
14970    case 'K':
14971    case 'L':
14972    case 'M':
14973    case 'N':
14974    case 'G':
14975    case 'C':
14976    case 'e':
14977    case 'Z':
14978      return C_Other;
14979    default:
14980      break;
14981    }
14982  }
14983  return TargetLowering::getConstraintType(Constraint);
14984}
14985
14986/// Examine constraint type and operand type and determine a weight value.
14987/// This object must already have been set up with the operand type
14988/// and the current alternative constraint selected.
14989TargetLowering::ConstraintWeight
14990  X86TargetLowering::getSingleConstraintMatchWeight(
14991    AsmOperandInfo &info, const char *constraint) const {
14992  ConstraintWeight weight = CW_Invalid;
14993  Value *CallOperandVal = info.CallOperandVal;
14994    // If we don't have a value, we can't do a match,
14995    // but allow it at the lowest weight.
14996  if (CallOperandVal == NULL)
14997    return CW_Default;
14998  Type *type = CallOperandVal->getType();
14999  // Look at the constraint type.
15000  switch (*constraint) {
15001  default:
15002    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
15003  case 'R':
15004  case 'q':
15005  case 'Q':
15006  case 'a':
15007  case 'b':
15008  case 'c':
15009  case 'd':
15010  case 'S':
15011  case 'D':
15012  case 'A':
15013    if (CallOperandVal->getType()->isIntegerTy())
15014      weight = CW_SpecificReg;
15015    break;
15016  case 'f':
15017  case 't':
15018  case 'u':
15019      if (type->isFloatingPointTy())
15020        weight = CW_SpecificReg;
15021      break;
15022  case 'y':
15023      if (type->isX86_MMXTy() && Subtarget->hasMMX())
15024        weight = CW_SpecificReg;
15025      break;
15026  case 'x':
15027  case 'Y':
15028    if ((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasXMM())
15029      weight = CW_Register;
15030    break;
15031  case 'I':
15032    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
15033      if (C->getZExtValue() <= 31)
15034        weight = CW_Constant;
15035    }
15036    break;
15037  case 'J':
15038    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15039      if (C->getZExtValue() <= 63)
15040        weight = CW_Constant;
15041    }
15042    break;
15043  case 'K':
15044    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15045      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
15046        weight = CW_Constant;
15047    }
15048    break;
15049  case 'L':
15050    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15051      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
15052        weight = CW_Constant;
15053    }
15054    break;
15055  case 'M':
15056    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15057      if (C->getZExtValue() <= 3)
15058        weight = CW_Constant;
15059    }
15060    break;
15061  case 'N':
15062    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15063      if (C->getZExtValue() <= 0xff)
15064        weight = CW_Constant;
15065    }
15066    break;
15067  case 'G':
15068  case 'C':
15069    if (dyn_cast<ConstantFP>(CallOperandVal)) {
15070      weight = CW_Constant;
15071    }
15072    break;
15073  case 'e':
15074    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15075      if ((C->getSExtValue() >= -0x80000000LL) &&
15076          (C->getSExtValue() <= 0x7fffffffLL))
15077        weight = CW_Constant;
15078    }
15079    break;
15080  case 'Z':
15081    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15082      if (C->getZExtValue() <= 0xffffffff)
15083        weight = CW_Constant;
15084    }
15085    break;
15086  }
15087  return weight;
15088}
15089
15090/// LowerXConstraint - try to replace an X constraint, which matches anything,
15091/// with another that has more specific requirements based on the type of the
15092/// corresponding operand.
15093const char *X86TargetLowering::
15094LowerXConstraint(EVT ConstraintVT) const {
15095  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
15096  // 'f' like normal targets.
15097  if (ConstraintVT.isFloatingPoint()) {
15098    if (Subtarget->hasXMMInt())
15099      return "Y";
15100    if (Subtarget->hasXMM())
15101      return "x";
15102  }
15103
15104  return TargetLowering::LowerXConstraint(ConstraintVT);
15105}
15106
15107/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15108/// vector.  If it is invalid, don't add anything to Ops.
15109void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
15110                                                     std::string &Constraint,
15111                                                     std::vector<SDValue>&Ops,
15112                                                     SelectionDAG &DAG) const {
15113  SDValue Result(0, 0);
15114
15115  // Only support length 1 constraints for now.
15116  if (Constraint.length() > 1) return;
15117
15118  char ConstraintLetter = Constraint[0];
15119  switch (ConstraintLetter) {
15120  default: break;
15121  case 'I':
15122    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15123      if (C->getZExtValue() <= 31) {
15124        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15125        break;
15126      }
15127    }
15128    return;
15129  case 'J':
15130    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15131      if (C->getZExtValue() <= 63) {
15132        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15133        break;
15134      }
15135    }
15136    return;
15137  case 'K':
15138    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15139      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
15140        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15141        break;
15142      }
15143    }
15144    return;
15145  case 'N':
15146    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15147      if (C->getZExtValue() <= 255) {
15148        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15149        break;
15150      }
15151    }
15152    return;
15153  case 'e': {
15154    // 32-bit signed value
15155    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15156      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15157                                           C->getSExtValue())) {
15158        // Widen to 64 bits here to get it sign extended.
15159        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
15160        break;
15161      }
15162    // FIXME gcc accepts some relocatable values here too, but only in certain
15163    // memory models; it's complicated.
15164    }
15165    return;
15166  }
15167  case 'Z': {
15168    // 32-bit unsigned value
15169    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15170      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15171                                           C->getZExtValue())) {
15172        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15173        break;
15174      }
15175    }
15176    // FIXME gcc accepts some relocatable values here too, but only in certain
15177    // memory models; it's complicated.
15178    return;
15179  }
15180  case 'i': {
15181    // Literal immediates are always ok.
15182    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
15183      // Widen to 64 bits here to get it sign extended.
15184      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
15185      break;
15186    }
15187
15188    // In any sort of PIC mode addresses need to be computed at runtime by
15189    // adding in a register or some sort of table lookup.  These can't
15190    // be used as immediates.
15191    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
15192      return;
15193
15194    // If we are in non-pic codegen mode, we allow the address of a global (with
15195    // an optional displacement) to be used with 'i'.
15196    GlobalAddressSDNode *GA = 0;
15197    int64_t Offset = 0;
15198
15199    // Match either (GA), (GA+C), (GA+C1+C2), etc.
15200    while (1) {
15201      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
15202        Offset += GA->getOffset();
15203        break;
15204      } else if (Op.getOpcode() == ISD::ADD) {
15205        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15206          Offset += C->getZExtValue();
15207          Op = Op.getOperand(0);
15208          continue;
15209        }
15210      } else if (Op.getOpcode() == ISD::SUB) {
15211        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15212          Offset += -C->getZExtValue();
15213          Op = Op.getOperand(0);
15214          continue;
15215        }
15216      }
15217
15218      // Otherwise, this isn't something we can handle, reject it.
15219      return;
15220    }
15221
15222    const GlobalValue *GV = GA->getGlobal();
15223    // If we require an extra load to get this address, as in PIC mode, we
15224    // can't accept it.
15225    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
15226                                                        getTargetMachine())))
15227      return;
15228
15229    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
15230                                        GA->getValueType(0), Offset);
15231    break;
15232  }
15233  }
15234
15235  if (Result.getNode()) {
15236    Ops.push_back(Result);
15237    return;
15238  }
15239  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
15240}
15241
15242std::pair<unsigned, const TargetRegisterClass*>
15243X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
15244                                                EVT VT) const {
15245  // First, see if this is a constraint that directly corresponds to an LLVM
15246  // register class.
15247  if (Constraint.size() == 1) {
15248    // GCC Constraint Letters
15249    switch (Constraint[0]) {
15250    default: break;
15251      // TODO: Slight differences here in allocation order and leaving
15252      // RIP in the class. Do they matter any more here than they do
15253      // in the normal allocation?
15254    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
15255      if (Subtarget->is64Bit()) {
15256	if (VT == MVT::i32 || VT == MVT::f32)
15257	  return std::make_pair(0U, X86::GR32RegisterClass);
15258	else if (VT == MVT::i16)
15259	  return std::make_pair(0U, X86::GR16RegisterClass);
15260	else if (VT == MVT::i8 || VT == MVT::i1)
15261	  return std::make_pair(0U, X86::GR8RegisterClass);
15262	else if (VT == MVT::i64 || VT == MVT::f64)
15263	  return std::make_pair(0U, X86::GR64RegisterClass);
15264	break;
15265      }
15266      // 32-bit fallthrough
15267    case 'Q':   // Q_REGS
15268      if (VT == MVT::i32 || VT == MVT::f32)
15269	return std::make_pair(0U, X86::GR32_ABCDRegisterClass);
15270      else if (VT == MVT::i16)
15271	return std::make_pair(0U, X86::GR16_ABCDRegisterClass);
15272      else if (VT == MVT::i8 || VT == MVT::i1)
15273	return std::make_pair(0U, X86::GR8_ABCD_LRegisterClass);
15274      else if (VT == MVT::i64)
15275	return std::make_pair(0U, X86::GR64_ABCDRegisterClass);
15276      break;
15277    case 'r':   // GENERAL_REGS
15278    case 'l':   // INDEX_REGS
15279      if (VT == MVT::i8 || VT == MVT::i1)
15280        return std::make_pair(0U, X86::GR8RegisterClass);
15281      if (VT == MVT::i16)
15282        return std::make_pair(0U, X86::GR16RegisterClass);
15283      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
15284        return std::make_pair(0U, X86::GR32RegisterClass);
15285      return std::make_pair(0U, X86::GR64RegisterClass);
15286    case 'R':   // LEGACY_REGS
15287      if (VT == MVT::i8 || VT == MVT::i1)
15288        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
15289      if (VT == MVT::i16)
15290        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
15291      if (VT == MVT::i32 || !Subtarget->is64Bit())
15292        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
15293      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
15294    case 'f':  // FP Stack registers.
15295      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
15296      // value to the correct fpstack register class.
15297      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
15298        return std::make_pair(0U, X86::RFP32RegisterClass);
15299      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
15300        return std::make_pair(0U, X86::RFP64RegisterClass);
15301      return std::make_pair(0U, X86::RFP80RegisterClass);
15302    case 'y':   // MMX_REGS if MMX allowed.
15303      if (!Subtarget->hasMMX()) break;
15304      return std::make_pair(0U, X86::VR64RegisterClass);
15305    case 'Y':   // SSE_REGS if SSE2 allowed
15306      if (!Subtarget->hasXMMInt()) break;
15307      // FALL THROUGH.
15308    case 'x':   // SSE_REGS if SSE1 allowed
15309      if (!Subtarget->hasXMM()) break;
15310
15311      switch (VT.getSimpleVT().SimpleTy) {
15312      default: break;
15313      // Scalar SSE types.
15314      case MVT::f32:
15315      case MVT::i32:
15316        return std::make_pair(0U, X86::FR32RegisterClass);
15317      case MVT::f64:
15318      case MVT::i64:
15319        return std::make_pair(0U, X86::FR64RegisterClass);
15320      // Vector types.
15321      case MVT::v16i8:
15322      case MVT::v8i16:
15323      case MVT::v4i32:
15324      case MVT::v2i64:
15325      case MVT::v4f32:
15326      case MVT::v2f64:
15327        return std::make_pair(0U, X86::VR128RegisterClass);
15328      }
15329      break;
15330    }
15331  }
15332
15333  // Use the default implementation in TargetLowering to convert the register
15334  // constraint into a member of a register class.
15335  std::pair<unsigned, const TargetRegisterClass*> Res;
15336  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
15337
15338  // Not found as a standard register?
15339  if (Res.second == 0) {
15340    // Map st(0) -> st(7) -> ST0
15341    if (Constraint.size() == 7 && Constraint[0] == '{' &&
15342        tolower(Constraint[1]) == 's' &&
15343        tolower(Constraint[2]) == 't' &&
15344        Constraint[3] == '(' &&
15345        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
15346        Constraint[5] == ')' &&
15347        Constraint[6] == '}') {
15348
15349      Res.first = X86::ST0+Constraint[4]-'0';
15350      Res.second = X86::RFP80RegisterClass;
15351      return Res;
15352    }
15353
15354    // GCC allows "st(0)" to be called just plain "st".
15355    if (StringRef("{st}").equals_lower(Constraint)) {
15356      Res.first = X86::ST0;
15357      Res.second = X86::RFP80RegisterClass;
15358      return Res;
15359    }
15360
15361    // flags -> EFLAGS
15362    if (StringRef("{flags}").equals_lower(Constraint)) {
15363      Res.first = X86::EFLAGS;
15364      Res.second = X86::CCRRegisterClass;
15365      return Res;
15366    }
15367
15368    // 'A' means EAX + EDX.
15369    if (Constraint == "A") {
15370      Res.first = X86::EAX;
15371      Res.second = X86::GR32_ADRegisterClass;
15372      return Res;
15373    }
15374    return Res;
15375  }
15376
15377  // Otherwise, check to see if this is a register class of the wrong value
15378  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
15379  // turn into {ax},{dx}.
15380  if (Res.second->hasType(VT))
15381    return Res;   // Correct type already, nothing to do.
15382
15383  // All of the single-register GCC register classes map their values onto
15384  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
15385  // really want an 8-bit or 32-bit register, map to the appropriate register
15386  // class and return the appropriate register.
15387  if (Res.second == X86::GR16RegisterClass) {
15388    if (VT == MVT::i8) {
15389      unsigned DestReg = 0;
15390      switch (Res.first) {
15391      default: break;
15392      case X86::AX: DestReg = X86::AL; break;
15393      case X86::DX: DestReg = X86::DL; break;
15394      case X86::CX: DestReg = X86::CL; break;
15395      case X86::BX: DestReg = X86::BL; break;
15396      }
15397      if (DestReg) {
15398        Res.first = DestReg;
15399        Res.second = X86::GR8RegisterClass;
15400      }
15401    } else if (VT == MVT::i32) {
15402      unsigned DestReg = 0;
15403      switch (Res.first) {
15404      default: break;
15405      case X86::AX: DestReg = X86::EAX; break;
15406      case X86::DX: DestReg = X86::EDX; break;
15407      case X86::CX: DestReg = X86::ECX; break;
15408      case X86::BX: DestReg = X86::EBX; break;
15409      case X86::SI: DestReg = X86::ESI; break;
15410      case X86::DI: DestReg = X86::EDI; break;
15411      case X86::BP: DestReg = X86::EBP; break;
15412      case X86::SP: DestReg = X86::ESP; break;
15413      }
15414      if (DestReg) {
15415        Res.first = DestReg;
15416        Res.second = X86::GR32RegisterClass;
15417      }
15418    } else if (VT == MVT::i64) {
15419      unsigned DestReg = 0;
15420      switch (Res.first) {
15421      default: break;
15422      case X86::AX: DestReg = X86::RAX; break;
15423      case X86::DX: DestReg = X86::RDX; break;
15424      case X86::CX: DestReg = X86::RCX; break;
15425      case X86::BX: DestReg = X86::RBX; break;
15426      case X86::SI: DestReg = X86::RSI; break;
15427      case X86::DI: DestReg = X86::RDI; break;
15428      case X86::BP: DestReg = X86::RBP; break;
15429      case X86::SP: DestReg = X86::RSP; break;
15430      }
15431      if (DestReg) {
15432        Res.first = DestReg;
15433        Res.second = X86::GR64RegisterClass;
15434      }
15435    }
15436  } else if (Res.second == X86::FR32RegisterClass ||
15437             Res.second == X86::FR64RegisterClass ||
15438             Res.second == X86::VR128RegisterClass) {
15439    // Handle references to XMM physical registers that got mapped into the
15440    // wrong class.  This can happen with constraints like {xmm0} where the
15441    // target independent register mapper will just pick the first match it can
15442    // find, ignoring the required type.
15443    if (VT == MVT::f32)
15444      Res.second = X86::FR32RegisterClass;
15445    else if (VT == MVT::f64)
15446      Res.second = X86::FR64RegisterClass;
15447    else if (X86::VR128RegisterClass->hasType(VT))
15448      Res.second = X86::VR128RegisterClass;
15449  }
15450
15451  return Res;
15452}
15453