X86ISelLowering.cpp revision 2e06dd210102ccee4d9ae08ee01130f09ba01173
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86TargetMachine.h"
19#include "llvm/CallingConv.h"
20#include "llvm/Constants.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/Function.h"
24#include "llvm/Intrinsics.h"
25#include "llvm/ADT/BitVector.h"
26#include "llvm/ADT/VectorExtras.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineInstrBuilder.h"
30#include "llvm/CodeGen/MachineModuleInfo.h"
31#include "llvm/CodeGen/MachineRegisterInfo.h"
32#include "llvm/CodeGen/PseudoSourceValue.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Target/TargetOptions.h"
36#include "llvm/ADT/SmallSet.h"
37#include "llvm/ADT/StringExtras.h"
38#include "llvm/Support/CommandLine.h"
39using namespace llvm;
40
41static cl::opt<bool>
42DisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX"));
43
44// Forward declarations.
45static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, MVT VT, SDValue V1,
46                       SDValue V2);
47
48X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
49  : TargetLowering(TM) {
50  Subtarget = &TM.getSubtarget<X86Subtarget>();
51  X86ScalarSSEf64 = Subtarget->hasSSE2();
52  X86ScalarSSEf32 = Subtarget->hasSSE1();
53  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
54
55  RegInfo = TM.getRegisterInfo();
56  TD = getTargetData();
57
58  // Set up the TargetLowering object.
59
60  // X86 is weird, it always uses i8 for shift amounts and setcc results.
61  setShiftAmountType(MVT::i8);
62  setBooleanContents(ZeroOrOneBooleanContent);
63  setSchedulingPreference(SchedulingForRegPressure);
64  setShiftAmountFlavor(Mask);   // shl X, 32 == shl X, 0
65  setStackPointerRegisterToSaveRestore(X86StackPtr);
66
67  if (Subtarget->isTargetDarwin()) {
68    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
69    setUseUnderscoreSetJmp(false);
70    setUseUnderscoreLongJmp(false);
71  } else if (Subtarget->isTargetMingw()) {
72    // MS runtime is weird: it exports _setjmp, but longjmp!
73    setUseUnderscoreSetJmp(true);
74    setUseUnderscoreLongJmp(false);
75  } else {
76    setUseUnderscoreSetJmp(true);
77    setUseUnderscoreLongJmp(true);
78  }
79
80  // Set up the register classes.
81  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
82  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
83  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
84  if (Subtarget->is64Bit())
85    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
86
87  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
88
89  // We don't accept any truncstore of integer registers.
90  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
91  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
92  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
93  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
94  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
95  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
96
97  // SETOEQ and SETUNE require checking two conditions.
98  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
99  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
100  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
101  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
102  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
103  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
104
105  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
106  // operation.
107  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
108  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
109  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
110
111  if (Subtarget->is64Bit()) {
112    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
113    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
114  } else if (!UseSoftFloat) {
115    if (X86ScalarSSEf64) {
116      // We have an impenetrably clever algorithm for ui64->double only.
117      setOperationAction(ISD::UINT_TO_FP   , MVT::i64  , Custom);
118    }
119    // We have an algorithm for SSE2, and we turn this into a 64-bit
120    // FILD for other targets.
121    setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Custom);
122  }
123
124  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
125  // this operation.
126  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
127  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
128
129  if (!UseSoftFloat) {
130    // SSE has no i16 to fp conversion, only i32
131    if (X86ScalarSSEf32) {
132      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
133      // f32 and f64 cases are Legal, f80 case is not
134      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
135    } else {
136      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
137      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
138    }
139  } else {
140    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
141    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
142  }
143
144  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
145  // are Legal, f80 is custom lowered.
146  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
147  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
148
149  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
150  // this operation.
151  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
152  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
153
154  if (X86ScalarSSEf32) {
155    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
156    // f32 and f64 cases are Legal, f80 case is not
157    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
158  } else {
159    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
160    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
161  }
162
163  // Handle FP_TO_UINT by promoting the destination to a larger signed
164  // conversion.
165  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
166  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
167  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
168
169  if (Subtarget->is64Bit()) {
170    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
171    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
172  } else if (!UseSoftFloat) {
173    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
174      // Expand FP_TO_UINT into a select.
175      // FIXME: We would like to use a Custom expander here eventually to do
176      // the optimal thing for SSE vs. the default expansion in the legalizer.
177      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
178    else
179      // With SSE3 we can use fisttpll to convert to a signed i64; without
180      // SSE, we're stuck with a fistpll.
181      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
182  }
183
184  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
185  if (!X86ScalarSSEf64) {
186    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
187    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
188  }
189
190  // Scalar integer divide and remainder are lowered to use operations that
191  // produce two results, to match the available instructions. This exposes
192  // the two-result form to trivial CSE, which is able to combine x/y and x%y
193  // into a single instruction.
194  //
195  // Scalar integer multiply-high is also lowered to use two-result
196  // operations, to match the available instructions. However, plain multiply
197  // (low) operations are left as Legal, as there are single-result
198  // instructions for this in x86. Using the two-result multiply instructions
199  // when both high and low results are needed must be arranged by dagcombine.
200  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
201  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
202  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
203  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
204  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
205  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
206  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
207  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
208  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
209  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
210  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
211  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
212  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
213  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
214  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
215  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
216  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
217  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
218  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
219  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
220  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
221  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
222  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
223  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
224
225  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
226  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
227  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
228  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
229  if (Subtarget->is64Bit())
230    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
231  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
232  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
233  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
234  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
235  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
236  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
237  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
238  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
239
240  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
241  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
242  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
243  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
244  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
245  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
246  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
247  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
248  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
249  if (Subtarget->is64Bit()) {
250    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
251    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
252    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
253  }
254
255  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
256  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
257
258  // These should be promoted to a larger select which is supported.
259  setOperationAction(ISD::SELECT           , MVT::i1   , Promote);
260  setOperationAction(ISD::SELECT           , MVT::i8   , Promote);
261  // X86 wants to expand cmov itself.
262  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
263  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
264  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
265  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
266  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
267  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
268  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
269  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
270  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
271  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
272  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
273  if (Subtarget->is64Bit()) {
274    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
275    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
276  }
277  // X86 ret instruction may pop stack.
278  setOperationAction(ISD::RET             , MVT::Other, Custom);
279  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
280
281  // Darwin ABI issue.
282  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
283  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
284  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
285  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
286  if (Subtarget->is64Bit())
287    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
288  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
289  if (Subtarget->is64Bit()) {
290    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
291    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
292    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
293    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
294  }
295  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
296  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
297  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
298  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
299  if (Subtarget->is64Bit()) {
300    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
301    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
302    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
303  }
304
305  if (Subtarget->hasSSE1())
306    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
307
308  if (!Subtarget->hasSSE2())
309    setOperationAction(ISD::MEMBARRIER    , MVT::Other, Expand);
310
311  // Expand certain atomics
312  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom);
313  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom);
314  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
315  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
316
317  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom);
318  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom);
319  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
320  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
321
322  if (!Subtarget->is64Bit()) {
323    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
324    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
325    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
326    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
327    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
328    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
329    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
330  }
331
332  // Use the default ISD::DBG_STOPPOINT, ISD::DECLARE expansion.
333  setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
334  // FIXME - use subtarget debug flags
335  if (!Subtarget->isTargetDarwin() &&
336      !Subtarget->isTargetELF() &&
337      !Subtarget->isTargetCygMing()) {
338    setOperationAction(ISD::DBG_LABEL, MVT::Other, Expand);
339    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
340  }
341
342  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
343  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
344  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
345  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
346  if (Subtarget->is64Bit()) {
347    setExceptionPointerRegister(X86::RAX);
348    setExceptionSelectorRegister(X86::RDX);
349  } else {
350    setExceptionPointerRegister(X86::EAX);
351    setExceptionSelectorRegister(X86::EDX);
352  }
353  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
354  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
355
356  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
357
358  setOperationAction(ISD::TRAP, MVT::Other, Legal);
359
360  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
361  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
362  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
363  if (Subtarget->is64Bit()) {
364    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
365    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
366  } else {
367    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
368    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
369  }
370
371  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
372  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
373  if (Subtarget->is64Bit())
374    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
375  if (Subtarget->isTargetCygMing())
376    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
377  else
378    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
379
380  if (!UseSoftFloat && X86ScalarSSEf64) {
381    // f32 and f64 use SSE.
382    // Set up the FP register classes.
383    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
384    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
385
386    // Use ANDPD to simulate FABS.
387    setOperationAction(ISD::FABS , MVT::f64, Custom);
388    setOperationAction(ISD::FABS , MVT::f32, Custom);
389
390    // Use XORP to simulate FNEG.
391    setOperationAction(ISD::FNEG , MVT::f64, Custom);
392    setOperationAction(ISD::FNEG , MVT::f32, Custom);
393
394    // Use ANDPD and ORPD to simulate FCOPYSIGN.
395    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
396    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
397
398    // We don't support sin/cos/fmod
399    setOperationAction(ISD::FSIN , MVT::f64, Expand);
400    setOperationAction(ISD::FCOS , MVT::f64, Expand);
401    setOperationAction(ISD::FSIN , MVT::f32, Expand);
402    setOperationAction(ISD::FCOS , MVT::f32, Expand);
403
404    // Expand FP immediates into loads from the stack, except for the special
405    // cases we handle.
406    addLegalFPImmediate(APFloat(+0.0)); // xorpd
407    addLegalFPImmediate(APFloat(+0.0f)); // xorps
408  } else if (!UseSoftFloat && X86ScalarSSEf32) {
409    // Use SSE for f32, x87 for f64.
410    // Set up the FP register classes.
411    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
412    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
413
414    // Use ANDPS to simulate FABS.
415    setOperationAction(ISD::FABS , MVT::f32, Custom);
416
417    // Use XORP to simulate FNEG.
418    setOperationAction(ISD::FNEG , MVT::f32, Custom);
419
420    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
421
422    // Use ANDPS and ORPS to simulate FCOPYSIGN.
423    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
424    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
425
426    // We don't support sin/cos/fmod
427    setOperationAction(ISD::FSIN , MVT::f32, Expand);
428    setOperationAction(ISD::FCOS , MVT::f32, Expand);
429
430    // Special cases we handle for FP constants.
431    addLegalFPImmediate(APFloat(+0.0f)); // xorps
432    addLegalFPImmediate(APFloat(+0.0)); // FLD0
433    addLegalFPImmediate(APFloat(+1.0)); // FLD1
434    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
435    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
436
437    if (!UnsafeFPMath) {
438      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
439      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
440    }
441  } else if (!UseSoftFloat) {
442    // f32 and f64 in x87.
443    // Set up the FP register classes.
444    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
445    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
446
447    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
448    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
449    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
450    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
451
452    if (!UnsafeFPMath) {
453      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
454      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
455    }
456    addLegalFPImmediate(APFloat(+0.0)); // FLD0
457    addLegalFPImmediate(APFloat(+1.0)); // FLD1
458    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
459    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
460    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
461    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
462    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
463    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
464  }
465
466  // Long double always uses X87.
467  if (!UseSoftFloat) {
468    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
469    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
470    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
471    {
472      bool ignored;
473      APFloat TmpFlt(+0.0);
474      TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
475                     &ignored);
476      addLegalFPImmediate(TmpFlt);  // FLD0
477      TmpFlt.changeSign();
478      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
479      APFloat TmpFlt2(+1.0);
480      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
481                      &ignored);
482      addLegalFPImmediate(TmpFlt2);  // FLD1
483      TmpFlt2.changeSign();
484      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
485    }
486
487    if (!UnsafeFPMath) {
488      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
489      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
490    }
491  }
492
493  // Always use a library call for pow.
494  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
495  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
496  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
497
498  setOperationAction(ISD::FLOG, MVT::f80, Expand);
499  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
500  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
501  setOperationAction(ISD::FEXP, MVT::f80, Expand);
502  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
503
504  // First set operation action for all vector types to either promote
505  // (for widening) or expand (for scalarization). Then we will selectively
506  // turn on ones that can be effectively codegen'd.
507  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
508       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
509    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
510    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
511    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
512    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
513    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
514    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
515    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
516    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
517    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
518    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
519    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
520    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
521    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
522    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
523    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
524    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
525    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
526    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
527    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
528    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
529    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
530    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
531    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
532    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
533    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
534    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
535    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
536    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
537    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
538    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
539    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
540    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
541    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
542    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
543    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
544    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
545    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
546    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
547    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
548    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
549    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
550    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
551    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
552    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
553    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
554    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
555    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
556    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
557  }
558
559  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
560  // with -msoft-float, disable use of MMX as well.
561  if (!UseSoftFloat && !DisableMMX && Subtarget->hasMMX()) {
562    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
563    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
564    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
565    addRegisterClass(MVT::v2f32, X86::VR64RegisterClass);
566    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
567
568    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
569    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
570    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
571    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
572
573    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
574    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
575    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
576    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
577
578    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
579    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
580
581    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
582    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
583    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
584    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
585    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
586    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
587    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
588
589    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
590    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
591    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
592    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
593    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
594    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
595    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
596
597    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
598    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
599    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
600    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
601    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
602    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
603    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
604
605    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
606    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
607    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
608    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
609    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
610    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
611    setOperationAction(ISD::LOAD,               MVT::v2f32, Promote);
612    AddPromotedToType (ISD::LOAD,               MVT::v2f32, MVT::v1i64);
613    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
614
615    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
616    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
617    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
618    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f32, Custom);
619    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
620
621    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
622    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
623    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
624    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
625
626    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2f32, Custom);
627    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
628    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
629    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
630
631    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i16, Custom);
632
633    setTruncStoreAction(MVT::v8i16,             MVT::v8i8, Expand);
634    setOperationAction(ISD::TRUNCATE,           MVT::v8i8, Expand);
635    setOperationAction(ISD::SELECT,             MVT::v8i8, Promote);
636    setOperationAction(ISD::SELECT,             MVT::v4i16, Promote);
637    setOperationAction(ISD::SELECT,             MVT::v2i32, Promote);
638    setOperationAction(ISD::SELECT,             MVT::v1i64, Custom);
639  }
640
641  if (!UseSoftFloat && Subtarget->hasSSE1()) {
642    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
643
644    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
645    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
646    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
647    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
648    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
649    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
650    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
651    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
652    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
653    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
654    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
655    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
656  }
657
658  if (!UseSoftFloat && Subtarget->hasSSE2()) {
659    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
660
661    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
662    // registers cannot be used even for integer operations.
663    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
664    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
665    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
666    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
667
668    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
669    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
670    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
671    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
672    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
673    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
674    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
675    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
676    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
677    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
678    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
679    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
680    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
681    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
682    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
683    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
684
685    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
686    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
687    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
688    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
689
690    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
691    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
692    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
693    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
694    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
695
696    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
697    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
698      MVT VT = (MVT::SimpleValueType)i;
699      // Do not attempt to custom lower non-power-of-2 vectors
700      if (!isPowerOf2_32(VT.getVectorNumElements()))
701        continue;
702      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
703      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
704      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
705    }
706
707    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
708    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
709    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
710    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
711    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
712    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
713
714    if (Subtarget->is64Bit()) {
715      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
716      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
717    }
718
719    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
720    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
721      setOperationAction(ISD::AND,    (MVT::SimpleValueType)VT, Promote);
722      AddPromotedToType (ISD::AND,    (MVT::SimpleValueType)VT, MVT::v2i64);
723      setOperationAction(ISD::OR,     (MVT::SimpleValueType)VT, Promote);
724      AddPromotedToType (ISD::OR,     (MVT::SimpleValueType)VT, MVT::v2i64);
725      setOperationAction(ISD::XOR,    (MVT::SimpleValueType)VT, Promote);
726      AddPromotedToType (ISD::XOR,    (MVT::SimpleValueType)VT, MVT::v2i64);
727      setOperationAction(ISD::LOAD,   (MVT::SimpleValueType)VT, Promote);
728      AddPromotedToType (ISD::LOAD,   (MVT::SimpleValueType)VT, MVT::v2i64);
729      setOperationAction(ISD::SELECT, (MVT::SimpleValueType)VT, Promote);
730      AddPromotedToType (ISD::SELECT, (MVT::SimpleValueType)VT, MVT::v2i64);
731    }
732
733    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
734
735    // Custom lower v2i64 and v2f64 selects.
736    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
737    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
738    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
739    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
740
741    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
742    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
743    if (!DisableMMX && Subtarget->hasMMX()) {
744      setOperationAction(ISD::FP_TO_SINT,         MVT::v2i32, Custom);
745      setOperationAction(ISD::SINT_TO_FP,         MVT::v2i32, Custom);
746    }
747  }
748
749  if (Subtarget->hasSSE41()) {
750    // FIXME: Do we need to handle scalar-to-vector here?
751    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
752
753    // i8 and i16 vectors are custom , because the source register and source
754    // source memory operand types are not the same width.  f32 vectors are
755    // custom since the immediate controlling the insert encodes additional
756    // information.
757    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
758    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
759    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
760    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
761
762    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
763    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
764    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
765    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
766
767    if (Subtarget->is64Bit()) {
768      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
769      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
770    }
771  }
772
773  if (Subtarget->hasSSE42()) {
774    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
775  }
776
777  // We want to custom lower some of our intrinsics.
778  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
779
780  // Add/Sub/Mul with overflow operations are custom lowered.
781  setOperationAction(ISD::SADDO, MVT::i32, Custom);
782  setOperationAction(ISD::SADDO, MVT::i64, Custom);
783  setOperationAction(ISD::UADDO, MVT::i32, Custom);
784  setOperationAction(ISD::UADDO, MVT::i64, Custom);
785  setOperationAction(ISD::SSUBO, MVT::i32, Custom);
786  setOperationAction(ISD::SSUBO, MVT::i64, Custom);
787  setOperationAction(ISD::USUBO, MVT::i32, Custom);
788  setOperationAction(ISD::USUBO, MVT::i64, Custom);
789  setOperationAction(ISD::SMULO, MVT::i32, Custom);
790  setOperationAction(ISD::SMULO, MVT::i64, Custom);
791  setOperationAction(ISD::UMULO, MVT::i32, Custom);
792  setOperationAction(ISD::UMULO, MVT::i64, Custom);
793
794  if (!Subtarget->is64Bit()) {
795    // These libcalls are not available in 32-bit.
796    setLibcallName(RTLIB::SHL_I128, 0);
797    setLibcallName(RTLIB::SRL_I128, 0);
798    setLibcallName(RTLIB::SRA_I128, 0);
799  }
800
801  // We have target-specific dag combine patterns for the following nodes:
802  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
803  setTargetDAGCombine(ISD::BUILD_VECTOR);
804  setTargetDAGCombine(ISD::SELECT);
805  setTargetDAGCombine(ISD::SHL);
806  setTargetDAGCombine(ISD::SRA);
807  setTargetDAGCombine(ISD::SRL);
808  setTargetDAGCombine(ISD::STORE);
809  if (Subtarget->is64Bit())
810    setTargetDAGCombine(ISD::MUL);
811
812  computeRegisterProperties();
813
814  // FIXME: These should be based on subtarget info. Plus, the values should
815  // be smaller when we are in optimizing for size mode.
816  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
817  maxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores
818  maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
819  allowUnalignedMemoryAccesses = true; // x86 supports it!
820  setPrefLoopAlignment(16);
821  benefitFromCodePlacementOpt = true;
822}
823
824
825MVT X86TargetLowering::getSetCCResultType(MVT VT) const {
826  return MVT::i8;
827}
828
829
830/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
831/// the desired ByVal argument alignment.
832static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
833  if (MaxAlign == 16)
834    return;
835  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
836    if (VTy->getBitWidth() == 128)
837      MaxAlign = 16;
838  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
839    unsigned EltAlign = 0;
840    getMaxByValAlign(ATy->getElementType(), EltAlign);
841    if (EltAlign > MaxAlign)
842      MaxAlign = EltAlign;
843  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
844    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
845      unsigned EltAlign = 0;
846      getMaxByValAlign(STy->getElementType(i), EltAlign);
847      if (EltAlign > MaxAlign)
848        MaxAlign = EltAlign;
849      if (MaxAlign == 16)
850        break;
851    }
852  }
853  return;
854}
855
856/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
857/// function arguments in the caller parameter area. For X86, aggregates
858/// that contain SSE vectors are placed at 16-byte boundaries while the rest
859/// are at 4-byte boundaries.
860unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
861  if (Subtarget->is64Bit()) {
862    // Max of 8 and alignment of type.
863    unsigned TyAlign = TD->getABITypeAlignment(Ty);
864    if (TyAlign > 8)
865      return TyAlign;
866    return 8;
867  }
868
869  unsigned Align = 4;
870  if (Subtarget->hasSSE1())
871    getMaxByValAlign(Ty, Align);
872  return Align;
873}
874
875/// getOptimalMemOpType - Returns the target specific optimal type for load
876/// and store operations as a result of memset, memcpy, and memmove
877/// lowering. It returns MVT::iAny if SelectionDAG should be responsible for
878/// determining it.
879MVT
880X86TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align,
881                                       bool isSrcConst, bool isSrcStr,
882                                       SelectionDAG &DAG) const {
883  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
884  // linux.  This is because the stack realignment code can't handle certain
885  // cases like PR2962.  This should be removed when PR2962 is fixed.
886  const Function *F = DAG.getMachineFunction().getFunction();
887  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
888  if (!NoImplicitFloatOps && Subtarget->getStackAlignment() >= 16) {
889    if ((isSrcConst || isSrcStr) && Subtarget->hasSSE2() && Size >= 16)
890      return MVT::v4i32;
891    if ((isSrcConst || isSrcStr) && Subtarget->hasSSE1() && Size >= 16)
892      return MVT::v4f32;
893  }
894  if (Subtarget->is64Bit() && Size >= 8)
895    return MVT::i64;
896  return MVT::i32;
897}
898
899/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
900/// jumptable.
901SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
902                                                      SelectionDAG &DAG) const {
903  if (usesGlobalOffsetTable())
904    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
905  if (!Subtarget->isPICStyleRIPRel())
906    // This doesn't have DebugLoc associated with it, but is not really the
907    // same as a Register.
908    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc::getUnknownLoc(),
909                       getPointerTy());
910  return Table;
911}
912
913//===----------------------------------------------------------------------===//
914//               Return Value Calling Convention Implementation
915//===----------------------------------------------------------------------===//
916
917#include "X86GenCallingConv.inc"
918
919/// LowerRET - Lower an ISD::RET node.
920SDValue X86TargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG) {
921  DebugLoc dl = Op.getDebugLoc();
922  assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
923
924  SmallVector<CCValAssign, 16> RVLocs;
925  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
926  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
927  CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
928  CCInfo.AnalyzeReturn(Op.getNode(), RetCC_X86);
929
930  // If this is the first return lowered for this function, add the regs to the
931  // liveout set for the function.
932  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
933    for (unsigned i = 0; i != RVLocs.size(); ++i)
934      if (RVLocs[i].isRegLoc())
935        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
936  }
937  SDValue Chain = Op.getOperand(0);
938
939  // Handle tail call return.
940  Chain = GetPossiblePreceedingTailCall(Chain, X86ISD::TAILCALL);
941  if (Chain.getOpcode() == X86ISD::TAILCALL) {
942    SDValue TailCall = Chain;
943    SDValue TargetAddress = TailCall.getOperand(1);
944    SDValue StackAdjustment = TailCall.getOperand(2);
945    assert(((TargetAddress.getOpcode() == ISD::Register &&
946               (cast<RegisterSDNode>(TargetAddress)->getReg() == X86::EAX ||
947                cast<RegisterSDNode>(TargetAddress)->getReg() == X86::R11)) ||
948              TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
949              TargetAddress.getOpcode() == ISD::TargetGlobalAddress) &&
950             "Expecting an global address, external symbol, or register");
951    assert(StackAdjustment.getOpcode() == ISD::Constant &&
952           "Expecting a const value");
953
954    SmallVector<SDValue,8> Operands;
955    Operands.push_back(Chain.getOperand(0));
956    Operands.push_back(TargetAddress);
957    Operands.push_back(StackAdjustment);
958    // Copy registers used by the call. Last operand is a flag so it is not
959    // copied.
960    for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) {
961      Operands.push_back(Chain.getOperand(i));
962    }
963    return DAG.getNode(X86ISD::TC_RETURN, dl, MVT::Other, &Operands[0],
964                       Operands.size());
965  }
966
967  // Regular return.
968  SDValue Flag;
969
970  SmallVector<SDValue, 6> RetOps;
971  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
972  // Operand #1 = Bytes To Pop
973  RetOps.push_back(DAG.getConstant(getBytesToPopOnReturn(), MVT::i16));
974
975  // Copy the result values into the output registers.
976  for (unsigned i = 0; i != RVLocs.size(); ++i) {
977    CCValAssign &VA = RVLocs[i];
978    assert(VA.isRegLoc() && "Can only return in registers!");
979    SDValue ValToCopy = Op.getOperand(i*2+1);
980
981    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
982    // the RET instruction and handled by the FP Stackifier.
983    if (VA.getLocReg() == X86::ST0 ||
984        VA.getLocReg() == X86::ST1) {
985      // If this is a copy from an xmm register to ST(0), use an FPExtend to
986      // change the value to the FP stack register class.
987      if (isScalarFPTypeInSSEReg(VA.getValVT()))
988        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
989      RetOps.push_back(ValToCopy);
990      // Don't emit a copytoreg.
991      continue;
992    }
993
994    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
995    // which is returned in RAX / RDX.
996    if (Subtarget->is64Bit()) {
997      MVT ValVT = ValToCopy.getValueType();
998      if (ValVT.isVector() && ValVT.getSizeInBits() == 64) {
999        ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, ValToCopy);
1000        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1)
1001          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, ValToCopy);
1002      }
1003    }
1004
1005    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1006    Flag = Chain.getValue(1);
1007  }
1008
1009  // The x86-64 ABI for returning structs by value requires that we copy
1010  // the sret argument into %rax for the return. We saved the argument into
1011  // a virtual register in the entry block, so now we copy the value out
1012  // and into %rax.
1013  if (Subtarget->is64Bit() &&
1014      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1015    MachineFunction &MF = DAG.getMachineFunction();
1016    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1017    unsigned Reg = FuncInfo->getSRetReturnReg();
1018    if (!Reg) {
1019      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1020      FuncInfo->setSRetReturnReg(Reg);
1021    }
1022    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1023
1024    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1025    Flag = Chain.getValue(1);
1026  }
1027
1028  RetOps[0] = Chain;  // Update chain.
1029
1030  // Add the flag if we have it.
1031  if (Flag.getNode())
1032    RetOps.push_back(Flag);
1033
1034  return DAG.getNode(X86ISD::RET_FLAG, dl,
1035                     MVT::Other, &RetOps[0], RetOps.size());
1036}
1037
1038
1039/// LowerCallResult - Lower the result values of an ISD::CALL into the
1040/// appropriate copies out of appropriate physical registers.  This assumes that
1041/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
1042/// being lowered.  The returns a SDNode with the same number of values as the
1043/// ISD::CALL.
1044SDNode *X86TargetLowering::
1045LowerCallResult(SDValue Chain, SDValue InFlag, CallSDNode *TheCall,
1046                unsigned CallingConv, SelectionDAG &DAG) {
1047
1048  DebugLoc dl = TheCall->getDebugLoc();
1049  // Assign locations to each value returned by this call.
1050  SmallVector<CCValAssign, 16> RVLocs;
1051  bool isVarArg = TheCall->isVarArg();
1052  bool Is64Bit = Subtarget->is64Bit();
1053  CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
1054  CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
1055
1056  SmallVector<SDValue, 8> ResultVals;
1057
1058  // Copy all of the result registers out of their specified physreg.
1059  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1060    CCValAssign &VA = RVLocs[i];
1061    MVT CopyVT = VA.getValVT();
1062
1063    // If this is x86-64, and we disabled SSE, we can't return FP values
1064    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1065        ((Is64Bit || TheCall->isInreg()) && !Subtarget->hasSSE1())) {
1066      cerr << "SSE register return with SSE disabled\n";
1067      exit(1);
1068    }
1069
1070    // If this is a call to a function that returns an fp value on the floating
1071    // point stack, but where we prefer to use the value in xmm registers, copy
1072    // it out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1073    if ((VA.getLocReg() == X86::ST0 ||
1074         VA.getLocReg() == X86::ST1) &&
1075        isScalarFPTypeInSSEReg(VA.getValVT())) {
1076      CopyVT = MVT::f80;
1077    }
1078
1079    SDValue Val;
1080    if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
1081      // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1082      if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1083        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1084                                   MVT::v2i64, InFlag).getValue(1);
1085        Val = Chain.getValue(0);
1086        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1087                          Val, DAG.getConstant(0, MVT::i64));
1088      } else {
1089        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1090                                   MVT::i64, InFlag).getValue(1);
1091        Val = Chain.getValue(0);
1092      }
1093      Val = DAG.getNode(ISD::BIT_CONVERT, dl, CopyVT, Val);
1094    } else {
1095      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1096                                 CopyVT, InFlag).getValue(1);
1097      Val = Chain.getValue(0);
1098    }
1099    InFlag = Chain.getValue(2);
1100
1101    if (CopyVT != VA.getValVT()) {
1102      // Round the F80 the right size, which also moves to the appropriate xmm
1103      // register.
1104      Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1105                        // This truncation won't change the value.
1106                        DAG.getIntPtrConstant(1));
1107    }
1108
1109    ResultVals.push_back(Val);
1110  }
1111
1112  // Merge everything together with a MERGE_VALUES node.
1113  ResultVals.push_back(Chain);
1114  return DAG.getNode(ISD::MERGE_VALUES, dl, TheCall->getVTList(),
1115                     &ResultVals[0], ResultVals.size()).getNode();
1116}
1117
1118
1119//===----------------------------------------------------------------------===//
1120//                C & StdCall & Fast Calling Convention implementation
1121//===----------------------------------------------------------------------===//
1122//  StdCall calling convention seems to be standard for many Windows' API
1123//  routines and around. It differs from C calling convention just a little:
1124//  callee should clean up the stack, not caller. Symbols should be also
1125//  decorated in some fancy way :) It doesn't support any vector arguments.
1126//  For info on fast calling convention see Fast Calling Convention (tail call)
1127//  implementation LowerX86_32FastCCCallTo.
1128
1129/// CallIsStructReturn - Determines whether a CALL node uses struct return
1130/// semantics.
1131static bool CallIsStructReturn(CallSDNode *TheCall) {
1132  unsigned NumOps = TheCall->getNumArgs();
1133  if (!NumOps)
1134    return false;
1135
1136  return TheCall->getArgFlags(0).isSRet();
1137}
1138
1139/// ArgsAreStructReturn - Determines whether a FORMAL_ARGUMENTS node uses struct
1140/// return semantics.
1141static bool ArgsAreStructReturn(SDValue Op) {
1142  unsigned NumArgs = Op.getNode()->getNumValues() - 1;
1143  if (!NumArgs)
1144    return false;
1145
1146  return cast<ARG_FLAGSSDNode>(Op.getOperand(3))->getArgFlags().isSRet();
1147}
1148
1149/// IsCalleePop - Determines whether a CALL or FORMAL_ARGUMENTS node requires
1150/// the callee to pop its own arguments. Callee pop is necessary to support tail
1151/// calls.
1152bool X86TargetLowering::IsCalleePop(bool IsVarArg, unsigned CallingConv) {
1153  if (IsVarArg)
1154    return false;
1155
1156  switch (CallingConv) {
1157  default:
1158    return false;
1159  case CallingConv::X86_StdCall:
1160    return !Subtarget->is64Bit();
1161  case CallingConv::X86_FastCall:
1162    return !Subtarget->is64Bit();
1163  case CallingConv::Fast:
1164    return PerformTailCallOpt;
1165  }
1166}
1167
1168/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1169/// given CallingConvention value.
1170CCAssignFn *X86TargetLowering::CCAssignFnForNode(unsigned CC) const {
1171  if (Subtarget->is64Bit()) {
1172    if (Subtarget->isTargetWin64())
1173      return CC_X86_Win64_C;
1174    else
1175      return CC_X86_64_C;
1176  }
1177
1178  if (CC == CallingConv::X86_FastCall)
1179    return CC_X86_32_FastCall;
1180  else if (CC == CallingConv::Fast)
1181    return CC_X86_32_FastCC;
1182  else
1183    return CC_X86_32_C;
1184}
1185
1186/// NameDecorationForFORMAL_ARGUMENTS - Selects the appropriate decoration to
1187/// apply to a MachineFunction containing a given FORMAL_ARGUMENTS node.
1188NameDecorationStyle
1189X86TargetLowering::NameDecorationForFORMAL_ARGUMENTS(SDValue Op) {
1190  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1191  if (CC == CallingConv::X86_FastCall)
1192    return FastCall;
1193  else if (CC == CallingConv::X86_StdCall)
1194    return StdCall;
1195  return None;
1196}
1197
1198
1199/// CallRequiresGOTInRegister - Check whether the call requires the GOT pointer
1200/// in a register before calling.
1201bool X86TargetLowering::CallRequiresGOTPtrInReg(bool Is64Bit, bool IsTailCall) {
1202  return !IsTailCall && !Is64Bit &&
1203    getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1204    Subtarget->isPICStyleGOT();
1205}
1206
1207/// CallRequiresFnAddressInReg - Check whether the call requires the function
1208/// address to be loaded in a register.
1209bool
1210X86TargetLowering::CallRequiresFnAddressInReg(bool Is64Bit, bool IsTailCall) {
1211  return !Is64Bit && IsTailCall &&
1212    getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1213    Subtarget->isPICStyleGOT();
1214}
1215
1216/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1217/// by "Src" to address "Dst" with size and alignment information specified by
1218/// the specific parameter attribute. The copy will be passed as a byval
1219/// function parameter.
1220static SDValue
1221CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1222                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1223                          DebugLoc dl) {
1224  SDValue SizeNode     = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1225  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1226                       /*AlwaysInline=*/true, NULL, 0, NULL, 0);
1227}
1228
1229SDValue X86TargetLowering::LowerMemArgument(SDValue Op, SelectionDAG &DAG,
1230                                              const CCValAssign &VA,
1231                                              MachineFrameInfo *MFI,
1232                                              unsigned CC,
1233                                              SDValue Root, unsigned i) {
1234  // Create the nodes corresponding to a load from this parameter slot.
1235  ISD::ArgFlagsTy Flags =
1236    cast<ARG_FLAGSSDNode>(Op.getOperand(3 + i))->getArgFlags();
1237  bool AlwaysUseMutable = (CC==CallingConv::Fast) && PerformTailCallOpt;
1238  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1239
1240  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1241  // changed with more analysis.
1242  // In case of tail call optimization mark all arguments mutable. Since they
1243  // could be overwritten by lowering of arguments in case of a tail call.
1244  int FI = MFI->CreateFixedObject(VA.getValVT().getSizeInBits()/8,
1245                                  VA.getLocMemOffset(), isImmutable);
1246  SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1247  if (Flags.isByVal())
1248    return FIN;
1249  return DAG.getLoad(VA.getValVT(), Op.getDebugLoc(), Root, FIN,
1250                     PseudoSourceValue::getFixedStack(FI), 0);
1251}
1252
1253SDValue
1254X86TargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG) {
1255  MachineFunction &MF = DAG.getMachineFunction();
1256  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1257  DebugLoc dl = Op.getDebugLoc();
1258
1259  const Function* Fn = MF.getFunction();
1260  if (Fn->hasExternalLinkage() &&
1261      Subtarget->isTargetCygMing() &&
1262      Fn->getName() == "main")
1263    FuncInfo->setForceFramePointer(true);
1264
1265  // Decorate the function name.
1266  FuncInfo->setDecorationStyle(NameDecorationForFORMAL_ARGUMENTS(Op));
1267
1268  MachineFrameInfo *MFI = MF.getFrameInfo();
1269  SDValue Root = Op.getOperand(0);
1270  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() != 0;
1271  unsigned CC = MF.getFunction()->getCallingConv();
1272  bool Is64Bit = Subtarget->is64Bit();
1273  bool IsWin64 = Subtarget->isTargetWin64();
1274
1275  assert(!(isVarArg && CC == CallingConv::Fast) &&
1276         "Var args not supported with calling convention fastcc");
1277
1278  // Assign locations to all of the incoming arguments.
1279  SmallVector<CCValAssign, 16> ArgLocs;
1280  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1281  CCInfo.AnalyzeFormalArguments(Op.getNode(), CCAssignFnForNode(CC));
1282
1283  SmallVector<SDValue, 8> ArgValues;
1284  unsigned LastVal = ~0U;
1285  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1286    CCValAssign &VA = ArgLocs[i];
1287    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1288    // places.
1289    assert(VA.getValNo() != LastVal &&
1290           "Don't support value assigned to multiple locs yet");
1291    LastVal = VA.getValNo();
1292
1293    if (VA.isRegLoc()) {
1294      MVT RegVT = VA.getLocVT();
1295      TargetRegisterClass *RC = NULL;
1296      if (RegVT == MVT::i32)
1297        RC = X86::GR32RegisterClass;
1298      else if (Is64Bit && RegVT == MVT::i64)
1299        RC = X86::GR64RegisterClass;
1300      else if (RegVT == MVT::f32)
1301        RC = X86::FR32RegisterClass;
1302      else if (RegVT == MVT::f64)
1303        RC = X86::FR64RegisterClass;
1304      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1305        RC = X86::VR128RegisterClass;
1306      else if (RegVT.isVector()) {
1307        assert(RegVT.getSizeInBits() == 64);
1308        if (!Is64Bit)
1309          RC = X86::VR64RegisterClass;     // MMX values are passed in MMXs.
1310        else {
1311          // Darwin calling convention passes MMX values in either GPRs or
1312          // XMMs in x86-64. Other targets pass them in memory.
1313          if (RegVT != MVT::v1i64 && Subtarget->hasSSE2()) {
1314            RC = X86::VR128RegisterClass;  // MMX values are passed in XMMs.
1315            RegVT = MVT::v2i64;
1316          } else {
1317            RC = X86::GR64RegisterClass;   // v1i64 values are passed in GPRs.
1318            RegVT = MVT::i64;
1319          }
1320        }
1321      } else {
1322        assert(0 && "Unknown argument type!");
1323      }
1324
1325      unsigned Reg = DAG.getMachineFunction().addLiveIn(VA.getLocReg(), RC);
1326      SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, RegVT);
1327
1328      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1329      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1330      // right size.
1331      if (VA.getLocInfo() == CCValAssign::SExt)
1332        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1333                               DAG.getValueType(VA.getValVT()));
1334      else if (VA.getLocInfo() == CCValAssign::ZExt)
1335        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1336                               DAG.getValueType(VA.getValVT()));
1337
1338      if (VA.getLocInfo() != CCValAssign::Full)
1339        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1340
1341      // Handle MMX values passed in GPRs.
1342      if (Is64Bit && RegVT != VA.getLocVT()) {
1343        if (RegVT.getSizeInBits() == 64 && RC == X86::GR64RegisterClass)
1344          ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), ArgValue);
1345        else if (RC == X86::VR128RegisterClass) {
1346          ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1347                                 ArgValue, DAG.getConstant(0, MVT::i64));
1348          ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), ArgValue);
1349        }
1350      }
1351
1352      ArgValues.push_back(ArgValue);
1353    } else {
1354      assert(VA.isMemLoc());
1355      ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, CC, Root, i));
1356    }
1357  }
1358
1359  // The x86-64 ABI for returning structs by value requires that we copy
1360  // the sret argument into %rax for the return. Save the argument into
1361  // a virtual register so that we can access it from the return points.
1362  if (Is64Bit && DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1363    MachineFunction &MF = DAG.getMachineFunction();
1364    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1365    unsigned Reg = FuncInfo->getSRetReturnReg();
1366    if (!Reg) {
1367      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1368      FuncInfo->setSRetReturnReg(Reg);
1369    }
1370    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, ArgValues[0]);
1371    Root = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Root);
1372  }
1373
1374  unsigned StackSize = CCInfo.getNextStackOffset();
1375  // align stack specially for tail calls
1376  if (PerformTailCallOpt && CC == CallingConv::Fast)
1377    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1378
1379  // If the function takes variable number of arguments, make a frame index for
1380  // the start of the first vararg value... for expansion of llvm.va_start.
1381  if (isVarArg) {
1382    if (Is64Bit || CC != CallingConv::X86_FastCall) {
1383      VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1384    }
1385    if (Is64Bit) {
1386      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1387
1388      // FIXME: We should really autogenerate these arrays
1389      static const unsigned GPR64ArgRegsWin64[] = {
1390        X86::RCX, X86::RDX, X86::R8,  X86::R9
1391      };
1392      static const unsigned XMMArgRegsWin64[] = {
1393        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1394      };
1395      static const unsigned GPR64ArgRegs64Bit[] = {
1396        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1397      };
1398      static const unsigned XMMArgRegs64Bit[] = {
1399        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1400        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1401      };
1402      const unsigned *GPR64ArgRegs, *XMMArgRegs;
1403
1404      if (IsWin64) {
1405        TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
1406        GPR64ArgRegs = GPR64ArgRegsWin64;
1407        XMMArgRegs = XMMArgRegsWin64;
1408      } else {
1409        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1410        GPR64ArgRegs = GPR64ArgRegs64Bit;
1411        XMMArgRegs = XMMArgRegs64Bit;
1412      }
1413      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1414                                                       TotalNumIntRegs);
1415      unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
1416                                                       TotalNumXMMRegs);
1417
1418      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1419      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1420             "SSE register cannot be used when SSE is disabled!");
1421      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1422             "SSE register cannot be used when SSE is disabled!");
1423      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1())
1424        // Kernel mode asks for SSE to be disabled, so don't push them
1425        // on the stack.
1426        TotalNumXMMRegs = 0;
1427
1428      // For X86-64, if there are vararg parameters that are passed via
1429      // registers, then we must store them to their spots on the stack so they
1430      // may be loaded by deferencing the result of va_next.
1431      VarArgsGPOffset = NumIntRegs * 8;
1432      VarArgsFPOffset = TotalNumIntRegs * 8 + NumXMMRegs * 16;
1433      RegSaveFrameIndex = MFI->CreateStackObject(TotalNumIntRegs * 8 +
1434                                                 TotalNumXMMRegs * 16, 16);
1435
1436      // Store the integer parameter registers.
1437      SmallVector<SDValue, 8> MemOps;
1438      SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1439      SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1440                                  DAG.getIntPtrConstant(VarArgsGPOffset));
1441      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1442        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1443                                     X86::GR64RegisterClass);
1444        SDValue Val = DAG.getCopyFromReg(Root, dl, VReg, MVT::i64);
1445        SDValue Store =
1446          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1447                       PseudoSourceValue::getFixedStack(RegSaveFrameIndex), 0);
1448        MemOps.push_back(Store);
1449        FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
1450                          DAG.getIntPtrConstant(8));
1451      }
1452
1453      // Now store the XMM (fp + vector) parameter registers.
1454      FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1455                        DAG.getIntPtrConstant(VarArgsFPOffset));
1456      for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1457        unsigned VReg = MF.addLiveIn(XMMArgRegs[NumXMMRegs],
1458                                     X86::VR128RegisterClass);
1459        SDValue Val = DAG.getCopyFromReg(Root, dl, VReg, MVT::v4f32);
1460        SDValue Store =
1461          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1462                       PseudoSourceValue::getFixedStack(RegSaveFrameIndex), 0);
1463        MemOps.push_back(Store);
1464        FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
1465                          DAG.getIntPtrConstant(16));
1466      }
1467      if (!MemOps.empty())
1468          Root = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1469                             &MemOps[0], MemOps.size());
1470    }
1471  }
1472
1473  ArgValues.push_back(Root);
1474
1475  // Some CCs need callee pop.
1476  if (IsCalleePop(isVarArg, CC)) {
1477    BytesToPopOnReturn  = StackSize; // Callee pops everything.
1478    BytesCallerReserves = 0;
1479  } else {
1480    BytesToPopOnReturn  = 0; // Callee pops nothing.
1481    // If this is an sret function, the return should pop the hidden pointer.
1482    if (!Is64Bit && CC != CallingConv::Fast && ArgsAreStructReturn(Op))
1483      BytesToPopOnReturn = 4;
1484    BytesCallerReserves = StackSize;
1485  }
1486
1487  if (!Is64Bit) {
1488    RegSaveFrameIndex = 0xAAAAAAA;   // RegSaveFrameIndex is X86-64 only.
1489    if (CC == CallingConv::X86_FastCall)
1490      VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1491  }
1492
1493  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1494
1495  // Return the new list of results.
1496  return DAG.getNode(ISD::MERGE_VALUES, dl, Op.getNode()->getVTList(),
1497                     &ArgValues[0], ArgValues.size()).getValue(Op.getResNo());
1498}
1499
1500SDValue
1501X86TargetLowering::LowerMemOpCallTo(CallSDNode *TheCall, SelectionDAG &DAG,
1502                                    const SDValue &StackPtr,
1503                                    const CCValAssign &VA,
1504                                    SDValue Chain,
1505                                    SDValue Arg, ISD::ArgFlagsTy Flags) {
1506  DebugLoc dl = TheCall->getDebugLoc();
1507  unsigned LocMemOffset = VA.getLocMemOffset();
1508  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1509  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1510  if (Flags.isByVal()) {
1511    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1512  }
1513  return DAG.getStore(Chain, dl, Arg, PtrOff,
1514                      PseudoSourceValue::getStack(), LocMemOffset);
1515}
1516
1517/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1518/// optimization is performed and it is required.
1519SDValue
1520X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1521                                           SDValue &OutRetAddr,
1522                                           SDValue Chain,
1523                                           bool IsTailCall,
1524                                           bool Is64Bit,
1525                                           int FPDiff,
1526                                           DebugLoc dl) {
1527  if (!IsTailCall || FPDiff==0) return Chain;
1528
1529  // Adjust the Return address stack slot.
1530  MVT VT = getPointerTy();
1531  OutRetAddr = getReturnAddressFrameIndex(DAG);
1532
1533  // Load the "old" Return address.
1534  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, NULL, 0);
1535  return SDValue(OutRetAddr.getNode(), 1);
1536}
1537
1538/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1539/// optimization is performed and it is required (FPDiff!=0).
1540static SDValue
1541EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1542                         SDValue Chain, SDValue RetAddrFrIdx,
1543                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1544  // Store the return address to the appropriate stack slot.
1545  if (!FPDiff) return Chain;
1546  // Calculate the new stack slot for the return address.
1547  int SlotSize = Is64Bit ? 8 : 4;
1548  int NewReturnAddrFI =
1549    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize);
1550  MVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1551  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1552  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1553                       PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0);
1554  return Chain;
1555}
1556
1557SDValue X86TargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) {
1558  MachineFunction &MF = DAG.getMachineFunction();
1559  CallSDNode *TheCall = cast<CallSDNode>(Op.getNode());
1560  SDValue Chain       = TheCall->getChain();
1561  unsigned CC         = TheCall->getCallingConv();
1562  bool isVarArg       = TheCall->isVarArg();
1563  bool IsTailCall     = TheCall->isTailCall() &&
1564                        CC == CallingConv::Fast && PerformTailCallOpt;
1565  SDValue Callee      = TheCall->getCallee();
1566  bool Is64Bit        = Subtarget->is64Bit();
1567  bool IsStructRet    = CallIsStructReturn(TheCall);
1568  DebugLoc dl         = TheCall->getDebugLoc();
1569
1570  assert(!(isVarArg && CC == CallingConv::Fast) &&
1571         "Var args not supported with calling convention fastcc");
1572
1573  // Analyze operands of the call, assigning locations to each operand.
1574  SmallVector<CCValAssign, 16> ArgLocs;
1575  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1576  CCInfo.AnalyzeCallOperands(TheCall, CCAssignFnForNode(CC));
1577
1578  // Get a count of how many bytes are to be pushed on the stack.
1579  unsigned NumBytes = CCInfo.getNextStackOffset();
1580  if (PerformTailCallOpt && CC == CallingConv::Fast)
1581    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1582
1583  int FPDiff = 0;
1584  if (IsTailCall) {
1585    // Lower arguments at fp - stackoffset + fpdiff.
1586    unsigned NumBytesCallerPushed =
1587      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1588    FPDiff = NumBytesCallerPushed - NumBytes;
1589
1590    // Set the delta of movement of the returnaddr stackslot.
1591    // But only set if delta is greater than previous delta.
1592    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1593      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1594  }
1595
1596  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1597
1598  SDValue RetAddrFrIdx;
1599  // Load return adress for tail calls.
1600  Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, IsTailCall, Is64Bit,
1601                                  FPDiff, dl);
1602
1603  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1604  SmallVector<SDValue, 8> MemOpChains;
1605  SDValue StackPtr;
1606
1607  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1608  // of tail call optimization arguments are handle later.
1609  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1610    CCValAssign &VA = ArgLocs[i];
1611    SDValue Arg = TheCall->getArg(i);
1612    ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
1613    bool isByVal = Flags.isByVal();
1614
1615    // Promote the value if needed.
1616    switch (VA.getLocInfo()) {
1617    default: assert(0 && "Unknown loc info!");
1618    case CCValAssign::Full: break;
1619    case CCValAssign::SExt:
1620      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1621      break;
1622    case CCValAssign::ZExt:
1623      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1624      break;
1625    case CCValAssign::AExt:
1626      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1627      break;
1628    }
1629
1630    if (VA.isRegLoc()) {
1631      if (Is64Bit) {
1632        MVT RegVT = VA.getLocVT();
1633        if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
1634          switch (VA.getLocReg()) {
1635          default:
1636            break;
1637          case X86::RDI: case X86::RSI: case X86::RDX: case X86::RCX:
1638          case X86::R8: {
1639            // Special case: passing MMX values in GPR registers.
1640            Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
1641            break;
1642          }
1643          case X86::XMM0: case X86::XMM1: case X86::XMM2: case X86::XMM3:
1644          case X86::XMM4: case X86::XMM5: case X86::XMM6: case X86::XMM7: {
1645            // Special case: passing MMX values in XMM registers.
1646            Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
1647            Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
1648            Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
1649            break;
1650          }
1651          }
1652      }
1653      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1654    } else {
1655      if (!IsTailCall || (IsTailCall && isByVal)) {
1656        assert(VA.isMemLoc());
1657        if (StackPtr.getNode() == 0)
1658          StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
1659
1660        MemOpChains.push_back(LowerMemOpCallTo(TheCall, DAG, StackPtr, VA,
1661                                               Chain, Arg, Flags));
1662      }
1663    }
1664  }
1665
1666  if (!MemOpChains.empty())
1667    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1668                        &MemOpChains[0], MemOpChains.size());
1669
1670  // Build a sequence of copy-to-reg nodes chained together with token chain
1671  // and flag operands which copy the outgoing args into registers.
1672  SDValue InFlag;
1673  // Tail call byval lowering might overwrite argument registers so in case of
1674  // tail call optimization the copies to registers are lowered later.
1675  if (!IsTailCall)
1676    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1677      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1678                               RegsToPass[i].second, InFlag);
1679      InFlag = Chain.getValue(1);
1680    }
1681
1682  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1683  // GOT pointer.
1684  if (CallRequiresGOTPtrInReg(Is64Bit, IsTailCall)) {
1685    Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
1686                             DAG.getNode(X86ISD::GlobalBaseReg,
1687                                         DebugLoc::getUnknownLoc(),
1688                                         getPointerTy()),
1689                             InFlag);
1690    InFlag = Chain.getValue(1);
1691  }
1692  // If we are tail calling and generating PIC/GOT style code load the address
1693  // of the callee into ecx. The value in ecx is used as target of the tail
1694  // jump. This is done to circumvent the ebx/callee-saved problem for tail
1695  // calls on PIC/GOT architectures. Normally we would just put the address of
1696  // GOT into ebx and then call target@PLT. But for tail callss ebx would be
1697  // restored (since ebx is callee saved) before jumping to the target@PLT.
1698  if (CallRequiresFnAddressInReg(Is64Bit, IsTailCall)) {
1699    // Note: The actual moving to ecx is done further down.
1700    GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
1701    if (G && !G->getGlobal()->hasHiddenVisibility() &&
1702        !G->getGlobal()->hasProtectedVisibility())
1703      Callee =  LowerGlobalAddress(Callee, DAG);
1704    else if (isa<ExternalSymbolSDNode>(Callee))
1705      Callee = LowerExternalSymbol(Callee,DAG);
1706  }
1707
1708  if (Is64Bit && isVarArg) {
1709    // From AMD64 ABI document:
1710    // For calls that may call functions that use varargs or stdargs
1711    // (prototype-less calls or calls to functions containing ellipsis (...) in
1712    // the declaration) %al is used as hidden argument to specify the number
1713    // of SSE registers used. The contents of %al do not need to match exactly
1714    // the number of registers, but must be an ubound on the number of SSE
1715    // registers used and is in the range 0 - 8 inclusive.
1716
1717    // FIXME: Verify this on Win64
1718    // Count the number of XMM registers allocated.
1719    static const unsigned XMMArgRegs[] = {
1720      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1721      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1722    };
1723    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1724    assert((Subtarget->hasSSE1() || !NumXMMRegs)
1725           && "SSE registers cannot be used when SSE is disabled");
1726
1727    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
1728                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1729    InFlag = Chain.getValue(1);
1730  }
1731
1732
1733  // For tail calls lower the arguments to the 'real' stack slot.
1734  if (IsTailCall) {
1735    SmallVector<SDValue, 8> MemOpChains2;
1736    SDValue FIN;
1737    int FI = 0;
1738    // Do not flag preceeding copytoreg stuff together with the following stuff.
1739    InFlag = SDValue();
1740    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1741      CCValAssign &VA = ArgLocs[i];
1742      if (!VA.isRegLoc()) {
1743        assert(VA.isMemLoc());
1744        SDValue Arg = TheCall->getArg(i);
1745        ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
1746        // Create frame index.
1747        int32_t Offset = VA.getLocMemOffset()+FPDiff;
1748        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
1749        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
1750        FIN = DAG.getFrameIndex(FI, getPointerTy());
1751
1752        if (Flags.isByVal()) {
1753          // Copy relative to framepointer.
1754          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
1755          if (StackPtr.getNode() == 0)
1756            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
1757                                          getPointerTy());
1758          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
1759
1760          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN, Chain,
1761                                                           Flags, DAG, dl));
1762        } else {
1763          // Store relative to framepointer.
1764          MemOpChains2.push_back(
1765            DAG.getStore(Chain, dl, Arg, FIN,
1766                         PseudoSourceValue::getFixedStack(FI), 0));
1767        }
1768      }
1769    }
1770
1771    if (!MemOpChains2.empty())
1772      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1773                          &MemOpChains2[0], MemOpChains2.size());
1774
1775    // Copy arguments to their registers.
1776    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1777      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1778                               RegsToPass[i].second, InFlag);
1779      InFlag = Chain.getValue(1);
1780    }
1781    InFlag =SDValue();
1782
1783    // Store the return address to the appropriate stack slot.
1784    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
1785                                     FPDiff, dl);
1786  }
1787
1788  // If the callee is a GlobalAddress node (quite common, every direct call is)
1789  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1790  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1791    // We should use extra load for direct calls to dllimported functions in
1792    // non-JIT mode.
1793    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1794                                        getTargetMachine(), true))
1795      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy(),
1796                                          G->getOffset());
1797  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1798    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1799  } else if (IsTailCall) {
1800    unsigned Opc = Is64Bit ? X86::R11 : X86::EAX;
1801
1802    Chain = DAG.getCopyToReg(Chain,  dl,
1803                             DAG.getRegister(Opc, getPointerTy()),
1804                             Callee,InFlag);
1805    Callee = DAG.getRegister(Opc, getPointerTy());
1806    // Add register as live out.
1807    DAG.getMachineFunction().getRegInfo().addLiveOut(Opc);
1808  }
1809
1810  // Returns a chain & a flag for retval copy to use.
1811  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1812  SmallVector<SDValue, 8> Ops;
1813
1814  if (IsTailCall) {
1815    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1816                           DAG.getIntPtrConstant(0, true), InFlag);
1817    InFlag = Chain.getValue(1);
1818
1819    // Returns a chain & a flag for retval copy to use.
1820    NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1821    Ops.clear();
1822  }
1823
1824  Ops.push_back(Chain);
1825  Ops.push_back(Callee);
1826
1827  if (IsTailCall)
1828    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
1829
1830  // Add argument registers to the end of the list so that they are known live
1831  // into the call.
1832  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1833    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1834                                  RegsToPass[i].second.getValueType()));
1835
1836  // Add an implicit use GOT pointer in EBX.
1837  if (!IsTailCall && !Is64Bit &&
1838      getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1839      Subtarget->isPICStyleGOT())
1840    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1841
1842  // Add an implicit use of AL for x86 vararg functions.
1843  if (Is64Bit && isVarArg)
1844    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
1845
1846  if (InFlag.getNode())
1847    Ops.push_back(InFlag);
1848
1849  if (IsTailCall) {
1850    assert(InFlag.getNode() &&
1851           "Flag must be set. Depend on flag being set in LowerRET");
1852    Chain = DAG.getNode(X86ISD::TAILCALL, dl,
1853                        TheCall->getVTList(), &Ops[0], Ops.size());
1854
1855    return SDValue(Chain.getNode(), Op.getResNo());
1856  }
1857
1858  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
1859  InFlag = Chain.getValue(1);
1860
1861  // Create the CALLSEQ_END node.
1862  unsigned NumBytesForCalleeToPush;
1863  if (IsCalleePop(isVarArg, CC))
1864    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
1865  else if (!Is64Bit && CC != CallingConv::Fast && IsStructRet)
1866    // If this is is a call to a struct-return function, the callee
1867    // pops the hidden struct pointer, so we have to push it back.
1868    // This is common for Darwin/X86, Linux & Mingw32 targets.
1869    NumBytesForCalleeToPush = 4;
1870  else
1871    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
1872
1873  // Returns a flag for retval copy to use.
1874  Chain = DAG.getCALLSEQ_END(Chain,
1875                             DAG.getIntPtrConstant(NumBytes, true),
1876                             DAG.getIntPtrConstant(NumBytesForCalleeToPush,
1877                                                   true),
1878                             InFlag);
1879  InFlag = Chain.getValue(1);
1880
1881  // Handle result values, copying them out of physregs into vregs that we
1882  // return.
1883  return SDValue(LowerCallResult(Chain, InFlag, TheCall, CC, DAG),
1884                 Op.getResNo());
1885}
1886
1887
1888//===----------------------------------------------------------------------===//
1889//                Fast Calling Convention (tail call) implementation
1890//===----------------------------------------------------------------------===//
1891
1892//  Like std call, callee cleans arguments, convention except that ECX is
1893//  reserved for storing the tail called function address. Only 2 registers are
1894//  free for argument passing (inreg). Tail call optimization is performed
1895//  provided:
1896//                * tailcallopt is enabled
1897//                * caller/callee are fastcc
1898//  On X86_64 architecture with GOT-style position independent code only local
1899//  (within module) calls are supported at the moment.
1900//  To keep the stack aligned according to platform abi the function
1901//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
1902//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
1903//  If a tail called function callee has more arguments than the caller the
1904//  caller needs to make sure that there is room to move the RETADDR to. This is
1905//  achieved by reserving an area the size of the argument delta right after the
1906//  original REtADDR, but before the saved framepointer or the spilled registers
1907//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
1908//  stack layout:
1909//    arg1
1910//    arg2
1911//    RETADDR
1912//    [ new RETADDR
1913//      move area ]
1914//    (possible EBP)
1915//    ESI
1916//    EDI
1917//    local1 ..
1918
1919/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
1920/// for a 16 byte align requirement.
1921unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
1922                                                        SelectionDAG& DAG) {
1923  MachineFunction &MF = DAG.getMachineFunction();
1924  const TargetMachine &TM = MF.getTarget();
1925  const TargetFrameInfo &TFI = *TM.getFrameInfo();
1926  unsigned StackAlignment = TFI.getStackAlignment();
1927  uint64_t AlignMask = StackAlignment - 1;
1928  int64_t Offset = StackSize;
1929  uint64_t SlotSize = TD->getPointerSize();
1930  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
1931    // Number smaller than 12 so just add the difference.
1932    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
1933  } else {
1934    // Mask out lower bits, add stackalignment once plus the 12 bytes.
1935    Offset = ((~AlignMask) & Offset) + StackAlignment +
1936      (StackAlignment-SlotSize);
1937  }
1938  return Offset;
1939}
1940
1941/// IsEligibleForTailCallElimination - Check to see whether the next instruction
1942/// following the call is a return. A function is eligible if caller/callee
1943/// calling conventions match, currently only fastcc supports tail calls, and
1944/// the function CALL is immediatly followed by a RET.
1945bool X86TargetLowering::IsEligibleForTailCallOptimization(CallSDNode *TheCall,
1946                                                      SDValue Ret,
1947                                                      SelectionDAG& DAG) const {
1948  if (!PerformTailCallOpt)
1949    return false;
1950
1951  if (CheckTailCallReturnConstraints(TheCall, Ret)) {
1952    MachineFunction &MF = DAG.getMachineFunction();
1953    unsigned CallerCC = MF.getFunction()->getCallingConv();
1954    unsigned CalleeCC= TheCall->getCallingConv();
1955    if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
1956      SDValue Callee = TheCall->getCallee();
1957      // On x86/32Bit PIC/GOT  tail calls are supported.
1958      if (getTargetMachine().getRelocationModel() != Reloc::PIC_ ||
1959          !Subtarget->isPICStyleGOT()|| !Subtarget->is64Bit())
1960        return true;
1961
1962      // Can only do local tail calls (in same module, hidden or protected) on
1963      // x86_64 PIC/GOT at the moment.
1964      if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1965        return G->getGlobal()->hasHiddenVisibility()
1966            || G->getGlobal()->hasProtectedVisibility();
1967    }
1968  }
1969
1970  return false;
1971}
1972
1973FastISel *
1974X86TargetLowering::createFastISel(MachineFunction &mf,
1975                                  MachineModuleInfo *mmo,
1976                                  DwarfWriter *dw,
1977                                  DenseMap<const Value *, unsigned> &vm,
1978                                  DenseMap<const BasicBlock *,
1979                                           MachineBasicBlock *> &bm,
1980                                  DenseMap<const AllocaInst *, int> &am
1981#ifndef NDEBUG
1982                                  , SmallSet<Instruction*, 8> &cil
1983#endif
1984                                  ) {
1985  return X86::createFastISel(mf, mmo, dw, vm, bm, am
1986#ifndef NDEBUG
1987                             , cil
1988#endif
1989                             );
1990}
1991
1992
1993//===----------------------------------------------------------------------===//
1994//                           Other Lowering Hooks
1995//===----------------------------------------------------------------------===//
1996
1997
1998SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
1999  MachineFunction &MF = DAG.getMachineFunction();
2000  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2001  int ReturnAddrIndex = FuncInfo->getRAIndex();
2002
2003  if (ReturnAddrIndex == 0) {
2004    // Set up a frame object for the return address.
2005    uint64_t SlotSize = TD->getPointerSize();
2006    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize);
2007    FuncInfo->setRAIndex(ReturnAddrIndex);
2008  }
2009
2010  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2011}
2012
2013
2014/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2015/// specific condition code, returning the condition code and the LHS/RHS of the
2016/// comparison to make.
2017static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2018                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2019  if (!isFP) {
2020    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2021      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2022        // X > -1   -> X == 0, jump !sign.
2023        RHS = DAG.getConstant(0, RHS.getValueType());
2024        return X86::COND_NS;
2025      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2026        // X < 0   -> X == 0, jump on sign.
2027        return X86::COND_S;
2028      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2029        // X < 1   -> X <= 0
2030        RHS = DAG.getConstant(0, RHS.getValueType());
2031        return X86::COND_LE;
2032      }
2033    }
2034
2035    switch (SetCCOpcode) {
2036    default: assert(0 && "Invalid integer condition!");
2037    case ISD::SETEQ:  return X86::COND_E;
2038    case ISD::SETGT:  return X86::COND_G;
2039    case ISD::SETGE:  return X86::COND_GE;
2040    case ISD::SETLT:  return X86::COND_L;
2041    case ISD::SETLE:  return X86::COND_LE;
2042    case ISD::SETNE:  return X86::COND_NE;
2043    case ISD::SETULT: return X86::COND_B;
2044    case ISD::SETUGT: return X86::COND_A;
2045    case ISD::SETULE: return X86::COND_BE;
2046    case ISD::SETUGE: return X86::COND_AE;
2047    }
2048  }
2049
2050  // First determine if it is required or is profitable to flip the operands.
2051
2052  // If LHS is a foldable load, but RHS is not, flip the condition.
2053  if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
2054      !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
2055    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2056    std::swap(LHS, RHS);
2057  }
2058
2059  switch (SetCCOpcode) {
2060  default: break;
2061  case ISD::SETOLT:
2062  case ISD::SETOLE:
2063  case ISD::SETUGT:
2064  case ISD::SETUGE:
2065    std::swap(LHS, RHS);
2066    break;
2067  }
2068
2069  // On a floating point condition, the flags are set as follows:
2070  // ZF  PF  CF   op
2071  //  0 | 0 | 0 | X > Y
2072  //  0 | 0 | 1 | X < Y
2073  //  1 | 0 | 0 | X == Y
2074  //  1 | 1 | 1 | unordered
2075  switch (SetCCOpcode) {
2076  default: assert(0 && "Condcode should be pre-legalized away");
2077  case ISD::SETUEQ:
2078  case ISD::SETEQ:   return X86::COND_E;
2079  case ISD::SETOLT:              // flipped
2080  case ISD::SETOGT:
2081  case ISD::SETGT:   return X86::COND_A;
2082  case ISD::SETOLE:              // flipped
2083  case ISD::SETOGE:
2084  case ISD::SETGE:   return X86::COND_AE;
2085  case ISD::SETUGT:              // flipped
2086  case ISD::SETULT:
2087  case ISD::SETLT:   return X86::COND_B;
2088  case ISD::SETUGE:              // flipped
2089  case ISD::SETULE:
2090  case ISD::SETLE:   return X86::COND_BE;
2091  case ISD::SETONE:
2092  case ISD::SETNE:   return X86::COND_NE;
2093  case ISD::SETUO:   return X86::COND_P;
2094  case ISD::SETO:    return X86::COND_NP;
2095  }
2096}
2097
2098/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2099/// code. Current x86 isa includes the following FP cmov instructions:
2100/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2101static bool hasFPCMov(unsigned X86CC) {
2102  switch (X86CC) {
2103  default:
2104    return false;
2105  case X86::COND_B:
2106  case X86::COND_BE:
2107  case X86::COND_E:
2108  case X86::COND_P:
2109  case X86::COND_A:
2110  case X86::COND_AE:
2111  case X86::COND_NE:
2112  case X86::COND_NP:
2113    return true;
2114  }
2115}
2116
2117/// isUndefOrInRange - Return true if Val is undef or if its value falls within
2118/// the specified range (L, H].
2119static bool isUndefOrInRange(int Val, int Low, int Hi) {
2120  return (Val < 0) || (Val >= Low && Val < Hi);
2121}
2122
2123/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2124/// specified value.
2125static bool isUndefOrEqual(int Val, int CmpVal) {
2126  if (Val < 0 || Val == CmpVal)
2127    return true;
2128  return false;
2129}
2130
2131/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2132/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
2133/// the second operand.
2134static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, MVT VT) {
2135  if (VT == MVT::v4f32 || VT == MVT::v4i32 || VT == MVT::v4i16)
2136    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
2137  if (VT == MVT::v2f64 || VT == MVT::v2i64)
2138    return (Mask[0] < 2 && Mask[1] < 2);
2139  return false;
2140}
2141
2142bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
2143  SmallVector<int, 8> M;
2144  N->getMask(M);
2145  return ::isPSHUFDMask(M, N->getValueType(0));
2146}
2147
2148/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2149/// is suitable for input to PSHUFHW.
2150static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, MVT VT) {
2151  if (VT != MVT::v8i16)
2152    return false;
2153
2154  // Lower quadword copied in order or undef.
2155  for (int i = 0; i != 4; ++i)
2156    if (Mask[i] >= 0 && Mask[i] != i)
2157      return false;
2158
2159  // Upper quadword shuffled.
2160  for (int i = 4; i != 8; ++i)
2161    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
2162      return false;
2163
2164  return true;
2165}
2166
2167bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
2168  SmallVector<int, 8> M;
2169  N->getMask(M);
2170  return ::isPSHUFHWMask(M, N->getValueType(0));
2171}
2172
2173/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
2174/// is suitable for input to PSHUFLW.
2175static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, MVT VT) {
2176  if (VT != MVT::v8i16)
2177    return false;
2178
2179  // Upper quadword copied in order.
2180  for (int i = 4; i != 8; ++i)
2181    if (Mask[i] >= 0 && Mask[i] != i)
2182      return false;
2183
2184  // Lower quadword shuffled.
2185  for (int i = 0; i != 4; ++i)
2186    if (Mask[i] >= 4)
2187      return false;
2188
2189  return true;
2190}
2191
2192bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
2193  SmallVector<int, 8> M;
2194  N->getMask(M);
2195  return ::isPSHUFLWMask(M, N->getValueType(0));
2196}
2197
2198/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2199/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2200static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, MVT VT) {
2201  int NumElems = VT.getVectorNumElements();
2202  if (NumElems != 2 && NumElems != 4)
2203    return false;
2204
2205  int Half = NumElems / 2;
2206  for (int i = 0; i < Half; ++i)
2207    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2208      return false;
2209  for (int i = Half; i < NumElems; ++i)
2210    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2211      return false;
2212
2213  return true;
2214}
2215
2216bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
2217  SmallVector<int, 8> M;
2218  N->getMask(M);
2219  return ::isSHUFPMask(M, N->getValueType(0));
2220}
2221
2222/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2223/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2224/// half elements to come from vector 1 (which would equal the dest.) and
2225/// the upper half to come from vector 2.
2226static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, MVT VT) {
2227  int NumElems = VT.getVectorNumElements();
2228
2229  if (NumElems != 2 && NumElems != 4)
2230    return false;
2231
2232  int Half = NumElems / 2;
2233  for (int i = 0; i < Half; ++i)
2234    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2235      return false;
2236  for (int i = Half; i < NumElems; ++i)
2237    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2238      return false;
2239  return true;
2240}
2241
2242static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
2243  SmallVector<int, 8> M;
2244  N->getMask(M);
2245  return isCommutedSHUFPMask(M, N->getValueType(0));
2246}
2247
2248/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2249/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2250bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
2251  if (N->getValueType(0).getVectorNumElements() != 4)
2252    return false;
2253
2254  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2255  return isUndefOrEqual(N->getMaskElt(0), 6) &&
2256         isUndefOrEqual(N->getMaskElt(1), 7) &&
2257         isUndefOrEqual(N->getMaskElt(2), 2) &&
2258         isUndefOrEqual(N->getMaskElt(3), 3);
2259}
2260
2261/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2262/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2263bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
2264  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2265
2266  if (NumElems != 2 && NumElems != 4)
2267    return false;
2268
2269  for (unsigned i = 0; i < NumElems/2; ++i)
2270    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
2271      return false;
2272
2273  for (unsigned i = NumElems/2; i < NumElems; ++i)
2274    if (!isUndefOrEqual(N->getMaskElt(i), i))
2275      return false;
2276
2277  return true;
2278}
2279
2280/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
2281/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
2282/// and MOVLHPS.
2283bool X86::isMOVHPMask(ShuffleVectorSDNode *N) {
2284  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2285
2286  if (NumElems != 2 && NumElems != 4)
2287    return false;
2288
2289  for (unsigned i = 0; i < NumElems/2; ++i)
2290    if (!isUndefOrEqual(N->getMaskElt(i), i))
2291      return false;
2292
2293  for (unsigned i = 0; i < NumElems/2; ++i)
2294    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
2295      return false;
2296
2297  return true;
2298}
2299
2300/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2301/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2302/// <2, 3, 2, 3>
2303bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
2304  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2305
2306  if (NumElems != 4)
2307    return false;
2308
2309  return isUndefOrEqual(N->getMaskElt(0), 2) &&
2310         isUndefOrEqual(N->getMaskElt(1), 3) &&
2311         isUndefOrEqual(N->getMaskElt(2), 2) &&
2312         isUndefOrEqual(N->getMaskElt(3), 3);
2313}
2314
2315/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2316/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2317static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, MVT VT,
2318                         bool V2IsSplat = false) {
2319  int NumElts = VT.getVectorNumElements();
2320  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2321    return false;
2322
2323  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2324    int BitI  = Mask[i];
2325    int BitI1 = Mask[i+1];
2326    if (!isUndefOrEqual(BitI, j))
2327      return false;
2328    if (V2IsSplat) {
2329      if (!isUndefOrEqual(BitI1, NumElts))
2330        return false;
2331    } else {
2332      if (!isUndefOrEqual(BitI1, j + NumElts))
2333        return false;
2334    }
2335  }
2336  return true;
2337}
2338
2339bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2340  SmallVector<int, 8> M;
2341  N->getMask(M);
2342  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
2343}
2344
2345/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2346/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2347static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, MVT VT,
2348                         bool V2IsSplat = false) {
2349  int NumElts = VT.getVectorNumElements();
2350  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2351    return false;
2352
2353  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2354    int BitI  = Mask[i];
2355    int BitI1 = Mask[i+1];
2356    if (!isUndefOrEqual(BitI, j + NumElts/2))
2357      return false;
2358    if (V2IsSplat) {
2359      if (isUndefOrEqual(BitI1, NumElts))
2360        return false;
2361    } else {
2362      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2363        return false;
2364    }
2365  }
2366  return true;
2367}
2368
2369bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2370  SmallVector<int, 8> M;
2371  N->getMask(M);
2372  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
2373}
2374
2375/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2376/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2377/// <0, 0, 1, 1>
2378static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, MVT VT) {
2379  int NumElems = VT.getVectorNumElements();
2380  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2381    return false;
2382
2383  for (int i = 0, j = 0; i != NumElems; i += 2, ++j) {
2384    int BitI  = Mask[i];
2385    int BitI1 = Mask[i+1];
2386    if (!isUndefOrEqual(BitI, j))
2387      return false;
2388    if (!isUndefOrEqual(BitI1, j))
2389      return false;
2390  }
2391  return true;
2392}
2393
2394bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
2395  SmallVector<int, 8> M;
2396  N->getMask(M);
2397  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
2398}
2399
2400/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2401/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2402/// <2, 2, 3, 3>
2403static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, MVT VT) {
2404  int NumElems = VT.getVectorNumElements();
2405  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2406    return false;
2407
2408  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2409    int BitI  = Mask[i];
2410    int BitI1 = Mask[i+1];
2411    if (!isUndefOrEqual(BitI, j))
2412      return false;
2413    if (!isUndefOrEqual(BitI1, j))
2414      return false;
2415  }
2416  return true;
2417}
2418
2419bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
2420  SmallVector<int, 8> M;
2421  N->getMask(M);
2422  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
2423}
2424
2425/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2426/// specifies a shuffle of elements that is suitable for input to MOVSS,
2427/// MOVSD, and MOVD, i.e. setting the lowest element.
2428static bool isMOVLMask(const SmallVectorImpl<int> &Mask, MVT VT) {
2429  if (VT.getVectorElementType().getSizeInBits() < 32)
2430    return false;
2431
2432  int NumElts = VT.getVectorNumElements();
2433
2434  if (!isUndefOrEqual(Mask[0], NumElts))
2435    return false;
2436
2437  for (int i = 1; i < NumElts; ++i)
2438    if (!isUndefOrEqual(Mask[i], i))
2439      return false;
2440
2441  return true;
2442}
2443
2444bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
2445  SmallVector<int, 8> M;
2446  N->getMask(M);
2447  return ::isMOVLMask(M, N->getValueType(0));
2448}
2449
2450/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2451/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
2452/// element of vector 2 and the other elements to come from vector 1 in order.
2453static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, MVT VT,
2454                               bool V2IsSplat = false, bool V2IsUndef = false) {
2455  int NumOps = VT.getVectorNumElements();
2456  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2457    return false;
2458
2459  if (!isUndefOrEqual(Mask[0], 0))
2460    return false;
2461
2462  for (int i = 1; i < NumOps; ++i)
2463    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
2464          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
2465          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
2466      return false;
2467
2468  return true;
2469}
2470
2471static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
2472                           bool V2IsUndef = false) {
2473  SmallVector<int, 8> M;
2474  N->getMask(M);
2475  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
2476}
2477
2478/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2479/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2480bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
2481  if (N->getValueType(0).getVectorNumElements() != 4)
2482    return false;
2483
2484  // Expect 1, 1, 3, 3
2485  for (unsigned i = 0; i < 2; ++i) {
2486    int Elt = N->getMaskElt(i);
2487    if (Elt >= 0 && Elt != 1)
2488      return false;
2489  }
2490
2491  bool HasHi = false;
2492  for (unsigned i = 2; i < 4; ++i) {
2493    int Elt = N->getMaskElt(i);
2494    if (Elt >= 0 && Elt != 3)
2495      return false;
2496    if (Elt == 3)
2497      HasHi = true;
2498  }
2499  // Don't use movshdup if it can be done with a shufps.
2500  // FIXME: verify that matching u, u, 3, 3 is what we want.
2501  return HasHi;
2502}
2503
2504/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2505/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2506bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
2507  if (N->getValueType(0).getVectorNumElements() != 4)
2508    return false;
2509
2510  // Expect 0, 0, 2, 2
2511  for (unsigned i = 0; i < 2; ++i)
2512    if (N->getMaskElt(i) > 0)
2513      return false;
2514
2515  bool HasHi = false;
2516  for (unsigned i = 2; i < 4; ++i) {
2517    int Elt = N->getMaskElt(i);
2518    if (Elt >= 0 && Elt != 2)
2519      return false;
2520    if (Elt == 2)
2521      HasHi = true;
2522  }
2523  // Don't use movsldup if it can be done with a shufps.
2524  return HasHi;
2525}
2526
2527/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2528/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
2529bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
2530  int e = N->getValueType(0).getVectorNumElements() / 2;
2531
2532  for (int i = 0; i < e; ++i)
2533    if (!isUndefOrEqual(N->getMaskElt(i), i))
2534      return false;
2535  for (int i = 0; i < e; ++i)
2536    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
2537      return false;
2538  return true;
2539}
2540
2541/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2542/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2543/// instructions.
2544unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2545  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2546  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
2547
2548  unsigned Shift = (NumOperands == 4) ? 2 : 1;
2549  unsigned Mask = 0;
2550  for (int i = 0; i < NumOperands; ++i) {
2551    int Val = SVOp->getMaskElt(NumOperands-i-1);
2552    if (Val < 0) Val = 0;
2553    if (Val >= NumOperands) Val -= NumOperands;
2554    Mask |= Val;
2555    if (i != NumOperands - 1)
2556      Mask <<= Shift;
2557  }
2558  return Mask;
2559}
2560
2561/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2562/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2563/// instructions.
2564unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2565  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2566  unsigned Mask = 0;
2567  // 8 nodes, but we only care about the last 4.
2568  for (unsigned i = 7; i >= 4; --i) {
2569    int Val = SVOp->getMaskElt(i);
2570    if (Val >= 0)
2571      Mask |= (Val - 4);
2572    if (i != 4)
2573      Mask <<= 2;
2574  }
2575  return Mask;
2576}
2577
2578/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2579/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2580/// instructions.
2581unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2582  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2583  unsigned Mask = 0;
2584  // 8 nodes, but we only care about the first 4.
2585  for (int i = 3; i >= 0; --i) {
2586    int Val = SVOp->getMaskElt(i);
2587    if (Val >= 0)
2588      Mask |= Val;
2589    if (i != 0)
2590      Mask <<= 2;
2591  }
2592  return Mask;
2593}
2594
2595/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
2596/// their permute mask.
2597static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
2598                                    SelectionDAG &DAG) {
2599  MVT VT = SVOp->getValueType(0);
2600  unsigned NumElems = VT.getVectorNumElements();
2601  SmallVector<int, 8> MaskVec;
2602
2603  for (unsigned i = 0; i != NumElems; ++i) {
2604    int idx = SVOp->getMaskElt(i);
2605    if (idx < 0)
2606      MaskVec.push_back(idx);
2607    else if (idx < (int)NumElems)
2608      MaskVec.push_back(idx + NumElems);
2609    else
2610      MaskVec.push_back(idx - NumElems);
2611  }
2612  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
2613                              SVOp->getOperand(0), &MaskVec[0]);
2614}
2615
2616/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
2617/// the two vector operands have swapped position.
2618static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, MVT VT) {
2619  unsigned NumElems = VT.getVectorNumElements();
2620  for (unsigned i = 0; i != NumElems; ++i) {
2621    int idx = Mask[i];
2622    if (idx < 0)
2623      continue;
2624    else if (idx < (int)NumElems)
2625      Mask[i] = idx + NumElems;
2626    else
2627      Mask[i] = idx - NumElems;
2628  }
2629}
2630
2631/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2632/// match movhlps. The lower half elements should come from upper half of
2633/// V1 (and in order), and the upper half elements should come from the upper
2634/// half of V2 (and in order).
2635static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
2636  if (Op->getValueType(0).getVectorNumElements() != 4)
2637    return false;
2638  for (unsigned i = 0, e = 2; i != e; ++i)
2639    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
2640      return false;
2641  for (unsigned i = 2; i != 4; ++i)
2642    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
2643      return false;
2644  return true;
2645}
2646
2647/// isScalarLoadToVector - Returns true if the node is a scalar load that
2648/// is promoted to a vector. It also returns the LoadSDNode by reference if
2649/// required.
2650static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
2651  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
2652    return false;
2653  N = N->getOperand(0).getNode();
2654  if (!ISD::isNON_EXTLoad(N))
2655    return false;
2656  if (LD)
2657    *LD = cast<LoadSDNode>(N);
2658  return true;
2659}
2660
2661/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2662/// match movlp{s|d}. The lower half elements should come from lower half of
2663/// V1 (and in order), and the upper half elements should come from the upper
2664/// half of V2 (and in order). And since V1 will become the source of the
2665/// MOVLP, it must be either a vector load or a scalar load to vector.
2666static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
2667                               ShuffleVectorSDNode *Op) {
2668  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2669    return false;
2670  // Is V2 is a vector load, don't do this transformation. We will try to use
2671  // load folding shufps op.
2672  if (ISD::isNON_EXTLoad(V2))
2673    return false;
2674
2675  unsigned NumElems = Op->getValueType(0).getVectorNumElements();
2676
2677  if (NumElems != 2 && NumElems != 4)
2678    return false;
2679  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2680    if (!isUndefOrEqual(Op->getMaskElt(i), i))
2681      return false;
2682  for (unsigned i = NumElems/2; i != NumElems; ++i)
2683    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
2684      return false;
2685  return true;
2686}
2687
2688/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2689/// all the same.
2690static bool isSplatVector(SDNode *N) {
2691  if (N->getOpcode() != ISD::BUILD_VECTOR)
2692    return false;
2693
2694  SDValue SplatValue = N->getOperand(0);
2695  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2696    if (N->getOperand(i) != SplatValue)
2697      return false;
2698  return true;
2699}
2700
2701/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2702/// constant +0.0.
2703static inline bool isZeroNode(SDValue Elt) {
2704  return ((isa<ConstantSDNode>(Elt) &&
2705           cast<ConstantSDNode>(Elt)->getZExtValue() == 0) ||
2706          (isa<ConstantFPSDNode>(Elt) &&
2707           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
2708}
2709
2710/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2711/// to an zero vector.
2712/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
2713static bool isZeroShuffle(ShuffleVectorSDNode *N) {
2714  SDValue V1 = N->getOperand(0);
2715  SDValue V2 = N->getOperand(1);
2716  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2717  for (unsigned i = 0; i != NumElems; ++i) {
2718    int Idx = N->getMaskElt(i);
2719    if (Idx >= (int)NumElems) {
2720      unsigned Opc = V2.getOpcode();
2721      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
2722        continue;
2723      if (Opc != ISD::BUILD_VECTOR || !isZeroNode(V2.getOperand(Idx-NumElems)))
2724        return false;
2725    } else if (Idx >= 0) {
2726      unsigned Opc = V1.getOpcode();
2727      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
2728        continue;
2729      if (Opc != ISD::BUILD_VECTOR || !isZeroNode(V1.getOperand(Idx)))
2730        return false;
2731    }
2732  }
2733  return true;
2734}
2735
2736/// getZeroVector - Returns a vector of specified type with all zero elements.
2737///
2738static SDValue getZeroVector(MVT VT, bool HasSSE2, SelectionDAG &DAG,
2739                             DebugLoc dl) {
2740  assert(VT.isVector() && "Expected a vector type");
2741
2742  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2743  // type.  This ensures they get CSE'd.
2744  SDValue Vec;
2745  if (VT.getSizeInBits() == 64) { // MMX
2746    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
2747    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
2748  } else if (HasSSE2) {  // SSE2
2749    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
2750    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
2751  } else { // SSE1
2752    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
2753    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
2754  }
2755  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
2756}
2757
2758/// getOnesVector - Returns a vector of specified type with all bits set.
2759///
2760static SDValue getOnesVector(MVT VT, SelectionDAG &DAG, DebugLoc dl) {
2761  assert(VT.isVector() && "Expected a vector type");
2762
2763  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2764  // type.  This ensures they get CSE'd.
2765  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
2766  SDValue Vec;
2767  if (VT.getSizeInBits() == 64)  // MMX
2768    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
2769  else                                              // SSE
2770    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
2771  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
2772}
2773
2774
2775/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2776/// that point to V2 points to its first element.
2777static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
2778  MVT VT = SVOp->getValueType(0);
2779  unsigned NumElems = VT.getVectorNumElements();
2780
2781  bool Changed = false;
2782  SmallVector<int, 8> MaskVec;
2783  SVOp->getMask(MaskVec);
2784
2785  for (unsigned i = 0; i != NumElems; ++i) {
2786    if (MaskVec[i] > (int)NumElems) {
2787      MaskVec[i] = NumElems;
2788      Changed = true;
2789    }
2790  }
2791  if (Changed)
2792    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
2793                                SVOp->getOperand(1), &MaskVec[0]);
2794  return SDValue(SVOp, 0);
2795}
2796
2797/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2798/// operation of specified width.
2799static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, MVT VT, SDValue V1,
2800                       SDValue V2) {
2801  unsigned NumElems = VT.getVectorNumElements();
2802  SmallVector<int, 8> Mask;
2803  Mask.push_back(NumElems);
2804  for (unsigned i = 1; i != NumElems; ++i)
2805    Mask.push_back(i);
2806  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
2807}
2808
2809/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
2810static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, MVT VT, SDValue V1,
2811                          SDValue V2) {
2812  unsigned NumElems = VT.getVectorNumElements();
2813  SmallVector<int, 8> Mask;
2814  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
2815    Mask.push_back(i);
2816    Mask.push_back(i + NumElems);
2817  }
2818  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
2819}
2820
2821/// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
2822static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, MVT VT, SDValue V1,
2823                          SDValue V2) {
2824  unsigned NumElems = VT.getVectorNumElements();
2825  unsigned Half = NumElems/2;
2826  SmallVector<int, 8> Mask;
2827  for (unsigned i = 0; i != Half; ++i) {
2828    Mask.push_back(i + Half);
2829    Mask.push_back(i + NumElems + Half);
2830  }
2831  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
2832}
2833
2834/// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32.
2835static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG,
2836                            bool HasSSE2) {
2837  if (SV->getValueType(0).getVectorNumElements() <= 4)
2838    return SDValue(SV, 0);
2839
2840  MVT PVT = MVT::v4f32;
2841  MVT VT = SV->getValueType(0);
2842  DebugLoc dl = SV->getDebugLoc();
2843  SDValue V1 = SV->getOperand(0);
2844  int NumElems = VT.getVectorNumElements();
2845  int EltNo = SV->getSplatIndex();
2846
2847  // unpack elements to the correct location
2848  while (NumElems > 4) {
2849    if (EltNo < NumElems/2) {
2850      V1 = getUnpackl(DAG, dl, VT, V1, V1);
2851    } else {
2852      V1 = getUnpackh(DAG, dl, VT, V1, V1);
2853      EltNo -= NumElems/2;
2854    }
2855    NumElems >>= 1;
2856  }
2857
2858  // Perform the splat.
2859  int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
2860  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1);
2861  V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
2862  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, V1);
2863}
2864
2865/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
2866/// vector of zero or undef vector.  This produces a shuffle where the low
2867/// element of V2 is swizzled into the zero/undef vector, landing at element
2868/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
2869static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
2870                                             bool isZero, bool HasSSE2,
2871                                             SelectionDAG &DAG) {
2872  MVT VT = V2.getValueType();
2873  SDValue V1 = isZero
2874    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
2875  unsigned NumElems = VT.getVectorNumElements();
2876  SmallVector<int, 16> MaskVec;
2877  for (unsigned i = 0; i != NumElems; ++i)
2878    // If this is the insertion idx, put the low elt of V2 here.
2879    MaskVec.push_back(i == Idx ? NumElems : i);
2880  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
2881}
2882
2883/// getNumOfConsecutiveZeros - Return the number of elements in a result of
2884/// a shuffle that is zero.
2885static
2886unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, int NumElems,
2887                                  bool Low, SelectionDAG &DAG) {
2888  unsigned NumZeros = 0;
2889  for (int i = 0; i < NumElems; ++i) {
2890    unsigned Index = Low ? i : NumElems-i-1;
2891    int Idx = SVOp->getMaskElt(Index);
2892    if (Idx < 0) {
2893      ++NumZeros;
2894      continue;
2895    }
2896    SDValue Elt = DAG.getShuffleScalarElt(SVOp, Index);
2897    if (Elt.getNode() && isZeroNode(Elt))
2898      ++NumZeros;
2899    else
2900      break;
2901  }
2902  return NumZeros;
2903}
2904
2905/// isVectorShift - Returns true if the shuffle can be implemented as a
2906/// logical left or right shift of a vector.
2907/// FIXME: split into pslldqi, psrldqi, palignr variants.
2908static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
2909                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
2910  int NumElems = SVOp->getValueType(0).getVectorNumElements();
2911
2912  isLeft = true;
2913  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, true, DAG);
2914  if (!NumZeros) {
2915    isLeft = false;
2916    NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, false, DAG);
2917    if (!NumZeros)
2918      return false;
2919  }
2920  bool SeenV1 = false;
2921  bool SeenV2 = false;
2922  for (int i = NumZeros; i < NumElems; ++i) {
2923    int Val = isLeft ? (i - NumZeros) : i;
2924    int Idx = SVOp->getMaskElt(isLeft ? i : (i - NumZeros));
2925    if (Idx < 0)
2926      continue;
2927    if (Idx < NumElems)
2928      SeenV1 = true;
2929    else {
2930      Idx -= NumElems;
2931      SeenV2 = true;
2932    }
2933    if (Idx != Val)
2934      return false;
2935  }
2936  if (SeenV1 && SeenV2)
2937    return false;
2938
2939  ShVal = SeenV1 ? SVOp->getOperand(0) : SVOp->getOperand(1);
2940  ShAmt = NumZeros;
2941  return true;
2942}
2943
2944
2945/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
2946///
2947static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
2948                                       unsigned NumNonZero, unsigned NumZero,
2949                                       SelectionDAG &DAG, TargetLowering &TLI) {
2950  if (NumNonZero > 8)
2951    return SDValue();
2952
2953  DebugLoc dl = Op.getDebugLoc();
2954  SDValue V(0, 0);
2955  bool First = true;
2956  for (unsigned i = 0; i < 16; ++i) {
2957    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
2958    if (ThisIsNonZero && First) {
2959      if (NumZero)
2960        V = getZeroVector(MVT::v8i16, true, DAG, dl);
2961      else
2962        V = DAG.getUNDEF(MVT::v8i16);
2963      First = false;
2964    }
2965
2966    if ((i & 1) != 0) {
2967      SDValue ThisElt(0, 0), LastElt(0, 0);
2968      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
2969      if (LastIsNonZero) {
2970        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
2971                              MVT::i16, Op.getOperand(i-1));
2972      }
2973      if (ThisIsNonZero) {
2974        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
2975        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
2976                              ThisElt, DAG.getConstant(8, MVT::i8));
2977        if (LastIsNonZero)
2978          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
2979      } else
2980        ThisElt = LastElt;
2981
2982      if (ThisElt.getNode())
2983        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
2984                        DAG.getIntPtrConstant(i/2));
2985    }
2986  }
2987
2988  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V);
2989}
2990
2991/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
2992///
2993static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
2994                                       unsigned NumNonZero, unsigned NumZero,
2995                                       SelectionDAG &DAG, TargetLowering &TLI) {
2996  if (NumNonZero > 4)
2997    return SDValue();
2998
2999  DebugLoc dl = Op.getDebugLoc();
3000  SDValue V(0, 0);
3001  bool First = true;
3002  for (unsigned i = 0; i < 8; ++i) {
3003    bool isNonZero = (NonZeros & (1 << i)) != 0;
3004    if (isNonZero) {
3005      if (First) {
3006        if (NumZero)
3007          V = getZeroVector(MVT::v8i16, true, DAG, dl);
3008        else
3009          V = DAG.getUNDEF(MVT::v8i16);
3010        First = false;
3011      }
3012      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
3013                      MVT::v8i16, V, Op.getOperand(i),
3014                      DAG.getIntPtrConstant(i));
3015    }
3016  }
3017
3018  return V;
3019}
3020
3021/// getVShift - Return a vector logical shift node.
3022///
3023static SDValue getVShift(bool isLeft, MVT VT, SDValue SrcOp,
3024                         unsigned NumBits, SelectionDAG &DAG,
3025                         const TargetLowering &TLI, DebugLoc dl) {
3026  bool isMMX = VT.getSizeInBits() == 64;
3027  MVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
3028  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3029  SrcOp = DAG.getNode(ISD::BIT_CONVERT, dl, ShVT, SrcOp);
3030  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3031                     DAG.getNode(Opc, dl, ShVT, SrcOp,
3032                             DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3033}
3034
3035SDValue
3036X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
3037  DebugLoc dl = Op.getDebugLoc();
3038  // All zero's are handled with pxor, all one's are handled with pcmpeqd.
3039  if (ISD::isBuildVectorAllZeros(Op.getNode())
3040      || ISD::isBuildVectorAllOnes(Op.getNode())) {
3041    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3042    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3043    // eliminated on x86-32 hosts.
3044    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
3045      return Op;
3046
3047    if (ISD::isBuildVectorAllOnes(Op.getNode()))
3048      return getOnesVector(Op.getValueType(), DAG, dl);
3049    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
3050  }
3051
3052  MVT VT = Op.getValueType();
3053  MVT EVT = VT.getVectorElementType();
3054  unsigned EVTBits = EVT.getSizeInBits();
3055
3056  unsigned NumElems = Op.getNumOperands();
3057  unsigned NumZero  = 0;
3058  unsigned NumNonZero = 0;
3059  unsigned NonZeros = 0;
3060  bool IsAllConstants = true;
3061  SmallSet<SDValue, 8> Values;
3062  for (unsigned i = 0; i < NumElems; ++i) {
3063    SDValue Elt = Op.getOperand(i);
3064    if (Elt.getOpcode() == ISD::UNDEF)
3065      continue;
3066    Values.insert(Elt);
3067    if (Elt.getOpcode() != ISD::Constant &&
3068        Elt.getOpcode() != ISD::ConstantFP)
3069      IsAllConstants = false;
3070    if (isZeroNode(Elt))
3071      NumZero++;
3072    else {
3073      NonZeros |= (1 << i);
3074      NumNonZero++;
3075    }
3076  }
3077
3078  if (NumNonZero == 0) {
3079    // All undef vector. Return an UNDEF.  All zero vectors were handled above.
3080    return DAG.getUNDEF(VT);
3081  }
3082
3083  // Special case for single non-zero, non-undef, element.
3084  if (NumNonZero == 1) {
3085    unsigned Idx = CountTrailingZeros_32(NonZeros);
3086    SDValue Item = Op.getOperand(Idx);
3087
3088    // If this is an insertion of an i64 value on x86-32, and if the top bits of
3089    // the value are obviously zero, truncate the value to i32 and do the
3090    // insertion that way.  Only do this if the value is non-constant or if the
3091    // value is a constant being inserted into element 0.  It is cheaper to do
3092    // a constant pool load than it is to do a movd + shuffle.
3093    if (EVT == MVT::i64 && !Subtarget->is64Bit() &&
3094        (!IsAllConstants || Idx == 0)) {
3095      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
3096        // Handle MMX and SSE both.
3097        MVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
3098        unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
3099
3100        // Truncate the value (which may itself be a constant) to i32, and
3101        // convert it to a vector with movd (S2V+shuffle to zero extend).
3102        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
3103        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
3104        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3105                                           Subtarget->hasSSE2(), DAG);
3106
3107        // Now we have our 32-bit value zero extended in the low element of
3108        // a vector.  If Idx != 0, swizzle it into place.
3109        if (Idx != 0) {
3110          SmallVector<int, 4> Mask;
3111          Mask.push_back(Idx);
3112          for (unsigned i = 1; i != VecElts; ++i)
3113            Mask.push_back(i);
3114          Item = DAG.getVectorShuffle(VecVT, dl, Item,
3115                                      DAG.getUNDEF(Item.getValueType()),
3116                                      &Mask[0]);
3117        }
3118        return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Item);
3119      }
3120    }
3121
3122    // If we have a constant or non-constant insertion into the low element of
3123    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3124    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
3125    // depending on what the source datatype is.
3126    if (Idx == 0) {
3127      if (NumZero == 0) {
3128        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3129      } else if (EVT == MVT::i32 || EVT == MVT::f32 || EVT == MVT::f64 ||
3130          (EVT == MVT::i64 && Subtarget->is64Bit())) {
3131        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3132        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3133        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
3134                                           DAG);
3135      } else if (EVT == MVT::i16 || EVT == MVT::i8) {
3136        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
3137        MVT MiddleVT = VT.getSizeInBits() == 64 ? MVT::v2i32 : MVT::v4i32;
3138        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
3139        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3140                                           Subtarget->hasSSE2(), DAG);
3141        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Item);
3142      }
3143    }
3144
3145    // Is it a vector logical left shift?
3146    if (NumElems == 2 && Idx == 1 &&
3147        isZeroNode(Op.getOperand(0)) && !isZeroNode(Op.getOperand(1))) {
3148      unsigned NumBits = VT.getSizeInBits();
3149      return getVShift(true, VT,
3150                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
3151                                   VT, Op.getOperand(1)),
3152                       NumBits/2, DAG, *this, dl);
3153    }
3154
3155    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
3156      return SDValue();
3157
3158    // Otherwise, if this is a vector with i32 or f32 elements, and the element
3159    // is a non-constant being inserted into an element other than the low one,
3160    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
3161    // movd/movss) to move this into the low element, then shuffle it into
3162    // place.
3163    if (EVTBits == 32) {
3164      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3165
3166      // Turn it into a shuffle of zero and zero-extended scalar to vector.
3167      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3168                                         Subtarget->hasSSE2(), DAG);
3169      SmallVector<int, 8> MaskVec;
3170      for (unsigned i = 0; i < NumElems; i++)
3171        MaskVec.push_back(i == Idx ? 0 : 1);
3172      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
3173    }
3174  }
3175
3176  // Splat is obviously ok. Let legalizer expand it to a shuffle.
3177  if (Values.size() == 1)
3178    return SDValue();
3179
3180  // A vector full of immediates; various special cases are already
3181  // handled, so this is best done with a single constant-pool load.
3182  if (IsAllConstants)
3183    return SDValue();
3184
3185  // Let legalizer expand 2-wide build_vectors.
3186  if (EVTBits == 64) {
3187    if (NumNonZero == 1) {
3188      // One half is zero or undef.
3189      unsigned Idx = CountTrailingZeros_32(NonZeros);
3190      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
3191                                 Op.getOperand(Idx));
3192      return getShuffleVectorZeroOrUndef(V2, Idx, true,
3193                                         Subtarget->hasSSE2(), DAG);
3194    }
3195    return SDValue();
3196  }
3197
3198  // If element VT is < 32 bits, convert it to inserts into a zero vector.
3199  if (EVTBits == 8 && NumElems == 16) {
3200    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3201                                        *this);
3202    if (V.getNode()) return V;
3203  }
3204
3205  if (EVTBits == 16 && NumElems == 8) {
3206    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3207                                        *this);
3208    if (V.getNode()) return V;
3209  }
3210
3211  // If element VT is == 32 bits, turn it into a number of shuffles.
3212  SmallVector<SDValue, 8> V;
3213  V.resize(NumElems);
3214  if (NumElems == 4 && NumZero > 0) {
3215    for (unsigned i = 0; i < 4; ++i) {
3216      bool isZero = !(NonZeros & (1 << i));
3217      if (isZero)
3218        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
3219      else
3220        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3221    }
3222
3223    for (unsigned i = 0; i < 2; ++i) {
3224      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3225        default: break;
3226        case 0:
3227          V[i] = V[i*2];  // Must be a zero vector.
3228          break;
3229        case 1:
3230          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
3231          break;
3232        case 2:
3233          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
3234          break;
3235        case 3:
3236          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
3237          break;
3238      }
3239    }
3240
3241    SmallVector<int, 8> MaskVec;
3242    bool Reverse = (NonZeros & 0x3) == 2;
3243    for (unsigned i = 0; i < 2; ++i)
3244      MaskVec.push_back(Reverse ? 1-i : i);
3245    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3246    for (unsigned i = 0; i < 2; ++i)
3247      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
3248    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
3249  }
3250
3251  if (Values.size() > 2) {
3252    // If we have SSE 4.1, Expand into a number of inserts unless the number of
3253    // values to be inserted is equal to the number of elements, in which case
3254    // use the unpack code below in the hopes of matching the consecutive elts
3255    // load merge pattern for shuffles.
3256    // FIXME: We could probably just check that here directly.
3257    if (Values.size() < NumElems && VT.getSizeInBits() == 128 &&
3258        getSubtarget()->hasSSE41()) {
3259      V[0] = DAG.getUNDEF(VT);
3260      for (unsigned i = 0; i < NumElems; ++i)
3261        if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
3262          V[0] = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, V[0],
3263                             Op.getOperand(i), DAG.getIntPtrConstant(i));
3264      return V[0];
3265    }
3266    // Expand into a number of unpckl*.
3267    // e.g. for v4f32
3268    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3269    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3270    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
3271    for (unsigned i = 0; i < NumElems; ++i)
3272      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3273    NumElems >>= 1;
3274    while (NumElems != 0) {
3275      for (unsigned i = 0; i < NumElems; ++i)
3276        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + NumElems]);
3277      NumElems >>= 1;
3278    }
3279    return V[0];
3280  }
3281
3282  return SDValue();
3283}
3284
3285// v8i16 shuffles - Prefer shuffles in the following order:
3286// 1. [all]   pshuflw, pshufhw, optional move
3287// 2. [ssse3] 1 x pshufb
3288// 3. [ssse3] 2 x pshufb + 1 x por
3289// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
3290static
3291SDValue LowerVECTOR_SHUFFLEv8i16(ShuffleVectorSDNode *SVOp,
3292                                 SelectionDAG &DAG, X86TargetLowering &TLI) {
3293  SDValue V1 = SVOp->getOperand(0);
3294  SDValue V2 = SVOp->getOperand(1);
3295  DebugLoc dl = SVOp->getDebugLoc();
3296  SmallVector<int, 8> MaskVals;
3297
3298  // Determine if more than 1 of the words in each of the low and high quadwords
3299  // of the result come from the same quadword of one of the two inputs.  Undef
3300  // mask values count as coming from any quadword, for better codegen.
3301  SmallVector<unsigned, 4> LoQuad(4);
3302  SmallVector<unsigned, 4> HiQuad(4);
3303  BitVector InputQuads(4);
3304  for (unsigned i = 0; i < 8; ++i) {
3305    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
3306    int EltIdx = SVOp->getMaskElt(i);
3307    MaskVals.push_back(EltIdx);
3308    if (EltIdx < 0) {
3309      ++Quad[0];
3310      ++Quad[1];
3311      ++Quad[2];
3312      ++Quad[3];
3313      continue;
3314    }
3315    ++Quad[EltIdx / 4];
3316    InputQuads.set(EltIdx / 4);
3317  }
3318
3319  int BestLoQuad = -1;
3320  unsigned MaxQuad = 1;
3321  for (unsigned i = 0; i < 4; ++i) {
3322    if (LoQuad[i] > MaxQuad) {
3323      BestLoQuad = i;
3324      MaxQuad = LoQuad[i];
3325    }
3326  }
3327
3328  int BestHiQuad = -1;
3329  MaxQuad = 1;
3330  for (unsigned i = 0; i < 4; ++i) {
3331    if (HiQuad[i] > MaxQuad) {
3332      BestHiQuad = i;
3333      MaxQuad = HiQuad[i];
3334    }
3335  }
3336
3337  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
3338  // of the two input vectors, shuffle them into one input vector so only a
3339  // single pshufb instruction is necessary. If There are more than 2 input
3340  // quads, disable the next transformation since it does not help SSSE3.
3341  bool V1Used = InputQuads[0] || InputQuads[1];
3342  bool V2Used = InputQuads[2] || InputQuads[3];
3343  if (TLI.getSubtarget()->hasSSSE3()) {
3344    if (InputQuads.count() == 2 && V1Used && V2Used) {
3345      BestLoQuad = InputQuads.find_first();
3346      BestHiQuad = InputQuads.find_next(BestLoQuad);
3347    }
3348    if (InputQuads.count() > 2) {
3349      BestLoQuad = -1;
3350      BestHiQuad = -1;
3351    }
3352  }
3353
3354  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
3355  // the shuffle mask.  If a quad is scored as -1, that means that it contains
3356  // words from all 4 input quadwords.
3357  SDValue NewV;
3358  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
3359    SmallVector<int, 8> MaskV;
3360    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
3361    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
3362    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
3363                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V1),
3364                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V2), &MaskV[0]);
3365    NewV = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, NewV);
3366
3367    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
3368    // source words for the shuffle, to aid later transformations.
3369    bool AllWordsInNewV = true;
3370    bool InOrder[2] = { true, true };
3371    for (unsigned i = 0; i != 8; ++i) {
3372      int idx = MaskVals[i];
3373      if (idx != (int)i)
3374        InOrder[i/4] = false;
3375      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
3376        continue;
3377      AllWordsInNewV = false;
3378      break;
3379    }
3380
3381    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
3382    if (AllWordsInNewV) {
3383      for (int i = 0; i != 8; ++i) {
3384        int idx = MaskVals[i];
3385        if (idx < 0)
3386          continue;
3387        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
3388        if ((idx != i) && idx < 4)
3389          pshufhw = false;
3390        if ((idx != i) && idx > 3)
3391          pshuflw = false;
3392      }
3393      V1 = NewV;
3394      V2Used = false;
3395      BestLoQuad = 0;
3396      BestHiQuad = 1;
3397    }
3398
3399    // If we've eliminated the use of V2, and the new mask is a pshuflw or
3400    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
3401    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
3402      return DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
3403                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
3404    }
3405  }
3406
3407  // If we have SSSE3, and all words of the result are from 1 input vector,
3408  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
3409  // is present, fall back to case 4.
3410  if (TLI.getSubtarget()->hasSSSE3()) {
3411    SmallVector<SDValue,16> pshufbMask;
3412
3413    // If we have elements from both input vectors, set the high bit of the
3414    // shuffle mask element to zero out elements that come from V2 in the V1
3415    // mask, and elements that come from V1 in the V2 mask, so that the two
3416    // results can be OR'd together.
3417    bool TwoInputs = V1Used && V2Used;
3418    for (unsigned i = 0; i != 8; ++i) {
3419      int EltIdx = MaskVals[i] * 2;
3420      if (TwoInputs && (EltIdx >= 16)) {
3421        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3422        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3423        continue;
3424      }
3425      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
3426      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
3427    }
3428    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V1);
3429    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
3430                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3431                                 MVT::v16i8, &pshufbMask[0], 16));
3432    if (!TwoInputs)
3433      return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
3434
3435    // Calculate the shuffle mask for the second input, shuffle it, and
3436    // OR it with the first shuffled input.
3437    pshufbMask.clear();
3438    for (unsigned i = 0; i != 8; ++i) {
3439      int EltIdx = MaskVals[i] * 2;
3440      if (EltIdx < 16) {
3441        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3442        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3443        continue;
3444      }
3445      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
3446      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
3447    }
3448    V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V2);
3449    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
3450                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3451                                 MVT::v16i8, &pshufbMask[0], 16));
3452    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
3453    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
3454  }
3455
3456  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
3457  // and update MaskVals with new element order.
3458  BitVector InOrder(8);
3459  if (BestLoQuad >= 0) {
3460    SmallVector<int, 8> MaskV;
3461    for (int i = 0; i != 4; ++i) {
3462      int idx = MaskVals[i];
3463      if (idx < 0) {
3464        MaskV.push_back(-1);
3465        InOrder.set(i);
3466      } else if ((idx / 4) == BestLoQuad) {
3467        MaskV.push_back(idx & 3);
3468        InOrder.set(i);
3469      } else {
3470        MaskV.push_back(-1);
3471      }
3472    }
3473    for (unsigned i = 4; i != 8; ++i)
3474      MaskV.push_back(i);
3475    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
3476                                &MaskV[0]);
3477  }
3478
3479  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
3480  // and update MaskVals with the new element order.
3481  if (BestHiQuad >= 0) {
3482    SmallVector<int, 8> MaskV;
3483    for (unsigned i = 0; i != 4; ++i)
3484      MaskV.push_back(i);
3485    for (unsigned i = 4; i != 8; ++i) {
3486      int idx = MaskVals[i];
3487      if (idx < 0) {
3488        MaskV.push_back(-1);
3489        InOrder.set(i);
3490      } else if ((idx / 4) == BestHiQuad) {
3491        MaskV.push_back((idx & 3) + 4);
3492        InOrder.set(i);
3493      } else {
3494        MaskV.push_back(-1);
3495      }
3496    }
3497    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
3498                                &MaskV[0]);
3499  }
3500
3501  // In case BestHi & BestLo were both -1, which means each quadword has a word
3502  // from each of the four input quadwords, calculate the InOrder bitvector now
3503  // before falling through to the insert/extract cleanup.
3504  if (BestLoQuad == -1 && BestHiQuad == -1) {
3505    NewV = V1;
3506    for (int i = 0; i != 8; ++i)
3507      if (MaskVals[i] < 0 || MaskVals[i] == i)
3508        InOrder.set(i);
3509  }
3510
3511  // The other elements are put in the right place using pextrw and pinsrw.
3512  for (unsigned i = 0; i != 8; ++i) {
3513    if (InOrder[i])
3514      continue;
3515    int EltIdx = MaskVals[i];
3516    if (EltIdx < 0)
3517      continue;
3518    SDValue ExtOp = (EltIdx < 8)
3519    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
3520                  DAG.getIntPtrConstant(EltIdx))
3521    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
3522                  DAG.getIntPtrConstant(EltIdx - 8));
3523    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
3524                       DAG.getIntPtrConstant(i));
3525  }
3526  return NewV;
3527}
3528
3529// v16i8 shuffles - Prefer shuffles in the following order:
3530// 1. [ssse3] 1 x pshufb
3531// 2. [ssse3] 2 x pshufb + 1 x por
3532// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
3533static
3534SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
3535                                 SelectionDAG &DAG, X86TargetLowering &TLI) {
3536  SDValue V1 = SVOp->getOperand(0);
3537  SDValue V2 = SVOp->getOperand(1);
3538  DebugLoc dl = SVOp->getDebugLoc();
3539  SmallVector<int, 16> MaskVals;
3540  SVOp->getMask(MaskVals);
3541
3542  // If we have SSSE3, case 1 is generated when all result bytes come from
3543  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
3544  // present, fall back to case 3.
3545  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
3546  bool V1Only = true;
3547  bool V2Only = true;
3548  for (unsigned i = 0; i < 16; ++i) {
3549    int EltIdx = MaskVals[i];
3550    if (EltIdx < 0)
3551      continue;
3552    if (EltIdx < 16)
3553      V2Only = false;
3554    else
3555      V1Only = false;
3556  }
3557
3558  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
3559  if (TLI.getSubtarget()->hasSSSE3()) {
3560    SmallVector<SDValue,16> pshufbMask;
3561
3562    // If all result elements are from one input vector, then only translate
3563    // undef mask values to 0x80 (zero out result) in the pshufb mask.
3564    //
3565    // Otherwise, we have elements from both input vectors, and must zero out
3566    // elements that come from V2 in the first mask, and V1 in the second mask
3567    // so that we can OR them together.
3568    bool TwoInputs = !(V1Only || V2Only);
3569    for (unsigned i = 0; i != 16; ++i) {
3570      int EltIdx = MaskVals[i];
3571      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
3572        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3573        continue;
3574      }
3575      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
3576    }
3577    // If all the elements are from V2, assign it to V1 and return after
3578    // building the first pshufb.
3579    if (V2Only)
3580      V1 = V2;
3581    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
3582                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3583                                 MVT::v16i8, &pshufbMask[0], 16));
3584    if (!TwoInputs)
3585      return V1;
3586
3587    // Calculate the shuffle mask for the second input, shuffle it, and
3588    // OR it with the first shuffled input.
3589    pshufbMask.clear();
3590    for (unsigned i = 0; i != 16; ++i) {
3591      int EltIdx = MaskVals[i];
3592      if (EltIdx < 16) {
3593        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3594        continue;
3595      }
3596      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
3597    }
3598    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
3599                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3600                                 MVT::v16i8, &pshufbMask[0], 16));
3601    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
3602  }
3603
3604  // No SSSE3 - Calculate in place words and then fix all out of place words
3605  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
3606  // the 16 different words that comprise the two doublequadword input vectors.
3607  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
3608  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V2);
3609  SDValue NewV = V2Only ? V2 : V1;
3610  for (int i = 0; i != 8; ++i) {
3611    int Elt0 = MaskVals[i*2];
3612    int Elt1 = MaskVals[i*2+1];
3613
3614    // This word of the result is all undef, skip it.
3615    if (Elt0 < 0 && Elt1 < 0)
3616      continue;
3617
3618    // This word of the result is already in the correct place, skip it.
3619    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
3620      continue;
3621    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
3622      continue;
3623
3624    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
3625    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
3626    SDValue InsElt;
3627
3628    // If Elt0 and Elt1 are defined, are consecutive, and can be load
3629    // using a single extract together, load it and store it.
3630    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
3631      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
3632                           DAG.getIntPtrConstant(Elt1 / 2));
3633      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
3634                        DAG.getIntPtrConstant(i));
3635      continue;
3636    }
3637
3638    // If Elt1 is defined, extract it from the appropriate source.  If the
3639    // source byte is not also odd, shift the extracted word left 8 bits
3640    // otherwise clear the bottom 8 bits if we need to do an or.
3641    if (Elt1 >= 0) {
3642      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
3643                           DAG.getIntPtrConstant(Elt1 / 2));
3644      if ((Elt1 & 1) == 0)
3645        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
3646                             DAG.getConstant(8, TLI.getShiftAmountTy()));
3647      else if (Elt0 >= 0)
3648        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
3649                             DAG.getConstant(0xFF00, MVT::i16));
3650    }
3651    // If Elt0 is defined, extract it from the appropriate source.  If the
3652    // source byte is not also even, shift the extracted word right 8 bits. If
3653    // Elt1 was also defined, OR the extracted values together before
3654    // inserting them in the result.
3655    if (Elt0 >= 0) {
3656      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
3657                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
3658      if ((Elt0 & 1) != 0)
3659        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
3660                              DAG.getConstant(8, TLI.getShiftAmountTy()));
3661      else if (Elt1 >= 0)
3662        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
3663                             DAG.getConstant(0x00FF, MVT::i16));
3664      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
3665                         : InsElt0;
3666    }
3667    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
3668                       DAG.getIntPtrConstant(i));
3669  }
3670  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, NewV);
3671}
3672
3673/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
3674/// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
3675/// done when every pair / quad of shuffle mask elements point to elements in
3676/// the right sequence. e.g.
3677/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
3678static
3679SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
3680                                 SelectionDAG &DAG,
3681                                 TargetLowering &TLI, DebugLoc dl) {
3682  MVT VT = SVOp->getValueType(0);
3683  SDValue V1 = SVOp->getOperand(0);
3684  SDValue V2 = SVOp->getOperand(1);
3685  unsigned NumElems = VT.getVectorNumElements();
3686  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
3687  MVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
3688  MVT MaskEltVT = MaskVT.getVectorElementType();
3689  MVT NewVT = MaskVT;
3690  switch (VT.getSimpleVT()) {
3691  default: assert(false && "Unexpected!");
3692  case MVT::v4f32: NewVT = MVT::v2f64; break;
3693  case MVT::v4i32: NewVT = MVT::v2i64; break;
3694  case MVT::v8i16: NewVT = MVT::v4i32; break;
3695  case MVT::v16i8: NewVT = MVT::v4i32; break;
3696  }
3697
3698  if (NewWidth == 2) {
3699    if (VT.isInteger())
3700      NewVT = MVT::v2i64;
3701    else
3702      NewVT = MVT::v2f64;
3703  }
3704  int Scale = NumElems / NewWidth;
3705  SmallVector<int, 8> MaskVec;
3706  for (unsigned i = 0; i < NumElems; i += Scale) {
3707    int StartIdx = -1;
3708    for (int j = 0; j < Scale; ++j) {
3709      int EltIdx = SVOp->getMaskElt(i+j);
3710      if (EltIdx < 0)
3711        continue;
3712      if (StartIdx == -1)
3713        StartIdx = EltIdx - (EltIdx % Scale);
3714      if (EltIdx != StartIdx + j)
3715        return SDValue();
3716    }
3717    if (StartIdx == -1)
3718      MaskVec.push_back(-1);
3719    else
3720      MaskVec.push_back(StartIdx / Scale);
3721  }
3722
3723  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V1);
3724  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V2);
3725  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
3726}
3727
3728/// getVZextMovL - Return a zero-extending vector move low node.
3729///
3730static SDValue getVZextMovL(MVT VT, MVT OpVT,
3731                            SDValue SrcOp, SelectionDAG &DAG,
3732                            const X86Subtarget *Subtarget, DebugLoc dl) {
3733  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
3734    LoadSDNode *LD = NULL;
3735    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
3736      LD = dyn_cast<LoadSDNode>(SrcOp);
3737    if (!LD) {
3738      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
3739      // instead.
3740      MVT EVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
3741      if ((EVT != MVT::i64 || Subtarget->is64Bit()) &&
3742          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
3743          SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
3744          SrcOp.getOperand(0).getOperand(0).getValueType() == EVT) {
3745        // PR2108
3746        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
3747        return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3748                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
3749                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
3750                                                   OpVT,
3751                                                   SrcOp.getOperand(0)
3752                                                          .getOperand(0))));
3753      }
3754    }
3755  }
3756
3757  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3758                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
3759                                 DAG.getNode(ISD::BIT_CONVERT, dl,
3760                                             OpVT, SrcOp)));
3761}
3762
3763/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
3764/// shuffles.
3765static SDValue
3766LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3767  SDValue V1 = SVOp->getOperand(0);
3768  SDValue V2 = SVOp->getOperand(1);
3769  DebugLoc dl = SVOp->getDebugLoc();
3770  MVT VT = SVOp->getValueType(0);
3771
3772  SmallVector<std::pair<int, int>, 8> Locs;
3773  Locs.resize(4);
3774  SmallVector<int, 8> Mask1(4U, -1);
3775  SmallVector<int, 8> PermMask;
3776  SVOp->getMask(PermMask);
3777
3778  unsigned NumHi = 0;
3779  unsigned NumLo = 0;
3780  for (unsigned i = 0; i != 4; ++i) {
3781    int Idx = PermMask[i];
3782    if (Idx < 0) {
3783      Locs[i] = std::make_pair(-1, -1);
3784    } else {
3785      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
3786      if (Idx < 4) {
3787        Locs[i] = std::make_pair(0, NumLo);
3788        Mask1[NumLo] = Idx;
3789        NumLo++;
3790      } else {
3791        Locs[i] = std::make_pair(1, NumHi);
3792        if (2+NumHi < 4)
3793          Mask1[2+NumHi] = Idx;
3794        NumHi++;
3795      }
3796    }
3797  }
3798
3799  if (NumLo <= 2 && NumHi <= 2) {
3800    // If no more than two elements come from either vector. This can be
3801    // implemented with two shuffles. First shuffle gather the elements.
3802    // The second shuffle, which takes the first shuffle as both of its
3803    // vector operands, put the elements into the right order.
3804    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
3805
3806    SmallVector<int, 8> Mask2(4U, -1);
3807
3808    for (unsigned i = 0; i != 4; ++i) {
3809      if (Locs[i].first == -1)
3810        continue;
3811      else {
3812        unsigned Idx = (i < 2) ? 0 : 4;
3813        Idx += Locs[i].first * 2 + Locs[i].second;
3814        Mask2[i] = Idx;
3815      }
3816    }
3817
3818    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
3819  } else if (NumLo == 3 || NumHi == 3) {
3820    // Otherwise, we must have three elements from one vector, call it X, and
3821    // one element from the other, call it Y.  First, use a shufps to build an
3822    // intermediate vector with the one element from Y and the element from X
3823    // that will be in the same half in the final destination (the indexes don't
3824    // matter). Then, use a shufps to build the final vector, taking the half
3825    // containing the element from Y from the intermediate, and the other half
3826    // from X.
3827    if (NumHi == 3) {
3828      // Normalize it so the 3 elements come from V1.
3829      CommuteVectorShuffleMask(PermMask, VT);
3830      std::swap(V1, V2);
3831    }
3832
3833    // Find the element from V2.
3834    unsigned HiIndex;
3835    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
3836      int Val = PermMask[HiIndex];
3837      if (Val < 0)
3838        continue;
3839      if (Val >= 4)
3840        break;
3841    }
3842
3843    Mask1[0] = PermMask[HiIndex];
3844    Mask1[1] = -1;
3845    Mask1[2] = PermMask[HiIndex^1];
3846    Mask1[3] = -1;
3847    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
3848
3849    if (HiIndex >= 2) {
3850      Mask1[0] = PermMask[0];
3851      Mask1[1] = PermMask[1];
3852      Mask1[2] = HiIndex & 1 ? 6 : 4;
3853      Mask1[3] = HiIndex & 1 ? 4 : 6;
3854      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
3855    } else {
3856      Mask1[0] = HiIndex & 1 ? 2 : 0;
3857      Mask1[1] = HiIndex & 1 ? 0 : 2;
3858      Mask1[2] = PermMask[2];
3859      Mask1[3] = PermMask[3];
3860      if (Mask1[2] >= 0)
3861        Mask1[2] += 4;
3862      if (Mask1[3] >= 0)
3863        Mask1[3] += 4;
3864      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
3865    }
3866  }
3867
3868  // Break it into (shuffle shuffle_hi, shuffle_lo).
3869  Locs.clear();
3870  SmallVector<int,8> LoMask(4U, -1);
3871  SmallVector<int,8> HiMask(4U, -1);
3872
3873  SmallVector<int,8> *MaskPtr = &LoMask;
3874  unsigned MaskIdx = 0;
3875  unsigned LoIdx = 0;
3876  unsigned HiIdx = 2;
3877  for (unsigned i = 0; i != 4; ++i) {
3878    if (i == 2) {
3879      MaskPtr = &HiMask;
3880      MaskIdx = 1;
3881      LoIdx = 0;
3882      HiIdx = 2;
3883    }
3884    int Idx = PermMask[i];
3885    if (Idx < 0) {
3886      Locs[i] = std::make_pair(-1, -1);
3887    } else if (Idx < 4) {
3888      Locs[i] = std::make_pair(MaskIdx, LoIdx);
3889      (*MaskPtr)[LoIdx] = Idx;
3890      LoIdx++;
3891    } else {
3892      Locs[i] = std::make_pair(MaskIdx, HiIdx);
3893      (*MaskPtr)[HiIdx] = Idx;
3894      HiIdx++;
3895    }
3896  }
3897
3898  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
3899  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
3900  SmallVector<int, 8> MaskOps;
3901  for (unsigned i = 0; i != 4; ++i) {
3902    if (Locs[i].first == -1) {
3903      MaskOps.push_back(-1);
3904    } else {
3905      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
3906      MaskOps.push_back(Idx);
3907    }
3908  }
3909  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
3910}
3911
3912SDValue
3913X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
3914  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
3915  SDValue V1 = Op.getOperand(0);
3916  SDValue V2 = Op.getOperand(1);
3917  MVT VT = Op.getValueType();
3918  DebugLoc dl = Op.getDebugLoc();
3919  unsigned NumElems = VT.getVectorNumElements();
3920  bool isMMX = VT.getSizeInBits() == 64;
3921  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
3922  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
3923  bool V1IsSplat = false;
3924  bool V2IsSplat = false;
3925
3926  if (isZeroShuffle(SVOp))
3927    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
3928
3929  // Promote splats to v4f32.
3930  if (SVOp->isSplat()) {
3931    if (isMMX || NumElems < 4)
3932      return Op;
3933    return PromoteSplat(SVOp, DAG, Subtarget->hasSSE2());
3934  }
3935
3936  // If the shuffle can be profitably rewritten as a narrower shuffle, then
3937  // do it!
3938  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
3939    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
3940    if (NewOp.getNode())
3941      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3942                         LowerVECTOR_SHUFFLE(NewOp, DAG));
3943  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
3944    // FIXME: Figure out a cleaner way to do this.
3945    // Try to make use of movq to zero out the top part.
3946    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
3947      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
3948      if (NewOp.getNode()) {
3949        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
3950          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
3951                              DAG, Subtarget, dl);
3952      }
3953    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
3954      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
3955      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
3956        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
3957                            DAG, Subtarget, dl);
3958    }
3959  }
3960
3961  if (X86::isPSHUFDMask(SVOp))
3962    return Op;
3963
3964  // Check if this can be converted into a logical shift.
3965  bool isLeft = false;
3966  unsigned ShAmt = 0;
3967  SDValue ShVal;
3968  bool isShift = getSubtarget()->hasSSE2() &&
3969  isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
3970  if (isShift && ShVal.hasOneUse()) {
3971    // If the shifted value has multiple uses, it may be cheaper to use
3972    // v_set0 + movlhps or movhlps, etc.
3973    MVT EVT = VT.getVectorElementType();
3974    ShAmt *= EVT.getSizeInBits();
3975    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
3976  }
3977
3978  if (X86::isMOVLMask(SVOp)) {
3979    if (V1IsUndef)
3980      return V2;
3981    if (ISD::isBuildVectorAllZeros(V1.getNode()))
3982      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
3983    if (!isMMX)
3984      return Op;
3985  }
3986
3987  // FIXME: fold these into legal mask.
3988  if (!isMMX && (X86::isMOVSHDUPMask(SVOp) ||
3989                 X86::isMOVSLDUPMask(SVOp) ||
3990                 X86::isMOVHLPSMask(SVOp) ||
3991                 X86::isMOVHPMask(SVOp) ||
3992                 X86::isMOVLPMask(SVOp)))
3993    return Op;
3994
3995  if (ShouldXformToMOVHLPS(SVOp) ||
3996      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
3997    return CommuteVectorShuffle(SVOp, DAG);
3998
3999  if (isShift) {
4000    // No better options. Use a vshl / vsrl.
4001    MVT EVT = VT.getVectorElementType();
4002    ShAmt *= EVT.getSizeInBits();
4003    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4004  }
4005
4006  bool Commuted = false;
4007  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
4008  // 1,1,1,1 -> v8i16 though.
4009  V1IsSplat = isSplatVector(V1.getNode());
4010  V2IsSplat = isSplatVector(V2.getNode());
4011
4012  // Canonicalize the splat or undef, if present, to be on the RHS.
4013  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
4014    Op = CommuteVectorShuffle(SVOp, DAG);
4015    SVOp = cast<ShuffleVectorSDNode>(Op);
4016    V1 = SVOp->getOperand(0);
4017    V2 = SVOp->getOperand(1);
4018    std::swap(V1IsSplat, V2IsSplat);
4019    std::swap(V1IsUndef, V2IsUndef);
4020    Commuted = true;
4021  }
4022
4023  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
4024    // Shuffling low element of v1 into undef, just return v1.
4025    if (V2IsUndef)
4026      return V1;
4027    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
4028    // the instruction selector will not match, so get a canonical MOVL with
4029    // swapped operands to undo the commute.
4030    return getMOVL(DAG, dl, VT, V2, V1);
4031  }
4032
4033  if (X86::isUNPCKL_v_undef_Mask(SVOp) ||
4034      X86::isUNPCKH_v_undef_Mask(SVOp) ||
4035      X86::isUNPCKLMask(SVOp) ||
4036      X86::isUNPCKHMask(SVOp))
4037    return Op;
4038
4039  if (V2IsSplat) {
4040    // Normalize mask so all entries that point to V2 points to its first
4041    // element then try to match unpck{h|l} again. If match, return a
4042    // new vector_shuffle with the corrected mask.
4043    SDValue NewMask = NormalizeMask(SVOp, DAG);
4044    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
4045    if (NSVOp != SVOp) {
4046      if (X86::isUNPCKLMask(NSVOp, true)) {
4047        return NewMask;
4048      } else if (X86::isUNPCKHMask(NSVOp, true)) {
4049        return NewMask;
4050      }
4051    }
4052  }
4053
4054  if (Commuted) {
4055    // Commute is back and try unpck* again.
4056    // FIXME: this seems wrong.
4057    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
4058    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
4059    if (X86::isUNPCKL_v_undef_Mask(NewSVOp) ||
4060        X86::isUNPCKH_v_undef_Mask(NewSVOp) ||
4061        X86::isUNPCKLMask(NewSVOp) ||
4062        X86::isUNPCKHMask(NewSVOp))
4063      return NewOp;
4064  }
4065
4066  // FIXME: for mmx, bitcast v2i32 to v4i16 for shuffle.
4067
4068  // Normalize the node to match x86 shuffle ops if needed
4069  if (!isMMX && V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
4070    return CommuteVectorShuffle(SVOp, DAG);
4071
4072  // Check for legal shuffle and return?
4073  SmallVector<int, 16> PermMask;
4074  SVOp->getMask(PermMask);
4075  if (isShuffleMaskLegal(PermMask, VT))
4076    return Op;
4077
4078  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
4079  if (VT == MVT::v8i16) {
4080    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(SVOp, DAG, *this);
4081    if (NewOp.getNode())
4082      return NewOp;
4083  }
4084
4085  if (VT == MVT::v16i8) {
4086    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
4087    if (NewOp.getNode())
4088      return NewOp;
4089  }
4090
4091  // Handle all 4 wide cases with a number of shuffles except for MMX.
4092  if (NumElems == 4 && !isMMX)
4093    return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
4094
4095  return SDValue();
4096}
4097
4098SDValue
4099X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
4100                                                SelectionDAG &DAG) {
4101  MVT VT = Op.getValueType();
4102  DebugLoc dl = Op.getDebugLoc();
4103  if (VT.getSizeInBits() == 8) {
4104    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
4105                                    Op.getOperand(0), Op.getOperand(1));
4106    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4107                                    DAG.getValueType(VT));
4108    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4109  } else if (VT.getSizeInBits() == 16) {
4110    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4111    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
4112    if (Idx == 0)
4113      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4114                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4115                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4116                                                 MVT::v4i32,
4117                                                 Op.getOperand(0)),
4118                                     Op.getOperand(1)));
4119    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
4120                                    Op.getOperand(0), Op.getOperand(1));
4121    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4122                                    DAG.getValueType(VT));
4123    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4124  } else if (VT == MVT::f32) {
4125    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
4126    // the result back to FR32 register. It's only worth matching if the
4127    // result has a single use which is a store or a bitcast to i32.  And in
4128    // the case of a store, it's not worth it if the index is a constant 0,
4129    // because a MOVSSmr can be used instead, which is smaller and faster.
4130    if (!Op.hasOneUse())
4131      return SDValue();
4132    SDNode *User = *Op.getNode()->use_begin();
4133    if ((User->getOpcode() != ISD::STORE ||
4134         (isa<ConstantSDNode>(Op.getOperand(1)) &&
4135          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
4136        (User->getOpcode() != ISD::BIT_CONVERT ||
4137         User->getValueType(0) != MVT::i32))
4138      return SDValue();
4139    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4140                                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32,
4141                                              Op.getOperand(0)),
4142                                              Op.getOperand(1));
4143    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Extract);
4144  } else if (VT == MVT::i32) {
4145    // ExtractPS works with constant index.
4146    if (isa<ConstantSDNode>(Op.getOperand(1)))
4147      return Op;
4148  }
4149  return SDValue();
4150}
4151
4152
4153SDValue
4154X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4155  if (!isa<ConstantSDNode>(Op.getOperand(1)))
4156    return SDValue();
4157
4158  if (Subtarget->hasSSE41()) {
4159    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
4160    if (Res.getNode())
4161      return Res;
4162  }
4163
4164  MVT VT = Op.getValueType();
4165  DebugLoc dl = Op.getDebugLoc();
4166  // TODO: handle v16i8.
4167  if (VT.getSizeInBits() == 16) {
4168    SDValue Vec = Op.getOperand(0);
4169    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4170    if (Idx == 0)
4171      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4172                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4173                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4174                                                 MVT::v4i32, Vec),
4175                                     Op.getOperand(1)));
4176    // Transform it so it match pextrw which produces a 32-bit result.
4177    MVT EVT = (MVT::SimpleValueType)(VT.getSimpleVT()+1);
4178    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EVT,
4179                                    Op.getOperand(0), Op.getOperand(1));
4180    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EVT, Extract,
4181                                    DAG.getValueType(VT));
4182    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4183  } else if (VT.getSizeInBits() == 32) {
4184    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4185    if (Idx == 0)
4186      return Op;
4187
4188    // SHUFPS the element to the lowest double word, then movss.
4189    int Mask[4] = { Idx, -1, -1, -1 };
4190    MVT VVT = Op.getOperand(0).getValueType();
4191    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
4192                                       DAG.getUNDEF(VVT), Mask);
4193    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4194                       DAG.getIntPtrConstant(0));
4195  } else if (VT.getSizeInBits() == 64) {
4196    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
4197    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
4198    //        to match extract_elt for f64.
4199    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4200    if (Idx == 0)
4201      return Op;
4202
4203    // UNPCKHPD the element to the lowest double word, then movsd.
4204    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
4205    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
4206    int Mask[2] = { 1, -1 };
4207    MVT VVT = Op.getOperand(0).getValueType();
4208    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
4209                                       DAG.getUNDEF(VVT), Mask);
4210    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4211                       DAG.getIntPtrConstant(0));
4212  }
4213
4214  return SDValue();
4215}
4216
4217SDValue
4218X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG){
4219  MVT VT = Op.getValueType();
4220  MVT EVT = VT.getVectorElementType();
4221  DebugLoc dl = Op.getDebugLoc();
4222
4223  SDValue N0 = Op.getOperand(0);
4224  SDValue N1 = Op.getOperand(1);
4225  SDValue N2 = Op.getOperand(2);
4226
4227  if ((EVT.getSizeInBits() == 8 || EVT.getSizeInBits() == 16) &&
4228      isa<ConstantSDNode>(N2)) {
4229    unsigned Opc = (EVT.getSizeInBits() == 8) ? X86ISD::PINSRB
4230                                              : X86ISD::PINSRW;
4231    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
4232    // argument.
4233    if (N1.getValueType() != MVT::i32)
4234      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
4235    if (N2.getValueType() != MVT::i32)
4236      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4237    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
4238  } else if (EVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
4239    // Bits [7:6] of the constant are the source select.  This will always be
4240    //  zero here.  The DAG Combiner may combine an extract_elt index into these
4241    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
4242    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
4243    // Bits [5:4] of the constant are the destination select.  This is the
4244    //  value of the incoming immediate.
4245    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
4246    //   combine either bitwise AND or insert of float 0.0 to set these bits.
4247    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
4248    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
4249  } else if (EVT == MVT::i32) {
4250    // InsertPS works with constant index.
4251    if (isa<ConstantSDNode>(N2))
4252      return Op;
4253  }
4254  return SDValue();
4255}
4256
4257SDValue
4258X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4259  MVT VT = Op.getValueType();
4260  MVT EVT = VT.getVectorElementType();
4261
4262  if (Subtarget->hasSSE41())
4263    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
4264
4265  if (EVT == MVT::i8)
4266    return SDValue();
4267
4268  DebugLoc dl = Op.getDebugLoc();
4269  SDValue N0 = Op.getOperand(0);
4270  SDValue N1 = Op.getOperand(1);
4271  SDValue N2 = Op.getOperand(2);
4272
4273  if (EVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
4274    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
4275    // as its second argument.
4276    if (N1.getValueType() != MVT::i32)
4277      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
4278    if (N2.getValueType() != MVT::i32)
4279      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4280    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
4281  }
4282  return SDValue();
4283}
4284
4285SDValue
4286X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
4287  DebugLoc dl = Op.getDebugLoc();
4288  if (Op.getValueType() == MVT::v2f32)
4289    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f32,
4290                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i32,
4291                                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32,
4292                                               Op.getOperand(0))));
4293
4294  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
4295  MVT VT = MVT::v2i32;
4296  switch (Op.getValueType().getSimpleVT()) {
4297  default: break;
4298  case MVT::v16i8:
4299  case MVT::v8i16:
4300    VT = MVT::v4i32;
4301    break;
4302  }
4303  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(),
4304                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, AnyExt));
4305}
4306
4307// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
4308// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
4309// one of the above mentioned nodes. It has to be wrapped because otherwise
4310// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
4311// be used to form addressing mode. These wrapped nodes will be selected
4312// into MOV32ri.
4313SDValue
4314X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
4315  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
4316  // FIXME there isn't really any debug info here, should come from the parent
4317  DebugLoc dl = CP->getDebugLoc();
4318  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
4319                                             CP->getAlignment());
4320  Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
4321  // With PIC, the address is actually $g + Offset.
4322  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4323      !Subtarget->isPICStyleRIPRel()) {
4324    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
4325                         DAG.getNode(X86ISD::GlobalBaseReg,
4326                                     DebugLoc::getUnknownLoc(),
4327                                     getPointerTy()),
4328                         Result);
4329  }
4330
4331  return Result;
4332}
4333
4334SDValue
4335X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
4336                                      int64_t Offset,
4337                                      SelectionDAG &DAG) const {
4338  bool IsPic = getTargetMachine().getRelocationModel() == Reloc::PIC_;
4339  bool ExtraLoadRequired =
4340    Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false);
4341
4342  // Create the TargetGlobalAddress node, folding in the constant
4343  // offset if it is legal.
4344  SDValue Result;
4345  if (!IsPic && !ExtraLoadRequired && isInt32(Offset)) {
4346    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), Offset);
4347    Offset = 0;
4348  } else
4349    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), 0);
4350  Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
4351
4352  // With PIC, the address is actually $g + Offset.
4353  if (IsPic && !Subtarget->isPICStyleRIPRel()) {
4354    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
4355                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
4356                         Result);
4357  }
4358
4359  // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
4360  // load the value at address GV, not the value of GV itself. This means that
4361  // the GlobalAddress must be in the base or index register of the address, not
4362  // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
4363  // The same applies for external symbols during PIC codegen
4364  if (ExtraLoadRequired)
4365    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
4366                         PseudoSourceValue::getGOT(), 0);
4367
4368  // If there was a non-zero offset that we didn't fold, create an explicit
4369  // addition for it.
4370  if (Offset != 0)
4371    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
4372                         DAG.getConstant(Offset, getPointerTy()));
4373
4374  return Result;
4375}
4376
4377SDValue
4378X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) {
4379  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
4380  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
4381  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
4382}
4383
4384static SDValue
4385GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
4386           SDValue *InFlag, const MVT PtrVT, unsigned ReturnReg) {
4387  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4388  DebugLoc dl = GA->getDebugLoc();
4389  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4390                                           GA->getValueType(0),
4391                                           GA->getOffset());
4392  if (InFlag) {
4393    SDValue Ops[] = { Chain,  TGA, *InFlag };
4394    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
4395  } else {
4396    SDValue Ops[]  = { Chain, TGA };
4397    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
4398  }
4399  SDValue Flag = Chain.getValue(1);
4400  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
4401}
4402
4403// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
4404static SDValue
4405LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4406                                const MVT PtrVT) {
4407  SDValue InFlag;
4408  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
4409  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
4410                                     DAG.getNode(X86ISD::GlobalBaseReg,
4411                                                 DebugLoc::getUnknownLoc(),
4412                                                 PtrVT), InFlag);
4413  InFlag = Chain.getValue(1);
4414
4415  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX);
4416}
4417
4418// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
4419static SDValue
4420LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4421                                const MVT PtrVT) {
4422  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT, X86::RAX);
4423}
4424
4425// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
4426// "local exec" model.
4427static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4428                                   const MVT PtrVT, TLSModel::Model model,
4429                                   bool is64Bit) {
4430  DebugLoc dl = GA->getDebugLoc();
4431  // Get the Thread Pointer
4432  SDValue Base = DAG.getNode(X86ISD::SegmentBaseAddress,
4433                             DebugLoc::getUnknownLoc(), PtrVT,
4434                             DAG.getRegister(is64Bit? X86::FS : X86::GS,
4435                                             MVT::i32));
4436
4437  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Base,
4438                                      NULL, 0);
4439
4440  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
4441  // exec)
4442  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4443                                             GA->getValueType(0),
4444                                             GA->getOffset());
4445  SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, PtrVT, TGA);
4446
4447  if (model == TLSModel::InitialExec)
4448    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
4449                         PseudoSourceValue::getGOT(), 0);
4450
4451  // The address of the thread local variable is the add of the thread
4452  // pointer with the offset of the variable.
4453  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
4454}
4455
4456SDValue
4457X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
4458  // TODO: implement the "local dynamic" model
4459  // TODO: implement the "initial exec"model for pic executables
4460  assert(Subtarget->isTargetELF() &&
4461         "TLS not implemented for non-ELF targets");
4462  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
4463  GlobalValue *GV = GA->getGlobal();
4464  TLSModel::Model model =
4465    getTLSModel (GV, getTargetMachine().getRelocationModel());
4466  if (Subtarget->is64Bit()) {
4467    switch (model) {
4468    case TLSModel::GeneralDynamic:
4469    case TLSModel::LocalDynamic: // not implemented
4470      return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
4471
4472    case TLSModel::InitialExec:
4473    case TLSModel::LocalExec:
4474      return LowerToTLSExecModel(GA, DAG, getPointerTy(), model, true);
4475    }
4476  } else {
4477    switch (model) {
4478    case TLSModel::GeneralDynamic:
4479    case TLSModel::LocalDynamic: // not implemented
4480      return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
4481
4482    case TLSModel::InitialExec:
4483    case TLSModel::LocalExec:
4484      return LowerToTLSExecModel(GA, DAG, getPointerTy(), model, false);
4485    }
4486  }
4487  assert(0 && "Unreachable");
4488  return SDValue();
4489}
4490
4491SDValue
4492X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) {
4493  // FIXME there isn't really any debug info here
4494  DebugLoc dl = Op.getDebugLoc();
4495  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
4496  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
4497  Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
4498  // With PIC, the address is actually $g + Offset.
4499  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4500      !Subtarget->isPICStyleRIPRel()) {
4501    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
4502                         DAG.getNode(X86ISD::GlobalBaseReg,
4503                                     DebugLoc::getUnknownLoc(),
4504                                     getPointerTy()),
4505                         Result);
4506  }
4507
4508  return Result;
4509}
4510
4511SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
4512  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
4513  // FIXME there isn't really any debug into here
4514  DebugLoc dl = JT->getDebugLoc();
4515  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
4516  Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
4517  // With PIC, the address is actually $g + Offset.
4518  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4519      !Subtarget->isPICStyleRIPRel()) {
4520    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
4521                         DAG.getNode(X86ISD::GlobalBaseReg,
4522                                     DebugLoc::getUnknownLoc(),
4523                                     getPointerTy()),
4524                         Result);
4525  }
4526
4527  return Result;
4528}
4529
4530/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
4531/// take a 2 x i32 value to shift plus a shift amount.
4532SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) {
4533  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4534  MVT VT = Op.getValueType();
4535  unsigned VTBits = VT.getSizeInBits();
4536  DebugLoc dl = Op.getDebugLoc();
4537  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
4538  SDValue ShOpLo = Op.getOperand(0);
4539  SDValue ShOpHi = Op.getOperand(1);
4540  SDValue ShAmt  = Op.getOperand(2);
4541  SDValue Tmp1 = isSRA ?
4542    DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
4543                DAG.getConstant(VTBits - 1, MVT::i8)) :
4544    DAG.getConstant(0, VT);
4545
4546  SDValue Tmp2, Tmp3;
4547  if (Op.getOpcode() == ISD::SHL_PARTS) {
4548    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
4549    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
4550  } else {
4551    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
4552    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
4553  }
4554
4555  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
4556                                  DAG.getConstant(VTBits, MVT::i8));
4557  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, VT,
4558                               AndNode, DAG.getConstant(0, MVT::i8));
4559
4560  SDValue Hi, Lo;
4561  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4562  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
4563  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
4564
4565  if (Op.getOpcode() == ISD::SHL_PARTS) {
4566    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
4567    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
4568  } else {
4569    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
4570    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
4571  }
4572
4573  SDValue Ops[2] = { Lo, Hi };
4574  return DAG.getMergeValues(Ops, 2, dl);
4575}
4576
4577SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
4578  MVT SrcVT = Op.getOperand(0).getValueType();
4579
4580  if (SrcVT.isVector()) {
4581    if (SrcVT == MVT::v2i32 && Op.getValueType() == MVT::v2f64) {
4582      return Op;
4583    }
4584    return SDValue();
4585  }
4586
4587  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
4588         "Unknown SINT_TO_FP to lower!");
4589
4590  // These are really Legal; return the operand so the caller accepts it as
4591  // Legal.
4592  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
4593    return Op;
4594  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
4595      Subtarget->is64Bit()) {
4596    return Op;
4597  }
4598
4599  DebugLoc dl = Op.getDebugLoc();
4600  unsigned Size = SrcVT.getSizeInBits()/8;
4601  MachineFunction &MF = DAG.getMachineFunction();
4602  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
4603  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4604  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
4605                               StackSlot,
4606                               PseudoSourceValue::getFixedStack(SSFI), 0);
4607  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
4608}
4609
4610SDValue X86TargetLowering::BuildFILD(SDValue Op, MVT SrcVT, SDValue Chain,
4611                                     SDValue StackSlot,
4612                                     SelectionDAG &DAG) {
4613  // Build the FILD
4614  DebugLoc dl = Op.getDebugLoc();
4615  SDVTList Tys;
4616  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
4617  if (useSSE)
4618    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
4619  else
4620    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
4621  SmallVector<SDValue, 8> Ops;
4622  Ops.push_back(Chain);
4623  Ops.push_back(StackSlot);
4624  Ops.push_back(DAG.getValueType(SrcVT));
4625  SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, dl,
4626                                 Tys, &Ops[0], Ops.size());
4627
4628  if (useSSE) {
4629    Chain = Result.getValue(1);
4630    SDValue InFlag = Result.getValue(2);
4631
4632    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
4633    // shouldn't be necessary except that RFP cannot be live across
4634    // multiple blocks. When stackifier is fixed, they can be uncoupled.
4635    MachineFunction &MF = DAG.getMachineFunction();
4636    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
4637    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4638    Tys = DAG.getVTList(MVT::Other);
4639    SmallVector<SDValue, 8> Ops;
4640    Ops.push_back(Chain);
4641    Ops.push_back(Result);
4642    Ops.push_back(StackSlot);
4643    Ops.push_back(DAG.getValueType(Op.getValueType()));
4644    Ops.push_back(InFlag);
4645    Chain = DAG.getNode(X86ISD::FST, dl, Tys, &Ops[0], Ops.size());
4646    Result = DAG.getLoad(Op.getValueType(), dl, Chain, StackSlot,
4647                         PseudoSourceValue::getFixedStack(SSFI), 0);
4648  }
4649
4650  return Result;
4651}
4652
4653// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
4654SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) {
4655  // This algorithm is not obvious. Here it is in C code, more or less:
4656  /*
4657    double uint64_to_double( uint32_t hi, uint32_t lo ) {
4658      static const __m128i exp = { 0x4330000045300000ULL, 0 };
4659      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
4660
4661      // Copy ints to xmm registers.
4662      __m128i xh = _mm_cvtsi32_si128( hi );
4663      __m128i xl = _mm_cvtsi32_si128( lo );
4664
4665      // Combine into low half of a single xmm register.
4666      __m128i x = _mm_unpacklo_epi32( xh, xl );
4667      __m128d d;
4668      double sd;
4669
4670      // Merge in appropriate exponents to give the integer bits the right
4671      // magnitude.
4672      x = _mm_unpacklo_epi32( x, exp );
4673
4674      // Subtract away the biases to deal with the IEEE-754 double precision
4675      // implicit 1.
4676      d = _mm_sub_pd( (__m128d) x, bias );
4677
4678      // All conversions up to here are exact. The correctly rounded result is
4679      // calculated using the current rounding mode using the following
4680      // horizontal add.
4681      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
4682      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
4683                                // store doesn't really need to be here (except
4684                                // maybe to zero the other double)
4685      return sd;
4686    }
4687  */
4688
4689  DebugLoc dl = Op.getDebugLoc();
4690
4691  // Build some magic constants.
4692  std::vector<Constant*> CV0;
4693  CV0.push_back(ConstantInt::get(APInt(32, 0x45300000)));
4694  CV0.push_back(ConstantInt::get(APInt(32, 0x43300000)));
4695  CV0.push_back(ConstantInt::get(APInt(32, 0)));
4696  CV0.push_back(ConstantInt::get(APInt(32, 0)));
4697  Constant *C0 = ConstantVector::get(CV0);
4698  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
4699
4700  std::vector<Constant*> CV1;
4701  CV1.push_back(ConstantFP::get(APFloat(APInt(64, 0x4530000000000000ULL))));
4702  CV1.push_back(ConstantFP::get(APFloat(APInt(64, 0x4330000000000000ULL))));
4703  Constant *C1 = ConstantVector::get(CV1);
4704  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
4705
4706  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
4707                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4708                                        Op.getOperand(0),
4709                                        DAG.getIntPtrConstant(1)));
4710  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
4711                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4712                                        Op.getOperand(0),
4713                                        DAG.getIntPtrConstant(0)));
4714  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
4715  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
4716                              PseudoSourceValue::getConstantPool(), 0,
4717                              false, 16);
4718  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
4719  SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Unpck2);
4720  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
4721                              PseudoSourceValue::getConstantPool(), 0,
4722                              false, 16);
4723  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
4724
4725  // Add the halves; easiest way is to swap them into another reg first.
4726  int ShufMask[2] = { 1, -1 };
4727  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
4728                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
4729  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
4730  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
4731                     DAG.getIntPtrConstant(0));
4732}
4733
4734// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
4735SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) {
4736  DebugLoc dl = Op.getDebugLoc();
4737  // FP constant to bias correct the final result.
4738  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
4739                                   MVT::f64);
4740
4741  // Load the 32-bit value into an XMM register.
4742  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
4743                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4744                                         Op.getOperand(0),
4745                                         DAG.getIntPtrConstant(0)));
4746
4747  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
4748                     DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Load),
4749                     DAG.getIntPtrConstant(0));
4750
4751  // Or the load with the bias.
4752  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
4753                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
4754                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4755                                                   MVT::v2f64, Load)),
4756                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
4757                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4758                                                   MVT::v2f64, Bias)));
4759  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
4760                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Or),
4761                   DAG.getIntPtrConstant(0));
4762
4763  // Subtract the bias.
4764  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
4765
4766  // Handle final rounding.
4767  MVT DestVT = Op.getValueType();
4768
4769  if (DestVT.bitsLT(MVT::f64)) {
4770    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
4771                       DAG.getIntPtrConstant(0));
4772  } else if (DestVT.bitsGT(MVT::f64)) {
4773    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
4774  }
4775
4776  // Handle final rounding.
4777  return Sub;
4778}
4779
4780SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
4781  SDValue N0 = Op.getOperand(0);
4782  DebugLoc dl = Op.getDebugLoc();
4783
4784  // Now not UINT_TO_FP is legal (it's marked custom), dag combiner won't
4785  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
4786  // the optimization here.
4787  if (DAG.SignBitIsZero(N0))
4788    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
4789
4790  MVT SrcVT = N0.getValueType();
4791  if (SrcVT == MVT::i64) {
4792    // We only handle SSE2 f64 target here; caller can expand the rest.
4793    if (Op.getValueType() != MVT::f64 || !X86ScalarSSEf64)
4794      return SDValue();
4795
4796    return LowerUINT_TO_FP_i64(Op, DAG);
4797  } else if (SrcVT == MVT::i32 && X86ScalarSSEf64) {
4798    return LowerUINT_TO_FP_i32(Op, DAG);
4799  }
4800
4801  assert(SrcVT == MVT::i32 && "Unknown UINT_TO_FP to lower!");
4802
4803  // Make a 64-bit buffer, and use it to build an FILD.
4804  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
4805  SDValue WordOff = DAG.getConstant(4, getPointerTy());
4806  SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
4807                                   getPointerTy(), StackSlot, WordOff);
4808  SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
4809                                StackSlot, NULL, 0);
4810  SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
4811                                OffsetSlot, NULL, 0);
4812  return BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
4813}
4814
4815std::pair<SDValue,SDValue> X86TargetLowering::
4816FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) {
4817  DebugLoc dl = Op.getDebugLoc();
4818
4819  MVT DstTy = Op.getValueType();
4820
4821  if (!IsSigned) {
4822    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
4823    DstTy = MVT::i64;
4824  }
4825
4826  assert(DstTy.getSimpleVT() <= MVT::i64 &&
4827         DstTy.getSimpleVT() >= MVT::i16 &&
4828         "Unknown FP_TO_SINT to lower!");
4829
4830  // These are really Legal.
4831  if (DstTy == MVT::i32 &&
4832      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
4833    return std::make_pair(SDValue(), SDValue());
4834  if (Subtarget->is64Bit() &&
4835      DstTy == MVT::i64 &&
4836      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
4837    return std::make_pair(SDValue(), SDValue());
4838
4839  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
4840  // stack slot.
4841  MachineFunction &MF = DAG.getMachineFunction();
4842  unsigned MemSize = DstTy.getSizeInBits()/8;
4843  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
4844  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4845
4846  unsigned Opc;
4847  switch (DstTy.getSimpleVT()) {
4848  default: assert(0 && "Invalid FP_TO_SINT to lower!");
4849  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
4850  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
4851  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
4852  }
4853
4854  SDValue Chain = DAG.getEntryNode();
4855  SDValue Value = Op.getOperand(0);
4856  if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
4857    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
4858    Chain = DAG.getStore(Chain, dl, Value, StackSlot,
4859                         PseudoSourceValue::getFixedStack(SSFI), 0);
4860    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
4861    SDValue Ops[] = {
4862      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
4863    };
4864    Value = DAG.getNode(X86ISD::FLD, dl, Tys, Ops, 3);
4865    Chain = Value.getValue(1);
4866    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
4867    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4868  }
4869
4870  // Build the FP_TO_INT*_IN_MEM
4871  SDValue Ops[] = { Chain, Value, StackSlot };
4872  SDValue FIST = DAG.getNode(Opc, dl, MVT::Other, Ops, 3);
4873
4874  return std::make_pair(FIST, StackSlot);
4875}
4876
4877SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
4878  if (Op.getValueType().isVector()) {
4879    if (Op.getValueType() == MVT::v2i32 &&
4880        Op.getOperand(0).getValueType() == MVT::v2f64) {
4881      return Op;
4882    }
4883    return SDValue();
4884  }
4885
4886  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
4887  SDValue FIST = Vals.first, StackSlot = Vals.second;
4888  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
4889  if (FIST.getNode() == 0) return Op;
4890
4891  // Load the result.
4892  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
4893                     FIST, StackSlot, NULL, 0);
4894}
4895
4896SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) {
4897  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
4898  SDValue FIST = Vals.first, StackSlot = Vals.second;
4899  assert(FIST.getNode() && "Unexpected failure");
4900
4901  // Load the result.
4902  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
4903                     FIST, StackSlot, NULL, 0);
4904}
4905
4906SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) {
4907  DebugLoc dl = Op.getDebugLoc();
4908  MVT VT = Op.getValueType();
4909  MVT EltVT = VT;
4910  if (VT.isVector())
4911    EltVT = VT.getVectorElementType();
4912  std::vector<Constant*> CV;
4913  if (EltVT == MVT::f64) {
4914    Constant *C = ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63))));
4915    CV.push_back(C);
4916    CV.push_back(C);
4917  } else {
4918    Constant *C = ConstantFP::get(APFloat(APInt(32, ~(1U << 31))));
4919    CV.push_back(C);
4920    CV.push_back(C);
4921    CV.push_back(C);
4922    CV.push_back(C);
4923  }
4924  Constant *C = ConstantVector::get(CV);
4925  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
4926  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
4927                               PseudoSourceValue::getConstantPool(), 0,
4928                               false, 16);
4929  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
4930}
4931
4932SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) {
4933  DebugLoc dl = Op.getDebugLoc();
4934  MVT VT = Op.getValueType();
4935  MVT EltVT = VT;
4936  unsigned EltNum = 1;
4937  if (VT.isVector()) {
4938    EltVT = VT.getVectorElementType();
4939    EltNum = VT.getVectorNumElements();
4940  }
4941  std::vector<Constant*> CV;
4942  if (EltVT == MVT::f64) {
4943    Constant *C = ConstantFP::get(APFloat(APInt(64, 1ULL << 63)));
4944    CV.push_back(C);
4945    CV.push_back(C);
4946  } else {
4947    Constant *C = ConstantFP::get(APFloat(APInt(32, 1U << 31)));
4948    CV.push_back(C);
4949    CV.push_back(C);
4950    CV.push_back(C);
4951    CV.push_back(C);
4952  }
4953  Constant *C = ConstantVector::get(CV);
4954  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
4955  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
4956                               PseudoSourceValue::getConstantPool(), 0,
4957                               false, 16);
4958  if (VT.isVector()) {
4959    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4960                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
4961                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
4962                                Op.getOperand(0)),
4963                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, Mask)));
4964  } else {
4965    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
4966  }
4967}
4968
4969SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
4970  SDValue Op0 = Op.getOperand(0);
4971  SDValue Op1 = Op.getOperand(1);
4972  DebugLoc dl = Op.getDebugLoc();
4973  MVT VT = Op.getValueType();
4974  MVT SrcVT = Op1.getValueType();
4975
4976  // If second operand is smaller, extend it first.
4977  if (SrcVT.bitsLT(VT)) {
4978    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
4979    SrcVT = VT;
4980  }
4981  // And if it is bigger, shrink it first.
4982  if (SrcVT.bitsGT(VT)) {
4983    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
4984    SrcVT = VT;
4985  }
4986
4987  // At this point the operands and the result should have the same
4988  // type, and that won't be f80 since that is not custom lowered.
4989
4990  // First get the sign bit of second operand.
4991  std::vector<Constant*> CV;
4992  if (SrcVT == MVT::f64) {
4993    CV.push_back(ConstantFP::get(APFloat(APInt(64, 1ULL << 63))));
4994    CV.push_back(ConstantFP::get(APFloat(APInt(64, 0))));
4995  } else {
4996    CV.push_back(ConstantFP::get(APFloat(APInt(32, 1U << 31))));
4997    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4998    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4999    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
5000  }
5001  Constant *C = ConstantVector::get(CV);
5002  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5003  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
5004                                PseudoSourceValue::getConstantPool(), 0,
5005                                false, 16);
5006  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
5007
5008  // Shift sign bit right or left if the two operands have different types.
5009  if (SrcVT.bitsGT(VT)) {
5010    // Op0 is MVT::f32, Op1 is MVT::f64.
5011    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
5012    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
5013                          DAG.getConstant(32, MVT::i32));
5014    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, SignBit);
5015    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
5016                          DAG.getIntPtrConstant(0));
5017  }
5018
5019  // Clear first operand sign bit.
5020  CV.clear();
5021  if (VT == MVT::f64) {
5022    CV.push_back(ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63)))));
5023    CV.push_back(ConstantFP::get(APFloat(APInt(64, 0))));
5024  } else {
5025    CV.push_back(ConstantFP::get(APFloat(APInt(32, ~(1U << 31)))));
5026    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
5027    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
5028    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
5029  }
5030  C = ConstantVector::get(CV);
5031  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5032  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5033                                PseudoSourceValue::getConstantPool(), 0,
5034                                false, 16);
5035  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
5036
5037  // Or the value with the sign bit.
5038  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
5039}
5040
5041/// Emit nodes that will be selected as "test Op0,Op0", or something
5042/// equivalent.
5043SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
5044                                    SelectionDAG &DAG) {
5045  DebugLoc dl = Op.getDebugLoc();
5046
5047  // CF and OF aren't always set the way we want. Determine which
5048  // of these we need.
5049  bool NeedCF = false;
5050  bool NeedOF = false;
5051  switch (X86CC) {
5052  case X86::COND_A: case X86::COND_AE:
5053  case X86::COND_B: case X86::COND_BE:
5054    NeedCF = true;
5055    break;
5056  case X86::COND_G: case X86::COND_GE:
5057  case X86::COND_L: case X86::COND_LE:
5058  case X86::COND_O: case X86::COND_NO:
5059    NeedOF = true;
5060    break;
5061  default: break;
5062  }
5063
5064  // See if we can use the EFLAGS value from the operand instead of
5065  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
5066  // we prove that the arithmetic won't overflow, we can't use OF or CF.
5067  if (Op.getResNo() == 0 && !NeedOF && !NeedCF) {
5068    unsigned Opcode = 0;
5069    unsigned NumOperands = 0;
5070    switch (Op.getNode()->getOpcode()) {
5071    case ISD::ADD:
5072      // Due to an isel shortcoming, be conservative if this add is likely to
5073      // be selected as part of a load-modify-store instruction. When the root
5074      // node in a match is a store, isel doesn't know how to remap non-chain
5075      // non-flag uses of other nodes in the match, such as the ADD in this
5076      // case. This leads to the ADD being left around and reselected, with
5077      // the result being two adds in the output.
5078      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5079           UE = Op.getNode()->use_end(); UI != UE; ++UI)
5080        if (UI->getOpcode() == ISD::STORE)
5081          goto default_case;
5082      if (ConstantSDNode *C =
5083            dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
5084        // An add of one will be selected as an INC.
5085        if (C->getAPIntValue() == 1) {
5086          Opcode = X86ISD::INC;
5087          NumOperands = 1;
5088          break;
5089        }
5090        // An add of negative one (subtract of one) will be selected as a DEC.
5091        if (C->getAPIntValue().isAllOnesValue()) {
5092          Opcode = X86ISD::DEC;
5093          NumOperands = 1;
5094          break;
5095        }
5096      }
5097      // Otherwise use a regular EFLAGS-setting add.
5098      Opcode = X86ISD::ADD;
5099      NumOperands = 2;
5100      break;
5101    case ISD::SUB:
5102      // Due to the ISEL shortcoming noted above, be conservative if this sub is
5103      // likely to be selected as part of a load-modify-store instruction.
5104      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5105           UE = Op.getNode()->use_end(); UI != UE; ++UI)
5106        if (UI->getOpcode() == ISD::STORE)
5107          goto default_case;
5108      // Otherwise use a regular EFLAGS-setting sub.
5109      Opcode = X86ISD::SUB;
5110      NumOperands = 2;
5111      break;
5112    case X86ISD::ADD:
5113    case X86ISD::SUB:
5114    case X86ISD::INC:
5115    case X86ISD::DEC:
5116      return SDValue(Op.getNode(), 1);
5117    default:
5118    default_case:
5119      break;
5120    }
5121    if (Opcode != 0) {
5122      SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
5123      SmallVector<SDValue, 4> Ops;
5124      for (unsigned i = 0; i != NumOperands; ++i)
5125        Ops.push_back(Op.getOperand(i));
5126      SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
5127      DAG.ReplaceAllUsesWith(Op, New);
5128      return SDValue(New.getNode(), 1);
5129    }
5130  }
5131
5132  // Otherwise just emit a CMP with 0, which is the TEST pattern.
5133  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
5134                     DAG.getConstant(0, Op.getValueType()));
5135}
5136
5137/// Emit nodes that will be selected as "cmp Op0,Op1", or something
5138/// equivalent.
5139SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
5140                                   SelectionDAG &DAG) {
5141  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
5142    if (C->getAPIntValue() == 0)
5143      return EmitTest(Op0, X86CC, DAG);
5144
5145  DebugLoc dl = Op0.getDebugLoc();
5146  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
5147}
5148
5149SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
5150  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
5151  SDValue Op0 = Op.getOperand(0);
5152  SDValue Op1 = Op.getOperand(1);
5153  DebugLoc dl = Op.getDebugLoc();
5154  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
5155
5156  // Lower (X & (1 << N)) == 0 to BT(X, N).
5157  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
5158  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
5159  if (Op0.getOpcode() == ISD::AND &&
5160      Op0.hasOneUse() &&
5161      Op1.getOpcode() == ISD::Constant &&
5162      cast<ConstantSDNode>(Op1)->getZExtValue() == 0 &&
5163      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
5164    SDValue LHS, RHS;
5165    if (Op0.getOperand(1).getOpcode() == ISD::SHL) {
5166      if (ConstantSDNode *Op010C =
5167            dyn_cast<ConstantSDNode>(Op0.getOperand(1).getOperand(0)))
5168        if (Op010C->getZExtValue() == 1) {
5169          LHS = Op0.getOperand(0);
5170          RHS = Op0.getOperand(1).getOperand(1);
5171        }
5172    } else if (Op0.getOperand(0).getOpcode() == ISD::SHL) {
5173      if (ConstantSDNode *Op000C =
5174            dyn_cast<ConstantSDNode>(Op0.getOperand(0).getOperand(0)))
5175        if (Op000C->getZExtValue() == 1) {
5176          LHS = Op0.getOperand(1);
5177          RHS = Op0.getOperand(0).getOperand(1);
5178        }
5179    } else if (Op0.getOperand(1).getOpcode() == ISD::Constant) {
5180      ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op0.getOperand(1));
5181      SDValue AndLHS = Op0.getOperand(0);
5182      if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
5183        LHS = AndLHS.getOperand(0);
5184        RHS = AndLHS.getOperand(1);
5185      }
5186    }
5187
5188    if (LHS.getNode()) {
5189      // If LHS is i8, promote it to i16 with any_extend.  There is no i8 BT
5190      // instruction.  Since the shift amount is in-range-or-undefined, we know
5191      // that doing a bittest on the i16 value is ok.  We extend to i32 because
5192      // the encoding for the i16 version is larger than the i32 version.
5193      if (LHS.getValueType() == MVT::i8)
5194        LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
5195
5196      // If the operand types disagree, extend the shift amount to match.  Since
5197      // BT ignores high bits (like shifts) we can use anyextend.
5198      if (LHS.getValueType() != RHS.getValueType())
5199        RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
5200
5201      SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
5202      unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
5203      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
5204                         DAG.getConstant(Cond, MVT::i8), BT);
5205    }
5206  }
5207
5208  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
5209  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
5210
5211  SDValue Cond = EmitCmp(Op0, Op1, X86CC, DAG);
5212  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
5213                     DAG.getConstant(X86CC, MVT::i8), Cond);
5214}
5215
5216SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
5217  SDValue Cond;
5218  SDValue Op0 = Op.getOperand(0);
5219  SDValue Op1 = Op.getOperand(1);
5220  SDValue CC = Op.getOperand(2);
5221  MVT VT = Op.getValueType();
5222  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
5223  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
5224  DebugLoc dl = Op.getDebugLoc();
5225
5226  if (isFP) {
5227    unsigned SSECC = 8;
5228    MVT VT0 = Op0.getValueType();
5229    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
5230    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
5231    bool Swap = false;
5232
5233    switch (SetCCOpcode) {
5234    default: break;
5235    case ISD::SETOEQ:
5236    case ISD::SETEQ:  SSECC = 0; break;
5237    case ISD::SETOGT:
5238    case ISD::SETGT: Swap = true; // Fallthrough
5239    case ISD::SETLT:
5240    case ISD::SETOLT: SSECC = 1; break;
5241    case ISD::SETOGE:
5242    case ISD::SETGE: Swap = true; // Fallthrough
5243    case ISD::SETLE:
5244    case ISD::SETOLE: SSECC = 2; break;
5245    case ISD::SETUO:  SSECC = 3; break;
5246    case ISD::SETUNE:
5247    case ISD::SETNE:  SSECC = 4; break;
5248    case ISD::SETULE: Swap = true;
5249    case ISD::SETUGE: SSECC = 5; break;
5250    case ISD::SETULT: Swap = true;
5251    case ISD::SETUGT: SSECC = 6; break;
5252    case ISD::SETO:   SSECC = 7; break;
5253    }
5254    if (Swap)
5255      std::swap(Op0, Op1);
5256
5257    // In the two special cases we can't handle, emit two comparisons.
5258    if (SSECC == 8) {
5259      if (SetCCOpcode == ISD::SETUEQ) {
5260        SDValue UNORD, EQ;
5261        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
5262        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
5263        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
5264      }
5265      else if (SetCCOpcode == ISD::SETONE) {
5266        SDValue ORD, NEQ;
5267        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
5268        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
5269        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
5270      }
5271      assert(0 && "Illegal FP comparison");
5272    }
5273    // Handle all other FP comparisons here.
5274    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
5275  }
5276
5277  // We are handling one of the integer comparisons here.  Since SSE only has
5278  // GT and EQ comparisons for integer, swapping operands and multiple
5279  // operations may be required for some comparisons.
5280  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
5281  bool Swap = false, Invert = false, FlipSigns = false;
5282
5283  switch (VT.getSimpleVT()) {
5284  default: break;
5285  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
5286  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
5287  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
5288  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
5289  }
5290
5291  switch (SetCCOpcode) {
5292  default: break;
5293  case ISD::SETNE:  Invert = true;
5294  case ISD::SETEQ:  Opc = EQOpc; break;
5295  case ISD::SETLT:  Swap = true;
5296  case ISD::SETGT:  Opc = GTOpc; break;
5297  case ISD::SETGE:  Swap = true;
5298  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
5299  case ISD::SETULT: Swap = true;
5300  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
5301  case ISD::SETUGE: Swap = true;
5302  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
5303  }
5304  if (Swap)
5305    std::swap(Op0, Op1);
5306
5307  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
5308  // bits of the inputs before performing those operations.
5309  if (FlipSigns) {
5310    MVT EltVT = VT.getVectorElementType();
5311    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
5312                                      EltVT);
5313    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
5314    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
5315                                    SignBits.size());
5316    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
5317    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
5318  }
5319
5320  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
5321
5322  // If the logical-not of the result is required, perform that now.
5323  if (Invert)
5324    Result = DAG.getNOT(dl, Result, VT);
5325
5326  return Result;
5327}
5328
5329// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
5330static bool isX86LogicalCmp(SDValue Op) {
5331  unsigned Opc = Op.getNode()->getOpcode();
5332  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
5333    return true;
5334  if (Op.getResNo() == 1 &&
5335      (Opc == X86ISD::ADD ||
5336       Opc == X86ISD::SUB ||
5337       Opc == X86ISD::SMUL ||
5338       Opc == X86ISD::UMUL ||
5339       Opc == X86ISD::INC ||
5340       Opc == X86ISD::DEC))
5341    return true;
5342
5343  return false;
5344}
5345
5346SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) {
5347  bool addTest = true;
5348  SDValue Cond  = Op.getOperand(0);
5349  DebugLoc dl = Op.getDebugLoc();
5350  SDValue CC;
5351
5352  if (Cond.getOpcode() == ISD::SETCC)
5353    Cond = LowerSETCC(Cond, DAG);
5354
5355  // If condition flag is set by a X86ISD::CMP, then use it as the condition
5356  // setting operand in place of the X86ISD::SETCC.
5357  if (Cond.getOpcode() == X86ISD::SETCC) {
5358    CC = Cond.getOperand(0);
5359
5360    SDValue Cmp = Cond.getOperand(1);
5361    unsigned Opc = Cmp.getOpcode();
5362    MVT VT = Op.getValueType();
5363
5364    bool IllegalFPCMov = false;
5365    if (VT.isFloatingPoint() && !VT.isVector() &&
5366        !isScalarFPTypeInSSEReg(VT))  // FPStack?
5367      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
5368
5369    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
5370        Opc == X86ISD::BT) { // FIXME
5371      Cond = Cmp;
5372      addTest = false;
5373    }
5374  }
5375
5376  if (addTest) {
5377    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5378    Cond = EmitTest(Cond, X86::COND_NE, DAG);
5379  }
5380
5381  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Flag);
5382  SmallVector<SDValue, 4> Ops;
5383  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
5384  // condition is true.
5385  Ops.push_back(Op.getOperand(2));
5386  Ops.push_back(Op.getOperand(1));
5387  Ops.push_back(CC);
5388  Ops.push_back(Cond);
5389  return DAG.getNode(X86ISD::CMOV, dl, VTs, &Ops[0], Ops.size());
5390}
5391
5392// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
5393// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
5394// from the AND / OR.
5395static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
5396  Opc = Op.getOpcode();
5397  if (Opc != ISD::OR && Opc != ISD::AND)
5398    return false;
5399  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
5400          Op.getOperand(0).hasOneUse() &&
5401          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
5402          Op.getOperand(1).hasOneUse());
5403}
5404
5405// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
5406// 1 and that the SETCC node has a single use.
5407static bool isXor1OfSetCC(SDValue Op) {
5408  if (Op.getOpcode() != ISD::XOR)
5409    return false;
5410  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5411  if (N1C && N1C->getAPIntValue() == 1) {
5412    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
5413      Op.getOperand(0).hasOneUse();
5414  }
5415  return false;
5416}
5417
5418SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) {
5419  bool addTest = true;
5420  SDValue Chain = Op.getOperand(0);
5421  SDValue Cond  = Op.getOperand(1);
5422  SDValue Dest  = Op.getOperand(2);
5423  DebugLoc dl = Op.getDebugLoc();
5424  SDValue CC;
5425
5426  if (Cond.getOpcode() == ISD::SETCC)
5427    Cond = LowerSETCC(Cond, DAG);
5428#if 0
5429  // FIXME: LowerXALUO doesn't handle these!!
5430  else if (Cond.getOpcode() == X86ISD::ADD  ||
5431           Cond.getOpcode() == X86ISD::SUB  ||
5432           Cond.getOpcode() == X86ISD::SMUL ||
5433           Cond.getOpcode() == X86ISD::UMUL)
5434    Cond = LowerXALUO(Cond, DAG);
5435#endif
5436
5437  // If condition flag is set by a X86ISD::CMP, then use it as the condition
5438  // setting operand in place of the X86ISD::SETCC.
5439  if (Cond.getOpcode() == X86ISD::SETCC) {
5440    CC = Cond.getOperand(0);
5441
5442    SDValue Cmp = Cond.getOperand(1);
5443    unsigned Opc = Cmp.getOpcode();
5444    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
5445    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
5446      Cond = Cmp;
5447      addTest = false;
5448    } else {
5449      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
5450      default: break;
5451      case X86::COND_O:
5452      case X86::COND_B:
5453        // These can only come from an arithmetic instruction with overflow,
5454        // e.g. SADDO, UADDO.
5455        Cond = Cond.getNode()->getOperand(1);
5456        addTest = false;
5457        break;
5458      }
5459    }
5460  } else {
5461    unsigned CondOpc;
5462    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
5463      SDValue Cmp = Cond.getOperand(0).getOperand(1);
5464      if (CondOpc == ISD::OR) {
5465        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
5466        // two branches instead of an explicit OR instruction with a
5467        // separate test.
5468        if (Cmp == Cond.getOperand(1).getOperand(1) &&
5469            isX86LogicalCmp(Cmp)) {
5470          CC = Cond.getOperand(0).getOperand(0);
5471          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
5472                              Chain, Dest, CC, Cmp);
5473          CC = Cond.getOperand(1).getOperand(0);
5474          Cond = Cmp;
5475          addTest = false;
5476        }
5477      } else { // ISD::AND
5478        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
5479        // two branches instead of an explicit AND instruction with a
5480        // separate test. However, we only do this if this block doesn't
5481        // have a fall-through edge, because this requires an explicit
5482        // jmp when the condition is false.
5483        if (Cmp == Cond.getOperand(1).getOperand(1) &&
5484            isX86LogicalCmp(Cmp) &&
5485            Op.getNode()->hasOneUse()) {
5486          X86::CondCode CCode =
5487            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
5488          CCode = X86::GetOppositeBranchCondition(CCode);
5489          CC = DAG.getConstant(CCode, MVT::i8);
5490          SDValue User = SDValue(*Op.getNode()->use_begin(), 0);
5491          // Look for an unconditional branch following this conditional branch.
5492          // We need this because we need to reverse the successors in order
5493          // to implement FCMP_OEQ.
5494          if (User.getOpcode() == ISD::BR) {
5495            SDValue FalseBB = User.getOperand(1);
5496            SDValue NewBR =
5497              DAG.UpdateNodeOperands(User, User.getOperand(0), Dest);
5498            assert(NewBR == User);
5499            Dest = FalseBB;
5500
5501            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
5502                                Chain, Dest, CC, Cmp);
5503            X86::CondCode CCode =
5504              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
5505            CCode = X86::GetOppositeBranchCondition(CCode);
5506            CC = DAG.getConstant(CCode, MVT::i8);
5507            Cond = Cmp;
5508            addTest = false;
5509          }
5510        }
5511      }
5512    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
5513      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
5514      // It should be transformed during dag combiner except when the condition
5515      // is set by a arithmetics with overflow node.
5516      X86::CondCode CCode =
5517        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
5518      CCode = X86::GetOppositeBranchCondition(CCode);
5519      CC = DAG.getConstant(CCode, MVT::i8);
5520      Cond = Cond.getOperand(0).getOperand(1);
5521      addTest = false;
5522    }
5523  }
5524
5525  if (addTest) {
5526    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5527    Cond = EmitTest(Cond, X86::COND_NE, DAG);
5528  }
5529  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
5530                     Chain, Dest, CC, Cond);
5531}
5532
5533
5534// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
5535// Calls to _alloca is needed to probe the stack when allocating more than 4k
5536// bytes in one go. Touching the stack at 4K increments is necessary to ensure
5537// that the guard pages used by the OS virtual memory manager are allocated in
5538// correct sequence.
5539SDValue
5540X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
5541                                           SelectionDAG &DAG) {
5542  assert(Subtarget->isTargetCygMing() &&
5543         "This should be used only on Cygwin/Mingw targets");
5544  DebugLoc dl = Op.getDebugLoc();
5545
5546  // Get the inputs.
5547  SDValue Chain = Op.getOperand(0);
5548  SDValue Size  = Op.getOperand(1);
5549  // FIXME: Ensure alignment here
5550
5551  SDValue Flag;
5552
5553  MVT IntPtr = getPointerTy();
5554  MVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
5555
5556  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
5557
5558  Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
5559  Flag = Chain.getValue(1);
5560
5561  SDVTList  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
5562  SDValue Ops[] = { Chain,
5563                      DAG.getTargetExternalSymbol("_alloca", IntPtr),
5564                      DAG.getRegister(X86::EAX, IntPtr),
5565                      DAG.getRegister(X86StackPtr, SPTy),
5566                      Flag };
5567  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, Ops, 5);
5568  Flag = Chain.getValue(1);
5569
5570  Chain = DAG.getCALLSEQ_END(Chain,
5571                             DAG.getIntPtrConstant(0, true),
5572                             DAG.getIntPtrConstant(0, true),
5573                             Flag);
5574
5575  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
5576
5577  SDValue Ops1[2] = { Chain.getValue(0), Chain };
5578  return DAG.getMergeValues(Ops1, 2, dl);
5579}
5580
5581SDValue
5582X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
5583                                           SDValue Chain,
5584                                           SDValue Dst, SDValue Src,
5585                                           SDValue Size, unsigned Align,
5586                                           const Value *DstSV,
5587                                           uint64_t DstSVOff) {
5588  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5589
5590  // If not DWORD aligned or size is more than the threshold, call the library.
5591  // The libc version is likely to be faster for these cases. It can use the
5592  // address value and run time information about the CPU.
5593  if ((Align & 3) != 0 ||
5594      !ConstantSize ||
5595      ConstantSize->getZExtValue() >
5596        getSubtarget()->getMaxInlineSizeThreshold()) {
5597    SDValue InFlag(0, 0);
5598
5599    // Check to see if there is a specialized entry-point for memory zeroing.
5600    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src);
5601
5602    if (const char *bzeroEntry =  V &&
5603        V->isNullValue() ? Subtarget->getBZeroEntry() : 0) {
5604      MVT IntPtr = getPointerTy();
5605      const Type *IntPtrTy = TD->getIntPtrType();
5606      TargetLowering::ArgListTy Args;
5607      TargetLowering::ArgListEntry Entry;
5608      Entry.Node = Dst;
5609      Entry.Ty = IntPtrTy;
5610      Args.push_back(Entry);
5611      Entry.Node = Size;
5612      Args.push_back(Entry);
5613      std::pair<SDValue,SDValue> CallResult =
5614        LowerCallTo(Chain, Type::VoidTy, false, false, false, false,
5615                    CallingConv::C, false,
5616                    DAG.getExternalSymbol(bzeroEntry, IntPtr), Args, DAG, dl);
5617      return CallResult.second;
5618    }
5619
5620    // Otherwise have the target-independent code call memset.
5621    return SDValue();
5622  }
5623
5624  uint64_t SizeVal = ConstantSize->getZExtValue();
5625  SDValue InFlag(0, 0);
5626  MVT AVT;
5627  SDValue Count;
5628  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src);
5629  unsigned BytesLeft = 0;
5630  bool TwoRepStos = false;
5631  if (ValC) {
5632    unsigned ValReg;
5633    uint64_t Val = ValC->getZExtValue() & 255;
5634
5635    // If the value is a constant, then we can potentially use larger sets.
5636    switch (Align & 3) {
5637    case 2:   // WORD aligned
5638      AVT = MVT::i16;
5639      ValReg = X86::AX;
5640      Val = (Val << 8) | Val;
5641      break;
5642    case 0:  // DWORD aligned
5643      AVT = MVT::i32;
5644      ValReg = X86::EAX;
5645      Val = (Val << 8)  | Val;
5646      Val = (Val << 16) | Val;
5647      if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) {  // QWORD aligned
5648        AVT = MVT::i64;
5649        ValReg = X86::RAX;
5650        Val = (Val << 32) | Val;
5651      }
5652      break;
5653    default:  // Byte aligned
5654      AVT = MVT::i8;
5655      ValReg = X86::AL;
5656      Count = DAG.getIntPtrConstant(SizeVal);
5657      break;
5658    }
5659
5660    if (AVT.bitsGT(MVT::i8)) {
5661      unsigned UBytes = AVT.getSizeInBits() / 8;
5662      Count = DAG.getIntPtrConstant(SizeVal / UBytes);
5663      BytesLeft = SizeVal % UBytes;
5664    }
5665
5666    Chain  = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, AVT),
5667                              InFlag);
5668    InFlag = Chain.getValue(1);
5669  } else {
5670    AVT = MVT::i8;
5671    Count  = DAG.getIntPtrConstant(SizeVal);
5672    Chain  = DAG.getCopyToReg(Chain, dl, X86::AL, Src, InFlag);
5673    InFlag = Chain.getValue(1);
5674  }
5675
5676  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
5677                                                              X86::ECX,
5678                            Count, InFlag);
5679  InFlag = Chain.getValue(1);
5680  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
5681                                                              X86::EDI,
5682                            Dst, InFlag);
5683  InFlag = Chain.getValue(1);
5684
5685  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5686  SmallVector<SDValue, 8> Ops;
5687  Ops.push_back(Chain);
5688  Ops.push_back(DAG.getValueType(AVT));
5689  Ops.push_back(InFlag);
5690  Chain  = DAG.getNode(X86ISD::REP_STOS, dl, Tys, &Ops[0], Ops.size());
5691
5692  if (TwoRepStos) {
5693    InFlag = Chain.getValue(1);
5694    Count  = Size;
5695    MVT CVT = Count.getValueType();
5696    SDValue Left = DAG.getNode(ISD::AND, dl, CVT, Count,
5697                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
5698    Chain  = DAG.getCopyToReg(Chain, dl, (CVT == MVT::i64) ? X86::RCX :
5699                                                             X86::ECX,
5700                              Left, InFlag);
5701    InFlag = Chain.getValue(1);
5702    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5703    Ops.clear();
5704    Ops.push_back(Chain);
5705    Ops.push_back(DAG.getValueType(MVT::i8));
5706    Ops.push_back(InFlag);
5707    Chain  = DAG.getNode(X86ISD::REP_STOS, dl, Tys, &Ops[0], Ops.size());
5708  } else if (BytesLeft) {
5709    // Handle the last 1 - 7 bytes.
5710    unsigned Offset = SizeVal - BytesLeft;
5711    MVT AddrVT = Dst.getValueType();
5712    MVT SizeVT = Size.getValueType();
5713
5714    Chain = DAG.getMemset(Chain, dl,
5715                          DAG.getNode(ISD::ADD, dl, AddrVT, Dst,
5716                                      DAG.getConstant(Offset, AddrVT)),
5717                          Src,
5718                          DAG.getConstant(BytesLeft, SizeVT),
5719                          Align, DstSV, DstSVOff + Offset);
5720  }
5721
5722  // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
5723  return Chain;
5724}
5725
5726SDValue
5727X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
5728                                      SDValue Chain, SDValue Dst, SDValue Src,
5729                                      SDValue Size, unsigned Align,
5730                                      bool AlwaysInline,
5731                                      const Value *DstSV, uint64_t DstSVOff,
5732                                      const Value *SrcSV, uint64_t SrcSVOff) {
5733  // This requires the copy size to be a constant, preferrably
5734  // within a subtarget-specific limit.
5735  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5736  if (!ConstantSize)
5737    return SDValue();
5738  uint64_t SizeVal = ConstantSize->getZExtValue();
5739  if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
5740    return SDValue();
5741
5742  /// If not DWORD aligned, call the library.
5743  if ((Align & 3) != 0)
5744    return SDValue();
5745
5746  // DWORD aligned
5747  MVT AVT = MVT::i32;
5748  if (Subtarget->is64Bit() && ((Align & 0x7) == 0))  // QWORD aligned
5749    AVT = MVT::i64;
5750
5751  unsigned UBytes = AVT.getSizeInBits() / 8;
5752  unsigned CountVal = SizeVal / UBytes;
5753  SDValue Count = DAG.getIntPtrConstant(CountVal);
5754  unsigned BytesLeft = SizeVal % UBytes;
5755
5756  SDValue InFlag(0, 0);
5757  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
5758                                                              X86::ECX,
5759                            Count, InFlag);
5760  InFlag = Chain.getValue(1);
5761  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
5762                                                             X86::EDI,
5763                            Dst, InFlag);
5764  InFlag = Chain.getValue(1);
5765  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RSI :
5766                                                              X86::ESI,
5767                            Src, InFlag);
5768  InFlag = Chain.getValue(1);
5769
5770  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5771  SmallVector<SDValue, 8> Ops;
5772  Ops.push_back(Chain);
5773  Ops.push_back(DAG.getValueType(AVT));
5774  Ops.push_back(InFlag);
5775  SDValue RepMovs = DAG.getNode(X86ISD::REP_MOVS, dl, Tys, &Ops[0], Ops.size());
5776
5777  SmallVector<SDValue, 4> Results;
5778  Results.push_back(RepMovs);
5779  if (BytesLeft) {
5780    // Handle the last 1 - 7 bytes.
5781    unsigned Offset = SizeVal - BytesLeft;
5782    MVT DstVT = Dst.getValueType();
5783    MVT SrcVT = Src.getValueType();
5784    MVT SizeVT = Size.getValueType();
5785    Results.push_back(DAG.getMemcpy(Chain, dl,
5786                                    DAG.getNode(ISD::ADD, dl, DstVT, Dst,
5787                                                DAG.getConstant(Offset, DstVT)),
5788                                    DAG.getNode(ISD::ADD, dl, SrcVT, Src,
5789                                                DAG.getConstant(Offset, SrcVT)),
5790                                    DAG.getConstant(BytesLeft, SizeVT),
5791                                    Align, AlwaysInline,
5792                                    DstSV, DstSVOff + Offset,
5793                                    SrcSV, SrcSVOff + Offset));
5794  }
5795
5796  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
5797                     &Results[0], Results.size());
5798}
5799
5800SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) {
5801  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
5802  DebugLoc dl = Op.getDebugLoc();
5803
5804  if (!Subtarget->is64Bit()) {
5805    // vastart just stores the address of the VarArgsFrameIndex slot into the
5806    // memory location argument.
5807    SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
5808    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0);
5809  }
5810
5811  // __va_list_tag:
5812  //   gp_offset         (0 - 6 * 8)
5813  //   fp_offset         (48 - 48 + 8 * 16)
5814  //   overflow_arg_area (point to parameters coming in memory).
5815  //   reg_save_area
5816  SmallVector<SDValue, 8> MemOps;
5817  SDValue FIN = Op.getOperand(1);
5818  // Store gp_offset
5819  SDValue Store = DAG.getStore(Op.getOperand(0), dl,
5820                                 DAG.getConstant(VarArgsGPOffset, MVT::i32),
5821                                 FIN, SV, 0);
5822  MemOps.push_back(Store);
5823
5824  // Store fp_offset
5825  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5826                    FIN, DAG.getIntPtrConstant(4));
5827  Store = DAG.getStore(Op.getOperand(0), dl,
5828                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
5829                       FIN, SV, 0);
5830  MemOps.push_back(Store);
5831
5832  // Store ptr to overflow_arg_area
5833  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5834                    FIN, DAG.getIntPtrConstant(4));
5835  SDValue OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
5836  Store = DAG.getStore(Op.getOperand(0), dl, OVFIN, FIN, SV, 0);
5837  MemOps.push_back(Store);
5838
5839  // Store ptr to reg_save_area.
5840  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5841                    FIN, DAG.getIntPtrConstant(8));
5842  SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
5843  Store = DAG.getStore(Op.getOperand(0), dl, RSFIN, FIN, SV, 0);
5844  MemOps.push_back(Store);
5845  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
5846                     &MemOps[0], MemOps.size());
5847}
5848
5849SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) {
5850  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
5851  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
5852  SDValue Chain = Op.getOperand(0);
5853  SDValue SrcPtr = Op.getOperand(1);
5854  SDValue SrcSV = Op.getOperand(2);
5855
5856  assert(0 && "VAArgInst is not yet implemented for x86-64!");
5857  abort();
5858  return SDValue();
5859}
5860
5861SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) {
5862  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
5863  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
5864  SDValue Chain = Op.getOperand(0);
5865  SDValue DstPtr = Op.getOperand(1);
5866  SDValue SrcPtr = Op.getOperand(2);
5867  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
5868  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
5869  DebugLoc dl = Op.getDebugLoc();
5870
5871  return DAG.getMemcpy(Chain, dl, DstPtr, SrcPtr,
5872                       DAG.getIntPtrConstant(24), 8, false,
5873                       DstSV, 0, SrcSV, 0);
5874}
5875
5876SDValue
5877X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
5878  DebugLoc dl = Op.getDebugLoc();
5879  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5880  switch (IntNo) {
5881  default: return SDValue();    // Don't custom lower most intrinsics.
5882  // Comparison intrinsics.
5883  case Intrinsic::x86_sse_comieq_ss:
5884  case Intrinsic::x86_sse_comilt_ss:
5885  case Intrinsic::x86_sse_comile_ss:
5886  case Intrinsic::x86_sse_comigt_ss:
5887  case Intrinsic::x86_sse_comige_ss:
5888  case Intrinsic::x86_sse_comineq_ss:
5889  case Intrinsic::x86_sse_ucomieq_ss:
5890  case Intrinsic::x86_sse_ucomilt_ss:
5891  case Intrinsic::x86_sse_ucomile_ss:
5892  case Intrinsic::x86_sse_ucomigt_ss:
5893  case Intrinsic::x86_sse_ucomige_ss:
5894  case Intrinsic::x86_sse_ucomineq_ss:
5895  case Intrinsic::x86_sse2_comieq_sd:
5896  case Intrinsic::x86_sse2_comilt_sd:
5897  case Intrinsic::x86_sse2_comile_sd:
5898  case Intrinsic::x86_sse2_comigt_sd:
5899  case Intrinsic::x86_sse2_comige_sd:
5900  case Intrinsic::x86_sse2_comineq_sd:
5901  case Intrinsic::x86_sse2_ucomieq_sd:
5902  case Intrinsic::x86_sse2_ucomilt_sd:
5903  case Intrinsic::x86_sse2_ucomile_sd:
5904  case Intrinsic::x86_sse2_ucomigt_sd:
5905  case Intrinsic::x86_sse2_ucomige_sd:
5906  case Intrinsic::x86_sse2_ucomineq_sd: {
5907    unsigned Opc = 0;
5908    ISD::CondCode CC = ISD::SETCC_INVALID;
5909    switch (IntNo) {
5910    default: break;
5911    case Intrinsic::x86_sse_comieq_ss:
5912    case Intrinsic::x86_sse2_comieq_sd:
5913      Opc = X86ISD::COMI;
5914      CC = ISD::SETEQ;
5915      break;
5916    case Intrinsic::x86_sse_comilt_ss:
5917    case Intrinsic::x86_sse2_comilt_sd:
5918      Opc = X86ISD::COMI;
5919      CC = ISD::SETLT;
5920      break;
5921    case Intrinsic::x86_sse_comile_ss:
5922    case Intrinsic::x86_sse2_comile_sd:
5923      Opc = X86ISD::COMI;
5924      CC = ISD::SETLE;
5925      break;
5926    case Intrinsic::x86_sse_comigt_ss:
5927    case Intrinsic::x86_sse2_comigt_sd:
5928      Opc = X86ISD::COMI;
5929      CC = ISD::SETGT;
5930      break;
5931    case Intrinsic::x86_sse_comige_ss:
5932    case Intrinsic::x86_sse2_comige_sd:
5933      Opc = X86ISD::COMI;
5934      CC = ISD::SETGE;
5935      break;
5936    case Intrinsic::x86_sse_comineq_ss:
5937    case Intrinsic::x86_sse2_comineq_sd:
5938      Opc = X86ISD::COMI;
5939      CC = ISD::SETNE;
5940      break;
5941    case Intrinsic::x86_sse_ucomieq_ss:
5942    case Intrinsic::x86_sse2_ucomieq_sd:
5943      Opc = X86ISD::UCOMI;
5944      CC = ISD::SETEQ;
5945      break;
5946    case Intrinsic::x86_sse_ucomilt_ss:
5947    case Intrinsic::x86_sse2_ucomilt_sd:
5948      Opc = X86ISD::UCOMI;
5949      CC = ISD::SETLT;
5950      break;
5951    case Intrinsic::x86_sse_ucomile_ss:
5952    case Intrinsic::x86_sse2_ucomile_sd:
5953      Opc = X86ISD::UCOMI;
5954      CC = ISD::SETLE;
5955      break;
5956    case Intrinsic::x86_sse_ucomigt_ss:
5957    case Intrinsic::x86_sse2_ucomigt_sd:
5958      Opc = X86ISD::UCOMI;
5959      CC = ISD::SETGT;
5960      break;
5961    case Intrinsic::x86_sse_ucomige_ss:
5962    case Intrinsic::x86_sse2_ucomige_sd:
5963      Opc = X86ISD::UCOMI;
5964      CC = ISD::SETGE;
5965      break;
5966    case Intrinsic::x86_sse_ucomineq_ss:
5967    case Intrinsic::x86_sse2_ucomineq_sd:
5968      Opc = X86ISD::UCOMI;
5969      CC = ISD::SETNE;
5970      break;
5971    }
5972
5973    SDValue LHS = Op.getOperand(1);
5974    SDValue RHS = Op.getOperand(2);
5975    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
5976    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
5977    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
5978                                DAG.getConstant(X86CC, MVT::i8), Cond);
5979    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
5980  }
5981
5982  // Fix vector shift instructions where the last operand is a non-immediate
5983  // i32 value.
5984  case Intrinsic::x86_sse2_pslli_w:
5985  case Intrinsic::x86_sse2_pslli_d:
5986  case Intrinsic::x86_sse2_pslli_q:
5987  case Intrinsic::x86_sse2_psrli_w:
5988  case Intrinsic::x86_sse2_psrli_d:
5989  case Intrinsic::x86_sse2_psrli_q:
5990  case Intrinsic::x86_sse2_psrai_w:
5991  case Intrinsic::x86_sse2_psrai_d:
5992  case Intrinsic::x86_mmx_pslli_w:
5993  case Intrinsic::x86_mmx_pslli_d:
5994  case Intrinsic::x86_mmx_pslli_q:
5995  case Intrinsic::x86_mmx_psrli_w:
5996  case Intrinsic::x86_mmx_psrli_d:
5997  case Intrinsic::x86_mmx_psrli_q:
5998  case Intrinsic::x86_mmx_psrai_w:
5999  case Intrinsic::x86_mmx_psrai_d: {
6000    SDValue ShAmt = Op.getOperand(2);
6001    if (isa<ConstantSDNode>(ShAmt))
6002      return SDValue();
6003
6004    unsigned NewIntNo = 0;
6005    MVT ShAmtVT = MVT::v4i32;
6006    switch (IntNo) {
6007    case Intrinsic::x86_sse2_pslli_w:
6008      NewIntNo = Intrinsic::x86_sse2_psll_w;
6009      break;
6010    case Intrinsic::x86_sse2_pslli_d:
6011      NewIntNo = Intrinsic::x86_sse2_psll_d;
6012      break;
6013    case Intrinsic::x86_sse2_pslli_q:
6014      NewIntNo = Intrinsic::x86_sse2_psll_q;
6015      break;
6016    case Intrinsic::x86_sse2_psrli_w:
6017      NewIntNo = Intrinsic::x86_sse2_psrl_w;
6018      break;
6019    case Intrinsic::x86_sse2_psrli_d:
6020      NewIntNo = Intrinsic::x86_sse2_psrl_d;
6021      break;
6022    case Intrinsic::x86_sse2_psrli_q:
6023      NewIntNo = Intrinsic::x86_sse2_psrl_q;
6024      break;
6025    case Intrinsic::x86_sse2_psrai_w:
6026      NewIntNo = Intrinsic::x86_sse2_psra_w;
6027      break;
6028    case Intrinsic::x86_sse2_psrai_d:
6029      NewIntNo = Intrinsic::x86_sse2_psra_d;
6030      break;
6031    default: {
6032      ShAmtVT = MVT::v2i32;
6033      switch (IntNo) {
6034      case Intrinsic::x86_mmx_pslli_w:
6035        NewIntNo = Intrinsic::x86_mmx_psll_w;
6036        break;
6037      case Intrinsic::x86_mmx_pslli_d:
6038        NewIntNo = Intrinsic::x86_mmx_psll_d;
6039        break;
6040      case Intrinsic::x86_mmx_pslli_q:
6041        NewIntNo = Intrinsic::x86_mmx_psll_q;
6042        break;
6043      case Intrinsic::x86_mmx_psrli_w:
6044        NewIntNo = Intrinsic::x86_mmx_psrl_w;
6045        break;
6046      case Intrinsic::x86_mmx_psrli_d:
6047        NewIntNo = Intrinsic::x86_mmx_psrl_d;
6048        break;
6049      case Intrinsic::x86_mmx_psrli_q:
6050        NewIntNo = Intrinsic::x86_mmx_psrl_q;
6051        break;
6052      case Intrinsic::x86_mmx_psrai_w:
6053        NewIntNo = Intrinsic::x86_mmx_psra_w;
6054        break;
6055      case Intrinsic::x86_mmx_psrai_d:
6056        NewIntNo = Intrinsic::x86_mmx_psra_d;
6057        break;
6058      default: abort();  // Can't reach here.
6059      }
6060      break;
6061    }
6062    }
6063    MVT VT = Op.getValueType();
6064    ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, VT,
6065                        DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, ShAmtVT, ShAmt));
6066    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6067                       DAG.getConstant(NewIntNo, MVT::i32),
6068                       Op.getOperand(1), ShAmt);
6069  }
6070  }
6071}
6072
6073SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
6074  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6075  DebugLoc dl = Op.getDebugLoc();
6076
6077  if (Depth > 0) {
6078    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
6079    SDValue Offset =
6080      DAG.getConstant(TD->getPointerSize(),
6081                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
6082    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
6083                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
6084                                   FrameAddr, Offset),
6085                       NULL, 0);
6086  }
6087
6088  // Just load the return address.
6089  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
6090  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
6091                     RetAddrFI, NULL, 0);
6092}
6093
6094SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
6095  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6096  MFI->setFrameAddressIsTaken(true);
6097  MVT VT = Op.getValueType();
6098  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
6099  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6100  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
6101  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
6102  while (Depth--)
6103    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0);
6104  return FrameAddr;
6105}
6106
6107SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
6108                                                     SelectionDAG &DAG) {
6109  return DAG.getIntPtrConstant(2*TD->getPointerSize());
6110}
6111
6112SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
6113{
6114  MachineFunction &MF = DAG.getMachineFunction();
6115  SDValue Chain     = Op.getOperand(0);
6116  SDValue Offset    = Op.getOperand(1);
6117  SDValue Handler   = Op.getOperand(2);
6118  DebugLoc dl       = Op.getDebugLoc();
6119
6120  SDValue Frame = DAG.getRegister(Subtarget->is64Bit() ? X86::RBP : X86::EBP,
6121                                  getPointerTy());
6122  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
6123
6124  SDValue StoreAddr = DAG.getNode(ISD::SUB, dl, getPointerTy(), Frame,
6125                                  DAG.getIntPtrConstant(-TD->getPointerSize()));
6126  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
6127  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, NULL, 0);
6128  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
6129  MF.getRegInfo().addLiveOut(StoreAddrReg);
6130
6131  return DAG.getNode(X86ISD::EH_RETURN, dl,
6132                     MVT::Other,
6133                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
6134}
6135
6136SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
6137                                             SelectionDAG &DAG) {
6138  SDValue Root = Op.getOperand(0);
6139  SDValue Trmp = Op.getOperand(1); // trampoline
6140  SDValue FPtr = Op.getOperand(2); // nested function
6141  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
6142  DebugLoc dl  = Op.getDebugLoc();
6143
6144  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
6145
6146  const X86InstrInfo *TII =
6147    ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
6148
6149  if (Subtarget->is64Bit()) {
6150    SDValue OutChains[6];
6151
6152    // Large code-model.
6153
6154    const unsigned char JMP64r  = TII->getBaseOpcodeFor(X86::JMP64r);
6155    const unsigned char MOV64ri = TII->getBaseOpcodeFor(X86::MOV64ri);
6156
6157    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
6158    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
6159
6160    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
6161
6162    // Load the pointer to the nested function into R11.
6163    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
6164    SDValue Addr = Trmp;
6165    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
6166                                Addr, TrmpAddr, 0);
6167
6168    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6169                       DAG.getConstant(2, MVT::i64));
6170    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, TrmpAddr, 2, false, 2);
6171
6172    // Load the 'nest' parameter value into R10.
6173    // R10 is specified in X86CallingConv.td
6174    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
6175    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6176                       DAG.getConstant(10, MVT::i64));
6177    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
6178                                Addr, TrmpAddr, 10);
6179
6180    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6181                       DAG.getConstant(12, MVT::i64));
6182    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 12, false, 2);
6183
6184    // Jump to the nested function.
6185    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
6186    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6187                       DAG.getConstant(20, MVT::i64));
6188    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
6189                                Addr, TrmpAddr, 20);
6190
6191    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
6192    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6193                       DAG.getConstant(22, MVT::i64));
6194    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
6195                                TrmpAddr, 22);
6196
6197    SDValue Ops[] =
6198      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
6199    return DAG.getMergeValues(Ops, 2, dl);
6200  } else {
6201    const Function *Func =
6202      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
6203    unsigned CC = Func->getCallingConv();
6204    unsigned NestReg;
6205
6206    switch (CC) {
6207    default:
6208      assert(0 && "Unsupported calling convention");
6209    case CallingConv::C:
6210    case CallingConv::X86_StdCall: {
6211      // Pass 'nest' parameter in ECX.
6212      // Must be kept in sync with X86CallingConv.td
6213      NestReg = X86::ECX;
6214
6215      // Check that ECX wasn't needed by an 'inreg' parameter.
6216      const FunctionType *FTy = Func->getFunctionType();
6217      const AttrListPtr &Attrs = Func->getAttributes();
6218
6219      if (!Attrs.isEmpty() && !Func->isVarArg()) {
6220        unsigned InRegCount = 0;
6221        unsigned Idx = 1;
6222
6223        for (FunctionType::param_iterator I = FTy->param_begin(),
6224             E = FTy->param_end(); I != E; ++I, ++Idx)
6225          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
6226            // FIXME: should only count parameters that are lowered to integers.
6227            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
6228
6229        if (InRegCount > 2) {
6230          cerr << "Nest register in use - reduce number of inreg parameters!\n";
6231          abort();
6232        }
6233      }
6234      break;
6235    }
6236    case CallingConv::X86_FastCall:
6237    case CallingConv::Fast:
6238      // Pass 'nest' parameter in EAX.
6239      // Must be kept in sync with X86CallingConv.td
6240      NestReg = X86::EAX;
6241      break;
6242    }
6243
6244    SDValue OutChains[4];
6245    SDValue Addr, Disp;
6246
6247    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6248                       DAG.getConstant(10, MVT::i32));
6249    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
6250
6251    const unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
6252    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
6253    OutChains[0] = DAG.getStore(Root, dl,
6254                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
6255                                Trmp, TrmpAddr, 0);
6256
6257    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6258                       DAG.getConstant(1, MVT::i32));
6259    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 1, false, 1);
6260
6261    const unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
6262    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6263                       DAG.getConstant(5, MVT::i32));
6264    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
6265                                TrmpAddr, 5, false, 1);
6266
6267    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6268                       DAG.getConstant(6, MVT::i32));
6269    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, TrmpAddr, 6, false, 1);
6270
6271    SDValue Ops[] =
6272      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
6273    return DAG.getMergeValues(Ops, 2, dl);
6274  }
6275}
6276
6277SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
6278  /*
6279   The rounding mode is in bits 11:10 of FPSR, and has the following
6280   settings:
6281     00 Round to nearest
6282     01 Round to -inf
6283     10 Round to +inf
6284     11 Round to 0
6285
6286  FLT_ROUNDS, on the other hand, expects the following:
6287    -1 Undefined
6288     0 Round to 0
6289     1 Round to nearest
6290     2 Round to +inf
6291     3 Round to -inf
6292
6293  To perform the conversion, we do:
6294    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
6295  */
6296
6297  MachineFunction &MF = DAG.getMachineFunction();
6298  const TargetMachine &TM = MF.getTarget();
6299  const TargetFrameInfo &TFI = *TM.getFrameInfo();
6300  unsigned StackAlignment = TFI.getStackAlignment();
6301  MVT VT = Op.getValueType();
6302  DebugLoc dl = Op.getDebugLoc();
6303
6304  // Save FP Control Word to stack slot
6305  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment);
6306  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6307
6308  SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, dl, MVT::Other,
6309                              DAG.getEntryNode(), StackSlot);
6310
6311  // Load FP Control Word from stack slot
6312  SDValue CWD = DAG.getLoad(MVT::i16, dl, Chain, StackSlot, NULL, 0);
6313
6314  // Transform as necessary
6315  SDValue CWD1 =
6316    DAG.getNode(ISD::SRL, dl, MVT::i16,
6317                DAG.getNode(ISD::AND, dl, MVT::i16,
6318                            CWD, DAG.getConstant(0x800, MVT::i16)),
6319                DAG.getConstant(11, MVT::i8));
6320  SDValue CWD2 =
6321    DAG.getNode(ISD::SRL, dl, MVT::i16,
6322                DAG.getNode(ISD::AND, dl, MVT::i16,
6323                            CWD, DAG.getConstant(0x400, MVT::i16)),
6324                DAG.getConstant(9, MVT::i8));
6325
6326  SDValue RetVal =
6327    DAG.getNode(ISD::AND, dl, MVT::i16,
6328                DAG.getNode(ISD::ADD, dl, MVT::i16,
6329                            DAG.getNode(ISD::OR, dl, MVT::i16, CWD1, CWD2),
6330                            DAG.getConstant(1, MVT::i16)),
6331                DAG.getConstant(3, MVT::i16));
6332
6333
6334  return DAG.getNode((VT.getSizeInBits() < 16 ?
6335                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
6336}
6337
6338SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
6339  MVT VT = Op.getValueType();
6340  MVT OpVT = VT;
6341  unsigned NumBits = VT.getSizeInBits();
6342  DebugLoc dl = Op.getDebugLoc();
6343
6344  Op = Op.getOperand(0);
6345  if (VT == MVT::i8) {
6346    // Zero extend to i32 since there is not an i8 bsr.
6347    OpVT = MVT::i32;
6348    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
6349  }
6350
6351  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
6352  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
6353  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
6354
6355  // If src is zero (i.e. bsr sets ZF), returns NumBits.
6356  SmallVector<SDValue, 4> Ops;
6357  Ops.push_back(Op);
6358  Ops.push_back(DAG.getConstant(NumBits+NumBits-1, OpVT));
6359  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
6360  Ops.push_back(Op.getValue(1));
6361  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, &Ops[0], 4);
6362
6363  // Finally xor with NumBits-1.
6364  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
6365
6366  if (VT == MVT::i8)
6367    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
6368  return Op;
6369}
6370
6371SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
6372  MVT VT = Op.getValueType();
6373  MVT OpVT = VT;
6374  unsigned NumBits = VT.getSizeInBits();
6375  DebugLoc dl = Op.getDebugLoc();
6376
6377  Op = Op.getOperand(0);
6378  if (VT == MVT::i8) {
6379    OpVT = MVT::i32;
6380    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
6381  }
6382
6383  // Issue a bsf (scan bits forward) which also sets EFLAGS.
6384  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
6385  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
6386
6387  // If src is zero (i.e. bsf sets ZF), returns NumBits.
6388  SmallVector<SDValue, 4> Ops;
6389  Ops.push_back(Op);
6390  Ops.push_back(DAG.getConstant(NumBits, OpVT));
6391  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
6392  Ops.push_back(Op.getValue(1));
6393  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, &Ops[0], 4);
6394
6395  if (VT == MVT::i8)
6396    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
6397  return Op;
6398}
6399
6400SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) {
6401  MVT VT = Op.getValueType();
6402  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
6403  DebugLoc dl = Op.getDebugLoc();
6404
6405  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
6406  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
6407  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
6408  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
6409  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
6410  //
6411  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
6412  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
6413  //  return AloBlo + AloBhi + AhiBlo;
6414
6415  SDValue A = Op.getOperand(0);
6416  SDValue B = Op.getOperand(1);
6417
6418  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6419                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
6420                       A, DAG.getConstant(32, MVT::i32));
6421  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6422                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
6423                       B, DAG.getConstant(32, MVT::i32));
6424  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6425                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6426                       A, B);
6427  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6428                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6429                       A, Bhi);
6430  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6431                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6432                       Ahi, B);
6433  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6434                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
6435                       AloBhi, DAG.getConstant(32, MVT::i32));
6436  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6437                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
6438                       AhiBlo, DAG.getConstant(32, MVT::i32));
6439  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
6440  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
6441  return Res;
6442}
6443
6444
6445SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) {
6446  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
6447  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
6448  // looks for this combo and may remove the "setcc" instruction if the "setcc"
6449  // has only one use.
6450  SDNode *N = Op.getNode();
6451  SDValue LHS = N->getOperand(0);
6452  SDValue RHS = N->getOperand(1);
6453  unsigned BaseOp = 0;
6454  unsigned Cond = 0;
6455  DebugLoc dl = Op.getDebugLoc();
6456
6457  switch (Op.getOpcode()) {
6458  default: assert(0 && "Unknown ovf instruction!");
6459  case ISD::SADDO:
6460    // A subtract of one will be selected as a INC. Note that INC doesn't
6461    // set CF, so we can't do this for UADDO.
6462    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
6463      if (C->getAPIntValue() == 1) {
6464        BaseOp = X86ISD::INC;
6465        Cond = X86::COND_O;
6466        break;
6467      }
6468    BaseOp = X86ISD::ADD;
6469    Cond = X86::COND_O;
6470    break;
6471  case ISD::UADDO:
6472    BaseOp = X86ISD::ADD;
6473    Cond = X86::COND_B;
6474    break;
6475  case ISD::SSUBO:
6476    // A subtract of one will be selected as a DEC. Note that DEC doesn't
6477    // set CF, so we can't do this for USUBO.
6478    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
6479      if (C->getAPIntValue() == 1) {
6480        BaseOp = X86ISD::DEC;
6481        Cond = X86::COND_O;
6482        break;
6483      }
6484    BaseOp = X86ISD::SUB;
6485    Cond = X86::COND_O;
6486    break;
6487  case ISD::USUBO:
6488    BaseOp = X86ISD::SUB;
6489    Cond = X86::COND_B;
6490    break;
6491  case ISD::SMULO:
6492    BaseOp = X86ISD::SMUL;
6493    Cond = X86::COND_O;
6494    break;
6495  case ISD::UMULO:
6496    BaseOp = X86ISD::UMUL;
6497    Cond = X86::COND_B;
6498    break;
6499  }
6500
6501  // Also sets EFLAGS.
6502  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
6503  SDValue Sum = DAG.getNode(BaseOp, dl, VTs, LHS, RHS);
6504
6505  SDValue SetCC =
6506    DAG.getNode(X86ISD::SETCC, dl, N->getValueType(1),
6507                DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1));
6508
6509  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
6510  return Sum;
6511}
6512
6513SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) {
6514  MVT T = Op.getValueType();
6515  DebugLoc dl = Op.getDebugLoc();
6516  unsigned Reg = 0;
6517  unsigned size = 0;
6518  switch(T.getSimpleVT()) {
6519  default:
6520    assert(false && "Invalid value type!");
6521  case MVT::i8:  Reg = X86::AL;  size = 1; break;
6522  case MVT::i16: Reg = X86::AX;  size = 2; break;
6523  case MVT::i32: Reg = X86::EAX; size = 4; break;
6524  case MVT::i64:
6525    assert(Subtarget->is64Bit() && "Node not type legal!");
6526    Reg = X86::RAX; size = 8;
6527    break;
6528  }
6529  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), dl, Reg,
6530                                    Op.getOperand(2), SDValue());
6531  SDValue Ops[] = { cpIn.getValue(0),
6532                    Op.getOperand(1),
6533                    Op.getOperand(3),
6534                    DAG.getTargetConstant(size, MVT::i8),
6535                    cpIn.getValue(1) };
6536  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6537  SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, dl, Tys, Ops, 5);
6538  SDValue cpOut =
6539    DAG.getCopyFromReg(Result.getValue(0), dl, Reg, T, Result.getValue(1));
6540  return cpOut;
6541}
6542
6543SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
6544                                                 SelectionDAG &DAG) {
6545  assert(Subtarget->is64Bit() && "Result not type legalized?");
6546  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6547  SDValue TheChain = Op.getOperand(0);
6548  DebugLoc dl = Op.getDebugLoc();
6549  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
6550  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
6551  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
6552                                   rax.getValue(2));
6553  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
6554                            DAG.getConstant(32, MVT::i8));
6555  SDValue Ops[] = {
6556    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
6557    rdx.getValue(1)
6558  };
6559  return DAG.getMergeValues(Ops, 2, dl);
6560}
6561
6562SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
6563  SDNode *Node = Op.getNode();
6564  DebugLoc dl = Node->getDebugLoc();
6565  MVT T = Node->getValueType(0);
6566  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
6567                              DAG.getConstant(0, T), Node->getOperand(2));
6568  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
6569                       cast<AtomicSDNode>(Node)->getMemoryVT(),
6570                       Node->getOperand(0),
6571                       Node->getOperand(1), negOp,
6572                       cast<AtomicSDNode>(Node)->getSrcValue(),
6573                       cast<AtomicSDNode>(Node)->getAlignment());
6574}
6575
6576/// LowerOperation - Provide custom lowering hooks for some operations.
6577///
6578SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
6579  switch (Op.getOpcode()) {
6580  default: assert(0 && "Should not custom lower this!");
6581  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
6582  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
6583  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
6584  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
6585  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
6586  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
6587  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
6588  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
6589  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
6590  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
6591  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
6592  case ISD::SHL_PARTS:
6593  case ISD::SRA_PARTS:
6594  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
6595  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
6596  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
6597  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
6598  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
6599  case ISD::FABS:               return LowerFABS(Op, DAG);
6600  case ISD::FNEG:               return LowerFNEG(Op, DAG);
6601  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
6602  case ISD::SETCC:              return LowerSETCC(Op, DAG);
6603  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
6604  case ISD::SELECT:             return LowerSELECT(Op, DAG);
6605  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
6606  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
6607  case ISD::CALL:               return LowerCALL(Op, DAG);
6608  case ISD::RET:                return LowerRET(Op, DAG);
6609  case ISD::FORMAL_ARGUMENTS:   return LowerFORMAL_ARGUMENTS(Op, DAG);
6610  case ISD::VASTART:            return LowerVASTART(Op, DAG);
6611  case ISD::VAARG:              return LowerVAARG(Op, DAG);
6612  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
6613  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
6614  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
6615  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
6616  case ISD::FRAME_TO_ARGS_OFFSET:
6617                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
6618  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
6619  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
6620  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
6621  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
6622  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
6623  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
6624  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
6625  case ISD::SADDO:
6626  case ISD::UADDO:
6627  case ISD::SSUBO:
6628  case ISD::USUBO:
6629  case ISD::SMULO:
6630  case ISD::UMULO:              return LowerXALUO(Op, DAG);
6631  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
6632  }
6633}
6634
6635void X86TargetLowering::
6636ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
6637                        SelectionDAG &DAG, unsigned NewOp) {
6638  MVT T = Node->getValueType(0);
6639  DebugLoc dl = Node->getDebugLoc();
6640  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
6641
6642  SDValue Chain = Node->getOperand(0);
6643  SDValue In1 = Node->getOperand(1);
6644  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6645                             Node->getOperand(2), DAG.getIntPtrConstant(0));
6646  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6647                             Node->getOperand(2), DAG.getIntPtrConstant(1));
6648  // This is a generalized SDNode, not an AtomicSDNode, so it doesn't
6649  // have a MemOperand.  Pass the info through as a normal operand.
6650  SDValue LSI = DAG.getMemOperand(cast<MemSDNode>(Node)->getMemOperand());
6651  SDValue Ops[] = { Chain, In1, In2L, In2H, LSI };
6652  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
6653  SDValue Result = DAG.getNode(NewOp, dl, Tys, Ops, 5);
6654  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
6655  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
6656  Results.push_back(Result.getValue(2));
6657}
6658
6659/// ReplaceNodeResults - Replace a node with an illegal result type
6660/// with a new node built out of custom code.
6661void X86TargetLowering::ReplaceNodeResults(SDNode *N,
6662                                           SmallVectorImpl<SDValue>&Results,
6663                                           SelectionDAG &DAG) {
6664  DebugLoc dl = N->getDebugLoc();
6665  switch (N->getOpcode()) {
6666  default:
6667    assert(false && "Do not know how to custom type legalize this operation!");
6668    return;
6669  case ISD::FP_TO_SINT: {
6670    std::pair<SDValue,SDValue> Vals =
6671        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
6672    SDValue FIST = Vals.first, StackSlot = Vals.second;
6673    if (FIST.getNode() != 0) {
6674      MVT VT = N->getValueType(0);
6675      // Return a load from the stack slot.
6676      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, NULL, 0));
6677    }
6678    return;
6679  }
6680  case ISD::READCYCLECOUNTER: {
6681    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6682    SDValue TheChain = N->getOperand(0);
6683    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
6684    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
6685                                     rd.getValue(1));
6686    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
6687                                     eax.getValue(2));
6688    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
6689    SDValue Ops[] = { eax, edx };
6690    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
6691    Results.push_back(edx.getValue(1));
6692    return;
6693  }
6694  case ISD::ATOMIC_CMP_SWAP: {
6695    MVT T = N->getValueType(0);
6696    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
6697    SDValue cpInL, cpInH;
6698    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
6699                        DAG.getConstant(0, MVT::i32));
6700    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
6701                        DAG.getConstant(1, MVT::i32));
6702    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
6703    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
6704                             cpInL.getValue(1));
6705    SDValue swapInL, swapInH;
6706    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
6707                          DAG.getConstant(0, MVT::i32));
6708    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
6709                          DAG.getConstant(1, MVT::i32));
6710    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
6711                               cpInH.getValue(1));
6712    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
6713                               swapInL.getValue(1));
6714    SDValue Ops[] = { swapInH.getValue(0),
6715                      N->getOperand(1),
6716                      swapInH.getValue(1) };
6717    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6718    SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, dl, Tys, Ops, 3);
6719    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
6720                                        MVT::i32, Result.getValue(1));
6721    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
6722                                        MVT::i32, cpOutL.getValue(2));
6723    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
6724    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
6725    Results.push_back(cpOutH.getValue(1));
6726    return;
6727  }
6728  case ISD::ATOMIC_LOAD_ADD:
6729    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
6730    return;
6731  case ISD::ATOMIC_LOAD_AND:
6732    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
6733    return;
6734  case ISD::ATOMIC_LOAD_NAND:
6735    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
6736    return;
6737  case ISD::ATOMIC_LOAD_OR:
6738    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
6739    return;
6740  case ISD::ATOMIC_LOAD_SUB:
6741    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
6742    return;
6743  case ISD::ATOMIC_LOAD_XOR:
6744    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
6745    return;
6746  case ISD::ATOMIC_SWAP:
6747    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
6748    return;
6749  }
6750}
6751
6752const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
6753  switch (Opcode) {
6754  default: return NULL;
6755  case X86ISD::BSF:                return "X86ISD::BSF";
6756  case X86ISD::BSR:                return "X86ISD::BSR";
6757  case X86ISD::SHLD:               return "X86ISD::SHLD";
6758  case X86ISD::SHRD:               return "X86ISD::SHRD";
6759  case X86ISD::FAND:               return "X86ISD::FAND";
6760  case X86ISD::FOR:                return "X86ISD::FOR";
6761  case X86ISD::FXOR:               return "X86ISD::FXOR";
6762  case X86ISD::FSRL:               return "X86ISD::FSRL";
6763  case X86ISD::FILD:               return "X86ISD::FILD";
6764  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
6765  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
6766  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
6767  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
6768  case X86ISD::FLD:                return "X86ISD::FLD";
6769  case X86ISD::FST:                return "X86ISD::FST";
6770  case X86ISD::CALL:               return "X86ISD::CALL";
6771  case X86ISD::TAILCALL:           return "X86ISD::TAILCALL";
6772  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
6773  case X86ISD::BT:                 return "X86ISD::BT";
6774  case X86ISD::CMP:                return "X86ISD::CMP";
6775  case X86ISD::COMI:               return "X86ISD::COMI";
6776  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
6777  case X86ISD::SETCC:              return "X86ISD::SETCC";
6778  case X86ISD::CMOV:               return "X86ISD::CMOV";
6779  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
6780  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
6781  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
6782  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
6783  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
6784  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
6785  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
6786  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
6787  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
6788  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
6789  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
6790  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
6791  case X86ISD::FMAX:               return "X86ISD::FMAX";
6792  case X86ISD::FMIN:               return "X86ISD::FMIN";
6793  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
6794  case X86ISD::FRCP:               return "X86ISD::FRCP";
6795  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
6796  case X86ISD::SegmentBaseAddress: return "X86ISD::SegmentBaseAddress";
6797  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
6798  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
6799  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
6800  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
6801  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
6802  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
6803  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
6804  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
6805  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
6806  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
6807  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
6808  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
6809  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
6810  case X86ISD::VSHL:               return "X86ISD::VSHL";
6811  case X86ISD::VSRL:               return "X86ISD::VSRL";
6812  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
6813  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
6814  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
6815  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
6816  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
6817  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
6818  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
6819  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
6820  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
6821  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
6822  case X86ISD::ADD:                return "X86ISD::ADD";
6823  case X86ISD::SUB:                return "X86ISD::SUB";
6824  case X86ISD::SMUL:               return "X86ISD::SMUL";
6825  case X86ISD::UMUL:               return "X86ISD::UMUL";
6826  case X86ISD::INC:                return "X86ISD::INC";
6827  case X86ISD::DEC:                return "X86ISD::DEC";
6828  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
6829  }
6830}
6831
6832// isLegalAddressingMode - Return true if the addressing mode represented
6833// by AM is legal for this target, for a load/store of the specified type.
6834bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
6835                                              const Type *Ty) const {
6836  // X86 supports extremely general addressing modes.
6837
6838  // X86 allows a sign-extended 32-bit immediate field as a displacement.
6839  if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
6840    return false;
6841
6842  if (AM.BaseGV) {
6843    // We can only fold this if we don't need an extra load.
6844    if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
6845      return false;
6846    // If BaseGV requires a register, we cannot also have a BaseReg.
6847    if (Subtarget->GVRequiresRegister(AM.BaseGV, getTargetMachine(), false) &&
6848        AM.HasBaseReg)
6849      return false;
6850
6851    // X86-64 only supports addr of globals in small code model.
6852    if (Subtarget->is64Bit()) {
6853      if (getTargetMachine().getCodeModel() != CodeModel::Small)
6854        return false;
6855      // If lower 4G is not available, then we must use rip-relative addressing.
6856      if (AM.BaseOffs || AM.Scale > 1)
6857        return false;
6858    }
6859  }
6860
6861  switch (AM.Scale) {
6862  case 0:
6863  case 1:
6864  case 2:
6865  case 4:
6866  case 8:
6867    // These scales always work.
6868    break;
6869  case 3:
6870  case 5:
6871  case 9:
6872    // These scales are formed with basereg+scalereg.  Only accept if there is
6873    // no basereg yet.
6874    if (AM.HasBaseReg)
6875      return false;
6876    break;
6877  default:  // Other stuff never works.
6878    return false;
6879  }
6880
6881  return true;
6882}
6883
6884
6885bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
6886  if (!Ty1->isInteger() || !Ty2->isInteger())
6887    return false;
6888  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
6889  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
6890  if (NumBits1 <= NumBits2)
6891    return false;
6892  return Subtarget->is64Bit() || NumBits1 < 64;
6893}
6894
6895bool X86TargetLowering::isTruncateFree(MVT VT1, MVT VT2) const {
6896  if (!VT1.isInteger() || !VT2.isInteger())
6897    return false;
6898  unsigned NumBits1 = VT1.getSizeInBits();
6899  unsigned NumBits2 = VT2.getSizeInBits();
6900  if (NumBits1 <= NumBits2)
6901    return false;
6902  return Subtarget->is64Bit() || NumBits1 < 64;
6903}
6904
6905bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
6906  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
6907  return Ty1 == Type::Int32Ty && Ty2 == Type::Int64Ty && Subtarget->is64Bit();
6908}
6909
6910bool X86TargetLowering::isZExtFree(MVT VT1, MVT VT2) const {
6911  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
6912  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
6913}
6914
6915bool X86TargetLowering::isNarrowingProfitable(MVT VT1, MVT VT2) const {
6916  // i16 instructions are longer (0x66 prefix) and potentially slower.
6917  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
6918}
6919
6920/// isShuffleMaskLegal - Targets can use this to indicate that they only
6921/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
6922/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
6923/// are assumed to be legal.
6924bool
6925X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
6926                                      MVT VT) const {
6927  // Only do shuffles on 128-bit vector types for now.
6928  if (VT.getSizeInBits() == 64)
6929    return false;
6930
6931  // FIXME: pshufb, blends, palignr, shifts.
6932  return (VT.getVectorNumElements() == 2 ||
6933          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
6934          isMOVLMask(M, VT) ||
6935          isSHUFPMask(M, VT) ||
6936          isPSHUFDMask(M, VT) ||
6937          isPSHUFHWMask(M, VT) ||
6938          isPSHUFLWMask(M, VT) ||
6939          isUNPCKLMask(M, VT) ||
6940          isUNPCKHMask(M, VT) ||
6941          isUNPCKL_v_undef_Mask(M, VT) ||
6942          isUNPCKH_v_undef_Mask(M, VT));
6943}
6944
6945bool
6946X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
6947                                          MVT VT) const {
6948  unsigned NumElts = VT.getVectorNumElements();
6949  // FIXME: This collection of masks seems suspect.
6950  if (NumElts == 2)
6951    return true;
6952  if (NumElts == 4 && VT.getSizeInBits() == 128) {
6953    return (isMOVLMask(Mask, VT)  ||
6954            isCommutedMOVLMask(Mask, VT, true) ||
6955            isSHUFPMask(Mask, VT) ||
6956            isCommutedSHUFPMask(Mask, VT));
6957  }
6958  return false;
6959}
6960
6961//===----------------------------------------------------------------------===//
6962//                           X86 Scheduler Hooks
6963//===----------------------------------------------------------------------===//
6964
6965// private utility function
6966MachineBasicBlock *
6967X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
6968                                                       MachineBasicBlock *MBB,
6969                                                       unsigned regOpc,
6970                                                       unsigned immOpc,
6971                                                       unsigned LoadOpc,
6972                                                       unsigned CXchgOpc,
6973                                                       unsigned copyOpc,
6974                                                       unsigned notOpc,
6975                                                       unsigned EAXreg,
6976                                                       TargetRegisterClass *RC,
6977                                                       bool invSrc) const {
6978  // For the atomic bitwise operator, we generate
6979  //   thisMBB:
6980  //   newMBB:
6981  //     ld  t1 = [bitinstr.addr]
6982  //     op  t2 = t1, [bitinstr.val]
6983  //     mov EAX = t1
6984  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
6985  //     bz  newMBB
6986  //     fallthrough -->nextMBB
6987  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6988  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
6989  MachineFunction::iterator MBBIter = MBB;
6990  ++MBBIter;
6991
6992  /// First build the CFG
6993  MachineFunction *F = MBB->getParent();
6994  MachineBasicBlock *thisMBB = MBB;
6995  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
6996  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
6997  F->insert(MBBIter, newMBB);
6998  F->insert(MBBIter, nextMBB);
6999
7000  // Move all successors to thisMBB to nextMBB
7001  nextMBB->transferSuccessors(thisMBB);
7002
7003  // Update thisMBB to fall through to newMBB
7004  thisMBB->addSuccessor(newMBB);
7005
7006  // newMBB jumps to itself and fall through to nextMBB
7007  newMBB->addSuccessor(nextMBB);
7008  newMBB->addSuccessor(newMBB);
7009
7010  // Insert instructions into newMBB based on incoming instruction
7011  assert(bInstr->getNumOperands() < X86AddrNumOperands + 4 &&
7012         "unexpected number of operands");
7013  DebugLoc dl = bInstr->getDebugLoc();
7014  MachineOperand& destOper = bInstr->getOperand(0);
7015  MachineOperand* argOpers[2 + X86AddrNumOperands];
7016  int numArgs = bInstr->getNumOperands() - 1;
7017  for (int i=0; i < numArgs; ++i)
7018    argOpers[i] = &bInstr->getOperand(i+1);
7019
7020  // x86 address has 4 operands: base, index, scale, and displacement
7021  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
7022  int valArgIndx = lastAddrIndx + 1;
7023
7024  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
7025  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
7026  for (int i=0; i <= lastAddrIndx; ++i)
7027    (*MIB).addOperand(*argOpers[i]);
7028
7029  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
7030  if (invSrc) {
7031    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
7032  }
7033  else
7034    tt = t1;
7035
7036  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
7037  assert((argOpers[valArgIndx]->isReg() ||
7038          argOpers[valArgIndx]->isImm()) &&
7039         "invalid operand");
7040  if (argOpers[valArgIndx]->isReg())
7041    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
7042  else
7043    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
7044  MIB.addReg(tt);
7045  (*MIB).addOperand(*argOpers[valArgIndx]);
7046
7047  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), EAXreg);
7048  MIB.addReg(t1);
7049
7050  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
7051  for (int i=0; i <= lastAddrIndx; ++i)
7052    (*MIB).addOperand(*argOpers[i]);
7053  MIB.addReg(t2);
7054  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7055  (*MIB).addMemOperand(*F, *bInstr->memoperands_begin());
7056
7057  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), destOper.getReg());
7058  MIB.addReg(EAXreg);
7059
7060  // insert branch
7061  BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
7062
7063  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
7064  return nextMBB;
7065}
7066
7067// private utility function:  64 bit atomics on 32 bit host.
7068MachineBasicBlock *
7069X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
7070                                                       MachineBasicBlock *MBB,
7071                                                       unsigned regOpcL,
7072                                                       unsigned regOpcH,
7073                                                       unsigned immOpcL,
7074                                                       unsigned immOpcH,
7075                                                       bool invSrc) const {
7076  // For the atomic bitwise operator, we generate
7077  //   thisMBB (instructions are in pairs, except cmpxchg8b)
7078  //     ld t1,t2 = [bitinstr.addr]
7079  //   newMBB:
7080  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
7081  //     op  t5, t6 <- out1, out2, [bitinstr.val]
7082  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
7083  //     mov ECX, EBX <- t5, t6
7084  //     mov EAX, EDX <- t1, t2
7085  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
7086  //     mov t3, t4 <- EAX, EDX
7087  //     bz  newMBB
7088  //     result in out1, out2
7089  //     fallthrough -->nextMBB
7090
7091  const TargetRegisterClass *RC = X86::GR32RegisterClass;
7092  const unsigned LoadOpc = X86::MOV32rm;
7093  const unsigned copyOpc = X86::MOV32rr;
7094  const unsigned NotOpc = X86::NOT32r;
7095  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7096  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7097  MachineFunction::iterator MBBIter = MBB;
7098  ++MBBIter;
7099
7100  /// First build the CFG
7101  MachineFunction *F = MBB->getParent();
7102  MachineBasicBlock *thisMBB = MBB;
7103  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7104  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7105  F->insert(MBBIter, newMBB);
7106  F->insert(MBBIter, nextMBB);
7107
7108  // Move all successors to thisMBB to nextMBB
7109  nextMBB->transferSuccessors(thisMBB);
7110
7111  // Update thisMBB to fall through to newMBB
7112  thisMBB->addSuccessor(newMBB);
7113
7114  // newMBB jumps to itself and fall through to nextMBB
7115  newMBB->addSuccessor(nextMBB);
7116  newMBB->addSuccessor(newMBB);
7117
7118  DebugLoc dl = bInstr->getDebugLoc();
7119  // Insert instructions into newMBB based on incoming instruction
7120  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
7121  assert(bInstr->getNumOperands() < X86AddrNumOperands + 14 &&
7122         "unexpected number of operands");
7123  MachineOperand& dest1Oper = bInstr->getOperand(0);
7124  MachineOperand& dest2Oper = bInstr->getOperand(1);
7125  MachineOperand* argOpers[2 + X86AddrNumOperands];
7126  for (int i=0; i < 2 + X86AddrNumOperands; ++i)
7127    argOpers[i] = &bInstr->getOperand(i+2);
7128
7129  // x86 address has 4 operands: base, index, scale, and displacement
7130  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
7131
7132  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
7133  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
7134  for (int i=0; i <= lastAddrIndx; ++i)
7135    (*MIB).addOperand(*argOpers[i]);
7136  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
7137  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
7138  // add 4 to displacement.
7139  for (int i=0; i <= lastAddrIndx-2; ++i)
7140    (*MIB).addOperand(*argOpers[i]);
7141  MachineOperand newOp3 = *(argOpers[3]);
7142  if (newOp3.isImm())
7143    newOp3.setImm(newOp3.getImm()+4);
7144  else
7145    newOp3.setOffset(newOp3.getOffset()+4);
7146  (*MIB).addOperand(newOp3);
7147  (*MIB).addOperand(*argOpers[lastAddrIndx]);
7148
7149  // t3/4 are defined later, at the bottom of the loop
7150  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
7151  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
7152  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
7153    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
7154  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
7155    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
7156
7157  unsigned tt1 = F->getRegInfo().createVirtualRegister(RC);
7158  unsigned tt2 = F->getRegInfo().createVirtualRegister(RC);
7159  if (invSrc) {
7160    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), tt1).addReg(t1);
7161    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), tt2).addReg(t2);
7162  } else {
7163    tt1 = t1;
7164    tt2 = t2;
7165  }
7166
7167  int valArgIndx = lastAddrIndx + 1;
7168  assert((argOpers[valArgIndx]->isReg() ||
7169          argOpers[valArgIndx]->isImm()) &&
7170         "invalid operand");
7171  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
7172  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
7173  if (argOpers[valArgIndx]->isReg())
7174    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
7175  else
7176    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
7177  if (regOpcL != X86::MOV32rr)
7178    MIB.addReg(tt1);
7179  (*MIB).addOperand(*argOpers[valArgIndx]);
7180  assert(argOpers[valArgIndx + 1]->isReg() ==
7181         argOpers[valArgIndx]->isReg());
7182  assert(argOpers[valArgIndx + 1]->isImm() ==
7183         argOpers[valArgIndx]->isImm());
7184  if (argOpers[valArgIndx + 1]->isReg())
7185    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
7186  else
7187    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
7188  if (regOpcH != X86::MOV32rr)
7189    MIB.addReg(tt2);
7190  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
7191
7192  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EAX);
7193  MIB.addReg(t1);
7194  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EDX);
7195  MIB.addReg(t2);
7196
7197  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EBX);
7198  MIB.addReg(t5);
7199  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::ECX);
7200  MIB.addReg(t6);
7201
7202  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
7203  for (int i=0; i <= lastAddrIndx; ++i)
7204    (*MIB).addOperand(*argOpers[i]);
7205
7206  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7207  (*MIB).addMemOperand(*F, *bInstr->memoperands_begin());
7208
7209  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t3);
7210  MIB.addReg(X86::EAX);
7211  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t4);
7212  MIB.addReg(X86::EDX);
7213
7214  // insert branch
7215  BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
7216
7217  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
7218  return nextMBB;
7219}
7220
7221// private utility function
7222MachineBasicBlock *
7223X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
7224                                                      MachineBasicBlock *MBB,
7225                                                      unsigned cmovOpc) const {
7226  // For the atomic min/max operator, we generate
7227  //   thisMBB:
7228  //   newMBB:
7229  //     ld t1 = [min/max.addr]
7230  //     mov t2 = [min/max.val]
7231  //     cmp  t1, t2
7232  //     cmov[cond] t2 = t1
7233  //     mov EAX = t1
7234  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
7235  //     bz   newMBB
7236  //     fallthrough -->nextMBB
7237  //
7238  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7239  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7240  MachineFunction::iterator MBBIter = MBB;
7241  ++MBBIter;
7242
7243  /// First build the CFG
7244  MachineFunction *F = MBB->getParent();
7245  MachineBasicBlock *thisMBB = MBB;
7246  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7247  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7248  F->insert(MBBIter, newMBB);
7249  F->insert(MBBIter, nextMBB);
7250
7251  // Move all successors to thisMBB to nextMBB
7252  nextMBB->transferSuccessors(thisMBB);
7253
7254  // Update thisMBB to fall through to newMBB
7255  thisMBB->addSuccessor(newMBB);
7256
7257  // newMBB jumps to newMBB and fall through to nextMBB
7258  newMBB->addSuccessor(nextMBB);
7259  newMBB->addSuccessor(newMBB);
7260
7261  DebugLoc dl = mInstr->getDebugLoc();
7262  // Insert instructions into newMBB based on incoming instruction
7263  assert(mInstr->getNumOperands() < X86AddrNumOperands + 4 &&
7264         "unexpected number of operands");
7265  MachineOperand& destOper = mInstr->getOperand(0);
7266  MachineOperand* argOpers[2 + X86AddrNumOperands];
7267  int numArgs = mInstr->getNumOperands() - 1;
7268  for (int i=0; i < numArgs; ++i)
7269    argOpers[i] = &mInstr->getOperand(i+1);
7270
7271  // x86 address has 4 operands: base, index, scale, and displacement
7272  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
7273  int valArgIndx = lastAddrIndx + 1;
7274
7275  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7276  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
7277  for (int i=0; i <= lastAddrIndx; ++i)
7278    (*MIB).addOperand(*argOpers[i]);
7279
7280  // We only support register and immediate values
7281  assert((argOpers[valArgIndx]->isReg() ||
7282          argOpers[valArgIndx]->isImm()) &&
7283         "invalid operand");
7284
7285  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7286  if (argOpers[valArgIndx]->isReg())
7287    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
7288  else
7289    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
7290  (*MIB).addOperand(*argOpers[valArgIndx]);
7291
7292  MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), X86::EAX);
7293  MIB.addReg(t1);
7294
7295  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
7296  MIB.addReg(t1);
7297  MIB.addReg(t2);
7298
7299  // Generate movc
7300  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7301  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
7302  MIB.addReg(t2);
7303  MIB.addReg(t1);
7304
7305  // Cmp and exchange if none has modified the memory location
7306  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
7307  for (int i=0; i <= lastAddrIndx; ++i)
7308    (*MIB).addOperand(*argOpers[i]);
7309  MIB.addReg(t3);
7310  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7311  (*MIB).addMemOperand(*F, *mInstr->memoperands_begin());
7312
7313  MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), destOper.getReg());
7314  MIB.addReg(X86::EAX);
7315
7316  // insert branch
7317  BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
7318
7319  F->DeleteMachineInstr(mInstr);   // The pseudo instruction is gone now.
7320  return nextMBB;
7321}
7322
7323
7324MachineBasicBlock *
7325X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
7326                                               MachineBasicBlock *BB) const {
7327  DebugLoc dl = MI->getDebugLoc();
7328  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7329  switch (MI->getOpcode()) {
7330  default: assert(false && "Unexpected instr type to insert");
7331  case X86::CMOV_V1I64:
7332  case X86::CMOV_FR32:
7333  case X86::CMOV_FR64:
7334  case X86::CMOV_V4F32:
7335  case X86::CMOV_V2F64:
7336  case X86::CMOV_V2I64: {
7337    // To "insert" a SELECT_CC instruction, we actually have to insert the
7338    // diamond control-flow pattern.  The incoming instruction knows the
7339    // destination vreg to set, the condition code register to branch on, the
7340    // true/false values to select between, and a branch opcode to use.
7341    const BasicBlock *LLVM_BB = BB->getBasicBlock();
7342    MachineFunction::iterator It = BB;
7343    ++It;
7344
7345    //  thisMBB:
7346    //  ...
7347    //   TrueVal = ...
7348    //   cmpTY ccX, r1, r2
7349    //   bCC copy1MBB
7350    //   fallthrough --> copy0MBB
7351    MachineBasicBlock *thisMBB = BB;
7352    MachineFunction *F = BB->getParent();
7353    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
7354    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
7355    unsigned Opc =
7356      X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
7357    BuildMI(BB, dl, TII->get(Opc)).addMBB(sinkMBB);
7358    F->insert(It, copy0MBB);
7359    F->insert(It, sinkMBB);
7360    // Update machine-CFG edges by transferring all successors of the current
7361    // block to the new block which will contain the Phi node for the select.
7362    sinkMBB->transferSuccessors(BB);
7363
7364    // Add the true and fallthrough blocks as its successors.
7365    BB->addSuccessor(copy0MBB);
7366    BB->addSuccessor(sinkMBB);
7367
7368    //  copy0MBB:
7369    //   %FalseValue = ...
7370    //   # fallthrough to sinkMBB
7371    BB = copy0MBB;
7372
7373    // Update machine-CFG edges
7374    BB->addSuccessor(sinkMBB);
7375
7376    //  sinkMBB:
7377    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
7378    //  ...
7379    BB = sinkMBB;
7380    BuildMI(BB, dl, TII->get(X86::PHI), MI->getOperand(0).getReg())
7381      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
7382      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
7383
7384    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
7385    return BB;
7386  }
7387
7388  case X86::FP32_TO_INT16_IN_MEM:
7389  case X86::FP32_TO_INT32_IN_MEM:
7390  case X86::FP32_TO_INT64_IN_MEM:
7391  case X86::FP64_TO_INT16_IN_MEM:
7392  case X86::FP64_TO_INT32_IN_MEM:
7393  case X86::FP64_TO_INT64_IN_MEM:
7394  case X86::FP80_TO_INT16_IN_MEM:
7395  case X86::FP80_TO_INT32_IN_MEM:
7396  case X86::FP80_TO_INT64_IN_MEM: {
7397    // Change the floating point control register to use "round towards zero"
7398    // mode when truncating to an integer value.
7399    MachineFunction *F = BB->getParent();
7400    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
7401    addFrameReference(BuildMI(BB, dl, TII->get(X86::FNSTCW16m)), CWFrameIdx);
7402
7403    // Load the old value of the high byte of the control word...
7404    unsigned OldCW =
7405      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
7406    addFrameReference(BuildMI(BB, dl, TII->get(X86::MOV16rm), OldCW),
7407                      CWFrameIdx);
7408
7409    // Set the high part to be round to zero...
7410    addFrameReference(BuildMI(BB, dl, TII->get(X86::MOV16mi)), CWFrameIdx)
7411      .addImm(0xC7F);
7412
7413    // Reload the modified control word now...
7414    addFrameReference(BuildMI(BB, dl, TII->get(X86::FLDCW16m)), CWFrameIdx);
7415
7416    // Restore the memory image of control word to original value
7417    addFrameReference(BuildMI(BB, dl, TII->get(X86::MOV16mr)), CWFrameIdx)
7418      .addReg(OldCW);
7419
7420    // Get the X86 opcode to use.
7421    unsigned Opc;
7422    switch (MI->getOpcode()) {
7423    default: assert(0 && "illegal opcode!");
7424    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
7425    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
7426    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
7427    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
7428    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
7429    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
7430    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
7431    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
7432    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
7433    }
7434
7435    X86AddressMode AM;
7436    MachineOperand &Op = MI->getOperand(0);
7437    if (Op.isReg()) {
7438      AM.BaseType = X86AddressMode::RegBase;
7439      AM.Base.Reg = Op.getReg();
7440    } else {
7441      AM.BaseType = X86AddressMode::FrameIndexBase;
7442      AM.Base.FrameIndex = Op.getIndex();
7443    }
7444    Op = MI->getOperand(1);
7445    if (Op.isImm())
7446      AM.Scale = Op.getImm();
7447    Op = MI->getOperand(2);
7448    if (Op.isImm())
7449      AM.IndexReg = Op.getImm();
7450    Op = MI->getOperand(3);
7451    if (Op.isGlobal()) {
7452      AM.GV = Op.getGlobal();
7453    } else {
7454      AM.Disp = Op.getImm();
7455    }
7456    addFullAddress(BuildMI(BB, dl, TII->get(Opc)), AM)
7457                      .addReg(MI->getOperand(X86AddrNumOperands).getReg());
7458
7459    // Reload the original control word now.
7460    addFrameReference(BuildMI(BB, dl, TII->get(X86::FLDCW16m)), CWFrameIdx);
7461
7462    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
7463    return BB;
7464  }
7465  case X86::ATOMAND32:
7466    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
7467                                               X86::AND32ri, X86::MOV32rm,
7468                                               X86::LCMPXCHG32, X86::MOV32rr,
7469                                               X86::NOT32r, X86::EAX,
7470                                               X86::GR32RegisterClass);
7471  case X86::ATOMOR32:
7472    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
7473                                               X86::OR32ri, X86::MOV32rm,
7474                                               X86::LCMPXCHG32, X86::MOV32rr,
7475                                               X86::NOT32r, X86::EAX,
7476                                               X86::GR32RegisterClass);
7477  case X86::ATOMXOR32:
7478    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
7479                                               X86::XOR32ri, X86::MOV32rm,
7480                                               X86::LCMPXCHG32, X86::MOV32rr,
7481                                               X86::NOT32r, X86::EAX,
7482                                               X86::GR32RegisterClass);
7483  case X86::ATOMNAND32:
7484    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
7485                                               X86::AND32ri, X86::MOV32rm,
7486                                               X86::LCMPXCHG32, X86::MOV32rr,
7487                                               X86::NOT32r, X86::EAX,
7488                                               X86::GR32RegisterClass, true);
7489  case X86::ATOMMIN32:
7490    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
7491  case X86::ATOMMAX32:
7492    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
7493  case X86::ATOMUMIN32:
7494    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
7495  case X86::ATOMUMAX32:
7496    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
7497
7498  case X86::ATOMAND16:
7499    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
7500                                               X86::AND16ri, X86::MOV16rm,
7501                                               X86::LCMPXCHG16, X86::MOV16rr,
7502                                               X86::NOT16r, X86::AX,
7503                                               X86::GR16RegisterClass);
7504  case X86::ATOMOR16:
7505    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
7506                                               X86::OR16ri, X86::MOV16rm,
7507                                               X86::LCMPXCHG16, X86::MOV16rr,
7508                                               X86::NOT16r, X86::AX,
7509                                               X86::GR16RegisterClass);
7510  case X86::ATOMXOR16:
7511    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
7512                                               X86::XOR16ri, X86::MOV16rm,
7513                                               X86::LCMPXCHG16, X86::MOV16rr,
7514                                               X86::NOT16r, X86::AX,
7515                                               X86::GR16RegisterClass);
7516  case X86::ATOMNAND16:
7517    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
7518                                               X86::AND16ri, X86::MOV16rm,
7519                                               X86::LCMPXCHG16, X86::MOV16rr,
7520                                               X86::NOT16r, X86::AX,
7521                                               X86::GR16RegisterClass, true);
7522  case X86::ATOMMIN16:
7523    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
7524  case X86::ATOMMAX16:
7525    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
7526  case X86::ATOMUMIN16:
7527    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
7528  case X86::ATOMUMAX16:
7529    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
7530
7531  case X86::ATOMAND8:
7532    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
7533                                               X86::AND8ri, X86::MOV8rm,
7534                                               X86::LCMPXCHG8, X86::MOV8rr,
7535                                               X86::NOT8r, X86::AL,
7536                                               X86::GR8RegisterClass);
7537  case X86::ATOMOR8:
7538    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
7539                                               X86::OR8ri, X86::MOV8rm,
7540                                               X86::LCMPXCHG8, X86::MOV8rr,
7541                                               X86::NOT8r, X86::AL,
7542                                               X86::GR8RegisterClass);
7543  case X86::ATOMXOR8:
7544    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
7545                                               X86::XOR8ri, X86::MOV8rm,
7546                                               X86::LCMPXCHG8, X86::MOV8rr,
7547                                               X86::NOT8r, X86::AL,
7548                                               X86::GR8RegisterClass);
7549  case X86::ATOMNAND8:
7550    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
7551                                               X86::AND8ri, X86::MOV8rm,
7552                                               X86::LCMPXCHG8, X86::MOV8rr,
7553                                               X86::NOT8r, X86::AL,
7554                                               X86::GR8RegisterClass, true);
7555  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
7556  // This group is for 64-bit host.
7557  case X86::ATOMAND64:
7558    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
7559                                               X86::AND64ri32, X86::MOV64rm,
7560                                               X86::LCMPXCHG64, X86::MOV64rr,
7561                                               X86::NOT64r, X86::RAX,
7562                                               X86::GR64RegisterClass);
7563  case X86::ATOMOR64:
7564    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
7565                                               X86::OR64ri32, X86::MOV64rm,
7566                                               X86::LCMPXCHG64, X86::MOV64rr,
7567                                               X86::NOT64r, X86::RAX,
7568                                               X86::GR64RegisterClass);
7569  case X86::ATOMXOR64:
7570    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
7571                                               X86::XOR64ri32, X86::MOV64rm,
7572                                               X86::LCMPXCHG64, X86::MOV64rr,
7573                                               X86::NOT64r, X86::RAX,
7574                                               X86::GR64RegisterClass);
7575  case X86::ATOMNAND64:
7576    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
7577                                               X86::AND64ri32, X86::MOV64rm,
7578                                               X86::LCMPXCHG64, X86::MOV64rr,
7579                                               X86::NOT64r, X86::RAX,
7580                                               X86::GR64RegisterClass, true);
7581  case X86::ATOMMIN64:
7582    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
7583  case X86::ATOMMAX64:
7584    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
7585  case X86::ATOMUMIN64:
7586    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
7587  case X86::ATOMUMAX64:
7588    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
7589
7590  // This group does 64-bit operations on a 32-bit host.
7591  case X86::ATOMAND6432:
7592    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7593                                               X86::AND32rr, X86::AND32rr,
7594                                               X86::AND32ri, X86::AND32ri,
7595                                               false);
7596  case X86::ATOMOR6432:
7597    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7598                                               X86::OR32rr, X86::OR32rr,
7599                                               X86::OR32ri, X86::OR32ri,
7600                                               false);
7601  case X86::ATOMXOR6432:
7602    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7603                                               X86::XOR32rr, X86::XOR32rr,
7604                                               X86::XOR32ri, X86::XOR32ri,
7605                                               false);
7606  case X86::ATOMNAND6432:
7607    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7608                                               X86::AND32rr, X86::AND32rr,
7609                                               X86::AND32ri, X86::AND32ri,
7610                                               true);
7611  case X86::ATOMADD6432:
7612    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7613                                               X86::ADD32rr, X86::ADC32rr,
7614                                               X86::ADD32ri, X86::ADC32ri,
7615                                               false);
7616  case X86::ATOMSUB6432:
7617    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7618                                               X86::SUB32rr, X86::SBB32rr,
7619                                               X86::SUB32ri, X86::SBB32ri,
7620                                               false);
7621  case X86::ATOMSWAP6432:
7622    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7623                                               X86::MOV32rr, X86::MOV32rr,
7624                                               X86::MOV32ri, X86::MOV32ri,
7625                                               false);
7626  }
7627}
7628
7629//===----------------------------------------------------------------------===//
7630//                           X86 Optimization Hooks
7631//===----------------------------------------------------------------------===//
7632
7633void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
7634                                                       const APInt &Mask,
7635                                                       APInt &KnownZero,
7636                                                       APInt &KnownOne,
7637                                                       const SelectionDAG &DAG,
7638                                                       unsigned Depth) const {
7639  unsigned Opc = Op.getOpcode();
7640  assert((Opc >= ISD::BUILTIN_OP_END ||
7641          Opc == ISD::INTRINSIC_WO_CHAIN ||
7642          Opc == ISD::INTRINSIC_W_CHAIN ||
7643          Opc == ISD::INTRINSIC_VOID) &&
7644         "Should use MaskedValueIsZero if you don't know whether Op"
7645         " is a target node!");
7646
7647  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
7648  switch (Opc) {
7649  default: break;
7650  case X86ISD::ADD:
7651  case X86ISD::SUB:
7652  case X86ISD::SMUL:
7653  case X86ISD::UMUL:
7654  case X86ISD::INC:
7655  case X86ISD::DEC:
7656    // These nodes' second result is a boolean.
7657    if (Op.getResNo() == 0)
7658      break;
7659    // Fallthrough
7660  case X86ISD::SETCC:
7661    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
7662                                       Mask.getBitWidth() - 1);
7663    break;
7664  }
7665}
7666
7667/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
7668/// node is a GlobalAddress + offset.
7669bool X86TargetLowering::isGAPlusOffset(SDNode *N,
7670                                       GlobalValue* &GA, int64_t &Offset) const{
7671  if (N->getOpcode() == X86ISD::Wrapper) {
7672    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
7673      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
7674      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
7675      return true;
7676    }
7677  }
7678  return TargetLowering::isGAPlusOffset(N, GA, Offset);
7679}
7680
7681static bool isBaseAlignmentOfN(unsigned N, SDNode *Base,
7682                               const TargetLowering &TLI) {
7683  GlobalValue *GV;
7684  int64_t Offset = 0;
7685  if (TLI.isGAPlusOffset(Base, GV, Offset))
7686    return (GV->getAlignment() >= N && (Offset % N) == 0);
7687  // DAG combine handles the stack object case.
7688  return false;
7689}
7690
7691static bool EltsFromConsecutiveLoads(ShuffleVectorSDNode *N, unsigned NumElems,
7692                                     MVT EVT, LoadSDNode *&LDBase,
7693                                     unsigned &LastLoadedElt,
7694                                     SelectionDAG &DAG, MachineFrameInfo *MFI,
7695                                     const TargetLowering &TLI) {
7696  LDBase = NULL;
7697  LastLoadedElt = -1U;
7698  for (unsigned i = 0; i < NumElems; ++i) {
7699    if (N->getMaskElt(i) < 0) {
7700      if (!LDBase)
7701        return false;
7702      continue;
7703    }
7704
7705    SDValue Elt = DAG.getShuffleScalarElt(N, i);
7706    if (!Elt.getNode() ||
7707        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
7708      return false;
7709    if (!LDBase) {
7710      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
7711        return false;
7712      LDBase = cast<LoadSDNode>(Elt.getNode());
7713      LastLoadedElt = i;
7714      continue;
7715    }
7716    if (Elt.getOpcode() == ISD::UNDEF)
7717      continue;
7718
7719    LoadSDNode *LD = cast<LoadSDNode>(Elt);
7720    if (!TLI.isConsecutiveLoad(LD, LDBase, EVT.getSizeInBits()/8, i, MFI))
7721      return false;
7722    LastLoadedElt = i;
7723  }
7724  return true;
7725}
7726
7727/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
7728/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
7729/// if the load addresses are consecutive, non-overlapping, and in the right
7730/// order.  In the case of v2i64, it will see if it can rewrite the
7731/// shuffle to be an appropriate build vector so it can take advantage of
7732// performBuildVectorCombine.
7733static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
7734                                     const TargetLowering &TLI) {
7735  DebugLoc dl = N->getDebugLoc();
7736  MVT VT = N->getValueType(0);
7737  MVT EVT = VT.getVectorElementType();
7738  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
7739  unsigned NumElems = VT.getVectorNumElements();
7740
7741  if (VT.getSizeInBits() != 128)
7742    return SDValue();
7743
7744  // Try to combine a vector_shuffle into a 128-bit load.
7745  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7746  LoadSDNode *LD = NULL;
7747  unsigned LastLoadedElt;
7748  if (!EltsFromConsecutiveLoads(SVN, NumElems, EVT, LD, LastLoadedElt, DAG,
7749                                MFI, TLI))
7750    return SDValue();
7751
7752  if (LastLoadedElt == NumElems - 1) {
7753    if (isBaseAlignmentOfN(16, LD->getBasePtr().getNode(), TLI))
7754      return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(),
7755                         LD->getSrcValue(), LD->getSrcValueOffset(),
7756                         LD->isVolatile());
7757    return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(),
7758                       LD->getSrcValue(), LD->getSrcValueOffset(),
7759                       LD->isVolatile(), LD->getAlignment());
7760  } else if (NumElems == 4 && LastLoadedElt == 1) {
7761    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
7762    SDValue Ops[] = { LD->getChain(), LD->getBasePtr() };
7763    SDValue ResNode = DAG.getNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2);
7764    return DAG.getNode(ISD::BIT_CONVERT, dl, VT, ResNode);
7765  }
7766  return SDValue();
7767}
7768
7769/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
7770static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
7771                                    const X86Subtarget *Subtarget) {
7772  DebugLoc DL = N->getDebugLoc();
7773  SDValue Cond = N->getOperand(0);
7774  // Get the LHS/RHS of the select.
7775  SDValue LHS = N->getOperand(1);
7776  SDValue RHS = N->getOperand(2);
7777
7778  // If we have SSE[12] support, try to form min/max nodes.
7779  if (Subtarget->hasSSE2() &&
7780      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
7781      Cond.getOpcode() == ISD::SETCC) {
7782    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
7783
7784    unsigned Opcode = 0;
7785    if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
7786      switch (CC) {
7787      default: break;
7788      case ISD::SETOLE: // (X <= Y) ? X : Y -> min
7789      case ISD::SETULE:
7790      case ISD::SETLE:
7791        if (!UnsafeFPMath) break;
7792        // FALL THROUGH.
7793      case ISD::SETOLT:  // (X olt/lt Y) ? X : Y -> min
7794      case ISD::SETLT:
7795        Opcode = X86ISD::FMIN;
7796        break;
7797
7798      case ISD::SETOGT: // (X > Y) ? X : Y -> max
7799      case ISD::SETUGT:
7800      case ISD::SETGT:
7801        if (!UnsafeFPMath) break;
7802        // FALL THROUGH.
7803      case ISD::SETUGE:  // (X uge/ge Y) ? X : Y -> max
7804      case ISD::SETGE:
7805        Opcode = X86ISD::FMAX;
7806        break;
7807      }
7808    } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
7809      switch (CC) {
7810      default: break;
7811      case ISD::SETOGT: // (X > Y) ? Y : X -> min
7812      case ISD::SETUGT:
7813      case ISD::SETGT:
7814        if (!UnsafeFPMath) break;
7815        // FALL THROUGH.
7816      case ISD::SETUGE:  // (X uge/ge Y) ? Y : X -> min
7817      case ISD::SETGE:
7818        Opcode = X86ISD::FMIN;
7819        break;
7820
7821      case ISD::SETOLE:   // (X <= Y) ? Y : X -> max
7822      case ISD::SETULE:
7823      case ISD::SETLE:
7824        if (!UnsafeFPMath) break;
7825        // FALL THROUGH.
7826      case ISD::SETOLT:   // (X olt/lt Y) ? Y : X -> max
7827      case ISD::SETLT:
7828        Opcode = X86ISD::FMAX;
7829        break;
7830      }
7831    }
7832
7833    if (Opcode)
7834      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
7835  }
7836
7837  // If this is a select between two integer constants, try to do some
7838  // optimizations.
7839  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
7840    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
7841      // Don't do this for crazy integer types.
7842      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
7843        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
7844        // so that TrueC (the true value) is larger than FalseC.
7845        bool NeedsCondInvert = false;
7846
7847        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
7848            // Efficiently invertible.
7849            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
7850             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
7851              isa<ConstantSDNode>(Cond.getOperand(1))))) {
7852          NeedsCondInvert = true;
7853          std::swap(TrueC, FalseC);
7854        }
7855
7856        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
7857        if (FalseC->getAPIntValue() == 0 &&
7858            TrueC->getAPIntValue().isPowerOf2()) {
7859          if (NeedsCondInvert) // Invert the condition if needed.
7860            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
7861                               DAG.getConstant(1, Cond.getValueType()));
7862
7863          // Zero extend the condition if needed.
7864          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
7865
7866          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
7867          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
7868                             DAG.getConstant(ShAmt, MVT::i8));
7869        }
7870
7871        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
7872        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
7873          if (NeedsCondInvert) // Invert the condition if needed.
7874            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
7875                               DAG.getConstant(1, Cond.getValueType()));
7876
7877          // Zero extend the condition if needed.
7878          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
7879                             FalseC->getValueType(0), Cond);
7880          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
7881                             SDValue(FalseC, 0));
7882        }
7883
7884        // Optimize cases that will turn into an LEA instruction.  This requires
7885        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
7886        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
7887          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
7888          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
7889
7890          bool isFastMultiplier = false;
7891          if (Diff < 10) {
7892            switch ((unsigned char)Diff) {
7893              default: break;
7894              case 1:  // result = add base, cond
7895              case 2:  // result = lea base(    , cond*2)
7896              case 3:  // result = lea base(cond, cond*2)
7897              case 4:  // result = lea base(    , cond*4)
7898              case 5:  // result = lea base(cond, cond*4)
7899              case 8:  // result = lea base(    , cond*8)
7900              case 9:  // result = lea base(cond, cond*8)
7901                isFastMultiplier = true;
7902                break;
7903            }
7904          }
7905
7906          if (isFastMultiplier) {
7907            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
7908            if (NeedsCondInvert) // Invert the condition if needed.
7909              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
7910                                 DAG.getConstant(1, Cond.getValueType()));
7911
7912            // Zero extend the condition if needed.
7913            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
7914                               Cond);
7915            // Scale the condition by the difference.
7916            if (Diff != 1)
7917              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
7918                                 DAG.getConstant(Diff, Cond.getValueType()));
7919
7920            // Add the base if non-zero.
7921            if (FalseC->getAPIntValue() != 0)
7922              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
7923                                 SDValue(FalseC, 0));
7924            return Cond;
7925          }
7926        }
7927      }
7928  }
7929
7930  return SDValue();
7931}
7932
7933/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
7934static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
7935                                  TargetLowering::DAGCombinerInfo &DCI) {
7936  DebugLoc DL = N->getDebugLoc();
7937
7938  // If the flag operand isn't dead, don't touch this CMOV.
7939  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
7940    return SDValue();
7941
7942  // If this is a select between two integer constants, try to do some
7943  // optimizations.  Note that the operands are ordered the opposite of SELECT
7944  // operands.
7945  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
7946    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
7947      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
7948      // larger than FalseC (the false value).
7949      X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
7950
7951      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
7952        CC = X86::GetOppositeBranchCondition(CC);
7953        std::swap(TrueC, FalseC);
7954      }
7955
7956      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
7957      // This is efficient for any integer data type (including i8/i16) and
7958      // shift amount.
7959      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
7960        SDValue Cond = N->getOperand(3);
7961        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
7962                           DAG.getConstant(CC, MVT::i8), Cond);
7963
7964        // Zero extend the condition if needed.
7965        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
7966
7967        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
7968        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
7969                           DAG.getConstant(ShAmt, MVT::i8));
7970        if (N->getNumValues() == 2)  // Dead flag value?
7971          return DCI.CombineTo(N, Cond, SDValue());
7972        return Cond;
7973      }
7974
7975      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
7976      // for any integer data type, including i8/i16.
7977      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
7978        SDValue Cond = N->getOperand(3);
7979        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
7980                           DAG.getConstant(CC, MVT::i8), Cond);
7981
7982        // Zero extend the condition if needed.
7983        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
7984                           FalseC->getValueType(0), Cond);
7985        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
7986                           SDValue(FalseC, 0));
7987
7988        if (N->getNumValues() == 2)  // Dead flag value?
7989          return DCI.CombineTo(N, Cond, SDValue());
7990        return Cond;
7991      }
7992
7993      // Optimize cases that will turn into an LEA instruction.  This requires
7994      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
7995      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
7996        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
7997        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
7998
7999        bool isFastMultiplier = false;
8000        if (Diff < 10) {
8001          switch ((unsigned char)Diff) {
8002          default: break;
8003          case 1:  // result = add base, cond
8004          case 2:  // result = lea base(    , cond*2)
8005          case 3:  // result = lea base(cond, cond*2)
8006          case 4:  // result = lea base(    , cond*4)
8007          case 5:  // result = lea base(cond, cond*4)
8008          case 8:  // result = lea base(    , cond*8)
8009          case 9:  // result = lea base(cond, cond*8)
8010            isFastMultiplier = true;
8011            break;
8012          }
8013        }
8014
8015        if (isFastMultiplier) {
8016          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
8017          SDValue Cond = N->getOperand(3);
8018          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
8019                             DAG.getConstant(CC, MVT::i8), Cond);
8020          // Zero extend the condition if needed.
8021          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
8022                             Cond);
8023          // Scale the condition by the difference.
8024          if (Diff != 1)
8025            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
8026                               DAG.getConstant(Diff, Cond.getValueType()));
8027
8028          // Add the base if non-zero.
8029          if (FalseC->getAPIntValue() != 0)
8030            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8031                               SDValue(FalseC, 0));
8032          if (N->getNumValues() == 2)  // Dead flag value?
8033            return DCI.CombineTo(N, Cond, SDValue());
8034          return Cond;
8035        }
8036      }
8037    }
8038  }
8039  return SDValue();
8040}
8041
8042
8043/// PerformMulCombine - Optimize a single multiply with constant into two
8044/// in order to implement it with two cheaper instructions, e.g.
8045/// LEA + SHL, LEA + LEA.
8046static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
8047                                 TargetLowering::DAGCombinerInfo &DCI) {
8048  if (DAG.getMachineFunction().
8049      getFunction()->hasFnAttr(Attribute::OptimizeForSize))
8050    return SDValue();
8051
8052  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
8053    return SDValue();
8054
8055  MVT VT = N->getValueType(0);
8056  if (VT != MVT::i64)
8057    return SDValue();
8058
8059  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
8060  if (!C)
8061    return SDValue();
8062  uint64_t MulAmt = C->getZExtValue();
8063  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
8064    return SDValue();
8065
8066  uint64_t MulAmt1 = 0;
8067  uint64_t MulAmt2 = 0;
8068  if ((MulAmt % 9) == 0) {
8069    MulAmt1 = 9;
8070    MulAmt2 = MulAmt / 9;
8071  } else if ((MulAmt % 5) == 0) {
8072    MulAmt1 = 5;
8073    MulAmt2 = MulAmt / 5;
8074  } else if ((MulAmt % 3) == 0) {
8075    MulAmt1 = 3;
8076    MulAmt2 = MulAmt / 3;
8077  }
8078  if (MulAmt2 &&
8079      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
8080    DebugLoc DL = N->getDebugLoc();
8081
8082    if (isPowerOf2_64(MulAmt2) &&
8083        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
8084      // If second multiplifer is pow2, issue it first. We want the multiply by
8085      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
8086      // is an add.
8087      std::swap(MulAmt1, MulAmt2);
8088
8089    SDValue NewMul;
8090    if (isPowerOf2_64(MulAmt1))
8091      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
8092                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
8093    else
8094      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
8095                           DAG.getConstant(MulAmt1, VT));
8096
8097    if (isPowerOf2_64(MulAmt2))
8098      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
8099                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
8100    else
8101      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
8102                           DAG.getConstant(MulAmt2, VT));
8103
8104    // Do not add new nodes to DAG combiner worklist.
8105    DCI.CombineTo(N, NewMul, false);
8106  }
8107  return SDValue();
8108}
8109
8110
8111/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
8112///                       when possible.
8113static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
8114                                   const X86Subtarget *Subtarget) {
8115  // On X86 with SSE2 support, we can transform this to a vector shift if
8116  // all elements are shifted by the same amount.  We can't do this in legalize
8117  // because the a constant vector is typically transformed to a constant pool
8118  // so we have no knowledge of the shift amount.
8119  if (!Subtarget->hasSSE2())
8120    return SDValue();
8121
8122  MVT VT = N->getValueType(0);
8123  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
8124    return SDValue();
8125
8126  SDValue ShAmtOp = N->getOperand(1);
8127  MVT EltVT = VT.getVectorElementType();
8128  DebugLoc DL = N->getDebugLoc();
8129  SDValue BaseShAmt;
8130  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
8131    unsigned NumElts = VT.getVectorNumElements();
8132    unsigned i = 0;
8133    for (; i != NumElts; ++i) {
8134      SDValue Arg = ShAmtOp.getOperand(i);
8135      if (Arg.getOpcode() == ISD::UNDEF) continue;
8136      BaseShAmt = Arg;
8137      break;
8138    }
8139    for (; i != NumElts; ++i) {
8140      SDValue Arg = ShAmtOp.getOperand(i);
8141      if (Arg.getOpcode() == ISD::UNDEF) continue;
8142      if (Arg != BaseShAmt) {
8143        return SDValue();
8144      }
8145    }
8146  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
8147             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
8148    BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
8149                            DAG.getIntPtrConstant(0));
8150  } else
8151    return SDValue();
8152
8153  if (EltVT.bitsGT(MVT::i32))
8154    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
8155  else if (EltVT.bitsLT(MVT::i32))
8156    BaseShAmt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, BaseShAmt);
8157
8158  // The shift amount is identical so we can do a vector shift.
8159  SDValue  ValOp = N->getOperand(0);
8160  switch (N->getOpcode()) {
8161  default:
8162    assert(0 && "Unknown shift opcode!");
8163    break;
8164  case ISD::SHL:
8165    if (VT == MVT::v2i64)
8166      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8167                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8168                         ValOp, BaseShAmt);
8169    if (VT == MVT::v4i32)
8170      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8171                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
8172                         ValOp, BaseShAmt);
8173    if (VT == MVT::v8i16)
8174      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8175                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
8176                         ValOp, BaseShAmt);
8177    break;
8178  case ISD::SRA:
8179    if (VT == MVT::v4i32)
8180      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8181                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
8182                         ValOp, BaseShAmt);
8183    if (VT == MVT::v8i16)
8184      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8185                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
8186                         ValOp, BaseShAmt);
8187    break;
8188  case ISD::SRL:
8189    if (VT == MVT::v2i64)
8190      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8191                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8192                         ValOp, BaseShAmt);
8193    if (VT == MVT::v4i32)
8194      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8195                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
8196                         ValOp, BaseShAmt);
8197    if (VT ==  MVT::v8i16)
8198      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8199                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
8200                         ValOp, BaseShAmt);
8201    break;
8202  }
8203  return SDValue();
8204}
8205
8206/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
8207static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
8208                                   const X86Subtarget *Subtarget) {
8209  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
8210  // the FP state in cases where an emms may be missing.
8211  // A preferable solution to the general problem is to figure out the right
8212  // places to insert EMMS.  This qualifies as a quick hack.
8213
8214  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
8215  StoreSDNode *St = cast<StoreSDNode>(N);
8216  MVT VT = St->getValue().getValueType();
8217  if (VT.getSizeInBits() != 64)
8218    return SDValue();
8219
8220  const Function *F = DAG.getMachineFunction().getFunction();
8221  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
8222  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
8223    && Subtarget->hasSSE2();
8224  if ((VT.isVector() ||
8225       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
8226      isa<LoadSDNode>(St->getValue()) &&
8227      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
8228      St->getChain().hasOneUse() && !St->isVolatile()) {
8229    SDNode* LdVal = St->getValue().getNode();
8230    LoadSDNode *Ld = 0;
8231    int TokenFactorIndex = -1;
8232    SmallVector<SDValue, 8> Ops;
8233    SDNode* ChainVal = St->getChain().getNode();
8234    // Must be a store of a load.  We currently handle two cases:  the load
8235    // is a direct child, and it's under an intervening TokenFactor.  It is
8236    // possible to dig deeper under nested TokenFactors.
8237    if (ChainVal == LdVal)
8238      Ld = cast<LoadSDNode>(St->getChain());
8239    else if (St->getValue().hasOneUse() &&
8240             ChainVal->getOpcode() == ISD::TokenFactor) {
8241      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
8242        if (ChainVal->getOperand(i).getNode() == LdVal) {
8243          TokenFactorIndex = i;
8244          Ld = cast<LoadSDNode>(St->getValue());
8245        } else
8246          Ops.push_back(ChainVal->getOperand(i));
8247      }
8248    }
8249
8250    if (!Ld || !ISD::isNormalLoad(Ld))
8251      return SDValue();
8252
8253    // If this is not the MMX case, i.e. we are just turning i64 load/store
8254    // into f64 load/store, avoid the transformation if there are multiple
8255    // uses of the loaded value.
8256    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
8257      return SDValue();
8258
8259    DebugLoc LdDL = Ld->getDebugLoc();
8260    DebugLoc StDL = N->getDebugLoc();
8261    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
8262    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
8263    // pair instead.
8264    if (Subtarget->is64Bit() || F64IsLegal) {
8265      MVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
8266      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(),
8267                                  Ld->getBasePtr(), Ld->getSrcValue(),
8268                                  Ld->getSrcValueOffset(), Ld->isVolatile(),
8269                                  Ld->getAlignment());
8270      SDValue NewChain = NewLd.getValue(1);
8271      if (TokenFactorIndex != -1) {
8272        Ops.push_back(NewChain);
8273        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
8274                               Ops.size());
8275      }
8276      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
8277                          St->getSrcValue(), St->getSrcValueOffset(),
8278                          St->isVolatile(), St->getAlignment());
8279    }
8280
8281    // Otherwise, lower to two pairs of 32-bit loads / stores.
8282    SDValue LoAddr = Ld->getBasePtr();
8283    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
8284                                 DAG.getConstant(4, MVT::i32));
8285
8286    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
8287                               Ld->getSrcValue(), Ld->getSrcValueOffset(),
8288                               Ld->isVolatile(), Ld->getAlignment());
8289    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
8290                               Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
8291                               Ld->isVolatile(),
8292                               MinAlign(Ld->getAlignment(), 4));
8293
8294    SDValue NewChain = LoLd.getValue(1);
8295    if (TokenFactorIndex != -1) {
8296      Ops.push_back(LoLd);
8297      Ops.push_back(HiLd);
8298      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
8299                             Ops.size());
8300    }
8301
8302    LoAddr = St->getBasePtr();
8303    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
8304                         DAG.getConstant(4, MVT::i32));
8305
8306    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
8307                                St->getSrcValue(), St->getSrcValueOffset(),
8308                                St->isVolatile(), St->getAlignment());
8309    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
8310                                St->getSrcValue(),
8311                                St->getSrcValueOffset() + 4,
8312                                St->isVolatile(),
8313                                MinAlign(St->getAlignment(), 4));
8314    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
8315  }
8316  return SDValue();
8317}
8318
8319/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
8320/// X86ISD::FXOR nodes.
8321static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
8322  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
8323  // F[X]OR(0.0, x) -> x
8324  // F[X]OR(x, 0.0) -> x
8325  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
8326    if (C->getValueAPF().isPosZero())
8327      return N->getOperand(1);
8328  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
8329    if (C->getValueAPF().isPosZero())
8330      return N->getOperand(0);
8331  return SDValue();
8332}
8333
8334/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
8335static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
8336  // FAND(0.0, x) -> 0.0
8337  // FAND(x, 0.0) -> 0.0
8338  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
8339    if (C->getValueAPF().isPosZero())
8340      return N->getOperand(0);
8341  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
8342    if (C->getValueAPF().isPosZero())
8343      return N->getOperand(1);
8344  return SDValue();
8345}
8346
8347static SDValue PerformBTCombine(SDNode *N,
8348                                SelectionDAG &DAG,
8349                                TargetLowering::DAGCombinerInfo &DCI) {
8350  // BT ignores high bits in the bit index operand.
8351  SDValue Op1 = N->getOperand(1);
8352  if (Op1.hasOneUse()) {
8353    unsigned BitWidth = Op1.getValueSizeInBits();
8354    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
8355    APInt KnownZero, KnownOne;
8356    TargetLowering::TargetLoweringOpt TLO(DAG);
8357    TargetLowering &TLI = DAG.getTargetLoweringInfo();
8358    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
8359        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
8360      DCI.CommitTargetLoweringOpt(TLO);
8361  }
8362  return SDValue();
8363}
8364
8365static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
8366  SDValue Op = N->getOperand(0);
8367  if (Op.getOpcode() == ISD::BIT_CONVERT)
8368    Op = Op.getOperand(0);
8369  MVT VT = N->getValueType(0), OpVT = Op.getValueType();
8370  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
8371      VT.getVectorElementType().getSizeInBits() ==
8372      OpVT.getVectorElementType().getSizeInBits()) {
8373    return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
8374  }
8375  return SDValue();
8376}
8377
8378SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
8379                                             DAGCombinerInfo &DCI) const {
8380  SelectionDAG &DAG = DCI.DAG;
8381  switch (N->getOpcode()) {
8382  default: break;
8383  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
8384  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
8385  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
8386  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
8387  case ISD::SHL:
8388  case ISD::SRA:
8389  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
8390  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
8391  case X86ISD::FXOR:
8392  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
8393  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
8394  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
8395  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
8396  }
8397
8398  return SDValue();
8399}
8400
8401//===----------------------------------------------------------------------===//
8402//                           X86 Inline Assembly Support
8403//===----------------------------------------------------------------------===//
8404
8405/// getConstraintType - Given a constraint letter, return the type of
8406/// constraint it is for this target.
8407X86TargetLowering::ConstraintType
8408X86TargetLowering::getConstraintType(const std::string &Constraint) const {
8409  if (Constraint.size() == 1) {
8410    switch (Constraint[0]) {
8411    case 'A':
8412      return C_Register;
8413    case 'f':
8414    case 'r':
8415    case 'R':
8416    case 'l':
8417    case 'q':
8418    case 'Q':
8419    case 'x':
8420    case 'y':
8421    case 'Y':
8422      return C_RegisterClass;
8423    case 'e':
8424    case 'Z':
8425      return C_Other;
8426    default:
8427      break;
8428    }
8429  }
8430  return TargetLowering::getConstraintType(Constraint);
8431}
8432
8433/// LowerXConstraint - try to replace an X constraint, which matches anything,
8434/// with another that has more specific requirements based on the type of the
8435/// corresponding operand.
8436const char *X86TargetLowering::
8437LowerXConstraint(MVT ConstraintVT) const {
8438  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
8439  // 'f' like normal targets.
8440  if (ConstraintVT.isFloatingPoint()) {
8441    if (Subtarget->hasSSE2())
8442      return "Y";
8443    if (Subtarget->hasSSE1())
8444      return "x";
8445  }
8446
8447  return TargetLowering::LowerXConstraint(ConstraintVT);
8448}
8449
8450/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
8451/// vector.  If it is invalid, don't add anything to Ops.
8452void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
8453                                                     char Constraint,
8454                                                     bool hasMemory,
8455                                                     std::vector<SDValue>&Ops,
8456                                                     SelectionDAG &DAG) const {
8457  SDValue Result(0, 0);
8458
8459  switch (Constraint) {
8460  default: break;
8461  case 'I':
8462    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8463      if (C->getZExtValue() <= 31) {
8464        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
8465        break;
8466      }
8467    }
8468    return;
8469  case 'J':
8470    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8471      if (C->getZExtValue() <= 63) {
8472        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
8473        break;
8474      }
8475    }
8476    return;
8477  case 'K':
8478    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8479      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
8480        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
8481        break;
8482      }
8483    }
8484    return;
8485  case 'N':
8486    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8487      if (C->getZExtValue() <= 255) {
8488        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
8489        break;
8490      }
8491    }
8492    return;
8493  case 'e': {
8494    // 32-bit signed value
8495    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8496      const ConstantInt *CI = C->getConstantIntValue();
8497      if (CI->isValueValidForType(Type::Int32Ty, C->getSExtValue())) {
8498        // Widen to 64 bits here to get it sign extended.
8499        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
8500        break;
8501      }
8502    // FIXME gcc accepts some relocatable values here too, but only in certain
8503    // memory models; it's complicated.
8504    }
8505    return;
8506  }
8507  case 'Z': {
8508    // 32-bit unsigned value
8509    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8510      const ConstantInt *CI = C->getConstantIntValue();
8511      if (CI->isValueValidForType(Type::Int32Ty, C->getZExtValue())) {
8512        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
8513        break;
8514      }
8515    }
8516    // FIXME gcc accepts some relocatable values here too, but only in certain
8517    // memory models; it's complicated.
8518    return;
8519  }
8520  case 'i': {
8521    // Literal immediates are always ok.
8522    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
8523      // Widen to 64 bits here to get it sign extended.
8524      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
8525      break;
8526    }
8527
8528    // If we are in non-pic codegen mode, we allow the address of a global (with
8529    // an optional displacement) to be used with 'i'.
8530    GlobalAddressSDNode *GA = 0;
8531    int64_t Offset = 0;
8532
8533    // Match either (GA), (GA+C), (GA+C1+C2), etc.
8534    while (1) {
8535      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
8536        Offset += GA->getOffset();
8537        break;
8538      } else if (Op.getOpcode() == ISD::ADD) {
8539        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
8540          Offset += C->getZExtValue();
8541          Op = Op.getOperand(0);
8542          continue;
8543        }
8544      } else if (Op.getOpcode() == ISD::SUB) {
8545        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
8546          Offset += -C->getZExtValue();
8547          Op = Op.getOperand(0);
8548          continue;
8549        }
8550      }
8551
8552      // Otherwise, this isn't something we can handle, reject it.
8553      return;
8554    }
8555
8556    if (hasMemory)
8557      Op = LowerGlobalAddress(GA->getGlobal(), Op.getDebugLoc(), Offset, DAG);
8558    else
8559      Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
8560                                      Offset);
8561    Result = Op;
8562    break;
8563  }
8564  }
8565
8566  if (Result.getNode()) {
8567    Ops.push_back(Result);
8568    return;
8569  }
8570  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory,
8571                                                      Ops, DAG);
8572}
8573
8574std::vector<unsigned> X86TargetLowering::
8575getRegClassForInlineAsmConstraint(const std::string &Constraint,
8576                                  MVT VT) const {
8577  if (Constraint.size() == 1) {
8578    // FIXME: not handling fp-stack yet!
8579    switch (Constraint[0]) {      // GCC X86 Constraint Letters
8580    default: break;  // Unknown constraint letter
8581    case 'q':   // Q_REGS (GENERAL_REGS in 64-bit mode)
8582    case 'Q':   // Q_REGS
8583      if (VT == MVT::i32)
8584        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
8585      else if (VT == MVT::i16)
8586        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
8587      else if (VT == MVT::i8)
8588        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
8589      else if (VT == MVT::i64)
8590        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
8591      break;
8592    }
8593  }
8594
8595  return std::vector<unsigned>();
8596}
8597
8598std::pair<unsigned, const TargetRegisterClass*>
8599X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
8600                                                MVT VT) const {
8601  // First, see if this is a constraint that directly corresponds to an LLVM
8602  // register class.
8603  if (Constraint.size() == 1) {
8604    // GCC Constraint Letters
8605    switch (Constraint[0]) {
8606    default: break;
8607    case 'r':   // GENERAL_REGS
8608    case 'R':   // LEGACY_REGS
8609    case 'l':   // INDEX_REGS
8610      if (VT == MVT::i8)
8611        return std::make_pair(0U, X86::GR8RegisterClass);
8612      if (VT == MVT::i16)
8613        return std::make_pair(0U, X86::GR16RegisterClass);
8614      if (VT == MVT::i32 || !Subtarget->is64Bit())
8615        return std::make_pair(0U, X86::GR32RegisterClass);
8616      return std::make_pair(0U, X86::GR64RegisterClass);
8617    case 'f':  // FP Stack registers.
8618      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
8619      // value to the correct fpstack register class.
8620      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
8621        return std::make_pair(0U, X86::RFP32RegisterClass);
8622      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
8623        return std::make_pair(0U, X86::RFP64RegisterClass);
8624      return std::make_pair(0U, X86::RFP80RegisterClass);
8625    case 'y':   // MMX_REGS if MMX allowed.
8626      if (!Subtarget->hasMMX()) break;
8627      return std::make_pair(0U, X86::VR64RegisterClass);
8628    case 'Y':   // SSE_REGS if SSE2 allowed
8629      if (!Subtarget->hasSSE2()) break;
8630      // FALL THROUGH.
8631    case 'x':   // SSE_REGS if SSE1 allowed
8632      if (!Subtarget->hasSSE1()) break;
8633
8634      switch (VT.getSimpleVT()) {
8635      default: break;
8636      // Scalar SSE types.
8637      case MVT::f32:
8638      case MVT::i32:
8639        return std::make_pair(0U, X86::FR32RegisterClass);
8640      case MVT::f64:
8641      case MVT::i64:
8642        return std::make_pair(0U, X86::FR64RegisterClass);
8643      // Vector types.
8644      case MVT::v16i8:
8645      case MVT::v8i16:
8646      case MVT::v4i32:
8647      case MVT::v2i64:
8648      case MVT::v4f32:
8649      case MVT::v2f64:
8650        return std::make_pair(0U, X86::VR128RegisterClass);
8651      }
8652      break;
8653    }
8654  }
8655
8656  // Use the default implementation in TargetLowering to convert the register
8657  // constraint into a member of a register class.
8658  std::pair<unsigned, const TargetRegisterClass*> Res;
8659  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
8660
8661  // Not found as a standard register?
8662  if (Res.second == 0) {
8663    // GCC calls "st(0)" just plain "st".
8664    if (StringsEqualNoCase("{st}", Constraint)) {
8665      Res.first = X86::ST0;
8666      Res.second = X86::RFP80RegisterClass;
8667    }
8668    // 'A' means EAX + EDX.
8669    if (Constraint == "A") {
8670      Res.first = X86::EAX;
8671      Res.second = X86::GRADRegisterClass;
8672    }
8673    return Res;
8674  }
8675
8676  // Otherwise, check to see if this is a register class of the wrong value
8677  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
8678  // turn into {ax},{dx}.
8679  if (Res.second->hasType(VT))
8680    return Res;   // Correct type already, nothing to do.
8681
8682  // All of the single-register GCC register classes map their values onto
8683  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
8684  // really want an 8-bit or 32-bit register, map to the appropriate register
8685  // class and return the appropriate register.
8686  if (Res.second == X86::GR16RegisterClass) {
8687    if (VT == MVT::i8) {
8688      unsigned DestReg = 0;
8689      switch (Res.first) {
8690      default: break;
8691      case X86::AX: DestReg = X86::AL; break;
8692      case X86::DX: DestReg = X86::DL; break;
8693      case X86::CX: DestReg = X86::CL; break;
8694      case X86::BX: DestReg = X86::BL; break;
8695      }
8696      if (DestReg) {
8697        Res.first = DestReg;
8698        Res.second = X86::GR8RegisterClass;
8699      }
8700    } else if (VT == MVT::i32) {
8701      unsigned DestReg = 0;
8702      switch (Res.first) {
8703      default: break;
8704      case X86::AX: DestReg = X86::EAX; break;
8705      case X86::DX: DestReg = X86::EDX; break;
8706      case X86::CX: DestReg = X86::ECX; break;
8707      case X86::BX: DestReg = X86::EBX; break;
8708      case X86::SI: DestReg = X86::ESI; break;
8709      case X86::DI: DestReg = X86::EDI; break;
8710      case X86::BP: DestReg = X86::EBP; break;
8711      case X86::SP: DestReg = X86::ESP; break;
8712      }
8713      if (DestReg) {
8714        Res.first = DestReg;
8715        Res.second = X86::GR32RegisterClass;
8716      }
8717    } else if (VT == MVT::i64) {
8718      unsigned DestReg = 0;
8719      switch (Res.first) {
8720      default: break;
8721      case X86::AX: DestReg = X86::RAX; break;
8722      case X86::DX: DestReg = X86::RDX; break;
8723      case X86::CX: DestReg = X86::RCX; break;
8724      case X86::BX: DestReg = X86::RBX; break;
8725      case X86::SI: DestReg = X86::RSI; break;
8726      case X86::DI: DestReg = X86::RDI; break;
8727      case X86::BP: DestReg = X86::RBP; break;
8728      case X86::SP: DestReg = X86::RSP; break;
8729      }
8730      if (DestReg) {
8731        Res.first = DestReg;
8732        Res.second = X86::GR64RegisterClass;
8733      }
8734    }
8735  } else if (Res.second == X86::FR32RegisterClass ||
8736             Res.second == X86::FR64RegisterClass ||
8737             Res.second == X86::VR128RegisterClass) {
8738    // Handle references to XMM physical registers that got mapped into the
8739    // wrong class.  This can happen with constraints like {xmm0} where the
8740    // target independent register mapper will just pick the first match it can
8741    // find, ignoring the required type.
8742    if (VT == MVT::f32)
8743      Res.second = X86::FR32RegisterClass;
8744    else if (VT == MVT::f64)
8745      Res.second = X86::FR64RegisterClass;
8746    else if (X86::VR128RegisterClass->hasType(VT))
8747      Res.second = X86::VR128RegisterClass;
8748  }
8749
8750  return Res;
8751}
8752
8753//===----------------------------------------------------------------------===//
8754//                           X86 Widen vector type
8755//===----------------------------------------------------------------------===//
8756
8757/// getWidenVectorType: given a vector type, returns the type to widen
8758/// to (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
8759/// If there is no vector type that we want to widen to, returns MVT::Other
8760/// When and where to widen is target dependent based on the cost of
8761/// scalarizing vs using the wider vector type.
8762
8763MVT X86TargetLowering::getWidenVectorType(MVT VT) const {
8764  assert(VT.isVector());
8765  if (isTypeLegal(VT))
8766    return VT;
8767
8768  // TODO: In computeRegisterProperty, we can compute the list of legal vector
8769  //       type based on element type.  This would speed up our search (though
8770  //       it may not be worth it since the size of the list is relatively
8771  //       small).
8772  MVT EltVT = VT.getVectorElementType();
8773  unsigned NElts = VT.getVectorNumElements();
8774
8775  // On X86, it make sense to widen any vector wider than 1
8776  if (NElts <= 1)
8777    return MVT::Other;
8778
8779  for (unsigned nVT = MVT::FIRST_VECTOR_VALUETYPE;
8780       nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
8781    MVT SVT = (MVT::SimpleValueType)nVT;
8782
8783    if (isTypeLegal(SVT) &&
8784        SVT.getVectorElementType() == EltVT &&
8785        SVT.getVectorNumElements() > NElts)
8786      return SVT;
8787  }
8788  return MVT::Other;
8789}
8790